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1 Introduction

“Zudem gilt, dass Wirtschaft zu 50 Prozent aus Psychologie
besteht.”

Angela Merkel, 20091

Anecdote 1: In mid 2009, a school friend asked me what to do with antique gold he

recently inherited from his elderly aunt. At the time, the price of gold had been steadily

moving upward for more than six month and had reached the all time high of USD

1,000 per ounce. My friend noted that the increasing gold price had made him think

about selling it. Anecdote 2: For his graduate studies, my brother received BAföG, an

interest-free student loan from the German administration that has to be repaid usually

starting no later than five years after graduation. He graduated one year ago and has

been working since that time, making good money. Several weeks ago, he stated that

he wanted to repay the loan earlier. I asked him why, it is interest-free. He responded:

“I just want to get rid of it.“ Anecdote 3: Some weeks ago, I refueled my car. Next to

me was a customer who put exactly EUR 20.01 of fuel in his car. I asked him why he

did not fill his car up. He responded: “That’s enough to get along the next two days.

Prices will surely drop.”

The preceding anecdotes all illustrate human inconsistencies in financial decision

making. My school friend’s tendency to short his gold position is part of the disposition

effect, a behavioral anomaly in which investors tend to sell assets whose prices have

increased, while keeping assets whose prices have decreased (Shefrin and Statman, 1985).

Gold price continued to increase to USD 1,500 in April 2011. Meanwhile, although the

BAföG is an interest-free loan, my brother would like to settle his loan before the five-

year period is over. Most people, including my brother, do not manage their investments

1Translation: 50 percent of economics is psychology. Interview in the Frankfurter Allgemeine Zeitung
on November 14, 2009.
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CHAPTER 1. INTRODUCTION

as a whole. Instead, they separate choices into mental accounts (Thaler, 1999). My

brother manages his student loan in a separate account and is therefore prone to close

this negative account. Finally, the customer at the gasoline station was confident that

prices would drop and therefore was willing to pay extra transaction costs. The effect in

which someone’s subjective confidence in their judgments is reliably greater than their

objective accuracy is called overconfidence (Barber and Odean, 2001).

Other behavioral anomalies in financial decision making in general and portfolio

formation in particular include (i) lacking diversification, individual investors hold only

a few assets (Barber and Odean, 2000); (ii) naive diversification, the tendency to split

money evenly across available assets (Benartzi and Thaler, 2001); (iii) home bias, the

tendency to prefer domestic over foreign assets (French and Poterba, 1991); (iv) lacking

self-control, people’s difficulty controlling their emotions (Mitchell and Utkus, 2006); (v)

availability, people’s tendency to predict the likelihood of an outcome based on how

many outcomes of each type come readily to mind (Tversky and Kahneman, 1973);

(vi) emotions and cognition, errors that stem from the way that people think (Wright

and Bower, 1992); and (vii) herding, describing how individuals in a group act together

without planned direction (Shiller, 2005, pp. 157-172).

Traditional economic theory is unable to explain the anecdotes and other well-

documented anomalies, such as those mentioned above, because it assumes that individ-

uals have complete information and are able to process this information, that individuals

are rational decision makers, and that individuals’ preferences are well-defined and con-

stant over time. It further posits that people make decisions by maximizing a utility

function in which all relevant constraints and preferences are included and weighed ap-

propriately. Based on these assumptions, the path-breaking work by Markowitz (1952b)

prescribes that portfolio formation is solely based on expected portfolio return and port-

folio variance, and that decision makers maximize quadratic utility. However, mean-

variance theory has not become part of the accepted wisdom among individual and

institutional investors. Instead, a sequence of violations of mean-variance behavior has

been documented in the literature including a lack of diversification, the tendency to di-

versify naively, and ignorance of correlations between assets associated with a rejection

of the portfolio variance as an adequate measure of risk (Kroll et al., 1988a,b). In con-

trast, behavioral portfolio theory, which takes violations of rational economic behavior

into account, describes rather than prescribes investors behavior. Behavioral portfolio

theory is a subdiscipline of behavioral finance, which Shefrin (2002, p. 3) defines briefly

“... as the application of psychology to financial behavior”.

The aim of this dissertation is to investigate new theoretical and empirical issues

related to behavioral portfolio theory, including aspects like the lack of diversification

(chapters 2, 5), home bias (chapter 3), lack of self-control (chapters 2, 5), availability

heuristic (chapter 2), emotion and cognition (chapters 2, 5), mental accounting (chapters

9



CHAPTER 1. INTRODUCTION

4, 5), herding (chapter 3), ignorance of correlations (chapters 2, 3, 4), and overconfidence

(chapter 5). Each of the following four chapters is part of an independent research paper

and can thus be studied separately. The relevant literature is also presented separately

and is therefore omitted at this point.

Chapter two investigates the role of behavioral portfolio management in old-age pro-

vision in Germany. I implement a general version of Shefrin and Statman’s (2000) single

mental account model, which combines SP/A theory, the underlying decision frame-

work, and Telser’s (1955) safety-first rule. Assuming empirically distributed returns,

the model is then transformed in its deterministic equivalent, which is solved numer-

ically using mixed-integer linear programming. Using return data of the seven most

suitable German retirement investments, I simulate security-minded, potential-minded,

cautiously hopeful and mean-variance portfolios, where the latter serves as a comparison

model.

An important feature of behavioral portfolio theory is the aspiration level or threshold

return that is independently chosen by the investor. The threshold level is commonly

assumed to be fixed. However, in chapter three, I present several reasons for a random

threshold level and suggest an answer to the open question when the random threshold

is preferred over the fixed and vice versa.

Whereas chapters two and three deal with a single mental account, chapter four

studies behavioral portfolio theory with multiple mental accounts. Based on a recent

paper by Das et al. (2010), I analyze a model in which goal-specific asset selection is

allowed, namely, the investor is allowed to select assets that meet the goal of, for instance,

a retirement account. In this case, subportfolios - a solution to a mental account -

induce a mean-variance efficient frontier on which the aggregate portfolio can be found.

When goal-specific asset selection is not allowed, I present a closed-form solution and a

utility function consistent with Friedman and Savage’s (1948) solution to the well-known

insurance lottery puzzle.

Based on a joint research paper with Kathrin Johansen, chapter five analyzes indi-

vidual investors’ gambling behavior in general and the relation between lottery tickets

and common stocks in particular. Using behavioral theoretic arguments, we hypothesize

that both assets act as substitutes. We test this hypothesis using the Einkommens-

und Verbrauchsstichprobe (German survey of household income and expenditure), a

representative dataset for the German population for a sample of more than 40,000

households.

10



2 A Behavioral Portfolio Analysis of
Retirement Portfolios in Germany
This chapter is based on Singer (2009).

“Der Unterschied zwischen Wunsch und Wirklichkeit bei der
privaten Altersvorsorge hat ein Rekordniveau erreicht.”

Michael Meyer, 20101

2.1 Introduction

To most individuals saving for retirement is the number one financial goal. Due to demo-

graphic changes, tight public budgets, and reduced generosity of occupational pension

plans never in the post-World War Two era has been more reason to encourage work-

ers to provide for their own retirement. Many recent studies, among them Oehler and

Werner (2008), Bateman et al. (2010), Bridges et al. (2010), Knoll (2010) and Mitchell

(2010), point to the shift of responsibility for an adequate old age provision toward indi-

viduals’ shoulders. In a 2009 OECD study, Antolin and Whitehouse document a pension

gap for 11 of 30 OECD countries, among them the United States, the United Kingdom,

Germany and France. They define the pension gap as the difference between the replace-

ment rate - the relationship between income in retirement and earnings when working

- from the mandatory pension system and the OECD average. For the 11 countries

they calculate a pension gap of 18.2% on average. To close this gap, however, reveals a

complex task to most people since it requires accurate estimates of uncertain future pro-

cesses including lifetime earnings, asset returns, tax rates, family and health status, and

1Translation: The divergence between individuals’ desire and their actual behavior in provision for old
age has reached its highest level. In a special supplement on saving for retirement to the Frankfurter
Allgemeine Zeitung on November 24, 2010. Michael Meyer is chief customer officer at Deutsche
Postbank AG in Bonn.
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CHAPTER 2. A BEHAVIORAL PORTFOLIO ANALYSIS OF RETIREMENT
PORTFOLIOS IN GERMANY

longevity. As a consequence, people reveal several behavioral problems when confronted

with this decision problem, which can not be explained by traditional economic models,

such as mean-variance theory (Markowitz, 1952b). For an overview of deviations from

traditional economic theory in the retirement planning context see for example Mitchell

and Utkus (2006), Oehler and Werner (2008), and Knoll (2010).

The aim of this chapter is therefore to investigate the role of behavioral portfolio

selection in provision for old age. The model used here is a general version of behavioral

portfolio theory by Shefrin and Statman (2000) and is employed to return data of re-

tirement investments considered as most suitable by German households. To show the

difference to traditional portfolio theory, I also compute mean-variance portfolios and

find that they are not able to describe “real” investors behavior. Behavioral portfolios,

in contrast, exhibit a large difference to mean-variance portfolios in terms of level of

diversification, an impact of emotions since the security-minded (potential-minded) is

the most conservative (aggressive) portfolio, and concentrated portfolios with a large

proportion in only one secure asset and a small proportion in risky assets. I conclude

that behavioral portfolio theory has remarkably power in understanding, describing and

selecting retirement portfolios.

This chapter contributes to the existing literature in at least three ways: One, it

provides a numerical rather than a probabilistic version of behavioral portfolio theory,

that can be applied to a large amount of data and is therefore well-suited for financial

planners and financial software. Two, simulated portfolios indicate that behavioral port-

folio theory performs better in analyzing retirement investments than traditional theory.

Three, related to Hoffmann et al. (2010), this chapter successfully demonstrates how

behavioral portfolio theory can be applied to real financial problems.

The rest is organized as follows: Section 2.2 contains the theoretical background

including the underlying decision framework, Shefrin and Statman’s (2000) portfolio

model, the deterministic equivalent version and a brief description of mean-variance the-

ory. Section 2.3 descriptively analyzes responses of more than 10,000 German households

on the question of suitability and ownership of retirement investments. Based on the

results, I collect return data of the seven most suitable retirement investments. Section

2.4 presents optimal behavioral and mean-variance portfolios. Section 2.5 discusses the

findings in the light of related studies, provides several conclusions and recommendations

for financial planning.

2.2 Theoretical background

This section is divided into five subsections and starts in 2.2.1 with a brief introduction

to rank-dependent utility theory. Based on this, subsection 2.2.2 presents SP/A theory,

the underlying decision model. Subsection 2.2.3 shows how Shefrin and Statman (2000)

combine SP/A theory and behavioral portfolio selection. Subsection 2.2.3 ends with pro-

12
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PORTFOLIOS IN GERMANY

viding a different formulation of Shefrin and Statman’s (2000) single mental accounting

behavioral portfolio theory. As this model is probabilistic, subsection 2.2.4 provides a

deterministic equivalent version that can be treated numerically by mixed-integer linear

programming. Finally, to relate the results obtained with behavioral portfolio theory

to textbook theory, subsection 2.2.5 gives a brief introduction to the well-known mean-

variance portfolio model.

2.2.1 Rank-dependent utility

The best way to understand rank-dependent utility, which was independently proposed

by Quiggin (1982), Yaari (1987), Allais (1988) and Quiggin (1993), is to start with

expected utility

EU(Ri) =
m∑
j=1

pju(Rij) , (2.1)

in which u(Rij) is the utility of outcome j for lottery Ri and the pj ’s are the outcomes’

associated probabilities. As the primary goal of this dissertation is to study a portfolio

selection problem, Rij is interpreted as return of asset i at time j with i = 1, . . . , n.

Rank-dependent utility assumes that returns are ordered from lowest to highest, i.e.

Ri,1 ≤ . . . ≤ Ri,m, and substitutes decision weights, w(p), for probabilities,

RDU(Ri) =

m∑
j=1

w(pj)u(Rij) , (2.2)

where

w(pj) = h

(
j∑

k=1

pk

)
− h

(
j−1∑
k=1

pk

)
(2.3)

and the function h transforms decumulative probabilities into the range [0, 1]. Let Dij =

prob(Ri ≥ Rij) denote the decumulative probability distribution function and assuming

utility is linear,2 equation (2.2) can be equivalently written as

RDU(Ri) =
m∑
j=1

h(Dij)(Rij −Ri,j−1) (2.4)

with Ri,0 = 0 for all i. In the separate appendix I show that equation (2.2) and (2.4)

are formally the same. Note, in the special case where h is the identity function, rank-

dependent utility collapses to expected utility. In expected utility, risk aversion is equiv-

alent to concave utility, whereas in rank-dependent utility with linear utility function,

however, risk aversion is equivalent to a convex probability transformation function, h

(see Quiggin, 1993).

2The special case of linear utility is what Yaari (1987) assumes in his “dual theory of choice under
risk”.
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2.2.2 SP/A Theory

SP/A theory developed by Lopes (1987) and Lopes and Oden (1999) is a dual criterion

theory of choice under uncertainty in which the process of choosing between alternatives

entails integrating two logically and psychologically separate criteria: The SP-criterion

in which S stands for security and P stands for potential captures individuals’ desire for

both risk aversion (security) and risk loving (potential) and is closely related to Friedman

and Savage’s (1948) observation that individuals who buy insurance policies often buy

lottery tickets at the same time. The A-criterion stands for aspiration and operates on

a principle of stochastic control (Lopes and Oden, 1999, p. 291), that is individuals are

assumed to assess the attractiveness of a lottery by the probability that the lottery fails

to achieve an aspiration level.

In the SP/A framework, two emotions operate on the willingness to take risk: fear

and hope3. Lopes and Oden (1999) model these emotions using rank-dependent utility.

Specifically, the SP-criterion is modeled by equation (2.4) in which the probability trans-

formation function has the following shape: Fear is what Lopes (1987) and Lopes and

Oden (1999) call security-mindedness and leads individuals to overweight probabilities

attached to unfavorable outcomes, that is modeled by4

hS(D) = D1+qS , qS > 0 . (2.5)

Hope is what Lopes (1987) and Lopes and Oden (1999) call potential-mindedness and

leads individuals to overweight probabilities attached to favorable outcomes, that is

modeled by

hP (D) = 1− (1−D)1+qP , qP > 0 . (2.6)

As we have learned from Friedman and Savage (1948) that fear and hope reside within

individuals simultaneously, the final shape of the probability transformation function is

a convex combination of hS and hP :

h(D) = λhS(D) + (1− λ)hP (D) , λ ∈ [0, 1] . (2.7)

If λ = 1, the decision maker is strictly security-minded. If λ = 0 the investor is strictly

potential-minded. If 0 < λ < 1, the decision maker is both with the magnitude of fear

and hope depending on λ. Lopes and Oden (1999) call this behavior cautiously hopeful

and also distinguish between λ for gains and for losses. The probability transformation

function plays a key role in descriptive decision models such as SP/A theory and Cu-

mulative Prospect Theory (Tversky and Kahneman, 1992). For a detailed discussion

of the probability weighting function see for example Prelec (1998). Figure 2.1 shows

decumulative probability distribution functions for security-minded, potential-minded

and cautiously hopeful behavior.

3In related literature the terms pessimism and optimism are sometimes used instead.
4For sake of simplicity, subscripts are omitted at this point.
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Note: The straight line represents the decumulative probability distribution function. hS(D) shows
strictly security-minded behavior with parameters qS = 3 and λ = 1, while hP (D) shows strictly
potential-mindedness with parameters qP = 3 and λ = 0. h(D) illustrates cautiously hopeful behavior
with parameters qP = qS = 3 and λ = 0.5. Outcomes are not specified, but rank from lowest to highest.

Figure 2.1: Transformed decumulative probability distribution functions

2.2.3 A stochastic behavioral portfolio model

In their behavioral portfolio theory, Shefrin and Statman (2000) develop a single and a

multiple mental account version. As this chapter focuses on the specific goal of a secure

retirement, that is organized in one mental account (see for example Das et al., 2010),

the single mental account behavioral portfolio model is of particular interest. In the

model, Shefrin and Statman (2000) combine SP/A theory and Telser’s (1955) safety-

first rule, that is, investors select portfolios which maximize expected return subject to

the constraint that the probability of not achieving a threshold return is bounded. In

this context the threshold return is interpreted as aspiration level. In contrast to Shefrin

and Statman (2000) I provide a different definition of the single account version:

Problem 1.

max
x

xTRDU(R) s.t.

prob(xTR < A) ≤ α , (2.8)

1Tx = 1 , (2.9)

x ≥ 0 , (2.10)

where 1 = (1, . . . , 1)T ∈ Rn, x = (x1, . . . , xn)T being the vector of portfolio weights
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of n assets with RDU(R) ∈ Rn being the behavioral mean return vector, A is the

aspiration level of portfolio return and the maximum probability of the portfolio failing

to reach A is α. The SP-criterion is captured in the objective of problem 1 by the vector

of rank-dependent utilities of all n assets, i.e. equation (2.4) is applied to each of the

n assets. The aspiration-criterion is captured in the safety-first constraint (2.8) by the

parameter pair (A,α), where α denotes the probability of not achieving aspiration level

A. Note, the feasible domain of problem 1 is only determined by the aspiration-criterion

and not by the SP-criterion. Equation (2.9) is the fully invested or budget constraint

and (2.10) is the short sale constraint, which was not explicitly imposed by Shefrin

and Statman (2000), but, to my belief, appears essential in the context of retirement

planning. Shefrin and Statman (2000, pp. 133) provide a solution to a simplified version

of problem 1 under empirical distributed returns. Under the same assumption, the

subsequent subsection provides a more general deterministic version of problem 1, which

can be solved numerically by mixed-integer linear programming.

2.2.4 An equivalent deterministic behavioral portfolio model

Many papers dealing with safety-first constraints such as (2.8) assume normal distributed

asset returns (Leibowitz and Henriksson, 1989; Leibowitz and Kogelman, 1991; Albrecht,

1993; Shefrin and Statman, 2000; Das et al., 2010; Singer, 2010), although the normal as-

sumption is mainly rejected in empirical finance. Others employ probability inequalities

such as the Chebyshev inequality to get and upper bound of the safety-first constraint

(Roy, 1952; Telser, 1955; Kall and Mayer, 2005; Singer, 2010), although Chebyshev’s

inequality is a rather crude approximation. In this chapter, however, I assume the

general case of empirical distributed returns, which is closely related to Shefrin and

Statman (2000, Theorem 1, pp. 133). This assumption is particularly driven by the fact

that SP/A theory is a discrete choice model. Using techniques from stochastic linear

programming (Prékopa, 1995; Birge and Louveaux, 1997; Uryasev and Pardalos, 2001;

Ruszczyński and Shapiro, 2003; Kall and Mayer, 2005), especially the transformation

technique by Raike (1970), problem 1 can be restated as

Problem 2.

max
x

xTRDU(R) s.t.

xTRj +M(1− dj) ≥ A , j = 1, . . . ,m , (2.11)
m∑
j=1

pjdj ≥ 1− α , (2.12)

dj ∈ {0, 1} , j = 1, . . . ,m , (2.13)

1Tx = 1 , (2.14)

x ≥ 0 , (2.15)
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where Rj is the realized return vector of all assets at time j, dj ’s are binary auxil-

iary variables, pj ’s are the probabilities from equation (2.1) and M is a large number

(The separate appendix provides a precise definition of M .). Problem 2 is the deter-

ministic equivalent of problem 1 and can be treated numerically. As problem 2 has n

real (x1, . . . , xn) and m binary (d1, . . . , dm) decision weights it belongs to the class of

mixed-integer linear optimization problems. To solve this problem, I use SCIP (Solving

Constraint Integer Programs) developed by Achterberg (2007), currently the fastest

non-commercial mixed-integer programming solver.

2.2.5 Mean-variance portfolio model

In mean-variance portfolio theory (Markowitz, 1952b), investors select efficient portfolios

on the basis of portfolio variance, σ2, and expected return, µ. The model with short sale

constraint states as follows

Problem 3.

min
x

σ2(xTR) s.t.

xTµ ≥ A , (2.16)

1Tx = 1 , (2.17)

x ≥ 0 , (2.18)

in which σ2(xTR) is the variance of the portfolio return and A is the minimum

desired return and has a similar meaning as the aspiration level in behavioral portfolio

theory. The optimal solution to problem 3 minimizes the portfolio variance and achieves

at least return A. If short sales are allowed, i.e. constraint (2.18) is omitted, problem

3 can be solved analytically (see for example Huang and Litzenberger, 1993), otherwise

by quadratic programming. For a detailed introduction to mean-variance theory see for

example Markowitz (1970) or Elton et al. (2007).

2.3 Data

To get a better understanding of retirement portfolios in Germany I first analyze survey

data of the Spiegel-Verlag survey “Soll und Haben” (Debit and Credit) 2004 in which

10,100 individuals in Germany were asked about their attitudes on the subject of invest-

ments. Among other things surveyed, subjects were asked about the suitability and their

actual ownership of investments as provision for old age. Table 2.1 shows responses to

both questions. The first two rows of table 2.1 reveal that the most popular investments

as provision for old age are the endowment insurance and property used by owners. Con-

cerning actual ownership, savings such as savings accounts, savings contracts/plans and

savings accounts with special interest rates rank third. Hence, retirement portfolios are
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Suitability of investments
as provisions for old age

Ownership of investments
as provisions for old age

# persons % # persons %

Endowment insurance 3630 34.2 2291 18.0

Property used by owners 3562 33.0 1873 16.7

Savings account 733 8.7 1391 16.2

Savings contract/ savings
plan with regular de-
posits/ agreed term

1537 15.2 867 7.4

Savings account with spe-
cial interest rate

971 10.6 664 7.1

Stocks and equity funds 1173 8.3 896 6.0

Building society savings
contract

986 9.2 532 4.4

Private pension insurance 2172 18.6 618 4.1

Fixed-interests securities 1391 11.7 575 4.0

Occupational pension 1305 11.0 506 3.4

Property let to tenants 1843 16.3 396 2.5

Gold and other luxury
goods

360 3.8 98 0.8

Note: Multiple responses were allowed. Investments are sorted in descending order by ownership.

Table 2.1: Suitability and ownership of investments for old age provision

dominated by relatively safe assets, which has also been documented by Börsch-Supan

and Eymann (2000) who analyzed German household portfolios in the 1980s and 1990s.

Only 6% and 4% hold equity and bonds, respectively. Notably, only 4.1% own a private

pension insurance, although it ranks third in terms of suitability (18.6%). Moreover,

table 2.1 documents the “self-control problem” (Mitchell and Utkus, 2006; Oehler and

Werner, 2008), which supports the view of a wide divergence between individuals’ desire

and their actual behaviors. Among all assets, the percentages of suitability are higher

than those of ownership. One reason for the divergence is that subjects are attracted

by more assets as they actual own, which implies a lack of diversification in realized

retirement portfolios. Clearly, I find that only 9.3% hold three or more assets and only

4% hold four or more assets.
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Based on the above findings, I collect return data of investments suited for old-age

provision:

1. Endowment insurance: To approximate returns of the endowment insurance, I

use net returns of investments published by the German Insurance Association (GDV).

2. Property: Property used by owners and property let to tenants are approximated

as one time series by the index for housing calculated by the Bundesbank, based on data

provided by BulwienGesa AG.

3. Savings accounts and other investments with banks: Savings accounts, savings

contracts/savings plans with regular deposit/agreed terms are approximated as one time

series following Westerheide’s (2005) methodology. I extract following time series: The

interest rates for savings deposits are composed of deposit rates of banks in Germany

with minimum rates of return and with agreed notice of three months. The average

rates are calculated as unweighted arithmetic means from the interest rates reported to

be within the spread. The spread is ascertained by eliminating the reports in the top

5% and the bottom 5% of the interest rate range. Including rates for savings deposits,

I consider the difference between the Bundesbank’s interest rate statistics and the new

European Central Bank’s statistics, with the latter started at January 2003. Moreover,

I consider savings bonds with fixed maturity of four years, overnight money, savings

with/without contract period for varying investment volumes, and fixed-term deposits.

All time series are extracted from Deutsche Bundesbank. A representative time series is

obtained by calculating the arithmetic mean of all time series mentioned above.

4. Stocks: Investments in stocks, equity funds and other investment funds are repre-

sented by the returns of the DAX performance index.

5. Building society savings contract: To approximate returns of the building society

savings contract I follow Statistisches Bundesamt Deutschland (Federal Office of Statis-

tics) and use yields on debt securities outstanding issued by residents, also published by

Deutsche Bundesbank.

6. Bonds: Fixed-interests securities, private and occupational pensions are approxi-

mated as one time series by the returns of the REX performance index, which measures

the performance of German government bonds.

7. Gold and other luxury goods: Returns of gold and other luxury goods are

approximated by the returns of gold traded at Frankfurt stock exchange.

In total, I collect monthly return data for all assets from January, 1998 to December,

2007, which comprises ten years. The returns of the endowment insurance and property,

for which only yearly data is available, are divided equally into monthly returns. Table

2.3 shows summary statistics of the dataset.
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Min Max Mean S.D. Skewness Kurtosis

Endowment insurance 0.3875 0.6317 0.4839 0.1011 0.6132 -1.4415

Property -0.0930 0.1479 0.0330 0.0684 -0.1608 -0.6400

Savings accounts and
other investments with
banks

0.1557 0.3548 0.2423 0.0550 0.3222 -0.9532

Stocks -29.3327 19.3738 0.5341 6.8776 -0.9845 3.2687

Building society savings
contract

0.2417 0.4667 0.3522 0.0579 0.1425 -0.9108

Bonds -1.9184 2.4964 0.3889 0.8708 -0.1866 -0.4473

Gold and other luxury
goods

-11.8484 14.7314 0.6150 3.4697 0.2290 2.5230

Table 2.2: Summary statistics of monthly return distributions of retirement assets

2.4 Results

Using the ten year dataset described in the previous section, problem 2 is solved by

mixed-integer linear programming. The SP-criterion is determined by the parameters

qS that measures the strength of security-mindedness, qP that measures the strength of

potential-mindedness, and λ that determines the strength of security relative to poten-

tial. Note, if qS and qP are set to zero, problem 1 and 2 collapses to Telser’s (1955)

model which selects portfolios that maximize expected return subject to the safety-first

constraint (2.8). The aspiration-criterion is determined by the parameters A and α,

where α denotes the probability of not achieving aspiration level (threshold return) A.

As the SP-criterion only impacts the objective function, the feasible domain of problem

1 and 2, respectively, is solely determined by the aspiration-criterion, i.e. fear and hope

have no impact on the feasibility of problem 1 and 2, respectively. Figure 2.2 shows

feasible (A,α) combinations for the ten year dataset in a reasonable range. Figure 2.2

documents a positive relation between A and α in the sense that when α decreases A

must also decrease to preserve feasibility.

The remainder of this section documents optimal portfolio weights of four different

scenarios:

1. Security-minded behavior: In this scenario, the investor is assumed to be strictly

security-minded with parameters qS = 0.05 and λ = 1. To the best of my knowledge it

exists no estimate for qS based on real data for this scenario.
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α
0.1 0.2 0.3 0.4 0.5

feasible

infeasible

A

0.2

0.4

0.6

0.8

Figure 2.2: Feasible (A,α)-combinations

2. Potential-minded behavior: In this scenario, the investor is assumed to be strictly

potential-minded with parameters qP = 0.05 and λ = 0. To the best of my knowledge it

exists no estimate for qP based on real data for this scenario.

3. Cautiously-hopeful behavior: In this scenario, I use the parameter estimates

by Lopes and Oden (1999), which are qS = qP = 1.053 and λgains = 0.505 for gains

and λlosses = 0.488 for losses. Undocumented results indicate that cautiously hopeful

behavior modeled by the probability weighting function of Cumulative Prospect Theory

(Tversky and Kahneman, 1992) does not significantly differ from that modeled by SP/A

theory. As the primary goal of this chapter is not the probability weighting function, I

do not document these results, but they are available upon request.

4. Mean-variance behavior: In order to compare results from behavioral portfolio

theory with those of classic portfolio theory, I also calculate optimal portfolios using

problem 3. The aspiration level, A, is the same in both problem 2 and 3.

Figure 2.3 contains optimal portfolios for all scenarios with A = 0.2 and various α.

Note, as the parameter α is not part of the mean-variance model, all panels of figure 2.3

show the same mean-variance portfolio.5 Among all behavioral portfolios, a large con-

centration of wealth in the endowment insurance can be observed; in the security-minded

scenario it reaches even 100%. All other secure investments (property, savings and build-

ing society savings contract) are uninvested by all behavioral portfolios. The reason for

5The global minimum variance portfolio is (µ, σ) = (0.185, 0.050). Thus, choosing µ = A = 0.2 delivers
the optimal portfolio lying on the upper branch of the mean-variance frontier and is therefore efficient
in mean-variance sense. Any µ or A below the global minimum variance portfolio delivers optimal
but inefficient portfolios.
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this result is that the return of the endowment insurance is the highest among all secure

investments that meet the aspiration level. This pattern of behavioral portfolios is the

same as that documented by Shefrin and Statman (2000), that is a combination of risk-

free return (endowment insurance) and a lottery ticket (the proportion invested in risky

assets). Mean-variance portfolios, in contrast, invest in all secure assets, that is because

the key element of mean-variance theory is exploiting correlations between assets. The

structural difference between behavioral and mean-variance portfolio theory leads also to

the result that mean-variance portfolios are more diversified than behavioral portfolios,

a pattern which I observe for all documented and undocumented results.

Among all behavioral portfolios the security-minded is the most conservative portfolio

as it invests 100% in the endowment insurance, whereas cautiously hopeful and potential-

minded portfolios invest a small fraction in risky assets. As can be seen from panel 2.3(b)

and 2.3(c) the potential-minded portfolio is the most aggressive behavioral portfolio as it

invests the largest fraction in risky assets. The reason why the mean-variance portfolio

has its largest position in savings, is that the mean return of savings, which is 0.2423,

meets the aspiration level of A = 0.2, and the standard deviation of savings is the lowest

among all assets. As the objective in mean-variance problem 3 is to minimize portfolio

variance, savings take the largest fraction. Note further, as α increases the proportion

invested in safe assets decreases while the proportion in risky assets increases.

Figure 2.4 contains optimal portfolios for all scenarios for A = 0.4 and α = 0.2 (panel

2.4(a)) and α = 0.3 (panel 2.4(b)). Note, it exists no feasible solution for α = 0.1, which

can also be seen from figure 2.2. For all behavioral portfolios, the same pattern as for

A = 0.2 can be observed. But, the mean-variance portfolio is not invested in property

and savings which is due to the fact that the mean return of property (0.0330) and

savings (0.2423) does not achieve the aspiration level (threshold return) of A = 0.4,

respectively.

2.5 Discussion

This chapter investigates the role of behavioral portfolio theory in provision for old

age in Germany. The behavioral portfolio model implemented here is a general version

of Shefrin and Statman’s (2000) single mental account model which combines SP/A

theory and Telser’s (1955) safety-first rule. Assuming empirical distributed returns the

model is then transformed in its deterministic equivalent, which is solved numerically

by mixed-integer linear programming. Using return data of the seven most suitable

German retirement investments, I simulate portfolios for security-mindedness, potential-

mindedness, cautiously hopeful and mean-variance behavior, where the latter serves by

way of comparison.

The main findings indicate (i) an impact of emotions on behavioral portfolios, since

the security-minded (potential-minded) is the most conservative (aggressive) portfolio;
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(ii) concentrated behavioral portfolios with a large proportion in only one secure asset

(endowment insurance) and a small proportion in risky assets; and (iii) mean-variance

portfolios which are more diversified than behavioral portfolios. To relate the results

to others, first, I observe the same pattern of behavioral portfolios as documented by

Shefrin and Statman (2000), that is a combination of risk-free return (endowment insur-

ance) and a lottery ticket (the proportion invested in risky assets). This pattern is also

similar to that in Shiller’s (2005) life-cycle portfolios which allocate account balances

between stocks and bonds. Second, the large concentration in the endowment insurance

is consistent with my own empirical findings in section 2.3 and those by Börsch-Supan

and Eymann (2000) for German household portfolios in the 80s and 90s. Third, the lack

of diversification in simulated behavioral portfolios has been widely shown in empiri-

cal studies on private portfolios, among them Blume and Friend (1975), Kelly (1995),

Tyynelä and Perttunen (2002) and Goetzmann and Kumar (2008). Fourth, since mean-

variance theory exploits the correlation structure of all assets, it is theoretically not

surprising that mean-variance portfolios invest in more than one “riskless” asset. But,

allowing for the fact that individual investors ignore correlations (Kroll et al., 1988b;

Siebenmorgen and Weber, 2003), this result may practically appear puzzling to most

individual investors. Taken as a whole, I conclude that behavioral portfolio theory has

remarkably power in understanding, describing and selecting retirement portfolios.

Nevertheless, I am completely aware of at least four shortcomings. One, the fact

that I was not able to obtain precise return data for some retirement investments -

predominantly secure investments - may induce an approximation bias. Two, as I assume

empirical distributed returns, the deterministic model is of mixed-integer type, for which

computing time increases disproportional as input size increases. Three, retirement

planning involves long time horizons. Thus, one could argue that dynamic models are

better capable in the domain of life cycle saving. Four, according to the SP-criterion of

SP/A theory, probability distributions of returns are only transformed in the objective

function, whereas they are treated as raw probabilities in the safety-first constraint (2.8).

Consequently, return distributions in the constraints should also be transformed.

These shortcomings leave much room for future research. Another extension involves

the aspiration level, A, which is assumed to be fixed. However, in long time decisions

investors’ aspiration may vary or they wish a benchmark return such as the return of

the S&P500 as aspiration level. In such cases, the aspiration level can be modeled as a

random variable (see for example Singer (2010) and chapter three of this dissertation).

Instead of modeling emotions such as hope and fear, rank-dependent utility can also

model the availability heuristic (Tversky and Kahneman, 1973) in which people predict

the likelihood of an outcome based on how many outcomes of each type (return increase

or return decrease) come readily to mind. As recent outcomes are more available than

those many years ago, the availability heuristic is modeled by rank-dependent utility
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with outcomes sorted by date rather than from lowest to highest.

The results presented here have several implications for professional advisers and

for financial planning software. As ”‘[f]inancial planners have a responsibility to guide

clients in a manner consistent with how those clients are likely to behave” (Mitchell,

2010, p. 5), this model helps them to understand how their clients behave and guide

them on how they should behave, i.e. give a suitable advice. Since this model can

simulate several behavioral scenarios it can be used as a powerful tool in institutional

and private portfolio management software. It can also be used as an “auto-pilot” that

Mitchell and Utkus (2006, p.92) suggest as a default plan to prevent people from inertia

and encourages them to more retirement saving.

2.A Appendix

2.A.1 Proof of equation (2.4)

Proposition. Let R1 ≤ . . . ≤ Rm be ordered outcomes of the random variable R,

pj ’s are the outcomes’ associated probabilities and Dj = prob(R ≥ Rj) denotes the

decumulative probability distribution function. Then the expected value, E(R), can be

written as

E(R) =
m∑
j=1

Dj(Rj −Rj−1) , (2.19)

with R0 = 0.

Proof: As outcomes are sorted from lowest to highest, the decumulative probability

distribution function can be restated as Dj =
∑m

i=j pi. Then, equation (2.19) can be

written as
m∑
j=1

m∑
i=j

pi(Rj −Rj−1) =

m∑
j=1

Rj

m∑
i=j

pi −
m∑
j=1

Rj−1

m∑
i=j

pi .

Extracting the term for j = m from the first addend and rearranging indices in the

second addend yields

Rmpm +
m−1∑
j=1

Rj

m∑
i=j

pi −
m−1∑
j=1

Rj

m∑
i=j+1

pi ,

which can be written as

Rmpm +
m−1∑
j=1

Rj

 m∑
i=j

pi −
m∑

i=j+1

pi


︸ ︷︷ ︸

=pj

=
m∑
j=1

pjRj .

�
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2.A.2 A precise definition for M in problem 2

If di = 1, M drops out. If di = 0, M has to be chosen such that constraint (2.11) always

holds. The worst can happen is when x takes one for the lowest outcome

Rmin := min
j=1,...,m
i=1,...,n

Ri,j .

Thus, the left-hand side of (2.11) takes the value Rmin +M . To ensure feasibility, M has

to be chosen such that M ≥ A − Rmin. In our dataset Rmin is -29.33. Hence, M must

be at least A+ 29.33.
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(a) α = 10%

(b) α = 20%

(c) α = 30%

Figure 2.3: Optimal portfolios for security-minded, potential-minded, cautiously hopeful
and mean-variance behavior for A = 0.2
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(a) α = 20%

(b) α = 30%

Figure 2.4: Optimal portfolios for security-minded, potential-minded, cautiously hopeful
and mean-variance behavior for A = 0.4
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3 Safety-First Portfolio Optimization: Fixed
versus Random Target
This chapter is based on Singer (2010).

“There’s no way to determine the probability of a loss (risk
measure) without a model.”

Robert A. Jarrow, 20111

3.1 Introduction

Portfolio optimization under the safety-first criterion is concerned with maximizing the

expected portfolio return, while, simultaneously, the probability of failing to achieve a

specified (fixed) target must fall below a critical level and has its origins in the early

papers of Roy (1952), Telser (1955) and Kataoka (1963). The safety-first risk measure is

commonly expressed by a probability statement as P (Z < T ) ≤ α where Z is a random

variable, e.g. portfolio return, T is a fixed target, e.g. a minimum desired portfolio

return and α is a critical level on the probability of failing to achieve the target.

A comparative advantage of the safety-first criterion over deviation risk measures,

such as the variance, is its consistency with the way investors perceive risk (see for

example Atwood et al., 1988; Harlow, 1991; Brogan and Stidham, 2005). Empirically,

this is shown for example in Lopes (1987), Kroll et al. (1988a), DeBondt (1998), Lopes

and Oden (1999) and Neugebauer (2008). These behaviorally appealing feature have

made the safety-first criterion attractive for behavioral portfolio theory, see for example

Shefrin and Statman (2000), Singer (2009) and the recent paper by Das et al. (2010), in

1At his keynote speech at the annual meeting of the Southwestern Finance Association 2011 in Houston,
Texas. Robert A. Jarrow is Professor of investment management, finance and economics at Cornell
University.
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which the authors transform the utility based interpretation of mean-variance portfolio

theory to the more appealing target based interpretation of safety-first portfolio theory

under the assumption of normal distributed asset returns. More generally, Kalin and

Zagst (1999) show the equivalence of mean-variance and safety-first portfolio theory for

a wide class of probability distributions.

What all the above cited papers about the safety-first model have in common is

the assumption of a fixed target T , which, however, leads to significant conceptual

disadvantages: Suppose an investment fund which seeks to achieve a fixed return T for

the next period. According to this target the fund manager purchases and sells assets.

But, what happen when the market return within the next period is greater than T?

The fund would perform rather poorly. This situation could have been avoided if the

manager had reallocated the assets according to the expected performance of the market,

which is common practice in passive portfolio management. Or, suppose a fund which

seeks to outperform the market (active portfolio management), i.e. the target for the

next investment period is the expected market performance plus some extra return.2

Or, from an individual perspective the target may not even be known. Many individuals

have the target of “being successful”, but only a very few know precisely which selection

of money, leisure time, culture etc. must be attained to achieve this target (Bordley

and LiCalzi, 2000). There are, thus, several situations in which an unknown or random

target seems to be a more suitable choice. But, does in all these situations a random

target lead to better results in terms of higher expected returns? Or, are there situations

in which a fixed target should be the preferred choice? As this chapter pays particular

attention to a portfolio optimization model, the question is, which target choice leads

ceteris paribus to larger optimal expected portfolio returns? This chapter suggests a

first answer to these questions.

In detail, assuming normal distributed asset returns, we know for example from Kalin

and Zagst (1999) that the (probabilistic) safety-first risk measure can easily be trans-

formed to a deterministic risk measure in terms of standard deviation. In section 3.2, I

use this result to transform the safety-first portfolio model to an equivalent deterministic

version, which is general enough to consider both, fixed and random targets. In section

3.3, which contains the main results, I compare optimal expected portfolio returns of the

fixed and random target strategy and obtain following results: The random target strat-

egy outperforms the fixed target strategy, if the portfolio return and the random target

are positively correlated and riskless investing is prohibited, whereas the fixed target

strategy outperforms the random target strategy, if the portfolio return and the random

target are not positively correlated and riskless investing is allowed. By providing em-

pirical evidence for the German stock market in section 3.4, I point out that the first

2For financial risk management with benchmarking see for example Basak et al. (2006), Browne (2000)
and Gaivoronski et al. (2005).
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case, in which the portfolio return and the random target are positively correlated, is

practically most relevant. As the normal distribution is a good starting point analyzing

the safety-first model (see Leibowitz and Henriksson, 1989; Leibowitz and Kogelman,

1991; Das et al., 2010), but typically violated in empirical finance, I relax this assump-

tion in section 3.5 and show, using a well-known approximation, that all results from

section 3.3 remain the same. Section 3.6 offers a discussion and concludes the chapter.

3.2 Safety-first portfolio optimization with normal distributed
asset returns

Consider an investment universe of n different financial assets with R := (R1, . . . , Rn)T

presenting the vector of random asset returns. A portfolio where short sales are prohib-

ited is defined as a vector x ∈ [0, 1]n with xi being the proportion invested in asset i and

the proportions sum to one, which is also known under the “fully invested constraint”.

Let the product xTR be the random portfolio return, T be a fixed or random target

and α be a critical probability, then the safety-first portfolio model which maximizes the

expected portfolio return subject to a safety-first constraint can be expressed as

Problem 4.

max
x∈[0,1]n

µ(xTR) s.t.

P (xTR < T ) ≤ α , (3.1)

1Tx = 1 . (3.2)

For a numerical treatment of problem 4, it is useful to provide a deterministic rather

than a probabilistic expression of the safety-first constraint (3.1), which can be eas-

ily achieved under the normal assumption (see for example Kalin and Zagst, 1999).

Many other papers studying the safety-first framework, among them Leibowitz and

Henriksson (1989), Leibowitz and Kogelman (1991), Albrecht (1993) and Das et al.

(2010), assume normal distributed asset returns. Define therefore Z := xTR − T with

Z ∼ N (µ(Z), σ2(Z)) as a normal distributed random variable with expected value µ(Z)

and variance σ2(Z). Then, employing the common textbook transformation for the

normal distribution, safety-first constraint (3.1) can be equivalently expressed as

P (Z < 0) ≤ α ⇔

P

(
Z − µ(Z)

σ(Z)
< −µ(Z)

σ(Z)

)
≤ α ⇔

Φ

(
−µ(Z)

σ(Z)

)
≤ α ⇔

Φ−1(α)σ(Z) + µ(Z) ≥ 0 , (3.3)
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where Φ−1(α) is the α-quantile of the standard normal distribution and σ(Z) is

the standard deviation obtained from drawing the positive square root of σ2(Z). The

following theorem, found in a slightly modified version in Kall and Mayer (2005, pp.

103-106) and Ruszczyński and Shapiro (2003, pp. 10), provides precise expressions for

µ(Z) and σ2(Z) (and σ(Z)).

Theorem 1. Let R = (R1, . . . , Rn)T be n-variate normal distributed with expected value

vector µ and covariance matrix Σ, R ∼ N (µ,Σ), and T be univariate normal distributed

with expected value µ(T ) and variance σ2(T ), T ∼ N (µ(T ), σ2(T )), then the random

variable Z = xTR− T is univariate normal distributed with expected value µTx− µ(T )

and variance ‖LTx−b‖2, where L ∈ Rn×r and b ∈ Rr are obtained from the factorization

of the covariance matrix cov(RT , T ) and ‖.‖ denotes the Euclidean norm.

Proof: A detailed proof, following Kall and Mayer (2005, pp. 103-106), and a remark

on the numerical treatment of the factorization of the covariance matrix are provided in

the separate appendix.

�
Note, the variance, σ2(Z), can be decomposed as

σ2(Z) = ‖LTx− b‖2 = (LTx− b)T (LTx− b) = xT LLT︸︷︷︸
=Σ

x− 2(Lb)Tx + bTb ,

where the first addend in the last equation is the variance of xTR. The middle addend is

two times the covariance between xTR and T with Lb ∈ Rn being the cross-covariance

vector between R and T . The third addend is the variance of T .

Applying then the deterministic safety-first constraint (3.3) with µ(Z) = µTx−µ(T )

and σ(Z) = ‖LTx− b‖, obtained from Theorem 1, problem 4 can be reformulated as

Problem 5.

max
x∈[0,1]n

xTµ s.t.

Φ−1(α)‖LTx− b‖+ µTx ≥ µ(T ) , (3.4)

1Tx = 1 .

Problem 5 is the deterministic equivalent of problem 4 and can be solved numerically.

It is linear in its objective but quadratic in its constraints.3 It therefore relates to

the class of quadratic optimization problems. If α ∈ (0, 1/2), the deterministic safety-

first constraint (3.4) is concave, which was first shown by Kataoka (1963). Under this

assumption, problem 5 can easily be solved by concave optimization methods.4 As α

3More precisely, (3.4) is a second-order cone constraint, also called ice-cream cone or Lorentz cone. For
a detailed discussion on that, consult Kall and Mayer (2005, pp. 273-276) and the references therein.

4If the feasible domain is concave and not empty, there exists a unique maximum. For an overview of
convex optimization see Boyd and Vandenberghe (2007)
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represents the maximum probability of failing to achieve the target and is moreover

specified by the investor herself, it is usually chosen to be low, e.g. 5% or 10%. Thus,

the restriction of α not exceeding 50% does not limit the practical value of the results.

I therefore stick throughout this chapter to this assumption.

Note, modeling a riskfree asset j can be easily achieved by setting the j-th row of L

to the zero-vector. Then, we have Rj = µj with µj being the riskfree rate. Analogously,

a fixed target instead of a normal distributed target can be achieved by setting b to the

zero-vector. Then, the correlation between the target and the asset returns is zero and

T collapses to a fixed target with value µ(T ).

3.3 Fixed versus random target

This section concerns the comparison of the fixed target strategy (S1) and the random

target strategy (S2). The fixed and the random target is denoted as T1 and T2, respec-

tively. Both strategies face the same investment universe and the same estimates for the

expected returns, µ = (µ(R1), . . . , µ(Rn))T , and covariances, Σ. Additionally, the cross-

wise covariations between the random target and the asset returns are denoted by the

n-vector (Lb) = cov(R, T2). Note, the n × r matrix L and the r-vector b are obtained

from the factorization of the covariance matrix cov(R1, . . . , Rn, T2) (see Theorem 1).

As assumed in Theorem 1, T2 is normal distributed with expected value µ(T2) and

variance σ2(T2). However, it appears reasonable to assume, µ(T2) > T1, so that the

expected target return of S2 is greater than T1. This is due to the uncertainty about

T2, making S2 riskier than S1. This extra risk must thus be compensated by a greater

expected target return. But, to keep the results as simple as possible, I assume that

µ(T2) = T1. Nevertheless, all results presented here can be straightforwardly modified

such that µ(T2) > T1, for example by defining µ(T2) := T1 + ε, ε > 0 and adapting the

calculations.

The following two subsections evaluate the differences in the performance of S1 and

S2 by comparing optimal expected portfolio returns. Subsection 3.3.1 discusses the

practical more interesting case, in which the random target and the asset returns are

crosswise positively correlated, whereas subsection 3.3.2. investigates the opposite case.

3.3.1 The positive correlated case

Consider strategy S2, in which a portfolio is managed subject to the performance of

a benchmark, such as a stock index like the S&P500, without directly investing into

the benchmark.5 There are at least three situations where this appears reasonable:

5A direct investment in an index can be obtained by purchasing an exchange traded fund (ETF) on
the index, which explicitly tracks the index and is, moreover, attractive because of low transactions
costs and tax efficiency.
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First, the portfolio manager seeks to outperform the benchmark, which is typical for

actively traded funds. Second, the manager seeks to invest in a foreign market without

suffering from foreign exchange risk. This can be realized by tracking or outperforming a

foreign representative market index, for instance the S&P500 for the U.S., by a domestic

portfolio. Third, the latter situation can also be derived from an individual perspective,

where a skilled private investor is attracted by the performance of a foreign market, but

does not want to invest directly into the market. The individual investor rather seeks to

track the performance of the foreign market by only investing in domestic stocks. This

situation is derived from a behavioral phenomenon called home bias, which was first

documented by French and Poterba (1991).

Reducing all these examples to the stock market, they have in common to track

or outperform one stock market by investing in similar but different stocks from an-

other market. I therefore assume that asset returns are positively correlated with the

benchmark return, i.e. the cross-covariance vector between R = (R1, . . . , Rn)T and T2

is

(Lb) = cov(R, T2) > 0 . (3.5)

This assumption is generally justified for most of the risky financial assets, in particular

for stock markets. Section 3.4 provides empirical evidence that even a stronger version

of (3.5) is justified for the stock market. Remark that assumption (3.5) excludes riskless

investing because it does not allow for a zero covariance. As a whole, I compare S1 with

fixed target, T1, and S2 with normal distributed target, T2 ∼ N (T1, σ
2(T2)). Applying

Theorem 1 yields

Z1 = xTR− T1 with Z1 ∼ N (µTx− T1, ‖LTx‖2)

Z2 = xTR− T2 with Z2 ∼ N (µTx− T1, ‖LTx− b‖2) .

Note, the expected values of Z1 and Z2 coincide, but the variances differ. Thus, in

the normal distributed case, the question, whether S1 outperforms S2 or vice versa, is

simply the question of comparing variances. The following theorem shows that, under a

weak additional assumption, the variance of Z2 is smaller than the variance of Z1 and

therefore, S2 outperforms S1. The proof of Theorem 2 makes use of

Lemma 1. If

cov(Ri, T2) >
1

2
σ2(T2) , i = 1, . . . , n , (3.6)

holds, then for any critical probability α ∈ (0, 1/2) the following inequality is true:

Φ−1(α)σ(Z2) + µ(Z2) > Φ−1(α)σ(Z1) + µ(Z1)

Proof: From the fully invested constraint (3.2) together with (3.6) follows

cov(R, T2)Tx >
1

2
σ2(T2) ,
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which is equivalent to

0 > −2cov(R, T2)Tx + σ2(T2) ⇔

‖LTx‖2 > ‖LTx‖2 − 2(Lb)Tx + bTb ⇔

‖LTx‖ > ‖LTx− b‖ ⇔

Φ−1(α)‖LTx‖+ µTx− T1 < Φ−1(α)‖LTx− b‖+ µTx− T1 ⇔

Φ−1(α)σ(Z1) + µ(Z1) < Φ−1(α)σ(Z2) + µ(Z2) .

Notice that the second last inequality reverses because Φ−1(α) < 0 ∀α ∈ (0, 1/2).

�

Theorem 2. Provided (3.6) holds, for any critical probability α ∈ (0, 1/2) the optimal

expected portfolio return of S2 is larger or equal than the optimal expected portfolio return

of S1.

Proof: It is sufficient to show that the set of feasible portfolios of S1, denoted as F1,

is a subset of the feasible domain of S2, denoted as F2. If F1 = ∅, then clearly F1 ⊆ F2.

All portfolios x ∈ F1 6= ∅ satisfy

P (Z1 < 0) ≤ α ⇔ Φ−1(α)σ(Z1) + µ(Z1) ≥ 0
Lemma 1⇔

Φ−1(α)σ(Z2) + µ(Z2) > 0 ⇔ P (Z2 < 0) < α .

Thus, x ∈ F2.

�
Remark, in the special case where the safety-first constraint for S1 is satisfied for

all portfolios x, i.e. P (xTR < T1) < α ∀x ∈ [0, 1]n, the entire wealth is invested in

the single asset with the highest expected return and, thus, the same is true for S2. In

this case, both investors obtain the same optimal expected portfolio return and only

one asset is hold. Remark, if inequality (3.6) reverses, the result clearly reverses, i.e.

S1 outperforms S2. But this is practically not the case as supported by the empirical

evidence in section 3.4.

Figure 3.1 in which the safety-first efficient frontiers6 for S1 and S2 are sketched,

illustrates the result: Suppose, both investors choose a critical probability of α1, then

the portfolio problem is neither feasible for S1 nor for S2. Suppose, both choose α2,

then S2 outperforms S1 as µTx∗2 > µTx∗1. Finally, suppose that they choose α3, then

their optimal expected portfolio returns coincide and their entire wealth is invested in

the single asset with the highest expected return.

6Shefrin (2005) uses the term SP/A efficient frontier, which is the same as the safety-first efficient
frontier, plotted in (µTx∗, α)-space. The safety-first efficient frontier is monotone non-decreasing as
investors prefer higher portfolio returns (µTx∗) but lower risk (α).

34



CHAPTER 3. SAFETY-FIRST PORTFOLIO OPTIMIZATION: FIXED VERSUS
RANDOM TARGET

α
α1 α2 α3

µTx∗

µTx∗(α3)

µTx∗
2(α2)

µTx∗
1(α2)

S2 S1

Figure 3.1: Safety-first efficient frontiers for S1 and S2.

3.3.2 The non-positive correlated case

This case assumes a non-positive correlation between the random target and the asset

returns, i.e. the cross-covariance vector between T2 and R is non-positive,

(Lb) = cov(R, T2) ≤ 0 . (3.7)

This situation can be motivated by at least three examples: First, from an individual

perspective the target may not even be known. Many individuals have the target of

“being successful”, but only a very few know precisely which selection of money, leisure

time, culture etc. must be attained to achieve this target (Bordley and LiCalzi, 2000).

Second, individuals may follow a group target, because they are uncertain about their

individual target. This can be interpreted as herd behavior (see for example Shiller, 2005,

pp. 157-172). In these two examples the target is not clearly specified and can thus be

interpreted as unknown or random and stochastically independent from the portfolio.

Third, there exists a negative correlation between T2 and R, which for example occurs

when T2 presents the return of a bond market whereas R are stock returns.

As in the previous subsection, the corresponding random variables for the strategies
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S1 and S2 are

Z1 = xTR− T1 with Z1 ∼ N (µTx− T1, ‖LTx‖2) and

Z2 = xTR− T2 with Z2 ∼ N (µTx− T1, ‖LTx− b‖2) ,

respectively, obtained from Theorem 1. Notice, in the case where T2 and R are stochas-

tically independent, the variance of the sum is the sum of variances, that is

σ2(Z2) = σ2(xTR− T2) = σ2(xTR) + σ2(T2) = ‖LTx‖2 + σ2(T2) .

From this, it follows immediately that S2 is riskier than S1 and therefore S1 outperforms

S2. In the following I show that this is also true, when asset returns and the random

target are non-positively correlated. The proof of Theorem 3 makes us of

Lemma 2. Provided (3.7) holds, for any critical probability α ∈ (0, 1/2) the following

inequality is true:

Φ−1(α)σ(Z2) + µ(Z2) < Φ−1(α)σ(Z1) + µ(Z1)

Proof:

0 < −2 cov(R, T2)Tx︸ ︷︷ ︸
≤0

+σ2(T2)︸ ︷︷ ︸
>0

⇔

‖LTx‖2 < ‖LTx‖2 − 2(Lb)Tx + bTb ⇔

‖LTx‖ < ‖LTx− b‖ ⇔

Φ−1(α)‖LTx‖+ µTx− T1 > Φ−1(α)‖LTx− b‖+ µTx− T1 ⇔

Φ−1(α)σ(Z1) + µ(Z1) > Φ−1(α)σ(Z2) + µ(Z2)

Notice that the second last inequality reverses because Φ−1(α) < 0 ∀α ∈ (0, 1/2).

�

Theorem 3. Provided (3.7) holds, for any critical probability α ∈ (0, 1/2) the optimal

expected portfolio return of S1 is larger or equal than the optimal expected portfolio return

of S2.

Proof: Employing Lemma 2 instead of 1 and redoing the proof of Theorem 2 yields

the proposition.

�
This result requires, compared to the positive correlated case discussed in subsection

3.3.1, no additional assumption. Furthermore, it allows riskless investing, which is pro-

hibited in the previous case. As the fixed target strategy, S1, outperforms the random

target strategy, S2, it reveals two issues: First, a random target which is stochastically
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independent from the portfolio return, induced by a general uncertainty about the tar-

get, leads to a poor performance and should be avoided. Second, an inappropriate target

choice characterized by a negative covariation with the portfolio return leads also to a

poor performance in terms of an expected return loss.

3.4 Empirical evidence for condition (3.6)

This section provides empirical evidence for condition (3.6) and supports the practical

relevance of the result from section 3.3.1. To do this, I estimate

cov(Ri, T2)− 1/2σ2(T2) , i = 1, . . . , n , (3.8)

in which Ri is the return of stock i and T2 is the return of a stock index. I use German

stock data from the DAX (blue chip stocks) and the MDAX (mid cap stocks). For T2 I

use data from important national and international indices. Condition (3.6) is satisfied

if (3.8) is positive for all i.

Table 3.1 reports empirical estimators for (3.8), where Ri, i = 1, . . . , 30, are the

returns of all 30 DAX stocks and for T2 I use the following stock indices: MSCI WORLD,

DJ STOXX 50, DJ EURO STOXX 50, MSCI EUROPE, FTSE 100, S&P 500 and NYSE.

Estimates are based on a sample period for which monthly return data for all DAX stocks

contained in the index in February 2010 is available, that is a period from February 2001

to February 2010. Table 3.1 shows that (3.8) is positive and thus (3.6) is true for all

stocks in the DAX, except for three (BEIX: Beiersdorf, FMEX: Fresenius Medical Care

and DTEX: Deutsche Telekom, for which only the condition using the MSCI EUROPE

is not satisfied). Undocumented results for a larger sample period from September 1991

to February 2010, for which complete return data of 14 DAX stocks exist, reveal that

(3.8) is entirely positive.

Table 3.2 reports the empirical estimator for (3.8) using the same index data, but

stock data from the MDAX. Again, estimates are based on a sample period ranging from

February 2001 to February 2010, for which complete return data of 33 out of 40 MDAX

stocks is available. Table 3.2 shows that (3.8) is positive and thus (3.6) is true for all

stocks in the MDAX, except for four (CLS1: Celesio, DEQ: Deutsche Euroshop, FIE:

Fielmann and VOS: Vossloh).

The empirical results presented here indicate that condition (3.6) is mainly true, at

least for the German stock market. This provides additional support that, in the context

of section 3.3.1, the random target strategy S2 should be preferred over the fixed target

strategy S1.
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3.5 Return distribution is unknown

It is shown empirically that return distributions are fat-tailed (see for example Adler,

1998, and the references therein) and skewed to the left, i.e. losses weigh heavier than

gains, discussed for example in Harlow (1991). These findings indicate that the normal

assumption does not necessarily hold in general. This section therefore relaxes the

normal assumption and assumes only that good estimates for the first two moments of

the return distributions exist. Then, a well-known textbook inequality - the Chebyshev

inequality - can be used. In the following, this inequality is applied to the safety-first

constraint (3.1) yielding a stronger but deterministic version of (3.1).7 Providing this,

it is easy to verify that under unknown return distributions the results from section 3.3

follow analogously.

Again, let Z = xTR−T be a random variable with xTR being the random portfolio

return and T being a target, either fixed or random. For the expected value and the

variance of Z we get
µ(Z) = µTx− µ(T ) ,
σ2(Z) = ‖LTx− b‖2 .

The following inequalities provide an upper bound for the safety-first constraint (3.1):

P (xTR < T ) = P (Z < 0)

≤ P (Z ≤ 0) = P (Z − µ(Z) ≤ −µ(Z)) = P (µ(Z)− Z ≥ µ(Z))

≤ P (|µ(Z)− Z| ≥ µ(Z))

≤ σ2(Z)

µ(Z)2
=
‖LTx− b‖2

(µTx− µ(T ))2
,

where the last inequality is obtained from Chebyshev’s rule.8 Instead of (3.1), the

stronger inequality
‖LTx− b‖2

(µTx− µ(T ))2
≤ α

can be applied. Drawing the square root and rearranging yields

−α−
1
2 ‖LTx− b‖+ µTx ≥ µ(T ) . (3.9)

Comparing (3.9) to the deterministic safety-first constraint (3.4) obtained for the mul-

tivariate normal case (see section 3.2), the sole difference is the multiplier for the term

7This idea has been first suggested by Roy (1952). For a detailed discussion on the application of Cheby-
shev’s inequality to the safety-first criterion consult Kall and Mayer (2005) or Birge and Louveaux
(1997).

8A detailed illustration for the univariate case is provided in Breuer et al. (2006, pp. 119-121). For
the Chebyshev inequality in general consult a textbook on probability theory, such as Behnen and
Neuhaus (1995).
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‖LTx − b‖. In (3.4) the multiplier is Φ−1(α), whereas it is −α−
1
2 for (3.9), both are

negative for all α ∈ (0, 1/2). Thus, redoing the proofs from section 3.3 with (3.9) instead

of (3.4) yields the same results. Moreover, as (3.9) is concave for all α the same efficient

solving methods as for problem 5 can be used.

Note, applying the stronger inequality (3.9) instead of (3.1) reduces the number of

feasible portfolios, i.e. the feasible domain of problem 5 with (3.9) instead of (3.1) is

a subset of the feasible domain of the original problem 4. Thus, choosing α very small

may lead to infeasibility of the safety-first problem under (3.9), but not necessarily under

the true safety-first constraint (3.1). Nevertheless, this approach provides a useful and

tractable alternative to the multivariate normal case.

3.6 Conclusion

This chapter investigates the safety-first portfolio model under two different target as-

sumptions, the fixed target, which is commonly assumed in the literature, and the ran-

dom target, which has played no role in the existing literature on the safety-first model

so far. As a random target can be easily motivated for this framework, the open question

is, which target choice leads to a better performance? I answer the question by com-

paring optimal expected portfolio returns of the fixed and the random target strategy.

Assuming multivariate normal returns the answer is: (1) The random target strategy

outperforms the fixed target strategy if the portfolio return and the random target are

positively correlated and riskless investing is prohibited; (2) the fixed target strategy out-

performs the random target strategy if the portfolio return and the random target are

not positively correlated and riskless investing is allowed. The first result is practically

most relevant, in particular for institutional portfolio management and skilled private

investors, which is supported by empirical evidence in section 3.4. The second result

suggests general uncertainty about the target and an inappropriate target choice, char-

acterized by a negative correlation between the portfolio return and the target, should

be avoided. As the normal assumption is in general violated in empirical finance, section

3.5 relaxes this assumption and illustrates that both results hold when approximating

the safety-first statement by the well-known Chebyshev inequality.

The normal distribution and Chebyshev’s inequality are on the one hand very tractable

and easy to implement, but on the other hand not very accurate. To overcome this lim-

itation several extensions are possible: One, the normal assumption can be relaxed to

the general distribution family depending on a shift and a scale parameter (see Kalin

and Zagst, 1999). Two, the normal distribution can be generalized to the elliptical dis-

tribution. Third, a copula function, which provides a general technique for formulating

a multivariate distribution, can be used. Four, considering higher order moments a more

accurate probability inequality can be used. I recommend this issues for further research.
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3.A Appendix

3.A.1 Proof of Theorem 1

As R is n-variate and T univariate normal distributed, the vector (RT , T )T is n + 1-

variate normal distributed and can be written as(
R

T

)
=

(
L

bT

)
Y +

(
µ

µ(T )

)
,

in which L ∈ Rn×r, b ∈ Rr and Y = (Y1, . . . , Yr)
T has a r-variate normal distribution

with mean 0 and identity matrix as covariance matrix (see for example Giri, 2004, pp.

81-82). Simple algebra yields

Z =xTR− T = (RT , T )
(
x
−1

)
=YTLTx + µTx− bTY − µ(T )

=YT (LTx− b) + µTx− µ(T ) .

Hence, we get the expected value and the variance of Z, respectively, as

µ(Z) =µTx− µ(T ) ,

σ2(Z) = (LTx− b)T (LTx− b) = ‖LTx− b‖2 .

�

3.A.2 A note on the numerical treatment of the covariance matrix
factorization

Kall and Mayer (2005) suggest the Cholesky-factorization

cov(RT , T ) = cov(R1, . . . , Rn, T ) =

(
L

bT

)(
L

bT

)T
,

with L being a lower triangular matrix, which, however, may lead to numerical problems.

To compute the Cholesky-factorization the matrix must be positive definite, which may,

due to stochastic independences between two or more assets, not be the case. In this

case, the covariance matrix is positive semidefinite and the Cholesky-factorization can

not be computed. To correct this drawback, I suggest a more general factorization for

symmetric matrices, in which the covariance matrix is factorized as

cov(RT , T ) = QDQT .

The matrix D is a diagonal matrix and contains the eigenvalues of cov(RT , T ) and Q

is an orthogonal matrix. Numerically, if the covariance matrix is positive semidefinite,
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small rounding errors may induce negative eigenvalues close to zero, which is theoretically

impossible. This is corrected by hand by setting eigenvalues smaller than ε > 0 to zero.

Doing this, D̃ arise from D and the covariance matrix can finally be factorized as

cov(RT , T ) = Q
√
D̃
√
D̃QT =

(
L̃

b̃T

)(
L̃

b̃T

)T
,

in which L̃ is necessarily no triangular matrix.
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Datastream
code

MSCI DJST DJES MSCE FTSE S&P NYSE

ADSX 14.44 15.08 15.16 14.25 13.76 12.53 13.45

ALVX 39.31 41.08 46.68 40.00 35.37 39.63 39.00

BASX 22.65 22.63 24.30 22.93 21.00 20.57 22.53

BAYX 22.05 27.04 29.86 23.39 21.51 20.90 21.76

BEIX -0.20 0.39 -3.34 -3.13 3.31 -1.18 -0.90

BMWX 16.45 20.41 20.58 14.25 18.49 16.07 16.53

CBKX 65.60 66.66 76.66 70.82 57.34 62.97 65.72

DAIX 31.76 32.08 34.93 30.78 29.45 30.56 31.87

DBKX 45.33 43.78 49.99 46.89 37.13 44.17 44.48

DB1X 27.61 26.80 28.50 27.31 24.02 26.10 27.39

LHAX 32.18 33.99 38.34 31.25 29.23 32.15 31.32

DPWX 28.87 27.00 29.15 29.76 26.06 28.46 29.59

DTEX 2.24 9.28 7.61 -1.60 4.37 3.88 0.92

EONX 10.02 11.04 9.45 9.54 10.96 7.69 10.16

FMEX -1.99 -0.83 -3.92 -5.75 0.76 -1.76 -3.68

FR3X 12.78 12.86 10.77 10.79 14.21 11.55 10.76

HE3X 6.19 7.03 5.15 4.11 7.95 5.12 5.54

IFXX 92.54 94.40 106.32 97.91 75.35 87.42 90.11

SDFX 28.49 21.49 22.50 28.44 25.27 24.87 28.63

LINX 15.52 19.06 18.97 15.67 17.30 12.90 14.21

MANX 40.51 39.68 44.31 44.05 35.71 35.44 38.34

MRKX 4.16 4.78 2.38 2.50 5.41 3.45 3.52

MEOX 27.65 27.79 29.33 26.96 24.74 27.41 27.52

MU2X 19.46 23.84 27.02 17.88 19.18 20.06 18.25

RWEX 5.61 8.97 8.14 4.27 7.60 4.54 5.93

SZGX 30.44 26.91 27.81 28.36 29.78 29.04 32.05

continued on next page
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RANDOM TARGET

MSCI DJST DJES MSCE FTSE S&P NYSE

SAPX 30.61 29.57 31.68 26.44 26.26 32.52 28.66

SIEX 38.23 40.86 45.52 38.91 35.73 37.17 36.20

TKAX 43.44 39.91 43.89 45.01 39.07 39.91 42.94

VO3X 26.67 22.06 25.04 26.77 19.64 24.52 26.72
This table reports empirical estimators for cov(Ri, T2) − 1/2σ2

T2
where Ri, i =

1, . . . , 30, are the returns of all 30 DAX (blue chip) stocks. For T2 I use the
following international stock indices: MSCI: MSCI WORLD, DJST: DJ STOXX
50, DJES: DJ EURO STOXX 50, MSCE: MSCI EUROPE, FTSE: FTSE 100,
S&P: S&P 500 and NYSE. I use a sample period for which monthly return data
for all DAX stocks contained in the index in February 2010 is available, that is a
period from February 2001 to February 2010.

Table 3.1: Cross-covariances of all DAX stocks and international stock indices
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RANDOM TARGET

Datastream
code

MSCI DJST DJES MSCE FTSE S&P NYSE

NDA 8.93 7.03 4.79 4.40 9.11 8.31 9.73

BYW6 25.17 18.38 18.15 27.75 21.58 20.71 24.68

GBF 30.56 26.51 29.02 30.74 29.80 27.83 30.16

BOS3 38.78 38.16 40.06 40.33 37.32 35.83 39.05

CLS1 -8.01 -4.11 -9.96 -12.27 -2.44 -7.60 -7.01

CON 41.96 36.63 39.87 44.77 37.72 38.90 42.12

DEQ -2.68 -5.78 -9.52 -5.79 -0.51 -3.70 -2.36

DOU 3.91 4.84 3.09 1.24 7.19 2.69 3.51

EAD 27.13 32.06 34.40 26.37 28.79 25.60 26.65

ZIL2 30.67 24.83 25.85 28.54 25.50 29.57 31.17

FIE -1.88 1.57 -0.96 -5.10 2.43 -2.23 -2.03

FPE3 21.53 15.38 14.73 23.08 17.90 17.82 21.49

G1A 40.42 35.13 37.35 41.38 37.10 37.63 40.13

GIL 41.06 38.18 40.60 47.72 36.16 34.86 40.80

HNR1 19.12 17.36 19.93 17.95 16.89 19.65 19.36

HDD 48.36 48.48 52.77 52.95 45.57 43.61 50.12

HEI 28.42 32.58 34.58 30.92 27.73 25.43 29.12

HOT 47.38 41.22 45.74 49.83 44.43 42.49 46.52

IVG 46.05 38.32 42.45 53.07 41.19 38.64 45.44

KRN 12.27 13.42 12.01 9.57 15.04 10.96 11.85

LEO 37.71 31.30 31.46 38.85 32.64 35.88 38.90

MLP 60.65 62.87 75.20 60.85 48.68 62.38 59.61

PFD4 47.96 43.30 48.20 51.23 39.89 44.97 48.77

PSM 83.52 81.32 91.31 88.84 69.61 78.76 81.95

PUM 25.11 22.51 22.50 25.40 24.67 23.00 24.71

RAA 17.86 16.47 16.84 18.11 18.14 14.99 16.42

continued on next page
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RANDOM TARGET

MSCI DJST DJES MSCE FTSE S&P NYSE

RHM 12.25 11.20 8.60 11.95 14.90 9.81 12.63

RHK 4.70 7.55 4.61 2.74 9.69 3.34 4.26

SGL 52.18 39.24 46.29 52.16 40.80 50.59 50.24

SAZ 23.76 18.15 17.88 20.45 18.62 24.77 25.94

SZU 4.48 7.66 6.23 2.81 8.12 2.69 2.92

TUI1 51.02 52.12 59.03 55.17 46.99 48.36 52.19

VOS -1.06 -3.47 -6.97 -4.25 2.55 -1.65 -0.62
This table reports the empirical estimator for COV (Ri, T2) − 1/2σ2

T2
where

Ri, i = 1, . . . , 33, are the returns of 33 MDAX (mid cap) stocks, for which
complete return data for the sample period from February 2001 to February
2010 is available. For T2 I use the following international stock indices: MSCI:
MSCI WORLD, DJST: DJ STOXX 50, DJES: DJ EURO STOXX 50, MSCE:
MSCI EUROPE, FTSE: FTSE 100, S&P: S&P 500 and NYSE.

Table 3.2: Cross-covariances of 33 MDAX stocks and international stock indices
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4 Goal-Specific Asset Selection and Utility
in Behavioral Portfolio Theory with
Mental Accounts
This chapter is based on Singer (2011).

“My intention was to minimize my future regret. So I split
my contributions fifty-fifty between bonds and equities.”

Harry M. Markowitz, 19981

4.1 Introduction

More than 60 years ago, Friedman and Savage (1948) noted that risk aversion and risk

seeking share roles in our behavior: People who buy insurance policies often buy lottery

tickets as well. Four years later, Markowitz wrote two papers that reflect two very

different views of behavior. In 1952b, he created the mean-variance (MV) framework,

in 1952a, he extended Friedman and Savage’s insurance lottery framework. People in

the MV framework, unlike those in the insurance lottery framework, never buy lottery

tickets; they are always risk averse, never risk seeking. Nevertheless, because of its

tractability the MV model has become the leading textbook theory for portfolio selection

despite the fact that it fails to explain the insurance lottery puzzle.

The key element of the portfolio model I present here, contributing to explain phe-

nomena such as the insurance lottery puzzle, is mental accounting. This model, which

is closely related to that by Das, Markowitz, Scheid, and Statman (2010), combines

features of MV theory and Shefrin and Statman’s (2000) behavioral portfolio theory

(BPT). In this model, as well as in that by Das et al. (2010) investors consider their

1(Shefrin, 2002, p. 31)
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portfolios as collections of mental accounting subportfolios where each subportfolio is

associated with a goal. In each mental account (MA), investors care about the expected

return and its risk, measured by the probability of failing to reach the goal of that MA.

In contrast to Das et al. (2010), I follow two different approaches: First, I analyze

the case in which goal-specific asset selection is allowed, e.g. for a secure retirement the

investor is allowed to select assets which appeal to that goal, such as bonds or dividend

stocks. This case has not been analyzed yet, but is of high importance since it appeals to

individual investors’ intuition. This relaxation implies that solutions to subportfolios are

points on different MV efficient frontiers. Based on these efficient subportfolios, I sug-

gest three distinct ways of arriving at the solution to the aggregate portfolio. Second, I

analyze the case in which goal-specific asset selection is disallowed, i.e. putting the same

assumption as Das et al. (2010), but relying on a different interpretation. They follow a

two step approach where in the first step each subportfolio is solved separately without

considering relations between mental accounts and, second, calculate the aggregate port-

folio on the basis of a predefined allocation rule. In this chapter, however, I present a

one step approach where the mental accounting model with respect to relations between

mental accounts is solved as a whole. Assuming this case, I also present a utility analy-

sis and show that mental accounting investors are consistent with Friedman and Savage

(1948) and Markowitz (1952a) investors. Thus, this chapter provides new theoretical

evidence that mental accounting is a key driver of the insurance lottery-puzzle.

The remainder is organized as follows: Section 4.2 reviews related work. Based on

the setting by Das et al. (2010) section 4.3 presents a new behavioral portfolio model

with mental accounts. Section 4.4 offers issues on the relation between MA and utility

while section 4.5 concludes.

4.2 Related work

According to Thaler (1999, p. 183) “[m]ental accounting is [defined as] the set of cognitive

operations used by individuals and households to organize, evaluate, and keep track

of financial activities.” Translated into a portfolio context, assets are grouped into

categories and each category maintains a specific investment goal. Individual investors

want to satisfy goals such as a secure retirement, college education for the children, or

a chance for great riches. The first paper which formally put the MA approach into

a portfolio setting is that by Shefrin and Statman (2000). In their BPT they present

a single MA version, which is based on SP/A theory (Lopes, 1987; Lopes and Oden,

1999), and a multiple MA version, which was later advanced by Das et al. (2010). In

their MA framework they integrate appealing features of MV theory and BPT. The

main contribution of Das et al. (2010) is that in their setting, when short selling is

allowed, portfolios that follow from MV analysis with mental accounting belong to the

MV efficient frontier, i.e. mental accounting does not introduce inefficiency in MV sense.
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In the same year, DeGiorgi (2010) developed a dynamic portfolio model with mental

accounts, which is, in contrast to Das et al. (2010), based on cumulative prospect theory

(Tversky and Kahneman, 1992), and obtains similar results. Hoffmann, Shefrin, and

Pennings (2010) developed a different dynamic portfolio model and provide empirical

evidence for BPT. Empirically, Choi, Laibson, and Madrian (2009) study 401(k) savings

accounts of a large U.S. firm and document “a lack of coordination between the asset

allocations of different financial accounts in a household portfolio.” They conclude that

it is not possible to explain the effect without mental accounting.

4.3 The model

As the model presented here is based on the setting by Das, Markowitz, Scheid, and

Statman (2010), subsection 3.3.1 reviews basic features of that model while subsections

3.3.2 and 3.3.3 suggest new issues.

4.3.1 Review of the model by Das et al. (2010)

In the mental accounting model by Das et al. (2010) investors consider their portfolios

as collections of mental accounting subportfolios where each subportfolio is associated

with a goal and each goal has a threshold level. In each MA subportfolio, investors care

about the expected return of the subportfolio and its risk, measured by the probability

of failing to reach the threshold level of that MA. This risk measure is often called

shortfall probability and is central in BPT. Formally, for each subportfolio the following

optimization model is solved

max
x

xTµ , (4.1)

subject to the shortfall constraint

P (r < T ) ≤ α , (4.2)

and the fully invested constraint

xT1 = 1 , (4.3)

where 1 = (1, . . . , 1)T ∈ Rn, x = (x1, . . . , xn)T being the vector of portfolio weights of

n assets with µ ∈ Rn being the mean return vector, P denotes probability, T is the

threshold level of portfolio return r and the maximum probability of the portfolio failing

to reach the return T is α.

Das et al. (2010) use a numerical example to illustrate their results. They assume

three assets with mean vector and covariance matrix of returns

µ =

 0.05
0.10
0.25

 , Σ =

 0.0025 0.0000 0.0000
0.0000 0.0400 0.0200
0.0000 0.0200 0.2500

 . (4.4)
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The first asset is a low risk asset, analogous to a bond. It has low return and low

variance compared to the other two more “risky” assets, analogous to a low and a

high risk stock. They suppose further an investor who divides an aggregate portfolio

into three subportfolios: a secure retirement, college education for the children, and

a gambling subportfolio, which provides a chance for great riches.2 The retirement

subportfolio is associated with the parameter pair (T1, α1) = (−0.10, 0.05), that is, the

investor stipulates that she does not want the probability of failing to reach T1 = −10%

to exceed α1 = 5%. For the eduction and gambling subportfolio they assume parameter

pairs (T2, α2) = (−0.05, 0.15) and (T3, α3) = (−0.15, 0.20), respectively.

For each MA, they solve optimization model (4.1)-(4.3) using the same three assets

and calculate an aggregate portfolio which invests 60% in the retirement, 20% in the

education and 20% in the gambling subportfolio. Their main contribution is that in

their setting, when short selling is allowed, portfolios that follow from MV analysis

with mental accounting belong to the MV efficient frontier, i.e. mental accounting does

not introduce inefficiency in MV sense. However, this does not hold when goal-specific

asset selection is allowed, e.g. the investor is allowed to select retirement-specific assets

which may significantly differ from those selected for gambling purposes. Subsection

3.3.2 presents a solution to that problem. Das et al. (2010) find the solution for the

aggregate portfolio assuming that the investor allocates her wealth according to the

60:20:20 rule. Subsection 3.3.3 follows a different interpretation and presents a closed

form solution to the mental accounting portfolio problem which does not require any

exogenous assumption about the final wealth allocation.

4.3.2 Goal-specific asset selection allowed

In this subsection the investor is allowed to select goal-specific assets for each men-

tal account, which has not been analyzed yet. To appeal to real investors’ behavior,

only “safe” assets like bonds and low risk stocks are considered for a secure retirement,

whereas a bond seems to be inappropriate for gambling purposes. I therefore consider

only the bond and the low risk stock from the previous example for the retirement ac-

count and the low and high risk stock for the gambling account. The education account

remains unchanged. Employing these modifications yields three subproblems with dif-

ferent investment universes. Each subproblem is solved using the methodology in Das

et al. (2010), who assume normal distributed asset returns with parameters given in

(4.4). As asset returns are assumed to be jointly normal distributed, the portfolio return

is univariate normal distributed with mean µ and standard deviation σ. Hence, the

shortfall probability can be transformed to

µ ≥ T − Φ−1(α)σ , (4.5)

2Originally, Das et al. (2010) call the third goal “bequest”.
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which is a straight line in (µ, σ)-space with intercept T and slope Φ−1(α) being the

α-quantile of the standard normal distribution. The solution to each subproblem, if it

exists, is the intersection point between (4.5) and the upper branch of the MV efficient

frontier (Pyle and Turnovsky, 1970). For example, the optimal solution to the retirement

portfolio is the intersection point between (4.5) with T = −0.10 and the MV efficient

frontier induced by the bond and the low risk stock, that is the point (µ, σ) = (0.08, 0.11)

shown in figure 4.1. Figure 4.1 also contains the optimal solution to the education and

gambling subportfolio, respectively, indicated by the marked points. Note that the

solution to each MA lies on a different efficient frontier. For that reason, the result

obtained by Das et al. (2010) does not hold when goal-specific asset selection is allowed.

Figure 4.1: Graphical solution to each mental account. MAR, MAE and MAG denote
retirement, education and gambling mental account, respectively.

I suggest three ways to obtain a solution to that problem:

a) Exogenous solution:

As in Das et al. (2010) the solution to the aggregate portfolio can be found by applying

the 60:20:20 rule or any other by the investor freely chosen allocation rule, which is the

main advantage of that approach. However, such allocation rules may lead to suboptimal

solutions in MV sense.

b) Behavioral solution:
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Assets MAR MAE MAG 60:20:20 Behavioral Rational

x1 0.48 0.38 - 0.36 0.68 -6.58

x2 0.52 0.35 0.09 0.40 0.28 10.78

x3 - 0.27 0.91 0.24 0.04 -3.20

µ 0.08 0.12 0.24 0.12 0.09 0.05

σ 0.11 0.16 0.46 0.16 0.09 0.05
Note: MAR, MAE and MAG denote retirement, education and gambling MA,
respectively. The solution to the behavioral and rational approach is the global
minimum variance portfolio.

Table 4.1: Results for all mental accounting subportfolios and aggregate portfolios

Empirically, it has been observed that individual (Kroll et al., 1988a) and institutional

(Jorion, 1994) investors ignore correlations between mental accounts, i.e. mental ac-

counts are assumed to be uncorrelated.3 Based on this assumption, a “behavioral” MV

efficient frontier, induced by the parameters of the subportfolios, can be calculated, on

which a “behavioral” solution to the aggregate portfolio can be found, see figure 4.2.

For a fixed return µ the solution to the aggregate “behavioral” portfolio can be taken

from the efficient frontier. But, to define a threshold return for the aggregate portfolio

might not appeal to the intuition of mental accounting investors. This can be avoided by

delegating the task to a portfolio manager or by choosing the global minimum variance

portfolio.

c) Rational solution:

The rational solution in MV sense is obtained by taking correlations between mental

accounts into account. Calculations of correlations between mental accounts are provided

in the separate appendix. Based on this assumption, the MV efficient frontier, induced

by the parameters of the subportfolios given in the appendix, can be calculated, on which

a rational solution to the aggregate portfolio can be found, see figure 4.2.

Figure 4.2 illustrates these different approaches graphically while table 4.1 contains

the corresponding numerical values. Note that the global minimum variance portfolio

of the rational approach contains large short positions, which may not be desired by

individual investors. This can be circumvent by moving upwards to another point on

the efficient frontier.

3The same assumption is made by Siebenmorgen and Weber (2003) in their static and by DeGiorgi
(2010) in his dynamic portfolio model.
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Figure 4.2: Graphical solutions to the aggregate portfolio

4.3.3 Goal-specific asset selection disallowed

In this subsection, I assume, as well as Das et al. (2010), identical assets in each mental

account. Their solution to the mental accounting model is a two step approach: First,

each subproblem is solved separately without considering relations between mental ac-

counts. Second, the solution to the aggregate portfolio is calculated on the basis of a

predefined allocation rule, such as the 60:20:20 rule. In this section, however, I follow a

different interpretation and suggest a one step approach in which the mental accounting

model with respect to relations between mental accounts is solved as a whole. Com-

paring the retirement goal with (T1, α1) = (−0.10, 0.05) and the gambling goal with

(T3, α3) = (−0.15, 0.20), reveals an interesting observation: As the gambling thresh-

old is lower than the retirement threshold, but the probability of failing to achieve the

gambling threshold is larger, any portfolio that meets the retirement goal automatically

meets the gambling goal. As the MA problem is solved as a whole, with no loss of

generality, the gambling goal or technically spoken, the constraint representing the gam-

bling goal, can be excluded from the analysis before solving the problem. To avoid such

dominance relations, an ordering rule for (T, α) pairs must be imposed. Define therefore
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the shortfall probability vector (SPV) as4

P (r < Tk) ≤ αk with Tk < Tl ⇔ αk < αl , k, l = 1, . . . ,m, k 6= l . (4.6)

The SPV model for portfolio optimization with mental accounts maximizes expected

portfolio return subject to a SPV and the fully invested constraint. Applying the three

MA example introduced earlier in this chapter, formally, the following optimization

model is solved

max
x

xTµ , (4.7)

subject to the SPV constraints

P (r < −0.10) ≤ 0.05 ,
P (r < −0.05) ≤ 0.15 ,
P (r < −0.15) ≤ 0.20

(4.8)

and the fully invested constraint

xT1 = 1 . (4.9)

First, note that the ordering rule defined in (4.6) is not satisfied. However, to demon-

strate the linkage to Das et al. (2010), I stick for this moment to this example. Second,

the solution to (4.7)-(4.9) is the optimal solution to the aggregate portfolio, which does

not require any predefined allocation rule. Third, finding the solution to (4.7)-(4.9) is

as simple as finding the solution to the model by Das et al. (2010), as illustrated in

figure 4.3: The three straight lines correspond to the SPV constraint (4.8). The feasible

domain is the shaded area below the efficient frontier and above the straight lines. Thus,

the feasible portfolio with maximal expected return is the point labeled A.

The optimal portfolio invests 54% in the bond, 27% in the low risk stock and 19% in

the high risk stock and coincides with the optimal solution of the retirement subportfolio.

It can be observed from figure 4.3 that this solution meets all three goals simultaneously,

whereas this does not hold for the 60:20:20 portfolio, also labeled in figure 4.3.

4.4 Mental accounting and utility

Let r be the random portfolio return. If a mental accounting investor orders assets solely

on the basis of expected return E(r) and SPV and accepts the axioms supporting the ex-

pected utility theorem, her preference ordering over E(r), SPV combinations is uniquely

represented by the positive linear transformations of the function E(r) − gTSPV , see

4To the best of my knowledge the SPV model goes back to a working paper by Schubert (2002). His
motivation was the drawback of the shortfall probability that it fails to provide any indication of how
severe the shortfall will be, should it occur.
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Figure 4.3: Graphical solutions to the SPV model

Arzac (1974).5 Sticking to the three MA example this function uniquely implies the

following utility function

u(r) =


r , ∞ > r ≥ T1

r − g1 , T1 > r ≥ T2

r − g1 − g2 , T2 > r ≥ T3

r − g1 − g2 − g3 , T3 > r > −∞

, (4.10)

in which gi > 0 presents the individual utility reduction of not achieving threshold

Ti , i = 1, 2, 3. Figure 4.4 shows utility function (4.10) for the case g1 = g2 = g3 = 1.

This piecewise linear function with jump discontinuities at the threshold levels can be

approximated by a compound arctangent function, that has appealing behavioral proper-

ties, see figure 4.4: It is monotonically increasing, continuously differentiable and exhibits

both concave and convex regions, which is equivalent to investors who are risk averse

for some returns and risk loving for others. This utility function is consistent with the

solution to the insurance lottery puzzle by Friedman and Savage (1948), see figure 4.5(a),

and the customary wealth theory by Markowitz (1952a), see figure 4.5(b), stating that

5Arzac (1974) analysis the case with a single shortfall probability, which can be straightforwardly
extended to the case with a shortfall probability vector.
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Figure 4.4: Piecewise utility function for MA investors with three thresholds and approx-
imated function: f(x) = x+ arctan(10x−10)

π + arctan(10x−20)
π + arctan(10x−30)

π +1.5

investors purchase both insurance policies and lottery tickets at the same time. Their

solutions are based on utility functions that feature both concave and convex portions.

The concave portion is consistent with the purchase of insurance policies and the convex

portion is consistent with the purchase of lottery tickets. Notably, the insurance lottery

puzzle is a thorn in the side of conventional expected utility theory, which is based upon

concave utility functions, but it is not in the side of mental accounting utility theory.

4.5 Conclusion

This chapter investigates goal-specific asset selection and utility in a behavioral portfolio

framework with mental accounts. When goal-specific asset selection is allowed optimal

subportfolios do not necessarily lie on the same MV efficient frontier. Nevertheless,

they induce two new MV efficient frontiers; one that ignores correlations and one that

incorporates correlations between subportfolios. On both frontiers a different solution

to the aggregate portfolio can be found. A more ad hoc approach to obtain a solution

to the aggregate portfolio is to employ a predefined allocation rule, i.e. putting weight

on each subportfolio and aggregating these. When goal-specific asset selection is not

allowed, I suggest a closed form solution which is a point on the MV efficient frontier

and coincides with one optimal subportfolio. This case implies a utility function for

MA investors consistent with Friedman and Savage’s (1948) and Markowitz’s (1952a)

solution to the insurance lottery puzzle. Taken as a whole, this chapter complements

55



CHAPTER 4. GOAL-SPECIFIC ASSET SELECTION AND UTILITY IN
BEHAVIORAL PORTFOLIO THEORY WITH MENTAL ACCOUNTS

r

u(r)

(a) Friedman-Savage’s utility function

r

u(r)

(b) Markowitz’s customary wealth utility function

Figure 4.5: Utility functions explaining the insurance lottery puzzle

and extends existing literature on static BPT by Shefrin and Statman (2000) and Das

et al. (2010).

A potential limitation is the assumption of normal distributed asset returns. I suggest

two relevant extensions: First, this analysis can be straightforwardly rerun assuming two

parameter distributions in general (Pyle and Turnovsky, 1970; Kalin and Zagst, 1999).

Second, a more comprehensive approach that allows for fat tailed distributions assumes

elliptical distributed asset returns. A second limitation concerns the utility analysis that

is rather crude. This can be run with more detail for example by analyzing local risk

aversion (seeking) around threshold levels.

4.A Appendix: Correlation between mental accounts

The random returns of each mental account are given by

MAR = u1r1 + u2r2 , u1 + u2 = 1 ,

MAE = v1r1 + v2r2 + v3r3 , v1 + v2 + v3 = 1 and

MAG = w1r2 + w2r3 , w1 + w2 = 1 ,

in which (r1, r2, r3)T is multivariate normal distributed with parameters given in (4.4).

The covariance between the retirement and the education mental account is calculated
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as follows:

Cov(MAR,MAE) = Cov(u1r1 + u2r2, v1r1 + v2r2 + v3r3)

= Cov(u1r1, v1r1) + Cov(u1r1, v2r2) + Cov(u1r1, v3r3)

+Cov(u2r2, v1r1) + Cov(u2r2, v2r2) + Cov(u2r2, v3r3)

= u1v1σ
2
1 + u1v2σ12 + u1v3σ13 + u2v1σ12 + u2v2σ

2
2 + u2v3σ23 .

The covariances between the retirement and gambling and between the education and

gambling mental account are

Cov(MAR,MAG) = u1w1σ12 + u1w2σ13 + u2w1σ
2
2 + u2w2σ23 and

Cov(MAE ,MAG) = v1w1σ12 + v1w2σ13 + v2w1σ
2
2 + v2w2σ23 + v3w1σ23 + v3w2σ

2
3 ,

respectively, and are calculated analogously. Substituting the asset weights belonging to

the optimal solutions to each subproblem, that are given in table 4.1, yields mean vector

and covariance matrix of returns

µ =

 0.08
0.12
0.24

 , Σ =

 0.0115 0.0106 0.0114
0.0106 0.0275 0.0699
0.0114 0.0699 0.2111

 . (4.11)
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5 Lottery Tickets and Common Stocks:
Complements or Substitutes?
This chapter is based on Johansen and Singer (2011).1

“It is principle at games of chance that a multitude of
illusions support hope and sustain it against unfavorable
chances.”

Simon Laplace, 17962

5.1 Introduction

More than 60 years ago, Friedman and Savage (1948) noted that gambling and invest-

ment decisions are closely related. The most common form of gambling are state lotteries

while the most popular investment security with gambling features are common stocks.

On the one hand they serve as financial investment products providing a chance for

great riches; on the other hand they significantly differ in their risk-return profiles and

in the way they are distributed. Thus, the relation between both products is not clear.

In this chapter we shed light on this problem and provide a clear answer to the question

of whether they act as complements or as substitutes.

In a 2009 paper, Kumar analyzes the extent to which people’s overall attitudes to-

ward gambling influence their stock investment decisions using panel data from 1991

to 1996 of portfolio holdings and trades of 77,995 individual investors at a large U.S.

discount broker house. As attitude toward gambling cannot be observed in the data

Kumar uses socioeconomic characteristics, derived from lottery studies, to infer individ-

ual investors gambling preferences and attempts to detect traces of gambling in their

1This unpublished research paper is entitled “Lottery Tickets and Common Stocks: Complements or
Substitutes?” and is available upon request.

2(Peterson, 2007, p. 176)
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stock market decisions. Kumar defines lottery-type stocks as low-priced stocks with high

idiosyncratic volatility and high idiosyncratic skewness and provides empirical evidence

for his hypothesis “that state lotteries and lottery-type stocks act as complements and

attract very similar socioeconomic clienteles.” (Kumar, 2009, p. 1892)

However, Kumar’s result is a thorn in the side of behavioral portfolio theory (BPT)

(Das et al., 2010; Statman, 2004; Shefrin, 2002; Shefrin and Statman, 2000). In BPT, in-

vestors form portfolios using layered pyramids where each layer acts as a mental account

or subportfolio with a different investment goal. In the bottom layer of the pyramid are

securities designed to provide investors with security, such as savings accounts, insurance

policies and money market funds. Further up the pyramid come riskier securities such as

investment funds and real estate. At the pinnacle of the pyramid lie the most speculative

investments, such as out-of-the-money call options, stocks and lottery tickets (Shefrin,

2002, p. 122). We refer this pinnacle layer to a gambling mental account intended for a

shot at getting rich. We argue that less diversified stock portfolios, frequently observed

among individual investors (e.g. Kelly, 1995; Goetzmann and Kumar, 2008), act as gam-

bling accounts. Is such a gambling account complemented by lottery tickets or other

stocks, diversification increases, risk and expected return decrease, which, however, con-

tradicts the nature of gambling. Thus, we hypothesize that the opposite is true, namely,

that lottery tickets and common stocks act as substitutes.

We test this hypothesis using cross-sectional data of more than 40,000 German house-

holds from 1993, which ranges in the observation period of Kumar (2009) and in a second

step for 2008 in order to capture effects of changes in attitudes toward financial assets

over time. To the best of our knowledge we are the first who investigate this relationship

using a dataset that contains information about both lottery demand and stock own-

ership. The remainder is organized as follows: Section 5.2 presents data and research

methodology while section 5.3 contains the main results. Section 5.4 provides a brief

summary and implications for other economic phenomena.

5.2 Data and methodology

Earlier studies have dealt with lottery demand empirically (e.g. Beckert and Lutter

(2008); Clotfelter and Cook (1991), but whether Kumar´s hypothesis of a complementary

relationship between lotteries and lottery-type stocks holds, is still an open question.

Looking at German households we are interested in testing the hypothesis H: Lottery

tickets and common stocks act as substitutes.

We use data from the Einkommens- und Verbrauchsstichprobe (EVS) (German sur-

vey of household income and expenditure) which covers 40,230 households age 18 and

older representative for the German population structure. German households are re-

quested every fifth year to supply data on household income and expenditure, savings,

durable consumer goods and the housing situation. In contrast to Kumar’s portfolio
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data, in which explicit information about lottery demand is not available, the EVS con-

tains such information. First of all, we use the 1993 survey to better understand and

interpret our results in the light of Kumar’s results, which are based on panel data from

1991 to 1996. In a future part of our analysis, we also use the latest available wave

from 2008 to control for possible changes over time, since financial market structure and

individual attitudes towards financial activities have changed. All descriptive results are

weighted with an expansion factor in order to control for representativity.

We evaluate whether ownership of stocks (measured by receipt of returns on stocks)

has an impact on lottery demand.3 In order to avoid a sample selection bias due to a

large number of households neither gambling nor owning stocks at all, we drop those

households from our analysis answering both questions “no”. Thus, the sample used in

the multiple regression analysis is reduced to 18,866. As we are not able to make use of

Kumar´s measure of lottery-type stocks, we define a new proxy for lottery-type stocks:

As Kumar (2009) shows lottery-type stocks are mostly nondividend-paying stocks and

information about income from paid dividends is available in our data, we define those

stocks as of lottery-type that pay a small or zero dividend.4 In this analysis, a small

dividend yield is defined as to be smaller than the average dividend yield of the DAX.

We apply different multiple regressions in our cross-sectional sample. Due to the fact

that we observe an action with two possible outcomes as denoted in (5.1), we perform

Logit and Probit regressions on the probability of owning lottery tickets taking ownership

of common stocks as exogenous.5

Yi =

{
1, with probability p that an individual demands lottery tickets

0, with probability 1− p that it does not.
(5.1)

This can also be formulated as

Yi = β0 + β1Xi + βT2 Zi + εi (5.2)

with Yi being the observable case that person i spends money on lottery tickets or not,

β0 is the constant of the empirical model, β1 is the marginal effect for our variable of

interest, namely, that somebody holds (lottery-type) stocks or not, so that Xi takes

on value 1, and Zi is a vector of exogenous control variables also estimated with their

corresponding coefficients and marginal effects indicated by vector β2. The vector of

exogenous control variables contains information on socioeconomic characteristics of the

households like age, gender, income, education and others, which have also been of

3Originally, the variable records expenses for state lotteries and other games of chance. As our theoret-
ical arguments and conclusions can be drawn for games of chance in general we define this variable
for convenience as demand for lottery tickets.

4The EVS contains only one person owning stocks but receives zero dividend.
5A more detailed description of parameterizing probabilty p and formal expressions of marginal effects

interpretation can be gathered e.g. from Cameron and Trivedi (2005).
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interest in other lottery studies, so that we are able to compare our results to that of

Kumar (2009); Beckert and Lutter (2008); Clotfelter and Cook (1991) and Brunk (1981).

A more detailed description of these variables can be found in table 5.1.

5.3 Results

To begin with, we are interested in how many people demand lottery tickets or stocks.

Descriptive results show that 47% of the full sample own either lottery tickets, stocks or

both, while the rest neither hold stocks nor lottery tickets, so they do not gamble at all.

Therefore, we leave this number of people out of our focus in order to avoid a selection

bias. This leaves a number of 18,866 people for deeper analysis. These clearly separate

into a group of 77% who demand only lottery tickets, 13% who only demand stocks, but

still 10% who own both types of assets. If we define lottery-type stock owners as people

who receive a return on dividends less than the two-year average return on dividends of

the DAX in 1992-1993, which is 2.47%, in the reduced sample of 15,753 lottery players

and/or lottery-type stock owners, we find that 96% solely play the lottery, 2% solely hold

lottery-type stocks, and 2% have both. This provides first evidence for a substitional

relationship between stocks and lottery tickets but needs to be investigated more detailed

on the multivariate level.

Both Logit and Probit estimations are possible to evaluate the probability of playing

the lottery, so that the decision which model is the adequate one has been made by com-

paring log likelihoods,6 chosing the model with the highest value according to Cameron

and Trivedi (2005). Wald statistics are tabulated to document the overall significance

of the model with pseudo R2 as a measure for the degree of variation of the endogenous

variable explained by the regression.7 Both coefficient estimates and marginal effects are

tabulated using heteroscedasticity robust standard errors so that Logit models can be

interpreted at odds and Probit models can be interpreted as marginal effects at means.

We drop those people from our analysis who do not have stocks and do not play the

lottery, so that a sample of 18,866 people is left for multiple analyzes. Table 5.2 shows

the results of the Logit regressions.

It can be seen that across the estimation models 1 to 3, ownership of stocks has

a significant negative influence on the probability of playing lottery. We are therefore

not able to reject our main hypothesis that lottery tickets and common stocks act as

substitutes, so that we oppose the results found by Kumar (2009). If we restrict the

stock variable to the new lottery-type stock measure, the results ramain significant as

can be gathered from model 4 to model 6 in table 5.3. In this case, lottery tickets and

6AIC and BIC criteria have also been used for model comparison but with the model showing the lowest
value to be adequate. These criteria led to the same results as comparison of log likelihoods.

7Before we performed multiple regressions we tested for correlation among the exogenous variables but
no strong correlation has been found so that problems due to collinearity are not suspected.

61



CHAPTER 5. LOTTERY TICKETS AND COMMON STOCKS: COMPLEMENTS
OR SUBSTITUTES?

variable description expected sign

lottoD dummy variable = 1 if the person spends money
on lottery tickets

dep. var.

stockD dummy variable = 1 if the person received re-
turns on stocks

-

LTS dummy variable = 1 if the person owns lottery-
type stocks with a dividend per return on stocks
in % lower than the 2-year average dividend of
the DAX from 1992 to 1993 (which is 2.47%)

-

age age of the first person the household in years +

age2 age squared -

income yearly household net income measured in
Deutsche Mark (DM)

-

gender dummy variable = 1 if the person is male +/-

married dummy variable = 1 if the person is married +/-

job dummy variable = 1 if the person is employed
and works as a self-employed person, blue-collar
worker, white-collar worker or public official

-

education dummy variable = 1 if the persons highest school
degree is university-entrance diploma (Abitur),
polytechnical high-school or technical college en-
trance qualification

-

west dummy variable = 1 if the person lives in West
Germany

+

hhsize number of people living in the household +/-

german dummy = 1 if person is German citizen +

Table 5.1: Description of variables
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lottery-type stocks show a clear substitutional relationship.

Furthermore, we do not find homogenous investors. Most of the socioeconomic con-

trol variables are highly statistically significant despite gender and job, which is signifi-

cant only at 10% level so that it cannot be said that women behave differently from men

or employed people behave different from unemployed people. Gender differences are

in most empirical studies found despite that summarized by Rychlak (1992); all other

studies show that men are more likely to play than women. Like Kumar we find that in-

come is negatively related with demand for lottery tickets. This occurance of low income

earners as the main group of people demanding lottery tickets may be explained by the

same reasons given by Kumar (2009) and McCaffery (1994, p. 107) namely, that low

income earners who are mostly less educated and have limited knowledge about other

types of saving or other investment products, hope to win a large amount of money in

a short period of time with all people being equal in distribution of chances.8 Others

like Beckert and Lutter (2008); Clotfelter and Cook (1991) and Brunk (1981) do not

find a significant impact of income. With high income being positively associated with

education we explain our findings of negative influence on lottery demand by the fact

that high educated people have little interest in gambling but more in structured prod-

ucts. This also shows that financial literacy measured by education strongly influences

gambling - the better educated the less likely they are to gamble. A negative relation

is also being found by Kumar (2009) and Clotfelter and Cook (1991). Interestingly, age

is of great importance as the probability of buying lottery tickets increases with age

but the slope function follows an inverse u-shape which has also been provided by the

results of Clotfelter and Cook (1991). On the other hand Kumar (2009) and Rychlak

(1992) mention a negative impact of age on lottery demand whereas Beckert and Lutter

(2008) and Brunk (1981) find strong positive age effects. Our findings as well as those of

Clotfelter and Cook (1991) provide conflictive evidence to Kumar that married people

are less likely to demand lottery tickets. If regional affiliation is concerned, we find that

West German respondents are less likely to demand lottery tickets than people from East

Germany but this should be investigated on lower aggregation level if the results should

be compared to those of Kumar (2009) or Beckert and Lutter (2008).9 A further differ-

ence to Kumar’s results is that foreigners cannot be distinguished from German citizens

because nationality does not have a significant impact on gambling activities. Finally,

other socioeconomic aspects like religious interests and membership of a minority have

been analyzed in the literature but cannot be covered by our dataset.10

8We use the education dummy as a proxy for financial education.
9Kumar’s results show that people from economically fragile regions are more likely to play while

Beckert and Lutter find people from urban areas to be more active.
10Clotfelter and Cook (1991) and Beckert and Lutter (2008) find positive impact of ethnic minorities

and Clotfelter and Cook (1991) also show that Catholics are more likely to play.
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5.4 Conclusion

This chapter provides strong empirical evidence that lottery tickets and common stocks

act as substitutes. We conclude that it is not possible to explain this result without

BPT, in which investors consider their portfolios as collections of mental accounting

subportfolios virtually structured as layered pyramids.

Another explanation is financial education: We find a significant increase in lottery

demand when education decreases. Thus, financially less educated investors prefer lot-

tery tickets over common stocks, whereas the opposite can be deduced for financially

educated people. However, financial education fails to sufficiently explain why so many

people neither purchase lottery tickets nor common stocks. In contrast, BPT suggests

that those investors do not maintain a gambling account at all.

At least three conclusions for the existing literature can be drawn: First, the results

provide further evidence for BPT and are in line with recent empirical results by Choi,

Laibson, and Madrian (2009), who find that mental accounting explains “a lack of co-

ordination between the asset allocations of different financial accounts in a household

portfolio.” The results in this chapter further support theoretical implications of BPT

by Shefrin and Statman (2000) and Das et al. (2010). Second, these results provide

an explanation for the diversification puzzle (Statman, 2002, 2004), that is the observa-

tion that individual investors do not diversify among their stock portfolios: They simply

view their undiversified stock portfolios as gambling accounts and do not diversify among

stocks for the same reason that they do not diversify among lottery tickets. Third, it

explains the great popularity of lottery bonds such as British Premium Bonds, which

resemble index-linked certificates of deposit, but do not pay interest (Shefrin, 2002, p.

127). Instead, holders receive tickets to monthly lotteries that carry prices between £50

and £250,000. A Premium Bond packages a very safe security with a lottery ticket, and

thus, serves two mental accounts.

As an implication for the financial sector, knowledge about customers could be used

to advertise common stocks to those who participate in state lotteries. Furthermore,

new segments for distributing financial products could be unlocked as lottery players

are potential stock owners. This study leaves potential for future research: In the next

step we analyze whether attitudes changed over time since the dotcom bubble, early

influences of the subprime mortgage crisis and better access to financial markets have

had a strong impact on financial decisions. Furthermore, we observe a fraction of 4,729

subjects who do not hold stocks but receive dividends. Those people sold their stock

portfolios in the near past. It is interesting, whether these subjects have moved to lottery

tickets or stopped gambling at all.

64



CHAPTER 5. LOTTERY TICKETS AND COMMON STOCKS: COMPLEMENTS
OR SUBSTITUTES?

Logit estimations - dep. var.: lottoD

model 1 model 2 model 3

variable coeff. marg. eff. coeff. marg. eff. coeff. marg. eff.

const. ***2.050 ***0.500 **0.6637

stockD ***-0.0000 ***-0.0000 ***-0.0000 ***-0.0000 ***-0.0000 ***0.0000

(-6.06) (-5.95) (-4.82) (-4.70) (-4.81) (-4.69)

age ***0.0937 ***0.0103 ***0.0939 ***0.0103

(8.55) (8.60) (8.56) (8.60)

age2 ***-0.0008 ***-0.0001 ***-0.0008 ***-0.0001

(-7.09) (-7.14) (-7.10) (-7.14)

income ***-0.0000 ***-0.0000 ***-0.0000 ***-0.0000

(-11.03) (-11.38) (-10.58) (-10.89)

gender 0.0092 0.0010 0.0087 0.0009

(0.14) (0.15) (0.14) (0.14)

married ***0.2501 ***0.0288 ***0.2670 ***0.0309

(3.96) (3.81) (3.86) (3.69)

job *0.1317 *0.0147 *0.1331 *0.0149

(1.70) (1.67) (1.73) (1.69)

education ***-0.5393 ***-0.0618 ***-0.5412 ***-0.0620

(-10.98) (-10.84) (-11.05) (-10.90)

west ***-0.4152 ***-0.0410 ***-0.4198 ***-0.0414

(-5.16) (-5.87) (-5.23) (-5.94)

hhsize -0.0116 -0.0012

(-0.49) (-0.49)

german -0.1465 -0.0153

(-0.86) (-0.91)

Wald Chi2 ***36.77 ***852.37 ***851.89

pseudo R2 0.0979 0.1332 0.1332

n 18,866 18,866 18,866
Note: heteroscedasticity robust standard errors, t and z-values in parantheses, significance levels: *** 1%
-level, ** 5% -level, * 10%-level, stockD and income show a quantitative effect at the 6th decimal place, Wald
Chi2 H0 : β0 = β1 = · · · = βj = 0. Numbers are truncated after the fourth decimal place.

Table 5.2: Logit model - estimation results
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Probit estimations - dep. var.: lottoD

model 4 model 5 model 6

variable coeff. marg. eff. coeff. marg. eff. coeff. marg. eff.

const. ***1.1437 ***0.4035 ***0.4548

LTS ***-1.2468 ***-0.4147 ***-1.0558 ***-0.3278 ***-1.0551 ***-0.3276

(-26.60) (-26.60) (-21.32) (-21.32) (-21.30) (-21.30)

age ***0.0531 ***0.0108 ***0.0530 ***0.0108

(9.04) (9.04) (9.01) (9.01)

age2 ***-0.0004 ***-0.0001 ***-0.0004 ***-0.0001

(-8.06) (-8.06) (-7.97) (-7.97)

income ***-0.0000 ***-0.0000 ***-0.0000 ***-0.0000

(-18.33) (-18.33) (-18.02) (-18.02)

gender 0.0035 0.0007 0.0027 0.0005

(0.11) (0.11) (0.08) (0.08)

married ***0.1844 ***0.0397 ***0.1744 ***0.0374

(5.54) (5.54) (4.66) (4.66)

job ***0.1062 ***0.0222 ***0.1050 ***0.0220

(2.61) (2.61) (2.58) (2.58)

education ***-0.3221 ***-0.0681 ***-0.3215 ***-0.0680

(-12.36) (-12.36) (-12.33) (-12.33)

west ***-0.2144 ***-0.0401 ***-0.2144 ***-0.0401

(-5.22) (-5.22) (-5.20) (-5.20)

hhsize 0.0068 0.0014

(0.82) (0.82)

german -0.0608 -0.0120

(-0.65) (-0.65)

Wald Chi2 ***707.41 ***1446.98 ***1449.95

pseudo R2 0.0456 0.1054 0.1054

n 15,753 15,753 15,753
Note: heteroscedasticity robust standard errors, t and z-values in parantheses, significance levels: *** 1%
-level, ** 5% -level, * 10%-level, income shows a quantitative effect at the 6th decimal place, Wald Chi2

H0 : β0 = β1 = · · · = βj = 0. Numbers are truncated after the fourth decimal place.

Table 5.3: Probit model - estimation results
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6 Summary and Conclusion

“I’d be a bum on the street with a tin cup if the markets were
always efficient.”

Warren Buffet1

The main body of this dissertation consists of four chapters dealing with selected

topics in the field of behavioral portfolio management. A detailed summary of the results

and concluding remarks are presented at the end of each chapter. This chapter addresses

only the most significant contributions.

Chapter two investigates the role of behavioral portfolio theory in saving for retire-

ment in Germany and documents (i) an impact of emotions on behavioral portfolios, since

the security-minded (potential-minded) is the most conservative (aggressive) portfolio;

(ii) concentrated behavioral portfolios with a large proportion in only one secure asset

(endowment insurance) and a small proportion in risky assets; and (iii) mean-variance

portfolios, which are more diversified than behavioral portfolios. Chapter three deals

with a theoretical issue of the single mental account version of behavioral portfolio the-

ory and addresses the question of whether a random threshold level should be preferred

over a fixed threshold or vice versa. In a world with normal distributed returns and

in a simple distribution-free setting, I obtain the following results: The random target

strategy outperforms the fixed target strategy if the portfolio return and the random

target are positively correlated and riskless investing is prohibited; meanwhile the fixed

target strategy outperforms the random target strategy if the portfolio return and the

random target are not positively correlated and riskless investing is allowed. Chapter

four studies behavioral portfolio theory with multiple mental accounts and investigates

goal-specific asset selection and utility in a setting similar to Das et al. (2010). When

goal-specific asset selection is allowed, the solution to the aggregate portfolio can be

1(Peterson, 2007, p. 9)

67



CHAPTER 6. SUMMARY AND CONCLUSION

found on a new mean-variance efficient frontier, which is induced by the solutions to

mental account subportfolios. When goal-specific asset selection is not allowed, the so-

lution to the aggregate portfolio lies on the mean-variance efficient frontier induced by

all assets under consideration and coincides with the optimal solution to one mental ac-

count subportfolio. In this case, I derive a utility function consistent with Friedman and

Savage’s (1948) solution to the insurance lottery puzzle. Chapter five uses behavioral

portfolio theory to derive the hypothesis that lottery tickets and common stocks act as

substitutes. We find strong empirical evidence for this hypothesis and conclude that it

is not possible to explain this finding without behavioral portfolio theory.

Based on these findings, I draw one main conclusion: Since “real” investors do not

behave like the homo oeconomicus, their financial decisions must not based on traditional

economic theory. Portfolio selection decisions must not be made solely based on risk

and return. Behavioral aspects should also be taken into account. Hence, behavioral

portfolio management should play a greater role in financial industries. For instance,

relevant behavioral theoretical elements should be collected and implemented in one

tool that serves as what Shlomo Benartzi2 calls “flight simulator” to simulate several

behavioral scenarios and obtain a description rather than a prescription of how to react

to these scenarios. Future research may involve all steps towards such a tool.

2In an interview in the Frankfurter Allgemeine Zeitung (November 2010), Shlomo Benartzi suggested
a “flight simulator” as a tool investment advisers could use to test their clients’ willingness to take
risk.
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