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 Introduction and Tasks of the Thesis 

 

Purine isosteres and purine like scaffolds are of considerable interest as major privileged 

scaffolds often used in medicinal chemistry and drug design. In the recent decade, 

functionalized derivatives of purine isosteres have gained remarkable importance as 

pharmacological structures and synthetic building blocks in medicinal and agricultural 

chemistry. The aim of this work is to enhance the scope of formal inverse electron demand 

Diels-Alder reactions of 1-substituted-1H-imidazol-5amines with 1,3,5-triazines. The Langer 

group, subgroup of Dr. V. O. Iaroshenko, has also greatly contributed to this. This paragraph 

outlines the tasks of this thesis. A more detailed introduction is given at the beginning of each 

individual chapter.   

N

N NH2
R1

N

NN

R2

R2R2 N

N N

N

R1

R2

R2
CH2Cl2,

reflux
R2=H, CF3  

 

I have also studied the site-selectivity of palladium catalyzed transformations of fluoro-

substituted dibromobenzenes. Site-selective reactions of the substrates discussed in the thesis 

have not been previously studied by other research groups. 

 

Ar
F

Ar

F
Ar

Ar

F

Ar
Ar  

 

Although a diverse set of substrates were studied, the general topic of this thesis was to 

develop new polyiodinated benzene derivatives and their applications as substrates in 

Sonogashira reactions for the synthesis of polyethynylbenzenes. 
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In continuation of the task, the synthesis of polyarylbenzenes was also performed by the 

application of the Suzuki-Miyaura cross coupling protocol. 
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Based on this, an important goal was to study the absorption and fluorescence properties of all 

products. 
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Chapter 1. Synthesis of Purines

1 Synthesis of purines by formal inverse electron demand Diels-Alder reactions of 

amines with 1,3,5-triazines   

1. 1  Introduction 

In recent years, much attention has been devoted to purines as they play a vital role in life 

cycles of humans, flora and fauna, due to the presence of the naturally widely spread 

heterocyclic core. The nucleic acids DNA and RNA contain the purine derivatives adenine 

and guanine as important subunits. Moreover, a class of important enzyme target moieties is 

represented by the N-ribosyl substituted derivatives of adenosine and guanosine which are 

present in the human body.1 

The deamination of adenosine to inosine is catalyzed by a zinc metalloenzyme adenosine 

deaminase (or simply ADA). Thus, it plays a key role in the adenosine metabolism and in a 

number of physiological processes (e. g., the regulation of ion-channel activity, the inhibition 

of platelet aggregation, and the inactivation of eosinophile migration). Moreover, it was 

shown, that ADA functional disorders affect on the differentiation and maturation of the 

lymphoid system leading to a severe combined immunodeficiency disease (SCID), due to the 

decreasing production of immunoglobulins.2 Recent studies have been directed towards ADA 

inhibition based on its exuberant reproduction which is observed in case of oncologic 

diseases,3 tuberculosis,4,8(b) Parkinson’s disease,5 bacterial meningitis,6 viral hepatitis7 and 

auto immune diseases including sarcoidosis and rheumatoid arthritis.8 

Nowadays, mimicking the transition state of enzymes has become the dominating strategy for 

enzyme inhibition. Based on the structural similarity to the adenosine transition state, 

pentostatin, coformycin and their analogues show an almost irreversible binding with the 

ADA receptor9 (Figure 1).  
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Figure 1. Potent ADA and CDA inhibitors 

 

Pyrimidine derivatives, like ZEB or tetrahydrouridine, are promising inhibitors of cytidine 

deaminase10 (Figure 2). The commercially available drug nebularine is a bright example of an 

adenosine-like nucleoside which mimics the ADA transition state through covalent hydration 

of an aglycone ring.11 

N
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N CF3
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N

N
H

N

N
R

CF3

OHF3C

H2O

VI VII

in vivo

 
Figure 2. 6-Acceptor-substituted 3H-imidazo[4,5-b]pyridines as new potential ADA-

inhibitors. 

 

Mechanistically, the formation of inosine during enzymatic adenosine deamination12 is 

assumed to involve nucleophilic attack of water on position 6 of the purine ring followed by 

stereospecific hydroxyl group addition13 (Scheme 1). In our concept, the enthalpy of covalent 

hydration of the adenosine-like transition state mimetic could be decreased by introducing an 

electron withdrawing substituent into its heterocyclic core. As a promising candidate we have 

considered the CF3-group, since it has proven to be isosterically close to the NH2-
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functionality. This should additionally decrease the enthalpy of the activated complex with the 

enzyme leading to a more tightly binding to the receptor.  

For further insight in the field of designing potential ADA inhibitors, we focused our attention 

on the development of a practical route to trifluoromethyl substituted purines as the aglycone 

moiety of the traget structures. Bearing two strong electron-withdrawing groups at position 2 

and 6 of the purine ring, such synthons could easily interact with water in vivo under enzyme-

catalyzed conditions, due to the higher electron deficiency in comparison with the non-

fluorinated adenosine moiety. Therefore, they could be considered as highly efficient 

adenosine mimetics (Figure 2). In addition, from the literature survey it is obvious that the 

introduction of fluorine-containing functional groups to biomolecules often results in the 

development of new physiologically active compounds.14 In the course of our current research 

we have developed a synthetic approach to several 2- or 6-CF3-substituted purine isosteres 

and their correspondent nucleosides.15 

Besides the goal of mechanism-based design of ADA-inhibitors mimicking a putative 

transition state of adenosine deamination in vivo, we have concentrated our attention on the 

investigation of the scope and limitations of the assembly of 9-substituted-2,6-

bis(trifluoromethyl)-9H-purines using amines as the source of introducing the 9-substituent. 

We follow the formal inverse electron-demand Diels-Alder strategy starting from in situ 

generated 1-substituted-1H-imidazol-5-amines and 2,4,6-tris(trifluoromethyl)-1,3,5-triazine. 

Thus, the extension of the scope of this study is communicated here.  

 

1.2 Results and discussion 

1.2.1  Synthesis of 5-amino-1H-imidazoles with unsubstituted 1,3,5-triazine. 

Carrying out a careful study of possible syntheses of 2,6-disubstituted purines, we have 

revealed a versatile route to 6-membered heterocycles, based on the inverse electron-demand 

Diels-Alder cycloaddition, which has proven to be an efficient method for the synthesis of 

fused pyridines and pyrimidines. In this context, numerous studies directed to unknown 

cycloaddition reactions have been carried out. The reactions afforded a series of substances 

starting with various azadienes, such as 1,2-diazines,16 1,2,4-triazines,17 1,2,4,5-tetrazines,18 

and 1,3,5-triazines.19 Later on, the method was extended from the employment of substituted 

alkenes, cycloalkenes and naphthalenes as the dienophiles to the application of electron-rich 

aminoheterocycles, like 2-aminopyrroles,18,19 5-amino-1H-pyrazoles20 and 1-substituted 5-
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amino-1H-imidazoles.21 The described route provides an efficient pathway to the synthesis of 

2,6-disubstituted purines. 
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OMe
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Scheme 1. Reagents and conditions: (i) CH2Cl2, argon atmosphere, reflux, 2 h.  

 

Guided by our previous successful experience,22 I have decided to use 1-substituted 5-amino-

1H-imidazoles 4, which were generated in situ following our developed procedure, as 

dienophiles in formal inverse electron demand Diels-Alder reactions. The reaction of primary 

aliphatic amines with methyl-N-cyanomethyl-formimidate (1), via nucleophilic substitution 

and subsequent cyclization, resulted in the formation of the required substrates (Scheme 1). 

The reaction was carried out in dichloromethane under inert atmosphere. My preliminary 

studies were focused on the interaction of the 5-amino-1H-imidazoles with unsubstituted 

1,3,5-triazine 5 (Scheme 2).  

N

N
R

N

N

NH2

N

N
R

N

NN

generated 
in situ

5

i

4 6a-d

 
Scheme 2. Reagents and conditions: (i) CH2Cl2, under argon atmosphere, reflux, 10 h.  

 

The first attempts to obtain simple 9-substituted purines by addition of an equimolar amount 

of the corresponding azadiene 5 to the reaction mixture with subsequent reflux for 5 hours 

resulted in formation of the desired product in only 10% yield (Scheme 2). Posterior 

improvements of the procedure (the aminoheterocycle was generated in 20% excess and the 

reaction time was increased to 10 hours, the addition of the triazine was conducted at 0 oC) 

resulted in an increased yield of 6 (up to 40%) which is, however, still rather low. Our efforts, 

which resulted in the synthesis of a small number of 9-alkyl-purines 6 (Table 1), led to the 

conclusion that the chosen method is insufficient in case of 1,3,5-triazine. 
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Table 1 Yields of 9H-purines 6.

6 R % (6) a 

a t-Bu 37 

b 4-Methoxybenzyl 27 

c 2-(Chloro)benzyl 43 

d 2-(2-Chlorophenyl)ethyl 40 
a Yields of isolated products 

 

1.2.2 Synthesis of 5-amino-1H-imidazoles from 2,4,6-tris(trifluoromethyl)-1,3,5-triazine 

In the following, I concentrated my attempts on the use of 2,4,6-tris(trifluoromethyl)-1,3,5-

triazine (7) as the reactant. Being by far more electron-deficient than its unsubstituted 

analogue, it represents a more promising substrate than parent 1,3,5-triazine 5. In fact, I have 

found that the application of 7 concluded in high yields and short reaction times (Scheme 3). 

The interaction between the 1-substituted-5-amino-1H-imidazole 4 with triazine 7 resulted, in 

the first attempt, in the formation of the desired product 8a in 54% yield after reflux for only 

for 2 hours (Scheme 3, Table 2). As the reaction was observed to be exothermic, 

consequently, the reaction mixture was cooled to 0°C before the azadiene was added. This 

resulted in an increase of the yield (Table 2). Following these conditions, a number of 2,6-

bis(trifluoromethyl)purines 8a-o were prepared in excellent yields of 48-93%. All products 

(Table 2) were characterized by analytical techniques. The products 8n was independently 

confirmed by crystal structure analysis (Figure 3). 

 

N

N
R

N

N
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CF3

generated
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Scheme 3. Reagents and conditions: (i) CH2Cl2, under argon atmosphere, reflux, 2 h. 
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 Table 2 Yields of 2,6-bis(trifluoromethyl)-9H-purines 8. 

8 R % (8) a 

a t-Bu 87 

b Allyl 68 

c n-Heptyl 68 

d Cyclopropyl 83 

e Cyclohexyl 90 

f N,N-Dimethylethyl 71 

g N,N-Diethylethyl 90 

h 3-Morpholinopropyl 90 

i 4-Methylpiperazin-1-yl 73 

j Benzyl 75 

k (S)-1-Phenylethyl 75 

l Phenylethyl 68 

m 2-Methoxyphenylethyl 77 

n 3,4-Dimethoxyphenylethyl 93 

o Pyridin-4-yl-methyl 93 
   aYields of isolated products 

 
Fig 3. Molecular structure of 8n. 
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1.2.3  Synthesis of 9-aryl- and 9-heteroarylpurines 

It is important to be noted that the reaction could be applied only to aliphatic amines, since 

aromatic and heteroaromatic amines did not undergo, under my conditions, a reaction with 1. 

Therefore, I was searching for suitable reaction conditions to succeed in the synthesis of 

purines bearing an aryl or hetroaryl moiety located at position 9 of the purine core. The 

addition of a catalytic amount of TMSOTf proved to be the crucial point to achieve the 

formation of the 5-amino-imidazole ring in the case of 9-aryl or hetaryl derivatives. The 

subsequent reaction of the latter with triazine 7 allowed the synthesis of 9-aryl-purines 9 as 

well as 9-heteroaryl-purines 10 (Scheme 4, Table 3).  

N

N N

N

CF3

CF3
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CF3
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NH2

N

N
R
generated

in situ

i

9a-l R = Ar
10a,b R = Het

7

4

 
Scheme 4. Reagents and conditions: (i) CH2Cl2, TMSOTf, under argon atmosphere, reflux, 

10 h.   

 

                    Table 3 Yields of 2,6-bis(trifluoromethyl)-9H-purines 9, 10.  

R % a 

9a 3-Methoxyphenyl 70 

9b 3,4-Dimethoxyphenyl 72 

9c 3,5-Dimethoxyphenyl 78 

9d 2,4-Dimethoxyphenyl 76 

9e 3,4,5-Trimethoxyphenyl 65 

9f 4-Ethoxyphenyl 62 

9g 2,4,6-Trimethylphenyl 83 

9h 3-Bromophenyl 67 

9i 4-Bromophenyl 71 

9j 2,6-Dibromo-4-methylphenyl 45 
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9k 4-N,N-Diethylphenyl 70 

9l Morpholyl 48 

10a Thiazol-2-yl 61 

10b Pyridin-2-yl 40 
             aYields of isolated products  

 

Products 9g, 9k and 9l were also independently confirmed by crystal structure analyses 

(Figures 4, 5 and 6). 

 

 
Fig 4. Molecular structure of 9g 
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Fig 5. Molecular structure of 9k 

 

 
Fig 6. Molecular structure of 9l 

 

1.2.4  Synthesis of purines and bi-purines by reaction of diamines with 2,4,6-

tris(trifluoromethyl)-1,3,5-triazine 

I also studied the reaction of diamines with one and two equivalents of 1 (dichloromethane, 

reflux, argon atmosphere) which resulted in the in situ formation of the correspondent 5-
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amino-imidazoles as well as the 5-amino-imidazoles linked by a bridge. These experiments 

show that the assembly of fluorinated purines 13-15, containing two domains, suitable for the 

application in the field of supramolecular chemistry, is possible. In the same time, when the 

ratio amine to amidate was 1:1, we have observed exclusively the formation of products 11,

12.  
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Scheme 5. Purines obtained starting with aromatic diamines.  

 

In the case of bi-purine 13 linked by a phenyl ring, we have succeed to grow a crystal, which 

fully confirms the structure (Figure 7).23 
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Fig 7. Molecular structure of 13. 

 

The product formation might be explained by a formal cycloaddition / retro-cycloaddition 

mechanism,20b, 21 which includes the formation of the zwitterion B, followed by a cascade of 

nucleophilic attack of nitrogen atom 4 on position 5 of the imidazole, formation of a nitrile 

R2-CN and cleavage of ammonia (intermediates C, D) resulting in purine formation (Scheme 

6). 
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1.3 Conclusion 

In conclusion, I have reported a new and facile method for the synthesis of 9-functionalized 

purines and 2,6-bis(trifluoromethyl)purines by formal inverse electron-demand Diels-Alder 

reactions. The procedure developed provides a useful tool for the development of potential 

ADA inhibitors. The biological evaluation of the products prepared is currently under 

investigation. 
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Chapter 2. Synthesis of Terphenyls by Site-Selective Suzuki-Miyaura Reactions

2         Synthesis of Terphenyls from fluorinated Bromobenzenes by Site Selective 

Suzuki-Miyaura Reactions 

2.1 General Introduction 

The maturity of environmentally pleasant and economical reactions for the formation of 

carbon-carbon and carbon-heteroatom bonds is of great curiosity for the chemist. This tactic 

provides a simple route for the formation of different complex molecules from simple starting 

materials. Until now, different methodologies have been used by the chemist for making 

carbon-carbon bonds. Since the discovery of metal-catalyzed cross-coupling reactions, a 

variety of metals have proven to be productive in organic synthesis. The Grignard, Diels–

Alder, and Wittig reaction have been of immense use in this regard in the last century. But for 

the last few decades transition metal-catalyzed reactions, particularly palladium(0)-catalyzed 

transformations, have gained considerable value for carbon-carbon bond formation and many 

new ideas have been tested and realized.24 At present, these reactions are being used for the 

synthesis of a number of natural products, pharmaceuticals and advanced materials.25-27 The 

most commonly applied palladium-catalyzed carbon–carbon bond forming reactions in total 

synthesis are, namely, the Heck,28 Stille,29 Suzuki,30 Sonogashira,31 Tsuji–Trost,32 and the 

Negishi33 reaction. The mechanisms of these reactions are similar. The first step is usually the 

oxidative addition of organic halides or triflates to the Pd(0) complex to form 

organopalladium halides. The following step is, in case of the Suzuki, Sonogashira and Stille 

reaction, often a transmetalation with nucleophilic compounds to give a diorganopalladium 

complex. This complex undergoes a reductive elimination to a create carbon-carbon bond and 

regeneration of the catalyst. 

 

The Suzuki-Miyaura reactions have gained much implications for its usefulness for the cross-

coupling between halides and organoboronic acids.34 Advancements made in this field include 

the development of new catalysts and modern methods which have greatly increased the 

scope of this reaction and are now considered to be a quite general procedure for a ample 

range of selective carbon-carbon bond formations.35 The scope of the reaction partners is not 

only restricted to arenes, but includes also alkyl, alkenyl and alkynyl compounds. 
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The mechanism of the Suzuki reaction involves the oxidative addition of organic halides or 

triflates to the Pd(0) complex to form an organopalladium halide (R1-Pd(II)-X). This step is 

followed by transmetallation with a boronic acid derivative or a borane to give a 

diorganopalladium complex (R1-Pd-R2). This complex undergoes a reductive elimination with 

carbon-carbon bond formation and regeneration of the catalyst.36-39 The reactivity order of 

aryl halides and aryl triflates, which act as electrophiles, is Ar-I > Ar-Br > Ar-OTf > Ar-Cl. 

The use of base accelerates the transmetalation. This is due to the increase of the carbanion 

character of the organoborane moiety by formation of an organoborate containing a 

tetravalent boron atom. The selection of a proper catalyst plays an important role in the 

success of the desired reaction. The common palladium sources employed include, for 

example, Pd(OAc)2, PdCl2, Ph(PPh3)2Cl2, and Pd(dba)2. The use of bulky electron-rich 

ligands is often the key for a successful transformation. The ferrocenylphosphine,40 N-

heterocyclic carbenes,41 P(tBu)3,
42 P(Cy)3 often give good yields. 

 

Suzuki-Miyaura reactions43 are very attractive, due to the stability of the precursors, boronic 

acids, and facility of work up. In this reaction even an alkyl group (i.e. sp3-hybridized C 

atom), as opposed to the more traditionally used vinyl or aryl groups, can be transferred from 

the organoborane component during the palladium-catalyzed coupling process with vinyl or 

aryl halides or triflates. Compared to Stille reactions44, Suzuki–Miyaura couplings have a 

much broader scope in a potentially vast range of alkyl boranes (typically prepared through 

the regio- and chemoselective hydroboration of readily available alkene precursors) which can 

be employed in the reaction.45 The interest of the chemist in this field is evident from the 

continuous developments in the use of new reaction conditions, catalysts and ligands.46-48  

2.1.1  Introduction 

It has become evident that fluorinated compounds have a significant record in medicinal 

chemistry and will play a continuing role in providing lead compounds for therapeutic 

applications. Small molecule natural products have had a significant impact on drug 

development. The taxoids, the Vinca alkaloids, the etoposides or the anthracyclines are 

illustrative examples of the utility of natural sources in clinically based oncology. Considering 

that organofluorine compounds are virtually absent as natural products, it is interesting to 
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question why 20–25% of drugs in the pharmaceutical pipeline contain at least one fluorine 

atom. One of the earliest synthetic fluorinated drugs is the antineoplastic agent 5-fluorouracil, 

an antimetabolite first synthesised in 1957.49 It shows high anticancer activity by inhibiting 

the enzyme thymidylate synthase, thereby preventing the cellular synthesis of thymidine. 

Since the advent of 5-fluorouracil, fluorine substitution is commonly used in contemporary 

medicinal chemistry to improve metabolic stability, bioavailability and protein–ligand 

interactions. Fast progress in this area is fuelled by the development of new fluorinating 

reagents and fluorination processes increasing the range of synthetic fluorinated building 

blocks amenable to functional group manipulation. The strategic use of fluorine substitution 

in drug design has culminated with the production of some of the keydrugs available on the 

market. These include Fluoxetine [antidepressant], Faslodex [anticancer], Flurithromycin 

[antibacterial] and Efavirenz [antiviral], four drugs that we have selected to illustrate the wide 

range of disease areas benefiting from fluorine chemistry and, from a molecular point of view, 

the structural diversity of the fluorinated component.50-55 Rapid progress in this area has been 

fuelled by the development of new fluorination processes increasing the range of synthetic 

fluorinated building blocks acquiescent to functional group manipulation. The strategic use of 

fluorine substitution in drug design has culminated with the production of some of the key 

drugs available in the market.56 

 

The site-selectivity of these reactions is generally influenced by electronic and steric 

parameters.57 Our research group has already reported site-selective Suzuki-Miyaura (S-M) 

reactions of tetrabrominated thiophene, N-methylpyrrole, selenophene, and of other 

polyhalogenated heterocycles.58 Site-selective S-M reactions of the bis(triflate) of methyl 2,5-

dihydroxybenzoate have also been studied.59 Site-selective palladium(0)-catalyzed cross-

coupling reactions of dibromides, diiodides or bis(triflates) of fluorinated arenes have, to the 

best of our knowledge, not been reported to date. 

 

My colleague Dr. Muhammad Sharif Akbar started in the Langer group a project related to 

site selective Suzuki-Miyaura reactions of fluorinated benzenes (Muhammad Sharif, Ph.D 

thesis, University of Rostock, 2011). He studied 1,2-dibromo-3,5-difluorobenzene,60 1,4-

dibromo-2-fluorobenzene61 and 1,3-dibromo-4-fluorobenzene derivatives in these reactions. 

In this chapter, I have discussed my results related to Suzuki-Miyaura reactions of fluorinated 

dibromobenzenes. The products, biphenyl- and triphenyl, were prepared in good to excellent 
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yields. The methodology discussed in this chapter provided a straightforward way to a variety 

of fluoro-substituted bi- and triphenyls which, by other methods, are not provided to date. 

2.2 Results and discussion 

2.2.1 Synthesis of fluorinated meta-terphenyls by site-selective Suzuki reactions of 1,3-    

dibromo-4-fluorobenzene 

In the following section, first results of my study related to Suzuki-Miyaura (S–M) reactions 

of 1,3-dibromo-4-fluorobenzene are reported. The products, fluorinated meta-terphenyls, are 

not readily available by other methods. The S–M reaction of commercially available 1,3-

dibromo-4-fluorobenzene 16 with two equivalents of arylboronic acids 17b,d,g,h (Table 4)

afforded the difluorinated meta-terphenyls 18a-d in moderate to good yields (Scheme 7, Table 

5). The best yields were obtained using 2.2 equivalents of the arylboronic acid, Pd(PPh3)4 

(0.03 equiv) as the catalyst, and Cs2CO3 (2.2 equiv) as the base (1,4-dioxane, 90 °C, 8 h) 

        Table 4. Aryl boronic acids 

  Ar-B(OH)2    Ar-B(OH)2 

17 Ar 17 Ar 

a C6H5 i 4-(Vinyl)C6H4 

b 4-MeC6H4 j 3-ClC6H4 

c 3-MeC6H4 k 4-ClC6H4 

d 4-(MeO)C6H4 l 4-FC6H4 

e 2-(MeO)C6H4 m 4-BrC6H4 

f 2,3-(MeO)2C6H3 n 4-(Acetyl)C6H4 

g 2,5-(MeO)2C6H3 o 4-(CF3)C6H4 

h 4-EtC6H4  

 

F
Br

F
ArArB(OH)2

16 18a-d

17c,d,g,h
i

Br Ar
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Scheme 7. Synthesis of 18a-d. Reagents and conditions: i, 16 (1.0 equiv), 17c,d,g,h (2.2 

equiv), Cs2CO3 (2.2 equiv), Pd(PPh3)4 (3 mol%), 1,4-dioxane, 90 °C, 8 h.

  Table 5. Synthesis of 18a-d 

17 18 Ar Yields of 18 (%)a

c a 3-MeC6H4 57 

d b 4-MeOC6H4 70 

g c 2,5-(MeO)2C6H3 65 

h d 4-EtC6H4 57 
                      aYields of isolated products 

The S–M reaction of 16 with arylboronic acids 17d,h (1.0 equiv) afforded the 3-bromo-4-

fluoro-biphenyls 19a,b in good yields and with very good site selectivity (Scheme 8, Table 6). 

The formation of the opposite regioisomer was not observed. 

 

F
Br

F
BrArB(OH)2

19a-b

17d,h
i

16
Br Ar

 
Scheme 8. Synthesis of 19a–b. Reagents and conditions: i, 16 (1.0 equiv), 17d,h (1.0 equiv), 

Cs2CO3 (1.5 equiv), Pd(PPh3)4 (3 mol%), 1,4-dioxane, 90 °C, 9 h. 

 

     Table 6. Synthesis of 19a-b 

17 19 Ar Yields of 19 (%)a

d a 4-(MeO)C6H4 70 

h b 4-EtC6H4 63 
        aYields of isolated products 

 

The one-pot reaction of 1,3-dibromo-4-fluorobenzene with two different arylboronic acids 

afforded the unsymmetrical difluorinated meta-terphenyls 20a containing two different 

terminal aryl groups (Scheme 9, Table 7) 
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Scheme 9. One-pot synthesis of 20a. Reagents and conditions: i, 16 (1.0 equiv), 17d (1.0 

equiv), Cs2CO3 (1.5 equiv), Pd(PPh3)4 (3 mol%), 1,4-dioxane, 17o (1.2 equiv), Cs2CO3 (1.5 

equiv), 90 °C, 8 h. 

 

      Table 7. Synthesis of 20a 

17 20 Ar1 Ar2 Yield of 20 (%)a

o,d a 4-CF3C6H4 4-(MeO)C6H4 58 
       aYields of isolated products 

 

The structures of all products were established by spectroscopic methods. The structure of 

compound 19b has also been confirmed by 2D NMR (NOESY) (Figure 8).  

H
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Figure 8. 2D NMR (NOESY) of compound 19b.



33 
 

Hydrogen H-6 of the ring B resonating at � = 7.45 ppm showed a clear and important NOESY 

correlation with hydrogen H-2 of ring A resonating at � = 7.76 ppm. This proved the 

connectivtity of the aryl group located at C-1 of ring A. Moreover, H-2 and H-6 of ring B did 

not show any signal or connectivity with F. 

 

2.2.2 One pot synthesis of fluorinated terphenyls by Suzuki-Miyaura reactions of 1,4-

dibromo-2-flourobenzene 

The S–M reaction of commercially available 1,4-dibromo-2-fluorobenzene 21 with 2 equiv. 

of arylboronic acids 17g,h,j afforded the fluorinated para-terphenyls 22a–c in moderate to 

good yields (Scheme 10, Table 8). The best yields were obtained using 2.2 equiv. of the 

arylboronic acid, Pd(PPh3)4 (0.03 equiv) as the catalyst and Cs2CO3 (2.2 equiv) as the base 

(1,4-dioxane, 100 °C, 8 h).  

Br
F

Br

Ar
F

Ar

 ArB(OH)2

21 22a-c

i

       17g,h,j

 

Scheme 10. Synthesis of 22a–c. Conditions: (i) 21 (1.0 equiv), 17g,h,j (2.2 equiv), Cs2CO3 

(2.2 equiv), Pd(PPh3)4 (3 mol %), 1,4-dioxane, 100 °C, 6–8 h. 

 

Table 8. Synthesis of 22a-c 

17 22 Ar Yields of 22 (%)a

g a 2,5-(MeO)2C6H3   76 

h b 4-EtC6H4   81 

j c  3-ClC6H4  80 
   aYields of isolated products 

   

The one-pot reaction of 1,4-dibromo-2-fluorobenzene 21 with two different arylboronic acids 

afforded the unsymmetrical fluorinated para-terphenyls 23a–c containing two different 

terminal aryl groups (Scheme 11, Table 9). 
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Scheme 11. One-pot synthesis of 23a-c. Conditions:1) 21 (1.0 equiv.), 17b,d (1.0 equiv.), 

Cs2CO3 (1.5 equiv.), Pd(PPh3)4  (3 mol-%), 1,4-dioxane, 17d,e,n (1.2 equiv.), Cs2CO3 (1. 5 

equiv.), 90 �C, 8 h. 

 

   Table 9. Synthesis of 23a-c 

17 23 Ar1 Ar2 Yields of 23 (%)a 

b,d a  4-MeC6H3 4-(MeO)C6H4  62 

b,n b  4-MeC6H4  4-(Acetyl)C6H4   79 

   d,e c 4-(MeO)C6H4 2-(MeO)C6H4 64 
    aYields of isolated products 

The yields of products 22a–c are in good range as compared to the yields of products 23a-c 

because there was no problem of site-selectivity. Inspection of the NMR spectra of the crude 

products 23a–c (before purification) shows that a small amount of mono-coupling and 

double-coupling product (containing two Ar1 groups) is present in most cases. We also 

believe that the chromatographic purification also has a great influence on the yield, due to 

some loss of material. For all reactions, only one chromatographic purification has to be 

carried out.  

 

2.2.3. Synthesis of fluorinated terphenyls by Suzuki- Miyura reactions of 1,2-dibromo-4-     

flourobenzene  

The S–M reaction of commercially available 1,2-dibromo-4-fluorobenzene 24 with two 

equivalents of arylboronic acids 17a,b,d,e,f,i afforded the monofluorinated meta-terphenyls 

25a–f in moderate to good yields (Scheme 12, Table 10). The best yields were obtained using 
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2.2 equivalents of the arylboronic acid, Pd(PPh3)4 (3 mol %) as the catalyst, and Cs2CO3 (2.2 

equiv) as the base (1,4-dioxane, 90 °C, 6-8 h). 

 

F

Br

F

Ar

  ArB(OH)2

24 25a-f

i

17a,b,d,e,f,i

Br Ar

 
Scheme 12. Synthesis of 25a–f. Conditions: (i) 24 (1.0 equiv), 17a,b,d,e,f,i (2.2 equiv), 

Cs2CO3 (2.2 equiv), Pd(PPh3)4 (3 mol %), 1,4-dioxane, 90 °C, 6–8 h 

   Table 10. Synthesis of 25a-f 

17 25 Ar Yields of 25(%)a 

a a  C6H5 55 

b b 4-MeC6H4 62 

d c 4-(MeO)C6H4 60 

e d  2-(MeO)C6H4 70 

f e  2,3-(MeO)2C6H3 45 

i f 4-(Vinyl)C6H4 48 
     aYields of isolated products 

 

2.3 Conclusion

The site-selective formation of 19a–b can be explained by steric and electronic reasons. The 

first attack of palladium(0)-catalyzed cross-coupling reactions generally occurs at the more 

electronic deficient and sterically less hindered position.62,63 Position 1 of 1,3-dibromo-4-

fluorobenzene (16) is sterically less hindered because it is located next to hydrogen atoms 

while position 3 is located next to a fluorine atom (Figure 9). In addition, position 1 (located 

para to the fluorine atom) is more electron deficient than position 3 (located ortho to the 

fluorine atoms), due to the pi-donating effect of the fluorine atom (Fig. 8). In fact, the 1H 

NMR signals of aromatic protons located ortho to a fluorine atom are generally shifted to 

higher field compared to the proton located in para position.  
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more sterically hindered
less electron-deficient

less sterically hindered
more electron-deficient

Br

16  

Figure 9. possible explanations for the site selectivity of cross coupling reactions of 16

Similarly, in case of 1,4-dibromo-2-fluorobenzene the first attack of palladium(0)-catalyzed 

cross-coupling reactions generally occurs at the more electronic deficient and sterically less 

hindered position.62,63 Position 4 of 1,4-dibromo-2-fluorobenzene (21) is sterically less 

hindered than position 1 because it is located next to hydrogen atoms while position 1 is 

sterically more hindered as it is located next to a fluorine atom (Figure 10). In addition, 

position 1 (located ortho to the fluorine atom) is less electron deficient than position 4 

(located meta to the fluorine atoms), due to the pi-donating effect of the fluorine atom. In fact, 

the 1H NMR signals of aromatic protons located ortho to a fluorine atom are generally shifted 

to higher field compared to the proton located in meta position. The site-selective Suzuki-

Miyaura reactions of 1,4-dibromo-2-fluorobenzene has already been studied which provide a 

convenient approach to fluorinated terphenyls and biaryls. 61 

 

 

Br
F

more sterically hindered
less electron-deficient

Br

21

less sterically hindered
more electron-deficient

 

Figure 10. Possible explanations for the site selectivity of cross coupling reactions of 21
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Chapter 3. Synthesis of mono- and difluorinated polyethynylbenzenes

 

3 Synthesis of fluorinated polyethynylbenzenes by Sonogashira reactions 

3.1 Introduction 

The Sonogashira coupling reactions of terminal acetylenes with aryl and vinyl halides 

provides a powerful method for synthesizing conjugated alkynes, an important class of 

molecules that have found applications in diverse areas ranging from natural product 

chemistry to materials science. In recent years, much attention has been dedicated to 

polyethynylated carbon rich molecules, because of their potential use as liquid crystals,64 non 

linear optical materials,65 light-harvesting materials,66 and building blocks for two-

dimensional carbon net works.67,68 In particular, D6h-symmetric hexaethynylbenzenes and 

related compounds have been used as core structures for dendritic materials,69 and functional 

dyes.70 Recently, hexaethynylbenzene derivatives have also been employed for constructing 

supramolecular architectures71 and reported as potential nonlinear optical materials for two-

photon absorption (TPA) and third-order optical nonlinearity.72 A variety of functionalized 

hexa(arylethynyl)benzenes have been synthesized by different groups up till now.73 The 

independent approaches to the differentially substituted hexaethynylbenzenes of C2v 

symmetry, based on the Diels�Alder reactions of tetraethynylcyclopentadienones, have 

already been reported.74 A method for the synthesis of hexaethynylbenzenes of D3h symmetry 

was also developed by Rubin.75 In recent years, Anthony reported the synthesis of a D2h 

symmetric hexaethynylbenzene from tetrabromobenzoquinone.76 

Due to the interesting physicochemical properties, hydrocarbons containing multiple alkenyl 

groups have received considerable attention as they are used as synthetic building blocks of 

new and interesting arenes, and also owing to their aesthetic attraction. For instance, 

Vollhardt and coworkers reported the synthesis and characterization of hexaethynylbenzenes 

and its applications to the first synthesis of archemedanes containing benzene and cyclobutane 

moieties.77 In contrast to the general hydrocarbon counterparts, fluorinated multiple 

alkynylated arenes have not been yet reported. Fluorinated compounds constitute an important 

class of natural products and various synthetic drugs have come to the market and constitute 

approx. 20% all pharmaceuticals,78 with even higher figures for agrochemicals (up to 30%).79 

Some of the key drugs available in the market have been culminated with the strategic use of 

fluorine substitution in drug design. The synthesis of difluorotetraalkynylbenzenes A, B, C 
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and fluoropentaalkynylbenzenes D has, to the best my knowledge, not been reported to date 

(Scheme A). 
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 Scheme A. Molecules with multiple alkynyl groups 

 

In biological and material sciences, light emitting materials are mostly applied. Organic 

systems with a high degree of conjugation have significant applications in various fields, such 

as LC (liquid crystals), OLED (organic light emitting devices), FET (field effect transistors),  

3D-optical memory devices and photovoltaic cells.80 The extended �-systems often brings 

extraordinary electronic and optical changes to the compounds. These changes may result in 

liquid crystalline and fluorescence properties.81 In this chapter, I have synthesized and 

optimized the reaction conditions to achieve a convenient synthesis of Sonogashira products 

of monofluoro penta(arylethynyl)benzenes and 1,2-, 1,3-, 1,4-difluorotetra(aryl)benzenes and 

I have studied their UV-Vis and fluorescence properties. 

 

3.2  Results and Discussion 

As a part of my research project on the construction of extended �-electronic systems, I 

designed to develop an efficient synthesis of fluoropenta(arylethynyl)benzenes and 

difluorotetra(arylethynyl)benzene derivatives from polyhalogenated benzenes using the 

Sonogashira coupling reaction as the essential step. In this context, I report herein the efficient 

synthesis of polyethynyl-substituted aromatic compounds 34a-c and the same protocol was 

applied to the differentially substituted tetraarylethynylbenzenes, 28a-c, 30a-c, and 32a-d 

prepared from difluoroiodobenzenes by combination with 27a-f.

The Sonogashira reaction of 26, 29, 31, 32 with different substituted arylacetylenes 27a-f (6 

equiv) afforded the 1,2-difluoro-3,4,5,6-tetra(arylethynyl)benzenes 28a-c (Scheme 13, Table 
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11), 1,3-difluoro-3,4,5,6-tetra(arylethynyl)benzenes 30a-c (Scheme 14, Table 12), 1,4-

difluoro-2,3,5,6-tetra(arylethynyl)benzenes 32a-d (Scheme 15, Table 13), and 1-fluoro-

2,3,4,5-penta(arylethynyl)benzenes 34a-c (Scheme 16, Table 14), in 63-79% yields. During 

the optimization, Pd(PPh3)4 (10mol-%), Pd(OAc)2 (5 mol-% ) in the presence of PCy3 (10 mol-

%) were initially employed, but no satisfactory results were obtained. The progress of the 

reactions were monitored at temperatures of 80-100 °C, as higher temperatures increase the 

chance of removal of iodine. X-Phos (10 mol%) was found to be the best catalyst. Several 

solvents were tried, but several of them did not work well, while good yields were obtained 

when 1,4-dioxane was used. Almost all penta- and tetra-Sonogashira products were obtained 

in good to excellent yields. All structures were confirmed by spectroscopic analysis. 

3.2.1 Synthesis of 1,2-difluoro-3,4,5,6-tetra(arylethynyl)benzenes 

The Sonogashira reaction of 1,2-difluoro-3,4,5,6-tetraiodobenzene (26) with different 

substituted alkynes (27b,e,f) (6.0 equiv) afforded 1,2-difluoro-3,4,5,6 

tetra(arylethynyl)benzenes 28a-c (Scheme 13, Table 11) in 54-71% yield. 
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Scheme 13. Synthesis of 28a–c: (i) conditions and reagents: 26 (1.0 eq), 27b,e,f (6.0 eq), CuI 

(5 mol %), X-Phos (10 mol %), Pd(OAc)2 (5 mol %), 1,4-Dioxane (5mL), 100 °C, 12 h. 

 

             Table 11. Synthesis of 28a-c

27 28 Ar Yields (%)a 

b  a 3-MeC6H5 70  

e  b 4-(n-Pent)C6H4  71 

f  c  4-(n-Hept)C6H4  54 
   a Isolated yields 
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3.2.2 Synthesis of 1,3-difluoro-2,4,5,6-tetra(arylethynyl)benzenes 

The Sonogashira reaction of 29 with the substituted acetylenes 27a,d,e (6.0 equiv.) afforded 

the 1,3-difluoro-2,4,5,6-tetra(arylethynyl)benzene 30a-c (Scheme 14, Table 12) in 75-83 % 

yield. 
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Scheme 14. Synthesis of 30a-c: (i) conditions and reagents: 29(1.0 eq), 27a,d,e (6.0 eq), CuI 

(5 mol %), X-Phos (10 mol %), Pd(OAc)2 (5 mol %), 1,4-dioxane (5mL) , 100°C, 12 h. 

 

        Table 12. Synthesis of 30a-c 

27 30 Ar Yields (%)a 

a a C6H4 81 

d b 4-(n-Bu)C6H4 83 

e c 4-(n-Pent)C6H4 75 
                           aIsolated yields 

3.2.3 Synthesis of 1,4-Difluoro-3,4,5,6-tetra(arylethynyl)benzenes 

The Sonogashira reaction of 31 with the substituted acetylenes 27b,c,d,e (6.0 equiv.) afforded 

the 1,4-difluoro-2,3,5,6-tetra(arylethynyl)benzenes 32a-d (Scheme 15, Table 13) in 80-86 % 

yields. 
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Scheme 15. Synthesis of 32a-d: (i) conditions and reagents: 31 (1.0 eq), 27b,c,d,e (6.0 eq), 

CuI (5 mol %), X-Phos (10 mol %), Pd(OAc)2 (5 mol %), 1,4-dioxane (5mL) , 100°C, 12 h. 

 

Table 13. Synthesis of 32a-d 

27 32 Ar Yields (%)a 

b a 4-MeC6H4  85 

c b 4-(n-Pr)C6H4 86 

d c 4-(n-Bu)C6H4 83 

e d 4-(n-Pent)C6H4 80 
 a Isolated yields 

 
Fig  11: Molecular structure of 32d 
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3.2.4 Synthesis of 1-fluoro-2,3,4,5,6-penta(arylethynyl)benzenes 

The Sonogashira reactions of 33 with the substituted acetylenes 27c,e,f (6.0 equiv.) afforded 

the 1-fluoro-2,3,4,5,6-tetra(arylethynyl)benzenes 34a-c (Scheme 16, Table 14) in 63-79 % 

yields.
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Scheme 16. Synthesis of 34a-c: (i) conditions and reagents: 33 (1.0 eq), 27c,e,f (6.0 eq), CuI 

(5 mol %), X-Phos (10 mol %), Pd(OAc)2 (5 mol %), 1,4-dioxane (5mL) , 100°C, 12 h. 

 

Table 14. Synthesis of 34a-c 

27 34 Ar Yields (%) 

c a 4-(n-Pr)C6H4  74 

e b 4-(n-Pent)C6H4  79 

f c 4-(n-Hept)C6H4  63 
a Isolated yields 

 

3.3 The UV-vis and fluorescence properties of the products 

 

The electronic absorption and emission data for compounds 28a-c (Fig. 12-14), 30a-c (Fig. 

15-17), 32a-d (Fig. 18-21) and 34a-c (Fig. 22-24) are listed in Table 15. The spectra were 

recorded in DCM, typically in the concentration range of 10-5-10-6 M. Generally, two to three 

absorption bands were observed in the region 227-382 nm for all the compounds. The 

compounds 28a-c (Fig. 12,13,14) showed well resolved two bands, one at 233 nm for 

compound 28a and 229 nm for compounds 28b-c, all with a shoulder at 255 nm. The second 

band was observed for these compounds at 320-325 nm with a shoulder at 362-369 nm. The 

emission maxima were observed at 409 nm and 420 nm and the Stoke’s shifts calculated are 

99-95. The compounds 30a, 30c, 32a-b, d (Fig. 15, 17, 18, 19, 21) showed the absorptions at 

227-228 nm with absorption maxima at 305 nm, 314-316 nm. The same compounds 30a, 30c,
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32a-b,d showed emissions at 400, 410, 409,421 and 419 nm with Stoke’s shifts 95, 96, 96, 

104 and 103 nm, respectively. On the contrary, the compounds 30b (Fig. 16) and 32c (Fig. 

20) showed different absorptions as they have a less conjugated substitution pattern. The 

emission maxima were observed at 359 nm with a shoulder at 370 nm with Stoke’s shift at 98 

and 70. The compound 32c showed three bands at 258, 314 nm and 351 nm with shoulders at 

227, 301 nm and 333 nm respectively. The emission maxima were observed at 360 nm with a 

shoulder at 380 nm. The Stoke’s shift found in compound 32c is 102 nm. The compounds 

34a-c (Fig. 22-24) showed very good absorptions and emissions in the range of 227-380 nm 

and 430-440 nm. The compounds 34a showed two absorption bands, one at 227 nm and 

second band at 337 nm with a broad shoulder at 380 nm. While the emission maxima were 

found to be at 430 nm with Stoke’s shift 93. The compounds 34b-c showed two absorption 

bands at 228 nm and 337 nm with two shoulders at 260 nm, 259 nm and 378 nm, respectively, 

the emissions were recorded at 440 nm. 

          Table 15. Electronic absorption and emission properties

Products �abs[nm] �em[nm] Stokes Shift[nm] 

28a 233,255,320,362 409,421 99 

28b 229,255,325,369 420 95 

28c 229,255,325,368 420 95 

30a 228,255,305,345 400,409 95 

30b 251,260,280,300 359,370 98,70 

30c 228,262,314,355 410 96 

32a 228,313,378 409 96 

32b 228,317,382 410,421 104 

32c 227,258,301,314,333,351 360,380 102 

32d 227,316,381 419 103 

34a 227,337,380 430 93 

34b 228,260,337,378 440 103 

34c 228,259,337,378 440 103 

          Absorpion and emission measured in DCM (c = 10-5-10-6 M) 
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                               Figure 12. Absorption and emission spectra of compound 28a

 
                               Figure 13. Absorption and emission spectra of compound 28b
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     Figure 14. Absorption and emission spectra of compound 28c

Figure 15. Absorption and emission spectra of compound 30a
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Figure 16. Absorption and emission spectra of compound 30b 

Figure 17. Absorption and emission spectra of compound 30c
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  Figure 18. Absorption and emission spectra of compound 32a

Figure 19. Absorption and emission spectra of compound 32b 
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Figure 20. Absorption and emission spectra of compound 32c

      Figure 21. Absorption and emission spectra of compound 32d
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    Figure 22. Absorption and emission spectra of compound 34a

Figure 23. Absorption and emission spectra of compound 34b 
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 Figure 24. Absorption and emission spectra of compound 34c

3.4 Conclusion 

In conclusion, I have synthesized difluorotetra(arylethynyl)benzenes and 

monofluoropenta(arylethynyl)benzenes by Sonogashira coupling reactions in good to 

excellent yields. Sonogashira coupling reactions of tetraiodobenzenes and pentaiodobenzenes 

provided the corresponding products. All products showed excellent emission properties. 
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Chapter 4. Synthesis of mono- and difluorinated polyarylbenzenes

 

4 Synthesis of fluorinated polyarenes by Suzuki-Miyaura cross coupling reactions 

4.1 Introduction 

Due to major successes in the synthesis and biological properties of compounds containing 

fluorine atoms in medicinal chemistry, it may be predicted that day by day the demand of 

drugs containing fluorine as important constituent will continue to increase in the market. 

With the discovery of major advancements being carried out in asymmetric fluorination, there 

is now much further scope for the synthesis of targets containing a fluorine atom on a 

stereogenic centre. The electronic absorption and emission characteristics of the new 

functional materials were affected by the nature of the chromophore present. 

Electroluminescent materials containing differently substituted mono- and difluorinated 

molecules were synthesized and characterized by IR, NMR, UV-Vis and emission 

spectroscopic studies. A detailed introduction has been given earlier in chapter 2. Owing to 

the interesting physicochemical properties, use as synthetic building blocks and because of 

their aesthetic attraction, hydrocarbons bearing multiple phenyl groups have received 

considerable attention. 

4.2 Results and Discussion  

The present research project of my thesis is about the preparation of fluorinated penta and 

hexaphenyls. I developed an efficient synthesis of fluoropenta(aryl)benzenes and 

difluorotetra(aryl)benzenes from polyiodinated fluorobenzenes using the Suzuki-Miyaura 

protocol as an essential step. In this context, I studied the synthesis of polyphenyl-substituted 

aromatic compounds 35a-b and the same protocol was applied to different substituted 

tetra(aryl)benzenes 36a-c, 37a-d, and 38a-c prepared from difluorotetraiodobenzenes and 

monofluoropentaiodobenzenes by combination with arylboronic acids 17c,h,j,k,l,m. 

The Suzuki-Miyaura reaction of 26, 29, 31, 33 with different substituted arylboronic acids 

(17c,h,j,k,l,m) (6 equiv) afforded the 1,2-difluoro-3,4,5,6-tetra(aryl)benzenes 35a-b (Scheme 

17, Table 16), 1,3-difluoro-3,4,5,6-tetra(aryl)benzenes 36a-c (Scheme 18, Table 17), 1,4-

difluoro-2,3,5,6-tetra(aryl)benzenes 37a-d (Scheme 19, Table 18), and 1-fluoro-2,3,4,5-

penta(aryl)benzenes 38a-c in 58-73% yields (Scheme 20, Table 19).
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4.2.1 Synthesis of 1,2-difluoro-3,4,5,6-tetra(aryl)benzenes 

 

The Suzuki-Miyaura reaction of 1,2-difluoro-3,4,5,6-tetraiodobenzene 26 with substituted  

phenylboronic acids (17j,l) resulted in the formation of 35a-b (Scheme 17, Table 16) in good 

to excellent yields (76-82%). 
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Scheme 17. Synthesis of 35a-b: conditions and reagents: i) 26 (1.0 equiv), 17j,l (6.0 equiv), 

Pd(PPh3)4 (10 mol-%), Cs2CO3 (5 equiv), 1,4-dioxane (5 mL),  110°C, 30 h. 

 

 Table 16. Synthesis of 35a-b  

17 35 Ar Yields (%)a 

j a 3-ClC6H4 82 

l b 4-FC6H4 76 

 aIsolated yields 

4.2.2 Synthesis of 1,3-Difluoro-2,4,5,6-tetra(aryl)benzenes 

The Suzuki-Miyaura reaction of 1,3-difluoro-2,4,5,6-tetraiodobenzene (29) with substituted  

phenylboronic acids 17c,k,l resulted in the formation of 36a-c (Scheme 18, Table 17) in good 

to excellent yields (77-88%). 
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Scheme 18. Synthesis of 36a-c: conditions and reagents: i) 29 (1.0 equiv), 17c,k,l (6.0 equiv), 

Pd(PPh3)4 (10 mol-%), Cs2CO3 (5 equiv), 1,4-dioxane (5 mL), 110°C, 31 h 
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    Table 17. Synthesis of 36a-c

17 36 Ar Yields(%)a 

c a 3-MeC6H4 78 

k b 4-ClC6H4 88 

l c 4-FC6H4 77 

      aIsolated yields 

4.2.3 Synthesis of 1,4-Difluoro-2,3,5,6-tetra(aryl)benzenes 

The Suzuki-Miyaura reaction of 1,4-difluoro-2,3,5,6-tetraiodobenzenes 31 with substituted  

phenylboronic acids (17h,j,l,m) resulted in the formation of 37a-d (Scheme 19, Table 18) in 

good to excellent yields (68-95%). 
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Scheme 19. Synthesis of 37a-d: conditions and reagents: i) 31 (1.0 equiv), 17h,j,l,m (6.0 

equiv), Pd(PPh3)4 (10 mol-%), Cs2CO3 (5 equiv), 1,4-dioxane (5 mL),  90-100°C, 27 h. 

   Tabe 18. Synthesis of 37a-d 

17 37 Ar Yields (%)a 

h a 4-EtC6H4  95 

j b 3-ClC6H4  83 

l c 4-FC6H4 83 

m d 4-BrC6H4 68 
    aIsolated yields 

 

The X-ray measuments for the compound 37d (Fig. 25) have also been performed which 

confirmed the structure independently. The aryl substitutents in the crystal structure 37d were 

twisted out of plan. 
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Fig 25: Molecular structure of  37 d. 

4.2.4 Synthesis of 1-fluoro-2,3,4,5,6-penta(aryl)benzenes  

The Suzuki-Miyaura reaction of 1-fluoro-2,3,4,5,6-pentaiodobenzene (33) with substituted 

phenylboronic acids (17j,k,l) resulted in the formation of 38a-c (Scheme 20, Table 19) in 

good to excellent yields (58-73%). 
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Scheme 20. Synthesis of 38a-c: conditions and reagents: i) 33 (1.0 equiv), 17j,k,l (6.0 equiv), 

Pd(PPh3)4 (10 mol-%), Cs2CO3 (5equiv), 1,4-dioxane (5 mL),  110°C, 33 h. 

 

Table 19. Synthesis of 38a-c 

17 38 Ar Yields (%)a 

j a 3-ClC6H4  72 

k b 4-ClC6H4  58 

l c 4-FC6H4 73 
a Isolated yields 
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The X-ray measuments for compound 38b have also been performed which confirmed the 

structure independently (Figure 26). The aryl groups are again twisted out of plane. 

Figure 26. Ortep plot of 38b 

4.3 The UV-Vis and fluorescence properties of the products 

 

The electronic absorption and fluorescence-emission data for compounds 35a-b, 36b, 37a-d 

and 38b-c (Fig. 27-35) are listed in Table 20. The spectra were recorded in DCM, typically in 

the concentration range of 10-5-10-6 M. In general, one major absorption band with one or two 

shoulder bands was observed in all the compounds.The compound 35a and 35b (Fig. 27, 28) 

showed the absorption maxima at 227 nm whereas it showed a broader emission spectrum at 

360-380 nm with emission maxima at 370 nm having a Stoke’s shift of 143 nm. The 

compound 35b showed emission maxima at 360 nm with shoulders at 339, 390 and 410 nm 

with a Stoke’s shift of 133 nm. This unusual emission pattern is to be investigated, it might be 

due to the presence of the fluorine substituents. The compound 36b (Fig. 29) showed 

absorption band at 247 nm with a shoulder band at 227 nm and emission band at 360 nm. The 
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compounds 37a (Fig. 30) and 37b (Fig. 31) showed one absorption band at 248 nm and 228 

nm with one broad shoulder at 228 nm and 242 nm, respectively. The emission maxima in 

compound 37a was recorded at 380 nm with Stoke’s shift of 132 nm. Two emission maxima 

were observed for compound 37b at 310 nm and 371 nm with Stoke’s shifts of 182 and 129 

nm, repectively. Here the second emission maxima have two bands at 350 nm and 410 nm. 

The compound 37c (Fig. 32) showed an absorption band at 228 nm with two shoulders at 241 

nm and 270 nm. The same compound showed two emission maxima at 310 nm and 370 nm 

with Stoke’s shift of 182 and 142 nm. The emisssion maxima in compound 37d (Fig. 33) was 

recorded at 380 nm with a Stoke’s shift of 129 nm. The compounds 38b (Fig. 34) and 38c 

(Fig. 35) showed one absorption band at 228 nm and 227 nm, respectively. Compound 38b 

showed emission maxima at 400 nm with three shoulders at 361, 379, and 421 nm. The 

emission maximum of compound 38c was recorded at 370 nm. The Stoke’s shifts in these 

compound were found to be 172 and 143 nm, repectively. The emission spectra of compounds 

37b, 37c and 38b are unusual and supposed to be investigated in more detail in the future.  

 

          Table 20. Electronic absorption and fluorescence-emission properties

Products �abs[nm] 

 

�em [nm] 

 

Stoke’s Shift [nm] 

35a 227 360,370,380 143 

35b 227 339,360,390,410 133,183 

36b 228,247 360 113 

37a 228,248 380,400 132 

37b 228,242,290 310,350,371,410 182,143 

37c 228,241,270 310,370 182, 142 

37d 228,251,290 359,380 129 

38b 228 361,379,400,421 172 

38c 227 349,370,381 143 

          Absorpion and fluorescence measured in DCM (c = 10-5-10-6 M) 
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Figure 27. Absorption and emission spectra of compound 35a.  

 
Figure 28. Absorption and emission spectra of compound 35b.   
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 Figure 29. Absorption and emission spectra of compound 36b.  

 
                Figure 30. Absorption and emission spectra of compound 37a.  
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         Figure 31. Absorption and emission spectra of compound 37b.

                                 Figure 32. Absorption and emission spectra of compound 37c.
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Figure 33. Absorption and emission spectra of compound 37d. 

Figure 34. Absorption and emission spectra of compound 38b. 
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Figure 35. Absorption and emission spectra of compound 38c.

 

4.4 Conclusion 

In conclusion, I have synthesized difluorotetra(aryl)benzenes and 

monofluoropenta(aryl)benzenes by Suzuki–Miyaura (S–M) reactions in good to high yields. 

Suzuki–Miyaura (S–M) reactions of tetraiodobenzenes and pentaiodobenzenes provided the 

corresponding products. All products showed good absorption and fluorescence properties.  
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6 Abstract 

The formal inverse electron demand Diels-Alder reactions of amines with 1,3,5-triazine and 

2,4,6-tris(trifluoromethyl)-1,3,5-triazine provided functionalized purines and bi-purines. The 

effect of the subtituents on the product distribution was studied. Suzuki-Miyaura cross 

coupling reactions of different substituted mono-fluorobenzenes with different arylboronic 

acids afforded fluoro-substituted terphenyls with excellent site-selectivity. The first attack 

occurred at the more electronically deficient and sterically less hindered positions. 

Sonogashira and Suzuki-Miyaura coupling reactions of 1,2-difluoro-, 1,3-difluoro-, and 1,4-

difluoro-tetraiodobenzenes and of fluoro-pentaiodobenzene afforded  tetra- and penta-

alkynylated and arylated benzene derivatives. The fluorescence properties of benzene 

derivatives were studied.  

 

Die Diels-Alder-Reaktionen mit inversem Elektronenbedarf von Aminen mit 1,3,5-Triazin 

und 2,4,6-Tris(trifluoromethyl)-1,3,5-triazin lieferte funktionalisierte Purine und Bipurine. 

Die Wirkung der Substituenten auf die Produktverteilung wurde untersucht. Suzuki-Miyaura 

Kreuzkupplungen von unterschiedlich substituierten Mono-Fluorobenzenen mit 

verschiedenen Boronsäuren lieferte fluorsubstituierte Terphenyle mit hervorragender 

Seitenselektivität. Der erste Angriff fand an der elektronenärmeren und sterisch weniger 

gehinderten Position statt. Sonogashira und Suzuki-Miyaura Kupplungsreaktionen von 1,2-

Difluoro-, 1,3-Difluoro- und 1,4-Difluorotetraiodobenzen sowie 1-Fluoropentaiodobenzen 

ergaben die entsprechenden 4-fach bzw. 5-fach alkinylierten bzw. arylierten Produkte. Die 

Fluoreszenzeigenschaften vieler Benzenderivate wurden untersucht. 
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General Scheme. Formal inverse electron demand Diels-Alder reactions and palladium(0)-

catalyzed reactions developed in this thesis. 
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6 Experimental Section 

6.1 General: Equipment, Chemicals and Work techniques 
1H NMR Spectroscopy:

Bruker: AM 250, Bruker ARX 300, Bruker ARX 500; � = 0.00 ppm for Tetramethylsilane; � 

= 7.26 ppm for (CDCl3); Characterization of the signal fragmen- tations: s = singlet, d = 

doublet, dd = double of doublet, t = triplet, q = quartet, m = multiplet, br = broadly. All 

coupling constants are indicated as (J). 2D NMR techniques (NOESY, COSY, HMQC, and 

HMBC) were used for the confirmation of structure. 

 
13C NMR Spectroscopy: 

Bruker: AM 250, (62.9 MHz); Bruker: ARX 300, (75 MHz), Bruker: ARX 500, (125 MHz) 

Ref: 29.84 ± 0.01 ppm and 206.26 ± 0.13 ppm � = 77.00 ppm for CDCl3. The multiplicity of 

the carbon atoms was determined by the DEPT 135 and APT technique (APT = Attached 

Proton Test) and quoted as CH3, CH2, CH and C for primary, secondary, tertiary and 

quaternary carbon atoms. Characterization of the signal fragmentations: quart = quartet the 

multiplicity of the signals was determined by the DEPT recording technology and/or the APT 

recording technology. 

 

Mass Spectroscopy: 

AMD MS40, Varian MAT CH 7, MAT 731 (EI, 70 eV), Intecta AMD 402 (EI, 70 eV and 

CI), Finnigan MAT 95 (CI, 200 eV).  

 

High Resolution mass spectroscopy:  

Finnigan MAT 95 or Varian MAT 311; Bruker FT 

CIR, AMD 402 (AMD Intectra). 

 

Infrared spectroscopy (IR):  

Bruker IFS 66 (FT IR), Nicolet 205 FT IR; Nicolet Protege 460, Nicolet 360 Smart 

Orbit  (ATR); KBr, KAP, Nujol, and ATR; Peaks are given following assignments: w = 

weak, m = medium, s = strong, br = broad. 
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Elemental Analysis

LECO CHNS-932, Thermoquest Flash EA 1112.  

 

X-ray crystal structure analysis:  

Crystallographic data were collected on a Bruker X8Apex, Diffractometer with CCD-Kamera 

(MoKa und Graphit Monochromator, = 0.71073 Å). The structures were solved by direct 

methods using SHELXS-97 and refined against F2 on all data by full matrix least-squares 

with SHELXL-97. 

 

Melting points:  

Micro heating table HMK 67/1825 Kuestner (Büchi apparatus). 

Column chromatography:  

Chromatography was performed over Merck silica gel 60 (0,063 -0,200 mm, 70 - 230 mesh) 

as normal and/or over mesh silica gel 60 (0,040 - 0,063 mm, 200 -400 mesh) as Flash 

Chromatography. All solvent were distilled before use. 

 

Thin Layer Chromatography (TLC):

Merck DC finished foils silica gel 60 F254 on aluminum foil and Macherey finished 

foils Alugram® Sil G/UV254. Detection under UV light with 254 nm and/or 366 nm without 

dipping reagent, as well as with anisaldehyde sulfuric acid reagent (1 mL anisaldehyde 

consisting in 100 mL stock solution of 85% methanol, 14% acetic acid and 1% sulfuric acid). 

 

6.2 Synthesis of Purines by Formal Inverse Electron demand Diels-Alder reaction 

General Procedure for the Synthesis of Purines 6, 8-15. 

To a Schlenk flask, set with reflux, CH2Cl2 (2.5 mL), primary amine 2 (0.00345 mol), and 

methyl N-(cyanomethyl)-formimidate 1 (0.338 g, 0.00345 mol) were added under an argon 

atmosphere at r.t. The reaction mixture was kept under reflux and after that, the mixture was 

cooled down to r.t., and then to 0°C using an ice bath. Afterwards, the corresponding trazine 

(0.00345 mol) was added, and the mixture continued to stir at the same temperature for 15–20 

min and was then refluxed. After the product formation is completed, the solvent was 

evaporated to dryness and the residue was purified by column chromatography (EtOAc) to 

give purines. In case of all aromatic and heteroaromatic amines, after the addition of triazine 
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at 0°C, a catalytic amount of TMSOTf (about 3 drops) was added. For the synthesis of purines 

6, a 20% excess of 4 was generated. 

 

9-tert-Butyl-9H-purine (6a): starting with tert-butyl amine 2 (252 mg, 3.45 mmol), 1 (279 

mg, 3.45 mmoles), 5 (280 mg, 3.45 mmoles) and CH2Cl2 (2.5 ml), 6a was 

isolated as white solid (224 mg, 37%). Mp 114-116 0C. 1H NMR (300 MHz, 

CDCl3): � = 1.80 (s, 9H, 3CH3), 8.14 (s, 1H, CH), 8.92 (s, 1H, CH), 9.09 (s, 

1H, NCHN). 13C NMR (62.9 MHz, CDCl3): � = 28.91 (3CH3), 57.8 (C), 135.2 (C), 142.9 (C), 

148.6 (C), 151.5 (C), 151.6 (NCHN). IR (ATR, cm-1): ~�  = 3268 (w), 3102 (w), 3075 (w), 

3034 (w), 2976 (w), 2915 (w), 1867 (w), 1731 (w), 1681 (w), 1593 (m), 1568 (m), 1519 (w), 

1492 (m), 1463 (w), 1398 (m), 1362 (m), 1344 (m), 1298 (m), 1253 (m), 1225 (m), 1179 (m), 

1105 (m), 1031 (w), 961 (w), 911 (m), 841 (w), 792 (m), 641 (m), 621 (m), 549 (m) cm-1. MS 

(GC, 70eV): m/z (%) = 176 (49) [M]+, 121 (100), 120 (39), 93 (11), 41 (11). HRMS (EI) 

calcd. for C9H12N4 [M]+: 176.10565; found 176.105568. 

 

9-(4-Methoxybenzyl)-9H-purine (6b): starting with 4-methoxybenzyl amine 2 (473 mg, 3.45 

mmol), 1 (279 mg, 3.45 mmoles), 5 (280 mg, 3.45 mmoles) and 

CH2Cl2 (2.5 ml), 6b was isolated as white solid (648 mg, 27%). Mp 

86-88 0C: 1H NMR (300 MHz, CDCl3): � = 3.72 (s, 3H, CH3), 5.31  

(s, 2H, CH2), 6.80-6.83 (d, 2H,  J = 8.6 Hz, 2CHAr), 7.20-7.22 (d,  J 

= 8.6 Hz, 2H, 2CHAr), 7.97(s, 1H, CH), 8.95 (s, 1H, CH), 9.07 (s, 1H, NCHN). 13C NMR 

(75.4 MHz, CDCl3): � = 46.8 (CH3), 55.3 (CH2), 114.5 (CHAr), 126.9 (C), 129.5 (CHAr), 134.0 

(C), 144.9 (C), 148.6 (CH), 151.3 (C), 152.7 (CH), 159.8 (NCHN). IR (ATR, cm-1): ~�  = 2993 

(w), 2953 (w), 2833 (w), 1900 (w), 1655 (m), 1613 (m), 1577 (s), 1513 (s),1452 (m), 1438 

(m), 1410 (m), 1374 (w), 1338 (m), 1302 (s), 1240 (s), 1175 (s), 1158 (s), 1103 (m), 1028 (s), 

985 (w), 933 (m), 895 (m), 823 (m), 789 (s), 763 (s), 704 (m), 646 (s), 566 (s). MS (GC, 

70eV): m/z (%) = 240 (80) [M]+, 225 (10), 121 (100), 78 (12). HRMS (EI) calcd. for 

C13H12ON4 [M]+: 240.10056; found 240.100832. 
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9-(2-Chlorobenzyl)-9H-purine (6c): starting with 2-chlorobenzyl amine 2 (486 mg, 3.45 

mmol), 1 (279 mg, 3.45 mmoles), 5 (280 mg, 3.45 mmoles) and CH2Cl2 

(2.5 ml), 6c was isolated as white solid (105 mg, 43%). Mp 102-104 0C. 
1H NMR (300 MHz, CDCl3): � = 5.37 (s, 2H, CH2),  7.02-7.25 (m, 4H, 

4CHAr), 7.97 (s, 1H, CH), 8.81 (s, 1H, CH), 8.95 (s, 1H, NCHN). 13C NMR (62.9 MHz, 

CDCl3):  � = 44.8 (CH2), 127.5 (CH), 130.0 (CH), 130.2 (CH), 130.5 (CH), 132.4 (C), 133.6 

(C), 133.8 (C), 145.2 (CH), 148.6 (CH), 151.4 (C), 152.8 (NCHN). IR (ATR, cm-1): ~�  = 3067 

(w), 2986 (w), 2919 (w), 1657 (w), 1592 (m), 1580 (m), 1496 (m), 1427 (m), 1348 (m), 1340 

(m), 1244 (w), 1162 (m), 1095 (w), 1039 (m), 943 (w), 896 (m), 813 (w), 788 (m), 751 (s), 

690 (m), 635 (s), 556 (m). MS (GC, 70eV): m/z (%) = 244 (10) [M]+, 209 (100), 125 (12). 

HRMS (ESI) calcd. for C12H9ClN4 [M+H]+: 245.05885; found 245.05898. 

�

9-(2-Chlorophenethyl)-9H-purine (6d):� starting with 2-chlorophenethyl amine 2 (537 mg, 

3.45 mmol), 1 (279 mg, 3.45 mmoles), 5 (280 mg, 3.45 mmoles) and 

CH2Cl2 (2.5 ml), 6d was isolated as light yellow solid (104 mg, 40%). Mp 

130-132 0C. 1H NMR (300 MHz, CDCl3): � =  3.33 (t, J = 6.9 Hz, 2H, 

CH2), 4.57 (t,  J = 6.9 Hz, 2H, CH2), 6.95 (dd,  J = 6.0, 3.0 Hz, 1H, CHAr), 

7.04-7.10 (m, 1H, CHAr), 7.14-7.25 (m, 1H, CHAr), 7.35 (dd,  J = 9.0 Hz, 6.0 Hz, 1H, CHAr), 

7.69 (s, 1H, CH), 8.98 (s, 1H, CH), 9.11 (s, 1H, NCHN). 13C NMR (62.9 MHz, CDCl3): � = 

32.9 (CH2), 42.3 (CH2), 126.2 (CH), 127.8 (CH), 128.8 (CH), 130.0 (CH), 132.9 (C), 133.0 

(C), 136.6 (C), 144.2 (CH), 147.6 (CH), 150.3 (C), 151.6 (NCHN). IR (ATR, cm-1): ~�  = 

3080 (w), 3023 (w), 2928 (w), 1593 (w), 1578 (m), 1539 (w), 1497 (w), 1442 (w), 1408 (m), 

1363 (w), 1345 (m), 1302 (m), 1260 (w), 1226 (m), 1199 (m), 1151 (w), 1102 (m), 1094 (m), 

1050 (m), 1021 (w), 971 (w), 918 (w), 858 (w), 793 (m), 741 (m), 678 (m), 638 (m), 609 (w), 

546 (m). MS (GC, 70eV): m/z (%) = 258 (10) [M]+, 223 (100), 140 (11), 138 (33), 103 (10). 

HRMS (ESI) calcd. for C13H11ClN4 [M+H]+: 259.0745; found 259.0749. 

9-tert-Butyl-2,6-bis(trifluoromethyl)-9H-purine (8a): starting with tert-butyl amine 2 (537 

mg, 3.45 mmol), 1 (279 mg, 3.45 mmoles), 5 (590 mg, 3.45 mmoles) and 

CH2Cl2 (2.5 ml), 8a was isolated as light yellow solid (271 mg, 87%). Mp 

89-91 0C.  1H NMR (300 MHz, CDCl3): � = 1.88   (s, 9H, 3CH3), 8.48 (s, 

1H, NCHN). 13CNMR (300 MHz, CDCl3): � = 28.9 (3CH3), 59.6 (C), 119.5 

(q, J = 274.8 Hz, CCF3), 120.3 (q, J = 274.8 Hz, CCF3), 132.3 (C), 145.6 (q, J = 37.7 Hz, 

CCF3), 147.5 (C), 148.7 (q, J = 37.7 Hz, CCF3), 154.2 (NCHN). 19FNMR (300 MHz, CDCl3): 

N
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� = -68.6 (CF3), -66.0 (CF3). IR (ATR, cm-1): ~�  = 2983 (w), 2941 (w), 2879 (w), 1792 (w), 

1733 (w), 1667 (w), 1584 (w), 1485 (w), 1426 (w), 1397 (w), 1332 (w), 1284 (w), 1206 (w), 

1139 (m), 1077 (w), 1031 (w), 951 (w), 889 (w), 819 (w), 738 (w), 663 (m), 614 (w), 549 (w) 

cm-1. MS (GC, 70eV): m/z (%) = 312 (51) [M]+, 297 (11), 277 (18), 257 (100), 237 (47), 57 

(65), 56 (28). 41 (26). HRMS (EI) calcd. for C11H10F6N4[M]+: 312.08042,; found 312.080675. 

 

9-Allyl-2,6-bis(trifluoromethyl)-9H-purine (8b): starting with allyl amine 2 (196 mg, 3.45 

mmol), 1 (279 mg, 3.45 mmoles), 5 (590 mg, 3.45 mmoles) and CH2Cl2 

(2.5 ml), 8b was isolated as Colorless oil (201 mg, 68%). 1H NMR 

(300 MHz, CDCl3): � = 5.03 (d, J = 6.0 Hz,  2H, NCH2CHCH2), 5.34-5.44 

(m, 2H, NCH2CHCH2), 6.00-6.13 (m, 1H, NCH2CHCH2), 8.46 (s, 1H, 

NCHN). 13CNMR (75.4 MHz, CDCl3): � = 45.8 (CH2), 118.4 (q, J = 274.5 Hz, CCF3), 119.3 

(q, J = 274.5 Hz, CCF3),), 120.2 (2CH2), 129.0 (CH), 130.1 (C), 144.4 (q, J = 38.4 Hz, CCF3), 

148.9 (q, J = 38.4 Hz, CCF3), 148.0 (C), 153.1 (NCHN). 19FNMR (300 MHz, CDCl3): � = -

68.6 (CF3), -66.0 (CF3). IR (ATR, cm-1): ~�  = 3092 (w), 2996 (w), 2933 (w), 1748 (w), 1647 

(w), 1598 (w), 1504 (w), 1455 (w), 1403 (m), 1361 (w), 1304 (m), 1270 (s), 1219 (s), 1127 

(s), 1056 (w), 990 (w), 962 (m), 915 (w), 888 (m), 819 (w), 757 (w), 736 (m), 661 (s), 640 

(w), 549 (w) cm-1. MS (GC, 70eV): m/z (%) = 296 (100) [M]+, 295 (57), 277 (25), 276 (11), 

275 (19), 269 (16), 268 (10), 256 (11), 249 (11), 237 (13), 69 (16), 41 (14). HRMS (ESI) 

calcd. for C10H6F6N4[M+H]+: 297.0569; found 297.0573. 

 

2,6-Bis(trifluoromethyl)-9-heptyl-9H-purine (8c): starting with heptyl amine 2 (396 mg, 

3.45 mmol), 1 (279 mg, 3.45 mmoles), 5 (590 mg, 3.45 mmoles) and 

CH2Cl2 (2.5 ml), 8c was isolated as light yellow oil (241 mg, 68%). 
1HNMR (300 MHz, CDCl3): � = 0.86 (t, J = 6.7 Hz,  3H, CH3), 1.24-

1.36 (m, 8H, 4CH2), 1.92-2.02 (m, 8H, 4CH2), 4.40 (t, J = 6.9 Hz, 4H, 

CH2), 8.40 (s, 1H, NCHN). 13CNMR (75.4 MHz, CDCl3): � = 13.9 

(CH3), 22.4, 26.5, 28.5, 29.7, 31.5, 44.7 (CH2), 119.5 (q, J = 276.1 Hz, CCF3), 120.2 (q, J = 

276.2 Hz, CCF3), 131.1 (C), 145.5 (q, J = 38.0 Hz, CCF3), 149.5 (C), 149.7 (q, J = 38.1 Hz, 

CCF3), 154.2 (NCHN). 19FNMR (300 MHz, CDCl3): � = -68.5 (CF3), -66.0 (CF3). IR (ATR, 

cm-1): ~�  = 3089 (w), 2957 (w), 2860 (w), 1599 (w), 1505 (w), 1454 (w), 1404 (w), 1307 (m), 

1271 (m), 1218 (s), 1140 (s), 1100 (m), 956 (m), 888 (m), 819 (w), 736 (m), 658 (m), 577 (w) 

cm-1. MS (GC, 70eV): m/z (%) = 354 (100) [M]+, 353 (24), 335 (26), 334 (32), 326 (12), 325 

(12), 312 (17), 311 (43), 298 (15), 297 (41), 292 (10), 285 (13), 283 (57), 270(84), 269 (70), 
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257 (82), 256 (37), 250 (36), 249 (18), 237 (39), 69 (26), 55 (37), 41 (38), 29 (15). HRMS 

(ESI) calcd.for C14H16F6N4 [M+H]+: 355.13519; found 355.13492. 
 

9-Cyclopropyl-2,6-bis(trifluoromethyl)-9H-purine (8d): starting with cyclopropyl amine 2 

(96 mg, 3.45 mmol), 1 (279 mg, 3.45 mmoles), 5 (590 mg, 3.45 mmoles) 

and CH2Cl2 (2.5 ml), 8d was isolated as light white crystalline solid (245 

mg, 83%). Mp 86-88 0C. 1HNMR (300 MHz, CDCl3):  � = 1.23-1.36 (m, 

4H, 2CH2), 3.58-3.65 (m, 1H, CH), 8.41 (s, 1H, NCHN). 13CNMR (75.4 

MHz, CDCl3): � = 6.2 (2CH2), 26.1 (CH), 119.5 (q, J = 277.0 Hz, CCF3), 

120.2 (q, J = 277.0 Hz, CCF3), 131.4 (C), 146.1 (q, J = 38.2 Hz, CCF3), 149.9 (q, J = 38.2 Hz, 

CCF3), 150.2 (C), 155.2 (NCHN). 19FNMR (300 MHz, CDCl3): � = -68.5 (CF3), -66.0 (CF3). 

IR (ATR, cm-1): ~�  = 3110 (w), 3078 (w), 1860 (w), 1598 (w), 1498 (w), 1450 (w), 1402 (m), 

1371 (w), 1330 (m), 1276 (s), 1225 (s), 1186 (s), 1131 (s), 1067 (s), 1034 (m), 958 (s), 933 

(m), 890 (m), 819 (m), 784 (w), 737 (s), 670 (m), 637 (s), 558 (w), 530 (w) cm-1. MS (GC, 

70eV): m/z (%) = 296 (100) [M]+, 295 (46), 277 (29), 276 (18), 275 (21), 269 (21), 268 (30), 

249 (21), 248 (24), 119 (10), 100 (10), 69 (28), 41 (12), 39 (12). HRMS (EI) calcd. for 

C10H5F6N4[M]+: 296.04912; found 296.049152. 

 

9-Cyclohexyl-2,6-bis(trifluoromethyl)-9H-purine (8e): starting with cyclohexyl amine 2 

(341 mg, 3.45 mmol), 1 (279 mg, 3.45 mmoles), 5 (590 mg, 3.45 

mmoles) and CH2Cl2 (2.5 ml), 8e was isolated as white solid (304 mg, 

90%). Mp 88-90 °C. 1H NMR (300 MHz, CDCl3): � = 1.32- 2.02 (m, 8H, 

4CH2), 2.20-2.25 (m, 2H, CH2), 4.62-4.70 (m, 1H, CH), 8.46 (s, 1H, 

NCHN). 13CNMR (300 MHz, Acetone-d6): � = 20.6 (CH2), 21.0 (2CH2), 

28.7 (2CH2), 51.4 (CH), 115.2 (q, J = 275.4 Hz, CCF3), 116.1 (q, J = 275.4 Hz, CCF3), 127.0 

(C), 140.9 (q, J = 37.4 Hz, CCF3), 143.5 (C), 145.0 (q, J = 37.4 Hz, CCF3), 149.4 (NCHN). 

19FNMR (300 MHz, CDCl3): � = -68.4 (CF3), -66.0 (CF3). IR (ATR, cm-1): ~�  =3097 (w), 

2957 (w), 2868 (w), 1597 (w), 1493 (w), 1450 (w), 1398 (w), 1350 (w), 1317 (w), 1280 (w), 

1221 (w), 1131 (w), 1028 (w), 952 (w), 889 (w), 819 (w), 761 (w), 714 (w), 659 (w), 581 (w), 

529 (w) cm-1. MS (GC, 70eV): m/z (%) = 338 (23) [M]+, 319 (10), 257 (100), 237 (28), 82 

(14), 67 (25). HRMS (ESI) calcd. for C13H11F6N4 [M+H]+: 339.10389; found 339.10372. 
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2-(2,6-Bis(trifluoromethyl)-9H-purin-9-yl)-N,N-dimethylethanamine (8f): starting with 

N,N-dimethylethanamine 2 (303 mg, 3.45 mmol), 1 (279 mg, 3.45 

mmoles), 5 (590 mg, 3.45 mmoles) and CH2Cl2 (2.5 ml), 8f was 

isolated as light yellow oil (232 mg, 71%). 1HNMR (300 MHz,  

CDCl3): � = 2.30 (s, 6H, 2CH3), 2.77 (t, J = 5.6 Hz, 4H, CH2), 4.47 

(t, J = 5.6 Hz, 2H, CH2), 8.61 (s, 1H, NCHN). 13CNMR (100.6 MHz, 

CDCl3): � = 41.2 (CH2), 44.0 (2CH3), 57.0 (CH2), 115.8 (q, J = 

276.7 Hz, CCF3), 116.6 (q, J = 276.6 Hz, CCF3), 129.9 (C), 143.9 (q, J = 38.2 Hz, CCF3), 

148.3 (q, J = 38.2 Hz, CCF3), 148.9 (C), 149.7 (NCHN). 19FNMR (300 MHz, CDCl3): � = -

68.5 (CF3), -65.9 (CF3). IR (ATR, cm-1): ~�  = 3090 (w), 2952 (w), 2866 (w), 2779 (w), 1598 

(w), 1505 (w), 1454 (w), 1403 (w), 1301 (m), 1271 (s), 1217 (s), 1132 (m), 1059 (m), 971 

(m), 929 (m), 888 (s), 818 (m), 736 (s), 655 (s), 575 (w) cm-1. MS (GC, 70eV): m/z (%) = 327 

(10) [M]+, 71 (14), 59 (100), 42 (10). HRMS (ESI) calcd. for C11H11F6N5 [M+H]+: 328.09914; 

found 328.09995. 

 

2-(2,6-Bis(trifluoromethyl)-9H-purin-9-yl)-N,N-diethylethanamine (8g): starting with 

N,N-diethylethanamine 2 (400 mg, 3.45 mmol), 1 (279 mg, 3.45 

mmoles), 5 (590 mg, 3.45 mmoles) and CH2Cl2 (2.5 ml), 8g was 

isolated as yellow oil (320 mg, 90%). 1H NMR (300 MHz, DMSO):  � = 

0.75 (t, J = 6.9 Hz, 6H, 2CH3), 2.41-2.51 (m, 4H, 2NCH2CH3), 2.82 (t, 

J = 5.9 Hz, 2H, NCH2CH3N), 4.46 (t, J = 5.9 Hz, 2H, NCH2CH3N), 

9.09 (s, 1H, NCHN). 13CNMR (75.4 MHz, DMSO): � = 11.5 (2CH3), 42.4 (NCH2CH3N), 

46.1 (CH2NCH2), 51.0 (NCH2CH2N), 119.5 (q, J = 275.0 Hz, CCF3), 120.3 (q, J = 275.0 Hz, 

CCF3), 131.0 (C), 142.4 (q, J = 37.1 Hz, CCF3), 147.3 (q, J = 37.1 Hz, CCF3), 153.1 (C), 

154.7 (NCHN). 19FNMR (300 MHz, DMSO): � = -67.4(CF3), -64.9 (CF3). IR (ATR, cm-1): ~�  

=2973 (w), 2939 (w), 2819 (w), 1598 (w), 1598 (w), 1505 (m), 1452 (m), 1403 (m), 1363 (w), 

1301 (m), 1269 (s), 1201 (s), 1134 (s), 1068 (m), 1010 (w), 965 (m), 933 (m), 888 (s), 818 

(w), 736 (m), 678 (w), 638 (s), 573 (w) cm-1. MS (GC, 70eV): m/z (%) = 355 (10) [M]+, 340 

(10), 86 (100). HRMS (ESI) calcd. for C13H16F6N5[M+H]+: 356.13044; found 356.13129. 
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2,6-Bis(trifluoromethyl)-9-(3-morpholinopropyl)-9H-purine (8h): starting with 3-

morpholinopropan-1-amine 2 (497 mg, 3.45 mmol), 1 (279 mg, 

3.45 mmoles), 5 (590 mg, 3.45 mmoles) and CH2Cl2 (2.5 ml), 8i 

was isolated as yellow oil (345 mg, 90%). 1H NMR (300 MHz, 

CDCl3): � = 2.07- 2.16 (p, 2H, CH2CHCH2), 2.30-237 (m, 6H, 

3CH2), 3.62 (t, J = 4.7 Hz, 4H, CH2CHCH2), 4.52 (t, J = 6.4 Hz, 

2H, CH2), 8.46 (s, 1H, NCHN). 13C NMR (62.9 MHz, CDCl3):  � = 

26.1 (CH2), 43.7 (CH2), 54.2 (2CH2), 56.1 (CH2), 67.2 (2CH2), 120.9 (q, J = 274.8 Hz, CCF3), 

121.5 (q, J = 274.8 Hz, CCF3),  132.7 (C), 144.4 (q, 2J = 41.02 Hz, CCF3 ), 149.2 (q, J = 

41.02 Hz, CCF3), 153.3 (C), 156.1 (NCHN). 19FNMR (300 MHz, CDCl3): -68.5 (CF3), -66.0 

(CF3). IR (ATR, cm-1): ~�  = 3090 (w), 2958 (w), 2894 (w), 2817 (w), 1599 (w), 1506 (w), 

1450 (w), 1404 (w), 1358 (w), 1306 (m), 1273 (m), 1219 (m), 1132 (s), 1068 (m), 1005 (w), 

953 (m), 888 (m), 817 (w), 736 (m), 657 (m), 574 (w) cm-1. MS (GC, 70eV): m/z (%) = 383 

(11) [M]+, 340 (13), 100 (100), 56 (12). HRMS (EI) calcd. for C14H15F6N5O [M]+: 383.11753; 

found 383.118385.

 

2,6-Bis(trifluoromethyl)-9-(4-methylpiperazin-1-yl)-9H-purine (8i): starting with 4-

methylpiperazin-1-amine 2 (397 mg, 3.45 mmol), 1 (279 mg, 3.45 

mmoles), 5 (590 mg, 3.45 mmoles) and CH2Cl2 (2.5 ml), 8j was isolated 

as white crystalline solid (258 mg, 73%). Mp 174-176 0C. 1HNMR   

(300 MHz, DMSO): � = 2.29 (s, 3H, CH3), 2.51 (t, J = 61.8 Hz, 4H, 

2CH2), 3.50 (s, 4H, 2CH2), 9.37 (s, 1H, NCHN). 13CNMR (100.6 MHz, 

Acetone-d6): � = 45.9 (CH3), 55.0 (2CH2), 55.6 (2CH2), 118.0 (q, J = 275.1 Hz, CCF3), 118.8 

(q, J = 275.1 Hz, CCF3), 131.6 (C), 145.1 (q, J = 73.2 Hz, CCF3), 148.8 (q, J = 37.2 Hz, 

CCF3), 152.2 (C), 154.6 (NCHN). 19FNMR (300 MHz, CDCl3): � = -67.1 (CF3), -64.7 (CF3). 

IR (ATR, cm-1): ~�  = 3119 (w), 2941 (w), 2858 (w), 2809 (w), 1589 (w), 1484 (w), 1421 (w), 

1337 (w), 1298 (w), 1232 (w), 1140 (w), 1086 (w), 1009 (w), 949 (w), 898 (w), 818 (w), 744 

(w), 659 (w), 608 (w), 551 (w) cm-1. MS (GC, 70eV): m/z (%) = 354 (14) [M]+, 99 (100), 98 

(16), 70 (14), 69 (12), 56 (35), 42 (20). HRMS (EI) calcd. for C12H12F6N6 [M]+: 354.10222; 

found 354.102311. 
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9-Benzyl-2,6-bis(trifluoromethyl)-9H-purine (8j): starting with benzylamine 2 (369 mg, 

3.45 mmol), 1 (279 mg, 3.45 mmoles), 5 (590 mg, 3.45 mmoles) and 

CH2Cl2 (2.5 ml), 8k was isolated as white crystalline solid (259 mg, 

75%). Mp, 116-118 0C. 1H NMR (300 MHz, CDCl3): � =  5.55 (s, 2H, 

CH2), 7.38-7.40 (m, 5H, CHAr), 8.37 (s, 1H, NCHN). 13CNMR (75.4 

MHz, CDCl3): � = 48.3 (CH2), 119.5 (q, J = 276.5 Hz, CCF3), 120.2 

(q, J = 276.5 Hz, CCF3),), 128.3 (2CH), 129.3 (CH), 129.5 (2CH), 131.1 (C), 133.6 (C), 145.7 

(q, J = 38.9 Hz, CCF3), 149.3 (C), 150.0 (q, J = 38.9 Hz, CCF3), 154.1 (NCHN). 19FNMR 

(300 MHz, CDCl3): � = -68.5 (CF3), -65.9 (CF3). IR (ATR, cm-1): ~�  = 3087 (w), 3043 (w), 

2991 (w), 2917 (w), 2873 (w), 1600 (w), 1553 (w), 1502 (w), 1452 (w), 1398 (w), 1349 (w), 

1299 (w), 1268 (m), 1203 (m), 1132 (s), 1075 (m), 1003 (w), 965 (m), 923 (w), 888 (m), 818 

(w), 729 (s), 657 (m), 599 (w), 545 (w) cm-1. MS (GC, 70eV): m/z (%) = 346 (100) [M]+, 345 

(47), 327 (16), 326 (25), 91 (98), 65 (14). HRMS (EI) calcd. for C14H8F6N4[M]+: 346.06477; 

found 346.064317.21. 

 

2,6-Bis(trifluoromethyl)-9-((S)-1-phenylethyl)-9H-purine (8k): starting with (S)-1-

phenylethanamine 2 (414 mg, 3.45 mmol), 1 (279 mg, 3.45 mmoles), 

5 (590 mg, 3.45 mmoles) and CH2Cl2 (2.5 ml), 8l was isolated as 

yellow oil (270 mg, 75%). 1HNMR (300 MHz, CDCl3): � = 2.03 (d, J 

=  7.5 Hz, 3H, CH3), 6.06 (q, J = 7.5 Hz, 1H, CH), 7.31-7.36 (m, 5H, 

CHAr), 8.33 (s, 1H, NCHN). 13CNMR (75.4MHz, CDCl3): � = 19.2 

(CH3), 54.5 (CH), 118.5 (q, J = 276.0 Hz, CCF3), 119.2 (q, J = 276.0 Hz, CCF3), 125.8 

(2CHAr), 128.1 (C), 128.3 (2CHAr), 130.3 (CHAr), 137.0 (CHAr), 144.5 (q, J = 38.4 Hz, CCF3), 

147.0 (C), 148.1 (q, J = 38.4 Hz, CCF3), 152.2 (NCHN). 19FNMR (300 MHz, CDCl3): � = -

68.5 (CF3), -65.9 (CF3). IR (ATR, cm-1): ~�  = 3112 (w), 3069 (w), 2989 (w), 2943 (w), 1717 

(w), 1652 (w), 1595 (m), 1493 (m), 1453 (m), 1402 (m), 1315 (m),  1273 (s), 1218 (s), 1136 

(s), 1090 (s), 1028 (w), 990 (w), 945 (s), 888 (s), 818 (w), 761 (w), 724 (m), 700 (w), 658 (s), 

615 (w), 575 (w) cm-1. MS (GC, 70eV): m/z (%) = 360 (37) [M]+, 345 (13), 105 (100), 77 

(16). HRMS (ESI) calcd. for C15H10F6N4 [M+H]+: 361.08824; found 361.08796. 
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2,6-Bis(trifluoromethyl)-9-phenethyl-9H-purine (8l): starting with phenethyl amine 2 (417 

mg, 3.45 mmol), 1 (279 mg, 3.45 mmoles), 5 (590 mg, 3.45 mmoles) and 

CH2Cl2 (2.5 ml), 8m was isolated as white solid (245 mg, 68%). Mp 70-

72 0C.  1H NMR (300 MHz, CDCl3): � = 3.20   (t, J = 6.8 Hz, 2H, CH2), 

4.64 (t, J = 6.8 Hz. 2H, CH2), 7.08 (dd, J = 9.0, 6.0 Hz, 1H, CHAr), 7.18-

7.28 (m, 4H, 4CHAr), 7.95(s, 1H, NCHN). 13CNMR (300 MHz, CDCl3): 

� = 36.1 (CH2), 46.6 (CH2), 120.8 (q, J = 273.9 Hz, CCF3), 121.5 (q, J = 273.9 Hz, CCF3), 

127.7 (CH), 129.4 (2CH), 129.6 (2CH), 132.4 (C), 144.6 (q, J = 37.5 Hz, CCF3), 149.3 (q, J = 

37.5 Hz, CCF3), 155.7 (NCHN). 19FNMR (300 MHz, CDCl3): � = -68.5 (CF3), -65.9 (CF3). IR 

(ATR, cm-1): ~�  = 3130 (w), 3091 (w), 3032 (w), 2998 (w), 2946 (w), 2859 (w), 1984 (w), 

1955 (w), 1801 (w), 1739 (w), 1680 (w), 1599 (w), 1504 (w), 1452 (w), 1400 (w), 1357 (w), 

1302 (w), 1271 (m), 1208 (s), 1199 (s), 1168 (m), 1130 (s), 1080 (m), 1010 (m), 962 (m), 905 

(w), 886 (m), 817 (w), 766 (w), 723 (m), 676 (m), 640 (s), 586 (w), 546 (w) cm-1. MS (GC, 

70eV): m/z (%) = 360 (11) [M]+ 141 (10), 121 (100), 105 (10), 104 (100), 91 (27). HRMS 

(ESI) calcd. for C15H10N4F6 [M+H]+: 361.08824; found 361.08803. 

 

9-(2-Methoxyphenethyl)-2,6-bis(trifluoromethyl)-9H-purine (8m): starting with 2-

methoxyphenethyl amine 2 (524 mg, 3.45 mmol), 1 (279 mg, 3.45 

mmoles), 5 (590 mg, 3.45 mmoles) and CH2Cl2 (2.5 ml), 8n was isolated 

as white crystalline solid (301 mg, 77%). Mp 124-126 0C. 1HNMR   

(300 MHz, CDCl3): � = 3.19 (t, J = 6.4 Hz, 2H, NCH2CH2), 3.62 (s, 3H, 

CH3), 4.65 (t, J = 6.5 Hz, 2H, NCH2CH2), 6.75-6.88 (m, 3H, 3CHAr), 7.16-

7.21 (m, 1H, CHAr), 7.98 (s, 1H, NCHN). 13CNMR (75.4 MHz, CDCl3): � = 31.2 (OCH3), 

44.8 (NCH2CH2), 55.0 (NCH2CH2), 110.5 (C), 119.5 (q, J = 273.6 Hz, CCF3), 120.3 (q, J = 

273.6 Hz, CCF3), 120.9 (C), 124.6 (CH), 129.2 (CH), 130.6 (CH), 130.9 (CH), 145.1 (q, J = 

36.0 Hz, CCF3), 149.6 (q, J = 36.0 Hz, CCF3), 149.9 (C), 154.5 (C), 157.3 (NCHN). 19FNMR 

(300 MHz, CDCl3): � = -68.5(CF3), -65.9 (CF3). IR (ATR, cm-1): ~�  = 3068 (w), 2975 (w), 

2841 (w), 1791 (w), 1717 (w), 1673 (w), 1601 (w), 1509 (w), 1455 (w), 1403 (w), 1369 (w), 

1303 (w), 1265 (m), 1209 (m), 1167 (m), 1120 (m), 1053 (w), 1018 (w), 959 (w), 912 (w), 

858 (w), 803 (w), 757 (m), 686 (w), 636 (m), 577 (w) cm-1. MS (GC, 70eV): m/z (%) = 392 

(10), 390 (16) [M]+, 371 (14), 135 (12), 134 (100), 121 (15), 119 (58), 91 (62), 62 (10). 

HRMS (ESI) calcd. for C16H9F6N4O[M+H]+ 391.09881; found 391.0995. 
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9-(3,4-Dimethoxyphenethyl)-2,6-bis(trifluoromethyl)-9H-purine (8n): starting with 3,4-

dimethoxyphenethyl amine 2 (624 mg, 3.45 mmol), 1 (279 mg, 3.45 

mmoles), 5 (590 mg, 3.45 mmoles) and CH2Cl2 (2.5 ml), 8o was 

isolated as white solid (391 mg, 93%). Mp 145-147 0C. 1HNMR 

(300 MHz,  CDCl3): � = 3.14 (t, J = 6.9 Hz, 2H, CH2), 3.76 (s, 3H, 

CH3), 3.81 (s, 3H, CH3), 4.63 (t, J = 6.9 Hz, 2H, CH2), 6.50-6.52 (m, 

2H, 2CHAr), 6.72 (d, J = 8.7 Hz, 1H, CHAr), 8.00 (s, 1H, NCHN). 
13CNMR (75.4 MHz, CDCl3): � = 35.6 (OCH3), 46.2 (OCH3), 55.8 (CH2), 111.5 (CH), 119.2 

(q, J = 276.0 Hz, CCF3), 119.8 (q, J = 276.0 Hz, CCF3), 120.8 (CH), 128.5 (CH), 130.9 (C), 

145.4 (q, J = 38.8 Hz, CCF3), 148.4 (C), 149.5 (q, J = 38.4 Hz, CCF3), 148.4 (C), 149.4 (C), 

14.6 (C), 154.0 (NCHN). 19FNMR (300 MHz, CDCl3): � = -68.5 (CF3), -65.9 (CF3). IR (ATR, 

cm-1): ~�  = 3113 (w), 3089 (w), 3006 (w), 2948 (w), 2849 (w), 1597 (w), 1514 (w), 1469 (w), 

1404 (w), 1367 (w), 1307 (w), 1252 (w), 1224 (m), 1190 (w), 1131 (m), 1021 (w), 959 (w), 

889 (s), 856 (w), 818 (w), 777 (w), 735 (w), 697 (w), 657 (w), 625 (w), 599 (w), 537 (w) cm-

1. MS (GC, 70eV): m/z (%) = 420 (23) [M]+, 165 (11), 164 (100), 151 (32), 149 (15).  HRMS 

(ESI) calcd. for C17H14F6N4O2 [M+H]+: 421.10937; found 421.10979. 

 

2,6-Bis(trifluoromethyl)-9-((pyridin-4-yl)methyl)-9H-purine (8o): starting with pyridine-4-

ylmethanamine 2 (324 mg, 3.45 mmol), 1 (279 mg, 3.45 mmoles), 5 

(590 mg, 3.45 mmoles) and CH2Cl2 (2.5 ml), 8p was isolated as white 

crystalline solid (323 mg, 93%). Mp 126-128 0C. 1HNMR   (300 MHz, 

CDCl3): � = 5.58 (s, 2H, CH2), 7.20 (d, J = 6.1 Hz, 2H, 2CHAr), 8.44 

(s, 1H, NCHN), 8.63 (d, J = 6.1 Hz, 2H, 2CHAr). 13CNMR 

(100.6MHz, Acetone-d6): � = 47.3 (CH2), 120.7 (q, J = 275.1 Hz, CCF3), 121.5(q, J = 275.1 

Hz, CCF3), 123.2 (C), 145.0 (q, J = 37.6 Hz, CCF3), 144.9 (C), 149.7 (q, J = 37.6 Hz, CCF3), 

151.4 (C), 153.1 (C), 156.0 (NCHN). 19FNMR (300 MHz, CDCl3): � = -68.6 (CF3), -65.9 

(CF3). IR (ATR, cm-1): ~�  = 3087 (w), 3043 (w), 2983 (w), 1599 (w), 1505 (w), 1455 (w), 

1416 (w), 1368 (w), 1307 (m), 1271 (m), 1230 (w), 1199 (m), 1120 (m), 1067 (w), 977 (m), 

942 (w), 890 (m), 818 (w), 794 (m), 734 (w), 695 (m), 658 (m), 639 (m), 568 (w) cm-1. MS 

(GC, 70eV): m/z (%) = 347 (100) [M]+, 346 (57), 328 (22), 327 (22), 326 (41), 307 (15), 278 

(26), 183 (12), 92 (26), 69 (11), 65 (17). HRMS (ESI) calcd. for C13H7F6N5[M+H]+: 

348.06784; found 348.06797. 
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2,6-Bis(trifluoromethyl)-9-(3-methoxyphenyl)-9H-purine (9a): starting with 3-

methoxyphenylmine 2 (424 mg, 3.45 mmol), 1 (279 mg, 3.45 

mmoles), 5 (590 mg, 3.45 mmoles) and CH2Cl2 (2.5 ml), 9a was 

isolated as white solid (253 mg, 70%). Mp 145-147 0C. 1HNMR 

(300 MHz, CDCl3): � = 3.90 (s, 3H, OCH3), 7.06-7.09 (m, 1H, 

CHAr), 7.25-7.28 (m, 1H, CHAr), 7.32 (t, J = 2.2 Hz, 1H, CHAr), 7.53 

(t, J = 8.1 Hz, 1H, CHAr), 8.68 (s, 1H, NCHN). 13CNMR (75.4 MHz, CDCl3): � = 55.7 

(OCH3), 109.6 (CHAr), 115.0 (CHAr), 115.3 (CHAr), 119.4 (q, J = 276.4 Hz, CCF3), 120.1 (q, J 

= 276.4 Hz, CCF3), 131.1 (CHAr), 131.7 (C), 134.0 (C), 146.3 (q, J = 38.5 Hz, CCF3), 148.4 

(C), 150.3 (q, J = 38.5 Hz, CCF3), 153.6 (C), 160.9 (NCHN). 19FNMR (300 MHz, CDCl3): 

� = -68.6 (CF3), -65.9 (CF3). IR (ATR, cm-1): ~�  = 3119 (w), 3021 (w), 2952 (w), 2845 (w), 

1610 (w), 1555 (w), 1504 (w), 1450 (w), 1400 (w), 1335 (w), 1276 (w), 1212 (m), 1186 (w), 

1136 (m), 1051 (w), 995 (w), 949 (m), 890 (w), 836 (w), 775 (m), 738 (w), 683 (w), 637 (w), 

598 (w), 545 (w) cm-1. MS (GC, 70eV): m/z (%) = 362 (100) [M]+, 361 (25), 343 (11), 341 

(32), 332 (12), 331 (10), 313 (13), 312 (16). HRMS (EI) calcd. for C14H8F6N4[M]+: 

362.05968; found 362.058868. 

 

2,6-Bis(trifluoromethyl)-9-(3,4-dimethoxyphenyl)-9H-purine (9b): starting with 3,4-

dimethoxyphenyl amine 2 (528 mg, 3.45 mmol), 1 (279 mg, 3.45 

mmoles), 5 (590 mg, 3.45 mmoles) and CH2Cl2 (2.5 ml), 9b was 

isolated as white solid (282 mg, 72%). Mp 136-138 0C. 1HNMR 

(300 MHz, CDCl3):  � = 3.95 (s, 3H, OCH3), 3.96 (s, 3H, OCH3), 

7.03 (d, J = 8.3 Hz, 1H, CHAr), 7.18 (dd, J = 8.2 Hz, 8.6Hz, 1H, 

CHAr), 7.27 (d, 1H, J = 2.6 Hz, CHAr), 8.64 (s, 1H, NCHN). 13CNMR 

(62.9 MHz, CDCl3): � = 56.2 (2OCH3), 107.5 (CHAr), 111.6 (CHAr),115.9 (CHAr), 119.2 (q, J 

= 275.7 Hz, CCF3), 120.3 (q, J = 275.7 Hz, CCF3), 125.8 (C), 131.5 (C), 146.2 (q, J = 35.5 

Hz, CCF3), 148.7 (C), 150.0 (2C), 150.9 (q, J = 35.5 Hz, CCF3), 153.6 (NCHN). 19FNMR 

(300 MHz, CDCl3): � = -68.6 (CF3), -65.9 (CF3). IR (ATR, cm-1): ~�  = 3140 (w), 2961 (w), 

2840 (w), 1603 (w), 1523  (w), 1469 (w), 1403 (w), 1334 (w), 1276 (w), 1212 (m), 1176 (m), 

1141 (s), 1012 (m), 954 (m), 891 (w), 858 (m), 794 (m), 739 (m), 669 (w), 603 (w), 527 (w) 

cm-1. MS (GC, 70eV): m/z (%) = 392 (100) [M]+, 377 (16), 349 (21), 329 (24). HRMS (ESI) 

calcd. for C15H10F6N4O2[M+H]+: 393.07837; found 393.07837. 
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2,6-Bis(trifluoromethyl)-9-(3,5-dimethoxyphenyl)-9H-purine (9c): starting with 3,5-

dimethoxyphenyl amine 2 (528 mg, 3.45 mmol), 1 (279 mg, 3.45 

mmoles), 5 (590 mg, 3.45 mmoles) and CH2Cl2 (2.5 ml), 9c was 

isolated as white crystalline solid (305 mg, 78%) by column 

chromatography (heptane/EtOAc, 10:1); Mp 150-152 0C. 1HNMR   

(300 MHz, CDCl3): � = 3.86 (s, 6H, 2OCH3), 6.58 (t, J = 2.1Hz, 1H, 

CHAr), 6.87 (d, J = 2.8Hz, 2H, 2CHAr), 8.67 (s, 1H, NCHN). 13CNMR (75.4MHz, CDCl3): � 

= 55.7 (2OCH3), 100.9 (CHAr), 101.9 (2CHAr), 119.3 (q, J = 275.6Hz, CCF3), 120.1 (q, J = 

275.6Hz, CCF3), 131.7 (C), 134.4 (C), 146.3 (q, J = 38.1Hz, CCF3), 148.4 (C), 150.4 (q, J 

=38.1Hz, CCF3), 153.5 (NCHN), 161.8 (2C). 19FNMR (300 MHz, CDCl3): � = -68.6 (CF3), -

65.9 (CF3). IR (ATR, cm-1): ~�  = 3118 (w), 3024 (w), 2971 (w), 2845 (w), 1613  (w), 1585 

(w), 1503 (w), 1461 (w), 1404 (w), 1356 (m), 1275 (m), 1235 (w), 1137 (m), 1076 (m), 1024 

(w), 958 (m), 891 (w), 833 (m), 784 (w), 714 (w), 663 (w), 604 (w), 570 (w) cm-1. MS (GC, 

70eV): m/z (%) = 393 (40) [M]+, 392 (100), 391 (52), 373 (23), 371 (39), 362 (11), 361 (11), 

343 (46), 341 (28), 313 (10), 312 (12), 69 (11). HRMS (EI) calcd. for C15H10F6N4O2[M]+: 

392.07025; found 392.070024. 

 

2,6-Bis(trifluoromethyl)-9-(2,4-dimethoxyphenyl)-9H-purine (9d): starting with 2,4-

dimethoxyphenyl amine 2 (528 mg, 3.45 mmol), 1 (279 mg, 3.45 

mmoles), 5 (590 mg, 3.45 mmoles) and CH2Cl2 (2.5 ml), 9d was 

isolated as white solid (298 mg, 76%). 1HNMR (300 MHz, CDCl3):  � = 

3.79 (s, 3H, OCH3), 3.90 (s, 3H, OCH3), 6.66-6.70 (m, 2H, 2CHAr), 7.44 

(d, J = 9.1Hz, 1H, CHAr), 8.54 (s, 1H, NCHN). 13CNMR (100.6 MHz, 

CDCl3): � = 55.8 (OCH3), 55.9 (OCH3), 100.4 (CHAr), 105.1 

(CHAr),114.2 (C), 118.5 (q, J = 276.3 Hz, CCF3), 121.3 (q, J = 276.3 Hz, CCF3), 128.1 

(CHAr), 130.8 (C), 145.5 (q, J = 37.7 Hz, CCF3), 150.1 (q, J = 37.7 Hz, CCF3), 151.1 (C), 

154.6 (C),  162.1 (NCHN). 19FNMR (300 MHz, CDCl3): � = -68.5 (CF3), -65.9 (CF3). IR 

(ATR, cm-1): ~�  = 3079 (w), 2945 (w), 1595 (w), 1523 (w), 1453 (w), 1403 (w), 1342 (w), 

1304 (w), 1237 (w), 1208 (m), 1190 (m), 1134 (s), 1041 (m), 1025 (m), 938 (m), 887 (w), 816 

(m), 739 (w), 672 (m), 646 (m), 587 (w), 534 (w), 468 (w), 412 (w) cm-1. MS (GC, 70eV): 

m/z (%) = 392 (100) [M]+, 373 (12), 363 (14), 362 (10), 347 (17), 323 (11), 319 (10). HRMS 

(ESI) calcd for C15H10F6N4O2 [M+H]+: 393.07807; found 393.0788.
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2,6-Bis(trifluoromethyl)-9-(3,4,5-trimethoxyphenyl)-9H-purine (9e): starting with 3,4,5-

trimethoxyphenyl amine 2 (632 mg, 3.45 mmol), 1 (279 mg, 3.45 

mmoles), 5 (590 mg, 3.45 mmoles) and CH2Cl2 (2.5 ml), 9e was 

isolated as white solid (274 mg, 65%). Mp 118-120 0C. 1HNMR 

(300 MHz,  CDCl3): � = 3.92 (s, 9H, 3CH3), 6.92 (s, 2H, 2CHAr), 8.66 

(s,1H, NCHN). 13CNMR (100.6 MHz, CDCl3): � = 55.5 (2CH3), 60.0 

(OCH3), 96.7 (C), 100.4 (2CHAr), 118.5 (q, J = 278.5 Hz, CCF3), 119.3 (q, J = 278.5 Hz, 

CCF3), 127.4 (C), 130.6 (C), 137.9 (C), 145.3 (q, J = 36.5 Hz, CCF3), 147.5 (C), 149.4 (q, J = 

36.5 Hz, CCF3), 152.6 (C), 153.2 (NCHN). 19FNMR (300 MHz, CDCl3): � = -68.7 (CF3), -

65.9 (CF3). IR (ATR, cm-1): ~�  = 3402 (w), 3112 (w), 2945 (w), 1687 (w), 1586 (w), 1451 

(w), 1357 (w), 1232 (m), 1184 (w), 1121 (s), 1070 (m), 989 (m), 918 (w), 855 (w), 795 (w), 

739 (w), 660 (w), 8596 (w), 520 (w), 463 (w), 408 (w) cm-1. MS (GC, 70eV): m/z (%) = 423 

(17), 422 (100) [M]+, 408 (11), 407 (61), 379 (37), 93 (10). HRMS (ESI) calcd. for 

C16H12F6BrN4O3 [M+H]+: 423.08864; found 423.08828.  

 

9-(4-Ethoxyphenyl)-2,6-bis(trifluoromethyl)-9H-purine (9f): starting with 4-ethoxyphenyl 

amine 2 (473 mg, 3.45 mmol), 1 (279 mg, 3.45 mmoles), 5 (590 mg, 3.45 

mmoles) and CH2Cl2 (2.5 ml), 9f was isolated as white solid (233 mg, 

62%). Mp 144-146 0C. 1HNMR (300 MHz,  CDCl3): � = 1.47 (t, J = 7.1 Hz, 

3H, CH3), 4.12 (q, J = 7.1 Hz, 2H, CH2), 7.10 (d, J = 8.8 Hz, 2H, CHAr), 

7.58 (d, J = 8.8 Hz, 2H, CHAr), 8.61 (s, 1H, NCHN). 13CNMR (75.4 MHz, 

CDCl3): � = 14.7 (OCH3), 64.1 (CH2), 115.5 (CHAr), 119.4 (q, J = 276.9 Hz, CCF3), 120.1 (q, 

J = 276.9 Hz, CCF3), 125.2 (2CHAr), 125.4 (C), 131.5 (C), 146. (q, J = 39.5 Hz, CCF3), 150.2 

(C), 150.4 (q, J = 39.5 Hz, CCF3), 153.7 (C), 159.8 (NCHN). 19FNMR (300 MHz, CDCl3): 

� = -68.5 (CF3), -65.9 (CF3). IR (ATR, cm-1): ~�  = 3143 (w), 3089 (w), 3029 (w), 2965 (w), 

2884 (w), 1947 (w), 1778 (w), 1612 (w), 1521 (m), 1465 (w), 1406 (w), 1349 (w), 1303 (w), 

1244 (m), 1205 (m), 1170 (m), 1142 (s), 1038 (m), 1004 (w), 933 (m), 886 (m), 848 (m), 803 

(m), 738 (m), 678 (m), 626 (m), 531 (m) cm-1. MS (GC, 70eV): m/z (%) = 376 (55) [M]+, 349 

(15), 348 (100), 347 (21). HRMS (EI) calcd. for C15H10F6ON4 [M]+: 376.07533; found 

376.075150.  
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2,6-Bis(trifluoromethyl)-9-mesityl-9H-purine (9g): starting with 2,4,6-trimethylaniline 2 

(466 mg, 3.45 mmol), 1 (279 mg, 3.45 mmoles), 5 (590 mg, 3.45 mmoles) 

and CH2Cl2 (2.5 ml), 9g was isolated as white solid (311 mg, 83%). Mp 

134-136 0C. 1HNMR (300 MHz, CDCl3): � = 1.94   (s, 6H, 2CH3), 2.40 (s, 

3H, CH3), 7.09 (s, 2H, 2CHAr), 8.36 (s, 1H, NCHN). 13CNMR (75.4 MHz, 

CDCl3): � = 17.7 (2CH3), 21.3 (CH3), 119.4 (q, J = 276.6 Hz, CCF3), 120.3 

(q, J = 276.6 Hz, CCF3), 128.3 (C), 128.3 (CHAr), 135.4 (C), 141.2 (C), 

146.0 (q, J = 39.2 Hz, CCF3), 150.3 (C), 150.6 (q, J = 39.2 Hz, CCF3), 154.5 (NCHN). 
19FNMR (300 MHz, CDCl3): � = -68.4 (CF3), -65.8 (CF3). IR (ATR, cm-1): ~�  = 3116 (w), 

2962 (w), 2863 (w), 1740 (w), 1608  (w), 1498 (w), 1452 (w), 1397 (w), 1332 (w), 1275 (m), 

1237 (m), 1189 (m), 1135 (s), 1007 (m), 958 (w), 886 (m), 819 (w), 742 (m), 714 (w), 664 

(m), 586 (w), 545 (w) cm-1. MS (GC, 70eV): m/z (%) = 375 (57), 374 (100) [M]+, 373 (20), 

355 (15), 353 (12), 305 (16), 279 (42), 210 (29). HRMS (EI) calcd. for C16H12F6N4 [M]+: 

375.10389; found 375.10455. 

 

9-(3-Bromophenyl)-2,6-bis(trifluoromethyl)-9H-purine (9h): starting with 3-bromoaniline

2 (593 mg, 3.45 mmol), 1 (279 mg, 3.45 mmoles), 5 (590 mg, 3.45 

mmoles) and CH2Cl2 (2.5 ml), 9h was isolated as white solid (185 mg, 

67%). Mp 117-119 0C. 1HNMR (300 MHz, CDCl3):  � = 7.53 (t, J = 8.3 

Hz, 1H, CHAr), 7.69-7.75 (m, 2H, 2CHAr), 7.89 (t, J = 1.9 Hz, 1H, 

CHAr), 8.67 (s, 1H. NCHN). 13CNMR (100.6 MHz, CDCl3): � = 119.4 

(q, J = 275.6 Hz, CCF3), 120.1 (q, J = 275.6 Hz, CCF3), 122.3 (CHAr), 123.7 (C), 126.6 

(CHAr), 130.3 (C), 132.8 (CHAr), 134.1 (C), 146.6 (q, J = 39.3 Hz, CCF3), 148. (2C), 150.7 (q, 

J = 39.3 Hz, CCF3), 153.5 (NCHN). 19FNMR (300 MHz, CDCl3): � = -68.6 (CF3), -65.9 

(CF3). IR (ATR, cm-1): ~�  = 3147 (w), 3112 (w), 1587 (w), 1497 (w), 1454 (w), 1401 (w), 

1344 (w), 1278 (w), 1213 (w), 1130 (w), 1021 (w), 935 (w), 889 (w), 851 (w), 796 (w), 677 

(w), 625 (w), 558 (w), 528 (w) cm-1. MS (GC, 70eV): m/z (%) = 412 (97) [M]+, 411 (29), 410 

(100), 409 (13), 331 (13), 69 (14). HRMS (EI) calcd. for C13H5
79BrF6N4[M]+: 409.95963; 

found 409.959575; calcd. for C13H5N4
81BrF6 [M]+: 411.95758; found 411.957617.   

 

 

 

 



79 
 

9-(4-Bromophenyl)-2,6-bis(trifluoromethyl)-9H-purine (9i): starting with 4-bromoaniline 2 

(593 mg, 3.45 mmol), 1 (279 mg, 3.45 mmoles), 5 (590 mg, 3.45 mmoles) 

and CH2Cl2 (2.5 ml), 9i was isolated as white solid (291 mg, 71%). Mp 168-

170 0C. 1HNMR (300 MHz,  CDCl3): � = 7.62-7.65 (m, 2H, 2CHAr), 7.77-

7.80 (m, 2H, 2CHAr), 8.67 (s, 1H, NCHN). 13CNMR (62.9 MHz, CDCl3): � 

= 119.4 (q, J = 276.0 Hz, CCF3), 120.0 (q, J = 276.0 Hz, CCF3), 123.6 (C), 

125. (2CHAr), 131.7 (C), 132.0 (C), 133.6 (2CHAr), 146.5 (q, J = 38.8 Hz, 

CCF3), 148.0 (C), 150.6 (q, J = 38.8 Hz, CCF3), 153.6 (NCHN). 19FNMR (300 MHz, CDCl3): 

� = -68.6 (CF3), -65.9 (CF3). IR (ATR, cm-1): ~�  = 3144 (w), 3072 (w), 2992 (w), 1601 (w), 

1552  (w), 1504 (w), 1452 (w), 1402 (w), 1344 (w), 1281 (w), 1221 (w), 1177 (w), 1139 (w), 

1077 (w), 1010 (w), 931(w), 886 (w), 842 (w), 740 (w), 695 (w), 660 (w), 614 (w), 530 (w) 

cm-1. MS (GC, 70eV): m/z (%) = 412 (99), 411 (33) [M]+, 410 (100), 409 (18). HRMS (ESI) 

calcd. for C13H5BrF6N4[M+H]+: 412.9655; found 412.96591. 

 

9-(2,6-Dibromo-4-methylphenyl)-2,6-bis(trifluoromethyl)-9H-purine (9j): starting with 

2,6-dibromo-4-methylaniline 2 (914 mg, 3.45 mmol), 1 (279 mg, 3.45 

mmoles), 5 (590 mg, 3.45 mmoles) and CH2Cl2 (2.5 ml), 9j was isolated 

as white crystalline solid (227 mg, 45%). Mp 109-112 0C.  1HNMR 

(250 MHz, CDCl3): � = 2.41 (s, 3H, CH3), 7.55 (s, 2H, 2CHAr), 8.33 (s, 

1H, NCHN). 13CNMR (75.4 MHz, CDCl3): � = 21.0 (CH3), 119.3 (q, J = 

273.7 Hz, CCF3), 120.2 (q, J = 273.7 Hz, CCF3), 123.0 (2C), 128.5 (C), 130.6 (C), 133.6 

(2CHAr), 144.7 (C), 146.2 (q, J = 37.8 Hz, CCF3), 149.5 (C), 150.5 (q, J = 37.8 Hz, CCF3), 

153.9 (NCHN). 19FNMR (300 MHz, CDCl3): � = -68.5 (CF3), -65.8 (CF3). IR (ATR, cm-1): ~�  

= 3208 (w), 3113 (w), 2922 (w), 2849 (w), 1740 (w), 1658 (w), 1595 (w), 1545 (w), 1501 

(w), 1451 (w), 1399 (w), 1336 (w), 1275 (w), 1201 (m), 1135 (m), 1085 (w), 1001 (w), 940 

(m), 891 (w), 817 (w), 749 (w), 664 (m), 583 (w), 540 (w) cm-1. MS (GC, 70eV): m/z (%) = 

506 (11), 505 (10) [M]+, 426 (16), 425 (97), 424 (17), 423 (100), 343 (16). HRMS (EI) calcd. 

for C14H6Br2F6N4[M]+: 506.88972; found 506.88895. 
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4-(2,6-Bis(trifluoromethyl)-9H-purin-9-yl)-N,N-diethylbenzenamine (9k): starting with 

N`,N`-diethylbenzen-1,4-diamine 2 (565 mg, 3.45 mmol), 1 (279 mg, 

3.45 mmoles), 5 (590 mg, 3.45 mmoles) and CH2Cl2 (2.5 ml), 9k was 

isolated as light green solid (285 mg, 70%). Mp 146-147 0C. 1HNMR   

(300 MHz, CDCl3): � = 1.22 (t, J = 6.5 Hz, 3H, 2CH3), 3.43 (q, J = 7.2 

Hz, 4H, 2CH2), 6.80 (d, J = 9.8 Hz, 2H, 2CHAr), 7.44 (d, J = 9.8 Hz, 2H, 

2CHAr), 8.57 (s, 1H, NCHN). 13CNMR (75.4 MHz, CDCl3): � = 12.4 

(2CH3), 44.8 (2CH2), 111.9 (C), 119.4 (q, J = 276.5 Hz, CCF3), 120.3 (q, J = 276.5 Hz, 

CCF3), 125.2 (2CHAr), 131.4 (C), 145.9 (q, J = 39.5 Hz, CCF3), 148.3 (C), 149.9 (C), 150.2 

(q, J = 39.5 Hz, CCF3), 153.9 (NCHN). 19FNMR (300 MHz, CDCl3): � = -68.4 (CF3), -65.9 

(CF3). IR (ATR, cm-1): ~�  = 3128 (w), 2974 (w), 2903 (w), 2872 (w), 1609 (w), 1564 (w), 

1524 (m), 1468 (w), 1399 (w), 1340 (w), 1275 (m), 1190 (m), 1130 (s), 1076 (w), 1023 (m), 

935 (m), 886 (m), 815 (m), 742 (m), 708 (w), 661 (m), 628 (m), 551 (w) cm-1. MS (GC, 

70eV): m/z (%) = 403 (35) [M]+, 389 (19), 388 (100), 360 (25). HRMS (EI) calcd. for 

C17H15F6ON5[M]+: 403.12262; found 403.121853.  

 

2,6-Bis(trifluoromethyl)-9-morpholino-9H-purine (9l): starting with morpholin-4-amine 2 

(352 mg, 3.45 mmol), 1 (279 mg, 3.45 mmoles), 5 (590 mg, 3.45 mmoles) 

and CH2Cl2 (2.5 ml), 9l was isolated as white crystalline solid (163 mg, 

48%). Mp 105-107 0C. 1HNMR (250 MHz, CDCl3):  � = 3.64 (t, J = 4.7 

Hz, 4H, 2CH2), 3.94 (t, J = 4.7Hz, 4H, 2CH2), 8.48 (s, 1H, NCHN). 
13CNMR (75.4 MHz, CDCl3): � = 53.7 (CH2), 65.7 (CH2), 116.3 (q, J = 

272.0 Hz, CCF3), 118.3 (q, J = 272.0 Hz, CCF3), 129.2 (C), 145.2 (q, J = 38.5 Hz, CCF3), 

148.2 (q, J = 38.4 Hz, CCF3), 148.9, 151.9 (NCHN). 19FNMR (300 MHz, CDCl3): � = -68.5 

(CF3), -65.9 (CF3). IR (ATR, cm-1): ~�  = 3112 (w), 2988 (w), 2918 (w), 2875 (w), 1824 (w), 

1728 (w), 1593 (w), 1505 (w), 1469 (w), 1420 (w), 1386 (w), 1330 (w), 1301 (m), 1274 (m), 

1229 (s), 1204 (s), 1138 (s), 1104 (s), 1045 (m), 967 (w), 946 (m), 899 (m), 845 (w), 817 (w), 

743 (w), 727 (m), 659 (s), 636 (s), 567 (w), 528 (m) cm-1. MS (GC, 70eV): m/z (%) = 341 

(10) [M]+, 322 (39), 284 (54), 264 (27), 257 (29), 256 (49), 237 (23), 236 (78), 209 (14), 86 

(12), 85 (97), 69 (32), 56 (25), 55 (100), 42 (11). HRMS (ESI) calcd. for C11H9F6N5O 

[M+H]+: 342.07841; found 342.107838. 
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2,6-Bis(trifluoromethyl)-9-(thiazol-2-yl)-9H-purine (10a): starting with thiazol-2-amine 2 

(345 mg, 3.45 mmol), 1 (279 mg, 3.45 mmoles), 5 (590 mg, 3.45 mmoles) 

and CH2Cl2 (2.5 ml), 10a was isolated as white solid (206 mg, 61%). Mp 

135-137 0C. 1HNMR (300 MHz, CDCl3): � = 7.49 (d, J = 3.5Hz, 1H, 

CHAr), 7.75 (d, J = 3.5Hz, 1H, CHAr), 9.35 (s, 1H, NCHN). 13CNMR 

(75.4MHz, CDCl3): � = 119.2 (q, J = 276.5Hz, CCF3), 119.1 (C), 119.8 (q, 

J = 276.5Hz, CCF3), 131.9 (C), 139.7 (CHAr), 146.4 (C), 146.7 (q, J = 35.9Hz, CCF3), 151.5 

(q, J = 35.9Hz, CCF3), 151.7 (C), 152.4 (NCHN). 19FNMR (300 MHz, CDCl3): � = -68.7 

(CF3), -65.9 (CF3). IR (ATR, cm-1): ~�  = 3128 (w), 2922 (w), 2852 (w), 1818 (w), 1731  (w), 

1652 (w), 1593 (w), 1526 (w), 1487 (w), 1445 (m), 1400 (w), 1308 (w), 1275 (w), 1229 (w), 

1139 (m), 1052 (w), 1006 (w), 920 (w), 887 (w), 813 (w), 739 (w), 685 (w), 624 (w), 568 (w) 

cm-1. MS (GC, 70eV): m/z (%) = 339 (100) [M]+, 320 (10), 58 (11). HRMS (EI): calcd for 

C10H3F6N5S [M]+: 339.00079; found 339.001667. 

 

2,6-Bis(trifluoromethyl)-9-(pyridin-2-yl)-9H-purine (10b): starting with pyridin-2-amine 2 

(324 mg, 3.45 mmol), 1 (279 mg, 3.45 mmoles), 5 (590 mg, 3.45 mmoles) 

and CH2Cl2 (2.5 ml), 10b was isolated as white crystalline solid (133 mg, 

40%). Mp 60-62 0C. 1HNMR (300 MHz, CDCl3):  � = 7.42-7.46 (m, 1H, 

CHAr), 8.02-8.08 (m, 1H, CHAr), 8.67 (dt, J =  8.18 Hz, 1.05 Hz, 1H, 

CHAr), 8.65 (s, 1H, NCHN). 13CNMR (62.9MHz, CDCl3): � = 115.4 

(CHAr),  119.4 (q, J = 276.4 Hz, CCF3), 120.1 (q, J = 276.4 Hz, CCF3), 123.8 (CHAr), 132.9 

(C), 139.7 (CHAr), 145.5 (q, J = 36.9 Hz, CCF3), 147.0 (C), 148.0 (C), 149.0 (CHAr), 151.2 (q, 

J = 36.9 Hz, CCF3), 152.8 (NCHN). 19FNMR (300 MHz, CDCl3): � = -68.6 (CF3), -65.9 

(CF3). IR (ATR, cm-1): ~�  = 3187 (w), 2923 (w), 2852 (m), 2771 (w), 1687 (s), 1588 (s), 1460 

(m), 1436 (s), 1294 (s), 1203 (m), 1142 (s), 1000 (s), 854 (m), 771 (s), 702 (s), 627 (s), 522 

(s), 474 (s), 407 (m) cm-1. MS (GC, 70eV): m/z (%) = 334 (10), 333 (100) [H]+, 314 (16), 307 

(21), 306 (66), 288 (13), 264 (14), 237 (26), 211 (17), 191 (11), 169 (13), 78 (26), 69 (19), 63 

(10). HRMS (EI) calcd. for C12H5F6N5[M]+: 334.00078; found 334.001655.  
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4-(2,6-Bis(trifluoromethyl)-9H-purin-9-yl)benzenamine (11): starting with benzene-1,4-

diamine 2 (372 mg, 3.45 mmol), 1 (279 mg, 3.45 mmoles), 5 (590 mg, 3.45 

mmoles) and CH2Cl2 (2.5 ml), 11 was isolated as a yellow solid (271 mg, 

78%). Mp 175-177 0C. 1HNMR (300 MHz, CDCl3):  � = 4.22 (br.s, 2H, 

NH2), 6.87 (d, J = 8.6 Hz, 2H, 2CHAr), 7.42 (d, J = 8.6 Hz, 2H, 2CHAr), 

8.58 (s, 1H, NCHN). 13CNMR (100.6 MHz, CDCl3): � = 119.0 (2CHAr), 

124.6 (q, J = 276.1 Hz, CCF3), 125.8 (q, J = 276.1 Hz, CCF3), 130.9 (2CHAr), 136.9 (C), 

147.9 (q, J = 43.3 Hz, CCF3), 152.9 (q, J = 43.3 Hz, CCF3), 155.1 (C), 157.3 (C), 159.7 

(NCHN). 19FNMR (300 MHz, CDCl3): � = -68.9 (CF3), -65.9 (CF3). IR (ATR, cm-1): ~�  = 

3404 (w), 2078 (w), 1981 (w), 1626 (w), 1521 (w), 1456 (w), 1405 (w), 1338 (w), 1276 (w), 

1243 (w), 1217 (w), 1177 (w), 1134 (w), 1022 (w), 1005 (w), 936 (w), 888 (w), 835 (w), 739 

(w), 628 (w), 532 (w), 481 (w), 423 (w) cm-1. MS (GC, 70eV): m/z (%) = 347 (100) [M]+. 

HRMS (ESI) calcd. for C13H8N5F6 [M+H]+: 348.06784; found 348.06879. 

4-(2,6-Bis(trifluoromethyl)-9H-purin-9-yl)-2,5-dimethylbenzenamine (12): starting with 

2,5-dimethylbenzene-1,4-diamine 2 (469 mg, 3.45 mmol), 1 (279 mg, 

3.45 mmoles), 5 (590 mg, 3.45 mmoles) and CH2Cl2 (2.5 ml), 12 was 

isolated as a white solid (327 mg, 87%). Mp 185-188 0C. 1HNMR   

(300 MHz, CDCl3): � = 1.98 (s, 3H, CH3), 2.19 (s, 3H, CH3), 4.12 (br.s, 

2H, NH2), 6.70 (s, 1H, CHAr), 6.96 (s, 1H, CHAr), 8.41 (s, 1H, NCHN). 
13CNMR (62.9 MHz, CDCl3): � = 16.8 (CH3), 17.5 (CH3), 116.8 (CHAr), 119.1 (q, J = 277.7 

Hz, CCF3), 120.1 (q, J = 277.7 Hz, CCF3), 120.9 (C), 121.6 (C), 122.5 (C), 128.9 (CHAr), 

130.5 (q, J = 32.2 Hz, CCF3), 130.8 (C), 133.6 (C), 139.7 (q, J = 32.2 Hz, CCF3), 146.4 (C), 

150.6 (C), 154.4 (NCHN). 19FNMR (300 MHz, CDCl3): � = -68.4 (CF3), -65.9 (CF3). IR 

(ATR, cm-1): ~�  = 3445 (w), 3341 (w), 1684 (w), 1632 (w), 1592 (w), 1516 (w), 1451 (w), 

1399 (w), 1308 (w), 1276 (m), 1234 (m), 1198 (m), 1133 (m), 1036 (w), 975 (w), 928 (w), 

888 (m), 819 (w), 739 (m), 661 (m), 578 (w), 524 (w), 455 (w), 414 (w) cm-1. MS (GC, 

70eV): m/z (%) = 376 (18), 375 (100) [M]+, 374 (12). HRMS (ESI) calcd. for C15H12N5F6 

[M+H]+: 376.09914; found 376.09982. 
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9-(4-(2,6-Bis(trifluoromethyl)-9H-purin-9-yl)phenyl)-2,6-bis(trifluoromethyl)-9H-purine

(13): starting with benzene-1,4-diamine 2 (372 mg, 3.45 mmol), 1 

(279 mg, 3.45 mmoles), 5 (590 mg, 3.45 mmoles) and CH2Cl2 (2.5 

ml), 13 was isolated as a yellow oil (503 mg, 86%). 1HNMR   

(300 MHz, Acetone-d6): � = 8.46 (s, 4H, 4CHAr), 9.54 (s, 2H, 

NCHN). 13CNMR (75.4MHz, CDCl3): � = 120.6 (q, J = 273.0Hz, 

CCF3), 121.8 (q, J = 273.0 Hz, CCF3), 126.7 (4CHAr), 133.4 (C), 

135.0(2C), 145.4 (q, J = 38.8 Hz, CCF3), 150.1 (q, J = 38.8 Hz, 

CCF3), 151.5 (C), 155.6 (NCHN). 19FNMR (300 MHz, Acetone-d6): � = -63.9 (2CF3), -61.3 

(2CF3). IR (ATR, cm-1): ~�  = 3107 (w), 1599 (w), 1595 (w), 1456 (w), 1405 (w), 1332 (w), 

1275 (m), 1207 (m), 1136 (s), 1026 (m), 934 (m), 886 (m), 843 (m), 801 (w), 737 (w), 662 

(w),638 (w), 570 (w), 547 (w), 514 (w), 446 (w), 399 (w) cm-1. MS (GC, 70eV): m/z (%) = 

586 (100) [M]+, 567 (10). HRMS (EI) calcd. for C20H6N8F12 [M]+: 586.05183; found 

586.051343. 

 

4,4`-Bis(2,6-bis(trifluoromethyl)-9H-purin-9-yl)-1,1`-biphenyl (14): starting with 

benzidine 2 (635 mg, 3.45 mmol), 1 (279 mg, 3.45 mmoles), 5 

(590 mg, 3.45 mmoles) and CH2Cl2 (2.5 ml), 14 was isolated as a 

yellow solid (509 mg, 77%).  Mp 292-294 0C. 1HNMR (300 MHz, 

CDCl3): � = 8.02 (s, 8H, 8CHAr), 9.22 (s, 1H, NCHN). 13CNMR 

(75.4 MHz, CDCl3): � = 120.8 (q, J = 275.4 Hz, CCF3), 121.8 (q, 

J = 275.4 Hz, CCF3), 125.3 (C), 125.8 (4CHAr), 129.5 (4CHAr), 

133.4 (C), 134.4 (C) 141.3 (C), 145.4 (q, J = 35.4 Hz, CCF3), 

150.1 (q, J = 35.4 Hz, CCF3), 151.5 (2NCHN), 153.0 (C), 155.5 

(C). 19FNMR (300 MHz, Acetone-d6): � = -110.9 (2CF3), -108.3 (2CF3). IR (ATR, cm-1): ~�  = 

3334 (m), 3295 (m), 2901 (w), 1641 (w), 1425 (w), 1370 (w), 1335 (w), 1204 (w), 1159 (w), 

1105 (w), 1029 (m), 896 (w), 873 (w), 555 (m) cm-1. MS (GC, 70eV): m/z (%) = 662 (100) 

[M]+, 661 (11), 643 (11), 595 (10), 594 (17), 295 (47), 276 (13), 275 (31), 43 (13). HRMS 

(EI) calcd. for C26H10N8F12 [M]+: 662.08313; found 662.081757. 
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9-(4-(4-(2,6-Bis(trifluoromethyl)-9H-purin-9-yl)-3-methoxyphenyl)-2-methoxyphenyl)-

2,6-bis(trifluoromethyl)-9H-purine (15): starting with 3,3`-dimethoxy-(1,1`-biphenyl)-4,4`-

diamine 2 (842 mg, 3.45 mmol), 1 (279 mg, 3.45 mmoles), 5 (590 

mg, 3.45 mmoles) and CH2Cl2 (2.5 ml), 15 was isolated as a 

white solid (579 mg, 75%). Mp 280-285 0C. 1HNMR (300 MHz, 

Acetone-d6): � = 3.91 (s, 6H,  2OCH3), 7.52 (d, J = 1.8 Hz, 1H, 

CHAr), 7.99 (d, J = 1.8 Hz, 1H, CHAr), 7.60 (d, J = 1.8 Hz, 2H, 

2CHAr), 7.75 (s, 1H, CHAr), 7.78 (s, 1H, CHAr), 9.02 (s, 1H, 

NCHN). 13CNMR (100.6MHz, Acetone-d6): � = 56.9 (2OCH3), 

112.9 (2CHAr), 120.8 (q, J = 277.5 Hz, 2CCF3), 120.9 (2CHAr), 

121.6 (q, J = 277.5 Hz, 2CCF3), 122.3 (2C), 129.2 (2CHAr), 132.4 (2C), 144.2 (2C), 145.1 (q, 

J = 36.6 Hz, 2CCF3), 150.1 (q, J = 36.6 Hz, CCF3), 153.2 (2C), 155.3 (2NCHN), 156.2 (C). 
19FNMR (300 MHz, CDCl3): � = -68.4 (CF3), -65.9 (CF3). IR (ATR, cm-1): ~�  = 3120 (w), 

2976 (w), 2914 (w), 2843 (w), 1596 (w), 1511 (w), 1469 (w), 1407 (w), 1337 (w), 1303 (w), 

1251 (w), 1209 (w), 1157 (w), 1131 (w), 1065 (w), 1015 (w), 934 (w), 888 (w), 853 (w), 812 

(w), 741 (w), 693 (w), 658 (w), 626 (w), 570 (w), 536 (w) cm-1. MS (GC, 70eV): m/z (%) = 

722 (100) [M]+, 703 (15), 693 (17), 654 (10), 653 (15), 69 (10). HRMS (EI) calcd. for 

C28H14O2N8F12 [M]+: 722.10426; found 722.103828.  
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6.3 Synthesis of terphenyls from fluorinated bromobenzenes by site selective Suzuki- 

Miyaura reactions 

General procedure for Suzuki–Miyaura reactions (18a-d, 19a-b) 

A 1,4-dioxane solution (4 mL per 0.3 mmol of 16) of 16, Cs2CO3, Pd(PPh3)4 and arylboronic 

acid 17 were stirred at 90 °C for 6 or 8 h. After cooling to room temperature, the organic and 

the aqueous layers were separated and the latter was extracted with CH2Cl2. The combined 

organic layers were dried (Na2SO4), filtered and the filtrate was concentrated in vacuo. The 

residue was purified by column chromatography. 

 

1-Fluoro-2,4-di(3-methylphenyl)benzene (18a): Starting with 16 (100 mg, 0.39 mmol), 

Cs2CO3 (253 mg, 0.78 mmol), Pd(PPh3)4 (3 mol%), 3-methylphenylboronic 

acid 17c (116 mg, 0.85 mmol) and 1,4-dioxane (4 mL), 18a was isolated as a 

colorless oil (83 mg, 57%). 1H NMR (300 MHz, CDCl3): � = 2.49 (s, 6H, 

CH3), 7.23-7.31 (m, 3H, ArH), 7.37-7.48 (m, 6H, ArH), 7.54-7.60 (m, 1H, 

ArH), 7.69 (q, J = 7.5 Hz, 2.5 Hz, 1H, ArH). 13C NMR (75 MHz, CDCl3): � = 

21.6 (2CH3), 116.2 (CH), 116.5 (CH), 124.2 (CH), 126.2 (d, J = 23.0 Hz, 

CH), 127.5 (d, J = 16.1 Hz, CH), 127.9 (CH), 128.1 (CH), 128.4 (CH), 128.5 (CH), 128.8 

(CH), 129.6 (d, J = 3.8 Hz, CH), 129.8 (C), 129.3 (C), 129.5 (C), 135.8 (C), 137.7 (d, J = 4.7 

Hz, C), 155.6 (d, J = 42.1 Hz), 159.4 (d, JCF = 248.6 Hz, CF). 19F NMR (282 MHz, CDCl3): � 

= -120.3 (CF). IR (ATR, cm�1): �� = 3031 (w), 2947 (w), 2919 (w), 2860 (w), 2732 (w), 1605 

(w), 1584 (w), 1504 (w), 1475 (s), 1379 (w), 1257 (w), 1220 (m), 1171 (w), 1123 (w), 1094 

(w), 1046 (w), 999 (w), 881 (m), 823 (m), 781 (s), 720 (m), 698 (s), 633 (w), 562 (w), 523 

(w), 441 (m). MS (EI, 70 eV): m/z (%) = 276 (100) [M]+. HRMS (EI) calcd. for C20H17F [M]+: 

276.13088; found 276.130983. 

 

 

 

 

 

 

 

 

F



86 
 

1-Fluoro-2,4-di(3-methoxyphenyl)benzene (18b): Starting with 16 (100 mg, 0.39 mmol), 

Cs2CO3 (253 mg, 0.78 mmol), Pd(PPh3)4 (3 mol%), 4-

methoxyphenylboronic acid 17d (85 mg, 70 mmol) and 1,4-dioxane (4 

mL), 18b was isolated as a colorless solid (94 mg, 70%). Mp 101-103 

°C. 1H NMR (300 MHz, CDCl3): � = 3.74, (s, 3H, OCH3), 3.76 (s, 3H, 

OCH3), 6.84-6.92 (m, 4H, ArH), 7.04-7.14 (m, 1H, ArH), 7.23-7.36 (m, 

2H, ArH), 7.39-7.49 (m, 4H, ArH). 13C NMR (75 MHz, CDCl3): � = 

55.3, (OCH3) 55.4 (OCH3), 114.0 (2CH), 114.1 (2CH), 114.3 (d, J = 

23.7 Hz, CH), 116.4 (d, J = 16.3 Hz, CH), 126.6 (d, J = 8.5 Hz, CH), 127.7 (C), 128.1 (2CH), 

128.9 (C), 130.2 (2CH), 132.8 (C), 137.3 (d, J = 3.5 Hz, C), 150.5 (C), 158.9 (d, J = 45.0 Hz), 

159.1 (d, JCF = 247.0 Hz, CF). 19F NMR (282 MHz, CDCl3): � = -119.9 (CF). IR (ATR, 

cm�1): �� = 3037 (w), 3000 (w), 2955 (w), 2907 (w), 2836 (w), 1605 (m), 1571 (w), 1500 (w), 

1480 (s), 1439 (m), 1383 (w), 1310 (w), 1247 (s), 1179 (s), 1114 (m), 1076 (m), 1016 (s), 

1000 (m), 962 (w), 886 (w), 832 (s), 808 (s), 791 (s), 765 (w), 717 (w), 656 (w), 589 (w), 550 

(m), 529 (m). MS (EI, 70 eV): m/z (%) = 308 (100) [M]+, 293 (26), 265 (14). HRMS (EI) 

calcd. for C20H17FO2 [M]+: 308.12071; found 308.120987. 

 

1-Fluoro-2,4-di(2,5-dimethoxyphenyl)benzene (18c): Starting with 16 (100 mg, 0.39 

mmol), Cs2CO3 (253 mg, 0.78 mmol), Pd(PPh3)4 (3 mol%), 2,5-

dimethoxyphenylboronic acid 17g (158 mg, 0.85 mmol) and 1,4-

dioxane (4 mL), 18c was isolated as a colorless solid (91 mg, 65%). 

Mp 149-150 °C. 1H NMR (300 MHz, CDCl3): � = 3.68 (s, 3H, CH3), 

3.69 (s, 3H, OCH3), 3.71 (s, 6H, OCH3), 6.70-6.80 (m, 6H, ArH), 

7.04-7.10 (m, 1H, ArH), 7.40-7.45 (m, 2H, ArH). 13C NMR (75 MHz, 

CDCl3): � = 55.8 (2OCH3), 56.3 (OCH3), 56.4 (OCH3), 112.4 (CH), 

112.6 (CH), 113.2 (CH), 114.2 (CH), 115.1 (d, J = 22.6 Hz, CH), 116.7 (CH), 117.1 (CH), 

125.6 (d, J = 16.4 Hz, C), 126.0 (C), 130.3 (d, J = 7.6 Hz, CH), 130.5 (C), 132.8 (d, J = 4.0 

Hz, CH), 134.0 (d, J = 3.5 Hz, C), 150.7 (C), 151.3 (C), 153.5 (C), 153.8 (C),  159.3 (d, JCF = 

249.0 Hz, CF). 19F NMR (282 MHz, CDCl3): � = -116.3 (CF). IR (ATR, cm�1): �� = 3428 (w), 

3021 (w), 2948 (w), 2832 (w), 1582 (w), 1486 (s), 1463 (m), 1407 (m), 1381 (m), 1295 (m), 

1264 (m), 1220 (s), 1174 (s), 1113 (m), 1049 (s), 1023 (s), 915 (w), 855 (m), 803 (m), 755 

(w), 706 (s), 5651 (w), 568 (w), 507 (w), 468 (w) cm-1. MS (EI, 70 eV): m/z (%) = 368 (100) 

[M]+, 339 (12), 338 (57), 169 (12). HRMS (ESI) calcd. for C22H22O4F [M+H]+: 369.14966; 

found 369.14871. 
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1-Fluoro2,4-di(4-ethylphenyl)benzene (18d): Starting with 16 (100 mg, 0.39 mmol), 

Cs2CO3 (253 mg, 0.78 mmol), Pd(PPh3)4 (3 mol%), 4-ethylphenylboronic 

acid 17h (128 mg, 0.85 mmol) and 1,4-dioxane (4 mL), 18c was isolated 

as a colorless oil (69 mg, 57%). 1H NMR (300 MHz, CDCl3): � = 1.27 (t, 

J = 7.5 Hz, 3H, CH3), 1.28 (t, J = 7.5 Hz, 3H, CH3),  2.65-2.74 (m, 4H, 

CH2), 7.18 (q, J = 10.4 Hz, 8.5 Hz, 1H, ArH), 7.28 (t, J = 8.1 Hz, 4H, 

ArH), 7.45-7.53 (m, 5H, ArH), 7.62 (q, J = 7.7 Hz, 2.7 Hz, 1H, ArH). 13C 

NMR (75 MHz, CDCl3): � = 15.5 (CH3), 15.6 (CH3), 28.5 (CH2), 28.6 (CH2), 116.4 (d, J  = 

22.0 Hz, CH), 127.0 (2CH), 128.2 (C), 128.0 (2CH), 128.3 (2CH), 129.0 (d, J = 8.0 Hz, CH), 

129.3 (d, J = 3.8 Hz, CH), 130.0 (C), 133.1 (2CH), 133.9 (C), 137.5 (d, J = 3.6 Hz, C), 137.6 

(C), 143.7 (d, J  = 32.4 Hz, C), 159.3 (d, JCF = 247.4 Hz, CF). 19F NMR (282 MHz, CDCl3): � 

= -120.7 (CF). IR (ATR, cm�1): �� = 3024 (w), 2963 (m), 2929 (w), 2871 (w), 1516 (w), 1484 

(s), 1456 (w), 1412 (w), 1384 (w), 1258 (w), 1217 (m), 1118 (w), 1044 (w), 965 (w), 898 (w), 

831 (m), 815 (s), 703 (w), 659 (w), 616 (w), 562 (w), 500 (w) cm-1. MS (EI, 70 eV): m/z (%) 

= 304 (100) [M]+ , 290 (21), 289 (91), 274 (14), 137 (16). HRMS (EI) calcd. for C22H21F 

[M]+: 304.16218; found 304.162438. 

 

General procedure for the synthesis of 19a–b. 

The reaction was carried out in a pressure tube. To a dioxane suspension (4 mL) of 16 (100 

mg, 0.39 mmol), Pd(PPh3)4 (3 mol%) and ArB(OH)2 (0.39 mmol) was added Cs2CO3 (126 

mg, 0.39 mmol), and the resultant solution was degassed by bubbling argon through the 

solution for 10 min. The mixture was heated at 100 °C under Argon atmosphere for 8 h. They 

were diluted with water and extracted with CH2Cl2 (3 * 50 mL). The combined organic layers 

were dried (Na2SO4), filtered and the filtrate was concentrated in vacuo. The residue was 

purified by flash chromatography (silica gel, DCM/ heptane = 1:4). 

 

2-Bromo-1-fluoro-4-(4-methoxyphenyl)benzene (19a): Starting with 16 (100 mg, 0.39 

mmol), Cs2CO3 (126  mg, 0.78 mmol), Pd(PPh3)4 (3 mol%), 4-

methoxyphenylboronic acid 17d (59 mg, 0.39 mmol) and 1,4-dioxane (4 mL), 19a

was isolated as a colorless solid (78 mg, 70%). Mp 66-68 °C. 1H NMR (300 MHz, 

CDCl3): � = 3.78 (s, 3H, OCH3), 6.89-6.96 (m, 2H, ArH), 6.96 (d, J = 6.6 Hz, 1H, 

CH), 7.18-7.20 (m, 2H, CH), 7.34 (d, J = 1.5 Hz, 1H, CH), 7.38 (d, J = 1.5 Hz, 

1H, CH). 13C NMR (75 MHz, CDCl3): � = 55.4 (OCH3), 108.9 (d, J = 21.0 Hz, 

CH), 114.1 (2CH), 117.8 (d, J = 18.0 Hz, CH), 130.2 (CH), 131.0 (CH), 131.1 (CH), 132.2 
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(C), 135.5 (C), 136.1 (C), 159.7 (C), 156.1 (d, J = 248.0 Hz, CF). 19F NMR (282 MHz, 

CDCl3): � = -119.8 (CF). IR (ATR, cm�1): �� = 3074 (m), 3015 (m), 2960 (m), 2837 (w), 1605 

(m), 1514 (m), 1295 (m), 1255 (s), 1075 (s), 1016 (s), 875 (m), 792 (m), 696 (m), 624 (m), 

576 (s). GC-MS (EI, 70 eV); m/z (%) = 280 (100) (79Br) [M]+, 267 (24), 265 (18), 239 (34), 

237 (30), 213 (11), 170 (11), 158 (24), 157 (51), 138 (9), 44 (11). HRMS (EI) calcd. for 

C13H10OBrF [M]+: 279.98936; found 279.989522 and calcd. for C13H10O81BrF [M]+: 

281.98731; found 281.987381. 

 

2-Bromo-1-fluoro-4-(4-ethylphenyl)benzene (19b): Starting with 16 (100 mg, 0.39 mmol), 

Cs2CO3 (126 mg, 0.39 mmol), Pd(PPh3)4 (3 mol%), 4-ethylphenylboronic acid 

17h (53 mg, 0.39 mmol) and 1,4-dioxane (4 mL), 18b was isolated as a colorless 

solid (65 mg, 63%). Mp 99-101 °C 1H NMR (300 MHz, CDCl3):1H NMR (300 

MHz, CDCl3): � = 7.76 (dd, J = 6.6 Hz, 2.3 Hz, 1H, ArH), 7.48 (ddd, J = 8.5 Hz, 

4.6 Hz, 2.3 Hz, 1H, ArH), 7.45 (d, J = 8.5 Hz, 2H, ArH), 7.28 (d, J = 8.5, 1H, 

ArH), 7.18 (t, J = 8.5 Hz, 1H, ArH), 2.71 (q, J = 7.6 Hz, 2H, CH2), 1.29 (t, J = 7.6 

Hz, 3H, CH3). 13C NMR (75 MHz, CDCl3): � = 15.5 (CH3), 28.4 (CH2), 109.2 (d, J = 21.1 

Hz, CH), 114. 5 (2CH), 116.5 (d, J = 22 Hz, CH), 128.4 (CH), 127.3 (d, J = 7.1 Hz, CH), 

131.8 (CH), 136.2 (C), 137.4 (C), 138.8 (d, J = 3.8 Hz, C), 144.0 (C), 158.4 (d, JCF = 247.2 

Hz, CF). 19F NMR (282 MHz, CDCl3): � = -110.3 (CF). IR (ATR, cm�1): �� = 3024 (w), 2964 

(w), 2929 (w),  2871 (w), 1903 (w), 1598 (w), 1487 (s), 1377 (w), 1264 (m), 1129 (w), 1045 

(m), 964 (w), 835 (w), 812 (s), 779 (w), 691 (m), 624 (w), 555 (m). MS (EI, 70 eV); m/z (%) 

= 278 (64) [M]+, 266 (13), 265 (97), 264 (14), 263 (100), 184 (17), 183 (65), 170 (22). HRMS 

(EI) calcd. for C14H12Br F [M]+: 278.01009; found 278.009637, C14H12
81Br F calcd. 

280.00805; found 280.007711. 
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General procedure for the synthesis of 20a. 

The reaction was carried out in a pressure tube. To a dioxane suspension (4 mL) of 16 (200 

mg, 0.78 mmol), Pd(PPh3)4 (3 mol %) and Ar1B(OH)2 (0.78 mmol) was added Cs2CO3 (253 

mg, 0.78 mmol), and the resultant solution was degassed by bubbling argon through the 

solution for 10 min. The mixture was heated at 90 °C under Argon atmosphere for 8 h. The 

mixture was cooled to 20 °C and Ar2B(OH)2 (0.93 mmol) and Cs2CO3 (253 mg, 0.78 mmol) 

was added. The reaction mixtures were heated under Argon atmosphere for 6 h at 100 °C. 

They were diluted with water and extracted with CH2Cl2 (3 * 50 mL). The combined organic 

layers were dried (Na2SO4), filtered and the filtrate was concentrated in vacuo. The residue 

was purified by flash chromatography (silica gel, EtOAc/ hexane = 1:4). 

 

1-Fluoro-2-(4-methoxyphenyl)-4-(4-trifluorophenyl)benzene (20a): Starting with 16 (200 

mg, 0.78 mmol), Cs2CO3 (253 mg, 0.78 mmol), Pd(PPh3)4 (3 mol%), 4-

trifluoromethylphenylboronic acid 17o (148 mg, 0.78 mmol) and 4-

methoxyphenylboronic acid 17d (142 mg, 0.93 mmol) and 1,4-dioxane 

(4 mL), 20a was isolated as a colorless solid (79 mg, 58%). Mp 149-

151 °C. 1H NMR (300 MHz, CDCl3): � = 3.73 (s, OCH3), 6.86-6.95 (m, 

4H, ArH), 7.05-7.16  (m, 1H, ArH), 7.26-7.45 (m, 2H, ArH), 7.60-7.65 

(m, 4H, ArH). 13C NMR (75 MHz, CDCl3): � = 55.4 (OCH3), 110.3 

(CH), 110.4 (CH), 111.3 (CH), 114.1 (CH), 114.4 (CH), 116.6 (CH), 125.4 (d, J = 24.5, Hz, 

C), 126.7 (C), 127.1 (CH), 127.4 (CH), 128.1 (d, J = 3.87 Hz, CH), 129.4 (CH), 130.2 (CH), 

132.4 (C), 155.4 (C), 157.9 (d, J = 13.3 Hz, C), 158.2, (d, JCF = 247.8 Hz, CF), 160.0 (d, J = 

9.6 Hz, C). 19F NMR (282 MHz, CDCl3): � = -61.9, -(CF3), -110.7 (CF). IR (ATR, cm�1): �� = 

3072 (w), 3037 (w), 2957 (w), 2912 (w), 2837 (w), 1605 (m), 1569 (m), 1517 (m), 1486 (s), 

1439 (s), 1384 (m), 1323 (s), 1273 (s), 1234 (s), 1177 (s), 1124 (s), 1069 (s), 1012 (s), 962 

(w), 891 (w), 835 (m), 809 (s), 794 (m), 765 (m), 714 (w), 656 (w), 598 (w), 550 (m), 530 (m) 

cm-1. MS (EI, 70 eV): m/z (%) = 346 (100) [M]+ , 331 (11). HRMS (EI) calcd. for C20H14OF4 

[M]+: 346.09753; found 346.096887. 
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General procedure for the synthesis of 22a–c. 

The reaction was carried out in a pressure tube. To a dioxane suspension (4 mL) of 21 (200 

mg, 0.79 mmol), Pd(PPh3)4 (3 mol%) and ArB(OH)2 (1.58 mmol) was added Cs2CO3 (385 

mg, 1.81 mmol), and the resultant solution was degassed by bubbling argon through the 

solution for 10 min. The mixture was heated at 100 °C under Argon atmosphere for 8 h. They 

were diluted with water and extracted with CH2Cl2 (3 * 50 mL). The combined organic layers 

were dried (Na2SO4), filtered and the filtrate was concentrated in vacuo. The residue was 

purified by flash chromatography (silica gel, DCM/ heptane = 1:4). 

 

1,4-Di(2,5-dimethoxyphenyl)-2-fluorobenzene (22a): Starting with 21 (200 mg, 0.79 

mmol), Cs2CO3 (385 mg, 1.81 mmol), Pd(PPh3)4 (3 mol%), 2,5-

dimethoxyphenylboronic acid (287 mg, 1.58 mmol) and 1,4-dioxane (4 

mL), 22a was isolated as a colorless solid (221 mg, 76%). Mp 95-97 °C. 
1H NMR (300 MHz, CDCl3): � = 3.69 (s, 3H, OCH3), 3.70 (s, 3H, 

OCH3), 3.71 (s, 3H, OCH3), 3.72 (s, 3H, OCH3), 6.76-6.87 (m, 6H, 

ArH), 7.25-7.33 (m, 3H, ArH). 13C NMR (75 MHz, CDCl3): � = 55.8 

(2OCH3), 56.2 (OCH3), 56.4 (OCH3), 112.5 (2CH), 113.9 (2CH), 116.5 

(2CH), 116.9 (d, J = 25.7 Hz, CH), 124.6 (d, J = 16.4 Hz, C), 124.8 (d, J = 3.0 Hz, CH), 125.8 

(C), 130.0 (d, J = 2.3 Hz, C), 131.3 (d, J = 3.8 Hz, CH), 139.5 (d, J  = 8.2 Hz, C), 151.0 (d, J = 

15.5 Hz, 2C), 153.6 (d, J = 23.1 Hz, 2C), 159.6 (d, JCF = 247.3 Hz, CF). 19F NMR (282 MHz, 

CDCl3): � = -114.6 (CF). IR (ATR, cm�1): �� = 2991 (w), 2938 (w), 2832 (w), 1616 (w), 1586 

(w), 1487 (m), 1403 (m), 1297 (w), 1257 (m), 1216 (m), 1176 (m), 1119 (m), 1082 (m), 1017 

(s), 933 (m), 869 (m), 828 (m), 797 (s), 733 (m), 688 (m), 603 (m), 539 (m), 457 (m) cm-1. 

GC-MS (EI, 70 eV): m/z (%) = 368 (100) [M]+, 339 (12), 338 (59), 169 (12). HRMS (ESI) 

calcd. for C22H22FO4 [M+H]+: 369.14966; found 369.15. Anal. Calcd for C22H22FO4: C,71.73. 

H, 5.75. Found: C, 71.75. H, 5.77. 
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1,4-Di(4-ethylphenyl)-2-fluorobenzene (22b): Starting with 21 (200 mg, 0.79 mmol), 

Cs2CO3 (385 mg, 1.81 mmol), Pd(PPh3)4 (3 mol%), 4-ethylphenylboronic acid 17h 

(237 mg, 1.58 mmol) and 1,4-dioxane (4 mL), 22b was isolated as a colorless solid 

(195 mg, 81%). Mp 111 °C. 1H NMR (300 MHz, CDCl3): � = 1.20 (t, J = 15.2 Hz, 

7.5 Hz, 3H, CH3), 1.22 (t, J = 15.2 Hz, 7.5 Hz, 3H, CH3), 2.62 (t, J = 15.1 Hz, 7.4 

Hz, 4H, 2CH2), 7.19-7.22 (m, 4H, ArH), 7.27-7.40 (m, 3H, ArH), 7.42-7.47 (m, 

4H, ArH). 13C NMR (75 MHz, CDCl3): � = 15.6 (d, J = 2.2 Hz, 2CH3), 28.6 (d, J = 

5.5 Hz, 2CH2), 114.5 (CH), 122.7 (d, J = 4.0 Hz, CH), 126.9 (2CH), 127.4 (d, J = 

13.8 Hz, C), 128. (2CH),  128.5 (2CH), 128.9 (d, J = 4.0 Hz, CH), 130.8 (d, J = 4.0 

Hz, CH), 132.9 (C), 136.9 (C), 141.9 (d, J = 8.3 Hz, C), 143.9 (d, J = 20.9 Hz, CH), 160.1 (d, 

JCF= 247.0 Hz, CF). 19F NMR (282 MHz, CDCl3): � = -117.24 (CF). IR (ATR, cm�1): �� = 

3027 (w), 2963 (w), 2873 (w), 2361 (w), 1609 (w), 1544 (w), 1485 (w), 1428 (w), 1394 (w), 

1295 (w), 1260 (w), 1180 (w), 1135 (w), 1050 (w), 1004 (w), 970 (w), 889 (w), 814 (w), 728 

(w), 696 (w), 641 (w), 582 (w), 499 (w), 417 (w) cm-1. GC-MS (EI, 70 eV): m/z (%) = 304 

(100) [M]+, 290 (18), 289 (80), 274 (21), 137 (17). HRMS (ESI) calcd. for C22H22F [M+H]+: 

305.17001; found 305.16948. Anal. Calcd for C21H17FO2: C,86.85. H, 6.91. Found: C, 86.82. 

H, 6.88. 

 

1,4-Di(3-chlorophenyl)-2-fluorobenzene (22c): Starting with 21 (200 mg, 0.79 mmol), 

Cs2CO3 (385 mg, 1.81 mmol), Pd(PPh3)4 (3 mol%), 3-chlorophenylboronic 

acid 17j (246 mg, 1.58 mmol) and 1,4-dioxane (4 mL), 22c was isolated as a 

colorless solid (201 mg, 80%). Mp 102-103 °C. 1H NMR (300 MHz, CDCl3): 

� = 7.25-7.33 (m, 5H, ArH), 7.34-7.35 (m, 1H, ArH). 7.37-7.43 (m, 3H, 

ArH), 7.49-7.52 (m, 2H, ArH). 13C NMR (75 MHz, CDCl3): � = 114.8 (d, J = 

25.7 Hz, CH), 123.0 (d, J = 4.0 Hz, CH), 125.1 (CH), 127.1 (2CH), 128.0 (d, 

J = 3.4 Hz, 2CH), 129.0 (d, J = 4.0 Hz, CH), 130.0 (d, J = 3.7 Hz, 2CH), 

131.0 (d, J = 4.0 Hz, CH), 134.4 (C), 134.9 (C), 137.0 (C), 141.1 (C), 141.4 (C), 141.5 (C), 

159.9 (d, JCF = 248.8 Hz, CF). 19F NMR (282 MHz, CDCl3): � = -114.6 (CF). IR (ATR, 

cm�1): ��  = 3066 (w), 2923 (w), 2851 (w), 1619 (m), 1562 (m), 1463 (m), 1386 (s), 1288 (m), 

1248 (m), 1186 (m), 1130 (m), 1079 (m), 1022 (m), 967 (m), 915 (m), 876 (m), 824 (m), 773 

(s), 756 (s), 686 (s), 636 (m), 552 (m), 515 (m), 468 (m), 419 (m) cm-1. GC-MS (EI, 70 eV): 

m/z (%) = 316 (100) [M]+, 246 (17), 244 (19), 122 (13). HRMS (EI) calcd. for C18H11Cl2F 

[M]+: 316.02164; found 316.021941; calcd. for C18H11Cl37ClF [M]+: 318.01869; found 

318.018980. 
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General procedure for the synthesis of 23a–c. 

The reaction was carried out in a pressure tube. To a dioxane suspension (4 mL) of 21 (200 

mg, 0.79 mmol), Pd(PPh3)4 (3 mol%) and Ar1B(OH)2 (0.79 mmol) was added Cs2CO3 (385 

mg, 1.81 mmol), and the resultant solution was degassed by bubbling argon through the 

solution for 10 min. The mixture was heated at 90 °C under Argon atmosphere for 8 h. The 

mixture was cooled to 20 °C and Ar2B(OH)2 (0.95 mmol) and Cs2CO3 (385 mg, 1.18 mmol) 

was added. The reaction mixtures were heated under Argon atmosphere for 6 h at 100 °C. 

They were diluted with water and extracted with CH2Cl2 (3 * 50 mL). The combined organic 

layers were dried (Na2SO4), filtered and the filtrate was concentrated in vacuo. The residue 

was purified by flash chromatography (silica gel, EtOAc/ hexane = 1:4). 

 

2-Fluoro-1-(4-methoxyphenyl)-4-(4-methylphenyl)benzene (23a): Starting with 21 (200 

mg, 0.79 mmol), Cs2CO3 (385 mg, 1.81 mmol), Pd(PPh3)4 (3 mol%), 4-

methoxyphenylboronic acid 17d (120 mg, 0.79 mmol) and 1,4-dioxane (4 mL) 

and 4-methylphenylboronic acid 17b (125 mg, 0.95 mmol), 23a was isolated as a 

colorless solid (188 mg, 79%). Mp 198 °C. 1H NMR (300 MHz, CDCl3): � = 2.32 

(s, 3H, CH3), 3.78 (s, 3H, OCH3), 6.91 (d, J = 8.9 Hz, 2H, ArH), 7.16-7.20 (m, 

7H, CH). 13C NMR (75 MHz, CDCl3): � = 21.4 (CH3), 55.3 (OCH3), 114.0 (d, J = 

23.0 Hz, 2CH), 114.3 (d, J = 12.9 Hz, CH), 122.6 (d, J =5.4 Hz, CH), 126.8 

(2CH),  127.7 (C), 128.0 (CH), 128.8 (d, J = 3.3 Hz, C), 129.2 (CH), 129.6 (CH), 

130.1 (d, J = 3.4 Hz, CH), 130.6 (d, J = 5.5 Hz, CH), 136.7 (d, J = 1.8 Hz, C), 137.7 (C), 137.8 

(C), 141.0 (C), 142.1 (C), 159.2 (C), 160.5 (d, JCF = 248.2 Hz, CF). 19F NMR (282 MHz, 

CDCl3): � = -117.6 (CF). IR (ATR, cm�1): �� = 2958 (w), 1913 (w), 1606 (w), 1548 (w), 1484 

(m), 1394 (m), 1299 (w), 1244 (m), 1178 (m), 1133 (m), 1032 (m), 889 (m), 808 (s), 734 (w), 

637 (w), 579 (m), 503 (m), 415 (w) cm-1. GC-MS (EI, 70 eV): m/z (%) = 292 (100) [M]+, 277 

(34), 249 (23), 233 (12). HRMS (EI) calcd. for C20H17FO [M]+: 292.12579; found 

292.125521. 
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1-(4-Acetylphenyl)-2-fluoro-4-(4-methylphenyl)benzene (23b): Starting with 21 (200 mg, 

0.79 mmol), Cs2CO3 (385 g, 1.81 mmol), Pd(PPh3)4 (3 mol%), 4-

acetylyphenylboronic acid 17n (129 mg, 0.79 mmol) and 1,4-dioxane (4 mL) and 

4-methylphenylboronic acid 17b (129 mg, 0.95 mmol), 23b was isolated as a 

colorless solid (151 mg, 62%). Mp 89-90 °C. 1H NMR (300 MHz, CDCl3): � = 

2.34 (s, 3H, CH3), 2.58 (s, 3H, CH3), 7.21 (d, J = 8.5 Hz, 2H, ArH), 7.30-7.49 (m, 

5H, ArH), 7.61-7.65 (m, 2H, ArH), 7.98 (d, J = 8.6 Hz, 2H, ArH).13C NMR 

(75 MHz, CDCl3): � = 21.2 (CH3), 26.7 (CH3CO), 114.4 (CH), 114.6 (CH), 114.9 

(CH), 122.9 (d, J = 4.8 Hz, CH), 126.8 (CH), 127.0 (CH), 128.5 (CH), 129.3 (CH), 

129.7 (CH), 130.8 (CH), 128.8 (d, J = 3.3 Hz, CH), 136.1 (C), 136.3 (d, J = 1.8 Hz, C), 138.1 

(C), 139.0 (C), 140.4 (d, J = 1.9 Hz, C), 143.3 (d, J = 8.0 Hz, C), 160.1 (d, JCF = 248.5 Hz, 

CF), 197.7 (CO). 19F NMR (282 MHz, CDCl3): � = -116.92 (CF). IR (ATR, cm�1): �� = 3341 

(w), 3032 (w), 2915 (w), 2858 (w), 1678 (s), 1618 (m), 1598 (s), 1542 (m), 1484 (m), 1423 

(m), 1391 (m), 1357 (m), 1305 (m), 1263 (s), 1182 (m), 1133 (m), 1041 (m), 1004 (m), 957 

(m), 891 (m), 833 (m), 807 (s), 739 (m), 692 (m), 628 (m), 598 (m), 545 (m), 502 (m), 460 

(m), 416 (m) cm-1. GC-MS (EI, 70 eV): m/z (%) = 304 (69) [M]+, 290 (20), 289 (100), 246 

(26), 144 (13). HRMS (ESI) calcd. for C21H18FO2 [M+H]+: 305.13362; found 305.13433. 

1-(4-Methoxyphenyl)-4-(2-methoxyphenyl)-2-fluorobenzene (23c): Starting with 21 (200 

mg, 0.79 mmol), Cs2CO3 (385 mg, 1.81 mmol), Pd(PPh3)4 (3 mol%), 4-

methoxyphenylboronic acid 17d (120 mg, 0.79 mmol), 2-

methoxyphenylboronic acid 17e (120 mg, 0.79 mmol) and 1,4-dioxane (4 

mL), 23c was isolated as a colorless solid (156 mg, 64%). Mp = 150-152 °C; 
1H NMR (300 MHz, CDCl3): � = 3.91, 3.93 (s, 6H, OCH3), 7.06-7.15 (m, 

4H, CH), 7.39-7.43 (m, 3H, CH), 7.56-7.66 (m, 4H, CH). 13C NMR 

(75 MHz, CDCl3): � = 55.4, 55.4 (OCH3), 114.1 (CH), 114.3 (CH), 114.6 

(CH), 114.7 (CH), 114.6 (d, J = 20.5 Hz, CH), 122.6 (d, J = 4.0 Hz, CH), 

127.1 (C), 128.6 (CH), 128.6 (CH), 130.9 (d, J  = 3.5 Hz, CH), 130.9 (d, J  = 4.0 Hz, CH), 

130.7 (C), 130.9 (C), 132.2 (C), 132.2 (C), 142.0 (d, J  = 7.5 Hz, C), 150.1 (C), 158.6 (d, JCF = 

248.0 Hz, CF). 19F NMR (282 MHz, CDCl3): � = -114.91 (CF). IR (ATR, cm�1): �� = 3015 

(w), 2933 (w), 2834 (w), 1902 (w), 1602 (m), 1577 (m), 1500 (m), 1454 (s), 1434 (m), 1396 

(m), 1294 (m), 1246 (m), 1180 (m), 1114 (m), 1022 (s), 891 (m), 876 (m), 821 (m), 808 (m), 

647 (m), 589 (m), 528 (m), 448 (w) cm�1. GC-MS (EI, 70 eV): m/z (%): 308 (100) [M]+, 293 
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(16), 278 (11), 265 (4), 233 (5), 220(5). HRMS (EI): calcd. for C20H17FO2 [M]+: 308.12071, 

found 308.120211. 

General procedure for the synthesis of 25a–f. 

The reaction was carried out in a pressure tube. To a dioxane suspension (4 mL) of 24 (100 

mg, 0.39 mmol), Pd(PPh3)4 (3 mol%) and ArB(OH)2 (0.78 mmol) was added Cs2CO3 (253 

mg, 0.78 mmol), and the resultant solution was degassed by bubbling argon through the 

solution for 10 min. The mixture was heated at 100 °C under Argon atmosphere for 8 h. They 

were diluted with water and extracted with CH2Cl2 (3 * 50 mL). The combined organic layers 

were dried (Na2SO4), filtered and the filtrate was concentrated in vacuo. The residue was 

purified by flash chromatography (silica gel, DCM/ heptane = 1:4). 

4-Fluoro-1,2-diphenylbenzene (25a): Starting with 24 (100 mg, 0.39 mmol), Cs2CO3 (253  

mg, 0.78 mmol), Pd(PPh3)4 (3 mol%), phenylboronic acid 17a (95 mg, 

0.78 mmol) and 1,4-dioxane (4 mL), 25a was isolated as a colorless oil (79 

mg, 79%). 1H NMR (300 MHz, CDCl3): � = 7.08-7.12 (m, 6H, ArH), 

7.18-7.21 (m, 6H, ArH), 7.35-7.43 (m, 1H, ArH). 13C NMR (75 MHz, 

CDCl3): � = 114.1 (d, J = 21.0 Hz, 2CH), 117.1 (d, J = 21.0 Hz, 2CH), 

126.5 (2CH), 126.9 (2CH), 127.0 (CH), 127.3 (CH), 127.9 (d, J = 4.1 Hz, CH), 129.7 (d, J = 

12.0 Hz, CH), 132.1 (d, J = 8.2 Hz, CH), 136.6 (d, J = 3.2 Hz, C), 137.1 (C), 140.4 (d, J = 2.0 

Hz, C), 142.4 (d, J = 7.9 Hz, C), 162.0 (d, JCF = 246.7 Hz, CF). 19F NMR (282 MHz, CDCl3): 

� = -115.7 (CF).  IR (ATR, cm-1): ~�  = 3060 (w), 2998 (w), 2929 (w), 2833 (w), 2052 (w), 

1898 (w), 1724 (w), 1597 (w), 1494 (m), 1456 (m), 1403 (w), 1363 (w), 1274 (m), 1245 (s), 

1175 (m), 1120 (m), 1052 (m), 1052 (m), 1024 (m), 967 (w), 889 (w), 820 (w), 788 (w), 747 

(s), 694 (w), 627 (w), 560 (w), 536 (m).  MS (GC, 70eV): m/z (%) = 248 (100) [M]+, 247 

(39), 246 (20), 244 (15), 233 (35), 227 (22), 226 (21), 220 (11) cm-1. HRMS (EI): calcd. for 

C18H13F [M]+ 248.099461, found 248.09958. 
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4-Fluoro-1,2-di(4-methylphenyl)benzene (25b): Starting with 24 (100 mg, 0.39 mmol), 

Cs2CO3 (253 mg, 0.78 mmol), Pd(PPh3)4 (3 mol%), 4-

methylphenylboronic acid 17b (106 mg, 0.78 mmol) and 1,4-dioxane 

(4 mL), 25b was isolated as a colorless solid (89 mg, 81%). Mp 96-98 

°C. 1H NMR (300 MHz, CDCl3): � = 2.39 (s, 3H, CH3), 2.40 (s, 3H, 

CH3), 7.14-7.27 (m, 6H, ArH), 7.45-7.49 (m, 4H, ArH), 7.60 (q, J = 

7.4, 2.2 Hz, 1H, ArH). 13C NMR (75 MHz, CDCl3): � = 20.4 (CH3), 

20.6 (CH3), 115.6 (d, J = 24.7 Hz, CH), 126.2 (2CH), 126.5 (d, J = 8.3 Hz, CH), 128.3 (d, J = 

2.6 Hz, CH), 128.6 (2CH), 128.6 (2CH), 128.9 (2CH), 132.3 (C), 133.5 (C), 136.5 (2C), 

136.8 (d, J = 3.4 Hz, C), 136.9 (d, J = 3.9 Hz, C), 158.5 (d, JCF = 248.0 Hz, CF). 19F NMR 

(282 MHz, CDCl3): � = -121.1 (CF).  IR (ATR, cm-1): ~�  = 3051 (w), 2946 (w), 2853 (w), 

2733 (w), 1898 (w), 1731 (w), 1645 (w), 1589 (w), 1514 (w), 1483 (m), 1407 (w), 1380 (w), 

1308 (w), 1249 (w), 1207 (w), 1116 (w), 1039 (w), 1009 (w), 959 (w), 902 (w), 856 (w), 808 

(m), 764 (w), 719 (w), 663 (w), 615 (w), 549 (w) cm-1. MS (GC, 70eV): m/z (%) = 277 (21), 

276 (100) [M]+. HRMS (EI): calcd for C20H17F [M]+ 276.13088, found 276.130932. 

 

4-Fluoro-1,2-di(4-methoxyphenyl)benzene (25c): Starting with 24 (100 mg, 0.39 mmol), 

Cs2CO3 (253 mg, 0.78 mmol), Pd(PPh3)4 (3 mol%), 4-

methoxyphenylboronic acid 17d (118 mg, 0.78 mmol) and 1,4-

dioxane (4 mL), 25c was isolated as a dark brown solid (94 mg, 70%). 

Mp 86-88 0C: 1H NMR (300 MHz, CDCl3): � = 3.70 (s, 3H, OCH3), 

3.76(s, 3H, OCH3), 6.68 (dd, J = 8.7, 2.1 Hz, 3H, ArH), 6.86-7.02 (m, 

6H, ArH), 7.24 (dd,  J = 8.4, 5.6 Hz, 1H, ArH), 7.40 (dt, J = 6.8 Hz, 

2.6 Hz,, 1H, ArH). 13C NMR (75.4 MHz, CDCl3): � = 55.1 (OCH3), 55.3 (OCH3), 113.4 

(2CH), 113.7 (d, J = 20.9 Hz, CH), 114.1 (2CH), 116.9 (d, J = 20.9 Hz, CH), 127.7 (2CH), 

130.8 (d, J = 2.1 Hz, 2CH), 131.9 (d, J = 2.7 Hz, CH), 133.0 (d, J = 2.5 Hz, C), 133.3 (d, J = 

8.9, C), 136.9 (d, J = 2.5 Hz, C), 141.9 (d, J = 7.4 Hz, C), 158.4 (d, J = 4.4 Hz, C), 158.7 (C), 

161.7 (d, JCF = 247.1 Hz, CF). 19F NMR (282.4 MHz, CDCl3): � = -115.8 (CF). IR (ATR, cm-

1): ~�  = 3072 (w), 3012 (w), 2956 (w), 2929 (w), 2838 (w), 2535 (w), 2065 (w), 2032 

(w),1892 (w), 1766 (w), 1605 (m), 1567 (w), 1717 (w), 1464 (m), 1399 (w), 1328 (w), 1289 

(m), 1239 (s), 1175 (m), 1115 (m), 1079 (m), 1014 (m), 967 (w), 885 (m), 820 (s), 781 (m), 

746 (w), 700 (w), 645 (w), 604 (w), 564 (m), 545 (m) cm-1.   MS (GC, 70eV): m/z (%) = 308 

(100) [M]+, 233 (20), 221 (11), 220 (13). HRMS (EI): calcd. for C20H17O2F [M]+ 308.12071, 

found 308.120558 
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4-Fluoro-1,2-di(2-methoxyphenyl)benzene (25d): Starting with 24 (100 mg, 0.39 mmol), 

Cs2CO3 (253 mg, 0.78 mmol), Pd(PPh3)4 (3 mol%), 2-

methoxyphenylboronic acid 17e (118 mg, 0.78 mmol) and 1,4-dioxane 

(4 mL), 25d was isolated as a colorless solid (83 mg, 67%). Mp 101-

103 °C. 1H NMR (300 MHz, CDCl3): � = 3.47 (s, 3H, OCH3), 3.77 (s, 

3H, OCH3), 6.70 (t, J = 7.2 Hz, 1H, ArH), 6.78-6.83 (m, 1H, ArH), 

6.96-7.04 (m, 4H, ArH), 7.08-7.17 (m, 3H, ArH), 7.24-7.26 (m, 1H, ArH), 7.30-7.36 (m, 1H, 

ArH). 13C NMR (75 MHz, CDCl3): � = 53.8, (OCH3) 54.6 (OCH3), 109.2 (d, J = 3.1 Hz, CH), 

110.0 (CH), 112.8 (d, J = 20.1 Hz, CH), 116.2 (d, J = 20.1 Hz, CH), 119.0 (d, J = 30.8 Hz, 

CH), 126.7 (CH), 127.2 (d, J = 7.7 Hz, CH), 127.5 (CH), 128.3 (CH), 128.7 (d, J = 2.1 Hz, 

C), 128.9 (CH) 130.2 (d, J = 18.2 Hz, C), 130.9 (d, J = 8.4 Hz, CH), 139.2 (d, J = 9.1 Hz, C), 

155.1 (2C), 155.5 (d, J = 6.0 Hz, C), 160.8 (d, JCF = 245.7 Hz, CF). 19F NMR (282 MHz, 

CDCl3): � = -116.4 (CF). IR (ATR, cm-1): ~�  = 3058 (w), 2960 (w), 2833 (w), 1894 (w), 1724 

(w), 1597 (w), 1498 (w), 1454 (w), 1404 (w), 1298 (w), 1252 (w), 1173 (w), 1120 (w), 1052 

(w), 1021 (w), 934 (w), 884 (w),   821 (w),  797 (w), 747 (w), 694 (w), 612 (w), 559 (w), 536 

(w). MS (GC, 70eV): m/z (%) = 308 (100) [M]+, 277 (20), 262 (10), 245 (10), 233 (21) cm-1.  

HRMS (EI): calcd for C20H17O2F [M]+ 308.12071, found 308.120865. 

4-Fluoro-1,2-di(2,3-dimethoxyphenyl)benzene (25e): Starting with 24 (100 mg, 0.39 

mmol), Cs2CO3 (253 mg, 0.78 mmol), Pd(PPh3)4 (3 mol%), 2,3-

dimethoxyphenylboronic acid 17f (141 mg, 0.78 mmol) and 1,4-

dioxane (4 mL), 25e was isolated as a colourless solid (87 mg, 

59%). Mp 176-178 °C. 1H NMR (300 MHz, CDCl3): � = 3.59 (s, 

3H, OCH3), 3.64 (s, 3H, OCH3), 3.80 (s, 3H, OCH3), 3.89 (s, 3H, 

OCH3), 6.58 (dt, J = 9.5 Hz, 2.0 Hz, 1H, ArH), 6.72.-6.94 (m, 5H, 

ArH), 7.04–7.18 (m, 2H, ArH), 7.38 (q, J = 8.5, 5.9 Hz, 1H, ArH). 13C NMR (75.46 MHz, 

CDCl3): � = 55.7 (OCH3), 55.8 (OCH3), 60.3 (OCH3),  60.6 (OCH3), 111.4 (d, J = 15.8 Hz, 

2CH), 111.6 (CH), 113.7 (d, J = 21.4 Hz, C), 117.4 (d, J = 21.9 Hz, C), 122.9 (d, J = 3.4 Hz, 

2CH), 123.2 (d, J = 3.4 Hz, 2CH), 123.6 (2CH), 132.2 (d, J = 9.9 Hz, C), 132.8 (C), 134.8 

(C), 146.5 (d, J = 9.6 Hz, C), 146.8 (C), 152.6 (d, J = 10.9 Hz, C), 161.3 (d, J = 245.8 Hz, 

CF). 19F NMR (282.4 MHz, CDCl3): � = -116.3 (CF). IR (ATR, cm-1): ~�  = 3060 (w), 2934 

(w), 2832 (w), 1738 (w), 1574 (m), 1460 (s), 1397 (m), 1309 (m), 1284 (m), 1256 (s), 1187 

(s), 1140 (s), 1081 (s), 1030 (s), 995 (s), 934 (m), 869 (m), 822 (s), 788 (s), 746 (s), 682 (m), 
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644 (m), 588 (m), 533 (m). MS (GC, 70eV): m/z (%) = 368 (100) [M]+, 337 (23), 322 (19), 

307 (14), 306 (32), 290 (13) cm-1. HRMS (EI): calcd for C22H21O4F [M]+ 368.14184, found 

368.142136.   

4-Fluoro-1,2-di(4-vinylphenyl)benzene (25f): Starting with 24 (100 mg, 0.39 mmol), 

Cs2CO3 (253 mg, 0.78 mmol), Pd(PPh3)4 (3 mol%), 4-

vinylphenylboronic acid 17i (115 mg, 0.78 mmol) and 1,4-dioxane (4 

mL), 25f  was isolated as a colourless solid (53 mg, 45%). Mp stable 

upto 375 °C. 1H NMR (300 MHz, CDCl3): � = 5.30 (d, J = 10.9 Hz, 2H, 

CH2), 5.81 (d, J = 15.4 Hz, 2H, CH2), 6.77 (q, J = 17.4 Hz, 10.8 Hz, 

2H, CH), 7.38–7.60 (m, 11H, ArH). 13C NMR (75.46 MHz, CDCl3): � 

= 114.3 (CH2), 114.4 (CH2), 114.6 (2CH), 122.7 (d, J = 3.0 Hz, CH), 126.4 (2CH), 126.8 

(CH), 127.0 (CH), 127.4 (d, J = 13.8 Hz, C), 129.0 (d, J = 3.6 Hz, CH), 130.8 (d, J = 4.4 Hz, 

CH), 134.8 (d, J = 2.2 Hz, CH), 136.3 (d, J = 11.0 Hz, CH), 137.1 (d, J =  18.2 Hz, C), 138.7 

(d, J = 2.4 Hz, 2C), 141.8 (d, J = 8.0 Hz, 2C), 160.0 (d, JCF = 247.6 Hz, CF). 19F NMR (282.4 

MHz, CDCl3):  -117.4 (CF). IR (ATR, cm-1): ~�  = 3087 (m), 3035 (m), 2956 (m), 2920 (m), 

2850 (m), 1919 (w), 1834 (w), 1651 (w), 1627 (m), 1572 (m), 1484 (m), 1431 (m), 1393 (m), 

1359 (m), 1296 (m), 1258 (m), 1184 (m), 1137 (m), 1046 (w), 992 (m), 912 (m), 851 (m), 816 

(s), 750 (m), 699 (m), 577 (m), 536 (m) cm-1. MS (GC, 70eV): m/z (%) = 300 (100) [M]+. 

HRMS (EI): calcd for C22H17F [M]+ 300.13088, found 300.131268. 
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6.4 Synthesis of fluorinated polyethynylbenzenes by Sonogashira reactions 

General Procedure for Sonogashira coupling Reactions  

A suspension of tetraiodobenzenes (26, 29, 31, 33), X-phos (10 mol %), Pd(OAc)2 (5 mol %), 

CuI (5 mol %), Cs2CO3 (5 eq) in 1,4-Dioxane was degassed three time in ace pressure tube. 

Acetylene (1.2 eq per bromine atom) were added using a syringe. The mixture was heated at 

the indicated temperature (80–100 °C) for 12 h. The reaction mixture was filtered and residue 

washed with CH2Cl2 . The filtrate was washed with saturated solution of ammonium chloride 

(2 x 25ml), water (2 x 25ml) and dried over anhydrous Na2SO4. Solvent was removed in 

vacuo. The product was purified by column chromatography on silica gel.  

 

1,2-Difluoro-3,4,5,6-tetra(3-methylphenylethynyl)benzene (28a): starting with 26  (150 

mg, 0.24 mmol), 3-methylphenylacetylene 27b (139 mg, 

1.20 mmol), CuI (5 mol%), X-Phos (10 mol%), Pd(OAc)2 

(5 mol%), Cs2CO3 (5 eq) and 1,4-Dioxane (5mL), 28a was 

isolated as orange solid (98 mg; 70%). Mp 151–153 °C. 1H 

NMR (300 MHz, CDCl3): � = 2.38 (s, 6H, CH3), 2.41 (s, 

6H, CH3), 7.23-7.27 (m, 4H, ArH), 7.31 (q, J = 15.1 Hz, 

7.4 Hz, 4H, ArH), 7.48-7.52 (m, 8H, ArH). 13C NMR (75.4 

MHz, CDCl3): � = 21.2 (2CH3), 21.3 (2CH3), 80.8 (C C), 

85.8 (C C), 98.7 (C C), 101.7 (C C), 116.1 (t, J = 6.4 Hz, 2C), 122.3 (C), 122.8 (2C), 125.2 

(t, J = 2.8 Hz, C), 128.4 (d, J = 2.2 Hz, 4C) 128.9 (4CH), 129.0 (4CH), 130.2 (4CH), 132.5 (d, 

J = 4.4 Hz, 4C), 138.2 (C), 138.6 (C), 150.0 (d, JCF = 256.2 Hz, CF), 150.5 (d, JCF = 256.2 

Hz, CF). 19F NMR (282 MHz, CDCl3): � = -131.45 (CF). IR (ATR, cm�1): �~ = 2916 (w), 

2202 (w), 1773 (w), 1577 (w), 1487 (w), 1452 (w), 1408 (w), 1293 (w), 1268 (w), 1152 (w), 

1093 (w), 997 (w), 960 (w), 902 (w), 854 (w), 777 (w), 683 (w), 586 (w), 569 (w), 501 (w), 

435 (w), 383 (w) cm-1. MS (EI, 70 eV); m/z (%) = 570 (100) [M]+, 555 (20), 540 (14). HRMS 

(EI) calcd. for C42H28F2 [M]+: 570.21536; found 570.216596. Anal. Calcd for C42H28F2: 

C,88.40. H, 4.95. Found: C, 88.45. H, 4.99. 
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1,2-Difluoro-3,4,5,6-tetra(4-n-pentylphenylethynyl)benzene (28b): starting with 26  (150 

mg, 0.24 mmol), 4-n-pentylphenylacetylene 27e 

(206 mg, 1.20 mmol), CuI (5 mol%), X-Phos (10 

mol%), Pd(OAc)2 (5 mol%), Cs2CO3 (5 eq) and 1,4-

Dioxane (5mL), 28b was isolated as brown solid 

(137 mg; 71%). Mp 72–74 °C. 1H NMR (300 MHz, 

CDCl3): � = 0.82 (m, 12H, CH3), 1.23-1.26 (m, 16H, 

CH2), 1.49-1.59 (m, 8H, CH2), 2.54 (t, J = 7.7 Hz, 

8H, CH2CH2CH2CH2CH3), 7.08 (dd, J = 8.4 Hz, 5.9 

Hz, 8H, ArH), 7.43 (dt, J = 8.5 Hz, 1.0 Hz, 8H, ArH).13C NMR (75.4 MHz, CDCl3): � = 14.0 

(4CH3), 22.6 (4CH2), 30.9 (4CH2), 31.5 (4CH2), 36.0 (4CH2), 80.6 (C C), 85.6 (C C), 98.6 

(C C), 101.1 (C C), 116.0 (C), 116.3 (C), 119.7 (C), 120.2 (C), 125.0 (C), 125.3 (C), 126.6 

(C), 128.6 (2C), 131.8 (d, J = 8.3 Hz, 2CH), 144.4 (C), 150.0 (d, JCF = 256.8 Hz, CF), 150.5 

(d, JCF = 256.8 Hz, CF). 19F NMR (282 MHz, CDCl3): � = -131.89 (CF). IR (ATR, cm�1): �~ 

= 3030 (w), 2925 (m), 2854 (m), 2206 (w), 1901 (w), 1605 (w), 1511 (m), 1453 (s), 1376 (w), 

1284 (w), 1200 (w), 1177 (w), 1115 (w), 1079 (w), 1018 (w), 941 (m), 849 (m), 806 (s), 729 

(m), 688 (w), 644 (w), 527 (s), 479 (w), 428 (w) cm-1. MS (EI, 70 eV); m/z (%) = 794 (100) 

[M]+, 44 (28). HRMS (EI) calcd. for C58H60F2 [M]+: 794.46576; found 794.465130. Anal. 

Calcd for C58H60F2: C, 87.61. H, 7.61. Found: C, 87.64. H, 7.64. 

 

1,2-Difluoro-3,4,5,6-tetra(n-heptylphenylethynyl)benzene (28c): starting with 26 (150 mg, 

0.24 mmol), n-heptylphenylacetylene 27f (240 mg, 

1.20 mmol), CuI (5 mol%), X-Phos (10 mol%), 

Pd(OAc)2 (5 mol%), Cs2CO3 (5 eq)  and 1,4-

Dioxane (5mL), 28c was isolated as yellow solid 

(120 mg, 54%). Mp.46–48°C. 1H NMR (300 MHz, 

CDCl3): � = 0.88 (t, 12H, CH3), 1.28-1.32 (m, 30H, 

CH2), 1.56-1.65 (m, 10H, CH2), 2.62 (t, J = 7.6 Hz, 

8H, CH2), 7.17 (dd, J = 8.3 Hz, 5.6 Hz, 8H, ArH), 

7.52 (dt, J = 8.35 Hz, 1.95 Hz, 8H, ArH).13C NMR (75.4 MHz, CDCl3): � = 14.1 (4CH3), 

22.7 (4CH2), 29.2 (4CH2), 29.3 (4CH2), 31.3 (4CH2), 31.8 (4CH2), 36.1 (4CH2), 80.5 (C C), 

85.6 (C C), 98.6 (C C), 101.6 (C C), 116.0 (2C), 116.6 (2C), 119.9 (2C), 120.2 (2C), 125.1 

(2C), 128.6 (8CH), 131.8 (8CH), 144.1 (C), 149.8 (d, JCF = 257.9 Hz, CF), 150.0 (d, JCF = 

257.9 Hz, CF). 19F NMR (282 MHz, CDCl3): � = -131.90 (CF). IR (ATR, cm�1): �~ = 2954 
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(w), 2922 (s), 2852 (m), 2208 (w), 1605 (w), 1511 (w), 1455 (s), 1376 (w), 1178 (w), 1116 

(w), 1018 (w), 942 (w), 805 (m), 724 (w), 526 (m) cm-1. MS (EI, 70 eV); m/z (%) = 907 (65) 

[M]+, 906 (99), 57 (12), 44 (100), 43 (15). HRMS (EI) calcd. for C66H77F2 [M]+: 907.59879; 

found 907.596555. 

 

1,3-Difluoro-2,4,5,6-tetra(phenylethynyl)benzene (30a): starting with 29  (100 mg, 0.16 

mmol), phenylacetylene 27a (83 mg, 0.81 mmol), CuI (5 mol%), 

X-Phos (10 mol%), Pd(OAc)2 (5 mol%), Cs2CO3 (5 eq) and 1,4-

Dioxane  (5mL), 30a was isolated as orange solid (68 mg; 81 %). 

Mp 155–157 °C. 1H NMR (300 MHz, CDCl3): � = 7.51-7.56 (m, 

12H, ArH), 7.27-7.33 (m, 8H, ArH). 13C NMR (75.4 MHz, 

CDCl3): � = 75.5 (C C), 80.3 (C C), 86.2 (C C), 98.9 (C C), 

101.3 (t, J = 2.6 Hz, C), 101.4 (C), 111.3 (C), 111.5 (d, J = 7.5 

Hz, C) 122.2 (C), 122.6 (C), 122.7 (C), 128.5 (6CH) 128.6 (CH), 

129.1 (CH), 129.4 (d, J = 3.5 Hz, CH), 131.8 (2CH), 132.0 (CH), 161.5 (d, JCF = 260.4 Hz, 

CF), 161.7 (d, JCF = 260.4 Hz, CF). 19F NMR (282 MHz, CDCl3): � = -100.42 (CF). IR (ATR, 

cm�1): �~ = 3051 (m), 2205 (m), 1887 (w), 1596 (m), 1489 (m), 1441 (m), 1352 (m), 1268 

(w), 1214 (m), 1156 (w), 1094 (m), 1067 (m), 998 (w), 939 (m), 747 (s), 684 (s), 578 (m), 529 

(m), 498 (m), 436 (m) cm-1. MS (EI, 70 eV); m/z (%) = 514 (75) [M]+, 69 (29), 44 (100). 

HRMS (EI) calcd. for C38H20F2 [M]+: 514.15276; found 514.154168. Anal. Calcd for 

C38H20F2: C, 88.70. H, 3.92. Found: C, 88.75. H, 3.66. 

 

1,3-Difluoro-2,4,5,6-tetra(hex-1-ynyl)benzene (30b): starting with 29  (100 mg, 0.16 

mmol), 1-hexyne 27d (65 mg, 0.80 mmol), CuI (5 mol%), X-Phos 

(10 mol%), Pd(OAc)2 (5 mol%), Cs2CO3 (5 eq) and 1,4-Dioxane 

(5mL), 30b was isolated as dark brown oil (59 mg, 83%). 1H NMR 

(300 MHz, CDCl3): � = 0.79-0.91 (m, 12H, CH3), 1.06-1.21 (m, 

3H, CH2), 1.38-1.58 (m, 15H, CH2), 2.39-2.47 (m, 6H, CH2). 13C 

NMR (75.4 MHz, CDCl3): � = 13.6 (CH3), 13.6 (2CH2), 13.7 

(CH3), 19.5 (2CH2), 19.6 (CH2), 19.7 (CH2), 21.8 (3CH2), 21.9 

(CH2), 30.4 (CH2), 30.6 (2CH2), 30.7 (CH2), 71.7 (C), 77.2 (C), 99.5 (2C), 99.6 (C C), 101.5 

(C C), 102.4 (C C), 102.5 (C C), 162.0 (d, JCF = 255.7 Hz, CF), 162.3 (d, JCF = 255.7 Hz, 

CF). 19F NMR (282 MHz, CDCl3): � = -103.9 (CF). IR (ATR, cm�1): �~ = 2957 (m), 2931 

(m), 2871 (w), 2234 (w), 1718 (w), 1599 (w), 1445 (s), 1378 (w), 1318 (w), 1260 (w), 1168 
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(w), 1104 (w), 1025 (m), 876 (w), 801 (w), 725 (w), 555 (w). MS (EI, 70 eV); m/z (%) = 434 

(100) [M]+, 391 (10), 377 (14), 363 (10), 349 (19), 335 (25), 321 (19), 307 (15), 295 (11), 281 

(14), 277 (10), 275 (13), 257 (10), 105 (13), 71 (12), 57 (22), 44 (19), 43 (26), 40 (21) cm-1. 

HRMS (EI) calcd. for C30H36F2 [M]+: 434.27796; found 434.278900. 

1,3-Difluoro-2,4,5,6-tetra(4-n-pentylphenylethynyl)benzene (30c): starting with 29  (100 

mg, 0.16 mmol), 4-n-pentylphenylacetylene 27e 

(137 mg, 0.80 mmol), CuI (5 mol%), X-Phos (10 

mol%), Pd(OAc)2 (5 mol%), Cs2CO3 (5 eq) and 1,4-

Dioxane (5mL), 30c was isolated as dark brown oil 

(97 mg, 75%). 1H NMR (300 MHz, CDCl3): � =  

0.79-0.84 (m, 12H, 4CH3), 1.23-1.26 (m, 16H, 

8CH2), 1.47-1.57 (m, 8H, 2CH2), 2.54 (t, J = 7.6 

Hz, 8H, 4CH2), 7.06-7.12 (m, 8H, ArH), 7.40-7.45 

(m, 8H, ArH). 13C NMR (75.4 MHz, CDCl3): � = 

14.1 (4CH3), 22.6 (4CH2), 30.9 (d, J = 2.0 Hz, 4CH2), 31.5 (4CH2), 36.3 (d, J = 2.0 Hz, 

4CH2), 76.2 (d, J = 165.9 Hz, C C), 76.6 (C C), 80.0 (C C), 85.9 (t, J = 4.8 Hz, C C), 99.0 

(t, J = 3.0 Hz, C), 101.4 (t, J = 4.8 Hz, C), 101.6 (C), 103.1 (t, J = 20.6 Hz, C), 111.2 (C), 

111.5 (d, J = 7.8 Hz, C), 119.4 (C), 119.9 (d, J = 4.2 Hz, C), 128.6 (6CH), 128.6 (CH), 131.7 

(3CH), 131.9 (CH), 132.0 (CH), 149.2 (C), 144.6 (d, J = 2.0 Hz, C), 161.5 (d, JCF = 259.1 Hz, 

CF), 161.8 (d, JCF = 259.1 Hz, CF).  19F NMR (282 MHz, CDCl3): � = -101.12 (CF). IR 

(ATR, cm�1): �~ = 3027 (w), 2955 (w), 2925 (m), 2854 (m), 2204 (w), 1905 (w), 1606 (w), 

1509 (m), 1444 (s), 1377 (w), 1262 (w), 1178 (w), 1092 (m), 1019 (m), 904 (w), 809 (m), 727 

(w), 661 (w), 551 (m), 459 (w) cm-1. MS (EI, 70 eV); m/z (%) = 794 (100) [M]+, 737 (10), 

625 (11), 338 (10), 285 (10), 284 (23), 44 (53), 43 (11), 41 (13) cm-1. HRMS (EI) calcd. for 

C58H60F2 [M]+: 794.46576; found 794.465446. 

1,4-Difluoro-2,3,5,6-tetra(3-methylphenylethynyl)benzene (32a): starting with 31 (100 mg, 

0.16 mmol), 3-methylphenylacetylene 27b (92 mg, 0.80 

mmol), CuI (5 mol%), X-Phos (10 mol%), Pd(OAc)2 (5 

mol%), Cs2CO3 (5 eq) and 1,4-Dioxane (5mL), 32a was 

isolated as yellow solid (79 mg, 85%). Mp 198–200 °C. 1H 

NMR (300 MHz, CDCl3): � =2.27 (s, 12H, CH3), 7.12-
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7.21 (m, 8H, ArH), 7.30 (m, 8H, ArH). 13C NMR (75.4 MHz, CDCl3): � = 21.2 (4CH3), 80.8 

(2C C), 101.4 (2C C), 114.9 (C), 115.1 (d, J = 8.1 Hz, C), 122.3 (C), 128.4 (4CH), 129.0 

(4CH), 130.2 (2CH), 132.6 (4CH), 138.2 (C), 158.3 (d, JCF = 253.5 Hz, CF), 158.6 (d, JCF = 

253.5 Hz, CF). 19F NMR (282 MHz, CDCl3): � = -108.69 (CF). IR (ATR, cm�1): �~ = 2917 

(w), 2206 (w), 1769 (w), 1599 (w), 1485 (w), 1444 (w), 1408 (w), 1346 (w), 1273 (w), 1089 

(w), 1038 (w), 961 (w), 874 (w), 774 (m), 683 (m), 587 (w), 537 (w), 441 (m), 394 (w) cm-1. 

MS (EI, 70 eV); m/z (%) = 570 (100) [M]+. HRMS (EI) calcd. for C42H28F2 [M]+: 570.21536; 

found 570.21536. Anal. Calcd for C42H28F2: C, 88.40. H, 4.95. Found: C, 88.36. H, 4.91. 

1,4-Difluoro-2,3,5,6-tetra(4-n-propylphenylethynyl)benzene (32b): starting with 31 (100 

mg, 0.16 mmol), 4-n-propylphenylacetylene 27c (115 

mg, 0.80 mmol), CuI (5 mol%), X-Phos (10 mol%), 

Pd(OAc)2 (5 mol%), Cs2CO3 (5 eq) and 1,4-Dioxane 

(5mL), 32b was isolated as yellow solid (96 mg, 86%). 

Mp 189–191 °C. 1H NMR (300 MHz, CDCl3): � = 0.85 

(t, J = 7.3 Hz, 12H, CH3), 1.51-1.61 (m, 8H, CH2), 2.52 

(t, J = 7.8 Hz, 8H, CH2), 7.08 (dt, J = 6.5, 2.0 Hz, 8H, ArH), 7.42 (dt, J = 6.5, 2.0 Hz, 8H, 

ArH). 13C NMR (75.4 MHz, CDCl3): � = 13.8 (4CH3), 24.4 (4CH2), 38.4 (4CH2), 80.6 

(2C C), 101.4 (2C C), 114.8 (d, J = 8.7 Hz, C), 114.9 (d, J = 8.4 Hz, C), 128.7 (4CH), 131.9 

(4CH), 144.3 (C), 158.4 (d, JCF = 253.6 Hz, CF), 158.7 (d, JCF = 253.6 Hz, CF). 19F NMR 

(282 MHz, CDCl3): � = -108.88 (CF). IR (ATR, cm�1): �~ = 2957 (m), 2929 (m), 2868 (m), 

2206 (m), 1904 (m), 1604 (m), 1510 (s), 1442 (s), 1376 (m), 1344 (m), 1266 (m), 1201 (m), 

1112 (m), 1018 (m), 944 (s), 868 (m), 800 (s), 709 (m), 645 (m), 566 (s), 524 (s), 440 (m) cm-

1. MS (EI, 70 eV); m/z (%) = 682 (100) [M]+, 284 (23). HRMS (EI) calcd. for C50H44F2 [M]+: 

682.34056; found 682.339721. Anal. Calcd for C50H44F2: C, 87.94. H, 6.49. Found: C, 87.91. 

H, 6.45. 

 

1,4-Difluoro-2,3,5,6-tetra(hex-1-ynyl)benzene (32c): starting with 31 (100 mg, 0.16 mmol), 

1-hexyne 27d (65 mg, 0.80 mmol), CuI (5 mol%), X-Phos (10 

mol%), Pd(OAc)2 (5 mol%), Cs2CO3 (5 eq) and 1,4-Dioxane 

(5mL), 32c was isolated as brown solid (59 mg, 83%). Mp 66–68 

°C. 1H NMR (300 MHz, CDCl3): � =  0.87 (t, J = 7.0 Hz, 12H, 

CH3), 1.38-1.59 (m, 16H, CH2), 2.43 (t, J = 6.7 Hz, 8H, CH2). 13C NMR (75.4 MHz, CDCl3): 

� = 13.6 (4CH3), 19.6 (4CH2), 21.9 (4CH2), 30.5 (4CH2), 72.3 (t, J = 2.0 Hz, 2C C), 101.9 (t, 
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J = 2.3 Hz, 2C C), 114.7 (d, J = 8.8 Hz, C), 114.9 (d, J = 9.2 Hz, C), 159.0 (d, JCF = 249.8 

Hz, CF), 159.3 (d, JCF = 249.8 Hz, CF). 19F NMR (282 MHz, CDCl3): � = -111.10 (CF). IR 

(ATR, cm�1): �~ = 2952 (m), 2930 (m), 2865 (w), 2231 (w), 1707 (w), 1463 (m), 1441 (s), 

1420 (m), 1374 (w), 1315 (w), 1265 (w), 1106 (w), 1029 (w), 974 (w), 926 (w), 888 (w), 840 

(w), 740 (w), 688 (w), 553 (w), 518 (w), 446 (w), 419 (w) cm-1. MS (EI, 70 eV); m/z (%) = 

434 (100) [M]+, 377 (19), 349 (10), 277 (10), 275 (10), 265 (10). HRMS (EI) calcd. for 

C30H36F2 [M]+: 434.27796; found 434.278389. 

 

1,4-Difluoro-2,3,5,6-tetra(4-n-pentylphenylethynyl)benzene (32d): starting with 31 (100 

mg, 0.16 mmol), 4-n-pentylphenylacetylene 27e (137 

mg, 0.80 mmol), CuI (5 mol%), X-Phos (10 mol%), 

Pd(OAc)2 (5 mol%), Cs2CO3 (5 eq) and 1,4-Dioxane 

(5mL), 32d was isolated as yellow solid (103 mg, 

80%). Mp 114–116 °C. 1H NMR (300 MHz, CDCl3): 

� = 0.82 (t, J = 6.6 Hz, 12H, CH3), 1.24-1.27 (m, 14H, 

CH2), 1.50-1.60 (m, 10H, CH2), 2.56 (t, J = 7.6 Hz, 8H, CH2), 7.11 (dt, J = 6.4, 1.9 Hz, 8H, 

ArH), 7.44 (dt, J = 6.4, 1.9 Hz, 8H, ArH). 13C NMR (75.4 MHz, CDCl3): � = 14.1 (4CH3), 

22.6 (4CH2), 30.9 (4CH2), 31.5 (4CH2), 36.2 (4CH2), 80.6 (4C C), 101.4 (4C C), 114.7 (d, J 

= 8.7 Hz, C), 114.9 (d, J = 10.0 Hz, C), 119.7 (C), 128.6 (4CH), 131.9 (4CH), 144.6 (C), 

158.3 (d, JCF = 253.9 Hz, CF), 158.7 (d, JCF  = 253.9 Hz, CF). 19F NMR (282 MHz, CDCl3): � 

= -108.90 (CF). IR (ATR, cm�1): �~ = 3029 (w), 2956 (m), 2926 (m), 2853 (m), 2205 (m), 

1898 (w), 1686 (w), 1605 (w), 1512 (m), 1441 (m), 1375 (w), 1347 (m), 1270 (w), 1177 (w), 

1114 (w), 1018 (w), 946 (m), 829 (m), 804 (m), 746 (w), 656 (w), 571 (w), 538 (m), 493 (w), 

441 (w) cm-1. MS (EI, 70 eV); m/z (%) = 794 (100) [M]+, 682 (10), 681 (20), 284 (20), 69 

(10), 44 (48). HRMS (EI) calcd. for C58H60F2 [M]+: 794.46576; found 794.465121. 
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1-Fluoro-2,3,4,5,6-penta(4-n-propylphenylethynyl)benzene (34a): starting with 33 (100 

mg, 0.13 mmol), 4-n-propylphenylacetylene 27c (112 

mg, 0.78 mmol), CuI (5 mol%), X-Phos (10 mol %), 

Pd(OAc)2 (5 mol %), Cs2CO3 (5 eq) and 1,4-Dioxane 

(5mL), 34a was isolated as dark brown solid (83 mg, 

74%). Mp 85–87 °C. 1H NMR (300 MHz, CDCl3): � = 

0.82 (t,  J = 7.3 Hz, 15H, CH3), 1.53-1.65 (m, 10H, 

CH2), 2.54 (t, J = 7.3 Hz, 10H, CH2), 7.10 (dd, J = 8.3 

Hz, 4.0 Hz, 10H, ArH), 7.46 (dt, J = 8.0 Hz, 3.3 Hz, 10H, ArH). 13C NMR (75.4 MHz, 

CDCl3): � = 13.8 (5CH3), 24.4 (5CH2), 38.1 (5CH2), 80.9 (C C), 86.5 (C C), 86.6 (C C), 

100.4 (C C), 100.6 (C C), 114.5 (C), 120.0 (C), 120.2 (C), 120.5 (C), 128.7 (d, J = 2.0 Hz, 

8CH), 143.7 (C), 144.1 (d, J = 1.4 Hz, C), 163.5 (d, JCF = 255.6 Hz, CF). 19F NMR (282 MHz, 

CDCl3): � = -103.17 (CF). IR (ATR, cm�1): �~ = 3025 (w), 2956 (w), 2868 (w), 2323 (w), 

2205 (w), 1906 (w), 1671 (w), 1604 (m), 1509 (w), 1455 (s), 1376 (m), 1338 (w), 1257 (w), 

1203 (w), 1178 (w), 1113 (w), 1090 (w), 1018 (w), 933 (w), 867 (w), 799 (w), 528 (w), 450 

(w) cm-1. MS (EI, 70 eV); m/z (%) = 806 (42) [M]+ . HRMS (EI) calcd. for C62H57F [M]+: 

806.42823; found 806.425932. *: CF-group not resolved in 13C-NMR. 

 

1-Fluoro-2,3,4,5,6-penta(4-n-pentylphenylethynyl)benzene (34b): starting with 33  (100 

mg, 0.13 mmol), 4-n-pentylphenylacetylene 27e 

(142 mg, 0.82 mmol), CuI (5 mol%), X-Phos (10 

mol %), Pd(OAc)2 (5 mol %), Cs2CO3 (5 eq) and 

1,4-Dioxane (5mL), 34b was isolated as dark 

brown oil (103 mg, 79%). 1H NMR (300 MHz, 

CDCl3): � = 0.83 (t, J = 6.5 Hz, 15H, CH3), 1.24-

1.28 (m, 20H, CH2), 1.53-1.61 (m, 10H, CH2), 

2.56 (t, J = 7.7 Hz, 10H, CH2), 7.10 (dd, J = 8.3 

Hz, 4.7 Hz, 10H, ArH), 7.46 (dt, J = 8.0 Hz, 3.0 Hz, 10H, ArH). 13C NMR (75.4 MHz, 

CDCl3): � = 14.1 (5CH3), 22.5 (CH2), 30.9 (CH2), 31.0 (CH2), 36.3 (CH2), 80.9 (C C), 86.1 

(C C), 86.5 (C C), 86.6 (C C), 97.8 (C C), 100.4 (C), 100.5 (d, J = 5.1 Hz, C), 114.2 (C), 

114.4 (C), 120.0 (C), 120.2 (C), 120.5 (C), 128.6 (d, J = 2.8 Hz, 8CH), 131.7 (4CH), 131.9 (d, 

J = 3.3 Hz, 8CH), 144.0 (C), 144.3 (d, J = 1.8 Hz, C), 161.1 (d, JCF = 256.0 Hz, CF). 19F 

NMR (282 MHz, CDCl3): � = -103.17 (CF). IR (ATR, cm�1): �~ = 3025 (w), 2953 (w), 2924 

(m), 2854 (m), 2206 (w), 1908 (w), 1679 (w), 1605 (w), 1510 (m), 1455 (m), 1376 (w), 1260 
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(w), 1178 (w), 1113 (w), 1070 (w), 1018 (w), 968 (w), 897 (w), 813 (m), 727 (w), 529 (m), 

444 (w), 403 (w) cm-1. MS (EI, 70 eV); m/z (%) = 946 (10) [M]+
, 448 (13), 432 (19), 403 (10), 

69 (13), 44 (100). HRMS (EI) calcd. for C72H77F [M]+: 946.58473; found 946.583714. 

 

1-Fluoro-2,3,4,5,6-penta(4-n-heptylphenylethynyl)benzene (34c): starting with 33 (100 

mg, 0.13 mmol), 4-n-heptylphenylacetylene 27f (165 

mg, 0.82 mmol), CuI (5 mol%), X-Phos (10 mol %), 

Pd(OAc)2 (5 mol %), Cs2CO3 (5 eq) and 1,4-

Dioxane (5mL), 34c was isolated as yellow brown 

oil (95 mg, 63%). 1H NMR (300 MHz, CDCl3): � = 

0.81 (t, J = 6.6 Hz, 15H, CH3), 1.21-1.26 (m, 30H, 

CH2), 1.49-1.60 (m, 20H, CH2), 2.56 (t, J = 7.7 Hz, 

10H, CH2), 7.10 (d, J = 255.6 Hz, 10H, ArH), 7.46 

(dt, J = 8.3 Hz, 3.0 Hz, 10H, ArH).  13C NMR (75.4 MHz, CDCl3): � = 14.1 (5CH3), 22.7 

(5CH2), 29.2 (5CH2), 31.3 (5CH2), 31.8 (CH2), 36.3 (CH2), 80.9 (CH2), 100.4 (C C), 100.6 

(C C), 119.9 (C C), 120.2 (C C), 120.5 (C C), 128.0 (d, J = 2.5 Hz, 8CH), 129.3 (C), 

131.5 (2C), 131.6 (2C), 131.7 (4CH), 131.8 (d, J = 2.5 Hz, 8CH), 134.5 (d, J = 4.1 Hz, 2C), 

142.8 (2C), 143.9 (2C), 144.4 (d, J = 1.3 Hz, 4C), 158.0 (d, JCF = 249.9 Hz, CF). 19F NMR 

(282 MHz, CDCl3): � = -103.2 (CF). IR (ATR, cm�1): �~ = 3025 (w), 2953 (w), 2922 (s), 

2852 (m), 2205 (w), 1903 (w), 1690 (w), 1604 (w), 1510 (w), 1462 (w), 1425 (m), 1375 (w), 

1261 (w), 1177 (w), 1115 (w), 1070 (w), 1018 (w),  933 (w), 839 (m), 806 (m), 725 (m), 527 

(m), 400 (m) cm-1. MS (EI, 70 eV); m/z (%) = 1086 (10) [M]+ ,612 (14), 610 (10). HRMS (EI) 

calcd. for C62H57F [M]+ not possible: * CF-group not resolved in 13C-NMR. Anal. Calcd for 

C62H57F: C, 88.14. H, 9.90. Found: C, 88.18. H, 9.93. 
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6.5 Synthesis of Fluorinated polyarenes by Suzuki-Miyaura cross coupling reactions 

General Procedure for Poly Suzuki cross coupling Reactions

The reaction was carried out in a pressure tube. To a suspension 26, 29, 31, 33 (100 mg, 0.1 

mmol), Pd(PPh3)4 (10 mol %), arylboronic acid (1.1 eq per bromine atom) and Cs2CO3 (5eq) 

in dioxin, was added. The mixture was heated at the indicated temperature (90-120 °C) for the 

indicated period of time (12-36h). The reaction mixture was diluted with water and extracted 

with CH2Cl2 (3 x 25ml). The combined organic layers were dried over Na2SO4, filtrated and 

the filtrate was concentrated in vacuo the residue was purified by flash chromatography (silica 

gel, ethyl acetate / heptanes).  

 

3,4,5,6-Tetra(3-chlorophenyl)-1,2-difluorobenzene (35a): Starting with 26 (100 mg, 0.16 

mmol), Pd(PPh3)4 (10 mol%), Cs2CO3 (5eq) and 3-

chloroboronic acid 17j (149 mg, 0.96 mmol), 35a was isolated 

as a white solid (74 mg, 82%). Mp 147–149°C. 1H NMR (300 

MHz, CDCl3): � = 6.56 (q, J = 12.3 Hz, 7.0 Hz, 2H, ArH), 6.70 

(d, J = 15.0 Hz, 2H, ArH), 6.78-6.91 (m, 6H, ArH), 7.06-7.16 

(m, 6H, ArH). 19F NMR (282 MHz, CDCl3): � = -137.29 (CF). 
13C NMR (75.4 MHz, CDCl3): � = 127.0 (3CH), 128.0 (3CH), 128.6 (3CH), 128.7 (CH), 

129.2 (3CH), 129.4 (d, J = 1.4 Hz, C), 129.5 (C), 130.4 (2CH), 131.0 (d, J = 9.7 Hz, CH), 

133.3 (d, J = 10.0 Hz, C), 133.9 (3C), 134.6 (2C), 136.0 (d, J = 2.7 Hz, 2C), 139.0 (2C), 

147.3 (d, J = 251.5 Hz, CF), 147.5 (d, J = 251.5 Hz, CF), 149.7 (C). 19F NMR (282 MHz, 

CDCl3): � = -137.29 (CF). IR (KBr): �~ = 3063 (w), 1612 (w), 1595 (w), 1562 (m), 1476 (w), 

1399 (m), 1319 (w), 1297 (w), 1215 (w), 1190 (w), 1163 (w), 1119 (w), 1077 (m), 999 (w), 

949 (w), 880 (w), 845 (w), 780 (m), 748 (m), 698 (m), 675 (m), 610 (w), 582 (w), 530 (w), 

490 (w), 442 (w) cm-1. MS (EI, 70 eV); m/z (%) = 556 (100) [M+, 35Cl3, 
37Cl], 555 (19), 554 

(67), 448 (11), 412 (12), 206 (24). HRMS (EI) calcd. for C30H16
35Cl4F2 [M]+: 553.99687; 

found 553.996821, calcd. for C30H16
35Cl3

37Cl1F2 [M]+: 555.99392; found 555.993554. Anal. 

Calcd for C30H16
35Cl3

37Cl1F2: C, 64.78. H, 2.90. Found: C, 64.74. H, 2.93. 
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3,4,5,6-Tetra(4-fluorophenyl)-1,2-difluorobenzene (35b): Starting with 26 (100 mg, 0.16 

mmol), Pd(PPh3)4 (10 mol%), Cs2CO3 (5eq) and p-fluoroboronic 

acid 17l (134 mg, 0.96 mmol), 35b was isolated as a white solid 

(61 mg, 76%). Mp 144–146°C. 1H NMR (300 MHz, CDCl3): � 

= 2.03 (s, 6H, 2CH3), 2.19 (s, 6H, 2CH3), 6.51-6.54 (m, 8H, 

ArH), 6.59-6.61 (m, 8H, ArH). 13C NMR (75.4 MHz, CDCl3): � 

= 114.3 (2CH), 114.6 (CH), 114.9 (2CH), 115.2 (2CH), 132.2 

(d, J = 8.3 Hz, 4CH), 132.7 (d, J = 8.3 Hz, 4CH), 129.2 (t, J = 1.3 Hz, 2C), 129.5 (t, J = 5.7 

Hz, C), 133.8 (d, J = 3.7 Hz, 3C), 136.6 (2C), 145.8 (d, JCF = 16.0 Hz, 2CF), 149.1 (d, JCF = 

16.0 Hz, 2CF), 161.6 (d, JCF = 247.5 Hz, CF), 162.0 (d, JCF = 247.5 Hz, CF). 19F NMR (282 

MHz, CDCl3): � = -113.5 (CF), -114.8 (CF), -138.3 (CF). IR (KBr): �~ = 3051 (w), 1602 (w), 

1513 (w), 1446 (w), 1397 (w), 1299 (w), 1221 (w), 1158 (w), 1090 (w), 1015 (w), 947 (w), 

915 (w), 853 (w), 822 (m), 771 (w), 674 (w), 574 (w), 531 (m), 483 (w), 415 (w) cm-1. GC-

MS (EI, 70 eV); m/z (%) = 490 (100) [M]+, 374 (11). HRMS (EI) calcd. for C30H16F2 [M]+: 

490.11507; found 490.115342. Anal. Calcd for C30H16F2: C, 73.47. H, 3.29. Found: C, 73.51. 

H, 3.33. 

 

2,4,5,6-Tetra(4-methylphenyl)-1,3-difluorobenzene (34a): Starting with 27 (100 mg, 0.16 

mmol), Pd(PPh3)4 (10 mol%), Cs2CO3 (5eq) and 3-methylboronic 

acid 17c (130 mg, 0.96 mmol), 34a was isolated as a white solid 

(60 mg, 78%). Mp 126–127 °C. 1H NMR (300 MHz, CDCl3): � = 

1.95 (s, 3H, CH3), 2.13 (s, 6H, 2CH3), 2.33 (s, 3H, CH3), 6.48-6.55 

(m, 3H, ArH), 6.65-6.68 (m, 1H, ArH), 6.72-6.81 (m, 3H, ArH), 

6.86-6.89 (m, 4H, ArH), 6.97 (t, J = 8.3 Hz, 1H, ArH), 7.11-7.16 

(m, 1H, ArH), 7.26-7.34 (m, 3H, ArH). 13C NMR (75.4 MHz, CDCl3): � = 21.1 (CH3), 21.3 

(2CH3), 21.5 (CH3), 126.9 (d, J = 10.4 Hz, 2C), 127.4 (3CH), 127.6 (3CH), 127.1 (3CH), 

128.1 (d, J = 6.3 Hz, 3CH), 128.9 (2C), 129.5 (C), 131.2 (2C), 131.8 (d, J = 32.6 Hz, 2CH), 

134.2 (2C), 136.3 (C), 136.9 (3C), 137.4 (t, J = 3.1 Hz, C), 148.9 (C), 137.8 (C), 156.0 (d, JCF 

= 246.9 Hz, CF), 156.3 (d, JCF = 246.9 Hz, CF). 19F NMR (282 MHz, CDCl3): � = -113.9 

(CF). IR (KBr): �~ = 3035 (w), 2918 (w), 1794 (w), 1604 (w), 1561 (w), 1490 (w), 1318 (w), 

1386 (w), 1241 (w), 1124 (w), 1032 (w), 911 (w), 876 (w), 782 (w), 698 (w), 649 (w), 599 

(w), 535 (w), 436 (w) cm-1. GC-MS (EI, 70 eV); m/z (%) = 474 (100) [M]+, 459 (11). HRMS 

(ESI) calcd. for C34H28F2 [M+H]+: 475.22318; found 475.22319. Anal. Calcd for C34H28F2: C, 

86.05. H, 5.95. Found: C, 86.05. H, 5.93. 
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2,4,5,6-Tetra(4-chlorophenyl)-1,3-difluorobenzene (36b): Starting with 29 (100 mg, 0.16 

mmol), Pd(PPh3)4 (10 mol%), Cs2CO3 (5eq) and 4-

chloroboronic acid 17k (150 mg, 0.96 mmol), 36b was 

isolated as a white solid (80 mg, 88%). Mp 208–209 °C. 1H 

NMR (300 MHz, CDCl3): � = 6.61 (dt, J = 8.6 Hz, 2H, ArH), 

6.90 (dt, J = 8.6 Hz, 6H, ArH), 7.10 (dt, J = 8.6 Hz, 4H ArH), 

7.34-7.43 (m, 4H, ArH). 19F NMR (282 MHz, CDCl3): � = -

113.6 (CF). 13C NMR (75.4 MHz, CDCl3): � = 126.2 (2C), 

128.0 (2CH), 128.3 (6CH), 128.7 (2CH), 130.6 (2C), 130.8 

(2C) 131.0 (C), 131.1 (CH), 132.0 (3CH), 132.5 (2CH), 133.6 (2C), 134.2 (d, J = 3.7 Hz, C), 

140.0 (d, J = 3.7 Hz, C), 154.9 (d, JCF = 240.6 Hz, CF), 155.2 (d, JCF = 240.6 Hz, CF). IR 

(KBr): �~ = 3065 (w), 2917 (w), 1593 (w), 1552 (w), 1494 (w),  1428 (w),  1386 (w), 1319 

(w), 1262 (w), 1194 (w), 1088 (w), 1031 (w), 1014 (w), 945 (w), 890 (w), 834 (w), 784 (w), 

738 (w), 653 (w), 632 (w), 521 (w), 480, (w), 448 (w) cm-1. GC-MS (EI, 70 eV); m/z (%) = 

556 (100) [M, 35Cl3, 37Cl]+, 554 (71), 449 (10), 448 (18).  HRMS (EI) calcd. for C30H16
35Cl4F2 

[M]+: 553.99687; found 553.996441, calcd. for C30H16
35Cl3

37Cl1F2 [M]+: 555.99392; found 

555.993550. Anal. Calcd for C30H16
35Cl3

37Cl1F2: C,64.78. H, 2.90. Found: C, 64.78. H, 2.93. 

2,4,5,6-Tetra(4-fluorophenyl)-1,3-difluorobenzene (36c): Starting with 29 (100 mg, 0.16 

mmol), Pd(PPh3)4 (10 mol%), Cs2CO3 (5eq) and p-

fluoroboronic acid 17l (134 mg, 0.96 mmol), 36c was isolated 

as a white solid (61 mg, 77%). Mp 166 °C. 1H NMR (300 

MHz, CDCl3): � = 6.58-6.68 (m, 3H, ArH), 6.78-6.86 (m, 3H, 

ArH), 6.92-6.99 (m, 3H, ArH), 7.05-7.13 (m, 2H, ArH), 7.43-

7.50 (m, 2H, ArH). 13C NMR � = 114.6 (CH), 114.8 (CH), 

115.1 (2CH), 115.3 (CH), 115.6 (CH), 116.8 (t, J = 21.5 Hz, 

C), 125.0 (dd, J = 12.3 Hz, 8.8 Hz, C), 128.6 (d, J = 3.4 Hz, C), 

132.2 (d, J = 8.5 Hz, 2CH), 132.4 (d, J = 8.5 Hz, 4CH), 132.6 (d, J = 8.5 Hz, 2CH), 133.1 (dd, 

J = 6.1 Hz, 3.4 Hz, C), 141.4 (t, J = 4.2 Hz, C), 156.1 (d, JCF  = 248.1 Hz, CF), 156.5 (d, JCF  

= 248.1 Hz, CF), 161.5 (d, JCF = 247.7 Hz, CF), 161.9 (d, JCF = 247.7 Hz, CF), 162.2 (d, JCF 

= 248.5 Hz, CF). 19F NMR (282 MHz, CDCl3): � = -114.6 (3CF), -114.4 (2CF), -112.8 (CF). 

IR (KBr): �~ = 3076 (w), 2926 (w), 1895 (w), 1596 (w), 1560 (w), 1509 (w), 1432 (w), 1390 

(w), 1317 (w), 1223 (m), 1158 (m), 1093 (w), 1027 (w), 940 (w), 906 (w), 819 (m), 770 (w), 
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735 (w), 681 (w), 585 (w), 533 (m), 428 (w), 380 (w) cm-1. GC-MS (EI, 70 eV); m/z (%) = 

490 (100) [M]+. HRMS (EI) calcd. for C30H16F6 [M]+: 490.11507; found 490.115362.

 

2,3,5,6-Tetra(4-ethylphenyl)-1,4-difluorobenzene (37a): Starting with 31 (100 mg, 0.16 

mmol), Pd(PPh3)4 (10 mol%), Cs2CO3 (5eq) and 4-

ethylboronic acid 17h (144 mg, 0.96 mmol), 37a was isolated 

as a white solid (82 mg, 95%). Mp 202–203 °C. 1H NMR (300 

MHz, CDCl3): � = 1.10 (t, J = 7.8 Hz, 12H, CH3), 2.50 (dd, J = 

15.2 Hz, 7.6 Hz, 8H, CH2), 6.96 (d, J = 14.3 Hz, 8H, ArH), 

7.12 (d, J = 14.1 Hz, 8H, ArH). 13C NMR (75.4 MHz, CDCl3): � = 15.3 (4CH3), 28.6 (4CH2), 

127.3 (4CH), 129.1 (dd, J = 12.3, 8.6 Hz, 4C), 130.7 (4CH), 130.9 (4C), 143.1 (4C), 153.1 (d, 

JCF = 242.1 Hz, 2CF). 19F NMR (282 MHz, CDCl3): � = -119.6 (CF), -113.38 (CF). IR (KBr): 

�~ = 3023 (w), 2963 (w), 2929 (w), 2870 (w), 1904 (w), 1612 (w), 1522 (w), 1429 (w), 1396 

(w), 1309 (w), 1279 (w), 1187 (w), 1116 (w), 1061 (w), 1021 (w), 965 (w), 879 (w), 820 (m), 

767 (w), 680 (w), 593 (w), 527 (w), 422 (w) cm-1. GC-MS (EI, 70 eV); m/z (%) = 530 (100) 

[M]+. HRMS (EI) calcd. for C38H36F2 [M]+: 530.27796; found 530.278663. Anal. Calcd for 

C38H36F2: C, 86.02. H, 6.84. Found: C, 86.06. H, 6.81. 

2,3,5,6-Tetra(3-chlorophenyl)-1,4-difluorobenzene (37b): Starting with 31 (100 mg, 0.16 

mmol), Pd(PPh3)4 (10 mol%), Cs2CO3 (5eq) and 3-

chloroboronic acid 17j (150 mg, 0.96 mmol), 37b was isolated 

as a white solid (75 mg, 83%). Mp 232 °C. 1H NMR (300 

MHz, CDCl3): � = 6.83-6.92 (m, 4H, ArH), 7.10-7.20 (m, 

12H, ArH). 13C NMR (75.4 MHz, CDCl3): � = 128.1 (4CH), 

128.6 (dd, J = 12.7 Hz, 9.9 Hz, 4C), 128.9 (4CH), 129.3 (4CH), 130.7 (4CH), 134.0 (4C), 

134.4 (4C), 152.7 (d, JCF = 245.5 Hz, CF), 152.9 (d, JCF = 245.5 Hz, CF). 19F NMR (282 

MHz, CDCl3): � = -118.94 (CF). IR (KBr): �~ = 3068 (w), 2953 (w), 2923 (w), 2853 (w), 

1593 (w), 1564 (w), 1489 (w), 1435 (w), 1386 (w), 1312 (w), 1260 (w), 1156 (w), 1094 (w), 

1078 (w), 997 (w), 914 (w), 878 (w), 830 (w), 784 (m), 741 (m), 686 (m), 649 (w), 566 (w), 

504 (w), 442 (w), 389 (w) cm-1. GC-MS (EI, 70 eV); m/z (%) = 556 (100) [M, 35Cl3, 37Cl]+, 

555 (19), 554 (71), 484 (16), 448 (14), 207 (18). HRMS (EI) calcd. for C30H16
35Cl3

37ClF2 

[M]+: 555.99392; found 555.993038, calcd. for C30H16
35Cl4F2 [M]+: 553.99687; found 

555.996217. Anal. Calcd for C30H16
35Cl3

37ClF2: C, 64.78. H, 2.90. Found: C, 64.82. H, 2.94. 
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1,4-Difluoro-2,3,5,6-tetra(4-fluorophenyl)benzene (37c): Starting with 31 (100 mg, 0.16 

mmol), Pd(PPh3)4 (10 mol%), Cs2CO3 (5eq) and 4-fluoroboronic 

acid 17l (134 mg, 0.96 mmol), 37c was isolated as a white solid 

(66 mg, 83%). Mp 280–281 °C. 1H NMR (300 MHz, CDCl3): � 

= 6.84-6.92 (m, 8H, ArH), 7.00-7.14 (m, 8H, ArH). 13C NMR 

(75.4 MHz, CDCl3): � = 115.2 (d, J = 21.4 Hz, 8CH), 128.6 (m, 

4C), 129.9 (m, 4C), 132.4 (d, J = 8.2 Hz, 8CH), 152.8 (d, J = 243.8 Hz, 4.3 Hz, 2CF), 160.1 

(d, J = 243.8 Hz, 4.3 Hz, 2CF), 162.1 (d, JCF = 248.1, 2CF). 19F NMR (282 MHz, CDCl3): � = 

-119.6 (CF), -113.2 (CF). IR (KBr): �~ = 3025 (w), 2923 (w), 1601 (w), 1518 (w), 1464 (w), 

1429 (w), 1389 (w), 1311 (w), 1273 (w), 1223 (m), 1156 (m), 1095 (w), 1014 (w), 938 (w), 

879 (w), 820 (m), 708 (w), 677 (w), 584 (m), 525 (m), 468 (m), 412 (w) cm-1. GC-MS (EI, 70 

eV); m/z (%) = 490 (100) [M]+. HRMS (EI, 70 eV) calcd. for C30H16F6 [M]+: 490.11507; 

found 490.115159. Anal. Calcd for C30H16F6: C, 73.47. H, 3.29. Found: C, 73.49. H, 3.31. 

2,3,5,6-Tetra(4-bromophenyl)-1,4-difluorobenzene (37d): Starting with 31 (100 mg, 0.16 

mmol), Pd(PPh3)4 (10 mol%), Cs2CO3 (5eq) and 4-

bromophenylboronic acid 17m (192 mg, 0.96 mmol), 37d was 

isolated as a white solid (81 mg, 68%). Mp 276–278 °C. 1H 

NMR (300 MHz, CDCl3): � = 6.93 (d, J = 8.6 Hz, 8H, ArH), 

7.33 (d, J = 8.6 Hz, 8H, ArH). 13C NMR (75.4 MHz, CDCl3): 

� = 122.2 (4C), 124.9 (2C), 127.4 (2C), 128.5 (4C), 128.6 (4CH), 131.3 (2CH), 131.9 (2CH), 

132.0 (2CH), 132.2 (6CH), 152.1 (d, JCF = 243.0 Hz, 2CF). 19F NMR (282 MHz, CDCl3): � = 

-119.2 (CF). IR (KBr): �~ = 2922 (w), 1903 (w), 1590 (w), 1496 (w), 1422 (w), 1381 (w), 

1313 (w), 1262 (w), 1180 (w), 1105 (w), 1063 (m), 1009 (m), 877 (w), 806 (m), 769 (w), 736 

(w), 508 (w), 421 (w) cm-1. GC-MS (EI, 70 eV); m/z (%) = 734 (100) [M, 79Br2, 81Br2]+, 733 

(18), 732 (62), 730 (13), 712 (12), 710 (12), 656 (21), 654 (21), 574 (31), 506 (18), 494 (10), 

414 (26), 207 (83), 206 (12), 196 (10). HRMS (EI) calcd. for C30H16
79Br2

81Br2F2 [M]+: 

733.79072; found 733.791446; calcd. for C30H16
79Br3

81Br1F2 [M]+: 731.79276; found 

731.792053. Anal. Calcd for C30H16
35Cl3

37Cl1F2: C, 64.78. H, 2.90. Found: C, 64.78. H, 2.93. 
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2,3,4,5,6-Penta(3-chlorophenyl)-1-fluorobenzene (38a): Starting with 33 (100 mg, 0.13 

mmol), Pd(PPh3)4 (10 mol%), Cs2CO3 (5eq) and 3-

chloroboronic acid 17j (121 mg, 0.78 mmol), 38a was 

isolated as a white solid (65 mg, 72%). Mp 192–194 °C. 1H 

NMR (300 MHz, CDCl3): � = 6.58-6.66 (m, 3H, ArH), 6.72-

6.79 (m, 3H, ArH), 6.83-6.93 (m, 8H, ArH), 7.05-7.13 (m, 

6H, ArH). 13C NMR (75.4 MHz, CDCl3): � = 126.6 (CH), 

126.9 (CH), 127.7 (CH), 128.6 (d, J = 12.3 Hz, CH), 128.8 

(CH), 129.1 (CH) 129.2 (d, J = 33.7 Hz, CH), 130.6 (CH), 130.8 (d, J = 3.6 Hz, CH), 131.2 

(d, J = 15.5 Hz, CH), 133.4 (d, J = 14.5 Hz, C), 133.8 (C), 135.5 (C), 136.0 (d, J = 4.5 Hz, 

CH), 139.6 (d, J = 2.5 Hz, C), 140.3 (C), 140.9 (t, J = 2.7 Hz, C), 155.9 (d, JCF = 248.2, CF). 

19F NMR (282 MHz, CDCl3): � = -113.4 (CF). IR (ATR, cm�1): �~ = 3063 (w), 2852 (w), 

1980 (w), 1732 (w), 1594 (w), 1564 (w), 1481 (w), 1395 (w), 1321 (w), 1253 (w), 1204 (w), 

1157 (w), 1117 (w), 1077 (w), 1040 (w), 998 (w), 959 (w), 908 (w), 882 (w), 810 (w), 778 

(w), 738 (w),  694 (w), 602 (w), 569 (w), 501 (w), 434 (w) cm-1. MS (EI, 70 eV); m/z (%) = 

648 (100) [M, 35Cl3
37Cl2]+, 647 (18), 646 (57), 234 (14). HRMS (EI) calcd. for C36H20Cl5F 

[M]+: 645.99862; found 645.998556, calcd. for C36H20
35Cl4

37ClF [M]+: 647.99567; found 

647.993937, calcd. for C36H20
35Cl3

37Cl2F [M]+: 649.99272; found 649.993022. 

2,3,4,5,6-Penta(4-Chlorophenyl)-1-fluorobenzene (38b): Starting with 33 (100 mg, 0.13 

mmol), Pd(PPh3)4 (10 mol%), Cs2CO3 (5eq) and 4-

chloroboronic acid 17k (129 mg, 0.82 mmol), 38b was 

isolated as a white solid (52 mg, 58%). Mp 286–288 °C. 1H 

NMR (300 MHz, CDCl3): � = 6.56-6.63 (m, 6H, ArH), 6.82-

6.89 (m, 6H, ArH), 6.95-6.97 (m, 4H, ArH), 7.11-7.14 (m, 

4H, ArH). 13C NMR (75.4 MHz, CDCl3): � = 127.6 (2CH), 

127.8 (4CH), 128.2 (4CH) 131.9 (4CH), 132.2 (4CH), 132.3 

(2CH), 132.4 (2CH), 132.6 (3C), 133.4 (2C), 136.2 (3C), 136.7 (d, J = 2.9 Hz, 2C), 137.4 

(3C), 140.9 (d, J = 3.8 Hz, 2C), 155.9 (d, J = 247.7 Hz, CF). 19F NMR (282 MHz, CDCl3): � = 

-113.86 (CF). IR (ATR, cm�1): �~ = 3350 (w), 2919 (w), 2851 (w), 2081 (w), 1904 (w), 1739 

(w), 1593 (w), 1495 (w), 1420 (w), 1321 (w), 1260 (w), 1197 (w), 1083 (m), 1012 (m), 960 

(w), 873 (w), 831 (m), 762 (m), 666 (w), 610 (w), 524 (m), 473 (m), 399 (m) cm-1. MS (EI, 70 

eV); m/z (%) = 648 (100) [M, 35Cl4
37Cl]+, 647 (22), 646 (58), 430 (10), 235 (14), 234 (21), 
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225 (14). HRMS (EI) calcd. for C36H20Cl4
37ClF [M]+: 642.959531; found 642.959531, calcd. 

for C36H20
35Cl5F [M]+: 645.99622; found 645.99619. 

1-Fluoro-2,3,4,5,6-penta(4-fluorophenyl)benzene (38c): Starting with 33 (100 mg, 0.13 

mmol), Pd(PPh3)4 (10 mol%), Cs2CO3 (5eq) and 4-

fluorophenylboronic acid 17l (109 mg, 0.78 mmol) 38c was 

isolated as a white solid (57 mg, 73%). Mp 277 °C. 1HNMR 

(300 MHz, CDCl3): � = 6.51-6.68 (m, 12H, ArH), 6.80-6.86 

(m, 4H, ArH), 6.99-7.03 (m, 4H, ArH). 13C NMR (75.4 MHz, 

CDCl3): � = 113.8 (d, J = 1.7 Hz, 4CH), 114.1 (d, J = 1.7 Hz, 

4CH), 127.8 (d, J = 3.3 Hz, C), 128.3 (2C), 128.4 (d, J = 3.3 Hz, 4C), 128.6 (2C), 130.8 

(4CH2), 130.0 (d, J = 1.2 Hz, 2CH), 131.1 (d, J = 1.2 Hz, 2CH), 131.9 (d, JCF = 1.9 Hz, CF) 

132.4 (d, JCF = 2.8 Hz, CF), 139.4 (d, JCF = 2.8 Hz, CF), 154.3 (d, JCF = 244.3 Hz, 2CF), 

160.8 (dd, JCF = 247.8 Hz, 2.8 Hz, CF). 19F NMR (282 MHz, CDCl3): � = -138.7 (CF), -115.2 

(CF), -113.9 (CF). IR (ATR, cm�1): �~ = 3067 (w), 3044 (w), 2961 (w), 2853 (w), 1604 (w), 

1512 (m), 1424 (w), 1390 (w), 1299 (w), 1220 (m), 1158 (m), 1091 (w), 1016 (w), 930 (w), 

858 (w), 817 (m), 769 (w), 703 (w), 665 (w), 583 (w), 533 (m), 456 (w) cm-1. MS (EI, 70 eV): 

m/z (%) = 566 (100) [M]+. HRMS (EI) calcd. for C36H20F6 [M]+: 566.146076; found 

566.14637. Anal. Calcd for C36H20F6: C, 76.32. H, 3.56. Found: C, 76.35. H, 3.60. 
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Abbreviations

 

Ac  Acetyl  

Anal  Elemental Analysis  

bp  Boiling point  

calcd  Calculated  

CI  Chemical Ionization  

COSY  Correlated Spectroscopy  

DEPT  Distortionless Enhancement by Polarization Transfer  

dr  Diastereomeric ratio  

ee  Enantiomeric excess  

EI  Electron Impact   

Et2O  Diethyl ether  

EtOH  Ethanol  

GC  Gas Chromatography  

GP  General Procedure  

HMBC  Heteronuclear Multiple Bond Correlation  

HPLC  High Performance Liquid Chromatography  

HRMS  High Resolution Mass Spectrometry  

IR  Infrared Spectroscopy  

MS  Mass Spectrometry  

mp  Melting point  

NaOEt  Sodium ethanolate  

nBuLi  n-Butyllithium  

NEt3  Triethylamine  

NMR  Nuclear Magnetic Resonance  

NOESY Nuclear Overhauser and Exchange Spectroscopy 

ORTEP Oak Ridge Thermal Ellipsoid Plot   

OTf  Triflate  

Ph  Phenyl  

ppm  Parts per million  

Rf  Retention factor  

Tf2O  Trifluoromethanesulfonic anhydride (triflic anhydride) 

TFA  Trifluoroacetic acid  
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THF  Tetrahydrofuran  

TLC  Thin Layer Chromatography  

TMS   Tetramethylsilane  

Tol  Tolyl (p-MeC6H4)  

Tos  Tosyl (p-MeC6H4SO2  
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