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Chapter 1

Introduction

As in every field of electronics, the price for digital imaging devices trends to decrease,

while their performance in terms of image quality, physical dimensions and weight in-

creases [37]. With the increasing processing power of today’s computers, computer

vision (CV) systems have become widely accepted. They are used successfully in in-

dustrial automation for quality control (e.g. defect and object detection [48]) and for

process control (e.g. sorting machines [65]). These applications fall into the category of

automated optical inspection (AOI) tasks.

In life science laboratories however, CV is nearly exclusively used for data analysis

purposes in plate readers and microscopes. Exceptions are colony pickers, which select

colonies using machine vision and pick those appropriate for further processing [44] [33],

and barcode readers.

The progress made in AOI was ignored by laboratory robotics equipment vendors. One

may say that this is a good indicator that AOI is not needed in laboratory automation,

but this conclusion is wrong. One cause for the slow adoption is that classical approaches

often exist and work. However, this thesis identifies tasks within the fields of quality

control and process control of automated laboratories, where machine vision can be a

viable and cost-effective alternative to classical approaches.

Many applications exist where CV offers a fast and economical alternative to classical

approaches, and it furthermore offers possibilities to automate tasks that were difficult

or impossible to automate without [29] [71]. Furthermore, tasks belonging to sample

preparation are still considered as difficult to automate. Here, CV can provide the much

needed sensory input to the automation system that is required to solve this problem.

While digital cameras are available in every mobile phone today, CV algorithms still

17



CHAPTER 1. INTRODUCTION 18

belong to the challenging topics of signal processing research and only recently have moved

into the everyday lives of people (e.g. face detection in digital cameras, gesture controlled

video games). That means while hardware prices decrease, one hindrance to the adoption

of machine vision applications persist: The high cost of software development.

Lebak et al. state that ”the cost of software development (for signal processing ap-

plications) outweighs the hardware development by a significant and widening gap” [50].

This is also true in the field of laboratory automation, where companies sell COTS hard-

ware equipped with their own software, for e.g. barcode-reading, for as much as a tenfold

of the hardware price.

While the requirements in terms of handling and robustness of the software are as high

as for any professional application, the quantities in which companies sell their specialized

equipment for laboratory automation is small compared to mass market software. Hence,

the small market quantities typical for specialized equipment are one cause for high prices.

Probably, this is one cause for the slow adoption of computer vision in laboratories.

This problem is addressed by the design of a software framework that enables develop-

ers to accelerate application development and reducing costs. The framework is a generic

tool to implement plate analysis for different labware types using an arbitrary imaging

device. It implements computer vision and machine learning algorithms together with

providing test and simulation facilities for the developer. The interfaces to the process

control system, to the imaging device and to the user are kept abstract, in a way that

enables the rapid integration of different applications into laboratories.

The work on a machine vision-based liquid delivery monitoring application is presented

as the second part of this thesis. It aims to monitor the delivery of smallest amounts

of liquids to the widely used standard microtiter plate labware format [73] [74]. This

application is an example for an AOI task and is used to validate the framework design

and implementation. The algorithmic approach for the detection of drops in transparent

microtiter plate wells has been tested and validated in two test runs.

1.1 Computer Vision for Automated Optical Inspec-

tion

The term computer vision (CV), as it is used in this thesis, circumscribes the computer-

based understanding of images, in order to generate abstract knowledge that can be stored
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as a datum or can be acted upon [23]. Synonyms are machine vision and industrial image

processing. Even though industrial image processing often uses one-dimensional line scan

cameras, the area of application in, e.g., quality control has a similar program layout,

algorithms and aims (i.e. generation of measurements for quality and process control).

Image

acquisition

Pre-

processing
Processing Inference

Raw

image
Image Features Decision,

reaction

Camera,

scanner

Gamma-correction,

calibration,

white-balancing

Segmentation,

filtering

Thresholding,

classification

Illumination

Object

Figure 1.1: Flow scheme of a computer vision program

Computer vision in the scope of this document is used for measurement applications

within automation systems and comprises the steps shown in Fig. 1.1 [41]:

1. Sample illumination: The setup and positioning of a light source that emits

light, which is reflected by the objects of interest. The illumination setup affects

the quality of an image to a great extent, hence an application whose illumination

setup is controllable is advantageous and is likely to offer better results. Methods

to determine optimal lighting exist [17] [54], but they rely on simplified models,

such that an experimental verification is most likely necessary. Yi et al. state that

active illumination design is more efficient than the application of more complex

algorithms for suboptimal images [86].

2. Imaging: Imaging describes the spatially resolved conversion of electromagnetic

waves into a signal such as voltage. Generally, any sensor able to read electromag-

netic waves is appropriate, but for the scope of this document, only visible light is

considered ( 380nm − 780nm). The sensor selection and positioning is carried out

with consideration of the laws of linear optics (pinhole camera model). Instructions

can be found in [23] and [64]. Cowan et al. even present an algorithm for automatic

optimal positioning of cameras [16].

3. Preprocessing covers the correction of systematic measurement errors by calibra-

tion and other adjustments such as white balancing and histogram equalization.

Preprocessing measures are described in-depth in [23] and [41].

4. Processing: The main part of every CV application consists of the steps image
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segmentation, morphology, feature generation and object classification. Depending

on the algorithms, the sequence of steps will be different to the ones presented here.

Segmentation: Generation of a map that holds the information for every pixel,

whether it belongs to the object of interest (true) or not (false). Classical

techniques, such as edge-detectors [14] or thresholding [62], are applied at this

stage, but advanced pattern recognition algorithms are also used for image

segmentation.

Feature generation: The extraction of descriptive parameters (features) for every

object that was found during segmentation. Classic features used in CV are

brightness levels or color, statistical moments, lines [39] and curves [20], aspect

ratios, etc. For every object, its features form a feature vector.

5. Inference: An inference engine classifies objects and determines decisions or reac-

tions accordingly. With feature vectors as inputs, this part forms the intelligent part

of the system when it is trainable or when it is designed to e.g. automatically learn

while operating. Example techniques used in this step include statistical methods

and so-called artificial intelligence methods. Examples can be found for artificial

neural networks (ANN ), fuzzy inference engines (FIM /FIS ), coupled neuro-fuzzy

systems, and statistical classifiers, such as Bayes, k-means, boosting [75] and sup-

port vector machines (SVM ). Classifiers and inference engines are classified by their

learning rule into supervised and unsupervised learning. [9].

The list above describes the classical steps implemented in a CV application. To-

day, variations and exceptions to that sequence exist. Latest research aims to skip the

application-specific image processing by implementing a fixed set of operations and feed-

ing the results directly into a classifier [48]. For quantitative measurement, however, this

is not indicated. In this case, the inference step would be replaced by a regression step to

translate the algorithm output into the measurement of a physical value.

1.2 Current Situation in Laboratory Automation

This chapter provides an overview of established applications using computer vision in

laboratories today. It further addresses three fields where a CV approach should be

considered and presents the procedures used today.
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Because the thesis’ aim is the development of a CV framework for quality- and process

control, tasks are grouped in sample analysis and quality process control applications

accordingly. Data from sample analyses constitutes the outcome of an experiment, and

therewith the target data of the whole automated process, whereas quality and process

control applications support the process of generating such target data.

This chapter addresses the fact that the vast majority of applications of CV is part of

sample analysis, while the number of quality and process control applications is compar-

atively low. Laboratory automation does not make use of the progress made in AOI and

in digital imaging hardware evolution yet. The considered applications are summarized

in Table 1.1.

1.2.1 Image-based Analytic Applications

Plate Readers analyze samples in microtiter plates by reading fluorescence, absorbance

or luminescence. An example application is the measurement of antibiotic resistance

of bacteria. The first application of bio-luminescence analysis using light-amplifying

charge coupled device (CCD) sensors is dated in the late 1960’s [36]. In 1980,

McFadden filed a patent describing an apparatus for the sample visualization of

fluorescence in microplates [56]. The evaluation itself was conducted manually.

Kelly et al. filed a patent named microtiter plate reader [47] in 1987, that describes

an apparatus to equally illuminate all wells of a plate for easy manual evaluation.

Since then, plate reader technology evolved continuously, with a high number of

filed patents and publications, until a patent filed in 2000 describes the invention of

imaging multiple samples in wells and consecutive automated evaluation [58]. The

device moves a sample plate in a manner that allows a detector to read one sample

at a time. The device uses a mask to cover other samples during imaging.

Andrews et al. patented a device that uses optical fibers to illuminate a respective

fluid sample of a plurality of samples and a single detector with a plurality of optical

fibers that detects the light emitted from the illuminated fluid sample [2]. The device

has no moving parts, but still processes the samples serially. Volcker et al. use a

cylindrical lens and prism array to image a plurality of samples in parallel [81].

Plate Imagers are an advancement to plate readers, they provide extended means for

sample analysis by means of images instead of a single fluorescence measurement
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[79].

High Content Screening (HCS) uses plate imagers to automatically evaluate samples

in microplates visually and is also called high-content microscopy. It was introduced

in 1996 by Biological Detection, Inc. (BDI) with their product ArrayScanTM [84]

[30]. Bushman et al. date the first validation of an automated high content screening

(HCS) application to be in 1998 [13].

Protein Crystallography: A recent development is the use of automated image pro-

cessing for high-throughput protein crystallography. Crystallization is detected by

image processing with high precision that outperforms the classical manual assess-

ment [4].

Agglutination Analysis: Blood agglutinates when antigen/antibody reactions happen.

The resulting change of appearance and diaphaneity can be analyzed by visual

inspection or turbidimetry. For instance, this is used in vaccine development [28] or

for blood typing in blood banks. A patent filed in 1992 by Ohta et al. describes an

apparatus for the digital imaging of agglutination in microplates [59]. The device is

inflexible, since it uses mechanical transport means to move a sensor over a plate in

a fixed motion pattern. Plates with different densities could not be used with such a

system without modifications. Today, fully automated devices for high-throughput

blood typing exist that rely on technology patented by Shen et al. [76]. 1

1.2.2 Colony Picking

Colony picking is the most widespread application of CV for process control in labo-

ratories. It is the process of selecting target cell colonies from a plate by a specific

characteristic, e.g. color. It is used to grow large numbers of cell colonies for deoxyri-

bonucleic acid (DNA)-sequencing where DNA-fragments are cloned in living cells. The

colony picker selects surviving colonies for further cloning. The utilization of CV tech-

nology to automate and accelerate the picking process started in the late 1980’s. The

Manchester Biotechnology Centre, University of Manchester, played a strong role in the

process, when its automatic plaque selection and culture inoculation robot (APSCIR) was

developed. The robot is able to discriminate living (blue) and dead (white) cells by color

and transfers selected colonies to an MTP [15].

1Blood bank devices from Ortho-Clinical-Diagnostics, http://www.orthoclinical.com

http://www.orthoclinical.com
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Jasiobedzki et al. [42] present the adaption of the APSCIR system for streptomyce

detection in 1987. Further research addresses the application of CV methods to auto-

mate plant seedling growth [34]. Jones et al. present the addition of automated image

processing to a previously manually operated colony picking robot in 1992 [44]. It uses

a camera to present an image to an operator who selects valid colonies manually. This

manual selection process is automated, such that no further supervision is necessary, and

thus the process is fully automated.

The Human Genome Project was a main driver for the development of high-throughput

colony picking robots: Due to the high demand of DNA-fragments, it was the key require-

ment for the application.2

1.2.3 Plant Growth Screening

Plant growth screening addresses the (optical) inspection of plant growth. It is used to

measure growth as a target information of the experiment and is conducted manually. The

screening is exemplarily described for an application in a toxic resistance measurement.

The plants (often Arabidopsis thaliana) are grown in a 96-well MTP whose wells are

prepared with an increasing concentration column-by-column of a toxic substance (Figure

1.2a). The plants are seeded and stored. They are provided with equal amounts of light

and nutrition media for a defined time. Afterwards their growth is measured (Figure

1.2b). The target information is the toxic concentration at which growth in inhibited

(Figure 1.2c). If this information is brought into context with genetic characteristics, the

gene controlling the resistance against the substance can be isolated.

Growth measurement is considered basic knowledge in plant sciences and is a very

tedious task. The substitute measure for growth is weight. Prior to weighing, the plants

have to be picked one by one and placed onto a paper towel. They are dried for 4 to 6

hours at 80°C and subsequently, the plants are weighed and a mean value is calculated

for every column, i.e. for every concentration. Regardless of the effort it requires, this

measurement technique is far from being precise: According to plant scientists, errors

of up to 20% are normal. This is the worst bottleneck of such experiments and can be

approached using CV.

That CV is applicable to plant growth screening was shown by Spalding [77]. Still, the

2Today, the Joint Genome Institute (JGI) of the Department of En-
ergy (DoE) produces 192,000 colonies a day with four robots. See:
http://www.jgi.doe.gov/sequencing/education/how/how_5.html (accessed December, 13, 2011)

http://www.jgi.doe.gov/sequencing/education/how/how_5.html
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(a) concentration (b) resulting plant growth (c) resistance of plant species

Figure 1.2: Growth as a measure for resistance

available methods are not usable to high-throughput screening, since they are designed

to picture freely growing plants from the side in front of a white uncluttered background.

The fact that errors of up to 20% are state of the art today and that growth screening in

a similar way is already in use, makes the assumption reasonable that equal or improved

results can be obtained using CV. This application is part of the research subsequent to

this work.

1.2.4 Liquid Level Detection

By replacing a human operator it is possible to improve precision and decrease the number

of errors, especially when boring and repetitive tasks are considered. However, the human

ability to recognize a faulty outcome of an experiment step is lost. In some cases, a quality

control during the experimentation, not when final results are already corrupted, makes

sense. To be able to sense faults, sensory equipment is needed. In the case of low-volume

liquid handling monitoring, which is presented below, CV offers effective quality control.

A patent filed in 1989 describes a mechanism for manual visual control of MTPs [52].

The device holds a plate at a predefined parallel distance to a patterned surface. The

light reflected from the patterned surface is refracted through the fluid in the wells of

transparent MTPs, allowing detection of fluid from distortions in the pattern or specular

highlights compared to the empty wells. This method makes manual monitoring easy for

the user, but it is restricted to clear, transparent microtiter plates.

Current pipettors use capacitive or air pressure-sensitive pipettes to determine a vol-

ume by detecting the fill height and calculating volume from the well geometry [66].

Drawbacks of these methods are expensive pipette tips and relatively slow measurement

(> 1min), because every well has to be approached individually. Furthermore, those
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approaches will not yield usable results for volumes that apply in our case (0, 5 - 20µl

for 96-well and 0, 5 - 10µl for 384-well plates), since the fluid still forms a droplet on the

bottom of the well [70]. These ranges are near the lower boundary of a pipettor opera-

tion range where precision and reproducibility usually decreases [67], hence a monitoring

would be especially reasonable.

Ultrasound sensors may be used in determining volume, and also support contact-free

measurement. There are sensors available that are small enough to allow column-wise

well measurement for 96-well plates [19]. The sensors have to approach every column

individually, hence mechanical transport of the sensing device is still required.

Figure 1.3: RTS Vial Auditor results

Lately, two concepts of liquid level detection (LLD) systems for quality control (QC)

application were introduced. The RTS vial auditor uses computer vision for liquid level

measurement of vials. The optical approach was chosen to enable sensing without the

need to decap vials, because that would introduce a new error source, as an additional

cause for cross-contamination [82]. The restriction to vials make it possible to pick one

row of samples at a time and to raise them above the rack. They can be pictured from the

side with an uncluttered and defined background, which eases the later image processing.

The imaging from the side makes the liquid level in the vail observable (see Figure 1.3).

ARTEL’s Multichannel Verification System (MVS) is based on a plate reader and

provided dilutions, and is used to validate liquid handler precision in dedicated validation

runs. The MVS is certified by the Federal Drug Administration (FDA) for the use in

pharmaceutical research. It is is not able to measure sample volumes during experiments,

since the dilution must be added for measurement (see Figure 1.4).

During this thesis, a liquid delivery monitoring application based on machine vision
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Figure 1.4: ARTEL MVS measurement procedure (from: ARTEL, Inc)

is developed. In contrast to the above mentioned methods, it is aimed at supporting

microplates and lowest volumes and being usable during runtime.

1.2.5 Other Applications

Sample Preparation in Plant Sciences

Computer vision offers possibilities to automate parts of experiments that are carried out

manually today. Kolukisaoglu et al. mention the field of plant sciences as being hampered

by a lack of well-adapted automation technology. At worst, such a lack of high throughput

laboratory equipment can constrain the level and progress of research in the field [49].

One such application of CV systems is the automation of sample preparation tasks

that put high demands on laboratory staff, making them strenuous for human operators

[3]. Sample preparation involves the preparation of a sample so that it can be processed by

laboratory equipment, and the input of the samples into the automated experimentation

system. If, for example, a leaf of a plant is to be fed into an automated process, it has to

be cut into pieces that fit the labware. Due to the varying sizes and shapes of leaves, a

sensor would be required to locate the right spots to cut.

Cell Culture Media Monitoring

Another example application is the control of cell culture nourishment by color detection.

The culture-medium for cells changes its color during metabolization. Today, this is de-

tected either by manual inspection or by specially designed optical sensors that measure

the wavelengths of reflected and transmitted light [45]. While using optical sensing too,

the current design is particularly made for that purpose and is not reusable for other

applications. With respect to the low quantities typical to laboratory automation equip-
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ment, this is a drawback in terms of costs and development effort. Having a commercially

available (commercial off-the-shelf, COTS) plate imaging device and a machine vision

tool able to detect and classify colors would ideally reduce the development effort to the

training of colors corresponding to fresh and used fluid.

Quality Control for Compound Libraries

A first report on a computer vision based QC application supporting MTPs was published

in June 2011 [5]. The authors use a camera with a telecentric lens to image the plate

from below in visual and infrared (IR) spectrums. Their device is able to detect empty

wells and scans the compounds for precipitation and air bubbles. The authors provide a

summarization of alternative methods and compare advantages and disadvantages. They

state that their system mainly replaces the manual inspection as discussed in Section

1.2.4.

Table 1.1: Quality and process control tasks in laboratory automation

Task Description Current Measuring Principle

Q/P Liquid Level Detection pipette tips, acoustic

P Colony Picking computer vision

Q/P Preparation of plant samples manual

Q/P/S Plant Growth Screening manual weighing

P Culture Media Monitoring color sensor

S Agglutination evaluation visual/turbidemitry

Q: quality-control, P : process-control, S: Sample-analysis

1.3 Aim of this Work

As explained in Chapter 1.2, the high cost of software development is likely to be a

main hindrance for the adoption of machine vision technology in laboratory automation.

One way to overcome this problem and to ease software development is to establish a

generic framework for machine vision applications that integrates functions common to
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Figure 1.5: 3D model of a workstation deck equipped with a visual monitoring device
and a multi-channel pipettor head

laboratory applications and offers flexible implementation of the actual algorithms. The

ideal case would be a framework where the developer only has to care about the image-

processing algorithm without needing to care about hardware, software, labware, user

interfaces and integration into the process control. As shown in Fig. 1.6, he would design

the computation run on a well, while the parallelization to and localization of all wells

in the image, the labware type and the tools to setup and configure the application are

readily provided, together with process and user interfaces.

To meet the requirements of high-throughput laboratories, this framework aims at

imaging devices that scan a whole plate at once. Devices similar to the plate readers

described in Section 1.2 were intentionally left out of this consideration. Their design is

limiting the number of compatible labwares. Many readers only work with 96-well plates,

often they require a specific manufacturer and type. While this is acceptable for analytic

devices, such a design is too expensive and too inflexible for the use in quality and process

control applications. They must be usable for different applications and compatible to

experiment requirements of specific analytical devices.

This thesis defines the requirements of such a framework by taking hardware, labware

and laboratory automation specific use cases into consideration. This is elaborated in

the next chapter (2). According to the found requirements, concepts are designed and

presented in Chapter 3. Subsequently, the developed reference implementation is covered

in Chapter 4, and the last part of the thesis presents the integration of a developed AOI



CHAPTER 1. INTRODUCTION 29

Labware

holding

n samples
n results

Computer vision

application

(n computations)

Experiment

Results

Figure 1.6: The machine vision application as a black box
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Chapter 2

Requirements Review

The software framework should act as a middleware between imaging devices, the process

control and the user. Its main objective is to provide a generic infrastructure to developers

that facilitates and accelerates development. This chapter reviews the main requirements

for a machine vision framework for automated laboratories.

Today, every laboratory uses equipment that automates particular steps of an experi-

ment. Examples of such equipment are shakers, magnetic stirrers and liquid handlers. A

method would start with a first step, for example the separation of cells that stick to a

flask wall using a shaker. Afterwards, a human operator transports the cell culture to a

liquid handler that aspirates the medium and dispenses it into multiple vials for further

processing.

Laboratory automation, as the term is used in this work1, integrates such devices into a

process consisting of multiple automated steps, often calledmethod. Therewith, it replaces

the steps of the workflow that were previously conducted by a human operator. The

main task of laboratory automation engineering is hence the integration of heterogeneous

devices into a facility while considering throughput, robustness and costs.[29] [35] [72]

2.1 Functional Integration into an Automated Labo-

ratory

The integration is done by physical and informational means, i.e. hard- and software.

The hardware is a robot that transports samples from one station to another. A software

1also called total laboratory automation (TLA)

30
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controls the experiment by scheduling the experiment and commanding the transport

robot and attached devices. When designing a device for optical inspection, the reacha-

bility of the plate position must be considered. Today, different robots are used within

laboratories. Actuated robots usually have a vertical gripper to pick and place labware,

while Cartesian robots use horizontal grippers. Models of both are shown in Figures 2.1

and 2.2.

The installed equipment in a facility defines which experiments can be conducted on

that facility. Still, the exact parameters of an experiment are subject to change over

time, e.g. when operators want to optimize their experiments. Furthermore, often more

than one experiment runs on the same platform, e.g. day routines that need support by

operators and a night routine. Consequently, a requirement on laboratory equipment is

fast reconfigurability that, at least to a certain extent, should be manageable by non-

technicians.

Figure 2.1: Horizontal gripper Figure 2.2: Vertical gripper

2.1.1 Classification of Use Cases

The previous section presented four different applications of CV in laboratory automation.

To understand what functions and flexibility are required of the framework to support

the mentioned types of applications, they are exemplarily investigated. This is done for a

single sample only, although laboratories usually handle multiple samples in parallel (see

section 2.4).

From the outside, the only differences between the presented applications are their in-

put parameters and results. This is true because the framework handles a CV-application
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as a black box with defined inputs (images of samples, labware information, application

parameters) but unknown output. The output depends on the scope of the CV appli-

cation itself and must be passed on to other systems that store the data and/or react if

applicable. Three use cases are introduced: qualitative evaluation, quantitative evaluation

and object detection and classification.

Qualitative sample evaluation

In this use case, the CV system is used to answer a qualitative question about a sample

depending on some numerical features x generated from the image and a threshold t (see

(2.1)). One well holds a single sample, hence the result of a plate evaluation encompasses

nWells binary values. Applications that belong in this group are qualitative drop detection

(“Is there a drop in this well?”) and others, such as agglutination evaluation (“Is the

sample in this well agglutinated?”). It is required to pass a key (name of the measurement)

along with the value.

r(x) =







1 if x ≥ t

0 if x < t
(2.1)

Quantitative sample evaluation

The quantitative evaluation results in nWells values, which can either be discrete or con-

tinuous and are in a application specific range. Examples are quantitative drop volume

determination (range: 0µl− 10µl) and plant growth screening (range 0gr− 20gr). As for

the qualitative measurement, it is required to pass a key and also a measurement unit

along with the result.

r = f(x) (2.2)

Object detection and classification

In contrast to the first two cases, object detection and classification produces complex

multi-valued results for each sample. The number of results depends on the number of

found objects nObj and the number of values nr,Obj for each object. Assuming that the

location of an object, defined by two values p = (x, y) is of interest, nr,Obj would be two,

and the number of results per well is nr,Well = nr,Obj · nObj. The number of results per
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plate is

nr,MTP =

nWells
∑

i

nr,i. (2.3)

This means that a single sample has to return nr,Obj · nObj values per well, and a dynam-

ically sized result container is required.

Results

Col 1 (x,y)

....

Col n (x,y)

sample vessel

objects

x

y

Figure 2.3: Object detection scheme

2.1.2 Requirements on computerized systems

Is a computerized system used in the pharmaceutical industry, regulations stated in

CFR21, Chapter 11, respectively EU GMP, Annex 11 and EU GMP, Chapter 4, apply.

One key requirement is data integrity. In a comment on the above mentioned regula-

tions, the author McDowall states: ”In summary, these sections are looking for checks for

correct and secure entry (both manually entered and automatically captured data) and

the subsequent data processing to minimize the risks of a wrong decision based on wrong

results.“ [55].

The tracking of system settings and states during a process of data generation, a so-

called audit trail, is a key part of these checks, which should be considered during software

development. It is not the aim of this work to deliver a product conforming mentioned reg-

ulations, still, they should be considered during the concept phase to facilitate a potential

prospective certification and use in regulated environments.

2.1.3 Summary

The previous sections presented four different applications of CV in laboratory automation

and their classification in use cases. Further, the need of traceable system states were

mentioned. The resulting requirements are:
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� Input to any CV application will be a labware with a number of samples and appli-

cation dependent parameters

� To cover all use cases, the system must be able to handle three different types of

results displayed in Table 2.1

� Audit trails should be considered in the concept

Table 2.1: Summary of output characteristics for the three use cases

Use Case
Result

value

Results

per sample

Results

per plate

Qualitative Evaluation binary 1 nWells

Quantitative Evaluation floating 1 nWells

Obj. Detection and Classification all nres,i nr,MTP

2.2 Operational Requirements

During operation, the program flow is linear and static. A command from the process

control system (PCS) is received and interpreted, subsequently executed and results are

returned. The user interfaces described above, however, require the library to support

the nonlinear use, which is associated with the human approach to use software. Apart

from the increased effort that is required to make the software robust to the different ways

in which humans use software, extended application program interface (API) functional-

ity is required for the use with the administrator graphical user interface (GUI), which

implements calibration and setup functionality.

2.2.1 Operation

The software flow has a linear character in operation mode. The CV system acts like a

sensor for the automation system that returns measurement data on a read command.
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Fig. 2.4 shows the typical program flow. At startup, the CV module is initialized.

During the course of the experiment, it listens for commands. When the process con-

trol system requests the evaluation of a plate, the module starts operation. Herewith,

parameters such as the plate type are provided. The system acts accordingly, eventually

sets parameters according to the command and starts image acquisition. As soon as the

image is present in the system memory, the mapping system partitions the image into

well sub-images. Then, the evaluation starts for every well and a result is computed for

every well. The application passes the results to the PCS. Afterwards it sets itself to

sleep, waiting for the next plate.

Process control software

Computer vision module

Start &

initialization

wait for

scan 

command

Computer vision task

Start &

initialization

Run

method

steps

Receive &

process

results

Wait for

scan 

command

Send scan

command

Run

method

steps

wait for

scan 

command
CV algorithmAcquire Image Mapping

Figure 2.4: Operation flow scheme

2.2.2 Hardware Calibration

Every time the hardware or its configuration is changed, a calibration has to be run. The

calibration of an optical system is the process to find optimal parameters for its projection-

mapping model. As mentioned in Section 2.5, this is required for flatbed scanners, cameras

and multi-camera devices.

The calibration is implemented in the GUI, hence the framework must support the

iterative manner in which users set up a system. The user selects, for example, hardware

settings and acquires a test image. The test image might not be optimal, hence parameters

are changed and different images are taken and compared subsequently. Finally, a set of

images is chosen and passed to the application. Hardware setup and calibration, but also

application settings, are managed from within a GUI, leading to the requirement that the

framework must be able to cope with such program flows as shown in Fig. 2.5.
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Figure 2.5: Setup flow scheme for hardware and software calibration

2.2.3 Software Calibration (Training)

Software calibration (algorithm training) is the process to find optimal parameters of

the vision algorithms and for the classifiers of the current task. Since applications will

use different CV algorithms and different classifiers, generic optimization routines are

required. The routine should be applicable to the majority of computer vision algorithms,

and following characteristics must be considered:

� number and type of parameters (input)

� continuous or discrete range / stepsize (input)

� descriptive parameters (e.g. U or V bottom) (input)

� nonlinear or unknown behavior of the algorithm.

� number and type of result values per well (output)

� number of wells (output)

Software calibration is application-specific. With respect to the use cases described in

Section 2.1.1, the training routine must be able to handle the three different result types,

1. binary classification / qualitative measurement (n=2 bin classification), 2. quantitative

measurement, 3. n-bin classification (prepared, but not included in this thesis).

Neither continuous differentiability nor linearity can be assumed, hence a closed-form

solution is unlikely to exist [78]. A search routine might therefore terminate unsuccessfully

and the framework must support a nonlinear program flow during the parameter search

as shown in Fig. 2.5. The typical flow of a training operation starts with the selection of

training samples. If a binary detector is trained, these will be images of plates with positive

and negative samples for the given situation. If a multi-class classifier or a quantitative

measurement is trained, samples of different sizes or volumes are needed as samples.
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Nonlinear optimization algorithms are iterative search routines that neither guarantee

successful execution nor the localization of the global optimum. As a consequence, grid

searches can be regarded as a good alternative and are selected to be implemented. The-

oretically, a grid search will find the optimum of a function, when the stepsizes are chosen

to be indefinitely small. Thus, a grid search can be favorable especially for a smaller

number of parameters or discrete parameters.

2.3 User interface

Unlike in industrial automation, the devices have to be configurable by non-technicians

for their specific purpose without in-depth technical knowledge. Two user interfaces are

required of which both should be easily adaptable to the current application. The first

is the MMI, which laboratory devices commonly offer to manually simulate or reproduce

experiment steps. It exposes the functionality and limited settings that are provided to

the process control system.

The second interface is the administrator interface. It extends the range of the provided

functionality by calibration and training routines and is used to edit the configuration files

of the CV module. The goal remains to provide a user-friendly setup routine that does

not need expert knowledge. To restrict its use to trained persons, this interface should be

password protected and only be used by a trained person.

2.4 Labware

The term labware describes consumables that are used in laboratories to store, hold

and transport samples. With the increase of throughput over the years, the microtiter

plate (MTP) became popular. It holds multiple samples, allowing parallel processing and

analysis. They are held in cavities called wells, which are arranged in a grid of rectangular

shape (see Fig. 2.6). To improve interoperability and compatibility between devices of

different equipment manufacturers, microtiter plates were standardized by the Society for

Biological Screening (SBS) [73] [74].

The standard SBS microtiter plate labware holds multiple arrays of wells laid out in a

row-column fashion. The framework must be compatible to MTPs and to custom labware
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or slides2. Microplates are available in a wide variety of materials and shapes and have 1

to 1536 wells.

(a) 4 to 24-well microtiter plates (b) 96-well microtiter plate (c) 384-well microtiter plate

Figure 2.6: Labware: MTP types (source: http://www.polyplastics.com)

The samples carried on the labware are the actual subject of investigation by the

CV application. Hence, the labware type affects the operation of the system in two

ways. Firstly, its dimensions and well layout are needed for the mapping of wells to

image regions and secondly, its material type and other geometrical information, such

as the well bottom shape, can be important parameters to CV algorithms. To provide

the necessary information to mapping and algorithms, the library must be able to handle

labware information. The labware type should be considered as a processing parameter

that is passed to the computer vision system for every plate transported to the imaging

position. The system should be able to handle different labware types during operation.

The resulting requirements are:

� Support of MTPs

� Provisional support of labware with unknown number and alignment of samples

� Support of changing labware types during operation

2.5 Imaging Hardware Support

Hardware support in the context of this work means support on two levels: The hard-

ware interface layer must be able to communicate with different driver APIs, with the

key part being the hardware abstraction in a way that makes higher level functions

device independent. This is a main requirement for hardware integration frameworks

2For the sake of clarity, it will be referred to asMTP only from now on

http://www.polyplastics.com
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[71] [22], and many examples, such as the Linux hardware abstraction layer (HAL)

http://www.freedesktop.org/wiki/Software/hal, exist.

Secondly, in order to make CV algorithms device independent, they must be provided

with their input data in a uniform way. Hence all optical and geometrical calculations

that depend on the optical system of a device must be taken care of. For example, as seen

in the previous Chapter 2.4, the labware usually holds samples in defined positions. Their

positions on the image depend upon the labware and the optical system. The second part

of the hardware abstraction layer is required to map the sample positions on the image

to pass them on for processing.

Optical inspection devices used in laboratories consist of a digital imaging sensor, an

optical system and one or more light sources. Furthermore, all devices comprise a labware

position, sometimes called automation labware position (ALP), that holds the labware in

a defined position. The placement of the ALP relative to the imaging device defines

the relevant perspective of the images. Additionally, the position must be accessible by

the transport robot’s gripper. Hence, the following constraints must be considered when

choosing or designing an optical inspection device:

� Optical requirements

– Lighting: Transmitted / reflected, spot/evenly distributed

– Resolution

– Perspective

– Color channels

� Installation requirements

– Installation height and space

– Robot deck limitations

– Robot movement to/from/over the device

Depending on these characteristics, devices are differently suitable for certain applica-

tions and a generic framework must therefore support multiple devices. Those considered

in this work are described in the following. A market overview identifies four main types

of imaging hardware used in laboratories listed in Table 2.2.

http://www.freedesktop.org/wiki/Software/hal
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Table 2.2: Hardware setups used in laboratory automation

Type Lighting Placement Use

camera reflected below barcode reading

camera transmitted below compound library QC

camera transmitted above light tables, colony pickers

scanner reflected below barcode reading

Reflected lighting is used when transmitted light is not applicable, e.g. when the

object is not transparent or not uniformly illuminable. Hence, the setup from Figure 2.7a

is often used for barcode readers. The placement of the sensor below the labware position

is advantageous for integration, because it keeps the robot’s path unobstructed.

labware position

(a) reflected light

labware position

(b) transmitted light

Figure 2.7: Two possible device setups

Transmitted light is used for transparent or translucent objects and is found in light

tables but also in analytic devices such as microscopes and plate readers. Colony picking

systems also use transmitted light for scene illumination. In all cases, the obstruction

of the transport path has to be considered (see Figure 2.7b), since either the sensor or

the light source is placed over the labware position and vertical grippers would require a

conveyor from a reachable position to the imaging position (see Figures 2.1 and 2.2).

The optimal perspective depends on the application and must be considered. The

primary factor is the visibility of the feature of interest. When imaging labware, the

perspective change for the different samples has to be investigated further. It should be

worked towards an equal perspective to every sample, because otherwise the measurement
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α

(a) Imaging from below

α

(b) Imaging from above

Figure 2.8: Perspectives for parallel imaging of multiple regions of interest

can introduce a location-dependent systematic error. This can be fulfilled by using a

flatbed scanner or with telecentric lenses for camera systems. When camera systems are

chosen, they are either mounted directly above or below the plate, so that the perspective

symmetrically changes from the plate center towards the edges. Regarding the camera as

a linear optical system, it can be shown that imaging from below the plate covers all well

floors, while on the other hand, the space at the top of a well is observable from above

the plate (see Figure 2.8). The lighting situation must be considered in parallel with the

determination of the perspective. Available flatbed scanners, for example, do not provide

transmitted lighting, although such a setup is imaginable if custom made scanners could

be manufactured for an application.

2.5.1 Flatbed Scanners

Flatbed scanners based on CCD sensors use a sensor similar to a camera, but with one-

dimensional resolution, which is moved over the scan area by a mechanical transport. Such

devices are similar to typical office and consumer devices, except for their small size. CCD

scanners use a lens to cover the imaging area orthogonal to the drive axis, and mirrors to

pass the light to the object. They use a strong light source and have a comparably large

depth-of-field. Since CCD scanners use a lens in one axis, one dimensional lens effects

occur. The linearity of the drive axis depends on the stepper motor precision and the

timing of the sensor readings. Figure 2.9a shows a scheme of the optical system.

Scanners based on contact image sensors are also used in laboratories. Due to their

design, contact image sensor (CIS) sensors allow the building of small-sized devices; they
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are used in facsimiles and small handheld scanners. The CIS moves near to the object

plane and covers the whole width of the imaging area [89], [85]. The perspective of every

point on the object is equal to all other points, although small microlenses have to be

used to scan a continuous area. For applications considered in this thesis, these lenses

do not have a measurable impact on the image, since their distortions are projected on a

single pixel.

During image acquisition, a stepper motor moves either the sensor (CIS) or a mirror

(CCD) along one axis of the image while a line scan sensor reads one line per step. The

image resolution depends on the steps of the stepper motor and the number of pixels

the sensor reads orthogonal to the drive axis. In laboratories today, flatbed scanners are

mainly used for barcode reading.

Mirror Light source
Lens

CCD

Flatbed

(a) CCD

Image sensor Light source Flatbed

(b) CIS

Figure 2.9: Flatbed scanner schematics

2.5.2 Camera Systems

Camera systems are built up of a digital camera, an objective and light sources. They

furthermore comprise a labware position that holds the labware in a defined position

relative to the camera. A plate shuttle can be required to load/unload plates.

2.5.3 Camera Grids

Camera grids are devices that comprise multiple sensors arranged in a grid with their

z-axes being parallel. Devices that use multiple sensors are common in laboratory au-

tomation. Therewith, manufacturers are able to keep the installation height of their

devices minimal, by keeping the focal length fixed (i.e., for typical cameras, keeping the

lens angle fixed) or to provide a better perspective for wells located at the border of
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the plate by increasing focal length (reducing lens angle). See Figures 2.10 and 2.8 for

illustration.

Since the cost-performance ratio of electronic devices improved steadily during the

last years, digital cameras do not add much to the price of a device. On the software side,

multiple sensors require specially adapted projection mapping. Proprietary camera grid

devices support a small set of plates and it is likely that they rely on simple fixed masks.

This can only be assumed because proprietary systems are closed source. To the author’s

knowledge, no public documentation or publications mention such devices nor methods

to register camera positions and projection mapping. The resulting requirements are:

� Wrapping driver APIs for unified communication to hardware.

� Providing device-independent labware→image mapping (see next section).

� Supporting camera based devices, but also CIS and CCD flatbed scanners.

� Supporting multiple sensors and data from a device.

platform deck

labware position

labware position

α
αh

h

Figure 2.10: Comparison of installation height h for single- and dual-camera setup with
a lens angle α.

2.6 Projection Mapping

A key requirement is the implementation of device-specific projection mapping capabili-

ties. The section picks up the aforementioned second part of hardware abstraction, the

geometrical labware→image mapping. The task is to map a region on a labware, e.g. a

well, to a region on the image. The typical question to be answered is:

Which region on the image corresponds to well A-1

on the plate of actual type?
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In order to answer this question, the projection of the three-dimensional world onto the

image-plane has to be modeled. When imaging a scene, a light-sensitive sensor is exposed

to light rays, which incide controlled by lenses and mirrors. Such optical systems can

be described mathematically as using the laws of linear optics. Still, every part of an

optical system introduces errors, some of which are nonlinear and therewith need special

modeling. Main sources of errors are lenses, sensors and their mounting. Lenses introduce

nonlinear rotational distortions and the mounting of a sensor relative to the optical axis

can cause tangential distortions. Figure 2.11 shows the comparison of perspective of a

camera and two flatbed scanner systems. The perspective differences and the so-called

barrel distortion of the camera lens are clearly visible. The unequal partition of image

sensors leads to pixels that are not square but rectangular.

Figure 2.11: Comparison of distortions (top to bottom: Camera, CIS-scanner, CCD-
scanner)

In the case of flatbed-scanners, the motor that drives the sensor, or respectively the

mirror, over the image plane has placement tolerances and timing tolerances, which lead to

non-equal spacing of the pixels in the drive axis of flatbed-scanners. The axis orthogonal

to the drive axis, however, is affected by nonlinear lens distortions (CCD) similar to

camera systems. In the special case of CIS flatbed scanners, multiple lens distortions

occur orthogonal to the drive axis but can be neglected.
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To ensure sufficient mapping precision, those errors have to be corrected by calibrating

the system. While comprehensive documentation for camera calibration exists [12] [18]

[11], only one research paper was found that deals with flatbed scanner calibration [46].

For the application in automation, such calibration procedures should be straightforward

and must not require special metronomic equipment as used by the authors in [46].

Since the framework shall support hardware from external manufacturers, the cali-

bration procedure cannot rely on any prior knowledge of device parameters. Extrinsic

parameters describing the rotation and translation of the camera(s) or the scan area rela-

tive to the labware position are required. These parameters can be found by registration,

a step subsequently conducted after calibration. The resulting requirements are:

� Calibration of device-specific nonlinear errors for all devices.

� Projection-mapping model incorporating calibration parameters.

� Projection mapping for all device types.

� Exposing the relevant image information to the downstream algorithm indepen-

dently from the device type.

2.7 Computational Requirements

Machine vision algorithms are computationally intensive operations and their complexity

increases linearly or, with higher orders, with the number of pixels of an image

In laboratory automation a system must be able to handle multiple samples at once.

With a sufficient resolution for every well, this leads to rather large images. The scanners

mentioned in Section 2.5, for example, provide ca. 100 × 100px per well for a 384-well

plate, which results in a 3.84Mpx image altogether. The ABgene device uses two cameras,

with 1600 × 1200px each, which too results in a 3.8Mpx image. As a comparison, high

definition (1080p) video delivers 2.04Mpx per frame.

Computers used to control laboratory automation facilities are usually based on stan-

dard workstation PCs that offer sufficient processing power for most tasks, such as com-

munication, task scheduling, logging and data storage. A complex signal processing appli-

cation is likely to put stress on such a machine and can eventually interfere and interrupt

other processes.
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Therefore, it is important to optimize time efficiency of the CV system and to manage

available processing power, depending on the application or task requirements. The multi-

core processing units that are widespread in use in personal computers (PCs) today can

help to achieve that. If fast execution is required, the computation should be distributed

over the maximum number of cores, while cores should be excluded, depending on priority

settings, when other operations run in parallel.

Optimum performance and a stable system is called for during operation, while train-

ing procedures, such as grid search, can be very computationally intensive, and should be

accelerated as much as possible. The resulting requirements are:

� Load distribution of operation and training.

� Compatibility to different workstations that are used as control computers.

� Ability to exclude cores that are used by other processes.



Chapter 3

Conceptual Design

The requirements elaborated in the previous chapter entail a framework that wraps a

computer vision algorithm for the use in laboratory automation systems. Its scope is

to provide the application developer with the necessary range of functions that are not

application-specific but needed by any laboratory CV application. Its key features include

support of data parallelism, hardware support and abstraction, support for changing

labware, and device setup routines.

The relay of generic parameter sets, from the process control system to the input side

of the CV algorithm, is one task. On the output side, it has to pass the results of the

CV algorithm to the process control system. In other words, the framework acts as a

layer between the imaging hardware and the process control system and embeds the CV

algorithm that is to run on images of the experimentation samples. It covers the process

control system and the CV algorithm from the complexity of the imaging hardware and it

covers the framework’s hardware interfaces and abstraction modules from the application-

specific inputs and outputs.

Elaborated further, a software architecture is developed that supports this key re-

quirement but also takes into account the different use cases mentioned in Section 2.2

and the integration into a graphical user interface. This chapter presents the conceptual

considerations of the framework design and algorithmic principles of the distinct parts.

47
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Figure 3.1: Separation of application and hardware layers

3.1 Automated Optical Inspection Tasks in Labora-

tory Automation

3.1.1 Task Implementation

The task itself acts on an image of an experimentation sample; it is defined for a single well

by the application developer. It will have the image and additional algorithm parameters

as inputs, and one or more numerical values as output (see Section 2.1.1).

Neither the algorithm parameters nor the type or number of output parameters are

known beforehand, so dynamically sized structures are used. On both sides, key value

maps with alphanumeric keys are used to implement a variadic function for arbitrary

input types. By handling inputs by using keys, human readability is preserved. The

parameter value does not only contain a single numerical value, but also a unit, a range

and a stepsize, in which it can be changed. The latter two will be considered later in

this work (in Section 3.8 considering the automated parameter search). Both input and

output parameters are implemented using respective data structures.

Key-value Map

key value

key value

Image

CV Task

Key-value Map

key value

key value

Figure 3.2: inputs and outputs of a CV task

It is technically required to connect the actual sample, identified by a plate identifica-

tion plus well location (“A-1“), with the algorithm result to correctly reference the data
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later. This can be done by storing a value in an array at a position defined by the well

location. If this array is handled correctly during the program flow, the value will still

belong to the right well, but if any program part is erroneous, e.g. interchanges rows and

columns by mistake, the reference would be wrong. Furthermore, the used configuration

is of interest when evaluating results, e.g. to evaluate system performance. Significant

programming effort is required to ensure correct references of input and output data. By

referencing a well position (plate ID and location) with its image, and referencing this

image and the input parameters to the output data, such errors can be systematically

avoided.

As mentioned in Section 2.1, traceable settings and sample data can be a regulatory

requirement that must be considered and which is ensured by the implementation of

references throughout the application. Therewith, all necessary information can be linked

to every result.

To make audit trails possible, the settings (input data) have to be accessed and change

controlled by means that comply with regulations. This can be regarded as a main

principle to follow regulations [55] [80] [24] [25], and builds a basis to fulfill the requirement

of data integrity on a computerized system in pharmaceutical processes. Such a user

management is not part of this work, but necessary prerequisites are provided by the

implemented concept of references, displayed in detail in Table 3.1.

Table 3.1: Information references of output data

image references to

well location

plate ID

image file name or ID

sensor ID

settings reference to

date of change

author

output references to

settings

image

date



CHAPTER 3. CONCEPTUAL DESIGN 50

3.1.2 The Result Space

While the CV task is implemented for a single well, the system itself is required to handle

multiple wells on a plate, and possibly multiple plates, during parameter search or system

testing. Results are generally displayed per MTP, but this is not the only supported way.

If we consider multiple plates, a sample can be identified by its plate and by its position

on this plate (row, column). Any plate furthermore corresponds to a point in time when

the plate was processed.

Elaborated further, a well is localized by the three coordinates row, column and plate

and in the following we consider this space for well results. Figure 3.3 shows a simple

visualization of the result-space X3, where x2 can be regarded as the time axis.

x1
x2

x3

(a) Result space

x1
x2

x3

(b) Evaluation vs x2

x1

x2

x3

(c) Evaluation vs x1

Figure 3.3: The three-dimensional result space X and two evaluation paths

This approach of viewing a set of samples, their images and results is advantageous

for evaluation of influences of either well coordinates or time. By considering subsets

of the measurement results separately, it is possible to evaluate different influences. By

considering regions on a plate separately, the robustness against changing perspective

(e.g. the first column of ten plates) or the robustness against lighting variation over time

(e.g. the first column vs. time) can be evaluated.
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3.1.3 Performance Evaluation

The evaluation of detector performance is an important part during development and

validation of any computer vision software, but also during system configuration. As

pointed out previously (Section 2.3), setup and configuration are accomplished with help

of the administrator user interface, and hence evaluation means are integrated into the

interface. On the other hand, detector performance measures can be part of a target

function for automated parameter search, which will be discussed later (Section 3.8).

The performance module is defined to have measurements and references as inputs.

Therewith it picks up the results from the CV task together with its references.

Binary detectors

For binary detectors, an evaluation class was developed that provides receiver operating

characteristics (ROCs) and associated performance measures [26]. The ROC displays the

true positive rate (TPR) vs. the false positive rate (FPR) parametrized by a detector

threshold. Figure 3.4 displays a schematic diagram.

1
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Name Symbol Definition

true positive rate TPR TP
P

false positive rate FPR FP
N

area under curve AUC
1
∫

0

TdF

precision P TP
TP+FP

accuracy A TP+TN
P+N

F-measure F1S 2
1

precision
+ 1

recall

Figure 3.4: ROC and related performance measures

A perfect detector lies at (1, 0) or (0, 1) as its inverse. The worst outcome is not

better than random guess, which is located on the 45 deg ”no discrimination“ line. A

threshold t parametrizes the curve. Many performance measures can be derived from

this diagram, those further used in this thesis are listed with Figure 3.4. Area under
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curve (AUC) is a threshold-independent measure and can be used to describe the overall

quality of an algorithm. Precision, accuracy and F-measure apply for any point on the

curve individually. [26] [31]

Quantitative measurements

Statistical evaluation of quantitative measurements is covered by providing statistical

properties of sets of values such as mean, minimum, maximum and standard deviation (σ)

or coefficient of variation (cv). By evaluating the result space in different manners, it is

possible to calculate well, row/column and plate statistics and compare them in a typical

graph where i, the index on the x-axis, denotes the axis in the result space and r the

results of the set on the normal plane.

Complex tasks

This should be divided into values that can be compared with quantitative measurements

or qualitative classification. In the example of colony picking that was used as an example

previously, the detection of colonies would be evaluated qualitatively, whereas reference

measurements of colony size or position would be investigated quantitatively.

3.2 Hardware Abstraction Layer

To provide full hardware compatibility, the framework uses an HAL with two sub-layers

shown in Figure 3.5. Relationships in the interface abstraction and the perspective map-

ping layers are shown in this Figure. The image is received from the device by the lower

abstraction layer. Concepts from Section 3.2.1 are implemented within this part. It is

connected to the projection model of the respective sensor, where Sections 3.2.2, 3.4 and

3.5 will be implemented. All sensors are then connected to the sensor registration (Section

3.6).

The scene connects the sensors and the labware together to manage the well mapping.

It outputs a map containing the locations of all wells that can be used to generate a set

of well sub-images, which can then be passed to the actual CV task. At this point, the

serial part of the program ends and the wells can be processed in parallel.
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3.2.1 Interface Abstraction Layer

Interface abstraction is the first hardware abstraction layer. It implements the functional

abstraction of all required operations. The functions that need to be implemented include

a startup routine that loads device specific parameters, which were passed beforehand.

Then an image acquisition command is required for operation.

Figure 3.5: Hardware abstraction and mapping layer

Further functions to set or read parameters and operators are implemented for use with

manual control. The framework supports user interfaces to interactively set, compare and

store parameters without reloading the system. During operation, the configuration can

be considered static. It is loaded once during initialization.

The implemented functions are summarized:

� Acquire image

� Run task

� Initialization

� Open/close

� Set/get parameters

3.2.2 Projection Mapping Layer

On top of the API abstraction, the hardware abstraction for microtiter plate-based appli-

cations and different imaging device types includes that the application must be able to
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reference a part of the image (region of interest) of a requested single sample position by

labware well coordinates. The question that is raised is known from Section 2.6: Which

region on the image corresponds to well A-1 on the plate of actual type? It is answered by

a labware→image transformation. Apart from this question needed to localize samples,

a perspective mapping is also required when the location of an object is of interest, for

example for colony picking.

To establish a flexible method to conduct transformations for arbitrary hardware and

labware, six coordinate systems are introduced. The device-fixed coordinate system D

(index d) is located on the robot deck coordinate system R (index r). Its unit is in

millimeters [mm] and it can be regarded as being two-dimensional (see Fig. 3.6 and Fig.

1.5 for an impression);

Discrete well positions (xw: A-H, yw: 1-12) transform to points in the labware-fixed

(index l) coordinate system L [mm]. The fourth system I is located on the image plane

(index i) and its units is pixels (I [px]). xi is the scanner drive axis or the long side of a

camera device.

Since devices with multiple camera sensors exist, it might be necessary to consider

multiple image- and device-fixed coordinate systems Ii and Di
1. Lastly, a coordinate sys-

tem C (index c) is introduced for the calibration object, which is located on a calibration

plate, that can also be regarded as a labware and uses the same coordinate system: C is

fixed on the calibration plate L. The sixth system will be introduced later for the camera

model.

A transformation between two cartesian coordinate systems is described by rotation

and translation, which are denoted by a rotation matrix R and a translation vector t,

respectively. Indices for the transformation between two systems (Rds,tds) denote des-

tination d and source s. A point p = [x, y, z]T can be described in either coordinate

system. A special case is the transformation on a plane using a two-dimensional rotation

matrix R(γ) and translation vector t. To support scaling of coordinate axes, a linear

transformation “scaling“ matrix S(s) is furthermore introduced:

S(s) =

[

sx 0

0 sy

]

, R(γ) =

[

cos(γ) − sin(γ)

sin(γ) cos(γ)

]

(3.1)

The rotation around three axes in three dimensional space can be expressed as the

1in this case the correct term would be sensor-fixed coordinate system, but the names are kept for
now
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Figure 3.6: Transformations between coordinate planes

subsequent rotation around one axis by multiplication in the order of rotations[41]:

R3 = RφRθRχ (3.2)

Transformation matrices are called extrinsic in contrast to intrinsic parameters, when

their respective coordinate-systems are not fixed to the imaging device (camera, scan-

ner) itself, i.e. their position relative to the image sensor can change. As it can be seen

from Figure 3.6, four main transformations must be implemented to establish the lab-

ware→image transformation. The robot deck coordinate system is not relevant for this

work. When a location on the labware has to be approached by the robot, the relevant

transformations would be done by the robot itself. The relevant ones are summarized:

1. well→labware , covered in Section 3.3,

2. labware→device , covered in Section 3.3.2,

3. device→image , covered in Section 3.4 respectively Section 3.5 and Section 3.6.

3.3 Labware Mapping

Labware dimensions and well positions of microtiter plates are standardized [73] [74]. Typ-

ical dimensions are listed in Table 3.2. Most labware manufacturers adhere to these stan-
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dards, but exceptions exist. This means that labware mapping should not use fixed plate

dimensions but provide a flexible way to integrate different well arrangements. Therewith,

the design is consistent to labware configuration of other laboratory devices, which have

the standard types preconfigured but also support custom designs.

Table 3.2: MTP dimensions and well positions as per [73], [74] (see Eq. 3.3 and 3.5)

Description Symbol 96 wells 384 wells 1536 wells

overall length [mm] lMTP 127.76 127.76 127.76

overall width [mm] wMTP 85.48 85.48 85.48

margin width [mm] xtlw 14.38 12.13 11.005

margin height [mm] ytlw 11.24 8.99 7.865

well spacing [mm] dw 9. 4.5 2.25

3.3.1 Sample Map

A sample location (e.g. “A-1“) needs to be mapped on the labware in order to provide

the system with coordinates. The labware-specific coordinate systems include a discrete

well coordinate system and the plate-fixed coordinate system. To map a well to a region

on the plate, one has to calculate the position p
l
of the well p

w
on the plate. In order to

do that, a well localization function l(p
w
) is introduced, which transforms the well indices

into a geometrical information, whereas p
w
is a vector indexing a two-dimensional space.
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yw

Figure 3.7: MTP-like grid pattern
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Figure 3.8: Radial pattern

For MTPs, W is a discrete Cartesian system and the point p
w
= [x, y]T on the sample

grid. The point is transformed into an equally oriented real-valued coordinate system,
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whereas dw is the well distance vector and as such a parameter for the scaling matrix S.

l(p
w
)MTP = S(dw) pw (3.3)

Other layouts are possible by altering l(p
w
). For example, sample positions can be ordered

shifted or in a radial pattern, which is used for slide labware for microscopic applications.

The well position would be described by a two dimensional polar coordinate system p
w
=

[r, φ]:

l(p
w
)rad = tM +

[

r cosφ

r sinφ

]

(3.4)

The function l defines the locations of sample positions relative to the zeroth well. A

translation vector tlw points to the zeroth well, so that the well→labware transformation

is complete:

p
l
= l(p

w
) + tlw. (3.5)

3.3.2 Labware Device Transformation

Today’s automation workstations have placement tolerances ǫ of ±0.2mm in xd and yd

directions. Additionally, a minimal rotational error α is introduced by the placement of

the labware onto the device:

pd = R(α)pl + tdl + ǫ, (3.6)

whereas α and ǫ are small compared to p
l
and tdl. If such tolerances are not acceptable

for the current application, a template matching algorithm can be used for every plate

that is placed on the device. Therewith at least the translational error ǫ can be reduced.

The labware→device transformation can be regarded as being a two-dimensional prob-

lem. To support imaging from above and below however, the third dimension must be

considered.

3.4 Optical Flatbed-Scanner Model

3.4.1 Model

When using a CCD flatbed scanner for imaging non-flat objects, such as a microplate

with V or U bottom, the perspective changes for each row in yd-axis (see Fig. 2.11). This
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results from the principles of its optical system (see Figure 2.9a). The pinhole model and

lens effects apply to CCD scanners in the axis normal to the drive axis [38]. Possible

mapping errors can be compensated for, using a similar but simplified lens model, as

for cameras. To determine if such a compensation is required, tests were run using a

checkerboard.

The found distortions were similar to those found by Kangasräsiö et al. [46]. However,

the deviations observed were around 0.1mm to 0.2mm and can be regarded as being

negligible. The results are attached to this work in the appendix. Figure A.2 displays

the positioning error orthogonal to the drive axis. The x-axis deviations are displayed in

Figure A.3.

The same transformation (3.7) was used for CIS and CCD scanners during this work.

If higher precision is required, for example for 1536-well plates or for colony picking

applications, a calibration as done exemplarily by Kangasräsiö et al. could be implemented

into the system.

CIS scanners use an image sensor that covers the whole length of the imaging area. It

moves very near to the surface and has a small depth of field [1]. The absence of signifi-

cant distortions leads to a linear transformation together with a correction for rotational

production error (angle β) between xd and the scanner drive axis xi:

pi = R(β)S(s)pd + tid, (3.7)

where s is a vector of scale factors for each axis. The required device→image transfor-

mation is obtained by inverting Eq. (3.7).

3.4.2 Calibration

Equation (3.7) shows that scale factors s, angle β and the translation tdi of the image

corner (origin) to the device corner (origin) are required parameters for transformation.

The implemented method enables the automatic determination of the combined

R(β)S =

[

sx cos(γ) −sy sin(γ)
sx sin(γ) sy cos(γ)

]

(3.8)

terms by least squares estimation.

The method uses the coordinate system that originates in the lower right corner of
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the checkerboard in the image plane, and transforms the image points into the new coor-

dinates. The calibration is realized by using the known checkerboard corner positions c

in object coordinates and the corresponding points in the image plane ci.

In order to do that, the found points have to be assigned to appropriate positions on

the checkerboard by their x, y coordinates. Small rotational displacements and errors that

occur during corner detection cause variations in the coordinates, such that the correct

row and column position must be determined by observing intervals for each row and

column. The tolerance bands are shown in Figure 3.9. The equation to be solved is

c∗i = ci − tci (3.9)

c = R(β)S(s)c∗i . (3.10)

Solving each row of (3.7) for β and s with a least squares approach is straightforward. If

the rotational displacement is regarded insignificant (R will be an identity matrix), (3.7)

is solved for sx and sy. The equation is reduced to:

c = S(s)c∗i . (3.11)
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Figure 3.9: Calibration plate and coordinate systems
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The translation tdi is found by setting the device coordinate system to the checkerboard

origin D = C and calculating:

tid = −tci = −(tli + tcl). (3.12)

Furthermore, tdl is obtained from the checkerboard position tdl = tcl.

3.5 Optical Camera Model

3.5.1 Model

The camera model describes the device→image transformation for camera-based systems.

A point relative to the device has to be mapped to a point on the image. Currently, the

region of interest (ROI) is defined in device coordinates. The first step is to transform

points from the device to an intermediate coordinate system ζ , which is fixed to the

camera:

p
ζ
= R

ζd
p
d
+ tζd (3.13)

(R
dl
, tdl)

D
ζ

Kf(ki, ρi)

II ′

Figure 3.10: Converting from object to camera coordinate system

Subsequently the pinhole projection and distortion corrections follow. The pinhole

model uses the Intrinsic matrix K for linear transformation [11]:

p
i
=Kp

ζ






xi

yi

w






=







fx 0 cx

0 fy cy

0 0 1













xζ

yζ

zζ






(3.14)

where fx,y denotes the focal length, cx,y the lens center and z = w the distance from

the lens to the labware plane. Additionally, nonlinear distortions (barrel and tangential)
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caused by the lens and its mounting are taken into account (x′

i ↔ xi) [12]:

[

x′

i

y′i

]

= (1 + k1r
2 + k2r

4 + k3r
6)

[

xi

yi

]

+

[

2ρ1xiyi + ρ2(r
2 + 2x2

i )

2ρ2xiyi + ρ1(r
2 + 2y2i )

]

(3.15)

Where ki and ρi denote barrel and tangential correction coefficients respectively, and

r2 = x2
i + y2i . Figure 3.10 shows the steps required to map a point from the device-fixed

coordinates to the image. The camera model is summarized

p
i
= K[R

ζd
|tζd]pd (3.16)

p′
i

(ki,ρi)←−−− p
i
by eq 3.15 (3.17)

3.5.2 Calibration

Camera calibration is needed when the internal parameters of a camera are unknown to

the user, but also to find current values and deviations to the specified values. The deter-

mination of camera intrinsics, i.e. focal length and lens center, uses Zhang’s method [87].

The calculation of the distortion coefficients uses Brown’s method [12]. Both methods are

state-of-the-art and do not have to be adapted for the current case. The methods await

multiple images of a reference checkerboard as inputs.

The calibration is extended by a registration step which automatically detects the

coordinate-system positions and sets their transformations as presented in Section 3.6

below.

3.6 Multi Sensor Support

3.6.1 Mapping

A system uses M cameras to image a plate with N wells, whereby the image areas of the

respective cameras can but do not have to overlap as, for example, in stereoscopic setups.

That implies that a registration (calibration of extrinsic parameters) method cannot ac-

cordingly rely on corresponding points. In order to avoid duplicated functionality in the

library, and hence complicated code management and maintenance, multi-sensor devices

are implemented as a collection of imaging devices.
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Figure 3.11: A 6-camera manifold device
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Figure 3.12: Multi-sensor object to cam-
era coordinate system conversion

For the integration of multiple cameras, the result of (3.6), p
d
, is renamed to p

d,1
, a

point in D1, a predefined first device coordinate system. To transform a point on the

device to the image of any other camera cj ∈ C (j = 1, . . . ,M), an intermediate step is

inserted before (3.13), as shown in Figure 3.12:

p
d,j

= R
dd,j

p
d,1

+ tdd,j (3.18)

Eqs. (3.13), (3.14) become for camera j:

p
i,j

= K
j
(R

ζd,j
|tζd,j)pd,j (3.19)

and the undistortion p′
i,j
← p

i,j
analogously. Now, the well position p

w
is known in M

image coordinates, from which not all are valid image coordinates, i.e. within the pixel

range of the image.

Which samples are covered by which camera is defined by the system’s geometry and

optical layout. In order to establish a mapping method, we introduce a set of cameras

C with cardinality M comprising all cameras of a system. These cameras inspect a

microplate comprising a set of wells Ω with cardinality N . Subsets of Ω are captured

by each camera: ωj ⊆ Ω, j = 1, . . . ,M , where subsets can but do not have to overlap each

other.
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The association of a well with one or more cameras that cover it is required. As

mentioned before, the set of wells Ω is distributed over C in subsets ωj. We introduce a

subset ci ⊆ C, i = 1, . . . , N for every well wi. The relationship Ω→ C, wi → ci is obtained

by two steps:

It is possible to consider for any point, if the resulting p′
i,j

for a camera j lies within the

pixel range of the image. Furthermore, if |ci| > 1, it is possible to determine the nearest

camera from the calculated pixel positions on the planes I1, . . . , IM from the distance of

p
i
to c = [cx, cy]

T .

dist = ‖p− c‖ (3.20)

All images where a well, defined by two points p
l,1,2
→ p

i′,1,2
, lies within the size of the

image can be used for inspection. A range check tests for which sensors p
i′,1,2

are in the

range of the image size (see Listing 3.1). The distance (3.20) is calculated for its center

ci′.

Listing 3.1: Range check

bool inRange [ nSensors ] ( fa l se ) ;
for ( i =0; i<nSensors ; ++i ){

i f ( p i > range . begin && p i < range . end )
inRange [ i ] = true ;

}

p
i′,c

= p
i′,1

+
1

2
(p

i′,2
− p

i′,1
) (3.21)

Image regions, sorted by their distance to the image center can now be passed to the

subsequent computer vision algorithms.

3.6.2 Registration

Important for the further integration of multi-sensor devices is that the camera axes

are aligned in a grid and parallel to each other (see Fig. 3.11. Furthermore, they don’t

necessarily have a large image-region overlap, which is a fundamental difference to a stereo

camera, which is usually subject of multi-camera calibration and registration.
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Approaches used for stereoscopic vision calibration were not considered, since they

need corresponding points imaged by both cameras [32]. For devices used in lab au-

tomation, the geometry and the size of the overlapping region is unknown, differs and is

likely to be kept small by device manufacturers; hence the calibration procedure must be

independent to corresponding points.

The registration of the different relative camera positions requires the use of a custom

reference plate with the outside dimensions of a microtiter plate. According to the rough

layout of the sensor grid, M checkerboards Cj are placed on the plate (see Figure 3.13).

The absolute position of the first checkerboard on the plate tcl,1 and the relative positions

(R
cc,j

,tcc,j) of the other checkerboards are chosen during manufacturing of the registration

plate (see Figure 3.14).

Figure 3.13: Registration of multiple
sensors
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Figure 3.14: Calibration plate for regis-
tration of multiple sensors

To keep the calculation simple, rotational displacement should be zero between all

checkerboards. Fig. 3.14 displays the required translation vectors from the plate origin to

the first checkerboard and to the subsequent checkerboards. The developed registration

approach is based upon deriving the position of one camera relative to a second via

known relative rotation and translation of two reference objects. The plate is placed on

the device and all cameras take an image of the plate, find their checkerboard corners

and solve the homography (as implemented in OpenCV library [10]) with a-priori known

object dimensions to yield Rζd,j and tζd,j.
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The checkerboards Cj are chosen as reference objects, since we know their relative

positions. Let

Dj = Cj, j = 1, . . . ,M , (3.22)

when the reference plate is located on the labware position of the device. Now all trans-

formations from figure 3.12 are defined.

The L → D transformation leads to the first device coordinate system, which is now

equal to the position of the first checkerboard. A L→ C translation vector is calculated

for every sensor j:

tcl,j = tcl + tcc,j (3.23)

Now (3.6) turns into

p
d,j

= p
l
− tcl,j, (3.24)

with α and ǫ set to 0. The point is further transformed into camera plane coordinates by

using the rotation matrix R found by the respective single camera calibration, added to

the translation vector tcl found by registration.

p∗d =pl − tcl,j (3.25)

pi =K(R|t)p∗d (3.26)

To optimize computation time when processing power is limited or the number of

cameras is high, the steps in Listing 3.1, Eq. (3.20) and (3.21), required to find the well

camera assignment, are replaced by a static lookup table f : Ω → C, wj → (cj), j =

1, . . . , N :









w1

...

wN

















(cj , dist), . . .
...
...









(3.27)

The calculation is run once for every well during initialization of the application, and

the respective sets cj are stored in N lists sorted by their distance. It is now possible to

request the list of appropriate cameras for a well of interest by a table lookup.

The developed procedure does not support access to regions that are spread over

more than one image, i.e. a sample must be available as a whole on at least one image.
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However, it would be possible to extend the procedure using image stitching techniques.

The devices covered in this thesis did not encounter such a problem for the tested plates

and applications, hence it was not considered further.

3.7 Operation and Administration User Interfaces

In the operation use case, the results are returned to a caller, i.e. the PCS. But for setup

and configuration, a GUI calls the library functions. Returning results have to be received

and presented to the user in a proper way to allow interpretation of the data. As shown

in Section 2.3, a user interface is an important part of a laboratory automation device.

The designed user interface has the same requirement to be application independent

and must be able to handle different application types appropriately. This is made pos-

sible by defining result displays within the application part of the framework, comprising

graphical and numerical presentation of data.

To form a unified interface, it is necessary to define a common output format for

all result types. The result types are binary (qualitative), quantitative and complex, as

described in Section 2.1.1.

The most appealing display will be the graphical display. It should give a quick and

clear impression of the measurement result. From other devices that work with MTPs,

workers and scientists are accustomed to work with a scheme of the plate viewed from

above, where results are denoted as colors or numerical values. To ensure consistency,

this straightforward approach is similarly chosen for the here relevant user interfaces (see

Figures 3.15 3.16).

The actual design is use case dependent and is left to the application developer. During

implementation of his application, the developer defines the graphical display. He is

provided with a frame of the same size as the sample region in the original image, and

may define paintings that interpret his results. Regarding a binary detector, this could

be achieved by a simple mark in two colors denoting either positive or negative results.

Quantitative evaluation would probably need a range of colors, e.g. from green to red. It

would also be beneficial for users to have a short numerical value presented along with

the graphics. For the complex use case, e.g. a localization task, n crosses at given points

on the sample image would be appropriate.

The detailed information display is designed as a tabular view with variable rows and

columns. Each row comprises a key, a value and a unit. Those details may contain
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further information that cannot be displayed graphically. This tabular view is placed in

the administrator interface as and additional window.

It is practical to present data in such a way, since it enables fast copying of data for

transfer (drag and drop) to other software. The result overlay mask is made adaptable to

the different result types mentioned in Section 2.1.1 by polymorphism. The subsequent

two sections each describe one type of the user interfaces as they were developed during

this thesis.

3.7.1 Manual Module Interface

The framework is designed to provide two user interfaces. The first is the MMI, which

enables the user to execute all functions exposed to the PCS. The user can execute image

acquisition and the CV application. Further, all parameters that the PCS can pass to

the module are editable. This spans a general system config and information about the

current labware.

A B

C

D

Figure 3.15: Manual module interface

Figure 3.15 shows the GUI layout. Field A contains the fixed list of buttons to execute

API commands, excluding training and calibration. Field B displays the current image
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and overlaid results. Below, field C offers space to set parameters to predefined sets of

values (configurations). A typical way to offer a limited range of options to a user is e.g.

a pull-down menu. Here, also labware type configuration and expected execution time are

set. The field D on the bottom is the standard read-only status bar, which is commonly

used in applications. It is used to show tooltips to the user or to display log messages

during and after execution.

3.7.2 Graphical Administrator Interface

The administrator GUI offers setup, calibration and training methods. It is designed to

support, for example, a technician during system configuration. A scheme is shown in

Figure 3.16.

C D

B

F

E

A

Figure 3.16: Administrator interface

Field A holds the API commands, as in the MMI, including training and calibration.

Field B provides further access to the hardware interface directly to acquire images. In

addition to the parameters accessible by the API, all system parameters are view- and

editable in the tree view list in field C. This comprises hardware and labware-specific



CHAPTER 3. CONCEPTUAL DESIGN 69

parameters and application specific parameters, such as algorithm parameters. The tree

further lists images for training, calibration and testing. They are added to the list when

they are loaded from disk or acquired by the application. D provides a plate image with

overlaid results as in the MMI. Field E displays additional results. This field is necessary

when a large number of results for every well would be difficult to display on the overlaid

mask. The field can be used to display locations and other values of found objects, but

also for training results and statistics. Again, field F at the bottom is the standard status

bar.

3.8 Generic Algorithm Optimization

Algorithm optimization is application specific and applicable to CV algorithms used with

the framework. This section describes the functionality that the framework exposes to

the application developer. The requirements are stated in Section 2.2. The optimization

is aimed at computer vision algorithms and hence nonlinearity is considered.

3.8.1 Algorithm Interface

The framework’s algorithm optimization is implemented to work with arbitrary algo-

rithms. Using the interface defined at the beginning of this chapter (Section 3.1), it

considers the algorithm as a black box that it feeds with input variables and the actual

image (i.e. a group of well images), and from which it receives outputs. To support an

unknown number of parameters with unknown type, the input value is a dynamically

sized key-value map in the form shown in Listing 3.2.

Listing 3.2: Entry of the input list

key , { type , value , min , max , s t ep s i z e , un i t }

For every value, its name (key), type, range and stepsize is passed. Thereby all entries

except the value are constant for an input value, such that they can be stored together

with the algorithm itself. In an object oriented language, a possible way is to define an

algorithm class that implements a member function that returns a reference input value

with keys, ranges and stepsizes.
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The output is a dynamically sized list of matrices with nWells elements, so that multiple

results for every well are possible.

To operate the framework’s optimization tool, the supervised-learning rule needs im-

ages with reference results of the same type as the algorithm results.

3.8.2 Target Function

The target function T (x) computes a measure of the algorithm’s performance from its

outputs and provided references. The target function varies, depending on the type of the

algorithm and the aim that the optimization should fulfill. By varying T (x), it is possible

to weigh specific criteria, such as precision or robustness, according to one’s needs during

the optimization. The performance measures described in Section 3.1 are provided to the

developer, who may use them to design a target function.

3.8.3 Nonlinear Optimization

Nonlinear optimization techniques are iterative procedures: A first set of parameters is

initialized and the algorithm under consideration is run with a reference input. After com-

putation, the actual output is compared with the reference output by a target function and

a performance measure is calculated. According to a rule set, new input parameters are

calculated. The algorithm is executed again in an iterative fashion until its performance

reaches a threshold.

Many different rule sets upon which new parameters are calculated from older ones

exist. Unfortunately, these techniques are never equally suitable for different algorithms.

The common problem is that an algorithm can treat a local minimum for a global min-

imum or does not converge. Furthermore, these search algorithms are not trivial to

parallelize, since the input parameters are not known beforehand and depend on each

other, and the strict separation of setup and computing is hence not possible.

Nonlinear optimization is a broad field and further research could aim to find appro-

priate algorithms for use with the framework. For applications with a very large number

of parameters, this could make sense.
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3.8.4 Grid Search

During this work, a grid search is implemented, since it is compatible to any algorithm

and offered appropriate training times for the tested applications after it was parallelized

to use multi-core machines. The grid search was implemented for an unknown number

of parameters with a function that calls the (unknown) algorithm in question recursively

and iterates over the parameter grid. The basic form of a recursive loop is attached to

this work in the appendix in listing A.1.

3.8.5 Linear Optimization

When linear equations are part of the algorithm, it is indicated to obtain optimal pa-

rameters by linear optimization, i.e. a least squares approach instead of running time-

consuming search algorithms. An Adaline, for example, is a linear function that computes

a decision from a set of input values.

3.8.6 Regression

When quantitative measurement is the use case of the application, no inference is needed.

The algorithm working on the image returns results that can be regarded as measure-

ment signals, like voltage acts as the signal carrier of a thermistor. The signal has to

be transformed into the target unit by a function that depends upon the measurement

principle.

The thermistor is considered as an example for clarification: The physical temperature

(measured variable) affects the resistance of the thermistor, ρ = f(t). This translates

into a voltage that acts as the signal carrier. Subsequently, nonlinear behavior of f is

compensated during transformation of the voltage into a measure of temperature T =

g(V (R)), where the compensation would ideally be g = f−1.
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3.9 Concurrency Concept for Parallel Region Han-

dling

3.9.1 Basics

Flexible load distribution is required to ensure stability while optimally utilizing available

resources. As pointed out in Section 2.7, PCs with multiple cores are a standard today

and hence likely to be available for laboratory control. With respect to the application

in laboratories, parallelization is only considered for typical workstations with multi-core

central processing units (CPUs). This restricts the design to symmetric multiprocessing

(SMP) systems, which use shared memory for their cores, and excludes server clusters or

similar systems (i.e. systems coupled over network, distributed memory systems).

With the recently established GPU computing interface Compute Unified Device Ar-

chitecture (CUDA), Nvidia Corporation offers an established interface to make use of

a PC’s graphics processing unit (GPU) computing resources. This way, it is possible to

use a personal computer for high performance parallel computing. But since CUDA is a

proprietary interface, and as such is bound to the company’s hardware, the advantages

can only be exploited with specially equipped computers. If a future application is time-

critical and demands high processing power, it can be considered to add CUDA support

to the framework and to provide a dedicated system with the CV application. To account

for the application area and its restrictions, CUDA is not considered in this thesis.

Data parallelism is immanent in the parallel character of high throughput laboratories

and in the character of images as input data, which consist of a fixed number of equally

sized and typed datums (picture elements, pixels). Hence, data parallelism is considered

in this work.

Image processing is counted among the trivially parallel problems[6], because it mostly

consists of independent and equal steps, e.g. the so called single instruction multiple

data (SIMD) operations. For example when the same calculation (single instruction)

is performed on every pixel (multiple data) of an image. A simple example for single

instruction multiple data (SIMD) operations is given in the appendix in Listing A.3.

If parallelization is considered for a computationally intensive program, it must be de-

termined which parts of it are threadable. Threadability, the suitability for multithreading,

is given when a program consists of multiple steps that are independent of each other. If

parallel execution leads to access conflicts, some problems can be reorganized [6].
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A concept to guarantee threadability is the strict separation of a computation into a

setup and compute phase. Lebak et al. call this concept early binding and also mention

it as one of VSIPL’s2 key characteristics [50].

Applied to image processing, it is sufficient to allocate all buffers prior to starting

the calculation operation to ensure threadability for a large number of image processing

algorithms. When neighborhood operations are considered, overlapping read access must

further be provided. Furthermore, when a calculation is started in a loop with an unknown

number of repetitions, for example during a grid search where the parameter sets are

calculated using recursive iteration, access conflicts occur. It is indicated to reorganize

the program into the setup phase where the recursive loop stores all sets in memory, and

into the computation phase where the computations are run in parallel.

When threadability is assured, speedup but also efficiency have to be considered.

Efficiency in the scope of distributed programming denotes the computation speedup

versus the processing power respectively the number of processors:

speedup(ndata, nproc) =
t(ndata, 1)

t(ndata, nproc)
(3.28)

efficiency =speedup(ndata, nproc)/nproc (3.29)

Doubling processing cores will never cut processing time to 50%, this is caused by the

serial parts of the program that cannot be parallelized. Amdahl’s Law provides values for

a theoretical maximum speedup depending on the parallel/serial ratio of work and the

number of cores. It can be regarded as an upper limit for speedup and efficiency, since it

only considers the serial/parallel ratio. Additionally, other causes for efficiency losses are

possible ([6] [21]):

1. sequential parts, such as initialization and I/O operations

2. thread initialization

3. communication and synchronization between threads

4. load imbalance (threads are waiting for a slower one to finish)

The first cause points to parts of a program that cannot be threaded, such as the

memory allocation of example listing A.2. The input data partitioning for the distribution

on multiple cores must also be handled by a single thread.

2VSIPL: Vector Signal Image Processing Library
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The second point adds to the sequential parts of the program, because every paral-

lelized application needs to spawn other threads from the main thread. This initialization

is additional work that adds to the unthreaded program. If the parallelized portion is small

compared to the thread initialization work, the efficiency could theoretically decrease by

parallelization.

Communication and synchronization overhead is minimal for SIMD operations, when

no communication of intermediate data is required during the computation. Considering

the fourth point, synchronization of identical instructions is often trivial, because every

instruction finishes in the same number of clock cycles. Algorithms whose computational

complexity depends on the input data, such as the Hough transformation [20], are excep-

tions that should be considered.

The parallel character of laboratory tasks offers possibilities to distribute the process-

ing load with respect to the four points mentioned above. The optimal utilization of

multithreading is given when:

1. Optimal efficiency and speedup and

2. Hardware compatibility

are achieved. The framework supports three key concepts of parallel programming.

3.9.2 Concepts for Parallel Processing

As mentioned above, the first concept is the strict separation of computations into a

setup and compute phase. Listings A.4 and A.5 in the appendix show the separation of

serial and parallel tasks using the example from above. This separation is catered for by

the definition of threadable parts of the application. Wherever possible, the program is

reorganized to maximize the threadable part of the application.

As pointed out above, the efficiency is strongly influenced by the complexity of the CV

algorithm, which is executed in parallel, as well as the image size. The second concept

allows parallelization with different minimal chunk sizes, that are defined as different

parallelization levels listed in Table 3.3. The levels are implemented to enable flexible

development of efficient code.

By defining a well sub-image as the smallest chunk size, the parallelization is com-

pletely kept away from the application developer, who develops his algorithm on a single

well image. During parallelized operation within the framework his algorithm will execute
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Table 3.3: Parallelization levels

Level No. Plates No. Images No. Wells

Plate Stack ≥ 1 ≥ 1 ≥ 1

Plate 1 ≥ 1 ≥ 1

Image ≤ 1 1 ≥ 1

Well ≤ 1 ≤ 1 1

the way he designed it. The application developer does not need to care about access

problems during development.

As shown in Section 2.5, hardware exists where one plate is captured with more than

one imaging sensor. When considering the parallelism of the data flow, an image is hence

the next larger set in which pixels can be grouped. This level is relevant for multi-camera

devices.

The plate itself is a set of well images from one or more sensors, and a plate stack

consists of one or more plates. A plate stack can be relevant during algorithm training,

where multiple plates have to be regarded as a single input to a training algorithm. Plate

stacks are not handled during operation (see Figures 2.4 and 2.5). Figures 3.17 and
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Figure 3.17: Well-based threading
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Figure 3.18: Plate stack threading

3.18 show a schematic view of parallelization on two levels. When a plate is processed

concurrently, and it is inside a plate stack, e.g. during training, nested parallelism occurs.

The third concept is thread pooling, a prevalent pattern in software development [68]

that offers large possible performance gains in computationally intensive tasks [69]. A

thread pool keeps a number of threads on standby to overtake tasks when parallel pro-

cessing is possible. This way, efficiency losses due to thread creation and destruction can

be minimized. The performance gained with a thread pool depends on the task type
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and the number of processors, whereas the number of threads in the pool influence the

efficiency to a large extent [51]. The number of threads must therefore be configurable by

the application developer or user.

3.10 Communication Interface to Process Control Sys-

tems

3.10.1 API Description

The API defines the function signatures with whom the framework is controlled and

results are obtained. Besides the functions required during operation, the framework

can be used in the context of hardware and software calibration and respective extended

functionality must be provided. Necessary functionality is described in Section 3.7 and

the API functions are summarized in Table 3.4.

Table 3.4: API summary

Function Input Output Description

compute labw. type list of results Executes the application (Operation use
case)

init config - initializes the application

acquire - - acquires image

open/close - - dummy for plate loader

compute file list of results Executes the application with image from
disk

calibrate list of files parameter set,
plate info

starts calibration, returns the parameter
set and results for each plate

training list of files parameter set,
plate info

starts training, returns the parameter set
and results for each plate

command list - key-value map outputs names of the application and its
actions for user interfaces

undistort - image outputs the current plate stiched and
corrected for user interface
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3.10.2 Integration into Message-Based Process Control Systems

To expose the API to the PCS, a small translator module between the framework API

and the control system is required. This way it is possible to use the framework with

different control systems by only changing the translator module. Hereby, the control

system’s specific characteristics have to be taken into consideration.

Figure 3.19: Framework integration into process control software

Fig. 3.19 shows the implementation using a translator module (“Device Module”) for

a messaged-based process control system. In this system, messages are broadcast to all

devices. The devices are configured according to their task to listen to specific commands.

It can be defined within the system which module receives broadcast messages from a

specific type or origin. In order to use the results from the CV application, at least one

module has to be set to listen.

3.11 Summary of Concepts

The concepts for a computer vision framework for laboratory automation that are pre-

sented in this chapter can be summarized in two main parts. The first part is the hardware

abstraction layer, consisting of technically related hardware abstraction, i.e. a driver in-
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terface wrapper, and optical abstraction in terms of geometrical projection mapping and

lens correction including calibration and registration.

The second part is the parallel character of labware. Elaborated further, this leads to

regarding wells as data objects and a plate or an image as a collection of such objects,

which are an input to a CV application that is defined for a single sample. The paral-

lelization concept is based on this fact because data independence can be assured, and

parallel handling on plate-, image-, or well level is possible.

Computer Vision

Well Mapping

Threading

Image acquisition

(& preprocessing)

Task specific 

algorithm

Mapping image
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Data-object

setup (serial)
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Figure 3.20: Summary of the application signal flow

A result type was defined that is compatible to the presented applications, and is

expendable by evaluation functions for training and testing purposes for application-

independent parameter optimization. In the same manner as the input objects, every

processed well delivers an independent result object. All results for a plate are collected,

either plain or extended, and can be passed on to the PCS or to a GUI for display or

further processing. See Figure 3.20 for a schematic display of the developed application

flow.

Furthermore, two GUIs, a manual module interface and an administrator tool, were

introduced - both easily adaptable for different applications. To be used by laboratory

automation systems, a PCS specific translator layer was introduced.



Chapter 4

Reference Implementation

This chapter describes the software-related implementation of the concepts presented in

the previous chapter. A software framework called LabCV was developed as a reference

implementation for this work. The concepts are generic and not bound to a programming

language or paradigm, still, they are especially suited for object oriented programming.

The reference implementation is realized in the C++ programming language (C++). The

following sections correspond to the respective sections of the previous chapter wherever

suitable.

4.1 Software Architecture of the Framework

The software architecture aims at implementing the concepts summarized in Section 3.11

and Figure 3.20. Polymorphism is used to integrate hardware types and labware char-

acteristics into the library in a flexible way. The used concept for separating data and

functionality and used libraries are described below, while the following sections will cover

the software functionality of the different parts.

4.1.1 Separation of Data and Functionality

It is considered good practice to keep data and functional objects separated. Often,

developers choose an architectural concept where the data is kept by a base class, from

which a class is derived that keeps the functionality, e.g. hardware communication and

algorithms. For the reference implementation, a similar architecture is chosen: At startup,

a tree-like configuration object is created that holds the configuration information of all

79
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program parts in parameter classes. The parameter-tree is then passed to an application

object that gets initialized according to the configuration structure. This approach turned

out to be practical for the integration in the graphical user interface, where the user

configures the application settings in a tree-structured interface and is then able to launch

test runs of the application.

4.1.2 Dependencies

The implementation makes use of platform-independent libraries that are listed in Table

4.1. All libraries are licensed in a way that allows academic use free of charge.

Table 4.1: Used software libraries

Name Version Licence Use

Boost 1.4x BSDa memory management, file system

OpenCV 2.x BSDa CV and maths, camera interface

OpenMP 2.5 variousb concurrency

TWAIN 2.0 TWAINc Hardware interface reference implementation

Lumenera 5.0 comm. Proprietary hardware interface

a see [60], b open standard, licence depending on implementation,c open standard

From the libraries listed in Table 4.1, the Open Computer Vision Library (OpenCV)

provides the important image processing and linear algebra part [10]. Boost provides

memory management and file management and is also part of the core functionality. On

the other hand, the implemented hardware interfaces, TWAIN and Lumenera’s Lucam

are exemplarily implemented driver modules and could be replaced or extended by other

drivers.

4.2 Hardware Interface Abstraction Layer

The framework is required to support any imaging device that delivers an image of a

microtiter plate. So far, camera based systems, flatbed scanners and manually operated

light tables with a mounted digital camera are supported with the implemented interfaces.

All devices that were tested to work with the framework are listed in Table 4.2 and shown

in Figures 4.1 and 4.2.
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(a) CCD, XTR96 MK I, FluidX Ltd.,
Cheshire, UK

(b) CIS, A6 Rack Scanner, Ziath Ltd.,
Cambridge, UK

Figure 4.1: Flatbed scanner

(a) XTR384Pro, Ziath Ltd.,
Cambridge, UK

(b) Light table with top
mounted camera, BDA

Figure 4.2: Camera systems

The hardware interface is defined by a pure virtual base class, which implements all

function definitions that are required to be realized with the chosen driver API. The base

class is overloaded by an instance of a derived class, depending on the actual hardware

(see Figure 4.3a). Table 4.3 lists all function definitions that must be implemented in

order to use a hardware device.

The defined functions are based upon the requirements that are imposed by the map-

ping modules. The differences of flatbed scanners and cameras must be considered. The

complexity behind a function from the table depends on the optical system. The frame

size, for example, defines the size of the imaged area in object coordinates. A flatbed

scanner is able to provide this information by a query to the firmware, since the object

plane is defined to be on the flatbed of the device. Whereas a camera does not have such
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Table 4.2: Examples for imaging hardware used in laboratory automation

Model Manufacturer Sensor(No.) Type Position Lighting

XTR96-MK1 fluidX, Ltd flatbed CCD (1) below reflected

A6 Ziath, Inc flatbed CIS (1) below reflected

Smarscan 96 Thermo Fisher camera CCD (2) below reflected

XTR384pro FluidX, Ltd camera CCD (8) below reflected

Light Table BDA camera CCD (1) above transmitted

Table 4.3: Interface operations

function scanner camera

initialization x x

acquireImage x x

(max)frame g/s g

resolution g/s g

pixeltype g/s g/s

bitdepth g/s g/s

g : get, s : set, x: supported

a defined object plane, hence it is necessary to define the object plane and to consider the

perspective to calculate the dimensions of the area covered by the image.

Parameters that only apply to either flatbed scanners or cameras cannot be required

to be alterable by the overlying modules. Such parameters still have to be set up by

the application developer and hence initialization sequence must be provided for every

hardware API to set up driver and device-specific parameters. During operation, the

configuration remains static, and no set operations are allowed.

Parameters that will not be considered further are compiled in the list below. They

are set during the initialization phase.

� Resolution (scanner)

� Frame size (scanner, camera possible)
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Interface

TWAIN OpenCV impl Proprietary 1 Disk (Sim)

(a) Interface objects

Lens model

Camera lens

(b) Lens model objects

Labware

MTP Slide

(c) Labware objects

Figure 4.3: Polymorphisms

� Bitdepth (scanner possible, camera possible)

� Pixel type (greyscale, color)

� Exposure (camera only)

� Light source setting (scanner only)

� Color correction / White balance (scanner, camera)

To evaluate the feasibility of an implementation with different driver APIs, three

examples are considered. The TWAIN image acquisition standard is designed to support

flatbed scanners but also cameras; OpenCV itself wraps operating system-dependent

interfaces1, mainly for cameras; and Lumenera is a proprietary API. The implementation

of a simulation interface, which loads available images from disk, is the fourth implemented

derived class.

4.2.1 TWAIN Interface

TWAIN is a popular standard API for Windows. The TWAIN Working Group consists

of delegates from device manufacturers and software companies. The TWAIN standard

is based on the consensus that an open standard is beneficial for all parties [20]. By

supporting TWAIN , it is possible to cover a large amount of devices.

The TWAIN standard uses a central interface management, the Data Source Manager

(DSM), to interface a compatible device, which is called Data Source (DS). Together

with the application, a DSM and a DS form the system. The communication protocol

defines message triplets of the form: 1) Group, 2) Data/command type, 3) Message.

The Data Group (DG) defines the message’s high-level membership to a command

group such as DG CONTROL for control or DG IMAGE for image-specific settings. The

1Used interface for a) MS Windows: DirectShow, b) Linux: V4L
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second part is the command type, e.g. DAT PROCESSEVENT (process an event) or

DAT STARTXFER (start native transfer). The message is terminated by the actual

command, such as MSG GET, MSG SET, MSG ENABLE. A declaration of message

origin and target and a data container is added to the triplet. Altogether, this results in

six-part procedure calls:

Listing 4.1: TWAIN Procedure Call

or i g in , d e s t inat i on , group , type , command , data bu f f e r

Table 4.4 shows the key triplets that are used to implement the required operations

from Table 4.3. An operation usually consists of multiple calls, e.g. status requests or

unit checks; the table lists only the most relevant calls.

4.2.2 OpenCV Interface

With its implementation of the DirectShow, resp. V4L API, OpenCV supports the ma-

jority of cameras dedicated to be used with PCs. The majority of this kind of cameras

are used as webcams, but manufacturers of professional cameras sometimes provide a

DirectShow interface, too. By providing both TWAIN and DirectShow, a huge number

of imaging devices is covered. The OpenCV interface supports basic frame grabbing and

get/set operations for a number of parameters, as shown in Table 4.4.

4.2.3 Proprietary Interface

It is possible to use the library with other APIs. The derived class must implement

the operations described in Table 4.3. As an example for a proprietary interface, the

Lumenera camera driver is considered. Table 4.4 shows the implementation of interface

operations Lumenera cameras.

4.2.4 Disk-Interface

By implementing file reading to open images from disk, a simulation, testing and offline

batch-processing interface can be created.
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Table 4.4: Three implementations of the interface class

device function TWAIN Lumenera DirectShow / OpenCV

initInterface

dg control/control dsm/msg open

dg control/control ds/msg open

dg control/dat xfer/msg nativexfer

LucamEnumCameras

LucamCameraOpen

LucamSetProperty(...)

VideoCapture::ctor(id)

acquireImage
dg control/dat userinterface/

msg enableds

LucamTakeSnapshot

LucamConvertFrameToRgb24
VideoCapture::operator>>()

get/set

Resolution

dg control/icap res/msg get

(dg control/icap frames/msg get)

read image size

perspective transform

calculate resolution

VideoCapture::get(W/H)

perspective transform

calculate resolution

get/set

parameter

dg control/parameter/

msg get / msg set

LucamSetProperty(..)

LucamGetProperty(..)

VideoCapture::set(..)

VideoCapture::get(..)

parameter is a implementation specific identifier for frame (image size in pixels), pixeltype or bitdepth
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4.3 Projection Mapping Layer

When an image is taken, the image data is written to a data buffer by the hardware

interface. The next step is the mapping of samples, as presented in Sections 3.3, 3.4, 3.5

and 3.6.1. This is divided into the projection model and the sensor map (see Figure 3.5).

By overloading the lens model and the labware type (see Figures 4.3b and 4.3c), the

system is set to a configuration. During operation, the models are addressed by a Scene

class to calculate the transformations. To find a well on the image, it first requests

the rectangle on the labware from the labware class. Then it forwards the rectangle

to compute the labware→device transformation and the device→image transformation,

which are part of the registration part and the loaded lens model.

This mapping computation results in a rectangular ROI, which can be used to define

a sub-image, i.e. a sub-array of the image. Figure 5.1 shows the found sub-images that

are passed to the application. If the wells of the current plate have a circular shape, it

can be indicated to further specify the area that represents the well and leaves out the

four corners. In order to do that, a circle, with its center point corresponding to the well

center and its diameter corresponding to the size of the well, can be applied as a mask.

The mask can be created by the downstream algorithms if necessary.

However, the same transformations are important when the location of a found object

is required in device or robot coordinates. Hence, all transformations are implemented

for point objects, and a rectangle is defined by a set of two points. The transformations

are controlled by the Scene class.

Copying of data is a computationally expensive task. Hence, the generation of sub-

image objects is realized in a way that does not require any copying or movement of image

data. This is achieved by objects that do not hold the image data but reference to parts

of the original image. A header containing management information and references to the

data is the only memory overhead of the objects. This design maximizes performance,

since no data has to be moved in memory. When a new image is loaded in place of the

older one, the sub-images must not necessarily be created again when the labware is of

the same type. The objects can be viewed like a mask above the image that is replaced

by a new one. By using a set of objects instead of an array of rectangles, it is easy to

parallelize the computation on a well basis.
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4.4 Calibration and Registration

The device setup includes interface setup and calibration and registration. The necessary

steps to set up a hardware requires a driver installation and the configuration of proper

system settings. In the administrator user interface, Figure 4.8, the device controls and

settings are displayed in the top left of the window. The application settings can be

changed in the tree view on the left.

To meet the requirement of a ”one-click” device installation, a straightforward method

for hardware calibration, i.e. the determination of the model parameters, is needed. The

determination of calibration parameters is done with a checkerboard that acts as the

reference object.

Figure 4.4: Camera calibration

The first step is to find all corner points of the checkerboard in the images. This

is done by binarizing the image using adaptive thresholding and subsequently running a

corner detection algorithm that searches for a binary checkerboard structure by evaluating

logical relationships. By averaging the found locations of the checkerboard corners, the

found intersections have sub-pixel accuracy. The subsequent steps are device dependent

and implemented in the corresponding classes (either camera or flatbed model). The

procedure follows the steps described in Section 3.4.2 and Section 3.5.2.

More than one image is required for camera systems, so that the plate must be repo-

sitioned multiple times. This also applies for flatbed scanner calibration, although less

parameters have to be determined and hence fewer images are sufficient. With any device,

the user acquires an amount of images, and checks for every image if the checkerboard is

found. A number of 5-10 images was found to be a good reference for a camera system.
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For registration, one image has to be acquired with the registration plate, a purpose-

built plate that fits into the labware position, being positioned on the labware position.

The image is then used for the registration of coordinate systems and multiple sensors if

applicable. With the plate being positioned properly, equations from Sections 3.4.2 and

3.6 are satisfied. One has to keep in mind that tolerances mentioned in (3.6) apply.

Figure 4.4 shows an image taken during the camera calibration procedure, where the

checkerboard was found and the origin of the labware coordinate system was properly

placed in the image. The plate is held in its position by the user.

Figure 4.5 shows the image taken for registration. Here, the plate’s dimensions are

equal to a microplate, and the plate aligns with the device’s labware position. Now that

these points are known to the system, Equations (3.23), (3.25) and (3.26) can be solved.

Figure 4.5: CCD scanner calibration, plate at the registration position

Labware based Calibration of the Optical System

Instead of a checkerboard as the calibration object, it is also possible to use other objects

for calibration as long as their geometry is known. The geometry of a microplate is known

and standardized, and round wells appear on the image as grid-wise ordered circular

objects. As such, they can be used for calibration. In fact, pattern of circles lately

seem to supersede checkerboards as popular calibration objects within the robotic vision
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community, because they often provide more robust results. Microplates, however, are

not ideally black and white and their features are more difficult to detect on the image.

When an algorithm can be found to robustly detect their locations, they can be used as

inputs to the calibration algorithms, i.e. as ci for (3.9) for the flatbed scanner model.

2D cross correlation
find maximum value draw well mask

found sub-image

correlation matrix

kernel

maskline plots

Figure 4.6: Well center detection principle

With the algorithm whose principle is shown in figure 4.6, it is possible to detect a

circular-shaped well of a microplate. Subsequently, the algorithm runs a cross-correlation

with a circular-shaped kernel h(x, y) over the sub-image g(x, y). The result is a matrix

with values corresponding to the similarity of the kernel and the image for different

positions of the kernel. The maximum value depicts the best match of both functions

g(x, y) and h(x, y).

The current algorithm was tested with two parametrized kernels on three different

plate types. Figure 4.6 shows the filled type created according to Figure A.4b. It was

observed that the outermost wells could not be detected reliably, but apart from that,

the algorithm proved to be able to work with different plates and also with filled wells.

The approach should be investigated further in the future, to find out whether special

calibration plates could be rendered obsolete. An excerpt from the first test run is attached

to this thesis in Appendix A.6.

4.5 Generic Algorithm Optimization

4.5.1 Grid Search

The grid search implementation makes use of recursive loops to support variable numbers

of parameters, ranges and stepsizes. The classic form of a recursive loop is shown in the
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appendix in Listing A.1.

Listing 4.2: Implemented recursive loop to generate input data using container classes

p act // ITERATOR POINTING TO param storage
algor ithm params : : r e cu r s i on (

conta iner<algorithm params > : : i t e r a t o r p act ,
conta iner<algorithm params>& param storage )

{ /* BASE CASE */
i f ( p act == this−>end ( ) )

param storage . push back (* this ) ;
return ;

else {
n s t ep s = c a l c s t e p s ( p act )
for ( i = 0 ; i < n s t ep s ){

/* RECURSION STEP */
r e cu r s i on(++p act , param storage ) ;
p act = set param ( ) ;

}
}

}

Listing 4.2 shows the implemented form. It was adapted to the object-oriented

paradigm of the LabCV implementation and implemented using container classes and

their iterators. Herewith, it is compatible with the defined algorithm inputs.

With respect to multithreading support, it outputs a list of parameter sets to be tested,

together with a reference to the actual algorithm. From this list, the computations can

be dispatched to the available threads. Each parameter set is used to evaluate a plate

stack.

4.5.2 Target Function

The evaluation classes described in Section 3.8 can be used for performance evaluation

and to define appropriate target functions.
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4.6 Communication Interface to Process Control Sys-

tems

Every application is an inherited class of the LabCV application class. It defines the

interfaces to the process control system as predefined virtual commands to trigger actions.

The interface provides functions to initialize the system, start an image acquisition and

to run image evaluation, calibration and training routines. For the integration into the

PCS only the subset of functions displayed in the first part of Table 3.4 is implemented.

The adaption to a specific control software is done via a layer between the library

and the control software. The layer translates the messages between both systems, the

current mapping is displayed in Table 4.5. The implemented translator is compatible to

a SAMI/SILAS process control system.

4.6.1 The SAMI / SILAS System

The reference implementation is integrated into Beckman Coulter, Inc’s SAMI/SILAS

[63] message-based process control system. The Sagian Automated Methods Interface

(SAMI) schedules and runs experiments (called ”methods”) and SILAS is its interprocess-

communication interface. SILAS uses ActiveX controls and defines a message protocol.

The results are returned using a SAMI data message2, which is broadcast to all modules

loaded in the system.

Table 4.5: SAMI - API command mapping

SAMI (Parameters) LabCV(Parameters) Description

initialize init load module

open initLabwareType??? happens before a plate is
placed on the device

close -

execute compute run application and return
results

All modules being part of a SAMI/ SILAS system can register capabilities they im-

plement to the PCS. Capabilities that apply for imaging devices are:

2Its format is shown in the appendix in Table A.2
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SAMIStation: The device is able to hold a single stack of labware.

PositionHost : Describes physical labware positions, and the actions required to reach

them. For example when a lid has to be opened or a shuttle is required to transport

a plate to the position.

ManualControl : This capability indicates that a manual module interface is available.

Drawing : If implemented, a graphical representation of the device can be presented to

the user.

The communication between module and overlying system is done via device messages

and consumer messages. Device messages control the device and include configuration

and commands. The CV device module communicates results of a measurement via device

data messages. Consumer modules are data-processing modules. They are set up for a

run and listen for device data messages of a specific type or origin. The configuration

of such consumer modules herewith defines the way the system processes the results. It

is, for example, possible to setup a database writer module to realize a documentation

functionality. Or, by setting up a liquid handler module to listen to the messages, a

feedback control can be realized.

4.7 Operation and Administration User Interfaces

The standard operating system for process control computers in laboratory automation

is still Microsoft Windows XP. The native libraries for GUI development are part of the

Microsoft Foundation Classes (MFC).

By using the native implementation, a familiar interface guarantees fast learning and

comfortable use. Techniques such as drag and drop and standard behaviors of mouse and

keyboard inputs can be implemented.

4.7.1 Manual Module Interface

As the implementation uses the commercially available SAMI/SAMI’s interprocess com-

munication interface (SILAS) from Beckman Coulter, Inc., the MMI is implemented as a

SAMI module. The displayed button text is defined by the loaded application, such that

the module itself is usable for any application implemented using the framework.
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Figure 4.7: MMI screenshot

The plate image is also delivered by the application. The image is rectified, and

possibly multiple images are stitched together in the case of a multi-sensor device. It is

further possible to display results graphically as described in the concept. The module

itself was designed such that it does not display extended information or statistics.

4.7.2 Administrator Interface

An administrator interface was written following the concepts and layout of Section 3.7.

A screenshot is shown in Figure 4.8. During this work, the administrator interface was

designed to be independent from a PCS. If the system is used in a regulated environment,

however, it would become necessary to integrate the software into a system providing user

administration and audit trails for change tracking.
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Figure 4.8: Administrator user interface screenshot



Chapter 5

Framework Validation

Validation tests were run to investigate the performance of the framework’s projection

mapping capability and of its load distribution method. Both tests, their results and

discussion can be found in this chapter. The overall usability of the framework was

demonstrated by an example application that was integrated using it. This is found in

Chapter 6.

5.1 Validation of Projection Mapping

The developed calibration and registration procedures have to be validated to provide

sufficient accuracy and precision. A typical camera calibration is validated by the repro-

jection error (5.1). This error is calculated using the corner positions on the image plane

p∗i , as they are found by the corner detection algorithm, and projected points from the

object coordinate system pi = (Ric|tic)pc. The usual measure is based on the root mean

square (rms) L2-norm:

rms =

√

∑

nc

1

nc

‖p∗i − pi‖2 (5.1)

Flatbed Systems

If this error is observed over all calibration images, it gives a good sense of the error

introduced by the labware→image transformation. The errors computed with Eq. (5.1)

are displayed in Table 5.1. To support the findings, an uncertainty analysis according to

the guide to the expression of uncertainty in measurement (GUM) was conducted. It can

95
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be found in Section5.2.

Table 5.1: Reprojection errors

nimg rms [px] σL2[px]
FLXCCD 1 3.4572 1.6443
ZIACIS 1 4.3056 2.0749

Camera Systems

The developed method was evaluated with a dual camera system, of which both cameras

have a resolution of 1600x1200px. Their intrinsic characteristics are displayed in Table

5.2. The distance between the cameras is ca. 6cm, arranged on the central long axis of

the labware position, below the plate. The device is the commercially available ABgene

Smartscan 96 (Thermo-Fisher Inc.). Found intrinsic parameters are displayed in Table

5.2. A result mapping is illustrated in Figure 5.1.

Table 5.2: Camera characteristics

Cam 1 Cam 2
Focal length x fx 1.673e+3 1.837e+3 px
Focal length y fy 1.690e+3 1.843e+3 px
Center x cx 7.850e+2 7.996e+2 px
Center y cy 5.461e+2 5.990e+2 px

The rms, computed with (5.1), are displayed together with mean and standard devia-

tion in Table 5.3. The first part (C → I ′) of the table shows the reprojection errors during

single-camera calibration, where object coordinates were given in a unique checkerboard

coordinate system (C) for each of five images.

The second part shows the overall system error that will be faced during operation

for each camera and overall, when points on the labware L are mapped. The camera’s

mean errors show a constant offset of approx. 3px in x-axis and 0.5px in y-axis directions.

Standard deviations amount to 2px and 0.3px respectively. As for the flatbed model, an

uncertainty analysis is available below.
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Table 5.3: Reprojection errors, dual-camera system

Cam 1 [px] Cam 2 [px] Overall [px]
x y x y x y

C→I′

mean 7.3e-4 2e-4 -0.40 0.89
σL2 0.45 0.28 0.68 0.72
rms 0.44 0.28 0.78 1.14

L→I′

mean 3.20 -5.7e-3 3.83 6.05-e3 3.52 1.4e-4
σL2 1.91 0.33 2.21 0.55 2.08 0.45
rms 3.72 0.33 4.42 0.55 4.08 0.45

5.2 Theoretical Mapping Uncertainty and Discussion

The analysis evaluates the uncertainty in which a position on the labware can be mapped.

The first step (L→ D) is hardware independent. Subsequently, the estimation is split for

flatbed and multi camera systems. The approach is to calculate the device-independent

part first and use the result for the different subsequent steps by the result uncertainty

u(pd). Gaussian error propagation is used in the calculation:

u(F )2 =
∑ ∂F

∂xi

2

u(xi)
2 (5.2)

Unfortunately, many input values are only available as type-B uncertainties, i.e. values

from documentation or from experience. Even though the significance is reduced because

of this lack of information, the models can be used to determine the influence of a certain

parameter x by the calculated slope ∂u/∂x. A rectangular shape is assumed for all type-B

uncertainties according to GUM principles [43]. The values of the following calculations

are presented for one axis (x).

5.2.1 Transformation Labware - Device

We regard the transformation of a point pl into the device coordinate system. The first

investigated transformation is (3.6):

pd = R(α)pl + tdl + ǫ (5.3)
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Figure 5.1: Resulting sample map

pl is the system input (the point to be transformed to the image plane), and is assumed

to be an ideal value of 60mm, half the length of a microplate. Angle α describes the

rotational error with which the plate is placed on the device’s labware position. It is

correlated with ǫ such that only either one can have maximum error at a position.

Vector tdl = tcl is influenced by the placement of the registration plate (setting D), and

the placement of the actual labware L. In both cases, the labware position uncertainty

of 0.1mm apply. Additionally, small uncertainties introduced by plate manufacturing,

e.g. with a high precision printer (1200− 2400dpi), come in as well. The relative printer

uncertainty is estimated to be 1/1200
2
+ 1/1200

2
=1e-3 in mm. Note that also the abso-

lute precision of the printer, relative to the paper margins, influences tcl, but is neglected

herein. If applicable, other manufacturing options such as laser cutting can provide better

results here. The error introduced by the corner detection algorithm used during registra-

tion is furthermore neglected, since it is supposed to be on a subpixel level and regarded

insignificant. All influences add up to

u(tdl)
2 = 0.12 + 0.12 + 1/1200

2
+ 1/1200

2
(5.4)
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Table 5.4: Uncertainty budget L→ D transformation

Symbol xi Source of uncertainty Value Distribution Divisor u(xi)
a

pl System input 120 mm - - 0

tdl Plate position, printing - mm rectangular
√
3 0.103

ǫ Labware position tolerance - mm rectangular
√
3 0.1

α Labware position tolerance 0 deg rectangular
√
3 0.05

pd - mm normal 0.103

a in the unit of the respective value

The resulting model is (5.5), and the input values and resulting u(pd) are displayed in

Table 5.4.

u(pd,1)
2 = u(tdl)

2 + u(ǫ)2 +R(α)′ · pl · u(α)2 (5.5)

5.2.2 Flatbed Scanner

This step investigates the transformation from D → I, (3.7). Using the found uncertainty

u(pd), we retrieve the overall uncertainty of the L to I transformation.

pi = R(β)S(s)pd + tid, (5.6)

Angle β reflects production tolerances of the labware position to the scanner drive

axis, which also is one image axis. pd is set to 40mm, because D is set somewhere on the

microplate.

The scale factor depends upon the resolution of the scanner. It is set to 600dpi,

and the uncertainty to 5%. The uncertainty of tid results from the calibration using the

calibration plate (0.1mm) given in px. The values are listed in Table 5.5

u(pi) =

√

(R′(β)S(s)pd)
2 u(β)2 + (R(β)pd)

2 u(s)2 + (R(β)S(s))2 u(pd)2 + u(tid)2 (5.7)
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Table 5.5: Uncertainty budget L to I transformation with flatbed scanner

Symbol xi Source of uncertainty Value Distribution Divisor u(xi)
a

pd Point on device (table (5.4)) 40 mm normal 1 0.103

β Manufacturing tol. 0 deg rectangular
√
3 0.1

s Scale factor 0.042 mm
px

normal 1 0.002

tid transformation vector - px rectangular
√
3 2.4b

pi px normal 2.97

a in the unit of the respective value, b uncertainty of D relative to I is estimated to be equal to u(pd)/s

with the matrices

R′(γ) =

[

− sin(γ) − cos(γ)

cos(γ) − sin(γ)

]

und S ′(s) =

[

1 0

0 1

]

. (5.8)

The result of u(pi) = 2.97px converts to approx. 0.125mm and can be compared to

standard deviations σ of measurements. That the Ziath CIS scanner has larger ALP

dimensions compared to the CCD system explains the slightly worse results from Table

5.1. The measurements are attached to this work and can be found in Table A.1.

5.2.3 Multi Camera System

During development, only a single commercially available device was available for testing.

To provide a more universal estimation of the mapping uncertainties in the system, an

analysis was conducted here, too. This can also provide proof that the number of cameras

does not influence mapping uncertainty.

The following analysis is confined to the transformations D → Dj for multi-camera

setups. The transformation to the image plane, i.e. the uncertainty of the camera model

is not covered here. Investigations of the used model can be found in [88] and in the

literature Zhu et al. reference therein.

The investigated transformation is (3.18). Here, the placement of the registration plate

has no influence on the translation vector tdd,j , since it is a relative measure on the plate.

The printer precision, however can have an influence and is set analogously to u(tdl). The
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Table 5.6: Uncertainty budget L→ Dj transformation, x-axis

Symbol xi Source of uncertainty Value Distribution Divisor u(xi)
a

pd See table 5.4 40 mm normal 1 0.103

tdd,j Rel. trans. between checkerboards - mm rectangular
√
3 0.003

β Rel. rot. between checkerboards 0 deg rectangular
√
3 0.1

pd,j - mm normal - 0.11

a in the unit of the respective value

estimation uses the following model:

u(pd,j)
2 = R(β)′pd,1 · u(β)2 +R(β) · u(pd,1)2 + u(tdd,j)

2 (5.9)

The result of u(pd,j) = 0.11mm is approximately 2px on the image plane and can

be compared to standard deviations σ of measurements. When compared to the results

presented in Table 5.3, it is obvious that the very high mapping quality in the y-Axis

is most likely not representative. A check of the ALP geometry revealed that it is not

perfectly according to the standard dimensions. Table A.1 shows that the ABGene Dual-

Camera system’s ALP has an uncommon short long dimension (a).

5.3 Validation of Implemented Concurrency

The concepts for load distribution are implemented using OpenMP. It uses a “fork-join”

model that suits the base concept mentioned in Section 3.9 and shown in Figure 3.17,

where an SIMD instruction is distributed over multiple threads. Nested SIMD instruc-

tions, as they appear when parallelizing an already parallel algorithm for multiple plates

(Figure 3.18) are also supported by OpenMP.

However, implementation-specific limitations exist, since laboratory control computers

usually are constrained to Microsoft Windows XP and VC 8.0 and therewith to the

OpenMP 2.5 specification. Here, only the outermost parallelization is conducted, while

nested forking directives are ignored. When the outermost instruction can be divided

such that all available resources are working to capacity, this is not a drawback. But, if

only two plates shall be processed on an eight-core Windows XP system, six cores would

not be used.
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5.3.1 Validation

Test Setup

To test the performance gain obtained by parallelization, ten images of 384 and 96 well

plates respectively were used. Using the CCD flatbed scanner, this results in a chunk size

of 100x100px for every well for the 384-well plate, and 200x200px chunks for the 96-well

plate. The system used for the test is an Intel i7 based workstation, whose quad-core

processor exposes eight threads to the operating system.1
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Figure 5.2: Results well-wise partitioning

The test was conducted with five software versions with a different hardcoded number

of threads each and without OpenMP. Parallel execution of a plate stack (partitioned

in single plates) and of a single plate (partitioned in wells), were investigated. The

reachable speedup was exemplarily investigated for two filter operations and a subsequent

Hough transformation for circle detection. Hereby, the first filter operation is part of

preprocessing, which is finished prior to the well mapping and hence a serial part (see

Figure 3.20).

In the first step, twenty plates were processed with two parameter sets, with all five

software versions. The execution times of the whole task and also of the parallelized parts

were stored for the determination of the reached speedup. The second part investigates

the performance gains with a partition on plate level that is possible during training,

where a number of plates is processed. Here, a whole plate is assigned to a thread. Each

plate is processed with up to 40 parameter sets. Subsequently, all results are collected

1using Intel ’s Hyper-Threading Technology
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Figure 5.3: Results plate-wise partitioning

(serial part) and a performance value is calculated in a second parallel part. The last step

compares the performance values and returns the optimum parameter set.

Results and Discussion

The raw results are attached to this work in the Appendix A.4. Table 5.7 displays the

absolute times of the OpenMP-1-thread run together with the serial/parallel ratio for plate

and well partitions. The time per well τ denotes the overall time divided by the number

of wells. When comparing τ of both partitioning methods, one has to consider that the

plate-wise partitions are used within a training run and that additional calculations are

added in the serial part compared to the simple evaluation. Besides, the table lists the

speedup reached with two threads.

Here, only two graphs shall be discussed. Figures 5.2 and 5.3 show the mean speedup

together with its standard deviation (a) and the mean efficiency (b), relative to the

OpenMP-1-thread with standard deviation σ for one, two and eight threads and the

no-OpenMP version (NOMP). The graphs show that the 1-thread and the NOMP ver-

sions perform equally. This shows that OpenMP does not have a significant impact if

used on a single core machine, where its not possible to take advantage of its threading

capability.

Furthermore, it is obvious that the speedup increases with nthr in a saturation curve.

With well-wise partitions, σ grows for the 4- and 8-thread runs. A possible explanation

is that the system is not able provide dedicated resources for more than three threads,

because it has to run system services on one of the four cores besides the application.
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During the tests, around 300 threads belonging to the operating system and system ser-

vices were running in the background. This of course affects the 8-thread run as well,

since the four additional threads are virtual. The very large σ of the 384-well run (with

plate partitioning) is caused by a single very large outlier. The variations are equally

large for plate and well partitions (ca. σ = 0.12s) but are not recognizable in Figure 5.3a

because of the much higher absolute runtime.

When comparing reached performance with theoretical maximum values derived ac-

cording to Amdahl’s Law, it should be considered again that the system does not provide

four dedicated processing cores. With two threads however, the performance can be

compared. The ratio of parallel code is relevant for the determination of the maximum

speedup. It is 99.6% for a training run that partitions a plate stack and only 62% when

partitioning a plate. Preprocessing for example is done prior to the partitioning of the im-

age data and is hence a serial part (see Figure 3.20). The different ratios lead to different

maximum speedups according to Amdahl’s Law :

speedup =

(

serial +
parallel

nproc

)

−1

(5.10)

With 99.6% parallel code the maximum speedup with two cores is 1.99 while it is only

1.45 for 62%. With a speedup of 1.41, the theoretical maximum is nearly reached with

well partitioning, while still being smaller than for the highly parallel stack processing

(1.75). The relatively large serial part of the tested algorithm reduces the impact of

parallel processing significantly.

The speedup for four cores is far from the theoretical values (3.17 to 3.96 and 1.76 to

1.86), but as explained above, this is most likely due to the other processes running on the

system. For eight cores, the speedup compared to four cores is 10% respectively 25% and

therewith on the lower side of the 15%-40% improvements possible with Hyper-threading

technology [21].

Altogether, both partitioning strategies proved to work as expected. The stack parti-

tioning (plate-wise) offers a high ratio of parallel code and is a good way to offer optimum

performance during training. During operation however, only a single plate is present on

the system and the plate has to be partitioned well-wise. Here, the efficiency depends

largely on the design of the algorithm, and a conclusion is that preprocessing should be

kept minimal - all operations that can be implemented for a sub-image should be imple-

mented as such. Together with this design rule, the presented approach offers effective
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Table 5.7: Results

well-wise plate-wise

Overall Exec Time 1-thread 96 wells (τ) 0.49s (5e− 3s) 79s (1e− 2s)

Overall Exec Time 1-thread 384 wells (τ) 0.49s (5e− 3s) 61s (7.8e− 3s)

Ratio parallel/overall 61.9% 99.6%

Speed-Up with nthr = 2 1.41(1.45) 1.7(1.99)

load distribution that does not require parallel programming of the application developer.



Chapter 6

Application Pipettor Monitoring

6.1 Motivation

Expensive and time-consuming processes force an increase in efficiency of the research in-

dustry. Together with the increasing need for documentation, this introduces the problem

that pipetting robots operate blind. The operator provides reagents and substances for

the experiment, and receives results in the form of value measurements only at the end

of the experiment - when identifying the root cause for outliers is difficult and corrective

actions are no longer possible. Since pipettors are very reliable today [27], a monitoring

system must meet high requirements in terms of sensitivity and specificity in particular,

in order to reduce false alarms.

This can pose difficulties in finding the problem that is responsible for the faulty

result. It is furthermore economically disadvantageous to process a plate when it is faulty

to begin with. The already deficient plate would eat up processing time on an expensive

system and will also hinder a qualitative plate to pass on faster. For this reason it is a

common business principle to have QC checks during an operation, especially prior to any

bottlenecks of a process. [8] [53] The here presented approach to pipettor monitoring is

based on CV and was implemented using the reference implementation of the framework.

6.2 Drop Detection Concept

The detection of transparent objects has been a topic of previous research [7] [57] [61].

The authors of [57] evaluate distortions of a background texture to recognize transparent

106
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(a) 3µl (b) 7µl (c) 24µl (d) 32µl

Figure 6.1: Growing drop connecting to the wall between 20µl and 25µl in a 96-well
plate

(a) empty (b) good
visibility

(c) bad vis-
ibility

(d) satel-
lite

Figure 6.2: Examples of 1µl drops in a VPP384 plate, taken with a CCD scanner

objects, similar to the approach by Litt et al. (see Section 1.2).

The authors of [61] use specular highlights to recognize shiny and transparent objects.

A similar approach was chosen for the current task. The special challenge to detect

drops in microtiter plate wells is that a used plate is translucent or transparent and

produces specular highlights itself (see Figures 2.11, 6.1, 6.2 for examples). To suppress

such artifacts caused by the plate, background subtraction is used in algorithms one and

two (see Sections 6.2.1). A picture of an empty plate is taken for each plate type and

subtracted from the actual plate. This technique cancels out the specular highlights of

the plate.

To cope with a multitude of different microplates with different materials and hence

luminance and transparency values, different well-bottom and well-border shapes, an

adaptive algorithm is used that was inspired by cascade classifiers [75]. Cascade classifiers

use a cascade of multiple weak classifiers to create a strong one.

Different hardware devices are supported by the framework and are tested for their

suitability for the system. However, because the camera system proved to be too sensi-

tive to ambient light in preliminary tests, the current investigation is limited to the two

presented flatbed scanners. They picture a plate in ca. 10s at 600dpi, still fast enough

compared to classical approaches.

The drop detection is carried out by a two step procedure, which starts with a cascade

of parallel algorithms. The three algorithms evaluate an image simultaneously and their

eight outputs are weighted and merged by an Adaline [83] to generate the final output.
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6.2.1 Algorithm Cascade

The pipettor monitoring application takes an image as input and detects drops in wells.

It processes the image with a number of algorithms in parallel, and a final decision is

subsequently computed from the outputs.

The application has to support a multitude of different plate densities and materials

and the subsequent addition of new types has to be possible for users. These requirements

on flexibility lead to the approach: The use of a-priori knowledge, to set parameters

according to the labware type, and an automatic training for a plate type, to generate the

parameters of the algorithm cascade. The automatic training includes furthermore the

calculation of optimal weights for the fusion step. These weights are plate type dependent.

This approach is inspired by cascade classifier approaches such as AdaBoost.

Algorithm 1

Detecting objects from comparison with the template image, this algorithm is called

BlobsFromTemplate(). The difference image is binarized and further eroded and dilated

iteratively to reduce noise. By using a circular structuring element, circular patterns are

emphasized on the image. It consists of the following steps:

1. Calculate difference image d(x, y) = g(x, y)− h(x, y) for all channels

2. Mask to remove noise

3. Thresholding: Binarization according to a plate specific threshold.

4. Morphological Opening:

5. The sum over all pixels equals the object size in px.

Algorithm 2

This detector uses the template image, too. However, it is possible to calculate the

reference values from the template image during setup and before operation to save time.

The algorithm compares calculated statistical moments of a well to these reference values,

and outputs their differences. The higher the differences, the higher is the statistical

probability that the image changed because of a drop in the well.
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(a) Original (b) After thresholding (c) After morph. opening

Figure 6.3: Images between steps

A Sobel-based edge detection in direction of the lighting can emphasize reflections on

drops as seen in Figure 6.4. A column profile is calculated from the area shown in the

figure. From the one dimensional data, statistical moments are calculated.

The moments variance, skew and kurtosis are being used. Their difference is calculated

and returned. The steps of the algorithm are summarized:

1. Edge detection with a Sobel operator

2. Mask to reduce noise

3. Calculation of column profile

4. Calculation of variance, skew, kurtosis

5. Difference

6. Output

Algorithm 3

A Hough transformation detects lines or curves in images. The implementation used here

detects circular curves. Apart from drops, well borders can have a circular shape, too.

In order to discriminate both shapes, a simple fuzzy inference system (FIS) with two

input variables and two rules is used. The Hough transformation searches for circles with
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Figure 6.4: Calculation of the integral column profile

a radius in a specified range. If the detected circle is close to rmax it is likely that the

algorithm found a well border. The system will tend to classify the circular shape as a

well border when it is tangentially to the well border.

(a) Wall detected (b) Drop detected

Figure 6.5: LGH result pictures

A true drop is rather small and centered in the well. To adapt the algorithm to the

used plate and pipetting technique, it is possible to set [rmin,rmax] and train the rules.

If for example the drop is placed near to the border using Tip-Touch1, it is possible to

1A pipetting technique where the pipettor moves the tips along the wall to make use of cohesion. That
way it is possible to pipette smallest amounts that otherwise would remain on the tip.
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decrease the weight of the location of the circular shape. The rule set is the following:

IF r = small AND dt = small THEN yLH,1 = small (6.1)

IF r = rerw AND dt = large THEN yLH,1 = large (6.2)

The labels “small“ and “large“ represent plate-specific values and the awaited drop

radius rerw can be set according to the commanded volume. However, the values are set

automatically during training. The fuzzy inference is integrated into the inference step

and trained globally.

1. Edge-detection using a Laplacian-of-Gaussian (LoG) Kernel (Size: 5x5, σ = 1, 4).

2. Mask to reduce artifacts

3. Hough transformation detects circular pattern.

4. FIS using two inputs and rules

5. Output

6.2.2 Inference

The calculation of a decision is done by a linear fuzzy inference element (Adaline)[83]. Its

inputs are the algorithm outputs for every well of the plate. Their eight outputs xi are

weighted with β∗

i and merged to generate the output y:

y =
∑

i

β∗

i · xi, where β∗

i =
βi

∑

i βi

. (6.3)

6.3 Detector Training

As pointed out in Section 2, training should be a ”one-click” solution not needing special-

ized experience. Plates have to be prepared and acquired for training. They are captured

beforehand with the administrator tool. Subsequently, the positions and volumes of drops

have to be declared by the user before the run.

The first step of the training run is to find optimal algorithm parameter sets for the

algorithms described in Section 6.2.1 using the framework’s grid search routine. To find

the optimal parameter set θopt, we use the target function
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|AUC(θ)− 0.5| → max . (6.4)

It considers AUC = 0.5 as the worst value [26]. Then, the Adaline weights β are found

by least-squares estimation. The last step is to find an optimal threshold topt where

(TPR(t)− FPR(t))→ max . (6.5)

The user accepts a found setup by a confusion matrix that notes true positives (TP) and

false positives (FP) .

6.4 Detector Validation Tests and Conclusions

6.4.1 Development Tests

Test Setup

Each device was set up on the robot platform for testing. Fluids were delivered with the

pipetting system. The plates were then transferred to each optical system; an image was

taken of each plate with covering (CIS, camera) and without (CIS, CCD, camera). The

camera system was not included for evaluation for the reasons stated above.

To generate a representative amount of test data, the plates were used several times,

accumulating amounts of substance inside. Two pipetting approaches were used for the

examinations. For the 96-well plates a certain volume was dispensed to each of the 8

wells in one row whereas the following row was left empty (6 rows filled, 6 rows empty).

For the 384-well plate a certain volume was dispensed to every second well (checkerboard

pattern). These approaches were selected in order to measure the droplets spread over the

plate. There were also empty wells distributed across the plate for position effects to be

detected as well. Dosages of 1− 40µl were taken for the 96-well MTPs, but only 1− 12µl

max. dosage for the 384-well plates due to the smaller well volume. Tighter steps were

used for 1− 8µl dosages to generate more test data. The algorithms developed were used

afterwards on the data collected.

The tests were run on 96-well polystyrene (PS) and polypropylene (PP) plates with V-

bottoms (V), a 96-well polystyrene plate with a flat bottom (F) and a 384-plate polypropy-

lene plate with a V-bottom. In the following, the plates are being referred to by the above
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abbreviations. Images were taken in three to four runs each, for four plates in eight to

twelve volume steps in three types of setup: CCD, CIS with, and CIS without covering.

In total, more than four hundred test images were taken.

Results

Table 6.1 summarizes the true and false positives for the plates examined for each device.

Wide-ranging examinations were performed on system sensitivity to various influences in

order to gauge the usefulness of the system in real-life conditions.

Table 6.1: Results in percent

CIS open CIS lid CCD open

TP FP TP FP TP FP

VPP96 99.54 0.00 96.05 0.00 95.21 0.00

VPS96 97.80 0.00 86.69 0.00 96.64 0.35

FPS96 88.75 1.04 86.31 5.36 72.57 2.95

VPP384 94.17 7.50 96.46 4.24 95.35 0.56

Influence of resolution on efficacy

The tests were performed at a maximum resolution of 600dpi (0.042mm/px). Comparative

tests on lower resolutions of 300dpi (0.085mm/px) also yielded good results. Lowering

resolution in the volume ranges tested above 1µl showed no significant negative effect.

The system’s measurement range

There are upper and lower volume limits for detecting droplets. The lower limit is subject

to several factors, such as light distorting the image in the middle of V-bottom wells at

the cylinder tip or V-tip, and the droplet needs to be larger than the bottom tip. For all

plates the lower limit was found to be below 1µl.

Figure 6.1 shows how droplets tend to stick to the walls of a well in recognizably

increasing numbers when growing in size. This reduces the TP rate for larger volumes,

especially with a CIS scanner (please see Appendices B.1.1 and B.1.2), since the reflections
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disappear, and hence leads to the upper boundary of the measurement range. The ideal

measuring range for 96-well plates is between 1 and 24µl, while volumes of up to 6µl

are recognizable in 384-well plates with > 0.9TPR. Figure 6.6 shows the degradation of

measurement quality with two different plates.
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Figure 6.6: Degradation of measurement accuracy with growing sample volume

Operation under changing lighting conditions

The system would be used in a variety of conditions in real-life operation; ambient light

reaching the plate varies depending on the system’s location as well as the season and time

of day, so the system would have to be tested for robustness with regard to light conditions.

To test this, test images were taken in three different typical lighting situations as follows:

1. Full direct sunlight on the device, 2. Indirect daylight, 3. No natural lighting - lab

lighting. Two images were taken for each run using the CIS sensor to test its particular

sensitivity towards ambient light. Each plate was imaged once with, and once without

the covering (microtiter plate lid) in each ambient light setting and with every volume.

The lid shields the plate from ambient light during the imaging process.

Fig. 6.7 shows an example of how direct sunlight ruined the image. Similar overexpo-

sure also affected images made using the CCD sensor, albeit less strongly, since the CCD

sensor is less sensitive to ambient light. Overall, no images taken with the CCD sensor

were affected by direct light such that they became useless.

The results for the CIS scanner with lid are represented by the hashed area in Figure 4.

The solid area includes results without the lid. The figure shows the improved relationship

between true positives against false positives on the one hand, and the smaller fluctuation



CHAPTER 6. APPLICATION PIPETTOR MONITORING 115

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

T
P

R

FPR

no
 d

is
cr

im
in
at

io
n 

lin
e 

(r
an

do
m

 g
ue

ss
)

without lidwith lid

Figure 6.7: Overexposure without lid, with lid and results, V-PP-384 (CIS)

range on the other, using the lid. The benefits of covering therefore consist of improved

results and robustness to ambient light. The smaller fluctuation range is equivalent to

a smaller area on the TP/FP plane. The bounded area ∆AUCo,CIS was 0.132 without

covering compared to ∆AUCl,CIS at 0.018 with covering (lid)- only around 13.6%. The

CCD sensor yielded more robust results: The difference in area ∆AUCo,CCD was 0.034

for the CCD sensor, 25% of ∆AUCo,CIS.

Influence of sample substance and pipetting technique

Fluids with varying levels of viscosity and surface tension are dosed using different pipet-

ting techniques. If the cohesion effects between the fluid and pipette are too strong, as

it is the case with dimethyl sulfoxide (DMSO), the droplets have to be placed into the

well using techniques such as Tip-Touch. Viscosity also affects the way samples of a given

volume spread across the well.

One test addressed functionality with filtered water and pure DMSO. The ideal pipet-

ting technique for water was used for the droplets of the same shape to be placed into

the middle of the well at a very high level of reproducibility. DMSO was pipetted using

Tip-Touch1, which is not ideal for the substance; this increased the negative influence of

droplets clinging to the well edges. Dosing DMSO also showed an increasing frequency

of off-center droplets at increasing volume, suggesting an operational range depending on

substance. Fig. 6.8 shows how a bad pipetting technique leads to uncentered drops cling-

ing to the walls. As described above, this leads to a decrease in measurement accuracy.

However, this decrease is not as severe as the influence of the scanner type: Comparing
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Figure 6.8: Influence of pipetting technique, top: DMSO, bottom: water

the results of CCD and CIS systems in Figure 6.8, it is clearly visible that CIS sensors are

not robust and not suitable to detect DMSO. The accuracy decreases earlier and more

rapidly for DMSO than it does for water using either sensor type.

Conclusion

The system’s functionality has been confirmed in this test sequence. Using a basic flatbed

scanner simplifies application for pipetting monitoring and improves results while increas-

ing efficiency compared to the camera solution used up to now.

The pipetting monitoring presented can be implemented using barcode readers based

on CCD or CIS flatbed scanners that the lab may already have at its disposal. Efficacy

with regard to sample volume and substance properties as well as robustness to ambient

light was tested. Depending on lab lighting conditions, a covering may improve results.

The results of the tests taken up to now have revealed a variety of possible improve-

ments for the system. Result quality showed heavy dependence on the algorithm param-

eters used, so automatic parameter optimization is implemented for the reliable detection

of the best parameters. Additionally, this enables the user to configure the device for new

labware on his own, because all settings can be found automatically.

In addition, adaptation to ambient light should be optimized to ensure that the system

can be used without covering wherever possible. There is further room for improvement
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at high volume ranges or for badly positioned droplets; the potential for quantitative

volume estimation from dimensional droplet projections, fluid properties and well shape

warrant further investigation.

6.4.2 Qualitative and Quantitative Validation

Test Setup

Although the pipettor monitoring is designed for the use with multi-channel pipettors,

the test was conducted with a HTC PAL (CTC Analytics, Zwingen, Switzerland) using a

10µl syringe with a precision of < 1 % relative standard deviation (RSD). Two labware

types were tested: A flat-bottom (F), polystyrene (PS) 96-well plate and a V-bottom,

polypropylene (PP) 384-well plate.

Three plates of each type were pictured with a CCD and a CIS scanner, covered with

a lid (l) and open (o), for volumes between 1 to 10µl (384 wells) and 1 to 25µl (96 wells).

Only 6 rows of each plate were pipetted to reduce the time before imaging and hence

reduce evaporation. The preparation of a 384-well plate took ca. 10 minutes. The first

of three sets was used for training, the other two were evaluated.
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Figure 6.9: Results using a CCD scanner
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Figure 6.10: Results using a CIS scanner

Results

The qualitative results are shown in Fig. 6.9 and Fig. 6.10. Overall, the CIS scanner

performed best (FPS96-3: AUC = 0.994) but also worst (VPP384-3: AUC = 0.772).
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The large differences of two datasets of the same plate/device combination are a measure

for the low robustness of CIS scanners. The low robustness compared to the CCD system

was expected from our previous test, because CIS scanners use a weaker light source and

hence ambient light accounts more to the lighting of a scene.

The worst run using the CCD scanner was near (TPR = 0.9, FPR = 0.1, AUC =

0.965). The modified training procedure accounts to the fact that the CCD system perfor-

mance during uncovered operation is not categorically worse when compared to covered

operation. The variation of ROC curves of two similar datasets is smaller compared to

the CIS system, which is a sign for higher robustness compared to the CIS system. With

the V-bottom 384-well plate, the CCD scanner outperformed the CIS scanner.

Furthermore, the system’s capability to quantify drop volumes was examined. Figure

6.11 shows the first detector’s output and its standard deviation over the volume that

was commanded to the liquid handler as reference. In addition, a fitted curve a
√

x/b+ c

is shown, that was later used to calculate volumes from the outputs for the validation

datasets (second graph of Fig. 6.11).

Below 5µl, the conversation formula provides appropriate results (ideal values would

lay on the dotted line with a slope of 1). With the 384-well plate, the slope of the curve

has a maximum above 5µl. This corresponds with our finding in [70], where the increased

clinging to the wall with growing drop size (see Fig. 6.1) was identified as a cause for

a decrease in detector performance. Evaluated quantitatively, this effect causes too low

values.

6.4.3 Improvements to the Drop Detection Algorithm

Adaline Training

Two areas were found during validation where the algorithm can be further improved. The

first issue is the performance of the inference step when one algorithm clearly outperforms

all others. The cascade-classifier approach to build a strong classifier by combination of

weak ones could be observed to work. It was recognizable from ROCs like drawn in Figure

6.12.

However, when a single descriptor clearly outperforms all others, the used approach

does not deliver optimum performance anymore. By using the algorithm tuning described

in Section 6.3, it was often the case that the first descriptor could be improved so much

that its performance was much better compared to the other two. During the tests, it
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Figure 6.11: Quantitative evaluation of the first detector

became apparent that the chosen least-squares based Adaline training does not deliver

optimal performance in such cases, as it reduces overall performance as in the case shown

in Figure 6.13. This is a clear drawback of the system, since it is obvious that weighing

algorithms 2 and 3 with zero would improve outcome r to be equal to y1.

The system was originally developed with a camera system in mind that was discarded

later in the process, when flatbed scanners showed superior suitability for the task. The

results further show that the first algorithm performed best with both flatbed scanners. As

pointed out above, this can lead to suboptimal system settings. To improve its behavior,

the training algorithm should be investigated and other approaches should be tested.

Robustness against ambient lighting

Additionally, it is possible to take action to further improve descriptor 1. Its cancellation

of surrounding objects and lighting effects by template subtraction relies on the fact that

the template and the actual image are equal except for the subject of measurement. This

assumption is never fully met due to interfering factors that comprise:

� Placement of every plate within the position tolerances of the robot

� Labware manufacturing tolerances or type-differences

� Lighting changes
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The first factor is not avoidable, but a possibility to minimize its translational portion

was mentioned in Section 3.3.2. As long as labware of the same type is used, the second

point can be considered insignificant. This leads to the requirement that a new template

image must be recorded for every new plate, even when the plate type is the same from

the experimental perspective.

The third factor was minimized by using a lid to cover the plate from ambient lighting.

Here a different approach can be chosen that allows open operation. When regarding the

artificial light to be constant over time (i.e. the lights in the lab are turned on during

working hours), the differences between two lighting situations ∆g(x, y) mainly result

from daylight changes. Relative to the time of a run, this can be regarded as being

minimal.

To make use of this fact, it may make sense to operate the liquid handler directly on

the visual labware position, which is possible due to its open design. The operation would

be changed such that an empty plate is moved to the imaging position for dispensing.

Before pipetting, a template image is taken for every run. It is possible to acquire the

first image while the pipettor still aspires liquid, hence this procedure may even be faster

compared to lid By doing so it is possible to minimize the lighting changes and improving

outcome of all template based descriptors. The validity of this approach was already

tested manually. Needed prerequisites are summarized:

� The imaging position must be reachable by the pipetting head.
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� Depending on the experiment, multiple imaging devices could be required, e.g. when

multiple plates need to be prepared at the same time.

� Controlled artificial lighting must be ensured during operation (lab lighting).

� The additional time required for the second image should be considered.

6.5 Integration into the Framework

The designed algorithm was integrated into the framework as proposed in the concept in

Figure 3.1. The input is a sub-image showing a single well and two values per well can

be returned by the application. The first value is the binary decision, the second would

be the quantitative guess if it is requested. The results are returned as a SAMI data

message, which can be utilized by modules that are set up appropriately.
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Conclusions and Future Work

7.1 Framework

7.1.1 Conclusions

The developed concepts for a CV-framework for laboratory automation proved to be a

valid approach: One specific characteristic of totally automated laboratories is the use

of labware that provides high throughput through parallelization. The need for parallel

execution of CV algorithms arises, and was successfully catered for. The application de-

veloper creates a standalone algorithm, whereby the framework takes care of all needed

prerequisites for its integration, which comprises interfacing to multi-sensor devices, cali-

bration of cameras or flatbed scanners and labware mapping.

A suitable calibration routine for flatbed scanner devices was not found in the lit-

erature. The thereupon developed approach proved its feasibility. Flatbed calibration

results in reprojection errors in the range of 3.4 to 4.3px, with standard deviations of

ca. 2px. The uncertainty analysis supports this finding. For cameras, the implemented

transformations result in an overall reprojection error of ca. 4px, equivalent to 0.2mm.

The standard deviation is within the range of the estimated uncertainty.

While a large portion of research covering multi-sensor devices deals with stereo vi-

sion, devices in laboratory automation use camera grids to increase the resolution of the

regions of interest, only superimposing in small regions at the image borders. Because of

that, available registration procedures are not suited for their registration. A straightfor-

ward multi-sensor registration approach was hence introduced and has already proven its

validity. One limitation of the current implementation is that a sample position is not

122
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allowed to be distributed over images. This means that a dual-camera system is not yet

compatible to one well labware.

Calibration and registration are implemented into a graphical user interface that is

adaptable to the application. This interface can further be used to run the implemented

grid search algorithm optimization and to test and setup a device. The parallelism of the

laboratory (”parallel samples”) is used in a similar way for data partitioning to implement

multi-processor-compatibility. Using two cores, multithreading speedup is at 1.41 for well-

wise partitioning of a plate, reaching 97% of the maximum value according to Amdahl’s

law. For plate-wise partitioning of a plate stack, the speedup is at 1.7 (85%).

The framework’s PCS interface was exemplarily linked to a proprietary, state-of-the-

art control system. The reactions on measurement results can be defined by the setup of

other connected device modules.

7.1.2 Future Work

Sample Mapping

Currently, samples are not allowed to be spread over multiple images. By finding cor-

responding regions on the borders of images and by correcting their perspectives, it is

possible to stitch images together. The stitched images can then be passed on to the

image processing algorithm. This would make devices with many cameras compatible

to low-density plates (e.g. a two-well plate with an eight camera system). The current

implementation chooses the camera with the best perspective (well near image center)

from the lookup table for further processing. Instead, it is possible to pass more than one

image for every well to the algorithm. Then it is possible to evaluate a specific sample

from different perspectives (from multiple cameras). Herewith, perspective errors could

be reduced and even three-dimensional information can be calculated. Finally, Appendix

A.6 shows an excerpt of the labware calibration test. The algorithm has to be modified

so that it runs reliably on all wells, and two areas of application should be investigated:

Calibration of the complete optical model or fine-tuning of a prior calibrated system to

map wells more accurately.

CCD Flatbed Scanner Model

The test of CCD flatbed scanner image distortions showed an oscillating distortion in

the drive axis and an s-shaped distortion orthogonal, similar to the literature. Here,
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future work could address automatic calibration of the nonlinear effects of flatbed scanners

for automation systems, to establish a common method similar to the available camera

calibration method. The first step will be to investigate a set of devices regarding their

distortions and how much they resemble the behavior shown in Figures A.2 and A.3.

In case that a generic rule can be derived, it should be implemented in an automatic

calibration routine and be used in the system as such.

Multithreading

The multithreading routines could make use of automatic sizing of the thread pool and

thread priority should be considered.

7.2 Pipettor Monitoring Application

7.2.1 Conclusions and Future Work

The pipettor monitoring application was validated successfully with two comprehensive

tests. While the qualitative drop detection works with sufficient performance, more work

must be carried out to enhance the quantitative measurement.

Two areas are presented in Section 6.4.3 that would benefit much from future work.

This includes the software calibration (training) of the inference step, where the used

algorithm can lead to suboptimal results under certain circumstances, i.e. when a single

weak descriptor is much better than the others. And it furthermore includes the use

of per-plate templates to limit the influence of changing ambient conditions. This is

done by reducing the time between two image acquisitions. With cameras, the time

between the two images could be reduced further, resulting in a stream of images showing

the dispensing process. This would make the use of established background-subtraction

algorithms possible. Future research should investigate whether cameras can compete

with flatbed scanners using this approach. The aim should be to measure the volume

change over time (∆V (t)). Using this information, erroneous dispensing could be found

by extrapolation.

The support of multi-camera systems paves the way to find out how multiple cameras

can be used to determine a liquid level in a sample vessel. The basic idea here is that

two cameras are required to determine the position of a point in 3D space. This approach

should be investigated in the future.
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Framework

A.1 Technical Specifications of Imaging Hardware
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Figure A.1: Technical Drawing of a standard ALP
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Table A.1: ALP measurements for figure A.1

Standard ALP ABGene 96 FluidX CCD Ziath CIS
a [mm] 128.2 127.8 128.0 128.5
b [mm] 85.9 85.8 85.8 86.5

ABGene Smartscan 96

Dimensions (W x D x H) 130 x 180 x 185 mm

Weight 3.7 kg

Power Supply 110-240 V, 50-60 Hz

Speed < 1 second

Num of Sensors 2

Sensor Type CCD

Sensor Manufacturer Lumenera Inc.

Focal length 6.5mm

Aperture size F 1:1.8

FluidX XTR-96MKII

Dimensions (W x D x H) 175 x 291 x 71 mm

Power Source AC 100 to 240 V +/- 10%, less than 8W

Speed < 10 second @ 600dpi

Num of Sensors 1

Sensor Type CCD

Light Source CCFL (cold cathode flourescent light

source)

Sensor Manufacturer Avision

Max. Resolution 600dpi

Max. Image Size 4103 x 2482 px
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Ziath ZTS-A6

Dimensions (W x D x H) 145 x 234 x 41mm

Speed < 10 second @ 600dpi

Num of Sensors 1

Sensor Type CIS

Light Source RGB-LED

Sensor Manufacturer Toshiba

Max. Resolution 600dpi

Max. Image Size 3496 x 2480 px
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A.2 Framework Implementation

Listing A.1: Typical recursive loop

r e cu r s i on ( int n p , int p act ){
BASE CASE
i f ( p act == n p )

return ;
else {

RECURSION STEP
command to be executed ( ) ;
r e cu r s i on ( n p , p akt +1);

}
}

Listing A.2 shows a bad implementation of a simple SIMD problem which is not

threadable due to the iterating, in-loop memory allocation (“resize“) of the array that

stores the result.

Listing A.2: Access conflict

do i = 1 , 1000
r e s i z e ( a , s i z e ( a )+1)
a ( i ) = b( i ) + c ( i )

end
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Table A.2: SAMI Data Message

Required Key Data

X Transport The name of the transport that the data is about.

Command The Command message that produced this data (if any)

X Data Type The type of data included; one of [Numeric, Text]

X Time Stamp The time/date that the data was taken.

X Count The number of samples that data was taken on

X Data The data - may be a string or sub-message depending on Data Format.

X Data Format One of [Single, By Identifier Index] If Single, one piece of data as a string
in Data; Data is a key. If By Identifier Index, each sample has a key
under Data; Data is a sub-message.

Format Text A text description of how the data is listed. Some examples: Bitmap of
the plate Wells 1-96 in row major order

Description A sub-message that describes the conditions under which the data were
taken. For example, the temperature or wavelength of light used.
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A.3 Parallel Programming

Listing A.3: Access conflict

do i = 1 , 1000
r e s i z e ( a , s i z e ( a )+1)
a ( i ) = b( i ) + c ( i )

end

Listing A.4: Badly separated loop

do i = 1 , 1000
c ( i ) = r eadF i l e ( f i l ename ) /* shor t timeframe , e . g . < 1 s */
a ( i ) = complex computation (b( i ) , c ( i ) , d ( i ) )

/* l ong timeframe , e . g . > 3 s */
end

Listing A.5: Well separated loop

do i = 1 , 1000
/* s e q u e n t i a l par t */

c ( i ) = r eadF i l e ( f i l ename ) /* shor t timeframe < 1 s */
end
do i = 1 , 1000
/* p a r a l l e l par t */

a ( i ) = complex computation (b( i ) , c ( i ) , d ( i ) )
/* l ong timeframe > 3 s */
end
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A.4 Parallel Performance Evaluation

Table A.3: System information

System information
Manufacturer Dell

OptiPlex 990 MT
CPU Intel Core i7-2600 (8M Cache, 3.40 GHz)
ncores 4
nthreads 8
RAM 3GB (1X1GB/1X2GB) 1333 MHz
Operating System Windows XP

A.4.1 Stack

Table A.4: 384 Wells

time speedup efficiency
n cores t σ s σ

0 61.264 0.886 0.997 0.014 0.997
1 61.078 1.034 1.000 0.017 1.000
2 35.019 0.625 1.745 0.031 0.872
4 19.286 0.352 3.168 0.057 0.792
8 14.242 0.166 4.289 0.050 0.536

Table A.5: 96 Wells

time speedup efficiency
n cores t σ s σ

0 78.991 0.742 0.992 0.009 0.992
1 78.374 0.718 1.000 0.009 1.000
2 47.602 0.875 1.647 0.030 0.823
4 27.067 0.604 2.897 0.064 0.724
8 19.383 0.120 4.044 0.025 0.505



APPENDIX A. FRAMEWORK 140

A.4.2 Plate

Table A.6: 384 Wells

time speedup efficiency
n cores t σ s σ

0 0.492 0.016 0.990 0.031 0.990
1 0.487 0.026 1.003 0.054 1.003
2 0.344 0.013 1.415 0.052 0.708
4 0.279 0.032 1.762 0.151 0.440
8 0.279 0.115 1.859 0.294 0.232

Table A.7: 96 Wells

time speedup efficiency
n cores t σ s σ

0 0.485 0.011 0.989 0.021 0.989
1 0.480 0.018 1.001 0.038 1.001
2 0.342 0.013 1.403 0.054 0.702
4 0.269 0.013 1.788 0.081 0.447
8 0.253 0.009 1.897 0.068 0.237
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A.5 CCD Distortion Measurement
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Figure A.2: CCD: square size in y-axis vs. y-axis position
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A.6 Well Area Detection using 2D Cross-Correlation
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Figure A.4: Parameterized kernel shapes

Table A.8: Overall results for plate VPP96

template r b c mean error [px] std [px]
circle 100 1 10 10.8995 5.5319
circle 100 8 10 12.1864 4.3955
filled circle 100 1 11.5322 10.4568
filled circle 100 10 11.1251 10.1313
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Table A.9: Outlier from image 1 (Fig. A.9) influences the result

Img c=1 px c=10 px
1 26.1630 25.0599
2 7.7782 7.8102
3 10.6066 10.6301
4 1.5811 1.0000

Figure A.5: Good result despite filled well, c = 1



APPENDIX A. FRAMEWORK 144

Figure A.6: Result with c = 10

Figure A.7: Result with empty circle, b = 8
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Figure A.8: Result with empty circle, b = 1

Figure A.9: Problematic behaviour at the edge of the plate
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Pipettor Monitoring

B.1 Test Results

B.1.1 Performance versus pipetted volume
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Figure B.1: VPP plate, CCD scanner
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B.1.2 Influence of environmental lighting
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Figure B.3: VPP plate, CCD, DMSO,
normal lighting
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Figure B.6: VPP plate, CCD, Water, no
ambient light
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Figure B.7: VPP plate, CIS (lid), Wa-
ter, normal lighting
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ter, weak lighting
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Figure B.9: VPP plate, CCD (lid), no
ambient light
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Figure B.10: VPP plate, CIS (open),
Water, normal lighting
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Figure B.11: VPP plate, CIS (open),
Water, weak lighting
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Figure B.12: VPP plate, CIS (open),
Water, no ambient light



Theses

1. By integrating laboratory devices as robotic processes, the human ability to super-

vise processes and sense errors early in the process is lost.

2. This loss can be addressed by optical sensors that are able to detect states of the

samples during the process and provide feedback to the process control software,

which runs the method. Such quality checks are most effective prior to a part of the

process that represents a bottleneck.

3. Optical sensors can furthermore be used to control the process, by feeding the

measurements back and controlling the process based on them.

4. In order to increase efficiency and throughput, parallel sample carriers are used in

laboratories. Microtiterplates are standardized labware formats that are popular

and are available in multiple densities, geometries and materials.

5. To capture all samples of a microtiterplate in a one-step measurement, the plate

has to be imaged from above or below the plate, using transmitted or reflective

lighting setups. The relevant setup is application specific, and different devices are

advantageous for different applications.

6. Systems based on flatbed scanners are suitable to image a plate with reflective

lighting from below. They offer a uniform perspective of the different wells, which

would require a telecentric lens when using a camera system.

7. By using multiple cameras, it is possible to achieve advantageous uniform perspec-

tives with smaller installation height of the imaging device. Camera systems are

faster compared to flatbed scanner systems.

8. To reduce development effort of optical inspection applications, a software frame-

work can provide generic functionality that is required, independent of the actual

application. Such generic functionality includes hardware communication and opti-

cal models together with their calibration.

9. Calibration includes the determination of all transformation parameters required to

map real-world coordinates to the image plane. This includes intrinsic parameters



of the sensors and extrinsic parameters such as the positions of the sensors relative

to each other and relative to the labware.

10. Established methods exist for camera calibration, while a suitable model is required

for flatbed-scanners. A registration approach to determine the extrinsic parameters

can be developed to suit the laboratory setup. It includes the placement of a refer-

ence object onto the labware position during the setup of the machine, and replaces

any geometric measurements hereby.

11. A registration approach for multi camera setups is furthermore required. All hard-

ware calibration and registration procedures are required to follow the same basic

steps in order to be integrated independently.

12. Other requirements of the framework include labware compatibility, load distribu-

tion and user interfaces for system setup and operation.

13. The performance of pipettors in terms of accuracy and precision is worst on the

lower volume bound of its operating range. A good example application to be

implemented with the framework is a optical drop detection algorithm to monitor

low-volume liquid handling processes.

14. By weighing three developed algorithms specific to a plate type, it is possible to

robustly detect drops in microtiterplates. However it was required to implement a

grid search to also configure each algorithm for a specific plate-device combination.

15. The first algorithm uses the image of an empty plate in order to subtract the back-

ground. Morphological operations are used to reduce noise prior to thresholding the

image. The number of true pixels for every color channel is the output.

16. The second also uses background subtraction and subsequently configurable filters.

Then the first three statistical moments are calculated as result.

17. The third algorithm uses a hough transformation to detect circular objects in the

image. It dismisses objects with a diameter similar to the well diameter to reduce

the number of false positives.

18. Subsequently, the results can be relayed to the process control system and can be

used for documentation, but also for process control, i. e. by automatic repipetting

or notification alerts.



Zusammenfassung

Bildverarbeitung im Sinne dieser Arbeit beschreibt die maschinelle Auswertung von Bil-

dern zur Merkmalsextraktion und die nachfolgende Bereitstellung der gewonnen Zustands-

information an ein übergeordnetes Prozessleitsystem zur automatischen Umsetzung von

Reaktionen. Im Anwendungsbereich der Laborautomatisierung ist diese Nutzung von

Bildverarbeitung (BV) für Qualitätskontrolle und Prozesskontrolle, verglichen mit an-

deren Bereichen wie der Fabrikautomatisierung und der Nahrungsmittelverarbeitung,

wenig ausgeprägt.

Als mögliche Anwendungen für ein Bildverarbeitungssystem werden Beispiele für qual-

itative Prüfung, aber auch quantitative Messung und komplexe Merkmalsextraktion erar-

beitet. Dabei wird auf die parallele Natur von Laborprozessen eingegangen. Die parallele

Aufnahme einer großen Anzahl von Proben stellt Anforderungen an das Aufnahmesystem

in Bezug auf die Perspektive und die Auflösung. Es werden kamerabasierte Systeme mit

einer oder mehreren Kameras und Flachbettscanner vorgestellt.

Weitere allgemeingültige Anforderungen an BV-Systeme werden definiert. Zu den

Anforderungen gehört die Kompatibilität zu anwendungsspezifischer Labware und Hard-

ware des Aufnahmesystems sowie eine einfache Konfiguration des Systems. Weiterhin ist

aufgrund des parallelen Charakters der Experimente die Menge von Eingangsdaten groß

verglichen zu anderen BV-Systemen, so dass optimale Ressourcennutzung erforderlich

ist. Weitere Anforderungen sind Dokumentierbarkeit der Systemkonfiguration, grafische

Nutzerschnittstellen und Administrationstools sowie die Integration in Prozessleitsysteme.

Das entwickelte Integrationskonzept beschreibt eine Softwarelösung im Hinblick auf

die oben genannten Anforderungen in Form eines Softwarerahmenwerks. Dabei wird

vor allem auf die Hardwarekompatibilität eingegangen. Die Hardwareabstraktionsschicht

enthält zwei Ebenen, eine triviale Übersetzungsschicht zur implementationsspezifischen

Schnittstelle der Gerätetreiber und eine Ebene zur perspektivischen Transformation der

globalen Koordinaten auf die Bildebene. Hier werden bekannte Modelle für Kamera-

systeme integriert. Zusätzlich wird erstmals die systematische Integration von Multi-

Kamerasystemen und ein einfaches optisches Modell für Flachbettscanner entwickelt und

beschrieben. Weiterhin werden Konzepte zur optimalen, anwendungsunabhängigen Last-

verteilung auf SMP-Mehrkernprozessoren und für adaptierbare Nutzerschnittstellen vor-

gestellt.

Im Rahmen dieser Arbeit ist eine Referenzimplementierung entstanden, die die en-



twickelten Konzepte implementiert und validiert. Sie wurde weiterhin dazu genutzt,

eine Beispielapplikation für die Nutzung zur Qualitäts- und Prozesskontrolle umzuset-

zen. Die implementierte Anwendung ist ein Konzept für die Detektion kleinster Volu-

mina in Mikrotiterplatten (ein standardisiertes Labwareformat). Der Algorithmus nutzt

drei Detektoren und wichtet anschließend deren Ergebnisse. Durch optimale Einstel-

lung der einzelnen Detektoren und der Wichtung ihrer Ergebnisse kann Kompatibilität

zu verschiedener Hardware und Labware gewährleistet werden. Die Anwendung wurde in

einer umfassenden Validierung auf ihre Robustheit gegenüber den Einflussfaktoren Umge-

bungslicht, Fluideigenschaften und Pipettiertechnik untersucht. In einem abschließenden

Test wurde das Ergebnis bestätigt und eine erste qualitative Auswertung der Messung

angestellt.

Die Verbesserung der quantitativen Ergebnisse und die Verbesserung der Robustheit

gegenüber sich veränderndem Umgebungslicht, insbesondere für Kamerasysteme, sind

Themen für die zukünftige Weiterentwicklung. Außerdem können andere Konfigurationen

von Multi-Kamerasystemen und die Nutzung von mehreren Abbildungen einer einzigen

Probe untersucht werden.



Abstract

The term computer vision (CV), as it is used in this thesis, means the automated process-

ing of images to generate abstract knowledge about the imaged objects, to subsequently

use this information by higher level systems to define appropriate reactions to a situa-

tion. Compared to quality and process control in industrial production lines, or in the

food processing industry, such an application is underdeveloped in life science automation

today.

This thesis presents possible applications for CV-based systems. The parallel nature of

experiments conducted in high-throughput laboratories is considered, as it poses special

requirements on an imaging device in terms of perspective and resolution. Applicable

imaging devices will be presented that are camera-based, multi-camera-based or flatbed

scanner-based.

Generic requirements of CV-based inspection (automatic optical inspection, AOI) sys-

tems are elaborated and defined. The requirements include compatibility concerning

application-specific labware and hardware and straightforward methods to set up and re-

configure the system. The parallel nature furthermore leads to a large amount of input

data that should be processed such that the system resources are used in an optimal

manner. Further requirements are: Reproducible system settings and documentation of

settings, graphical user interface and a flexible manner for the integration into process

control systems.

Concepts of a software framework with respect to the above-mentioned requirements

are elaborated, with special emphasis on the hardware compatibility. The introduced

hardware abstraction layer consists of two sub-layers, of which the lower one acts as

a trivial translator to the driver-specific hardware interface, while the upper layer is

responsible for the optical modeling of the system and the mapping between real world

coordinates and the image plane. Here, an available camera model is integrated, together

with a simple flatbed-scanner model and a multi-camera registration method that was

purposely developed for this case. Furthermore, a concept for application independent

load distribution and an adaptable graphical user interface is presented.

A reference implementation has been developed that implements and validates the

presented concepts. It was further used to implement a quality and process control ap-

plication developed in parallel to the framework.

The implemented application aims at the detection of low-volume liquids in microtiter



plates, a labware standard. The algorithm uses three detectors and weighs their output.

By optimizing each detector and the weights for a labware and an imaging device, it

is possible to cover a wide range of labware on different flatbed scanner hardware. Ro-

bustness tests considering ambient light, fluid properties and pipetting techniques where

conducted. In a final test, the application was validated and a first quantitative evaluation

of the measurement results was considered.

Improvements of the quantitative measurements and of the robustness regarding am-

bient light for camera-based systems can be subject to future research. Furthermore, the

use of multiple camera systems in a way that provides multiple views of a single sample

can be investigated.
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