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Abstract

This doctoral thesis concentrates on portfolio optimization problems
with a special focus on asset allocation strategies for different types
of idealized investors. While investors are classified according to their
initial wealth, their attitude toward risk and their investment hori-
zon, several asset allocation strategies are consequently constructed
for them. Special attention is hereby dedicated to applications in
Private Wealth Management, or, in other words, on portfolio man-
agement of High Net Worth Individuals (HNWIs). These investors
are characterized by a rather high degree of risk aversion, a long in-
vestment horizon and a high initial wealth. Moreover, they are more
flexible on adjusting the proportions of risky assets and riskless as-
sets over time. It is shown that these wealthy investors can put a
relatively high proportion of their initial wealth in risky assets, the
latter nevertheless characterized by low volatilities. In order to control
portfolio risk, Value at Risk (VaR) will be shown a useful instrument
to monitor the loss probability. This refers especially to the “status
problem” of wealthy investors. In the last main chapter, the impact of
the uncertainty of the model’s estimates on the solutions of portfolio
allocation problems is investigated.

The research is incorporated in the framework of both utility the-
ory and the Markowitz model. Using monthly returns of ten different
indices from seven asset classes recorded from 1996 to 2007, this dis-
sertation shows that utility maximization for portfolio optimization
problems based on quadratic utility and other popular but more dif-
ficult utility functions leads to similar results. Efficient portfolios



derived from the numerical solution of the classical Markowitz opti-
mization problem are most often good approximations of maximizing
expected utility. Furthermore, under some constraints, the concept of
a naive diversification is shown to be a good strategy for direct utility
maximizers.
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Chapter 1

Introduction

1.1 Background of the Research

Individuals as well as institutional investors are confronted with basically the
same set of problems when allocating their own financial funds or those of third
parties. The asset allocation puzzle is – at least theoretically – actually of a huge
dimension: There exist tens of thousands of listed companies (just to mention,
e.g., 2,249 at the New York Stock Exchange (NYSE) and 1,088 at the Shang-
hai Stock Exchange in 2007), masses of government and commercial bonds with
different risks and maturities, treasuries, currencies, commodities, arts and real
estate. Moreover, there is an even much bigger number of financial derivatives
on the mentioned asset classes and their representatives1such as different kinds
of options, swaps, forwards and structured products. Practically every investor
must thus undergo a preselection process. This starts usually with the selection
of the “right” asset classes2 and is followed by the identification of the “appro-
priate” elements of the chosen asset class.

The preselection process provides a reduced universe of assets where an actual
investment is considered to be possible. The final decision mainly refers to how

1The technical terms securities and assets are interchangeably used in this work.
2This is often referred to by terms like saving– and dissaving periods in a human being’s

life; this is followed most often by rather qualitative recommendations such as the substitution
during a person’s life of risky portfolio components by others characterized by lower risk.

1



1.1 Background of the Research

much to invest in the single selected assets, respectively. All these considerations
are so far independent of the three input factors which play an important role
in any structured investment process: the initial wealth, the attitude toward risk
and the investment horizon. In this thesis, idealized investors will be classified and
examined according to their expected return relationship, to their initial wealth
and to their investment horizon (Behavioral or psychological aspects will not be
considered.). From this starting point, reasonable asset allocation strategies will
be derived.1

In this research is a specific focus on High Net Worth Individuals2. Although
there are certainly individual exceptions, these investors are usually character-
ized by a high initial wealth, a comparably long investment horizon and a rather
low risk tolerance.3 While many rich families with industrial shares lost – at least
virtually – a lot of money from the outbreak of the current financial crisis mid
2007, there were quite a few complaints about the administration of wealth by the
private banks in Europe. That might, on the one hand, have to do with the high
level of discretion of both customers and banks; but it is more likely, although
it cannot here be proven, that it is because of the actions taken by these banks
on their already conservative customers’ portfolios at a time when the rise of the
financial crisis was not yet recognized by the public.

Markowitz’ theory provides a quite broad framework for optimal asset allocation.
It is firstly – as are most mathematically–based capital market models – inde-
pendent of whether they are normative or positive – a “one–period–model”. This
means that the model can be used for theoretically every investment period or

1There is, e.g., strong evidence that the asset allocation of individual as well as institutional
investors explains a large part (up to 90 %) of the actual portfolio performance. See, e.g.,
Brinson et al. (1986), Brinson et al. (1991).

2A HNWI is usually understood to be an individual who holds at least US$ 1 million in
financial assets, excluding collectibles, consumables, consumer durables and primary residences.

3The reader of this text will certainly realize that there are some assertions on “typical”
HNWIs in this thesis which are not supported by appropriate references or academic research.
These statments in questions have been developed during an internship of the author in a
private bank. Despite serious efforts could in some cases no references been found.

2



1.1 Background of the Research

horizon. Secondly, the computation of the investment weights (for more details
see the following chapter) requires at least that the initially–invested budget is
much larger than the price of a single asset of any element in the set of possible
investment alternatives. This means that the initial investment sum cannot be
“too small”, and is thus appropriate for dealing with “large” fortunes to be in-
vested in risky securities. Thirdly, the Markowitz model provides a set of efficient
portfolios, i.e., the (theoretically infinite) number of all portfolios with the high-
est achievable expected return for all (predefined) levels of (existing) risk. The
better the preselection process is performed,1 the better in statistical terms will
be the set of efficient portfolios.2

The “neighborhood” of the Global Minimum Variance Portfolio toward the North–
East is of a very special interest for asset allocation recommendations for HNWIs.
They are motivated from the actual investment approach of a “typical” HNWI.
This is: firstly, because the GMVP is the only portfolio which does not depend
on the vector of expected returns; and secondly, because it is usually a very
well–diversified portfolio. According to the fundamental insight into all risky in-
vestments, there is a positive trade–off between expected return and risk. The
bad side of this insight is that, the more expected return an investor demands,
the more he or she depends on “good” estimates or inputs in the models. The
second, even worse side of this insight is that, if an investor, reinvesting the final
amount at each period, repeats the investment game often enough, the expected
“Future Value” of his portfolio is zero! Thirdly, the long investment horizon is
directly linked to the fact that the portfolio should not be changed too much in
time.3 Very generally, an intertemporal Markowitz model in the long run works

1I.e., that it identifies low correlations between assets with “good” expected returns.
2The impact of a meltdown of correlations toward + 1 as a characteristic of a financial crash

will not be discussed in this thesis.
3We refer here to the problem of errors in the input estimates. The higher the expected

return of the portfolio, the fewer are the assets which are usually dominating the portfolio, the
more important are thus getting errors in the return distribution of these remaining assets. In
the perfect case, the expected return of the portfolio, which has been constructed at t = 0,
equals to the realized return at t = 1. The actual reliability of a portfolio can simply be derived
as the difference between these two numbers.

3



1.1 Background of the Research

very well for investors who ask for modestly increasing values of their investments,
but not for investors with a high risk tolerance. It is thus very appropriate for
HNWIs, who usually have most of their focus on simply preserving their fortunes.

The solution of the optimization problem according to Markowitz nevertheless
depends on questionable assumptions. Either investors have quadratic utility, or
portfolio returns are normally distributed; however, neither of these assumptions
actually works fully in practice. The consequent question is: to what extent
does this matter? H. Levy & H. M. Markowitz (1979) demonstrate that mean–
variance approximations of utility correlate strongly with true utility. They show,
for various utility functions and empirical return distributions, that the expected
utility maximizer could typically do very well, if he or she acted knowing only the
mean and the variance of the distribution under consideration. Kroll et al. (1984)
examine the same question but for an infinite number of alternate distributions,
and Samuelson (2003) finds that today investors have sufficient computational
power to maximize expected utility based on a plausible utility function and the
entire distribution of returns from empirical samples.1

From here on, we continue by comparing the results of mean–variance optimiza-
tions and direct expected utility optimizations of different utility functions, and
intend to check which framework is more appropriate for different types of in-
vestors. Moreover, we aim to derive corresponding asset allocation strategies
from different sets of available asset classes for these different types of investors,
especially for the HNWIs. Representatives of the asset classes arts and real estate
are, e.g., considered to be possible investment choices for the HNWIs, but not for
“small” investors. Technically we must be more careful with some assumptions
of the classical Markowitz model, such as normally distributed returns of the as-
sets, and the infinite divisibility of the assets. We will deal with the impact of
the uncertainty of the input parameters by treating it with sensitivity analyses.
This shall provide us with information about the reliability and stability of the

1In this thesis only a part of the foundations of utility theory will be discussed, namely the
one which is linked to portfolio choice theory.

4



1.2 Literature Review

portfolios which are derived from the asset allocation strategies mentioned before.

The structure of this thesis is as follows: After a concise overview of the important
academic work related to the set of research questions discussed in this thesis,
chapter 2 reviews the classical Markowitz model, fundamentals of utility theory,
furthermore several extensions and some specific numerical techniques to solve
portfolio optimization problems under different types of constraints. Chapter 3
provides a classification for some “typical” individual and institutional investors.
It furthermore derives corresponding motivations for “reasonable” strategies of
these investors according to their initial wealth, risk–return preferences and in-
vestment horizon, respectively, and then presents different asset allocation strate-
gies for some types of investors. Chapter 4 shows the results of the empirical
research. The influence of the initial wealth, the investment time horizon, and
the attitude toward risk is there examined for some chosen strategies. Corre-
spondingly, we will compare the results derived from Markowitz’ mean–variance
model and from Expected Utility Maximization by means of estimates derived
from historical returns of different asset class indices. Furthermore, it investigates
the impact of errors in the estimates, and provides two proposals for reducing the
role of estimation errors on the asset allocation. Chapter 5 summarizes the main
results of this research. The constrained optimization problems were treated nu-
merically with the help of MATLAB–software. The used data and programme
codes are attached to this thesis via a CD.

1.2 Literature Review

Asset allocation can be regarded as one of the most important applications of
modern portfolio theory. Contrariwise and closer to investors’ needs and intu-
ition, portfolio theory is a set of tools and methods to identify “good” asset allo-
cations. Tactical asset allocation assumes that the decision maker has a criterion
defined over the “short” one–period rates of return on the portfolio. Correspond-
ingly, strategic asset allocation has a long–term horizon. Two approaches are
often used in the framework of strategic asset allocation. One is the stochastic

5



1.2 Literature Review

optimal control problem which captures uncertainty by allowing for a continuum
of states, which can be described at a given point in time by a small number of
state variables following a joint Markov process1; and the other one is the stochas-
tic programming approach which captures uncertainty by a branching event tree.2

Modern portfolio theory is a well–developed paradigm which is able to pro-
pose solutions to practically every asset allocation problem. Important mile-
stones are Markowitz (1952a), Markowitz (1959), the Capital Asset Pricing Model
(CAPM) derived by Sharpe (1964), Mossin (1966), Lintner (1965), the intertem-
poral CAPM by Merton (1973) and the Arbitrage Pricing Theory of Ross (1976).3.

This section will provide a selection of important previous research results re-
lated to the topics discussed in this thesis. These are the Markowitz theory and
its extensions, utility theory, and the results on theoretical and empirical aspects
of asset allocation strategies. Markowitz (1952a, 1959) formulated the portfolio
optimization problem in a μ − σ–framework and proved the fundamental theo-
rem of mean–variance–efficient portfolios. Depending on his or her risk–return
preferences, an investor can then select an optimal portfolio.

There are obviously some important advantages compared to the competing, most
often more technically sophisticated, models: Firstly, there is no evidence that
adding additional statistical moments improves the properties of the portfolio
selected. Secondly, and even more importantly from most investors’ perspective,
the implications of the mean–variance–portfolio theory are well developed, widely
known, and have great intuitive appeal.4

Among the major theoretical problems – and practically corresponding to the
1See Merton (1971).
2More information on tactical asset allocation can be found in Brennan et al. (1997).
3There are also a number of excellent textbooks on this subject (See, e.g., Elton & M.

J. Gruber (1997), Sharpe et al. (2008), Bodie & Crane, D. B. (1997)) A good review about
the historical and further research for modern portfolio theory can be found in Elton & M. J.
Gruber (1997).

4See Elton & M. J. Gruber (1997).
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key question of how to rebalance a portfolio at not necessarily equidistant differ-
ent discrete time points – that have been investigated by many researchers is how
the classical one–period problem should be modified if the investor’s true problem
is a multi–period problem. Research by Fama (1970), Hakansson (1970), Hakans-
son (1974), Merton (1990) and Mossin (1969) has been executed by analyzing this
problem under various assumptions. It was, e.g., found that under several sets of
reasonable assumptions, the multi–period problem can be solved as a sequence of
single–period problems. However, the optimum portfolio would be different from
that selected if only one period was examined! This difference arises because the
appropriate utility function in the multi–period case is a derived utility function
that takes into account multiple periods and differs from the utility function that
is appropriate for one single period.

Referring to the utility function, it is furthermore frequently asserted that mean–
variance analysis applies exactly only when distributions are normal or utility
functions are quadratic, suggesting that it gives nearly optimal results only when
distributions are approximately normal or utility functions look almost like a
parabola. Levy and Markowitz1 showed empirically that the ordering of port-
folios by the mean–variance rule was almost identical to the order obtained by
using expected utility for various utility function and historical distributions of
returns. Tobin2 showed that the mean–variance model is consistent with the von
Neumann–Morgenstern postulates of rational behavior if the utility of wealth is
quadratic. Samuelson (1969)3 and Merton (1971)4 showed that a constant weight
strategy is optimal if the investor’s utility function displays constant relative risk
aversion (CRRA) and asset prices follow geometric Brownian motion. Cox and
Huang (1992)5 demonstrated that for a broad class of utility functions (including
the linear risk tolerance, or hyperbolic absolute risk aversion (HARA) functions),
the optimal strategy converges to constant weights as the horizon increases.

1See Levy & H. M. Markowitz (1979).
2See Tobin (1958).
3See Samuelson (1969).
4See Merton (1971).
5See Cox & Huang, C. (1992).
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As for uncertainty in expected returns and its implications for portfolio selection,
there are extensive research contributions: the works of Barry (1974) and Bawa
et al. (1979), for example. Many authors have addressed this problem, often re-
sorting to a Bayesian framework F.(Black & R. Littermann (1992); J. D. Jobson
& R. Korkie (1980); F. Jorion (1985); R. O. Michaud (1989); V. Chopra & W.
T. Ziemba (1993)). Another popular approach is the one proposed by Michaud6,
which provides an attempt to maintain the advantages of the efficient frontier
optimization framework, but accommodates parameter uncertainty by creating a
resampled frontier. This approach, which regards an efficient frontier as one ran-
dom realization, offers many more interesting insights, and has also been strongly
supported by empirical research.1

6See Richard O. Michaud & Robert O. Michaud (1998).
1See Markowitz & N. Usmen (2003).
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Chapter 2

The Markowitz Theory of
Portfolio Optimization

2.1 Preliminaries

For any practical investment decision, there are three main questions which have
to be answered by every investor:

1. In which asset classes should I invest?

2. Which representatives of these asset classes should I choose?

3. How much should I invest in these selected assets, respectively?

While the first two questions are associated with the aforementioned preselec-
tion process, the third question is directly linked to mathematical and statistical
modeling. The question of how much to invest in individual assets is actually the
central question of the Modern Portfolio Theory (MPT), which has been intro-
duced into financial research by Harry Markowitz (1952a, 1952).

In order to build a reasonable model, we will abstract from i) different asset
classes and different individual assets, ii) the investment horizon, and iii) the
initial invested amount. Let N ∈ N denote the number of investment alterna-
tives, or, in other words, different assets, which are taken into consideration for
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2.2 Efficient Portfolios

an investment after the preselection process. The initial amount to be invested is
denoted by B. The budget B is assumed to be any large but fixed amount in, e.g.,
Euros. For all N assets, there exist the exogenous known market prices per unit,
P1, P2, . . . , PN , and the decision variables for the investment are consequently the
quantities of the assets to be purchased, Q1, Q2, . . . , QN . Because the investor
cannot spend more than B (and there could be some small cash remain), it holds
the following inequality:

P1Q1 + P2Q2 + . . .+ PN−1QN−1 + PNQN ≤ B. (2.1)

The prices P1, . . . , PN are supposed to be constant for acquiring all units Qi,
where i = 1, . . . , N , of each asset, respectively.1 Dividing (2.1) by B gives

P1Q1

B
+ P2Q2

B
+ . . .+ PN−1QN−1

B
+ PNQN
B
≤ 1. (2.2)

Defining xi := PiQi/B, xi, i = 1, . . . , N , results in x1 + . . . xN ≤ 1. The xi, i =
1, . . . , N , are the relative rates of the N investments, summing up to (almost) 1.
Note that the inequality turns toward an equality if B >> Pi ∀i ∈ {1, . . . , N}.
Under these assumptions, the equation

x1 + . . . xN = 1 (2.3)

expresses the intention of the investor to invest his or her initial budget or fortune
completely.2

2.2 Efficient Portfolios

Defining a portfolio as a set of relative investment weights (x1, . . . , xN)T ,
∑N
i=1 xi ≤

1, an investment decision problem can basically be described by two optimization
approaches:

1This is approximately about correct for very liquid assets, but does not hold for assets
with a low number of traded units. For a given supply, the price would otherwise be bided up
by an increasing demand.

2This assumption is often referred to as the infinite divisibility of the assets.
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2.3 Inputs of the Model and Statistical Measures

1. For a portfolio with a given initial wealth level and a predefined highest
tolerable risk, maximize the expected return.

2. For a portfolio with a given initial wealth level and a predefined lowest level
of expected return, minimize the risk.

A portfolio is called efficient, if, for a given level of risk, there is no portfo-
lio with a higher expected return, or, for a given expected return equal or above
the Global Minimum Variance Portfolio, there exists no portfolio with a lower
risk.1

2.3 Inputs of the Model and Statistical Mea-
sures

Investors obviously prefer c.p. more expected return to less expected return and
less risk to more risk.2 Firstly, all (preselected) assets have now to be charac-
terized by individual measures of potential return and risk, and secondly, these
measures have to be derived for portfolios.

In a complete (i.e., the probabilities sum up to one) discrete probability scenario3,4

M denotes the number of states with associated probabilities p1, p2, . . . , pM ,∑M
j=1 pj = 1. The investment alternatives are denoted by a1, a2, . . . , aN . Let

R = (R1, ..., RN)T denote a N−dimensional vector of random returns.

The expected return of an asset i, i = 1, . . . , N is defined by

E[Ri] = μi = p1Ri1 + p2Ri2 + . . .+ pM−1RiM−1 + pMRiM =
M∑
j=1
pjRij. (2.4)

1Graphically, the set of all efficient portfolios is represented as the upper branch of the
efficiency curve or efficient frontier.

2Investors’ preferences and utility functions will be discussed in section 2.5.
3It is supposed that all possible market expectations are in the complete scenario with the

associated probabilities.
4For research on continuous cases, see Szegö (1980).
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2.3 Inputs of the Model and Statistical Measures

Table 2.1: Discrete Probability Scenario

s1 s2 · · · sM−1 sM

a1 R11 R12 · · · R1M−1 R1M

a2 R21 · · · · · · R2M
...
aN−1

aN RN1 RN2 · · · · · · RNM

Rij is the realization of the random return of asset i in state j, i = 1, ..., N ; j =
1, ...,M .

In practice, statistical parameters are often estimated from time series (such as
historical data from financial markets), and after that, they are somehow ad-
justed.1

Whereas there is much consensus about measuring/describing the attractiveness
of risky assets by their expected returns, the understanding of risk differs much
more among investors and academics. The following risk measures are especially
in practical use:

1. Variance or standard deviation,

2. Value at Risk,

3. Semi–Variance as a special case of Lower Partial Moments,

4. Skewness and Kurtosis.
1Note that any realization of a time series represents a special case of the general scenario

shown here. While most of the statistical techniques dealing with real data are very precise, the
overall dominating problem in putting a Capital Market Model into practice is the uncertainty
of the parameters due either to errors in the estimates or to wrong or incomplete probability
scenarios, both of which are equally serious.
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2.3 Inputs of the Model and Statistical Measures

As long as assets are supposed to be characterized by symmetric return distribu-
tions, variance or standard deviations are good measures. If there were normal
distributions, however, variance or standard deviation would be perfect, because
any normal distribution is completely described by its expected value and its vari-
ance.1 The variance of the random return of asset i, i = 1, . . . , N , in a complete
discrete probability scenario is defined by

V[Ri] = σ2
i =

M∑
j=1
pj(Rij − μi)2. (2.5)

Although a return distribution cannot be fully normal2, the variance is usually a
good measure of risk as long as the underlying assets are bonds or stocks and the
historical returns come from short equidistant time intervals (see, e.g., Artzner
et al. (1999)). The variance is usually not a good risk measure if we deal with
financial derivatives which are characterized by non–symmetric payoffs.

Mathematically, (Ω,F,P) is a probability space and R : Ω → R is a random
vector. Let R = (R1, R2, . . . , RN)T ∈ L2(Ω,F,P). We denote

1. E[R− E(R)]k is the central moment of order k, k ∈ N.

2. V(R) = σ2
R = E[R− E(R)]2 the variance of R.

3. COV(Ri, Rk) = σik = E[Ri−E(Ri)][Rk −E(Rk)] is the covariance between
Ri and Rk, i �= k, i, k ∈ {1, . . . , N}.

The expected return μp of a portfolio is a linear combination of the portfolio
x = (x1, . . . , xN)T and the vector μ = (μ1, . . . , μN)T .3

μp = μTx =
N∑
i=1
xiμi. (2.6)

1Note that the use of the variance is equivalent to its positive square root, the standard
deviation.

2The maximum loss can, e.g., not exceed 100 %.
3Notation: From now on, vectors and matrices are written in bold characters throughout

this thesis.
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2.3 Inputs of the Model and Statistical Measures

The variance of a portfolio xp is thus

σ2(R(xp)) =
N∑
i=1

N∑
k=1
xixkσik

with σik = E[(Ri − μi)(Rk − μk)]. Using matrices we have σ2(R(xp)) = xp
TΣxp

with Σ = (σij)Ni,j=1 the variance–covariance matrix. From now on, the subscript
P is omitted for the portfolio vectors and σ2

p denotes the variance of a portfolio P .

Theorem 2.1 summarizes the most important properties of the variance–covariance
matrix Σ = E(R− μ)(R− μ)T .

Theorem 2.1 When Σ is the covariance matrix, then:

1. Σ is symmetric.

2. Σ is positive semi–definite.

3. From linearly independent expected returns it follows that Σ is regular.

The proof of properties 1. to 3. can be found in Huang & R. H. Litzenberger
(1988).1

We now make the assumption that all assets are risky, i.e., that each one has a
positive variance. From a given N−dimensional vector of random returns

R =

⎛
⎜⎝
R1
...
RN

⎞
⎟⎠ : Ω→ R

N .

and a vector of expected returns

μ =

⎛
⎜⎝
μ1
...
μN

⎞
⎟⎠ =

⎛
⎜⎝

E(R1)
...

E(RN)

⎞
⎟⎠

1When applying time series models in practice, note that an estimate of Σ cannot be not
regular, if the number of observed time periods is smaller than the number of the assets N (See,
e.g., Wolfe (1959)).
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2.3 Inputs of the Model and Statistical Measures

and the variance–covariance matrix

COV(R) = Σ =

⎛
⎜⎜⎜⎝
σ2

1 σ12 · · · σ1N

σ21 σ2
2

...
... . . .
σN1 · · · σ2

N

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝
σ11 σ12 · · · σ1N

σ21 σ22
...

... . . .
σN1 · · · σNN

⎞
⎟⎟⎟⎠

are derived. The return of a portfolio will be formulated as follows: RP = xTR.
The optimization problem is now either

min
x∈�N

V(R) = xTΣx

or
max
x∈�N

E(R) = xTμ

subject to

1Tx =
N∑
i=1
xi = 1

and the additional constraint with respect to expected return or variance (cf.2.2.)
In order to resolve the optimization problem, one has to choose the “right” objec-
tive function.1 The expected return must to be fixed and the portfolio variance
minimized, and the problem can thus be formulated as follows:

Unrestricted Standard Optimization Problem:

min
x∈�N

V(R) = xTΣx

subject to

1Tx =
N∑
i=1
xi = 1,

μTx =
N∑
i=1
xiμi = μp.

1For mathematical reasons it is easier to have a non–linear objective function with linear
constraints instead of a linear objective function with non–linear constraints; see, e.g., D. G.
Luenberger & Y. Ye (2008).
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2.3 Inputs of the Model and Statistical Measures

This is the standard form of the basic unrestricted Markowitz optimization model
for some reasonable expected returns being at least as large as the expected return
of the Global Minimum Variance Portfolio. The constraint

1Tx =
N∑
i=1
xi = 1 (2.7)

refers to a full investment and

μTx =
N∑
i=1
xiμi = μp

predefines the investor’s lower bound with respect to his or her expected return.
More generally we write the optimization problem as

Φ(x) = xTΣx→ min subject to Bx = c (2.8)

with a symmetric positively definite matrix Σ ∈ R
N×N , the matrix B = (1 μ)T ∈

R
2×N and the vector c = (1 μp)T.

This problem has two linear constraints, i.e., the full investment condition and
a given expected return. (Real investors will usually face more constraints, see
section 2.6.)

2.3.1 Additional Constraints and some Practical Prob-
lems

As can easily seen, the above model is far from most practical applications, and
the most important technical restrictions to the majority of individual and insti-
tutional investors are the following:

1. Short sales are often not possible, not desired or are not allowed; i.e., the
xi ≥ 0, i ∈ {1, . . . , N}.

2. There are often upper and lower limits for investment percentages (espe-
cially important are the legal restrictions for institutional investors):

xilower ≤ xi ≤ xiupper, i ∈ {1, . . . , N}.
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2.3 Inputs of the Model and Statistical Measures

3. Integer constraints often apply, especially with regard to investments in real
estate or pieces of art: xi ≥ 0, i ∈ {1, . . . , N}: xi = ci ∗ zi, with integer zi.

A directly associated problem of high importance for any actual asset allocation
has already been referred to: The estimated probability distribution of the asset
returns changes with new incoming information over time. There are thus nec-
essarily errors in the model input estimates, and directly related consequences
on the asset allocation and the deviation between expected and real performance
of every portfolio.1 In the following we will deal with quadratic optimization
problems with different constraints.

2.3.2 Other Basic Assumptions of the Model

Applications of the Markowitz theory are widely discussed in academia, as well as
among practitioners (see, e.g., Farrell (1997).). The Markowitz theory is among
the core chapters of all important textbooks on Finance, Corporate Finance and
Investments (see, e.g., Sharpe et al. (2008), Elton et al. (2007), Brealey et al.
(2005)). There are usually several (not always the same) assumptions mentioned,
the most important of which are summarized here:

• Only two parameters of asset return distributions are considered, namely
the expected return and the variance or standard deviation. This actually
implies a normal distribution, and empirical research shows rather small
and acceptable deviations from this assumption when the assets are bonds
or stock (see, e.g., Andersen & Ebens (2001)).

• The Markowitz model is a single–period model: This time period can be
one day, one month, one year, three years, etc. We note that, the longer
the period is, is the higher the uncertainty with respect to future outcomes.
The variance is a linear function of the time (see, e.g., Harville (1977)).

• Investors are risk averse, objecting to maximizing expected utility (see, e.g.,
Farrell (1997)).

1This problem will be discussed in more detail in the empirical section of this thesis.
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• It holds the Efficient Market Hypothesis in one of its three forms: The
core argument is that prices of assets correspond to their economic value,
because every investor can have sufficient information on the market and
understand the possible probability distribution of the asset returns.1

• In the investment process, an individual or an organization can be the
optimizing agent price taker. This means that their investment decisions
are separate from the different asset classes.

• Inflation will not be considered, as the Markowitz model actually deals with
nominal returns. Inflation is assumed to be one part of this overall nominal
return.

• There are transaction costs and taxes. Trading on the market occurs with-
out friction.2

2.4 Solution and Features of the Unrestricted
Problem

There are different techniques to solve the quadratic optimization problem, de-
pending on the set of constraints. While the classical, unrestricted problem can
be solved analytically using Lagrange multipliers, efficient portfolios in the un-
restricted class are characterized by a quadratic relation between variance and
expected return. Solutions of problems with non–negativity constraints can be
solved by using the Critical Line Algorithm proposed by Harry Markowitz3 and
Quadratic Programming used, e.g., by Philip Wolfe.4 Special focus will be on
two outstandingly important portfolios; namely, the Global Minimum Variance
Portfolio and the Tangential Portfolio. In Section 2.6 we will investigate several

1See Fama (1970).
2Transaction costs are nowadays not very critical anymore, neither for individuals or for

institutional investors, see, e.g., Hong (2004). Taxes actually have very different important
possible impacts, e.g., with respect to the taxable income, legal status, tax authorities and
citizenships, etc.

3See Markowitz (1956).
4See Wolfe (1959).
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situations with non–negativity constraints. The development of the theory and
the notation in this chapter follow, with some modifications, C. Huang & R. H.
Litzenberger (1988).

2.4.1 Solution of the Unrestricted Problem

Theorem 2.2 Suppose Σ is regular. The optimization problem

min
x∈�N

V(R) = xTΣx

subject to

1Tx =
N∑
i=1
xi = 1

and

μTx =
N∑
i=1
xiμi = μp

has then the unique solution:

x∗(μP ) =
cμP − b
ac− b2

(
Σ−1μ

)
+ a− bμP
ac− b2

(
Σ−11

)
, (2.9)

where

a := μTΣ−1μ,

b := μTΣ−11 = 1TΣ−1μ,

c := 1TΣ−11.

Proof: Given the regular matrix Σ, i.e., the inverse of this matrix also exists.
With two linear constraints, the Lagrange function is now

L(x, λ1, λ2) = xTΣx− λ1(1Tx− 1)− λ2(μTx− μp). (2.10)

A necessary condition for a solution to this problem is the existence of the first
derivatives of L(x, λ1, λ2) with respect to x,λ1 and λ2. It follows that

∂L(x, λ1, λ2)
∂x

= Lx(x, λ1, λ2) = 2Σx− λ11− λ2μ
!= 0. (2.11)

19



2.4 Solution and Features of the Unrestricted Problem

The derivatives of L(x, λ1, λ2) with respect to λ1 and λ2 set equal to zero, giving
us again, of course, the two initial constraints.

∂L(x, λ1, λ2)
∂λ1

= 1Tx− 1 != 0.

∂L(x, λ1, λ2)
∂λ2

= μTx− μp != 0.

There are now three linear equations with the three unknown variables x, λ1 and
λ2.
Using a matrix notation, (2.11) will be written with λ =

(
λ1
λ2

)
as

⎛
⎜⎝
1 μ1
... ...
1 μN

⎞
⎟⎠(λ1
λ2

)
= [1μ]λ = 2Σx.

Solving this with respect to x gives us

x = 1
2Σ
−1[1μ]λ. (2.12)

To substitute the Lagrange multipliers, (2.12) is now multiplied by [1μ]T from
the left side. It follows that

[1μ]Tx = 1
2[1μ]

TΣ−1[1μ]λ.

Defining now

A := [1μ]TΣ−1[1μ] =
(
1TΣ−11 1TΣ−1μ
μTΣ−11 μT Σ−1μ

)
=:
(
c b
b a

)
.

We note that, as long as Σ is a positive definite or regular and not all expected
returns μi, i = 1, . . . , N , are equal, the unique inverse of A exists, namely

A−1 = 1
ac− b2

(
a −b
−b c

)
.

It follows that
[1μ]Tx = 1

2Aλ.
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2.4 Solution and Features of the Unrestricted Problem

Using the two constraints we have

[1μ]Tx =
(
1Tx
μTx

)
=
(

1
μP

)
= 1

2Aλ

and it consequently follows that(
λ1
λ2

)
= λ = 2A−1

(
1Tx
μTx

)
.

We get thus a closed solution for the variance minimizing portfolio under the
constraints that we invest all, and that we predefine a given expected return, i.e.,
that 2.9 is equivalent to

x∗(μp) = Σ−1[1μ]A−1
(

1
μp

)
. (2.13)

Remark: A very important relation between the expected return and the vari-
ance of all efficient portfolios follows from this result. By definition, the variance
of the optimal portfolio equals σ2

p = xTΣx. Taking the solution obtained in (2.13)
and using it to replace the vector x, it holds that

σ2
p(x∗) = xTΣx = (1 μp)A−1[1μ]TΣ−1ΣΣ−1[1μ]A−1

(
1
μp

)

= (1 μp)A−1[1μ]TΣ−1[1μ]A−1
(

1
μp

)

= (1 μp)A−1AA−1
(

1
μp

)

= (1 μp)A−1
(

1
μp

)

= 1
ac− b2 (1 μp)

(
a −b
−b c

)(
1
μp

)
.

The last representation is equivalent to

σ2
p(x∗) =

1
ac− b2 (cμ

2
p − 2bμp + a). (2.14)

2.4.2 The Global Minimum Variance Portfolio

Equation 2.14 leads to another important result concerning the Global Mini-
mum Variance Portfolio. The comparison of this special portfolio with other
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efficient portfolios for different investors will be discussed in more detail in the
following chapters.

Theorem 2.3 The portfolio

xGMVP = 1
c
Σ−11

is the overall risk minimum portfolio. The point
(√

1
c
, b
c

)
denotes the coordinates

of the GMVP in terms of σ and μ.

Proof: The optimal solution must satisfy the following condition:

dσ2
p

dμp
= 1
ac− b2 (2cμp − 2b) != 0.

The expected return of the variance minimizing portfolio follows directly from
this equation. It is

μGMV P = b/c. (2.15)

From substituting μGMV P in (2.14), it follows that

σ2
p(x∗) =

1
ac− b2

(
c

(
b

c

)2

− 2b
(
b

c

)
+ a
)

= ac− b
2

ac− b2
1
c
= 1
c
. (2.16)

Using 2.13, the vector of the overall risk minimum portfolio is now easily com-
puted:

x∗ = xGMVP = Σ−1[1μ]A−1
(

1
b/c

)
= 1
c
Σ−11. (2.17)

These results are actually of enormous importance regarding the GMVP: They
have the following implications:

• If someone is, e.g., asking for the best portfolio with an expected return of
say 5 %, one has to check first whether this target return is at least as large
as the expected return of the global minimum variance portfolio!

• From the investors’ perspectives, the GMVP should be taken as a lower
benchmark, meaning that the investments under consideration should not
underperform the GMVP.

22



2.4 Solution and Features of the Unrestricted Problem

• In the neighborhood toward North–East, the efficiency line has a very high
positive slope. The investor thus gets a “good” exchange rate of return for
taking more risk.

• The Global Minimum Variance Portfolio is the only portfolio which is in-
dependent of the vector μ, and it is thus less influenced by errors in the
estimates.

The GMVP thus plays an outstanding role as a reference portfolio for the invest-
ments of especially risk averse investors.

2.4.3 The Risk–Free Asset and the Tangential Portfolio

So far we have taken only risky assets into consideration, i.e., σ2
i > 0 ∀i. Now

we will add a risk–free asset to the set of N risky investment alternatives, and it
is further assumed that investors can borrow or lend as much as desired at the
risk-free rate Rf .

Suppose x is the rate to be invested in the risky asset. Consequently, 1 − x
is invested in the risk–free asset. Denoting the expected return of any risky asset
by R and Rf as the guaranteed return of the risk–free asset, the expected return
of the portfolio is now

μp = xR + (1− x)Rf
= Rf + x(R−Rf ) (2.18)

and for the variance holds

σ2
p = x2σ2

R + (1− x)2σ2
Rf

+ 2x(1− x)σ(R,Rf )

= x2σ2
R. (2.19)

The standard deviation is thus a linear function of the rate invested in the risky
asset: σp = xσR. In a σ–μ–framework, it follows consequently that

μp = Rf +
σp
σR

(μR −Rf ). (2.20)
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It will now be shown that combinations of the risk–free asset and the Tangential
Portfolio dominate all risky portfolios on the upper branch of the efficiency line.
The Tangential Portfolio is the one with the highest achievable slope of a tangent
connecting (Rf , 0) and the upper branch of the efficiency line.

Theorem 2.4 The portfolio weights of the Tangential Portfolio with μTP and
σTP are:

xTP = 1
ac− b2Σ

−1[μ 1]
(
cμTP − b
−bμTP + a

)
(2.21)

= 1
b− cRfΣ

−1[μ− 1Rf ]. (2.22)

Proof: From equation (2.14) it follows that

σP (x∗) =
(

1
ac− b2 (cμ

2
p − 2bμp + a)

)1/2

.

Omitting the subscript p and taking the first derivative, it follows that

dσ

dμ
= 1

2
1

(ac− b2)1/2 (cμ
2 − 2bμp + a)−1/2(2cμ− 2b)

= cμ− b√
ac− b2√cμ2 − 2bμ+ a

.

Inverting this expression leads to

dμ

dσ
=
√
ac− b2√cμ2 − 2bμ+ a

cμ− b .

This, however, is the exact slope μTP−Rf
σTP

of the straight line connecting (Rf , 0)
and (μTP , σTP ). We now obtain

μTP = Rf +
√
ac− b2√cμ2

TP − 2bμTP + a
cμ− b

√
1

ac− b2 (cμ
2
p − 2bμTP + a)

= Rf +
cμ2
TP − 2bμTP + a
cμTP − b .

After some algebra it follows that

μTP = a− bRf
b− cRf . (2.23)

24



2.4 Solution and Features of the Unrestricted Problem

Substituting with μTP we get the variance

σ2
TP = 1

ac− b2
(
cμ2
TP − 2bμTP + a

)
= 1
ac− b2

(
c

(
a− bRf
b− cRf

)2

− 2b
(
a− bRf
b− cRf

)
+ a
)
.

Substituting with μTP in (2.13) we obtain the following:

xTP = 1
ac− b2Σ

−1[μ 1]
(
cμTP − b
−bμTP + a

)
(2.24)

= 1
b− cRfΣ

−1[μ− 1Rf ]. (2.25)

Letting x represent the proportion invested in the risky assets, and 1−x represent
the proportion invested in the risk–free asset, we arrive at the following:

μp = xR + (1− x)Rf .

σ2
p = x2σ2

R + (1− x)2σ2
Rf

+ 2x(1− x)σ(R,Rf )

= x2σ2
R.

The following list summarizes the most important features linked to the Tangen-
tial Portfolio:

• As for the efficiency line, the risk–free return is not stable over time. It is
usually referred to as rates of central banks.

• All efficient portfolios are now mixes of the risk–free asset and the Tangential
Portfolio; i.e., they are graphically on the straight line connecting the risk–
free asset and the Tangential Portfolio. This is also referred to as the
Two–Fund separation.1

• By mixing risky and riskless assets, an investor can (at least theoretically)
select his or her expected return between the risk–free return and infinity.
Depending on their attitude toward risk, investors can invest in only the
risk–free asset, in mixes of non–negative proportions of the risk–free asset
and the risky Tangential Portfolio, or in a levered Tangential Portfolio. The
higher the expected return, the lower the rate invested in the risk–free asset.

1See C. Huang & R. H. Litzenberger (1988).
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2.4 Solution and Features of the Unrestricted Problem

• The higher the expected return of the selected portfolio, the more does the
actual performance depend on errors in the estimates.

• In practice, there are two riskless rates for borrowing and lending: Rb and
Rl, Rl < Rb. These rates are not homogeneous and thus differ among in-
vestors according to, e.g., their initial wealth. The resulting graph therefore
consists of two straight parts and a small arc of the efficiency line. The lower
the difference is between the borrowing and the lending rate, the smaller is
the part on the efficiency line, and the smaller the difference is between the
slopes of both straight parts.

• The risk–free (lending) rate must be lower than μGMV P = b/c to guarantee
an economically meaningful solution.

For more details on investors perspectives, see, e.g., Kleeberg (1995).

�

�

lR

bR
lTP

bTP

b

l

Figure 2.1: Borrowing and Lending

Figure 2.1 presents a pictorial representation of this much more practically rele-
vant situation. Figure 2.2 shows the Minimum Variance Portfolio obtained from
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Figure 2.2: Risk–Free Asset and Tangential Portfolio

estimates based on time series data from December 1995 until December 2007,
using the four indices DAX 30, GREI, S&P 500 and MSCIWRLD. The Global
Minimum Variance Portfolio in this example is characterized by a monthly mean
of 0.51% and a standard deviation of 2.38%. The Tangential Portfolio in this ex-
ample has a monthly average return of 0.79% and a standard deviation of 3.6%.
More details on these computations will be discussed in chapter 4.

2.5 The Utility Theory and Optimal Portfolios

Very generally, economics tries to help us understand how rational individiuals
and the society as a whole allocate scarce resources and distribute wealth over
time, whereas the utility theory aims at developing a better understanding of how
people make choices when they face uncertainty. The utility theory models why
an investor chooses some quantitities of different goods within a certain budget.1

1Cf., e.g., Varian (1992).
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2.5 The Utility Theory and Optimal Portfolios

In their famous textbook Theory of Games and Economic Behavior, published in
1947, John von Neumann and Oskar Morgenstern stated that “We wish to find
the mathematically complete principles which define ’rational behavior’ for the
participants in a social economy, and derive from them the general characteristics
of that behavior.”1

In this section, we will compose the general principles of the utility theory.2 We
will start by reviewing some issues of preference relationships, and then proceed
to establish a link between some typical investors and utility functions. Already
note that it is very difficult to choose a proper utility function for individual in-
vestors in practical applications (cf., e.g., Bell (1995)).

Suppose an individual or investor is faced with the outcomes of an entire set,
S, of uncertain alternatives3:

S = {x1, x2, . . . , xN}.
A preference relationship is denoted by 
. For the entire set S of uncertain
alternatives, an individual may regard outcome xi as preferable to outcome xj,
xj as preferable to xi, or the individual may be indifferent regarding xj ∼ xi.
Transitivity is a feature of a set S if ∀i, j, k ∈ {1, ..., N} holds that

(xi � xj and xj � xk) =⇒ xi � xk,∀ i, j, k.

Analogously, if an individual is indifferent as to xi and xj and to xj and xk, then
he or she is indifferent as to xi and xk:

(xi ∼ xj and xj ∼ xk) =⇒ xi ∼ xk,∀ i, j, k.

A utility function U(·) : R → R is a twice-differentiable function of a rate of
return on an investment. The expected utility theory states that decision–makers
choose between risky or uncertain prospects by comparing their expected utility

1See J. von Neumann & O. Morgenstern (1944).
2For a concise and readable overview of the concepts of utility function and expected utility,

see, e.g., Varian (1992).
3See Copeland et al. (2005). Note that the notation x is not linked to optimal portfolios.
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2.5 The Utility Theory and Optimal Portfolios

values. The utility of the expected return R via a Taylor series development of
the function U at E[R] is

U(R) = U(E[R]) + U ′(E[R])(R− E[R]) + 1
2U
′′(E[R])(R− E[R])2

+
∞∑
n=3

1
n!U

(n)(E[R])(R− E[R])n.

The expectation of the utility function is a linear combination of the central
moments of the random variable R.

E[U(R)] = U(E[R]) + 1
2U
′′(E[R])E[(R− E[R])2] +

∞∑
n=3

1
n!U

(n)(E[R])E[(R− E[R])n]

= U(E(R)) + U
′′(V(R))

2 + U
′′′(E(R− ER)3)

6 + O((R− ER)4). (2.26)

For normal ditributions, E[U(R)] depends only on the first two moments, i.e.,
it is fully described by expected return and variance. The remaining moments
are completely described by

E[R− E[R]]n =
{

0 , if n = 2k − 1,
(σ2)k

∏k
l=1(2l − 1) , if n = 2k.

It follows that

E[U(R)] = U(E[R]) +
∞∑
n=1

[
1
2n!U

(2n)(E[R])σ2n
n∏
l=1

(2l − 1)
]

= U(E[R]) +
∞∑
n=1

[
U (2n)(E[R])σ2n

n∏
l=1

(2l)−1

]
.

Quadratic utility is thus sufficient if both the expected return and the variance
are finite. The mean–variance framework implicitly assumes that the investor’s
utility, defined by the portfolio return, is a function which depends only on the
mean and variance. Therefore the legitimacy of any purely mean–variance opti-
mization depends on the assumption that either investors have quadratic utility,
or that portfolio returns are normally distributed.
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2.5 The Utility Theory and Optimal Portfolios

Remark: W can also correspond to 1 + R, with R being the rate of return on
the investment. For normal distributions, the mean–variance model developed
in chapter 1 can be motivated by assuming quadratic utility. An individual’s
expected utility is now characterized by the first two central moments of his or
her end–of–period wealth W :

E[U(W )] = E[W ]− b2E[W 2]

= E[W ]− b2[(E[W ])2 + σ2(W )]. (2.27)

In the following we will discuss investors’ attitude toward risk, and the link be-
tween risk aversion and utility functions.

2.5.1 Risk Aversion and Optimal Portfolios

Individuals differ with respect to their appreciation of expected return, the in-
terrelation of exchange ratio between risk and expected return and their attitude
toward risk. Following are the very general assumptions about the investor’s
beliefs:

1. Investors prefer more return to less return.

2. Investors know that the marginal utility of the return decreases.

3. Investors prefer less risk to more risk.

Let U : R→ R be a continuous, strictly monotonously increasing utility function.
The first assumption is equivalent to ∂U

∂R
> 0, assumption two corresponds to the

concavity of the utility function ∂2U
∂R2 < 0, and ∂U

∂σ2 < 0 corresponds to the third
assumption.

The expected utility E[U(R)] can thus be maximized either by minimizing the
variance or risk, or by maximizing the expected return.
The degree of risk aversion is usually measured as the marginal expected return
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2.5 The Utility Theory and Optimal Portfolios

per additional unit of risk. An important measure of risk aversion is the absolute
risk aversion, defined by Arrow (1970) and Pratt (1964):12

RA(·) = −U
�(·)
U �(·) . (2.28)

An individual’s absolute risk aversion reveals whether he or or she treats a risky
asset as a normal good when choosing between a single risky asset and a risk–
less asset.3 When RA(·) is a strictly decreasing function, an individual’s utility
function displays decreasing absolute risk aversion. Table 2.2 gives an overview
of several classical utility functions and their absolute and relative risk aversion
measurements. As for the risk attitude, there are three increasing absolute risk
aversion, constant absolute risk aversion, and decreasing absolute risk aversion.
Note that all these types of functions are characterized by U ′ > 0, U ′′ < 0, and,
except for quadratic utility and other utility functions, by U ′′′ > 04.

An investor with a high degree of risk aversion will select investments with low
variances and consequently rather low expected returns, whereas individuals with
a higher risk tolerance will select investments with higher expected returns, tak-
ing into account the associated higher variances. Risk–averse investors will thus
choose portfolios on the upper branch of the efficiency curve rather close to the
GMVP, while the portfolios of the less risk–averse investors will tend more to-
ward the North–East of the upper branch of the efficiency curve.5 This entails
deducing what tradeoff of return and risk constitutes utility for the individual
under consideration. Following classical economic analysis, indifference curves
are developed showing the magnitude and form of the risk–return trade-off in a

1Note that the Arrow–Pratt measurement requires a well–specified utility function, cf. Ar-
row 1970.

2The Arrow–Pratt measurement of relative risk aversion is RR(x) ≡ RA(x)x.
3Arrow showed that decreasing absolute risk aversion implies that the risky asset is a nor-

mal good; increasing absolute risk aversion implies that the risky asset is an inferior good;
and constant absolute risk aversion implies that the individual’s demand for the risky asset is
invariant with respect to his initial wealth, cf., e.g., C. Huang & R. H. Litzenberger (1988), pp.
21 – 23.

4A positive U ′′′ denotes decreasing risk aversion.
5On a more conceptual basis, the decision for an investment would be a matter of maximizing

the individual’s expected utility.
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2.5 The Utility Theory and Optimal Portfolios

Table 2.2: Utility Functions and Measurements of Risk Aversion

Utility function Absolute Risk Proportional Risk
Aversion Measure Aversion Measure

W − β2 (W −W0)2 Increasing Increasing

−l−αW , (α > 0) Constant Increasing

(W +B)α, (0 < α < 1) Decreasing
Increasing for B > 0
Constant for B = 0
Decreasing for B < 0

ln(W +B), (B > 0) Decreasing
Increasing for B > 0
Constant for B = 0
Decreasing for B < 0

mean–variance framework (see figure 2.3). All combinations of expected return
and variance along one indifference curve have the same utility for an investor;
i.e., he or she is indifferent with repect to these μ−σ pairs. The optimum portfo-
lio is now the one in the μ− σ space on the upper branch of the efficient frontier
that is tangent to the highest achievable indifference curve (see 2.4).
In the upcoming subsection, we will discuss several utility functions which are
often used in financial research.

2.5.2 Utility Function and Expected Utility Maximization

The most popular utility function depending on expected return μ and variance
σ2 is obviously1

U(μ, σ2) = αμ− 1
2βσ

2, (2.29)

1For a detailed discussion about approximation of expected utility under different functions,
see Cremers et al. (2004) and Kroll et al. (1984).
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Figure 2.4: Indifference Curves and the Portfolio Frontier
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with α and β being parameters which describe the investor’s attitude toward risk
(α is often assumed to be 1 and β is the only varying parameter.) Note that
quadratic utility cannot be a fully realistic model of a typical investor’s attitude
toward risk as it assumes that investors are equally averse to deviations above
the mean and to deviations below the mean, and that they sometimes prefer less
wealth to more wealth. Quadratic utility displays the undesirable properties of
satiation and increasing absolute risk aversion. The satiation property implies
that an increase in wealth beyond the satiation point decreases utility, and the
property of increasing absolute risk aversion implies that risky assets are inferior
goods. The concavity indicates that investors derive less and less satisfaction with
each subsequent unit of incremental wealth. Thus, economic conclusions based
on the assumption of quadratic utility function are often counter–intuitive, and
are not applicable to individuals who always prefer more wealth to less and who
treat risky investments as normal goods (For more details on the utility theory
and risk preference cf., e.g., C. Huang & R. H. Litzenberger (1988)).

Another utility function often applied by economists is the power utility func-
tion (A log wealth utility function is a special form of power utility function):1

U(W ) = 1
γ
W γ. (2.30)

As γ converges to 0, the utility tends toward the natural logarithm of wealth. As
γ equals 1/2, the utility function implies less risk aversion than log wealth, while
a γ equal to −1 implies greater risk aversion.2

Using the Taylor series developments, we can approximate expected utility to be
around μ.3

Table 2.3 summarizes these examples of utility functions and their corresponding
approximated expected utilities.4

1See Cremers et al. (2004).
2Under this situation the utility is expressed as 1−W−1.
3Levy & H. M. Markowitz (1979) show that the approximation based on a Taylor series

around μ performed markedly better than the approximation around zero.
4See Cremers et al. (2004).
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Figure 2.5: Utility Functions

Table 2.3: Utility Functions and Expected Utilities

Utility Function Expected Utility Approximate Utility

Quadratic W − β2 (W −W0)2 U1(μ, σ2) = μ− β2σ2

Log wealth log(W ) U2(μ, σ2) = log(1 + μ)− σ2

2(1+μ)2

Power 1− 1
W

U3(μ, σ2) = 1− 1
1+μ − σ2

(1+μ)3

Hence, under this definition of expected utility, the optimization problem 2.8 can
be changed into the following form:

Φ(x) = E[U(x)]→ max subject to Bx = c. (2.31)
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2.5 The Utility Theory and Optimal Portfolios

U1(μ, σ2) is the quadratic utility, and U2 and U3 are derived from power utility,
also using only a portfolio’s mean and variance. H. Levy & H. M. Markowitz
(1979) show how to approximate these utility functions, and demonstrate that
mean–variance approximations to utility based on plausible power utility func-
tions performed exceptionally well for returns ranging from –30% to +60%. This
is actually the reason that these different plausible utility functions were chosen
for application in the further research of this thesis.

The three utility functions Ui(μ, σ2), i ∈ (1, 2, 3) and their expected utilities from
table 2.3 will be used in the following empirical research, and will furthermore be
modified with respect to the initial wealth. We expect the following:

• There are differences between the expected utility of the optimum portfo-
lios for the given utility functions and the expected utility of well–selected
portfolios from the mean–variance efficient frontier. We will apply the ex-
pected utility maximization to asset allocation strategies of different types
of investors.

• The three approximate utilities describe different types of investors with
different risk aversion levels. Practically, this leads us to a classification of
utility functions and certain types of investors.

In chapter 3, some typical types of investors with different initial wealth levels,
degree of risk aversion and time horizons will be classified. Then we will con-
struct optimal asset allocation strategies within the mean–variance framework.
With respect to the different degrees of risk aversion of these typical investors,
we will deal with the concept of expected utility maximization. We assume that
a risk–averse investor will penalize the expected rate of return of a risky portfolio
by a certain percentage, in order to account for the risk involved. The greater the
risk the investor perceives, the larger the penalty. Next will follow a classification
of different types of investors.

Before moving toward these goals, we will continue by discussing the impacts
of more practically relevant constraints on the set of feasible portfolios, which
constraints therefore also impact the set of optimal portfolios.
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2.6 The Markowitz Model with Unilateral Restrictions

2.6 The Markowitz Model with Unilateral Re-
strictions

In this section we will discuss the influence of additional restrictions on the set
of possible solutions of optimal portfolios xi, i = 1, . . . , N . Such restrictions,
which are highly relevant for practical investment decisions can, e.g., result from
the law–based policy of mutual fund management, or from arbitrary investors’
individual preferences.

We will firstly discuss the portfolio optimization problem under the restriction
that short sales are prohibited; this means, that all components of the vector
x are non–negative. Obviously, such a portfolio has an expected return in the
range between the minimum and the maximum expected return of all N assets.
Because short sales–driven leverage no longer exists, the feasible set of all possi-
ble solutions is now necessarily smaller than the feasible set of the unrestricted
problem. Furthermore, in practical applications, the additional restrictions lead
to a solution which is, for any feasible given expected return (as seen from the
sole point of the total variance), usually worse (It cannot be better!) than the
solution of the unrestricted optimization problem.

In subsection 2.6.3, even stronger restrictions will be introduced, namely that the
shares of the assets are confined by a lower and by an upper limit. Realistically,
we will not require that every asset participates in the portfolio with a certain
minimal share, but will allow that the shares are in the range between a minimum
and a maximum number, or that they are zero. In other words: the investor may
buy at least some shares of an asset, or nothing. In section 2.7, we will show that
the nature of such optimization problems differs substantially from the problems
seen before.
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2.6 The Markowitz Model with Unilateral Restrictions

2.6.1 Non–Negativity Restrictions

Consider the constrained optimization problem (2.8) together with the additional
restrictions xi ≥ 0 for i = 1, . . . , N . It is concisely described by

Φ(x) = xTΣx→ min subject to Bx = c and x ≥ 0, (2.32)

where x ≥ 0 means that every component xi, i = 1, . . . , N , of the vector x is
non–negative.
This optimization problem with equality and inequality conditions requires com-
putationally powerful quadratic optimization algorithms, such as the critical line
algorithm of Markowitz (1959), and the extended simplex algorithm of Wolfe
(1959). Newer research by Hirschberger et al. (2004) indicates that there still
remains the need to improve the performance of the quadratic optimization algo-
rithms.1 A. Niedermayer & D. Niedermayer (2006) provide a recently developed
operations research algorithm.2

Example: The following example, which will be continued in the upcoming
section, is characterized by input that is rather close to practical applications. It
is constructed in order to illustrate the differences with respect to the feasible set
of unrestricted and restricted optimization problems. Assuming that there are 5
assets with the following characteristics:

μ =

⎛
⎜⎜⎜⎜⎝

0.06
0.04
0.09
0.01
0.07

⎞
⎟⎟⎟⎟⎠

and the variance–covariance matrix

COV(R) = Σ =

⎛
⎜⎜⎜⎜⎝

0.070 0.025 0.014 0.017 0.017
0.025 0.050 0.020 0.040 0.020
0.014 0.020 0.080 0.016 0
0.017 0.040 0.016 0.050 0.020
0.017 0.020 0 0.020 0.050

⎞
⎟⎟⎟⎟⎠ .

1For an application, see Wolf (2006).
2In this work we will use a Matlab quadratic optimization tool based on the critical line

algorithm.
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2.6 The Markowitz Model with Unilateral Restrictions

The figures 2.6 show the portfolio frontiers of the unrestricted problem (i.e., with
short sales), and also the problem with non–negativity constraints (without short
sales).
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Figure 2.6: Portfolio Frontier with 5 Assets

2.6.2 The Kuhn–Tucker Conditions

Many quadratic programming algorithms are based on a technique from advanced
calculus called Kuhn–Tucker–conditions.1 For small–scale problems, these
conditions can be used directly.2

The Lagrangian function of the constrained optimization problem (2.32)3 is

L(x,λ) = −xTΣx+ λT(Bx− c)

with the Lagrangian multiplier being λ ∈ R
2. The Kuhn-Tucker conditions are a

complete taxonomy of the first order necessary conditions of obtaining a saddle
1Although these conditions are popularly known as the Kuhn–Tucker conditions, it turns

out that a master’s student at the University of Chicago named Karush derived the same
conditions as part of his M.S. thesis, several years prior to the 1952 work by Kuhn and Tucker
at U.C. Berkeley.

2For more details see Karush (1939), H. W.Kuhn & A. W. Tucker (1951), and Dybvig
(1984).

3A minimization problem can usually be transformed into a maximization problem by mul-
tiplying the objective function by – 1.
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2.6 The Markowitz Model with Unilateral Restrictions

point for the Lagrangian function. These conditions are given by:
∂

∂x
L(x,λ) ≤ 0 ,x ≥ 0 , x ∂

∂x
L(x,λ) = 0, (2.33)

∂

∂λ
L(x,λ) ≥ 0 ,λ ≥ 0 , and λ ∂

∂λ
L(x,λ) = 0. (2.34)

The Kuhn–Tucker conditions state that x and λ must both be non–negative, and
either the partial derivative of the Lagrangian function with respect to each of
these variables must be zero, or the variable must be zero at the optimal solution.
With these conditions can the quadratic optimization problem (2.32) be solved.

2.6.3 Upper and Lower Bounds

Furthermore, with respect to the decision making of most investors, upper and
lower bounds apply. It is thus often not only reasonable to forbid short sales, but
especially to restrict the maximum share of one asset in the portfolio. For indi-
vidual investors, these barriers are most often linked to some minimum number of
assets in their portfolio, or, to borrow the colloquialism, to the minimum number
of “eggs in their basket”.1 Institutional investors are usually even more limited
with respect to investment shares in individual assets and/or asset classes, and
to avoid having too many small investments, it is desirable for these investors to
have no investments in a portfolio which are below a certain percentage of the
overall investment sum. This furthermore corresponds to the fact that the oppor-
tunity and transaction costs may be considerably high in comparison to a very
small amount of one asset. In this subsection, the nature of these optimization
problems (2.8) will be discussed, i.e., when we ask for a solution which is confined
by an upper bound xupper and a lower bound xlower in each component.2 That is

xilower ≤ xi ≤ xiupper for i = 1, . . . , N .

The optimization problem can now be written as

Φ(x) = xTΣx→ min subject to Bx = c and x ∈ [xilower, x
i
upper]N ∀i, (2.35)

1For naive diversification strategies, cf., e.g., Malkiel (2008)’s A Random Walk Down Wall
Street.

2Note that the upper and lower bounds are not necessarily equal for all potential invest-
ments.
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Figure 2.7: Portfolio Weights with Non–Negativity Constraints.

where Ω̃ = [xilower, x
i
upper]N ⊂ R

N is a N–dimensional cube. This cube is still a
convex set. This is the mathematical reason for applying most of the methods
from subsection 2.6.1 analogously. Note that a lower bound does not need to be
zero.

Example continued: Sequentially we use the previous example to determine
the portfolio weights with equal upper and lower bounds. The two figures in 2.7
illustrate the impact of upper and lower bounds, in the case of only non–negativity
constraints. The left figure indicates the non–negativity constraint, and the right
one the solutions, with upper and lower bounds of 0.1 and 0.6 ∀i, i = 1, .., 5. As
can easily be imagined, the set of all feasible portfolios is further reduced.

2.7 Portfolio Optimization Problems with Inte-
ger Constraints

In the above section, we have discussed Markowitz optimization problems with
unilateral restrictions, especially those with non–negativity restrictions. A further
new restriction will be that of integer constraints. Note that integer constraints
almost always apply for investment decisions (i.e., an investor can usually buy a
flat, but not a share of the flat). The optimal quantities in 2.1 are rounded off
and taken as correct because of the assumption B >> Pi, i = 1, ..., N. This is
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2.7 Portfolio Optimization Problems with Integer Constraints

obviously violated in many investment cases, as, e.g., in real estate and art invest-
ments. This section is dedicated to such discrete optimization problems. In this
section will we always refer to real estate as investments with integer constraints.

Real estate is, e.g., one of the most important asset classes, and is referred to often
by integer restriction in portfolio optimization. Professionally–managed funds of
real estate have attracted increasing interest during the last decade from individ-
ual investors, as well as from institutional investors. For example, some investors
take equity of Real Estate Investment Trusts (REITs) as partial substitutes for
conventional real estate investments. Despite the huge financial volumes of the
funds1, the use of quantitatively–based models for a “smart” asset allocation is far
behind stock or bond portfolios. On the one hand, real estate fund managers are
more conservative than their counterparts in stock or bond portfolios. The impor-
tance of intuition, expressed by the major quality criteria location, prevent many
managers from looking at supporting quantitative models. This is supported by
a usually long–lasting decision making process, a comparing of alternatives, etc.
On the other hand, modeling is much more difficult because the budget comes
back into play. Besides the estimation of expected returns and risk, attempts
at measurements are hampered by the long–lasting investment horizons, and by
economic cycles, integer constraints, lack of price information, and skewed and
mixed return distributions. There is especially a subjective component of price
determination, which is linked to the fact that real estate is often unique. Fur-
thermore, big proportions of real estate portfolios are not liquid; that is, any
optimization should be restricted on the liquid part. The decision whether or
not to buy is essentially a 0–1 decision. This situation applies analogously to
investments in pieces of art. In this section we will discuss integer optimization
problems.

We refer again to an adjusted version of equation (2.1), where Pi, i = 1, . . . , N ,
are the prices per unit of an asset, and Xi ∈ N, i = 1, . . . , N (formerly denoted
by Qi) are the numbers to be purchased for the portfolio. If a single unit of, e.g.,

1According to Ernst & Young 2008, the total market capitalization of publicly–listed REITs
around the world reached $764 billion.
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2.7 Portfolio Optimization Problems with Integer Constraints

some real estate is considered, then Xi ∈ {0, 1}, i. e. , the respective real estate
is bought (Xi = 1) or not (Xi = 0). If the real estates are combined into classes
according to how comparable they are, it follows that more real estates out of a
certain class can be bought, and Xi ∈ N holds. The normalized variables

xi =
Pi
B
Xi = ciXi , i = 1, . . . , N with Xi ∈ N

are integer multiples of relative prices ci = Pi/B. The condition that xi is an
integer multiple of the relative price is referred to as the “integer constraint”.
Using matrix notation, it follows that

x = Dz with z ∈ N
N respectively z ∈ {0, 1}N ,

with the diagonal matrix D = diag(c1, . . . , cN) ∈ R
N×N and the vector z =

(X1, . . . , XN)T. This notation leads to an optimization problem, which is analo-
gous to problem (2.8):

zT(DΣD)z→ min subject to (Dμ)Tz ≥ μ , (D1)Tz ≤ 1.

This implies, for instance, that modeling the optimization of a pure real estate
portfolio differs from the original problem (2.8) of the classical Markowitz theory,
just by the integer constraint z ∈ N

N respectively z ∈ {0, 1}N .

The integer constraint causes that the constraints, with respect to full invest-
ment and minimum target return in equalities (2.3, 2.7), cannot be satisfied in
general. Furthermore, the solution is not necessarily a reasonable one if these
constraints are fulfilled. Almost any attempt to invest a large amount in real
estate or pieces of art will leave a cash remain which cannot be further invested
in real estates, since this cash remain may be smaller than the lowest price of a
possible real estate unit or a piece of art, respectively.

Assume now that this cash remain xr = 1 − 1Tx is invested in other market
instruments, e. g., in some stock, or in the risk–free asset. The investment of the
remain xr has the expected return μr and the variance σ2

r . The expectations of
the N real estate investments are now in the vector μ, and the variances and
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2.7 Portfolio Optimization Problems with Integer Constraints

covariances are written into the matrix Σ. The covariance of the remaining in-
vestment and of the real estates are now in the vector s ∈ R

N .

Following is the optimization problem with integer constraints for the portfo-
lio x ∈ R

N :

The Portfolio optimization problem with integer constraints:

(xTxf)
(

Σ s
sT σ2

r

)(
x
xr

)
→ min (2.36)

subject to
1Tx+ xr = 1 and μTx+ μrxr ≥ μP

and the additional integer constraint

xi = ciXi with Xi ∈ N.

For the reasonable case of an investment in the risk–free asset, the covariance
to the real estate vector is obviously zero. The equations (2.7) translate the
investor’s desire to invest the whole fortune in real estate (e.g., in the risk–free
investment), and show that the overall expected return is at least as large as the
μf .

2.7.1 The Knapsack Problem

As seen, the requirement μTx + μfxf = μP cannot be satisfied in general. Opti-
mization problems with integer constraints can be solved using techniques such
as brute force search and dynamical programming. The knapsack problem1 is
a famous problem in combinatorial optimization which often arises in resource
allocation with financial constraints (see, e.g., Kellerer et al. (2005)). A set of
items is given, each having a weight and a value. The problem is determining how
many of each item to include in a collection so that the total weight is bounded
by a given limit and the total value is as large as possible.

1This name is derived from the problem faced by a traveler who is constrained by a fixed–size
knapsack and must fill it with the most useful items.
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2.7 Portfolio Optimization Problems with Integer Constraints

Mathematically, there are N possible objects to pack in. Each object has a
weight ci > 0, which is referred to as the cost, and an importance vi > 0, which
can be regarded as the value. The cost vector and the value vector are denoted by
c = (c1, . . . , cN)T ∈ R

N and v = (v1, . . . , vN)T ∈ R
N , respectively. The decision

variables are in the vector z ∈ {0, 1}N , which consists of N coefficients 0 or 1,
where 1 at position k means to pack in the kth object, and 0 means to leave it
out. Formally:

Knapsack Problem:
vTz→ max

under all z ∈ {0, 1}N subject to the constraint

cTz ≤ C,

where C is the maximal weight of the knapsack.

Remark: The analogy to portfolio optimization consists in the maximization
of an objective function which is subject to a cost constraint and an integer con-
straint.

An often reasonable approach to solving the knapsack problem for small N is
the brute force search. The main idea is to identify every possible combina-
tion of objects to be packed in by starting with the heaviest objects, and then
looking to see what else can be packed in. Following this, the feasible combi-
nations are compared. The amount of possible portfolios is reduced by sorting
feasible portfolios in the sense mentioned above, which means starting with the
most expensive real estate, and so on. The portfolios not fulfilling the required
expected returns are then eliminated from the equation, allowing us to find the
optimal portfolio, simply by comparing all feasible portfolios.

If the computational time is not a restrictive factor in general, the brute force
search technique works well, up to the range of approximately N = 20. Since the
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2.7 Portfolio Optimization Problems with Integer Constraints

numerical effort grows exponentially, it is barely applicable for a slightly larger N .
There are some better implementations, cf., e.g., S. Martello & P. Toth (1990),
which organize the search more efficiently. However, the knapsack problem is
NP–hard (see, e.g., M. R. Garey & D. S. Johnson (1979)), which means that
there is no essentially better algorithm for an exact solution. These difficulties
can thus be avoided only by dealing with approximate solution strategies.

In summarization, the brute force search technique can be usefully applied to
the optimization of smaller real estate portfolios, especially during the inaugura-
tion of a fund. Furthermore, this technique is applicable for portfolio adjustments
or best next trade problems, where only a part of the portfolio has to be replaced,
and the number of feasible combinations is then substantially reduced.

2.7.2 Dynamic Programming

An example of a more efficient search strategy is the so–called dynamic pro-
gramming, which works by an iterative augmentation of the cost. The augmen-
tation steps are multiples of a common base d for the costs of all objects. If these
costs are integers, then the base is the largest common divisor lcd{c1, . . . , cN}.
Dynamic programming can be applied in a given case if ci = dzi with some zi ∈ N

for i = 1, . . . , N . Since the last case can be reduced to the integer case by dividing
all ci and the maximal cost by C, we restrict ourselves here to the algorithm
for integer costs ci.

Let A(i) be the maximum value which can be attained for the cost i. Obvi-
ously, it holds that A(0) = 0. We set

A(i) = max
j,j not used in A(i−cj)

{vj + A(i− cj) : cj ≤ i}. (2.37)

The numerical effort depends on the necessary number of steps C/d. If this
quotient is “small”, then dynamic programming is powerful. With respect to
applications of the optimization of, e.g., real estate funds, it holds that dynamic
programming is a good technique, if the prices of the objects under consideration
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are small multiples of a common base. Since the prices are inaccurate prior to the
acquisition (i. e. , in the moment that the calculation has to be done), dynamic
programming can here be applied with rounded price estimates only, cf., e.g.,
Adda & R. Cooper (2003); Bertsekas (2000); Stokey et al. (1989).

2.7.3 The Greedy Algorithm

The next presented algorithm can be done quickly but is only approximate, and
is therefore called a greedy algorithm, cf., e.g., S. Martello & P. Toth (1990).1 The
standard greedy algorithm for the knapsack problem is based on a certain order
of the objects. Firstly, they are ordered according to their individual values, in
decreasing order, and are then inserted into the knapsack, until there no longer
remains any space for more. It can be shown that if k is the number of objects in
the optimal knapsack solution, then the greedy algorithm inserts at least k/2 of
them. Secondly and alternatively, the objects can be ordered according to their
effectivity vi/ci, i. e. , value per cost. Note that intuitively–constructed greedy
algorithms do not need to produce good solutions in every setting. Bang-Jensen
et al. (2004) shows, e.g., that even greedy algorithms, which work well for a large
number of realistic applications, may generate the worst possible solutions for
particularly chosen input values.

Greedy algorithms are reasonably applied to portfolios with a large number of
small assets that have integer constraints. The essential precondition for the
use of the presented greedy algorithms, and for dynamic programming, is the
additivity of the selected sets, i. e. , the union of two best disjoint sets for certain
total costs is the best (or at least a good) set of the summed cost, possibly with
respect to a restriction of the single costs. This is not the case, however, in
portfolio optimization with correlated assets; in some sense, the best two real
estates do not need to form a better portfolio than two other real estates which
are, e.g., uncorrelated.2

1Similar greedy algorithms are used in a wide range of optimization problems (Cormen et al.
(2001)).

2For geographically well–diversified real estate portfolios, the assumption of pair wise low
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2.7.4 Modifications to the Knapsack Problem

Another practically relevant case is when there are several preselected and equal
units of one assets under integer constraint. With respect to real estate funds,
we would look, e.g., at the fact that there are rather homogeneous flats in large
buildings. If putting an object more than once into the knapsack is allowed, then
the solution is generally to use only the most effective object.
The discrete optimization problem with z ∈ N

N (2.36) is intuitively easier than
the binary variant z ∈ {0, 1}N . Indeed, it is easier to find an approximate “guess”,
but the refinement of that guess leads to difficulties which are identical to those
in the binary variant.

Consider the following modified knapsack problem: Fill a knapsack with objects
of value vi, i = 1, . . . , N and costs ci, i = 1, . . . , N of multiplicity zi ∈ N under
the condition that the total costs are restricted by C, and maximize an objective
function f(z1, . . . , zn).

Typical examples of objective functions are linear functions

f(z1, . . . , zN) = z1v1 + . . .+ zNvN ,

which are dealt with in the theory of linear programming or linear optimization
(see, e.g., B. Gärtner & J. Matousek (2006)), or non–linear functions, cf., e. g. ,

f(z1, . . . , zN) = z1z2 · . . . · zN ,

which are handled by non–linear programming or optimization in J. Nocedal &
S. J. Wright (2006) and Schrijver (1998).1

The deficiency of a brute force search in the neighborhood of the optimal solution
in the R

N can be overcome by a spectral transformation of the symmetric matrix

or zero correlation is often reasonable (see, e.g., D. Linowski & S. Hartmann (2007).)
1As already seen, quadratic programming, where the objective function is a multivariate

parabola, is a particular case of non–linear programming. The discrete portfolio optimization
problem is thus a quadratic optimization problem with binary integer constraints.
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Σ = QTDQ, with the diagonal matrix D containing the positive eigenvalues of
the positively definite covariance matrix Σ. The optimization problem

xTΣx→ min subject to Ax ≤ b

now reads
yTy→ min subject to AQT

√
D−1y ≤ b,

with the transformation y =
√
DQx. This optimization problem consists in op-

timizing a parabola over a multifocal domain, and the solution consists in finding
the nearest admissible corner of a parallelogram in y–coordinates, the corners
of which are integers in the x–coordinates. Some geometrical considerations
restrict the checking of the set of neighbored parallelogram corners. Heuristic
search methods and heuristic optimization techniques, which usually incorporate
stochastic elements, have been discussed more and more in recent times. For
more information about heuristic optimization, see Maringer (2005).
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Chapter 3

Investor Classification and Asset
Allocation Strategies

Making decisions under uncertainty is a central challenge for investors. A major
area of financial research is the positive question of how people actually make
decisions when faced with risk; for example, some people like buying lottery tick-
ets, although the expected value of such an “investment” is less than the cost
of the ticket. Harry Markowitz (1952)1 proposed one of the earliest solutions to
this problem by suggesting that investor attitudes toward gambles of different
amounts were implicitly relevant to the “customary wealth” of each investor, and
gambles for large amounts related to customary wealth are treated more conser-
vatively. In other words, a willingness to gamble depends very much on the status
quo. The initial wealth level here draws upon our interest in developing a deeper
understanding of what it is that motivates investors.

In this chapter, investors will be classified normatively; however, before doing
so, we will provide an overview of different regulated capital markets. While,
e.g., stocks, bonds, commodities and most financial derivatives are traded at
regulated exchanges, note here that these markets cover only a part of all invest-
ments (we mention here two very important asset classes: traded real estate, a
very small proportion of which is, e.g., linked to some products traded at regu-

1See Markowitz (1952b).
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lated exchanges; and pieces of art, which are, e.g., either traded bilaterally or via
auctions). Figure 3.1 provides some relevant data: The global stock market capi-
talization at the end of the year 2007 accounted, e.g., for approximately 60.1 tril-
lion USD.1 Compared to bond and stock markets, alternative asset markets (such
as private equity and hedge funds) are still comparably small, but seem – despite
the financial crisis – to be becoming more and more important. High Net Worth
Individuals are estimated to possess 40.7 trillion USD, with around one third of
this sum incorporated into conventional investment management such as pension
funds, mutual funds and insurance assets2. Investors in or the clients of financial
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Figure 3.1: An Overview on the Capital Market

institutions are characterized by different levels of wealth, knowledge, skills and
expertise. According to the European Union’s Markets in Financial Instruments

1See the World Federation of Exchanges Annual Report (2007).
2See Capgemini & Merrill Lynch, World Wealth Report 2008.

51



3.1 Individual and Institutional Investors

Directive (MiFID)1, investors are classified into three types, namely into retail
clients, professional clients and eligible counterparties. This thesis concentrates
on reasonable asset allocation strategies of the first two groups of investors, which
are usually referred to as individual and institutional investors.2.

3.1 Individual and Institutional Investors

3.1.1 Individual Investors

We now consider investors who purchase securities for themselves, as opposed to
institutional investors. We will furthermore distinguish the investors according
to the amount of available wealth that each one has which can be invested in
the financial markets. Individual investors are here divided in two groups: small
investors and wealthy investors.3

Several investment guidelines4 suggest that equity holdings increase with wealth.
Wealthier individuals should invest more in risky securities because they can bear
more risk. This, however, does not often hold in practice. Firstly, wealthy indi-
viduals invest in representatives of more asset classes than just the trades, and
thus benefit from the effect of diversification. Secondly, the risk appetite (or, a
willingness to take risks) is mainly restricted to their ability to generate wealth
through business endeavors, while wealthy people are usually rather conserva-
tive with respect to their investments. According to the World Wealth Report of
Capgemini and Merril Lynch from 2008, about 60 percent of the High Net Worth
Individuals agree with the statement “high risk in business, low risk in invest-
ments”, compared to 36 per cent among investors who are below the barrier of 1
million USD for investments. In another bank survey5, many wealthy individu-
als stated that they became more risk averse after having realized their wealth.

1See http://eur-lex.europa.eu/.
2The third group will not be considered in this research.
3Note that the arbitrary boundary of 1 million USD liquidity between both groups is rather

fuzzy.
4See, e.g., Bodie & Crane, D. B. (1997).
5See Barclay’s Wealth Insights (2007).
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3.1 Individual and Institutional Investors

With respect to financial decisions, Tilmes (2006) shows that the main goals of
wealthy people are wealth preservation, wealth accumulation and wealth transfer.

The last decade was characterized by a significant development of equity markets
around the globe (fueled to a large extent by the European and the US markets),
and the size of the wealth of the High Net Worth Individuals has dramatically
increased from about US$ 16.6 trillion in 1996 to more than US$ 40.7 trillion
in 2007. The average annual return (see figure 3.2) was thus 7.76 %. The rise
in the size of wealth can partly be explained by the significant development of
the number of HNWIs, which estimates expanded according to the World Wealth
Report from 4.5 million in 1996 to 10.1 million in 2007.

Table 3.1: Development of Global HNWIs

HNWIs1 96 97 98 99 00 01 02 03 04 05 06 07 CAGR2

Global (96-07)

Financial 16.6 19.1 21.6 25.5 27.0 26.2 26.7 28.5 30.7 33.3 37.2 40.7 7.76%

Wealth

(USD trillion)

Number of 4.5 5.2 5.9 7.0 7.2 7.1 7.3 7.7 8.2 8.7 9.5 10.1 6.97%

HNWIs (million)

Small investors are here all investors who are below the barrier of 1 million USD
liquidity for investments. Although this is clearly a strong generalization, small
investors are assumed to be characterized by a higher risk tolerance than the
HNWIs.

1See Capgemini and Merrill Lynch (2006, 2007, 2008).
2The compound annual growth rate is calculated by taking the n–th root of the to-

tal percentage growth rate, where n is the number of years in the period being considered:
CAGR=(VendVbeg

− 1)( 1
N ).
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Figure 3.2: Development of Global HNWIs

3.1.2 Institutional Investors

Institutional investors can be defined as specialized financial institutions that
manage savings collectively on behalf of small investors toward a specific objec-
tive in terms of acceptable risk, return maximization, and maturity of claims (cf.,
e.g., E. P. Davis & B. Steil (2004).)1 A general feature common to all institutional
investors is that they provide a form of risk pooling for small investors, i.e., that
they provide a good tradeoff between risk and return via diversification.

Institutional investors are furthermore characterized by a liquidity preference.
They hence use large and liquid capital markets, in order to be able to adjust
holdings in pursuit of objectives, in response to new information. Holdings of
illiquid assets such as property typically accounts only for a relatively small share
of their portfolios. Important for them is the ability to absorb and process in-
formation, which is much more relevant, in comparison to individual investors.

1This definition does not cover financial institutions which service other financial institu-
tions, such as pension funds or banks, with respect to their investment process.
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3.2 Classification of Investors According to their Attitude toward
Risk, Initial Wealth and Time Horizon

Moreover, institutional investors rely stronger on public information rather than
private, which links strongly to their desire for liquidity. The size of the institu-
tions has important implications. There may be economies of scale, which result
in lower average costs for investors. These arise, e.g., from the ability to transact
in large volumes, lowering, e.g., commission fees for the customers. The asset
management process is furthermore undertaken by the institutional investor it-
self, or by a separate institution such as a specialist fund manager, a life insurer,
etc. In this thesis we will not distinguish between different types of institutional
investors, but regard them only as dependent investors with large assets under
their management.

3.2 Classification of Investors According to their
Attitude toward Risk, Initial Wealth and
Time Horizon

According to their attitude toward risk, their initial wealth and their investment
horizon, individual and institutional investors are now classified into “typical”
groups. In the next section this will be followed by the providing of corresponding
“reasonable” asset allocation strategies for these “typical” investors. Investors are
characterized by different

• Risk attitudes (μ, σ2).

• Initial wealth levels (W0).

• Time horizons (T ).

As derived in part 2.5.1, it is assumed that all investors prefer more to less wealth,
and that they are risk averse (i.e., they satisfy the conditions ∂U

∂R
> 0 and

∂2U
∂R2 < 0). The attitude toward risk can be described by the trade–off between
expected return and variance. The variance of the return distribution is further-
more accepted as an appropriate measure of risk1. Table 3.2 categorizes investors

1As already pointed out, this is reasonable as long as the portfolio is characterized by a
symmetric return distribution.
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3.2 Classification of Investors According to their Attitude toward
Risk, Initial Wealth and Time Horizon

according to their expected return and their risk attitude. Next, we classify

Table 3.2: Classification of Investors According to their Attitude Toward Risk

μR&σR lower σR higher σR
lower μR HNWIs Nobody

Institutional Investors
higher μR Do Not Exist Small Investors,

Investment Banking

investors according to their initial wealth level.

Table 3.3: Classification of Investors According to Risk Tolerance and Initial
Wealth

μR/σR&W0 Small W0 High W0

Low μR/σR Some Small Investors HNWIs, Institutional Investors
High μR/σR Small Investors Investment Banking

Investors are furthermore characterized by different time horizons for their in-
vestments. Investment professionals usually link investments with an expected
holding period of less than one year to a short time horizon. Here, we find that
especially risk–seeking investors come into play. The strategic asset allocation of
HNWIs is usually characterized by a long time horizon, as in table 3.4 shown.
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Risk, Initial Wealth and Time Horizon

Figure 3.3: “Typical” Investors

Table 3.4: Classification of Investors According to their Investment Horizon

Short–term Middle–term Long–term
(day, month, up to 1 year) (1 to 3 years) (more than 3 years)
Small Investors HNWIs HNWIs
Investment Banking Institutional Investors

Figure 3.3 shows some of the derived “typical” investors according to the three di-
mensions of risk tolerance, initial wealth and investment time horizon. Although
some tough generalizations with respect to the special groups of investors have
certainly been made, the chosen characteristics can imply further useful applica-
tions for different types of investors.
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Investors

3.3 Motivations to Asset Allocation Strategies
for Different Types of Investors

3.3.1 Risk Aversion and Expected Utility

In the following, we will look again at utility functions and expected utilities, as
shown in table 2.3. Consider now the different parameters in

U(μ, σ2) = αμ− βσ2. (3.1)

The parameter β will be taken as the level of risk aversion, and the higher β is,
the higher is the level of risk aversion. Referring again to investors with different
Wealth Levels and different Risk Attitudes, 3.6 can be rewritten as follows:

U1(μ, σ2) = α(W0 + Aμ)− β(Aσ)2. (3.2)

For Rf �= 0, we have:

U1(μ, σ2) = α(W0(1 +Rf ) + A(μ−Rf ))− β(Aσ)2.

Denoting t = A/W0, it holds for Rf = 0 that

U1(μ, σ2) = αW0(1 + tμ)− βW 2
0 t

2σ2, (3.3)

and for Rf �= 0, we have

U1f (μ, σ2) = αW0(1 + tμ+Rf − tRf )− βW 2
0 t

2σ2. (3.4)

Similarly, we get the expected utility under the forms of U2(μ, σ2) and U3(μ, σ2)
as follows: We substitute the mean and variance of terminal wealth in the ap-
proximate utility U2 and U3 in Table 2.3, then we get:

U2(μ, σ2) = log(1 +W0(1 + tμ+Rf − tRf ))− (tW0σ)2

2(1 +W0(1 + tμ+Rf − tRf ))2 ,

Analogously U3 can be transformed into:

U3(μ, σ2) = 1− 1
1 +W0(1 + tμ+Rf − tRf ) −

(tW0σ)2

(1 +W0(1 + tμ+Rf − tRf ))3 .
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All these three types of utility functions can simulate the behavior of investors
with different attitudes towards risk. On a more conceptual basis, the decision for
an investment is a matter of maximizing the individual’s expected utility. This, in
turn, entails deducing what trade–off of return and risk constitutes utility for the
individual. In the empirical research, the optimization problem under expected
utility will be based on the utility functions derived in this part.

3.3.2 Wealth Level and Probability of Loss

As discussed in the previous sections, the initial wealth level may play an im-
portant role in determining an investor’s decision with respect to an appropriate
asset allocation. Next, we will analyze how the initial wealth level can affect
investors’ decisions.

Consider a portfolio choice problem of a risk averse investor who strictly prefers
more to less (i.e., he or she has a strictly increasing utility function). Suppose now
that one part of the initial wealth, denoted by W0, is invested in risky securities,
while the remaining part is put into a risk–less asset. We denote the contribution
of risky assets by A =

∑
j Aj. Now we use the following notations:

W0 : Initial Wealth.

A =
∑
j Aj : Part of Wealth Invested in Risky Assets.

W0 − A = W0 −
∑
j Aj : Part of Wealth Invested in a Risk–Free Asset.

The uncertain, or stochastic, wealth at the end of the investment period is thus:

W = (W0 − A)(1 +Rf ) + A(1 +R). (3.5)

Here R denotes the stochastic return of the weighted risky assets, and Rf is the
return of the risk–free asset. For simplification, we will in the following assume
that Rf = 0, and furthermore, that R is supposed to be normally distributed:
R ∼ N(μR, σ2

R). At the end–of–period holds consequently

W ∼ N(W0 + AμR, (AσR)2). (3.6)
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The investor’s wealth at the end of the investment period thus follows a normal
distribution with expected return (W0 + AμR) and variance (AσR)2.

An important question, which is directly linked to the Status Problem discussed
in the following subsection, is now the following: How is the certainty to maintain
the wealth on a certain level taking the initial wealth as a reference level? This
question of course is not new, and reflection on it can, e.g., be traced back to
Roy’s1 Safety–First reasoning. Consider now the probability that the wealth falls
below a certain predefined level (to be fixed by a degree of wealth maintenance
b ∈ (0, 1)2) over the period of the investment:

Pr(W ≤ bW0).

This idea can also be linked to the conception of the Value at Risk (VaR). For
a given portfolio, probability and time horizon, VaR is defined as a threshold
value such that the probability that the mark–to–market loss on the portfolio
over the given time horizon exceeding this value (assuming normal markets and
no trading) is the given probability level, that is Pr(rp < −V aR) ≤ 1− c, where
c is the confidence level (see Jorion (1992)).3

We extend this concept here by taking into account the initial wealth level, and
the percentage of this wealth that is invested in risky assets, and hence derive
the following relationship between the probability of a predefined level of wealth
maintenance and the proportion of risky assets:

1See Roy (1952).
2This probability can be regarded as a probability of loss.
3Although VaR gained high popularity among practitioners and some academics during the

last decade, it has also always been heavily criticized: VaR cannot make a statement on the
loss distribution. Moreover, VaR is not coherent, that is, it is not sub–additive. See, e.g., A.
Guthoff & F. Rüter (1999) and J. Kremer (2008). In this research VaR is taken as a constraint
which focuses on controlling the probability of loss.
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Pr(W ≤ bW0) = Pr(W0 − A+ A(1 +R) ≤ bW0)

= Pr(R ≤ (b− 1)W0
A
)

= 1− Φ
(
μR+(1−b)W0

A

σ

)
.

The “adjusted” VaR is now:

V aR = (1− b)W0
A

= −(μR − Φ−1(c)σR),

with Φ(·) being the cumulative distribution function of the standard normal dis-
tribution.

In order to get a visual impression of this (see below), we assume now that
W0 = 1, μ = 1%, σ = 10% and b = 0.95. The loss probability for A = 0.3
equals now 3.86% (cf. figure 3.4), while it grows to a remarkable 20.77% for
A = 0.7 (see 3.5). For the given input, the loss probability as a function of
the percentage invested in the risky assets is shown in figure 3.6. The graph
is not linear; the slope of the tangential lines becomes smaller with increasing
percentage of the risky assets.
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Figure 3.6: Low Risk Case: Loss Probability and Proportions of the Risky Asset

Next, we change the input so that it is more volatile, as in the previous example.
Assume now that μ = 10%, σ = 30%, and b = 0.95. Figures 3.7 and 3.8
show the loss probabilities for the more volatile assets. The loss probability for
A = 0.3 now equals to 18.69%, while it grows to 28.37 % for A = 0.7. Figure 3.9
shows the dependency of the loss probability on A for the riskier example.

Table 3.5 explains how the probability of loss for both increasing initial wealth
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and decreasing percentage invested in the risky assets eventually decreases.

Table 3.5: Loss Probability under Different Initial Wealth Levels

W0 1 1.125 1.286 1.5 1.8 2.25 3 4.5 9
A/W0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

Pr(W ≤ bW0) 0.256 0.234 0.208 0.175 0.136 0.089 0.039 0.005 0.000

The next question which arises is how should a portfolio which limits the short–
fall probability to a certain “acceptable” region look? Optimization problem 2.8
will now be transformed into the following form:

Φ(x) = xTΣx→ min subject to Bx = c, P r(W ≤ bW0) ≤ 1− c. (3.7)

3.3.3 Time Horizon and Uncertainty in the Estimates

Time is one of the most important dimensions of any investment, and in par-
ticular of wealth management processes. While many small individual investors
usually restrict their investment time horizons to be within their own lifetimes,
many HNWIs are characterized by an investment approach which bridges gener-
ations. Questions of heritage and taxes play an outstandingly important role. If
an asset allocation strategy is determined with respect to time, HNWIs do not
tend to change their portfolios in a shorter investment horizon.

We begin by reviewing some theoretical and practical aspects with respect to time
and investment decisions. There still seems to be some controversy surrounding
this subject of investment time horizon and risk, and its effect on portfolio di-
versification. Samuelson (1969)1 and Merton (1971)2 both showed that investors

1See Samuelson (1969).
2See Merton (1971).
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with a standard differentiable utility function that exhibits constant relative risk
aversion will allocate a fixed proportion of their wealth to a risky asset, regardless
of the investment horizon under consideration. On the other hand and consistent
with intuition, there’s a lot of research indicating that the incorporation of an
investor’s time horizon in an optimization model has a significant impact on the
optimal proportions invested in the different asset classes.

Del Prete (1997) advises investors with long time horizons to allocate most of their
liquid wealth to stocks, and then to decrease the stock allocation as time passes.
Using data from TIAA/CREF, Bodie & Crane, D. B. (1997) show that individual
asset allocations are consistent with the recommendations of expert practition-
ers. Barberis (2000) investigates three strategies of power utility investors: a
buy–and–hold strategy, a deterministic strategy with constant weights, and an
optimal rebalancing strategy for a rebalancing interval of one year. The compari-
son of the speculative and the hedging demand in stocks shows, for example, that
their magnitudes become equivalent for investment time horizons greater than 2
years. Moreover, while the optimal allocation in stocks increases with the time
horizon, it seems to stabilize for time horizons longer than 6 years. The effect of
the time horizon on the optimal allocation in bonds is even subtler.1

The use of Monte–Carlo–Simulations will now help us to investigate the influence
of arbitrary time horizons and assets’ return distribution on the optimization
results. Using empirical data of four asset classes recorded during 13 years2,
and computing expected returns, variances and covariances3, simulations based
on time series with different lengths were carried out. As can easily be seen,
portfolios with longer simulated time horizons come closer to the portfolios on
the efficiency line when estimated with all of the historical data. Long–term
investments are expected to generate a higher expected terminal wealth4. For
more details, cf. chapter 4. We summarize:

1See G. Lenoir & N. S. Tuchschmid (2001).
2See Chapter 4 for more details.
3The returns of the asset indices were supposed to follow a multivariate normal distribution.
4See Z. Li & J. Yao (2004)
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Figure 3.10: Portfolio Frontier with Different Time Horizon Simulation

• The time horizon is a key input variable in determining an appropriate
balance of interest–generating (cash or bonds) versus equity (stocks and
other alternative investments) investments in a portfolio.

• The longer the time horizon is, the smaller the deviation from the “true”
efficient frontier becomes.

• The lower the investors’ aversion toward risk is, the lower is the importance
of the time horizon for actual investment decisions.

On the one hand, it has been demonstrated that an individual who is concerned
with maximizing a Safety–First utility function will choose an asset allocation
that is invariant to the investment’s time horizon. Moreover, the risk of a portfo-
lio, which is defined as the probability of earning a cumulative rate of return that
is less than the risk–free asset, declines exponentially with the time horizon.1 See
McEnally (1985) for another form of argumentation against time diversification

1The underlying assumption here is that the risk–free rate remains constant, regardless of
the time horizon in question.
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Figure 3.11: Portfolio Frontier with Different Sample Data

on the basis that total variance increases with the investment horizon. On the
other hand, we have noticed the impact of the time interval of sample data.

In an economy characterized by an upward–sloping term structure, the Safety–
First investor will, in the long run, have to take more risks in order to beat the
return from the risk–free asset. This does not, however, dilute the actuality of the
invariance of time horizon on the pure (constant return) Safety–First portfolio.
How to choose the “proper” length of historical data for deriving practical invest-
ment recommendations thus remains a crucial and open problem for investors in
the decision–making progress.

3.3.4 Status Problem of HNWIs and Implications of their
Asset Allocation Strategies

As we have already pointed out, many individual investors are much concerned
with their potential loss relative to their initial wealth level, and this holds es-
pecially for the HNWIs. As can easily be observed, many HNWIs consider their
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wealth to be a status symbol. This corresponds to their desire to maintain a
(rather high) minimum level of wealth, since falling below a certain threshold
would correspond to a loss of their social status level. These investors’ decisions
are often driven by – sometimes smart – intuition, which is based on the desire
to have a guaranteed maximum loss, and this leads us to incorporate the VaR
approach in reasonable asset allocation strategies for this type of investor. This
leads to optimization problem 3.7 :

Φ(x) = xTΣx→ min subject to Bx = c, P r(W ≤ bW0) ≤ 1− c.

In the empirical part problem 2.8 will be solved without using the Value at Risk
constraint in the computations, but, by checking afterwards whether a solution
satisfies the Value at Risk constraint. If not is it excluded.

Considering the initial wealth and the proportion invested in the risky assets,
it follows that

V aR = (1− b)W0
A

= −(μR − Φ−1(c)σR).

This, however, is a linear constraint, under which the situation in a Markowitz–
μ− σ–framework looks like the following:
From this conceptual framework follow some important implications with respect
to reasonable asset allocation strategies:

1. With an increasing A/W0, the loss probability (i.e., that the wealth at the
end of a period falls below a given level) will increase (cf. figures 3.6 and
3.9). The proportion which is invested in the risky assets as well as the
initial wealth level, can be used as a lever to restrict the loss probability
within a certain range.

2. For a fixed A will the loss probability decrease with an increasing initial
wealthW0. This sounds trivial, but it means practically for the HNWIs that
they can limit potential losses by fixed amounts, instead of by percentages
invested in risky securities.
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Figure 3.12: Portfolio Frontier under VaR constraint

3. For high A/W0 (here in the range of 0.6 to 0.9), the loss probability will
slowly increase, especially when investors choose less volatile assets (i.e.,
risk can substantially be reduced by investment in less volatile assets, even
though the proportion of risky assets is large).

3.4 Types of Asset Classes

Asset allocation refers to how an investor distributes his or her investments among
various classes of investment vehicles. Referring to the classification from section
3.2, we will now formulate reasonable asset allocation strategies for the last two
of our “typical” investors based on the following considerations from the previous
sections.

• The low level of initial wealth and the high degree of risk aversion of Small
Investors investing in, e.g., Mutual Funds.

• The low level of initial wealth and the low degree of risk aversion of, e.g.,
aggressive Small Investors investing in risky assets via debt.
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• The high level of initial wealth and the high degree of risk aversion of the
HNWIs and Institutional Investors.

• The high level of initial wealth and the low degree of risk aversion of in
some parts of Investment Banking.

We continue with a description of the characteristics of the most important asset
classes, the representatives of which will be incorporated later in the empirical re-
search. There we will address cash and bonds (German and US markets), stocks
(German, US and global markets), real estate (German and US markets), hedge
funds, gold and art markets.

There are many ways to categorize asset classes, and not only financial instru-
ments. The following table (3.6) shows one possible categorization (it is rather
freely oriented at Farrell (1997)) of asset classes for the portfolio construction
available to the participants in the portfolio management process. Money market
instruments, bonds, and equities are the major large asset categories that are
generally highly marketable, and which traditionally have been used extensively
by long–term portfolio investors. These three classical investment asset classes
are extended to real estate and alternative investments1, as shown in Table 3.6.

Note here that the distinction between “domestic” and “international” assets
is characteristic of earlier American research and textbooks, but is not always an
appropriate distinction today. However, most investors in all parts of the (West-
ern) world distinguish between domestic assets (of which investors are intuitively
under the impression are associated with a lower risk) and assets from abroad. In
this thesis we are using an asset classification which distinguishes between domes-
tic and foreign financial instruments, and which is consequently suitable for all
investors worldwide. We distinguish between money market instruments (cash,
deposits), bonds (domestic and international government bonds and corporate
bonds), stocks (domestic equities and international equities), real estate (Real

1Note that there is no unambiguous definition of alternative investments. Some authors
count, e.g., commodities as a subset of these investments, while others don’t, and rather regard
them as a separate asset class.

70



3.4 Types of Asset Classes

Estate Investment Trusts, which are usually invested in commercial real estate
and residential property1), and alternative investments (such as structured prod-
ucts, hedge funds, financial derivatives, foreign currencies, commodities, private
equity/venture capital, and investments of passion).

3.4.1 Basic Asset Allocation

Cash market securities are short–term debt instruments sold by governments,
financial institutions and corporations. The important characteristic of these
securities is that they have maturities when issued in one year or less.2 For
an example of the historical performance of cash market securities, see the JP
Morgan 1 Month Cash Index (JPEC1ML). Figure 3.13 shows the performance
development during the period from December 1995 to December 20073.

Most traditional bonds (also called fixed–income securities) promise to pay spe-
cific financial amounts at specific times.4 In most countries, the government
issues fixed income securities over a broad range of the maturity spectrum. They
are generally considered to be safe from default, and thus differences in expected
returns ought to be due to differences in maturity, differences in liquidity, or
the presence or absence of a call provision.5 Nevertheless, there are remarkable
differences in these securities according to country risks.6 Bonds issued by busi-
ness entities are called corporate bonds, and compared to government and agency
bonds, they are generally characterized by a risk of default. Corporate bonds are
rated as to quality by several agencies, the best known of which are Standard and

1To avoid optimization problems under integer constraints, we are supposing here that the
price of a REIT unit is much smaller than the budget to be invested (cf. equation 2.1.)

2More details can be found in, e.g., Elton et al. (2007).
3The data will be discussed in detail in the following chapter.
4For detailed information, cf. any good textbook on Fixed Income or Corporate Finance,

as, e.g., Brealey et al. (2005).
5This problem implies tax effects on different coupon rates, and also on differences in yield.

More details about tax implications can be found in Elton et al. (2007).
6The development of the Greek government bonds, although denominated in Euros, proved

this again impressively in mid 2009.
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Table 3.6: Asset Classes

Common Stocks Domestic Equities
Large–Capitalization
Small–Capitalization

International Equities
Major–Country Markets
Emerging Markets

Bonds Governments and Agencies
Corporate Bonds

AAA–rated
Baa–rated
High–yield (junk) Bonds

Mortgage–Backed Securities
International Bonds

Money Market Instruments Treasury Bills
CDs and Commercial Papers
Guaranteed Investment Contracts (GIC)

Real Estate Real Estate Investment Trusts (REITs)
Commercial Real Estate
Other Property

Alternative Investments Structured Products
Hedge Funds, Derivatives, Foreign Currencies
Commodities, Private Equity/Venture Capital
Investments of Passion

Art Collections
Luxury Cars, Yachts, . . .

Poor’s, and Moody’s and Fitch.
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Figure 3.13: Historical Performance of JP Morgan Euro Currency 1 Month from
December 1995 to December 2007

Figure 3.14 shows the performance development of the German bond market
index REX during the period from December 1995 to December 2007.

Besides the bond market, the stock market is the other most important source
for companies to raise capital. It allows businesses to go public, or to raise
additional capital for expansion. The liquidity that a stock exchange provides
affords investors the ability to quickly and easily sell shares. This is an attractive
feature of investing in stocks, compared to other less liquid investments, such as
real estate. Figure 3.15 shows the performance development of the German stock
market index DAX 30 over the period from December 1995 to December 2007.

Figure 3.16 shows the performance of the three indices JPEC1ML, REX and DAX
30 from 1996 to 2007. The index JPEC1ML has the lowest standard deviation,
the German bond index REX 1 is characterized by a moderate deviation, while

1As we will see in the next chapter, REX is a special index which has a slightly negative
correlation with the other indices chosen for empirical research.
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Figure 3.14: Historical Performance of REX from December 1995 to December
2007
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Figure 3.15: Historical Performance of DAX 30 from December 1995 to December
2007
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the German stock market index DAX 30 is the most volatile.1
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Figure 3.16: Rates of Return versus Time for the Three Classical Assets from
December 1995 to December 2007

1This is the most important index for German stocks, while it includes 30 stocks of the
largest listed German companies. For composition rules, cf., e.g., www.exchange.de. Note that
DAX 30 has a dramatic fluctuation compared with other asset indices.
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3.4.2 Real Estate, Commodities and Alternative Invest-
ments

In a wider sense, investments in real estate may include the acquisition and devel-
opment of commercial and residential real estate objects. As a tangible asset, real
estate, especially land, has long been viewed as a conservative investment class.
Mixes of cheap loans and a general lack of supply in the past actually changed to
overheated markets, making investments in real estate considerably risky. Many
developed countries, such as the USA, Japan and the Scandinavian countries,
and notably most East European countries, have experienced the blow–up of the
real estate bubble when the amount of mortgage loans grew dramatically over
the last decades. This growth was due primarily to foreign capital inflows and
cheap mortgage credits at low collateral. However, when interest rates increased,
many borrowers could not afford monthly payments. As a result, a huge amount
of pledged real estate was sold in the markets, which caused decreases of prices
by 15 - 40% in the medium term of two to four years.

According to Capgemini/Merrill Lynch World Worth Report (April 2008), real
estate experienced record returns in 2006 across various categories. Many HN-
WIs took profits from these increased values during 2007. But with the rise of
the crisis, they pulled out of real estate investments1 more significantly than an-
ticipated, finishing 2007 with only 14% of their financial assets allocated to real
estate, a 10–percentage–point drop from 2006 levels. However, globally–direct
commercial real estate investments rose by 8.4% (US$ 59 billion) during 2007,
amounting to a total of US$ 759 billion2, and thus remained one of the important
asset classes for HNWIs. Figure 3.22 shows the performance development of the
German real estate conjuncture index during the period from December 1995 to
December 2007.

1Includes commercial real estate, REITs, and other investment properties.
2See Jones Lang LaSalle (2008).

76



3.4 Types of Asset Classes

0 12 24 36 60 108 120 144
−15

−10

−5

0

5

10

Number of Months 

M
on

th
ly

 R
et

ur
n 

in
 %

Historical Performance of GREI
(December 1995 − December 2007)

GREI

Figure 3.17: Historical Performance of the German Real Estate Index from De-
cember 1995 to December 2007

The term alternative asset refers to any nontraditional asset with potential
economic value, that would not be found in a standard investment portfolio. Ex-
amples of alternative assets include hedge funds, private equity, pieces of art,
antiques, stamps, luxury cars, and other commodities.

In order to be extra distinguished, commodity markets have to be where raw
(or “primary”) products are exchanged. These raw commodities are traded on
regulated commodities exchanges such as the Chicago Mercantile Exchange, in
which they are bought and sold in standardized contracts. Most commodity mar-
kets across the world trade in agricultural products and other raw materials (e.g.,
wheat, barley, sugar, cotton, coffee, milk products, pork bellies, oil, metals, etc.),
and future contracts based on them. A special case is gold. Gold is often used as
a hedge against inflation, political risk, and currency exchange risk. Investments
in gold can be made by buying gold jewellery, gold coins, gold bullion, futures
and options contracts on gold bullion, the stocks of gold mining companies, and
gold mutual funds (which invest in gold stock and gold bullion). However, gold
does not earn any interest, and furthermore the storage and transaction costs for

77



3.4 Types of Asset Classes

investing in gold jewellery, gold coins and gold bullion can be substantial.1

Commodity prices have different features: figure 3.18 shows, e.g., that the price
of gold has a smaller volatility, in comparison with the Brent Crude Oil price.
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Figure 3.18: Rates of Return versus Time for Gold and Oil from December 1995
to December 2007

Another important subclass of alternative assets are investments of passion, such
as pieces of art, which are, by the way, often linked to the status of HNWIs.
For wealthy individuals, art is a very important alternative asset class. Many
HNWIs believe that the art market yields huge long–term profits, in comparison
to other investment markets. This is based mainly on information in mass media
concerning record prices of paintings. In 2007, the seventh consecutive year of
increasing prices, luxury collectibles accounted for 16.2% of passion investments,
and fine art, representing 15.9%, continued to be the most popular choice for
HNWIs worldwide.2 The rising prices were accompanied by a higher total art

1See Blose (1996).
2Capgemini/Merrill Lynch World Worth Report, 2008.
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market revenue at 9.2 billion dollars, up 43.8% in comparison with 2006, and
driven by a substantially higher number of sales above the threshold of the one
million dollar line, namely 1254 in 2007 compared with 810 in 2006. Although
there do not exist standardized financial derivatives, the (primary) art market can
be taken to be a market like any other, and one in which the attainable financial
returns to other investments can be compared. There are many research findings
suggesting that the correlations of art returns with other financial assets are low1.
However, how diversification gains (in a portfolio with Contemporary Masters,
19th Century European, Old Masters and 20th Century English paintings) affect
the efficient frontier during the investment period is still an open question.2

0 12 24 36 60 108 120 144
−6

−4

−2

0

2

4

6

Number of Months 

M
on

th
ly

 R
et

ur
n 

in
 %

Historical Performance of Art Global Index
(December 1995 − December 2007)

Art Global Index

Figure 3.19: Historical Performance of Art Price Global Indices from December
1995 to December 2007

There remain nevertheless some major problems which hamper the research on
art investment. As B. S. Frey & R. Eichenberger (1995) have pointed out, these
problems concern the data, which is often biased by the fact that the main sources

1For the empirical results of this research, cf. chapter 4.
2See A. C. Worthington & H. Higgs (2004).
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are auctions; and also by transaction costs, which significantly lower the rate of
return, but are difficult to register. The same also holds for taxes, which differ
among countries and art objects. Another problem is that the empirical outcomes
are partly the result of the approach employed, and therefore less robust than
desirable. In this research we will make some strong simplifications by not target-
ing individual art objects, and also by not considering the transaction costs and
other fees. For the empirical research in art investment1, the Art Global Index
will be taken as the performance indicator for meaningful practical applications,
this would require tradability of the index, as with REITs.

There is no unambiguous definition of hedge funds either. Hedge funds differ
remarkably with respect to investment style and invested amounts. A hedge
fund is basically an investment fund that is permitted by regulators to under-
take a wider range of activities than other investment funds, and which also pays
a performance fee to its investment manager. Hedge funds as an asset class invest
in a broad range of investments which extend over equities, bonds commodities,
and money market instruments2. The typical hedge fund investor is a HNWI or
an institution, and these investors are presumed to be financially sophisticated.
Hedge funds often seek to offset potential losses in the principal markets in which
they invest in by hedging their investments using, e.g., short selling. For many
years there has been an ongoing debate concerning in the financial sector ben-
efits and dangers of hedge funds. Figure 3.1 shows that the global volume of
hedge funds was US$ 1.5 trillion in 2006, when it was estimated that there were
over 8,000 hedge funds worldwide. With a similar form of argumentation as we
used for art, we will later choose an index for hedge funds, namely the Credit
Suisse/Tremont hedge fund indices3 for the period December 1995 to December
2007, as shown in Figure 3.20.4

1The index measures a weighted average of prices of paintings, sculptures, prints, drawings,
and photographs, but excludes antiques and furniture (Base July 1990 = 100).

2There is a lot of research on hedge funds strategies in existence, see, e.g., T. Schneeweis &
Spurgin, R. (2000), P. Boyle & S. S. Liew (2007), and D. Indjic & F. Partners (2002).

3See www.hedgeindex.com.
4The Credit Suisse/Tremont hedge fund database contains monthly data on 14 different

hedge fund indices. These indices correspond to different styles of hedge fund investments, or
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Figure 3.20: Historical Performance of the Credit Suisse/Tremont Hedge Fund
Index from December 1995 to December 2007

3.5 Asset Allocation Strategies of Investors with
High Initial Wealth and Different Risk Pref-
erences

On behalf of mixing different asset classes, the goal of this section consists in
describing the impact of different asset allocation strategies of wealthy investors
on the set of efficient portfolios on the upper branch of the efficiency curve. In the
next chapter, we will use market indices of asset classes to indicate the application
of each asset allocation strategy. Referring to the classification shown in table 3.3,
we distinguish, e.g., the following qualitative asset allocation strategies (AASs),
which are based on the empirical statistical measures indicated in Table 4.2, Table
4.3 and Figure 4.1.

• AAS 1: For investors with low W0 and low risk tolerance in terms of (μ, σ2)
using the basic asset allocation (i.e., mixing cash and, e.g., mutual funds).

combinations of these styles.
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and Different Risk Preferences

• AAS 2: For investors with lowW0 and high risk tolerance (μ, σ2) who could,
e.g., invest in levered mutual funds.

• AAS 3: For investors with high W0 and low risk tolerance (μ, σ2) using,
e.g., the basic asset allocation of cash, bonds and stocks.

• AAS 4: For investors with highW0 and high risk tolerance (μ, σ2) who could,
e.g., invest in domestic and international stocks, real estate, commodities
and art.

In the following we will concentrate exclusively AAS 3 and AAS 4.

AAS 3: Strategy of Investors with High Initial Wealth Level and Low
Risk Tolerance: The basic asset classes cash, bonds and stocks are easily avail-
able, liquid, and are associated with low transaction, or opportunity cost for
everybody. We assume here that investors with high W0 and low (μ, σ2) will hold
this basic portfolio.1

Figure 3.21: Portfolio Frontier with German Bond REX from December 1995 to
December 2007

1Note that most wealthy people separate their wealth into two parts: one part for invest-
ments in residential real estate, and the other part for free use in other investments.
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and Different Risk Preferences

The efficient frontier is almost linear because of the negative correlations of the
REX and the two other asset class indices. According to portfolio theory (cf.
chapter 2), portfolios on the upper branch of the efficiency line are characterized
by favourable combinations, in terms of expected return and standard deviation.
Bonds serve here as a risk insuring asset class.

AAS 4: Example of a Strategy of Investors with High Wealth Level
and High Risk Tolerance: Investors with a high level of initial wealth nat-
urally have many choices of different assets from which to choose. Besides the
basic portfolio, they can invest in real estate, art, private equity, hedge funds,
and some other asset classes which have not been specified here. As an example
of an aggressive asset allocation, we here derive the efficiency line of a mix of
domestic and international stock and real estate. All index returns used in this
research are characterized (cf. table 4.3) by positive long–term correlations. As a
consequence, the efficiency line moves toward North–East. Especially note here
the difference of the GMVP in figure 3.21 and 3.22.

Figure 3.22: Portfolio Frontier with Real Estate from December 1995 to December
2007
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Chapter 4

Portfolio Optimization for Special
Asset Allocation Strategies

We will now start to construct, and in the following to execute, asset allocation
strategies for different types of investors, based on the principles of portfolio se-
lection. Investors’ behavior with respect to risk attitude and initial wealth will
be distinguished according to the asset classes in which they invest. We will
investigate the impact that different asset allocation approaches have on risk–
return–criteria of several specific portfolios. All portfolios are formed from the
perspective of a German investor, and returns are consequently recorded in the
currency of the Euro.

Two portfolio optimization approaches will be applied and analyzed in this chap-
ter. The first one is a two–stage portfolio optimization starting with a mean–
variance optimization and followed by a maximization of an expected utility; in
this approach we must firstly identify the efficient frontiers for different asset
allocation strategies, and then apply expected utility optimizations in order to
locate optimal portfolios on the efficient frontiers. The second approach refers
to the considerations in subsection 3.3.4, specifically to limiting the probability
of loss. This approach is specifically designed for use with the asset allocation
strategies of HNWIs, and thus deals simultaneously with the mean–variance and
expected utility optimization, and with the Value at Risk approach. Note that
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both approaches implicitly take the initial wealth into account by the proportion
of risky assets in the overall investment sum.

4.1 Data

The database consists of monthly returns from 10 different asset indices from
Germany, the USA, and global financial markets for the period from December
1995 to December 2007. These indices cover cash markets, bond markets, stock
markets, commodities, hedge funds, real estate and art1.

Table 4.1: Indices for Asset Classes from December 1995 to December 2007

Cash Market JPM EURO CASH 1M (JPEC1ML)
Bond Market REX
Stock Market DAX 30, S&P 500, MSWRLD
Commodities OILBREN, GOLD
Hedge Funds HEDGNAV CS Tremont2

Real Estate Germany Real Estate Index (GREI)3

Art Market Art Global Index4

The following tables and figure 4.1 show the statistical long–term measures return,
standard deviation, skewness and kurtosis of all 10 indices, and the correlations
among the 9 risky asset indices (excluding the JPEC1ML) on a monthly basis.

1Other than the data of the hedge funds, the arts, and the German real estate index, all
data of the remaining indices was drawn from Datastream.

2The Credit Suisse/Tremont Hedge Fund Index is an unmanaged asset–weighted index of
hedge funds which uses a rules–based construction methodology. Performance data used in the
index is net of all fees. The index is calculated and rebalanced monthly.

3Deutscher Immobilienkonjunkturindex, BulwienGesa AG, Berlin, München & Hamburg.
4Art price analyzes the trends in 72 countries based on information from 2,900 auc-

tioneers. Art price owns and exploits the world’s largest data bank of fine art auction
records (covering the categories of paintings, prints–posters, drawings, miniatures, sculptures–
installations, photography, and tapestry), with about 4 million auction entries since 1700. Cf.
http://web.artprice.com/start.aspx.
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Table 4.2: Descriptive Statistics on a Monthly Base for Asset Class Indices from
December 1995 to December 2007

Indices Mean1 Std. Deviation Skewness Std. Kurtosis
JPEC1ML 0.29% 0.09% 0.204 -0.847
REX 0.42% 0.87% -0.299 -0.398
DAX 30 1.12% 6.77% -0.703 1.474
S&P500 0.69% 5.16% -0.137 0.527
MSWRLD 0.80% 5.58% -0.458 1.894
OILBREN 1.65% 11.11% 0.279 1.967
GOLD 0.51% 3.51% 0.725 2.660
HEDGNAV Index 0.92% 3.71% 0.580 1.509
GREI 0.57% 2.50% -1.075 4.146
Art Global Index 0.58% 1.97% -0.327 0.562

Table 4.3: Correlations on a Monthly Base for Asset Class Indices from December
1995 to December 2007

REX DAX30 S&P500 MS OIL GOLD HEDG GREI ArtG
WRLD NAV

REX 1.00
DAX30 (-0.22) 1.00
S&P 500 (-0.20) 0.66 1.00
MSWRLD (-0.27) 0.56 0.76 1.00
OIL (-0.07) (-0.04) 0.04 0.03 1.00
GOLD (-0.09) 0.08 0.09 0.19 0.18 1.00
HEDGNAV (-0.13) 0.51 0.61 0.61 0.21 0.32 1.00
GREI (-0.23) 0.54 0.41 0.37 0.16 (-0.01) 0.36 1.00
ArtG (-0.20) 0.13 0.09 0.12 0.12 0.11 0.18 0.09 1.00
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Figure 4.1: Empirical Long–Term Risk–Return Characteristics of the 10 Asset
Indices (Data from December 1995 to December 2007)

Figure 4.1 indicates, e.g., that the Brent Crude Oil price was not only character-
ized by the highest long–term mean but also by the highest standard deviation
while, e.g., the art global index had a relatively low mean, and also a low standard
deviation.

Normality Test

Before we begin dealing with the optimization problems, it is important to re-
member that proper application of Markowitz theory requires (nearly) normal
distribution of the assets’ returns. As already pointed out, historical data is not
and cannot be normally distributed1. Empirical research has shown that most
empirical return distributions are right–skewed and leptokurtic (see A. Kraus &
R. Litzenberger (1976), V. Chopra & W. T. Ziemba (1993).), so we will check here
whether the returns are approximately normally distributed. The first reference is
the third standard statistical moment, the skewness, which is, due to symmetry,

1 The monthly returns – dividends that are taken into account – are computed using arith-
metic. A detailed discussion about the differences of calculations of returns can be found in
Benninga (2005).

1Remember that quadratic utility depends only on mean and variance.
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zero for every normal distribution. A negative skewness corresponds graphically
to a longer left tail and a bigger mass of the distribution, concentrated on the right
of the figure. The distribution is then said to be left–skewed. Positive skewness
is equated with right–skewed. The skewness is defined by s = μ3

σ3 , where μ3 is the
third moment about the mean, and σ is the standard deviation.1 The kurtosis
is the statistical measure of the “peakedness” of a distribution of a real–valued
random variable, and a distribution with a positive kurtosis is called leptokurtic.
In terms of shape, a leptokurtic distribution has a more acute “peak” around the
mean (i.e., a higher probability than a normally distributed variable of values near
the mean) and “fat tails” (i.e., a higher probability than a normally distributed
variable of extreme values). The kurtosis is the fourth standard moment (i.e.,
k = μ4

σ4 ), and is often also defined as k = μ4
σ4 − 3, which is also commonly known

as excess kurtosis. The “minus 3” at the end of this formula is often explained
to be a correction, which makes the kurtosis of the normal distribution equal to
zero2.

In this work we will use the Jarque–Bera test, a non–parametric test of nor-
mality that is based on skewness and kurtosis.3 It is non–parametric in the sense
that it tests normality without specifying a particular mean or variance. The test
statistic is defined as

JB = n6 (s
2 + (k − 3)2

4 ),

where s is the skewness, k is the kurtosis, and n is the sample size. With an
α = 0.05, we obtain the following results of this two–sided test: the test does not
reject the normal distribution hypothesis for the stock indices DAX 30, S&P 500
and MSWRLD and for the German Real Estate Index, but it refuses the normal
distribution hypothesis for the Hedge Fund Index, the Art Global Index, Gold,

1See, e.g., Panik (2005).
2See, e.g., Panik (2005).
3Other tests which could be applied here are, e.g., the Kolmogoroff–Smirnoff test, or a

Chi-Square goodness–of–fit test.
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Brent Crude Oil, the REX and the JPEC1ML. This implies that one has at least
to be very careful when applying the Markowitz mean–variance analysis directly!

4.2 Maximization of Expected Utility on Effi-
cient Frontiers vs. Direct Utility Maximiza-
tion

4.2.1 The Optimization Problems

The first optimization approach to be discussed in this section consists of two
consecutive parts. First, the efficient frontiers will be computed, and secondly,
an expected utility optimization will be executed in order to locate an optimal
portfolio on the efficient frontiers. This procedure will be performed for different
asset allocation strategies leading to distinguished efficient frontiers, and, in the
second step, for different utility functions with varying parameters.

Step 1: Recall the problem formulation 2.8 without the permission of short
sales from subsection 2.2.1:

min
x∈�N

V(R) = xTΣx

subject to

1Tx =
N∑
i=1
xi = 1,

μTx =
N∑
i=1
xiμi = μp,

x ≥ 0.

The non–negativity constraint will later be strengthened further by adding upper
bounds for the investment percentages. In the following we derive numerically a
fine mesh of points along the mean-variance efficient frontier.
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Step 2: For each mean–variance efficient portfolio, we calculate its expected
utility by using the chosen “plausible” utility function.

E[U(μTx,xTΣx)]. (4.1)

By calculating the expected utility for all efficient portfolios, we thus select the one
efficient portfolio which maximizes the expected utility for a specific utility func-
tion U(μp, σ2

p). The maximum expected utility obtained by the mean–variance
efficient set is now denoted by E ∗ U(·). Note that the approximation of the ex-
pected utility uses only mean and variance. We refer again to the three types of
utility functions and their expected utilities from Table 2.3; the expected utilities
of these different functions will finally be compared.

In the second optimization approach, we use the same set of data of individ-
ual indices for asset classes, and select the portfolio which maximizes expected
utility of the given utility function, i.e., not just the maximum among mean–
variance efficient portfolios, but among all feasible portfolios. The value obtained
by this maximization, which we shall refer to as the direct maximization, will be
denoted by EU(·), as distinguished from E∗U(·). Referring again to the notation
of section 2.3, we thus get the maximization problem

Φ(x) = E[U(x)]→ max subject to Bx = c. (4.2)

We deal here with an additional VaR constraint in order to limit the loss proba-
bility in a certain region. We recall from subsection 3.3.4 the phenomenon that
especially HNWIs are much concerned with their potential losses while investing
in risky securities. Incorporating the VaR approach in an appropriate optimiza-
tion problem for this type of investor, we formulate 3.3.4 as follows1:

Φ(x) = xTΣx→ min subject to Bx = c, P r(W ≤ bW0) ≤ 1− c (4.3)

with
V aR = (1− b)W0

A
= −(μR − Φ−1(c)σR).

1Because of computation limits, we cannot here directly resolve the problem with VaR
constraints. This idea, however, can be taken as a useful instrument to limit the probability of
loss.
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As already mentioned, the VaR–constraint is not incorporated in the computa-
tions, but, by checking afterwards whether a solution of problem 2.8 satisfies the
Value at Risk constraint.

4.2.2 The Selected Utility Functions

In this section we will try to construct different asset allocation strategies for
HNWIs. After having computed an efficient frontier for an asset allocation
strategy, we continue by calculating the expected utilities of a discrete num-
ber of elements on the upper branch of the efficiency line. Referring to Table
2.3, we use the approximations of the expected utilities of the utility functions
Ui(μ, σ2)andi ∈ {1, 2, 3} in the empirical tests.

Quadratic utility:
U1(μ, σ2) = μ− β2σ

2.

Log wealth utility:

U2(μ, σ2) = log(1 + μ)− σ2

2(1 + μ)2 .

Power utility:
U3(μ, σ2) = 1− 1

1 + μ −
σ2

(1 + μ)3 .

We expand this μ−σ framework now by incorporating the initial wealthW0, and
a parameter t = A/W0 describing the overall proportion of risky assets in the
portfolio. The coordinates of efficient pairs μ and σ can now be rewritten as

μp = W0(1 +Rf ) + A(μ−Rf ),

σ2
p = A2σ2.

U1 is now transformed into

U1(μ, σ) =W0(1 +Rf ) + tW0(μ−Rf )− β2W
2
0 t

2σ2.
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The direct utility optimization problem is formulated as follows:

maxj E[Uj(
∑N
i=1 xiμi)]

s.t. 1Tx =
N∑
i=1
xi = 1

i = 1, . . . , N ; j = 1, 2, 3.

4.3 The Empirical Results

In this section we present the empirical results from the chosen database under
the framework described in the previous section. In the following, the initial
wealth W0 is fixed, and we assume without loss of generalization that it equals
1. The following computations have been executed for portfolios consisting of 4
and 7 asset class indices1 as examples, respectively:

1. Determination of optimal portfolios on the efficient frontier, followed by
computation of the utility values for various representatives of the three
different types of utility functions.

2. Direct maximization of utility functions.

Table 4.4 refers to the unbounded optimal strategy under quadratic utility for
investors with different risk aversion levels. Figure 4.3 shows that the portfo-
lios on the efficient frontier with maximal expected quadratic utility remain the
same for those less risk–averse investors; and the optimal portfolio moves in the
direction of global minimum variance portfolio (GMVP) for more risk–averse in-
vestors. In this 4–assets example, the portfolio with maximal utility is unequal
to the global minimum variance portfolio, and to the tangential portfolio. The
maximal utilities on the efficient frontier are clearly larger than those of GMVP
and the tangential portfolio. The portfolio utilities differentiate with parameter
β; there’s higher utility with lower β, and vice versa. Practically, this means

1The 4 asset class indices include DAX 30, S&P 500, MSWRLD and GREI; besides these
there are the following indices: the Gold price, the HEDGNAV Index and the Art Global Index.
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Table 4.4: Optimal Strategy with Quadratic Utility on the Efficient Frontier of
the Unrestricted Optimization Problem

U1 β = 0.6 β = 1 β = 2

t=0.3 0.7 0.9 t=0.3 0.7 0.9 t=0.3 0.7 0.9

uGMV P 1.0036 1.0044 1.0049 1.0035 1.0043 1.0046 1.0035 1.0039 1.0040
uTP 1.0044 1.0064 1.0074 1.0043 1.0060 1.0068 1.0042 1.0052 1.0053
max(U1) 1.0087 1.0162 1.0200 1.0072 1.0089 1.0092 1.0048 1.0053 1.0053
μ 0.0087 0.0164 0.0202 0.0087 0.0135 0.0141 0.0063 0.0072 0.0078
σ2 0.0024 0.0132 0.0219 0.0024 0.0078 0.0083 0.0008 0.0010 0.0012
xDAX 2.8396 2.8396 2.8396 2.8396 2.1306 1.6579 1.4806 0.5352 0.4171
xS&P500 -2.1018 -2.1018 -2.1018 -2.1018 -1.5793 -1.2309 -1.1003 -0.4035 -0.3164
xMSWRLDL 1.3645 1.3645 1.3645 1.3645 1.0519 0.8435 0.7654 0.3486 0.2965
xGREI -1.1023 -1.1023 -1.1023 -1.1023 -0.6032 -0.2705 -0.1457 0.5197 0.6029

that the more risk averse investors, especially the wealthy ones, should hold their
portfolios near to the global minimum variance portfolio.

While an elegant analytical solution in the unrestricted case exists (cf. section
2.4), restricted problems have to be solved numerically (cf. section 2.6). The con-
strained optimization problems will here be treated with the help of MATLAB–
software. In the following we compare results obtained for a quadratic utility
function U1 with α = 1 and β taking values of 0.01, 0.6 and 2, respectively, and
for the log–wealth utility function U2 and the power utility function U3. Note
again that U2 and U3 do not depend on any other parameters, but only on μ and
σ2. Table 4.4 refers to an optimization using U1, and shows the weights of the
four assets DAX 30, S&P 500, MSWRLD, and GREI for different parameters of β
and different proportions t invested in risky assets. From this table we derive that
there are almost no differences between the varying t and β = 0.01 and β = 0.6 on
the weights of optimal portfolios. For β = 2 and t = 0.3 we find that the optimal
portfolio is the same as those portfolios with β = 0.01 and β = 0.6; however, with
an increasing proportion of risky assets, the optimal portfolio changes. Investors
must then put more wealth into the MSWRLD and the Germany Real Estate
Index.
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Figure 4.3 shows the portfolio weights of the four assets depending on the

Table 4.5: Optimal Asset Allocation on the Efficient Frontier with Quadratic
Utility and Non–Negativity Constraints for varying β and t

U1 β = 0.01 β = 0.6 β = 2

t=0.3 0.7 0.9 t=0.3 0.7 0.9 t=0.3 0.7 0.9

max(U1) 1.0054 1.0086 1.0102 1.0051 1.0074 1.0082 1.0046 1.0051 1.0052
μ 0.0054 0.0086 0.0103 0.0054 0.0086 0.0103 0.0054 0.0068 0.0073
σ2 0.0004 0.0021 0.0035 0.0004 0.0021 0.0035 0.0004 0.0009 0.0010
xDAX30 0.9536 0.9536 0.9536 0.9536 0.9536 0.9536 0.9536 0.4609 0.3283
xS&P500 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
xMSWRLD 0.0464 0.0464 0.0464 0.0464 0.0464 0.0464 0.0464 0.1275 0.1218
xGREI 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.4116 0.5498

expected return under non–negativity constraints, but without additional upper
and lower bounds.1 Note that the weight of DAX 30 increases as the required
monthly return of the portfolio increases. The weight of the MSWRLD remains
rather stable for a medium range of expected returns.
Table 4.5 gives the results of the computations for U2 and U3 with varying t.
An interesting result is that the optimal portfolio according to U2 is actually
identical to the one obtained using quadratic utility with β = 0.01 or β = 0.6
and the portfolio resulting from U3 is the same as the portfolio from quadratic
utility with β = 2. The following results refer to the maximal expected utility
optimization on the efficient frontier.
Now we will concentrate our investigations on direct expected utility maximiza-
tion. The following tables are the results from direct utility maximization of the
three expected utility functions. Note again that this approach doesn’t focus only
on efficient portfolios, but on all available portfolios. Because the expected utility
optimization problem is equivalent to the direct utility maximization problem for
quadratic utility functions, the results are the same; there is thus no difference
between these two optimization problems.
For U2 and U3, however, there are obvious differences between the solutions of
the maximal expected utility optimization and the direct utility maximization

1This will be analyzed in the 7 assets case, see below.
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Table 4.6: Optimal Asset Allocation on the Efficient Frontier with U2 and U3 and
Non–Negativity Constraints and varying t

U2 U3

t=0.3 0.7 0.9 t=0.3 0.7 0.9

max(U(μ, σ2)) 0.6958 0.6972 0.6972 0.5011 0.5013 0.5013
μ 0.0054 0.0086 0.0103 0.0054 0.0068 0.0073
σ2 0.0004 0.0021 0.0035 0.0004 0.0009 0.0010
xDAX30 0.9536 0.9536 0.9536 0.9536 0.4609 0.3283
xS&P500 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
xMSWRLD 0.0464 0.0464 0.0464 0.0464 0.1275 0.1218
xGREI 0.0000 0.0000 0.0000 0.0000 0.4116 0.5498

Table 4.7: Direct Utility Maximization of U2 and U3 with Non–Negativity Con-
straints

U2 U3

t=0.3 0.7 0.9 t=0.3 0.7 0.9

max(U(μ, σ2)) 0.6953 0.6962 0.6976 0.5010 0.5015 0.5017
μ 0.0044 0.0064 0.0098 0.0044 0.0064 0.0074
σ2 0.0005 0.0012 0.0033 0.0005 0.0012 0.0016
xDAX30 0.2509 0.2522 0.7873 0.2504 0.2510 0.2513
xS&P500 0.2497 0.2492 0.0000 0.2498 0.2496 0.2495
xMSWRLDL 0.2500 0.2500 0.2127 0.2500 0.2500 0.2500
xGREI 0.2494 0.2486 0.0000 0.2497 0.2494 0.2492

problem. Table 4.7 shows the results from direct U2 and U3 utility maximization.
Optimal portfolios tend to be rather naive portfolios with U3 and U2, and with
lower proportions in risky assets. This result implies that, for more risk–averse
investors with relatively complicated utility forms, naively diversified portfolios
are a good choice.

Another interesting result is that the optimal portfolio under U2 with a higher
proportion in the risky part ( t = 0.9) deviates strongly from other optimal port-
folios. The expected return of this portfolio is much higher than that of the
portfolio with t = 0.7, and it has a consequently a higher weight of the DAX 30.
Here we thus derive the following question from Table 4.7: up to which proportion
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Figure 4.4: Portfolio Weights of the 4 Assets as a Function of t under Direct
Utility Maximization of U2

of the risky part should an investor hold a naively diversified portfolio? Compu-
tations visible in Figure 4.4 indicate that from t = 0.790885, the composition of
the optimal portfolio weights will be changing dramatically. The bold black line
represents here the weight of the DAX 30 while the dashed line represents the
weight of the MSCWRLD.

From Table 4.5 and 4.6 we see that, for practical optimization cases as computed
here, the use of quadratic utility functions is sufficient. Log wealth and power
utility functions deliver results of the same quality. Moreover, risk–conscious in-
vestors such as HNWIs (modeled here by β = 2) can choose portfolios with a
rather large t, if the risky part is dominated by contributions with individually
low risks.

After having compared these two methods we conclude that, for quadratic util-
ity functions, there is no difference between maximal expected utility and the
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direct utility maximization problem; and for more complicated forms of utility
functions (such as U2 and U3), maximal expected utility leads toward a genuine
diversification while direct utility maximization tends toward a naively diversi-
fied portfolio for a t that is not too big. This is actually in line with good intuition.

We will now expand the universe of assets by enlarging it from 4 asset indices
to 7 asset indices. The three additional classes we will now add as options for
investors are the Gold Price Index, the Hedge Fund Index and the Art Global
Index. The optimization problems will again be treated under non–negativity
constraints. Furthermore, we will investigate the practically interesting case of
an upper bound, here identical for all assets to be set to 0.25.

Figure 4.5 shows the portfolio weights of the 7 asset indices as a function of
the portfolio’s expected return under maximization of quadratic utility on the
efficient frontier with non–negativity constraints, where β = 2, and t = 0.9.
With increasing required expected return, the weight of the DAX 30 rises again.
The weight of gold changes dramatically when the required return varies from
4.5% to 5.5%. Figure 4.6 gives the portfolio weights for these 7 asset indices with
upper bounds of 25%, and in this case, the portfolio weights of S&P 500 and
MSWRLD should be reinvested with increasing required expected return.

Table 4.8: Optimal Strategy for 7 Assets with Quadratic Utility and Non–
Negativity Constraints

U1 β = 0.01 β = 0.6 β = 2

t=0.3 0.7 0.9 t=0.3 0.7 0.9 t=0.3 0.7 0.9

max(U1) 1.0054 1.0086 1.0102 1.0051 1.0075 1.0085 1.0047 1.0062 1.0067
μ 0.0054 0.0086 0.0103 0.0054 0.0083 0.0096 0.0051 0.0077 0.0084
σ2 0.0004 0.0020 0.0033 0.0004 0.0014 0.0018 0.0002 0.0007 0.0009
xDAX30 0.9248 0.9248 0.9248 0.9248 0.6992 0.5487 0.5487 0.2479 0.1824
xS&P500 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
xMSWRLDL 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
xGoldprice 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
xHEDGNAV Index 0.0752 0.0752 0.0752 0.0752 0.3008 0.4513 0.4513 0.7521 0.6394
xGREI 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
xArtGlobalIndex 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1781
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Table 4.9: Optimal Strategy for 7 Assets with U2 and U3 with Non–Negativity
Constraints

U2 U3

t=0.3 0.7 0.9 t=0.3 0.7 0.9

max(U(μ, σ2)) 0.6958 0.6972 0.6979 0.5012 0.5015 0.5017
μ 0.0054 0.0086 0.0103 0.0051 0.0077 0.0085
σ2 0.0004 0.0020 0.0033 0.0002 0.0007 0.0009
xDAX30 0.9248 0.9248 0.9248 0.5487 0.2479 0.1931
xS&P500 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
xMSWRLDL 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
xGoldprice 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
xHEDGNAV Index 0.0752 0.0752 0.0752 0.4513 0.7521 0.6658
xGREI 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
xArtGlobalIndex 0.0000 0.0000 0.0000 0.0000 0.0000 0.1411

We remember the results for the situation with 4 assets; Table 4.8 now shows
the results for 7 assets under U1, and Table 4.9 the results under U2 and U3. As
Figure 4.5 points out, for a higher required expected return there are only three
asset classes, namely the DAX 30, The HEDGNAV and Art, in which investment
is possible. Similar to the former results, the maximal expected utility U2 has the
same optimal portfolio as U1, when β = 0.01; and the maximal expected utility
U3 leads to results similar to those of the optimal portfolio U1, when β = 2. There
is a small difference between U1 and U3 when a higher risky–asset proportion t
is invested: Under U1, 17.81% of the wealth in risky assets is invested in the Art
Global Index, while it is 14.11% under U3.
As mentioned before, the quadratic functions expected utility optimization prob-
lem is identical to the direct utility maximization problem. For U2 and U3 there
are obvious differences between maximal expected utility optimization and direct
utility maximization; Table 4.10 shows the results from direct U2 and U3 utility
maximization. Here we find that optimal portfolios tend to be naively diver-
sified portfolios under U3 and U2 with a low overall proportion of risky assets
(t = 0.3). This result again implies that, for more risk averse investors with
relatively complicated (or no) utility forms, naive portfolios can be regarded as a
good choice. The optimal portfolio (under U2 with t = 0.7 and t = 0.9) appears
to be very different from other optimal portfolios; the expected return is much
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Table 4.10: Optimal Strategy for 7 Assets with Direct U2 and U3 Maximization
with Non–Negativity Constraints

U2 U3

t=0.3 0.7 0.9 t=0.3 0.7 0.9

max(U(μ, σ2)) 0.6952 0.6969 0.6977 0.5010 0.5014 0.5016
μ 0.0043 0.0080 0.00983 0.0043 0.0061 0.0070
σ2 0.0002 0.0016 0.0024 0.0002 0.0006 0.0008
xDAX30 0.1439 0.5285 0.6564 0.1434 0.1441 0.1444
xS&P500 0.1427 0.0000 0.0000 0.1427 0.1426 0.1425
xMSWRLDL 0.1430 0.1384 0.0000 0.1429 0.1430 0.1430
xGoldprice 0.1422 0.0000 0.0000 0.1425 0.1421 0.1419
xHEDGNAV Index 0.1432 0.3331 0.3436 0.1431 0.1435 0.1437
xGREI 0.1424 0.0000 0.0000 0.1426 0.1423 0.1422
xArtGlobalIndex 0.1424 0.0000 0.0000 0.1427 0.1424 0.1423

higher than for the portfolio with t = 0.3, and the differences between the t = 0.7
and t = 0.9 cases exist, but are comparably small. Again, a higher proportion of
assets has been applied to DAX 30 and HEDGNAV Index. Similar to the case
of four asset indices are these results which we have gained, a risky proportion
to which the investor may hold a “naive” portfolio. In this seven asset indices
case, t = 0.577558 is a corresponding threshold, from which the weights of the
optimal start to change substantially. Other than these differences, all previously
mentioned conclusions from the 4 assets case hold. The bold black line in Figure
4.7. represents the weight of the DAX 30 while the dashed line represents the
weight of the HEDGNAV index.

Implicit Check of the VaR–Constraint

For HNWIs we proposed a check using a VaR constraint. We will now see
whether the solutions of the problem 2.8. satisfy also 3.3.4 with the additional
VaR–constraint. Given the portfolios from the above results, a probability level
c of 95% and a time horizon of one month, we assume further that wealthy in-
vestors can endure a 10% wealth loss. We deal here with b = 0.9 and as before
with t = 0.3 and t = 0.9. Obviously, the larger the t is, the higher the VaR
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Figure 4.7: Portfolio Weights to Proportion of Risky Asset under Direct U2 for 7
Asset Indices

is. We check whether the portfolios satisfy the VaR constraints or not;1 those
portfolios which do not should not be considered anymore. The following table
shows that this constraint is not violated for all optimizations with t = 0.3 and
t = 0.9, respectively. In Table 4.11 are all the VaRs smaller than 10%; this means
that all these optimal portfolios are principle acceptable under the given set of
assumptions.2

1As already mentioned, we don’t solve the optimization problem directly with VaR con-
straint, but rather as a benchmark in our empirical research.

2The quality of the approximation can be examined using a criterion according to Kroll
et al. (1984):

I =
E ∗ U(·)− ENU(·)
EU(·)− ENU(·) ,

where ENU(·) is the expected utility of a naively diversified portfolio, in which 1
n is invested in

each asset class; that is:

ENU(·) = EU
(
N∑
i=1

1
n
μi

)
.
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Table 4.11: Results for Direct and Approximated Expected Utility with Non–
Negativity Constraints and Value–at–Risk

t=0.3 t=0.9
Ui E ∗ U(·)1 EU(·)2 EUN (·)3 VaR E ∗ U(·) EU(·) EUN (·) VaR
4 Asset Indices
U1
β = 0.01 1.0054 1.0054 1.0044 2.75% 1.0102 1.0102 1.0074 8.7%
β = 0.6 1.0051 1.0051 1.0043 2.75% 1.0082 1.0082 1.0066 8.7%
β = 2 1.0046 1.0046 1.0041 2.75% 1.0052 1.0052 1.0046 4.5%
U2 0.6958 0.6953 0.6953 2.75% 0.6972 0.6976 0.6965 8.7%
U3 0.5011 0.5010 0.5011 2.75% 0.5013 0.5017 0.5017 4.5%
7 Asset Indices
U1
β = 0.01 1.0054 1.0054 1.0043 2.75% 1.0102 1.0102 1.0070 8.4%
β = 0.6 1.0051 1.0051 1.0042 2.75% 1.0085 1.0085 1.0065 6.0%
β = 2 1.0047 1.0047 1.0041 1.8% 1.0067 1.0067 1.0056 4.1%
U2 0.6958 0.6952 0.6953 2.75% 0.6979 0.6977 0.6964 8.4%
U3 0.5012 0.5010 0.5011 1.8% 0.5017 0.5017 0.5016 4.1%

4.4 Uncertainty of the Estimates and Back test-
ing

4.4.1 Uncertainty of the Model Input

The value of a portfolio optimization model for investors is linked directly to the
relation of expected returns at the beginning to the realized return at the end of
the investment period. The perfect model is model wherein all expected returns
are equal to the realized returns one period later. In his work from 1952 (which
eventually lead to his winning a Nobel prize), Modern Portfolio Theory founder
Harry Markowitz pointed out that “The process of selecting a portfolio may be
divided in two stages. The first stage starts with observations and experience
and ends with beliefs about the future performance of available securities. The
second stage starts with the relevant beliefs about future performance and ends
with the choice of the portfolio. This paper is concerned with the second stage.”

1The highest value of the expected utility from all efficient portfolios.
2The expected utility from direct maximization.
3Expected utility of the naive portfolio.
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In other words, Markowitz theory provides the optimization techniques but not
the input or parameters, respectively. It is thus clear that the estimation of the
model input is of crucial importance.

The Markowitz model requires estimates (cf. chapter 2) for expected returns,
variances and covariances. As known from theory and from empirical research,
most important are the errors in the expected returns, followed by the covari-
ances.1 Estimates for returns and risks in a portfolio optimization are typically
a combination of current and historical information. Statisticians today use a
variety of techniques that are designed to improve from historical data2 the fore-
cast value of estimates of return and risk. Strategic or long–term asset allocators
especially use historical return data, but adjust the derived statistical parameters
using current information. From this point of view, asset managers are natural
Bayesian; however, few use formal Bayesian procedures in optimization estimates.
A number of methods have been suggested to handle with risk–estimation prob-
lems within a portfolio context (see Richard O. Michaud & Robert O. Michaud
(2008) for a review). Estimates based on different historical data differ and will
necessarily lead to different efficient frontiers.

On the basis of the research by M. J. Best & R. R. Grauer (1991) we will now
illustrate the impact of a change in (only) one input. Figure 4.8 illustrates, e.g.,
the change of the efficient frontier in the case with our 4–asset–indices case if
only the expected return of the DAX 30 decreases by 0.2 (corresponding to 20
%). We find that the efficient frontier moves remarkably toward South–East as a
result of this single change of an asset’s expected return as an input parameter.
It is easy to imagine which impact changes of more expected asset returns in the
same direction would have.

Figure 4.9 provides different efficiency curves for the 4–asset–indices case which
are estimated on the base of consecutive yearly historical data. The graph illus-

1Cf. e.g., Chopra & W. T. Ziemba (1993).
2See J. D. Jobson et al. (1979), J. D. Jobson et al. (1980) and J. D. Jobson & R. Korkie

(1980) which use, e.g., James Stein Estimators to improve the Markowitz optimization.
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trates the dynamics of the efficient frontier, which were generated by the historical
returns from the years 2005, 2006 and 2007. The efficiency line based on the data
from 2005 would thus be the line for indicating risk–return characteristics for
investments in 2006, the 2006 line for investments in 2007, etc. Note here that
the efficiency lines move from 2006 to 2007 toward South–West; this corresponds
with the generally improved economic perceptions and the recovery of the (four)
markets from 2006 to 2007.

As Figures 4.8 and 4.9 point out, the efficient frontier can vary greatly under
different input parameters and under different time horizons. One reason for this
is that under the multivariate normality assumption we use maximum likelihood
estimators for μ and Σ and therefore, Rij is the realization of the random return
of asset i at the point j. For the input parameter we take the mean as the estima-
tor of the expected return, assuming that every pj equals 1

k
; i.e., these estimators

do not take into account the weights for some sub periods. Possible methods that
can be used which improve the estimation of the input parameter refer, e.g., to
the weights of sample data from different time points.

The first proposed approach now used is that the different recorded returns for
different periods will be assigned by different weights, respectively. We let

μik ≈
k∑
j=0
rk−jpj,

where
∑
pj = 1, and take this μik as a weighted return of asset i for the past

return. Similarly we have the variance of the return:

σ2
ik ≈

k∑
j=0
pj(rk−j − μik)2.

Figure 4.10 is, e.g., derived from q = 0.9 with pj = qj(1 − q), q = 0.9 1. The
“right” choice of q depends on the length of the time series; the nearer one comes

1In practice we can also assume that q = 0.95, or any or another value.
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to the point k, the greater is the weight of an observation in the model.2

A second method to improve the estimation of the inputs here is named “time–
window”; with this method we differentiate between the estimations with respect
to the number of data points entering the estimation process. We now define a
“time–window” of, in our case, two years, including 1 year of overlap length. Un-
der this method we run a sensitivity analysis with historical data to find out how
the efficient frontier moves. We now have a new portfolio efficient frontier every
year. Except for the first estimated efficient frontier, every efficient frontier is
computed taking into account a one–year overlap. In doing so, we can investigate
the shifting of the portfolio frontier as it depends on the time–window.

4.4.2 Backtesting with In–Sample and Out–of–Sample Data

We will now perform backtesting procedures to investigate to what extend the
two methods applied above are time–dependent. In the first one, we will consider
the weights of all historical data; and in the second one we will focus on the length
of the “time–window”. For backtesting we need in–sample and out–of–sample1

data and an investment period. We refer again to Table 4.2 and Table 4.3. which
indicate the historical long–term average returns, and correlations.

Consider a sample of data Ri1, Ri2, . . . , RiT drawn from N assets and T periods.
The first k periods will be taken as in–sample data, and the remaining are conse-
quently for the investment period. Here we take T = 144 months, and we assume
(e.g.,) that k = 72. The in–sample data is thus from the first 6 years, and the
investment period lasts 6 years, too.

In order to back test the second method we use the whole database. Each 2–year
time window will be taken as in–sample data, and each next “time window” will
be an investment period.

2Cf. the application in the next subsection.
1See, e.g., Inoue & L. Kilian (2002), Zumbach (2006) and Campbell (2006).
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Figure 4.10: Efficient Frontier with In–Sample and Out–of–Sample Data

Figure 4.10 shows us the different efficient frontiers with in–sample and out–of–
sample data. In this figure the dashed lines represent efficient frontiers from
in–sample data, while the solid lines represent the efficient frontiers during the
period of investment with out–of–sample data. The black lines are the time–
dependent input estimations, and the grey ones are from classical Markowitz
frontiers. The black solid line is the time–dependent frontier, and the grey solid
line is the efficient frontier from classical Markowitz mean–variance. It is clear
that the time–dependent efficient frontiers (black lines) have relatively similar
variances (i.e., time–dependent frontiers can keep the risk of investment in a
small range), although they have differences in expected return. The grey lines
(i.e., those efficient frontiers deduced from equal–weighted mean) have a large
fluctuation of risk. By this standard the time–dependent efficient frontiers are
reasonable choices for practical use for most risk–averse investors.

Figures 4.11 and 4.12 provide nice smoothed pictures of the changed perceptions
of the market from 2001 – 2007. A movement to the left and/or downwards
corresponds to improved market perceptions and a movement of the efficiency
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Figure 4.11: Shift of the Portfolio Frontier in the First Half Sample Period with
Time Windows Equals 2 Years

curve to the right and/or upward indicates a worsening of the expected asset
performances. From the figures we can see that the portfolio frontier of 2000 –
2001 is very far from the efficiency lines based on estimates from data of other
sub periods. It clearly refers to the dotcom bubble with its climax on March
10, 2000 (when the NASDAQ index reached its peak of 5132.52 points), and the
following burst. Figure 4.12 thus shows that the dotcom bubble popped, and that
the market perceptions then started to improve beginning in 2003. From these
two figures, then, we draw the conclusion that a time–window portfolio frontier
can actually do best by reflecting changes of the investors perceptions on future
performances.

109



4.4 Uncertainty of the Estimates and Back testing

0 5 10 15 20 25
−3

−2

−1

0

1

2

3

4

5

6
Shift of Portfolio Frontier under Time−Dependent Data Period

Monthly Standard Deviation of Portfolio in %

M
on

th
ly

 R
et

ur
n 

of
 P

or
tfo

lio
s 

in
 %

Data from 2001−2002
Data from 2002−2003
Data from 2003−2004
Data from 2004−2005
Data from 2005−2006
GMVP

Figure 4.12: Shift of the Portfolio Frontier in the Last Half Sample Period with
Time Windows Equals 2 Years

In order to apply this method pragmatically we run the sensitivity analysis of
the 2–year time–window with non–negativity constraints. Figures 4.13 and 4.14
show the portfolio frontiers based on the same database, only without short sales.

Note here that the finding of right time windows or weights for the estimation
procedures are not stable over time and that there can’t be only true time–
independent estimates; they have regularly to be checked and adjusted for prac-
tical applications.
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Figure 4.13: Shift of the Portfolio Frontier in the First Half Sample Period with
Non–Negativity Constraints
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Chapter 5

Summary and Conclusions

The research executed in this thesis was motivated mainly by highly relevant
determinants for any investment decision in the practice, namely an investor’s
attitude toward risk, the investor’s initial wealth level and the investment’s ex-
pected time horizon. While a lot of research on intertemporal capital models has
been executed, neither these models nor the more commonly–used and simpler
one–period capital market models or time series models deal simultaneously with
these three determinants.

We have established here a classification leading to some “typical” investors with
respect to their initial wealth, attitude toward risk and investment horizon, and
linked some of them successfully to actual players in the markets. Special atten-
tion will be given in this work to High Net Worth Individuals (HNWIs), who are
investors usually characterized by a high initial wealth level, a long investment
horizon and a low aversion toward risk. From this classification we derived nor-
mative investment, or asset allocation strategies for investors with low and high
scaled attitudes toward risk and levels of initial wealth, respectively. Investors
were assumed to have the choice between investments in indices representing ei-
ther four or seven asset classes as money market instruments: German bonds,
German stock, American stock, German Real Estate, Hedge funds and Art. The
third input, time, is investigated via “selecting” appropriate time windows for the
estimation process producing the input for the portfolio optimization models. It
is shown on behalf of historical data covering 10 indices over 12 years that time
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windows for estimating the models’ inputs of 2 years are rather stable, and seem
to thus be appropriate for HNWI portfolio optimization.

The theoretical frameworks with respect to portfolio optimization are the Markowitz
theory and the Expected Utility theory. It is shown that Markowitz theory is
appropriate for our purposes even though it is a one–period model that does
not specify or restrict the length of the investment period. Markowitz theory
deals only with the first two central statistical moments: expected return and
variance. A normality test of the returns of the indices representing the asset
classed mentioned earlier supported this assumption: or, in other words, this
test supported the reasonable applicability of the Markowitz theory, with some
restrictions. Thus, no higher moments are taken into account for the portfolio
optimizations.

In the empirical part of this thesis we computed efficient frontiers for different
sets of asset classes, and taking the initial wealth into account and accordingly
using some utility functions, we then selected a “best one”. Also we dealt al-
ternatively with direct utility maximization. Here we have shown that quadratic
utility seems to be powerful enough to model all possible real investors, and can
thus appropriately substitute for log–wealth or power utility. If an investor is
assumed to divide his or her fortune into a risk–free part and a risky part, direct
utility maximization can be used to generate naively diversified portfolios up to a
rather high threshold of the risky percentage of the overall investment sum. This
threshold depends on the number of assets, their expected returns and their cor-
relation structure. Further research on theses interrelations seems very promising.

In this empirical research we obtained the following main results:

1. The results of utility maximization for the optimization problem with quadratic
utility with a risk parameter beta, and the log–wealth and power utility are
very similar.

2. Direct maximization of the utility leads to practical and rational results; and
for the log–wealth utility function we found that, to a certain proportion of
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risky assets, the investor could simply hold a naively diversified portfolio.

Well–working models require good estimates for the input parameters, and we
found that small input errors can lead to large differences in the optimized port-
folio. From the empirical back–testing we conclude that:

1. Different sample–period data is very important to estimators. Time–dependent
estimators work better than normal estimators, without consideration of the
time period.

2. Time–dependent estimators can be obtained by working with “time–windows”,
an idea which basically corresponds to the concept of a sensitivity analysis,
and also helps us to get a better understanding of the shifting of portfolio
frontiers from different sample periods.

Long–term efficient portfolios can usefully be considered as a subset and special
case of mean–variance efficiency. Although there exist multi–period models, a
properly applied and extended classical Markowitz mean–variance model remains
a very broadly applicable theoretical framework, even for investors, with a long–
term investment horizons of about 5 or more years.
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