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Abstract

Present-day mobility and ubiquity of computing devices make information technology accessi-

ble for user activities that are temporally and, especially, spatially distributed. Besides mobile

systems this enables ubiquitous computing that – as Weiser phrased it – “enhances computer

use by making many computers available throughout the physical environment, while making

them effectively invisible to the user” (Weiser, 1993, pg. 75). Mobile and ubiquitous systems

aim for autonomous and proactive assistance and therefore their infrastructure needs to be

able to identify the users’ needs. This has two important consequences:

1. The set of devices available for interaction may change over time. This raises the chal-

lenge of adaptivity: on different devices the same abstract human-computer interaction

such as entering a phone number has to be rendered differently in order to make opti-

mal use of the specific device’s interaction mechanisms.

2. The structure of a user task becomes accessible to the computing system. This creates

the opportunity of proactive assistance: if the devices in the user’s environment are able to

infer her current activity, they are able to trigger actions such as providing information

without explicit user interaction.

In order to enable adaptivity and to use proactive assistance a concept investigated in cur-

rent research on mobile and ubiquitous systems is to provide computing systems with explicit

models of the user’s behavior or tasks. Even though for both fields (adaptivity and proactive

assistance) any aspects of the user’s behavior or activities can be derived from psychological

research on human cognition and social groups, both are seen as separate issues in system

development and are addressed by different modeling concepts. This work reviews research

areas of social psychology, cognitive psychology, and signal processing to collect sensible de-

scriptions of human behavior in both group situations and problem solving situations that
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Abstract

might be helpful to map cooperative task accomplishment in a group to a model. It examines

how recent smart environments projects model the user’s activities, and provides a catalogue

of criteria for a team intention model. Then this work presents the concept of a robust and

training-free probabilistic system for intention analysis and prediction in teams, and yields

the experimental evaluation of the concept by applying simulation and in situ experiments.

The experiments prove the validity of the presented concept and the viability of a model-based

approach for the indented scenario.

The fundamental statement this work makes is that developing and incorporating explicit mo-

dels of user tasks is an important aspect of mobile and ubiquitous software development me-

thodology. Furthermore, this work contributes to recent technology and research by 1.) pro-

viding an in-depth interdisciplinary recherche of the several different aspects in team behavior

recognition, 2.) providing a concept for modeling intention analysis and prediction for teams

of users in environments of mobile and ubiquitous computing devices, by 3.) providing an

experimental infrastructure for simulation and in situ experiment on the proposed and other

concepts, and by 4.) providing ideas for the automated creation of agenda-driven team inten-

tion models that allow to recognize team objectives from observable actions of the individual

team members.

Strictly speaking, the proposed approach addresses inferring the intention of a team of users

within a smart meeting environment that is equipped with sensors and has access to meeting

information. The key challenge is to derive and select intended team activities from the ob-

servation of multiple users by noisy heterogeneous sensors. Therefore a team intention model

based on a hierarchical dynamic Bayesian network (DBN) is introduced for inferring the cur-

rent task and activity of a team of users real-time. Sparse, intermittent sensor readings of the

team members’ positions within a meeting room are used to analyze and predict the team’s

current objective.

The inference tool implementation is utilizing particle filters for inference. Evaluation ex-

periments demonstrate how knowledge about the meeting agenda can improve prediction

accuracy and speed, and how reliability of agenda knowledge can influence the prediction of

team behavior. Learning approaches are determined to tune prediction quality, and finally an

approach is outlined that uses annotated hierarchical task trees for synthesizing models from

a common basic description.
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German Abstract

Die heutige Mobilität und Omnipräsenz von Computern macht Informationstechnologie für

Nutzeraktivitäten zugänglich, die zeitlich und besonders räumlich verteilt sind. Neben mobi-

len Systemen ermöglichen sie “Ubiquitous Computing”, das – wie Weiser (1993) es sinngemäß

formulierte – die Nutzbarkeit von Computern durch die Verfügbarkeit vieler gleichzeitig für

den Nutzer unsichtbarer Computer in der physikalischen Umgebung verbessert. Mobile und

allgegenwärtige Systeme zielen auf autonome und proaktive Assistenz hin, und deshalb muss

deren Infrastruktur in der Lage sein, die Bedürfnisse der Nutzer zu identifizieren. Das hat zwei

wichtige Konsequenzen:

1. Die Menge der Geräte, die für die Interaktion zur Verfügung stehen, kann sich im Laufe

der Zeit ändern. Daraus ergibt sich die Herausforderung der Adaptivität: auf zwei un-

terschiedlichen Geräten muss die gleiche abstrakte Mensch-Maschine Interaktion, wie

die Eingabe einer Telefonnummer, unterschiedlich realisiert werden, um eine optimale

Nutzung der spezifischen Geräteinteraktionsmechanismen zu schaffen.

2. Die Struktur einer Nutzeraufgabe wird für das Computersystem greifbar. Das schafft die

Gelegenheit zur proaktiven Assistenz: wenn die Geräte in der Umgebung eines Nutzers

in der Lage sind, dessen derzeitige Aktivität zu inferieren, können sie Aktionen wie das

Anbieten von Informationen ohne explizite Nutzerinteraktion triggern.

Ein Konzept, das die derzeitige Forschung zu mobilen und ubiquitären Systemen untersucht,

um Adaptivität zu ermöglichen und proaktive Assistenz zu nutzen, ist, Computersysteme mit

expliziten Modellen des Verhaltens oder der Aufgaben eines Nutzers zu versorgen. Auch wenn

für beide Gebiete (Adaptivität und proaktive Assistenz) beliebige Aspekte des Verhaltens oder

der Aktivitäten eines Nutzers aus der psychologischen Forschung zu menschlicher Kognition

und sozialen Gruppen abgeleitet werden können, werden beide bei der Systementwicklung

v



German Abstract

als separate Probleme wahrgenommen und mit unterschiedlichen Modellierungskonzepten

angegangen. Diese Arbeit rezensiert die Forschungsgebiete Sozialpsychologie, Kognitionspsy-

chologie und Signalverarbeitung, um Beschreibungen von menschlichem Verhalten sowohl

in Gruppensituationen als auch Problemlösungssituationen zu sammeln, die hilfreich für die

modelhafte Abbildung der kooperativen Aufgabenbewältigung innerhalb einer Gruppe sein

könnten. Sie untersucht, wie jüngste “Smart Environment”-Projekte die Aktivitäten eines Nut-

zers modellieren, und liefert einen Kriterienkatalog für ein Teamintentionsmodell. Dann legt

diese Arbeit die Konzeption eines robusten und trainingsfreien, probabilistischen Systems für

die Intentionsanalyse und -prädiktion in Teams vor und liefert mit der Durchführung von

Simulations- und “In Situ”-Experimenten die experimentelle Evaluation des Konzepts. Die Ex-

perimente zeigen die Tauglichkeiten des präsentieren Konzept und die Realisierbarkeit des

modellbasierten Ansatzes bezüglich des vorgesehenen Szenarios.

Die fundamentale Aussage der Arbeit ist, dass die Entwicklung und Integration expliziter Mo-

delle von Nutzeraufgaben ein wichtiger Aspekt für die Methodik der Entwicklung mobiler

und ubiquitärer Softwaresysteme ist. Darüberhinaus leistet diese Arbeit Beiträge zu jüngsten

Technologien und jüngster Forschung durch 1.) die Lieferung einer gründlichen interdizipli-

nären Recherche der zahlreichen verschiedenen Aspekte bei der Erkennung von Teamverhal-

ten, 2.) die Lieferung eines Konzepts zur Modellierung von Intentionsanalyse und -prädiktion

für ein Team von Nutzern in Umgebungen mit mobilen und ubiquitären Computern, durch

3.) die Lieferung einer Experimentalinfrastruktur für Simulations- und “In Situ”-Experimente

mit dem vorgeschlagenen oder anderen Konzepten und durch 4.) die Lieferung von Ideen für

die automatisierte Erstellung Agenda-gesteuerter Teamintentionsmodelle, die die Erkennung

von Teamzielen aus beobachtbaren Aktionen einzelner Teammitglieder zulassen.

Genaugenommen befasst sich der vorgeschlagene Ansatz mit der Inferenz von Intentionen

eines Teams von Nutzern in einem “Smart Meeting Environment”, das mit einigen Sensoren

ausgestattet ist und Zugriff auf Meetinginformationen hat. Die zentrale Herausforderung ist

die Ableitung und Auswahl der geplanten Teamaktivitäten mittels der Beobachtung mehre-

rer Nutzer durch verrauschte und heterogene Sensoren. Dazu wird ein Teamintentionsmodell

basierend auf hierarchischen dynamischen Bayes’schen Netzen vorgestellt, das das Inferie-

ren der aktuellen Aufgaben und Aktivitäten eines Teams von Nutzern in Echtzeit ermöglicht.

Spärliche, intermittierende Sensormessungen von Teammitgliederpositionen in einem Bespre-

chungsraum werden genutzt, um das derzeitige Ziel des Teams vorherzusagen.
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Die Implementierung des Inferenztools nutzt Partikelfilter für das Schließen. Evaluationsexpe-

rimente demonstrieren, wie Wissen über die Meeting-Agenda die Vorhersagegenauigkeit und

-geschwindigkeit verbessern kann und wie Verlässlichkeit des Agenda-Wissens die Vorhersage

des Teamverhaltens beeinflussen kann. Lernansätze werden untersucht, um die Vorhersage-

qualität zu tunen, und schließlich wird ein Ansatz umrissen, der annotierte hierarchische

Task-Trees für die Erzeugung des Teamintentionsmodells aus einer gemeinsamen Grundbe-

schreibung nutzt.
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Theses

1. Situations are distinguished decisively by the behavior of the user that acts in it. Com-

puting device states can indicate the dedicated circumstances a user has to handle.

2. The user’s behavior is led by process-driven or task-driven intentions. In cooperative

multi-user situations the social “nature of groups” causes the evolution of a group goal

that can be interpreted as team intention.

3. The number of high-level team intentions is denumerable in a closed application domain

like a “smart meeting room” as long as a group of users shows a cooperative behavior.

4. Roles that team members adopt with respect to a team intention can be modeled inde-

pendently from the interdependencies and structures in groups.

5. The team member’s behavior is goal oriented at least in the productive performing stage

of the group life cycle, which is assumed for the application domain of this work.

6. Many teams act in meetings on a-priori context information like agendas and schedules,

but these are just prior compiled evidences and not reliable sources for the course of a

meeting, because several teams deviate from such a-priori plans during the meetings.

7. Preliminary context information like a-priori agendas that are unreliable with respect to

the schedules and courses of meetings are preferable over no context information about

meetings, because the unreliable but additional information improves the recognition

accuracy significantly.

8. Probabilistic task models like Markov models are suitable for the purpose of modeling

the situation in a “smart meeting room” with its inherent uncertainty factors.

9. Approximative Bayesian inference methods especially particle filters are an appropriate

approach for robust reasoning on unreliable context information and sparse sensor data.
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Chapter 1

Overview

1.1 Introduction

In order to identify a suitable structure for the aspects that are addressed within the fol-

lowing chapters, this work starts with a brief overview on classification approaches given by

representatives of the ubiquitous computing community to subdivide their research area. Re-

viewing the related literature many attempts to structure the methods and components that

are utilized in the field of ubiquitous computing can be found.

For instance Cook and Das (2007) have described recently that components of applications

from this field can be assigned roughly to four different areas:

• Physical – This area includes all physical devices of an intelligent environment, mainly

sensors and actuators.

• Communication – This area contains middleware questions like device discovery, net-

work standards and protocols as well as system ontologies.

• Information – This part addresses the aspects of data storage and intelligent data anal-

ysis and determines inference and prediction methods based on user models.

• Decision – This part searches appropriate decision making processes based on the ana-

lyzed information and chooses suitable actions to assist the users.

A slightly older classification by DeVaul et al. (2003) distinguished between Sensing, Feature

Extraction, Modeling, Inference and Action. And Hightower et al. (2002) subdivided in their

1



Chapter 1

Location Stack a little more technically into Sensors, Sensor Fusion, Contextual Fusion, Activities

and Intentions.

Obviously Information,Modeling, Inference or Intentions are subject headings that characterize

this work roughly. But the application domain that is addressed here might be divided further

to respect the number of users that an application was designed for (i.e. differentiate between

Single-user and Multi-user (Team) applications), or to reflect how the application infrastruc-

ture was set up (i.e. in decentralized, dynamic ad-hoc manner, or centralized and static). Also

a distinction between Mobile Assistance Applications, Smart Environment Applications, and Ob-

servation/ Annotation Applications might seem sensible.

However, a proper delimitation of application areas entails constraints for method selection in

the addressed area. This work researchesMulti-user Ad-hoc Smart Environments and addresses

the central question of my research group that the department chair phrased as:

How can an ad-hoc ensemble find out as early as possible what a team would

like to do if it would know what it could do within that ensemble?1

The goal of this work on Team Intention Recognition for Smart Environments is to infer the

needs of teams to enable proactive assistance in a meeting environment scenario, which in-

cludes 1.) providing information, data, and action respectively without explicit interaction

between computing system and user group, and 2.) enabling the environment to pre-fetch

media content or pre-configure system features based on predicted team intentions. Hence,

the research question can be altered to:

How can an ad-hoc smart environment optimally support a team of users in

a meeting without explicit interaction?

This work presents an approach for modeling team behavior for ad-hoc smart environments,

which allows to infer intentions of teams to prepare goals for interaction with smart environ-

ments. It also addresses learning statistics parameters for the team intention model. From the

mentioned focus the following relevant areas of research can be derived:

1.) Modeling, and 2.) Inference

1My department’s chair coined that phrase during a research seminar session in summer term 2008.
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Overview

Before starting the review of outstanding projects from the ubiquitous computing field and

the identification of relevant methods from those projects’ applications, the next two sections

outline the overall structure of this thesis, provide a quick look at the chapters, and lay claim

to the contributions made.

1.2 Thesis Layout

This work is organized as follows: Subsequent to the next two sections the work starts in

Section 1.4 with a review of related projects from the application domain to identify relevant

methods for the with this work aspired conception. A method matrix in Section 1.5 clearly

summarizes the identified methods. Then, in Section 1.6, the scenario is formulated which

describes the situation this work is designed for and indicates the constraints for method

selection that can be derived from this delimitation. In Section 1.7 a catalogue of criteria

outlines which requirements the aimed concept of a team intention model has to meet.

The overview chapter is followed by three separate chapters (i.e., Chapters 2, 3 & 4). Origi-

nating from implications that can be derived from the criteria for a team intention model iden-

tified in Section 1.7, Chapter 2 digs into research areas, which are closely related to single per-

son and group behavior. The review includes social psychology approaches (see Section 2.2)

for categorizing the “nature of groups” and modeling group processes (e.g. group interac-

tion, group structure, group goals), and cognitive psychology approaches (see Section 2.3)

for structuring and modeling (single person) human behavior. Here, especially aspects re-

lated to thinking like reasoning and problem solving are determined. Furthermore the signal

processing area (see Section 2.4) is reviewed regarding its approaches for the recognition of

behavior patterns – whether model-free or model-based.

In Chapter 3 first the scenario from Section 1.6 is adapted to delimitate it from related work

in Section 3.2. Then, after an overview of the features of the prototype laboratory – called

“SmartApplianceLab” – that is built into a room of my department shown in Figure 1.1, the cri-

teria from Section 1.7 are revisited under a more concrete perspective in Section 3.3. Here the

findings from Chapter 2 are considered, and the constraints just as much as the capabilities

stemming from architectural and infrastructural decisions made on behalf of my department’s

research objectives as well as from the construction and structure of the physical smart envi-

ronment are incorporated.

3
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Figure 1.1: SmartApplianceLab at University of Rostock

Then, by means of the two focus areas modeling & inference mentioned in Section 1.1 this

work’s concept is described. The next two subsections describe briefly the content of the

related Sections 3.4 & 3.5. By the end of Chapter 3 the concept is proven with the introduction

of an experimental infrastructure in Section 3.5.4.

Afterwards, in Chapter 4, two experiments (simulation in Section 4.2 and in situ in Sec-

tion 4.3) are described, which were realized with the developed experimental infrastructure.

These experiments were selected to evaluate the concept. Thus, results of the agenda driven

team activity recognition are discussed. Finally, Chapter 4 summarizes findings from this work

in a comprehensive conclusion in Section 4.4.

1.2.1 Agenda-driven Team DBN

Merging findings from the reviews in social psychology, cognition science, and signal pro-

cessing with the criteria of this work, Section 3.4 presents a team intention model based on

dynamic Bayesian networks (DBN), which represents a robust way to technically model coop-

erative group behavior at least for the described scenario and enables filtering and prediction

of intended group activities with the support of a-priori knowledge about the group situation.

1.2.2 Team Intention Inference

In Section 3.5 inference tasks for the proposed model are identified. Then follows a detailed

description of the Bayesian inference approach and inference mechanisms based on particle

filters. Requirements for an implementation are collected and an architecture is introduced

4
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that specifies components and modules of the experimental infrastructure. Finally, usage of

the implemented tools is outlined.

1.3 Thesis Contributions

The previous section indicated where contributions to the area of Smart Environment gener-

ally and Smart Meeting Rooms specifically can be expected. This work examines how recent

smart environments projects recognize and eventually model the user’s activities, and pro-

vides a matrix of relevant methods and a catalogue of criteria for a Team Intention Model.

Furthermore, it reviews the research areas of social psychology, cognitive psychology, and sig-

nal processing to collect descriptions of human behavior in both group situations and problem

solving situations.

Focusing on – in terms of Cowell et al. (2007) speaking – rather technological than scientific

modeling and a proper inference of team behavior this work then presents the concept of a

robust and training-free prior knowledge probabilistic system for real-time intention analysis

in teams, and yields the experimental evaluation of the concept applying simulation and in

situ experiments.

The fundamental statement this work makes is that developing and incorporating explicit

models of user tasks is an important aspect of mobile and ubiquitous software development

methodology. It proposes to extract findings from psychological fields to enhance explicit

models for better or at least more flexible recognition of team cooperation. Furthermore, this

work contributes to recent technology and research by providing

• an in-depth interdisciplinary recherche of the several different aspects that are related to

team behavior recognition,

• a concept for modeling intention analysis and prediction for teams of users in environ-

ments of mobile and ubiquitous computing devices,

• an experimental infrastructure for simulation and in situ experiment on the proposed

and other concepts, and

• ideas for the automated creation of agenda-driven team intention models that allow to

recognize team objectives from observable actions of the individual team members.
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1.4 Related Projects

Mobile assistance applications and smart environments are tools that help users with their

real world problems and tasks either out in the field or in office, school, and home environ-

ments. They can acquire knowledge about users and their environments. To do so, sensors

observe states of both users and environment. These states are interpreted by a model to

infer or predict a user’s needs resulting in a strategy that enhances the user’s experience of

the environment. Activity observation and annotation tools have a special role. Here, the

acquired knowledge about users and their environment does not directly result in assisting

strategies and action. Rather, the information is utilized to record Persona2 and Role-corpora,

which then are evaluated in studies on medical, psychological, or usability aspects.

For this section on related projects the earlier mentioned distinction between mobile assis-

tance applications, smart environment applications, and activity observation and annotation

applications is picked up to make a rough categorization of projects. Smart environments of

course is the most related category to this work but nevertheless both other categories also

provide interesting insights in how modeling, inference, and learning can be addressed.

1.4.1 Mobile Assistance Applications

Under this category all tour-guides or personal navigation systems ever produced could be

mentioned. But, since this would obviously be beyond the scope here, and the primary goal

of this work is to prepare a concept of a system for intention analysis and prediction of team

behavior in smart environments on behalf of agenda knowledge and location data, in this

section only three outstanding projects – the Location Stack, the Place Lab and Opportunity

Knocks – are described in more detail because those are interesting from the perspective how

location could be modeled and higher level activities could be inferred.

Location Stack The Location Stack model proposed by Hightower et al. (2002) was driven

by the conclusions drawn from a survey on location systems for ubiquitous computing (High-

tower and Borriello, 2001a,b). With this survey a seven-dimensional taxonomy was put in by

Hightower and Borriello to characterize localization systems. Variables of the property vector

2Persona designates “an individual’s social facade or front that especially in the analytic psychology [. . . ] reflects
the role in life the individual is playing [like] the personality that a person (as an actor or politician) projects in
public” (Merriam–Webster Online Dictionary, 2008a)
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Intentions

Activities

Contextual Fusion

Context Handling
(Non Location)

Arrangements

Fusion

Measurements

Sensors

Figure 1.2: The seven layers of the Location Stack design abstraction. (Source: Adapted from
Hightower et al. 2002, pg. 23)

reached from 1.) physical vs. symbolic and 2.) absolute vs. relative locations over 3.) localized

local computation, 4.) recognition, 5.) accuracy and precision to 6.) cost, and 7.) limitations.

Since existing location systems were rather tuned for some few application specific aspects

than for enabling the full range of the feature vector3, the survey was motivation for designing

the Location Stack. The aim was to propose a robust standardized software abstraction that

connected multiple sensing technologies to benefit from aggregate properties, which would

have been unavailable when using location systems individually.

In Hightower et al. (2002) some design principles were specified that location systems for

mobile or location-enhanced application – and so the Location Stack – should rely on. Fun-

damental measurement types (e.g., distance, angle, proximity, or asserted position), which

always exist in such applications, were combined in standard ways and enabled standard ob-

ject relationship queries. Additionally, at sensor level, measurements were always concerned

with uncertainty about the location. This uncertainty should be preserved for higher abstrac-

tion levels, such that those are able to propagate correct uncertainty information. In addition,

location and context data in such applications were typically not used directly but to enable

recognition about users’ activities and inference of their needs.

The Location Stack design abstraction consisted of the seven layers shown Figure 1.2. The

sensors layer collected sensor observations in various forms of raw data. In the measurements

layer raw inputs were transformed to normalized representations that also implied uncertainty

values based on the particular sensor models. The fusion step continually merged measure-

ments to a sort of probabilistic statement about positions and orientations of objects. Due to

different capabilities of different sensors redundancies or contradictions were able to influ-

3Note, that the same realization applies to nowadays location systems.
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ence the combined uncertainties of object locations. Reasoning about the relationships (e.g.,

proximity, or containment) between objects was done within the arrangements layer. The con-

textual fusion layer allowed merging of location knowledge with other non-location contextual

information of a situation. The activities and intentions layers added the specific semantics of

the individual ubiquitous computing application, where the activities were the application’s

interpretations of environment states given the combined information from contextual fusion,

and intentions were the users’ needs in relation to those recognized activities.

In Hightower et al. (2003) an implementation of some layers of the Location Stack was pre-

sented. Besides some sensor technology device drivers, a database service, and a simulation

service the framework primarily contributed at the fusion layer. They applied Bayesian filter

techniques including multi-hypothesis tracking, namely particle filters to address both basic

sensor fusion and simultaneous identity estimation for multiple tracking targets. The deci-

sion for particle filters was made on basis of a survey on Bayesian filter implementations

performed by Fox et al. (2003). Here, different approaches were assessed regarding their

abilities to manage measurement uncertainty and to perform multi-sensor fusion and identity

estimation. Hightower et al. described their decision for particle filters as due to the “typi-

cally very uncertain and multi-modal [. . . ] belief over the person’s location” (Hightower et al.,

2003, pg. 6) when using multiple more or less inaccurate ID sensors. Furthermore, they rec-

ommended to constrain possible location hypotheses (i.e., particles) of a person and utilize

Voronoi graphs of free space – as described by Liao et al. (2003) – to restrict the spreading of

particles around the motion of users in an environment.

A second aspect that was addressed with the Location Stack fusion algorithms was the data

association problem in multi-target tracking with anonymous sensors. Track confusions during

tracking were able to induce wrong associations of identities. A solution proposed by Schulz

et al. (2003) used a multi-hypothesis tracking approach in which particle filters and Kalman

filters were combined. Due to the accuracy of the anonymous sensors used for that scenario

users could be tracked using Kalman filters and multiple hypotheses regarding the identities

of people were maintained using particle filters. Here, each particle reflected one hypothesis

about the identity of a tracked user, which was a set of identity annotated Kalman filters.

For the arrangements layer just a few operators were provided. Current probabilistic location

estimates were used to produce a probabilistic output that denoted the confidence of a certain

arrangement, for example, that a user was in front of a certain object or an object was within
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a certain region. Finally the upper layers, activities and intentions, were not addressed by

the implementation. But Hightower et al. (2003) indicated that the design for these layers

could be based on the same approaches as used for the fusion and arrangements layers to

support the higher level recognition and learning tasks that characterize these layers. Some

progress made on methods for these layers can be found in Place Lab and Opportunity Knocks

described next.

Place Lab Place Lab4 was a localization project at Intel Research in collaboration with the

University of Washington in Seattle. It was engaging in the provision of location-enhanced or

mobile applications. Planetary-scale low-cost indoor and outdoor positioning was envisioned,

which was listening for radio signals from already existing infrastructure such as 802.11 access

points, GSM cell phone towers, and fixed Bluetooth appliances. A multi-platform software

base and a community-driven beacon database5 offered a low barrier of participation, either

for privately determining a location or for sharing hotspot information.

Technically interesting for this work was the Place Lab client. This was the mobile assis-

tance application that in this case had to deliver adequate position estimates from hetero-

geneous, noisy sensor sources. LaMarca et al. (2005) described that the client consisted of

roughly three components – the spotter, the mapper, and the tracker. The first two were

rather straightforward, since they just read accessible cell-identifiers and looked them up in

the beacon-database to obtain latitude and longitude or other information of the requested

base-stations. Then the collected data was streamed to the tracker to produce estimates of

the user’s position. The tracker component contained knowledge about some related system

properties like signal propagation in various physical environments and was also able to in-

corporate additional information like map data for a position estimation. Besides a simple

tracker with Venn diagram-style range triangulation, a Bayesian particle filter tracker was in-

cluded to utilize the rich model knowledge (Hightower and Borriello, 2004). This tracker was

an implementation of the previously described Location Stack abstraction.

Another aspect of Place Lab was to enable a match between the latitude and longitude a lo-

cation estimation provided and colloquial place names, like “Home”, “Work” or this special

4It should not be confused with the PlaceLab at MIT, which was an initiative of House_n project and TIAX to
build “an apartment-scale research facility where new technologies and design concepts can be tested and evaluated in
the context of everyday living” (PlaceLab, 2008, pg. 1). This lab is open to various research groups and primarily
used to collect sensor data as well as Persona and Role-corpora for evaluation.

5Place Lab’s beacon database was transfered to the community wigle.net as major research ceased in 2006.
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italian restaurant’s name the inner circle is familiar with. To address this issue, Hightower

et al. (2005) introduced a learning mechanism based on the collection of radio signal finger-

prints that they called BeaconPrint algorithm. Roughly summarized the algorithm segmented

a signal log at stable signal situations by adding a waypoint. Waypoints issued from a repeated

visit of the same location were merged with the already known one. Note that this algorithm

rather addressed the notification of someone’s favorite places than the assignment of a certain

semantics to a recognized place. A related approach was chosen for the Opportunity Knocks

prototype of the ACCESS project described next.

Opportunity Knocks The objective of the Assisted Cognition in Community, Employment

and Support Settings (ACCESS) project at University of Washington was to enhance the qual-

ity of life for persons with cognitive disabilities through computer-based memory and problem

solving aids. A major part of the efforts made in this project, that evolved from the Assisted

Cognition project introduced by Kautz et al. (2002), was focused on Opportunity Knocks6 – a

prototype described by Patterson et al. (2004) that logged location sensor data to recognize

a user’s mode of transportation and learn typical locations of activities. The system was built

to support the memory of users from the target group by monitoring deviation from the usual

daily routine, detecting a likely aberration, and providing guidance back on track.

Patterson et al. (2003) described a Dynamic Bayesian Network (DBN) to infer and learn modes

of transportation. The model used GPS sensor data as observable input for the DBN. Then

multi-hypothesis tracking, namely particle filter, was applied to reason about the most proba-

ble mode of transportation. They distinguished between three different transportation mode

values: BUS, FOOT, and CAR, which obviously provided different motion patterns. The model

also incorporated learning of conceptual locations (e.g., bus stop or parking lot) where tran-

sitions in the transportation mode may occur to improve tracking and prediction.

In Liao et al. (2004) and Patterson et al. (2004) an expanded version of this model was

explained. This hierarchical DBN additionally modeled a trip segment layer and a goal layer.

The new trip segment level predicted in addition to the transportation mode also the route

of transportation and at the goal level the goal location was inferred. Of course, a new goal

location only could be applied when the user reached the end of a trip segment.

6This prototype was also know as Activity Compass in the Assisted Cognition project context (Patterson et al.,
2003).
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In latter publications Liao et al. (2005b,a, 2007) switched to Conditional Random Fields,

namely Relational Markov Networks, to handle the increasing amount of prediction constrain-

ing information (e.g., locations of restaurants and shops or the fact that a person works at a

number of different locations) that naturally occur in an unrestricted mobile environment.

1.4.2 Smart Environment Applications

In principle this section, too addresses upper layers of the Location Stack just mentioned. It

contains a selection of Smart Environments projects from office, school, or home surrounding.

The descriptions examine applications semantics and how activity recognition and intention

inference were realized.

Classical User Interfaces

Active Badge One of the first Smart Environments was the Active Badge system from Cam-

bridge University Computer Laboratory. Want et al. (1992) stated that the system was de-

signed as an aid for telephone receptionists. It incorporated a location system that consisted

of personalized unique infrared signal sending badges and a set of receivers in the various

rooms of the laboratory. Badges sent out their identity signal every 15 seconds and the re-

ceivers made their signal detection available for the application throughout the network.

Then, with every detected signal the application updated the recognized – or better associated

– state of the corresponding person. States were provided to the receptionists in form of a

lookup table of names against dynamically updating fields containing a description of the

location and the nearest telephone extension.

Additionally, a kind of likelihood was displayed that indicated how probable it was that

someone could be found at the associated location. 100% meant stable sighting, below

100% indicated the person was moving around. Periods of non-sighting graded from 5

minutes to more than a week with displaying first the last time, then the last day, and fi-

nally the indication ´AWAY´. The receptionists then had to formulate their intentions ex-

plicitly using command-line queries that the system provided (e.g., ´FIND (name)´, ´LOOK

(location)´, or ´FIND (name)´).
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Adaptive User Interfaces

EasyLiving Brumitt et al. (2000) put the goal of Microsoft’s EasyLiving system as to aggre-

gate diverse devices into a coherent user experience. At the heart of the system the EasyLiving

Geometric Model (EZLGM) abstracted the perceptional part of the system from the application

semantics. According to Brumitt and Shafer (2001), EZGLM stored entities for all interest-

ing objects (including persons) within the environment. Then measurements connected the

entities forming an undirected graph where a measurement edge described position and ori-

entation of one entity in relation to another entity. Additional entities stored information

about their physical expansion, the uncertainty of their position, and other contextual knowl-

edge. Krumm et al. (2000) explained in detail how the localization of multiple inhabitants

using stereo computer vision was realized. Additionally EasyLiving utilized pressure mats,

thumbprint reader, and keyboard login to localize and identify persons. For detecting the

moveable devices (e.g., wireless keyboard or RF mouse) in the environment a combination of

color and shape cues from camera images was processed (Brumitt et al., 2000).

EZLGM kept track of the latest perceptions and provided the information to the application

layers where all input and output devices as well as several small software pieces (e.g., web

browser or a person’s whole desktop) were encapsulated in unique services. Various UI adapt-

ing demo applications enabled the inhabitants, for instance, to control different output devices

with one moveable input device7 or to move their desktop session to the nearest screen.

Interactive Room At Stanford University the Interactive Workspace project built the Inter-

active Room (iRoom) to research adaptive interfaces for multi-display environments. Similar

as in EasyLiving, the idea of Fox et al. (2000) was to 1.) equip a multi-user meeting space

with a variety of displays (i.e. three touch-sensitive SmartBoard displays, a bottom-projected

table, and a front-projected screen) and multiple wireless mice, keyboards, and PDAs, and

2.) enable this space to allow one input device to manipulate multiple output devices, or

respectively vice versa.

But in the iRoom no location system was used. Instead the centrally managed computational

glue, which was called iROS, just knew iRoom’s screen topology (Johanson et al., 2002b).

Spatial proximity, therefore, was not used for moving data, moving control and dynamic

7Or vice versa; different input devices could control a specific personalized application like the “contact anyone
anywhere” example mentioned by Shafer et al. (1998).
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application coordination, respectively, but for explicit service selection by the users. The iROS

merely provided with its components Data Heap, Event Heap, and iCrafter an architecture

where the UI tools could dock (Johanson et al., 2002a). As Ponnekanti et al. (2002) further

described a central contribution of the project was the seamless provision and adaption of

control interfaces for iRoom devices to the different appliances (e.g., Java-enabled notebook

vs. PDA without Java installed) that different users brought into the iRoom environment.

Therefore an interface managing application on top of iCrafter encapsulated the whole process

of selection and provision of the adequate UI.

Neural Networks

Adaptive House Goal of the Adaptive House project was to build a home, which adjusted it-

self to schedules and lifestyle of its inhabitants and at the same time minimized energy costs.

Therefore a realty of the University of Colorado at Boulder was equipped with various sen-

sors and actuators. According to Mozer et al. (1995) roughly seventy-five sensors monitored

various aspects of the environment (e.g., temperature, ambient light, sound level, motion,

door status, etc.), and actuators influenced parameters including air and water, lighting, or

ventilation. In Mozer and Miller (1998) and Mozer (1998) a control system for this home

automation setting called ACHE was introduced to adapt the actuators optimally.

ACHE, an acronym for Adaptive Control of Home Environments, consisted of several compo-

nents. First sensor information were collected by an occupancy model and an anticipator. The

occupancy model determined the currently occupied zones within the house using motion de-

tectors and a finite-state model, but naturally could just react to sensor readings. And for this

reason an additional anticipator was built to predict an impending zone occupancy and to is-

sue actions before this zone became occupied. Conceptionally, a standard single-hidden-layer

neural network8 was chosen, which utilized occupancy model data as a training signal.

Then a state estimator formed a high-level state representation that encoded information rel-

evant for decision making. Central information were, of course, user activities, which were

derived from the patterns that the occupancy model and the anticipator net provided (e.g.,

if Bob is vacuuming, expect many zone changes in a short time; if he is reading quietly in a

corner, expect few zone changes). An orienting mechanism applied event-based segmentation

8“with 107 inputs, 50 hidden units, 8 output units, direct input-output connections, and a symmetric sigmoidal
activation function” (Mozer and Miller, 1998, pg. 382).
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to gate the decision making process. That required the determination of salient events, which

were defined to be: 1.) anticipation of zone or region entry or exit, 2.) significant change in

the outdoor light level, and 3.) change in inhabitant activities.

Finally, the decision making component, called Q-learning controller, implemented reinforce-

ment learning, particularly Q-learning9, to sample trajectories in state space. But according to

Mozer (2005) Q-learning was not guaranteed to converge optimally, because ACHE was not

able to determine exact observations for both location of users and their needs at the moment.

iDorm The University of Essex equipped a dormitory room (iDorm) with various non-intru-

sive sensors including light, temperature, and humidity sensors as well as pressure mats or

motion sensors to monitor users within a natural environment. Additionally an adaptive inter-

face allowed inhabitants to configure the available actuators (e.g., heater, fan, lights, blinds,

or PC based application). Centralized control points in the room then used the monitored

sensor data and user interventions to adopt the behavior that the inhabitants desired.

For this purpose different approaches were introduced. Besides a proposal for an intelligent

fuzzy agent system by Doctor et al. (2005), Rivera-Illingworth et al. (2005) suggested an

agent-based approach, which was premised on an Adaptive Neural Network. This network

was derived from the Evolving Connectionist Systems (ECoS) paradigm proposed by Kasabov

(2002) and, hence, could adapt itself to the monitored environmental data by adding neurons

to the hidden layer whenever the observation could not be explained with the already existing

structure of the network.

After a training phase the net covered normal conditions and – applied to monitor the iDorm

– detected new conditions. Depending on the scenario these new states could be regarded as

new preferred behavior or as abnormal behavior (e.g., in a medical case of emergency). Be-

sides usual input, hidden, and output layer the network also incorporated a temporal recurrent

component – the so-called memory layer –, which allowed to capture temporal dependencies

in the data.

9“Given a fully observable state and an infinite amount of time to explore the state space, Q-learning is guaranteed
to converge on an optimal policy” (Mozer, 2005, pg. 277).
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Plan Recognition

Intelligent Room MIT’s Agent-based Intelligent Reactive Environment (AIRE) project10 re-

searched how localization and recognition techniques could enable natural multimodal human-

computer interfaces in intelligent spaces. Their Intelligent Room was built upon an agent soft-

ware system called Metaglue. Coen et al. (1999) explained how the Metaglue middleware

organized communication issues between perceptual agents, central services, and appliance

agents or actuators respectively.

At perceptual level, computer vision was used to localize the inhabitants. Brooks (1997) de-

scribed that for this purpose two cameras observed the whole room from the rear and tracked

users relying on adaptive background differencing. Identification of persons was realized by

comparing a single person’s rectangular bounding box with predetermined sets of rectangles.

To determine the activities of users finite state machines (FSM) were applied to the system.

Inoue (1996) described how they were modeled to recognize what happened in the room.

These grammars provided temporal coherence that constrained the interpretation. At person

level the room could distinguish between walking, standing, sitting, or pointing11. Picking up a

user walking through the entrance only a few transitions to new activities were possible. Two

higher level grammars were provided on top of the person level. One grammar recognized

multi-person activities like hand shaking, or talking, and the other distinguished some group

contexts (i.e., meeting, presentation). The intended system actions were again initiated by the

user group explicitly, even though a natural multimodal interface with gesture and speech

recognition was available.

SmartOffice Another very similar project on natural multimodal interfaces for Smart Envi-

ronment was the Monica project at the French National Institute for Research in Computer

Science and Control (INRIA). Their SmartOffice used a centralized agent framework, where a

so-called supervisor kept track of the current states of all agents.

Le Gal et al. (2001) mentioned that multiple cameras estimated separately inhabitant posi-

tions using color based face trackers and estimated locations were fused using a Kalman filter.

Activity recognition was at the same granularity as in AIRE project. It divided motion patterns

10AIRE itself was part of the MIT project Oxygen and contributed to the so-called E21 – environmental devices.
11Pointing was recognized by two additional cameras mounted next to the presenter screens. Coen (1998)

described the usage of background differencing and color processing to register pointing gestures (i.e., pointing
by hand and laser pointing).
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into coming in, going out, sitting down, rising, and walking in the four main directions. A

training phase was applied to compute a multidimensional histogram for each activity, which

exhibited probabilities of possible outputs for a given activity. The actual activity recognition

process, then, was not used to guess user intentions, but just to assist for the location tracking

process. Some recognitions were used to start or stop tracking (e.g., coming in, going out) and

others helped to determine specific locations (e.g., sitting down, rising). Therefore this system

too was driven by explicit multimodal user interaction through voice and gesture solely.

Intelligent Classroom The Intelligent Classroom from Northwestern University Illinois was

designed for a different purpose. The aim of Franklin (1998) was to support user activities

in classrooms; i.e., assist lecturers while holding their speeches. Therefore the classroom at-

tempted to understand everything that speakers did in terms of a high-level explanation of

actual activity. The perceptional part of the system consisted of video cameras that observed

the environment to notice gestures by tracking speaker’s head, hands, and feet and micro-

phones that recorded speech to extract phrases from a small vocabulary.

Franklin et al. (2002) explained that a lecturer’s possible activities were described by a kind

of hierarchical finite state machines. Triggered by the sensor observations, a plan recognition

mechanism was used to identify which activity out of a predefined library the user was actually

performing. Based on this, the lecture room automatically showed assistive behavior like in

the example mentioned by Franklin and Hammond (2001, pg. 166) where the lecturer wanted

to play a video and the classroom cued the tape, set the video source, and started the VCR.

Probabilistic Parsing

MavHome Heierman III et al. (2001) gave five recommendations for the construction of

Smart Environments:1.) adapt for dynamic device collection, 2.) automate usage of simple

devices, 3.) learn occupants’ behavior, 4.) allow user intervention, and 5.) learn temporal

patterns. The Managing an Adaptive Versatile Home (MavHome) project from University of

Texas at Arlington addressed those issues. In Das et al. (2002) an agent framework was

introduced, which consisted of a hierarchy of rational agents that act to meet the overall

goals of home automation and energy optimization. The architecture distinguished between

house-level, room-level, and appliance-level agents and incorporated several algorithms for

the recognition and prediction of an inhabitant’s activities.
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Besides sliding window mechanisms like the Smart Home Inhabitant Prediction (SHIP) al-

gorithm or the Episode Discovery (ED) mechanism described in Cook et al. (2003b), the

probabilistic parsing approach was considered. In Cook et al. (2003a) the Active-LeZI (ALZ)

algorithm for localization or activity prediction respectively was explained. This algorithm

based on Lempel-Ziv parsing for data compression and was closely related to the LeZi-update

algorithm that Bhattacharya and Das (1999) proposed for tracking mobile users in personal

communication service networks. Therefore alphabets of locations or activities were defined.

With every observation a history (i.e., a string that was composed out of entities of the alpha-

bet) was updated and parsed by ALZ into a trie-style12 dictionary. The nodes of this dictionary

preserved the statistics to compute the conditional probability for the next location or activity.

Aware Home The Aware Home was intended, as Kidd et al. claimed, as an “environment

that is capable of knowing information about itself and the whereabouts and activities of its in-

habitants” (Kidd et al., 1999, pg. 191). To do so, the Aware Home Research Initiative at

Georgia Tech built a two-floor home with identical and independent living spaces. Addition-

ally, a control and observation room was established in the basement of this house. Several

different sensing components, including cameras and pressure mats, were installed into both

flats to observe and identify the inhabitants. The substantial equipping of Aware Home allows

for various research directions. Behavioral observations were, of course, possible as well as

research on passive biometric identification. Orr and Abowd (2000), for example, described

an approach based on ground reaction force. This concept from biomechanics provided unique

signatures of the inhabitants’ footsteps, which could be compared with prerecorded footstep

signatures to identify persons. But besides that various approaches for activity recognition

were investigated.

One approach was described by Moore and Essa (2002). Here, a model of a stochastic context-

free grammar (SCFG) was defined that described the rules of activity and assigned them

probabilities. This model was closely akin with the proposals for probabilistic parsing of

Bobick and Ivanov (1998) and Ivanov and Bobick (2000). Within all systems the Earley-

Stolcke parsing algorithm was utilized for parsing the sequence string of atomic activities

provided by a lower level recognition mechanism.

12“[A] trie, or prefix tree is an ordered tree data structure that is used to store an associative array where the keys
are usually strings. Unlike a binary search tree, no node in the tree stores the key associated with that node; instead,
its position in the tree shows what key it is associated with. All the descendants of any one node have a common prefix
of the string associated with that node, and the root is associated with the empty string.” Wikipedia (2008)
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Probabilistic Plan Recognition

Aware Home – continued Another recognition approach was described by Hamid et al.

(2003). They proposed a simple Dynamic Bayesian Network (DBN) for activity recognition

from video observation. The hidden states in this system reflected the atomic actions such

as holding, moving, or inserting and the observable states contained vectors of tracking data,

including features such as the relative distances between objects as well as their velocities,

direction, etc.

Particle filters were used to track object movement and the probability of a certain parti-

cle state, then, was measured in terms of how well an observation fitted to statistical fea-

tures, which were color and orientation histograms of the tracked objects. This approach

was, among others, tested in the Aware Home living scenario as well as in a classroom sce-

nario, which rather resembled the Classroom 2000/eClass project; a project that was also

implemented at Georgia Tech and is described in the following Section 1.4.3.

Surveillance System A research group from Computer Science Department of the Aus-

tralian Curtin University of Technology investigated methods for activity recognition. Nguyen

et al. (2003) described a Surveillance System that aimed to detect a user’s activities as he

moved around in an office building or – as in Duong et al. (2005) – in a home environment.

At the sensor level user paths were observed by a set of ceiling-mounted cameras. A floor

plan of the environment was subdivided into a set of square-meter sized cells and a multiple-

camera tracking module assigned the detected movement of the user to a list of visited cells

(i.e., cell ID and the duration of each cell visit were stored).

Then, to deduce activities from the observed footprints real-time this group proposed several

approaches based on probabilistic plan recognition. In Bui et al. (2000) an Abstract Hidden

Markov Model (AHMM) was introduced to represent the execution of hierarchical plans from

the application domain stochastically. Later the AHMM was extended with the capability to

remember certain states in plan execution. The enhanced Abstract Hidden Markov mEmory

Model (AHMEM) was presented to overcome earlier limitations (Bui, 2002, 2003).

A slightly different approach was pursued by Duong et al. (2005). A two-layered Switching

Hidden Semi-Markov Model (S-HSMM) was suggested, which modeled activities of daily liv-

ing (ADL) such that at the bottom layer atomic activities and their duration (e.g, staying in
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cell ‘at stove’ for 10s) were represented using HSMMs, while the top layer abstracted the dif-

ferent high-level activities where each high-level activity (e.g., ‘making coffee’) was made of

sequences of atomic activities.

1.4.3 Observation, Annotation Applications

Applications or projects listed in this section have, respectively, the same demand for activity

recognition and intention inference as the examples in the previous Section 1.4.2. But the

work that is presented here does not need to come up with strategies for the configuration

of environments. Coming primarily from surroundings such as medical monitoring and be-

havioral or usability study, these projects utilized the user observation only for the purpose

of automatic activity annotation. Hence, some of the projects are even realized in an offline

post-processing manner.

eClass aka Classroom 2000 In Abowd et al. (1996) the Classroom 2000 project at Georgia

Tech was introduced. This project from the college classroom domain served exclusively as a

note taking facility, which collected various kinds of information during lessons. Later named

eClass (Brotherton and Abowd, 2004) it recorded the lecturer’s slide history, the notes of the

lecturer from a marker board, audio and video footage as well as student notes or questions.

Then, immediately after a lesson the multimedia material was compiled into a time-lined

webpage, which was accessible for students’ review. Key events derived from slide content

(e.g., URLs) or interactions such as a slide change were used to index the media content

along the timeline. But unlike the earlier mentioned Intelligent Classroom, the eClass did not

try to recognize special gestures or activities13 to enable focusing on particular details.

Instead it continuously recorded all data from all resources, letting student reviewers weight

the content for themselves later. Brotherton and Abowd (2004) found that eClass, which was

fully deployed in actual classrooms, was apparently very popular with students. Many claimed

that they were better able to participate in the class since they were freed from distracting

continuous note-taking.

13Nevertheless other researcher at Georgia Tech determined activity recognition and intention inference for
classroom scenarios, such as in the earlier mentioned approach of Hamid et al. (2003) (cp., Section 1.4.2).
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Smart Kindergarten A related project called Smart Kindergarten (SmartKG) was established

at UCLA. According to Srivastava et al. (2001) it was intended to not only collect information

from sensors but also to fuse and interpret them. Additionally SmartKG should react appropri-

ately upon those interpretations. Therefore video and audio observation was installed into a

kids classroom and a sensing appliance named iBadge was developed. The iBadges were worn

by the small inhabitants as well as integrated into toys. All badges together formed a sensor

network, which provided the data from these appliance, including position and orientation.

Latter publications from this project indicated that the focus was apparently shifted to an

observation-only approach. In Chen et al. (2002) the focus was described as on “[s]patially

dense but unobtrusive sensors [that] continually capture interactions among students, teachers,

and common classroom objects” (Chen et al., 2002, pg. 49) and the main research issues then

were 1.) if a behavioral model for the behavior of kids in a classroom context could be de-

veloped, and 2.) if so, if this model could be implemented using sensor-based measures. In

SmartKG (2003) the project proposed a 60-node Bayesian network to capture the collabora-

tive processes in its observational environment. With 48 observable nodes they inferred four

hidden variables: first, overall collaboration (whether collaborative processes were observed

in the group), which was a function of two others: interaction and engagement, and finally

group existence, which based on proximity measures. Later Savvides and Srivastava (2005)

clarified in-depth the self-configuring location-discovery process.

Smart Meeting Room Task The goal of Smart Meeting Room Task (SMaRT) – a joined project

of the Interactive Systems Laboratories (ISL) at Carnegie Mellon University and Karlsruhe

University – Waibel et al. (2003, pg. 752) phrased as “to provide meeting support services that

do not require explicit human-computer interaction“. Efforts on monitoring user activities using

both video and audio analysis should provide the basis for appropriate reaction of a meeting

room to users’ needs. Even though Waibel et al. claimed comprehensive smart environment

behavior in their scenario, the main result of this project was a meeting corpus (Burger and

Yu, 2002), which provided information about the speaking style depending on the meeting

type, and a meeting browser, which had the ability to efficiently capture, manipulate and

review all aspects of a meeting.

The meeting browser incorporated the tracking and identification approach described by Yang

et al. (2000) that used multimodal input based color appearance of the video signal, audio
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signals and face detection to identify attendees of a recorded meeting automatically. Waibel

et al. (1998) and Schultz et al. (2001) described the other components of the meeting browser

application. Raw audio and video sources were recorded and a speech recognizer provided

user-by-user transcription, which again could have been summarized. Additionally, neural

network-based visual cues from face and gaze tracking and discrete HMM-based auditory cues

including ringing telephones, knocks on doors, or even sound texture differences between

different speaking situations helped to index the meetings.

Recent publications from ISL, for example Wojek et al. (2006), came up with activity recog-

nition approaches akin to those mentioned earlier (cp., Survailience System in Section 1.4.2)

and the following approach of the M4 project.

Multimodal Meeting Manager The EU IST-Programme sponsoredMultimodal Meeting Man-

ager (M4) project was focused on the realization of a system to enable structuring, browsing

and querying of an archive of automatically analyzed meetings. Therefore a series of meetings

took place in a meeting room at IDIAP equipped with multiple sensors (i.e., cameras and mi-

crophone arrays). Those sessions were recorded and made available as M4-corpus. Utilizing

corpus data researchers from several involved institutions determined different approaches to

structure and annotate the pre-recorded meetings.

In McCowan et al. (2003, 2005) a first method was presented that assumed a discrete set of

group activities and viewed a meeting as a sequence of such activities. The goal then was

to recognize the turn-taking pattern from sensor data, which would allow a segmentation

of the meeting into those group activities. McCowan et al. proposed Hidden Markov Models

(HMM) to derive auditory and visual features automatically. Zhang et al. (2004) came up with

an extension that addressed the issue known from social psychology, that individual actions

and interactions were on different semantic levels. In their two-layer HMM framework they

considered this point by providing separate layers for the recognition of individual actions

performed by each person, such as writing and speaking, and group activities.

The person-layer models were asynchronous HMMs respecting that some asynchrony might

exist for the group activities but recognition was akin to the model by McCowan et al.. The

upper group layer, then, used results from the person-layer recognizers as input as well as

features from the raw sensor stream that could not be associated with individual persons.

Dielmann and Renals (2004) transformed the two-level HMM into a graphical representation,
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namely a Dynamic Bayesian Network (DBN). Interpreting group activities as a sequence of

several actions, they added counter and enabler nodes to their model. As a second variation

a multi-stream DBN was proposed, which processed features from different sources indepen-

dently at the person level, and integrated them at the upper group level. Al-Hames and Rigoll

(2005) used a similar model.

Finally, Zhang et al. (2006) recently proposed another DBN with a two-level structure, namely

player (i.e., a single person or individual) level and team level. A single person’s activities

were modeled as a conventional HMM. The activity states of all persons at a certain moment

were parent nodes to the team state node and thus potentially influenced the team state. In

addition to those conditional parents a switching node decided which particular activity was

to affect the team activity. The team node itself in turn just had an impact on an individual

person’s activities in the next time step. This also implied that there is no direct affection

between a current team state and its previous state, but only the described two-level bi-

directional influence.

Zhang et al. (2006) esteemed the team level as an aggregation of the individual’s behaviors,

where the contribution of a certain person’s behavior was described by the distribution over

the switching node variable. The probability distribution was automatically learned from data

in an unsupervised fashion and in the end this model outperformed with its influence values

a method that took the proportions of time during a meeting which each participant spoke to

quantify influence.

1.5 Method Matrix

The previous sections described several projects from the ubiquitous computing community.

The described projects showed several aspects that could matter within this work for the

choice of a modeling approach and the selection of appropriate inference methods and learn-

ing algorithms. This section should reflect and summarize methods seen with other projects to

emphasize methods which are worth to be analyzed in more detail. Tables 1.1 & 1.2 provide

matrices of the reviewed projects and identified relevant aspects.

This overview allows some interesting observations. First, the most frequently used classi-

fication technique of the presented related projects are Hidden Markov Models (HMM). In

Table 1.1 can be found that six projects from this extensive view into the state of the art clas-
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sified at least atomic activities using a form of HMMs. This is followed by five occurrences

of both Neural Networks (NN) and Dynamic Bayesian Networks (DBN). Since DBNs gener-

alize HMMs (Murphy and Paskin, 2001), the state of the art shows a strong tendency for an

application of a probabilistic model-based approach to the problem definition of this work.

This tendency can also be found in Table 1.2, where a count of eight probabilistic approaches

faces six and five entries in the other categories respectively. Furthermore, the review shows

that only a few ubiquitous computing projects so far addressed cooperative team behavior

Table 1.1: Matrix summarizing Modeling aspects of the described related projects.
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NN – Neural Network HMM – Hidden Markov Model

FSM – Finite State Machine DBN – Dynamic Bayesian Network
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BN – Bayesian Network others – Look-up Lists & Tables, Geometry Models,
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(cp. with Table 1.1). Some of them (e.g., Interactive Room, eClass14) addressed this issue

through explicit interaction without incorporating any inference and prediction approaches.

Others (e.g., Smart Kindergarten, M4) addressed team intention recognition by annotating

14eClass was used actually for hindsight selection of recorded observation content and, thus, is an example for
offline explicit interaction.

Table 1.2: Matrix summarizing aspects of the described projects related to Inference.
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LBP – Loopy Belief Propagation (marginalization) aka. Viterbi (maximization)
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Supervised – Backpropagation Reinforcement – model-free Q-Learner

Clustering – Fuzzy C Means + Hierarchical Clustering EM – Expectation Maximization

M(P)LM – Maximum (Pseudo) Likelihood Maximization Fingerprint – Beaconprint
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observations of group behavior in an offline manner. The scenario Section 1.6 will show that

in this work a realtime approach is needed to enable a proper inference of team intentions in

a Smart Environment like my department’s SmartApplianceLab that forms dynamically in an

ad-hoc manner. To the best of my knowledge no solution exists that realizes an implicit con-

trol of an ad-hoc Smart Environment by means of an real-time inference approach for team

intention recognition.

In addition, some other not that strong relations might be seen in Tables 1.1 & 1.2. The

matrices show that Neural Networks need to be trained. Finite State Machines (FSM) and

HMMs seem to be adequate to recognize vision patterns. DBNs are used when continuous but

sparse and noisy sensor input needs to be processed.

And finally, the inference and learning techniques strongly depend on the utilized model; i.e.,

inference in Conditional Random Fields (CRF), for instance, is usually realized using Loopy

Belief Propagation (LBP) or respectively Viterbi and Particle Filters usually enable inference

in DBNs. Learning in Neural Networks mainly employs supervised or reinforcement learning

methods, whereas DBN model parameters are typically tuned applying Expectation Maximiza-

tion (EM).

1.6 Scenario

Design and assembly of the ubiquitous computing applications realized by the different projects

rely on definitions of their particular application domain. Some were designed for outdoor

assistance, others found their usage in indoor environments. Some were envisioned to react

immediately, others just recorded the scene to be processed later on. Some focused on opti-

mizing the environment in either way without having users involved, others relied on explicit

interaction with the inhabitants.

A common approach to define the focus of an application is to put this into a scenario of

the envisioned usage of this piece of software. This section provides a scenario for a Smart

Meeting Room Environment that uses the concept proposed by this work. The scenario em-

phasizes the key objectives for the intended system in a prosaic manner to indicate directions

and delimitations of research in this work. Since this is a work on team support for Smart

Environments, a thought by Grudin (2002) is put at the beginning who tried to give a reason

for the little success of ubiquitous computing applications in the wild. He argued with the
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very little change in human nature and group dynamics over the past millions of years and

stated:

A [. . . ] reason we are reluctant to adopt new meeting support technologies is that

unlike with a personal productivity tool, experimentation occurs in public. We learn

by making mistakes, but mistakes in this domain are often embarrassing. To avoid

problems, the use of trained facilitators and technology experts is recommended, but

they divert attention from the meeting “owner.” Process and status are altered. [. . . ]

Support technologies that have succeeded (blackboard. . . ) are those that minimally

alter the social dynamics. The message for ubiquitous computing is that these tech-

nologies, too, must meld with human social dynamics. They should not focus exclu-

sively on improving productivity if this requires us to change fundamental aspects of

how we interact” (Grudin, 2002, pg. 75).

Keeping this statement in mind and remembering the ubiquitous computing vision of into the

background vanishing appliances phrased by Weiser (1991) my department is interested in

researching group support without explicit interaction in a smart ensemble that was dynam-

ically formed by fixed and mobile smart appliances. The following scenario respects these

preliminary considerations, describes potential capabilities for such an ad-hoc Smart Environ-

ment, and thus provides the boundaries for this work.

Consider a Smart Meeting Room Environment designed to incorporate inhabitant tracking and

environment monitoring as well as occupancy schedule and meeting agenda retrieval. The

room is equipped with sensing devices (e.g., RF-positioning sensors, motion sensors, luminos-

ity sensors) and acting appliances (e.g., steerable projectors, motor screens, motor window

blinds) that form an ad-hoc ensemble together with brought-in devices including notebooks

and mobile projectors. In such a room, situated in a company’s IT department, a meeting of a

software design group could be appointed.

Therefore chief architect Penny announces the meeting using the internal calendar manage-

ment system of this company. With her announcement she provides an outline of agenda

items that should be addressed during the meeting. Maybe the meeting is structured like in

the agenda of Figure 1.3 where first software architect Sheldon should present his thought

about an envisioned software design. Then software architect Leonard provides his presenta-

tion and after that it is the turn of chief architect Penny to present. Afterwards a discussion
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Topic

Software Architecture Meeting
Smart Appliance Lab
10:00 Presentation of Proposal of Software Architect Sheldon
10:05 Presentation of Proposal of Software Architect Leonard
10:10 Presentation of Proposal of Chief Architect Penny
10:15 Discussion of Proposals

Figure 1.3: Preliminary agenda of a meeting

on those presentations is scheduled. Additionally invitations are sent to both software archi-

tects Sheldon and Leonard. Since the announcement is made by their boss Penny, they will

probably confirm the announcement and prepare their presentations. In parallel the calendar

management system of the company informs the Smart Meeting Room that this meeting is

appointed and the persons Sheldon, Leonard and Penny will probably show up at the agreed

meeting time to probably process the agreed agenda.

Shortly before the appointed meeting time the two software architects Sheldon and Leonard

enter the Smart Meeting Room. Assuming all employees and visitors of the company are

wearing identifiable RF-badges, the room immediately knows who is walking in. Luminos-

ity sensors measure available light so that the appliance ensemble in the room can decide

whether it should provide additional light (e.g., turn on lamps, lift motor blinds). The calen-

dar management system indicates that a meeting is about to begin. Hence, the ensemble goes

into a meeting stand-by configuration where screens and projectors are prepared to provide

their assistance.

As chief architect Penny walks in a short gossip starts, occupants walk to their seat and open

their brought-in notebooks. The notebooks add themselves dynamically to the ensemble and

make the presentations of their owners available to the room. Then, the meeting starts and

deviating from the preliminary agenda Leonard goes to the presentation stage to give his talk.

But the environment recognizes this deviation, infers that the team decided to bring forward

the presentation of Leonard and puts his presentation on the screen just before he enters the

presentation stage. Additionally the light situation is adjusted to enable optimal viewing con-

ditions. After Leonard’s contribution, the team turns back to the agenda and Sheldon presents.

Finally, chief architect Pennymoves for presentation, and every speaker is proactively provided

with his particular presentation. During the subsequent discussion light may adjust again and

the presenting appliances change to and stay in stand-by modus, just in case an occupant
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wants to show something additionally. In the end of the meeting the attendees grab their

mobile appliances and leave the room. Now the remaining appliance ensemble in the room

can go to energy saving or re-calibration mode and can rest until the next scheduled meeting.

End!

Some may say: ‘That is not that fancy and visionary scenario that I expected’. But note, it is

the attempt to provide a scenario that is akin with the earlier mentioned visions to minimize

embarrassment in usage of Smart Environments as well as its obtrusiveness or potential for

distraction from the substantial tasks. It emphasizes the research directions of my department,

namely implicit interaction and ad-hoc dynamic ensembles. And finally, the scene indicates a

set of criteria to which this work can provide a handsome contribution with the proposed con-

cept of a robust and training-free prior knowledge probabilistic system for real-time intention

analysis in teams. The next section highlights those criteria.

1.7 Criteria for a Team Intention Model

Taking the scenario from the previous section as a source of marginal conditions for this

work, a set of criteria can be identified that are relevant to the design of the desired system

for Smart Meeting Rooms. Other criteria derive from the physical layout of the department’s

laboratory SmartApplianceLab15 and its built-in sensing technologies. Moreover a third source

for constraints exists, which is my demand to provide a flexible experimental infrastructure.

This also influences the criteria catalogue. Typical questions that must be considered for an

appropriate selection of a modeling approach are:

• How complex is the model development? (How much knowledge does the system de-

signer need for the creation of a model? What cognitive complexity does the model

definition require?)

• How is the relation of complexity versus precision in the model?

• How will statistic parameters of the model be trained? (Is it usable before or without

training? How much training is required before the model is usable?)

• How is the model created? (Manually, extracted from annotated task models, or learned

structurally respectively?)
15The laboratory infrastructure of the department is described in Section 3.2.2.
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The mentioned scenario indicates that the envisioned Smart Meeting Room should be a very

open environment, where a dynamic ensemble of mobile and of course also built-in appliances

forms the basis for the capabilities and features of the environment. The dynamism of this

infrastructure implies that it could not be foreseen at design or training stage respectively and

valuable training data would hardly be available. Considering those questions, one issue is

that the proposed concept should pursue a training-free prior knowledge approach. Secondly,

the meeting room is open to various groups of various sizes with various meeting practices.

That is, the context, namely the inhabitant identities and the meeting agendas, changes from

meeting to meeting, too. Furthermore, the dynamic character of the Smart Meeting Room

leads to two other criteria for modeling proper intention recognition. An adequate model

must allow easy changes or extensions of either the lexica of team activities or the size of teams

(i.e., the number of team members) to allow a flexible handling of the various team settings

just mentioned. Additionally, as team intention analysis and prediction is used in the real-

world surrounding of an assistive Smart Meeting Room it is mandatory that the proposed

concept provides real-time recognition and prediction.

Another aspect is that the modeling approach has to deal with physical infrastructural con-

straints. Acting under the observation of, for instance, an audio-vision system may be found

embarrassing. Additionally, a company deployment of audio-vision-based recognition may

raise security concerns by that company, because recorded confidential meeting content may

be abused. Therefore, my department decided to rely recognition on simple unobtrusive sen-

sor data. For this work a part of the sensing information provided by the Ubisense Platform

indoor-positioning system is used. In the case of the described scenario these are the 2D-

positions for each of the three team members, namely a six-dimensional feature vector of

position data. But the concept should allow the usage of even simpler sensor hardware (e.g.

proximity sensors), too. From this it follows that the proposed concept must enable robust

recognition from simple, maybe sparse or noisy, sensor data.

Finally, it seems reasonable to keep track of recognized finished team activities, because most

items on a meeting agenda already finished will not appear again within the same meeting.

Hence the concept must allow to consider this fact with a kind of team activity history that

enables an adaptation of recognition. In contrast, single user activities as part of team activi-

ties can obviously appear multiple times and thus an added value from a history could not be

expected. This is just one reason to allow for separate modeling of team and user activities. In
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any case it provides a more flexible model, which is needed for an experimental infrastructure

with flexible tools.

In summary, the relevant criteria for the team intention model are 1.) pursuance of a training-

free prior knowledge approach, 2.) capability of using various lexica of team activities

(i.e., agendas), 3.) allowance for easy extensions (e.g., to larger teams), 4.) support of real-

time recognition, 5.) provision of robust recognition from simple sensor data, 6.) tracking of

team activity history, and 7.) separate modeling of complex team and atomic user activities.

1.8 Summary

The current chapter identified a number of techniques and methods from related work that

could be valuable for the planned concept of a system for team intention analysis. It described

the envisioned usage scenario, to which the compiled concept should contribute, and defined

a set of criteria the concept should follow. Besides a detailed discussion of selected techniques

from the method matrix in Section 1.5, the next chapter provides insight into research topics

related to human behavior. It describes how subfields of psychology, namely social psychology

and cognitive psychology, structure behavior of individuals and dynamics of groups. Findings

from those well-established research areas may provide additional information relevant to

the criteria catalogue defined in the previous Section 1.7. Just before the introduction of

this work’s modeling approach in the next chapter the criteria are revisited to incorporate

knowledge on human individuals and group behavior.
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Modeling Team Intention Recognition

2.1 Introduction

This chapter enlightens about how knowledge about human behavior and roles in individual

as well as group situations can help to model team intention recognition. In the collabora-

tion community it is widely accepted to consider research on cognition and social aspects

in teams for modeling approaches (Grudin, 2002; Hayne et al., 2003) and also some earlier

mentioned work on activity annotation referred to psychological approaches (McCowan et al.,

2005). Therefore this chapter represents the attempt to identify work and founding methods

from the related fields of psychology that influenced design decisions made regarding this

work’s approach of modeling team intention recognition for smart environments with a team

intention model.

After explaining the psychological background of this work, selected methods from signal

processing are described in more detail. The selection of those methods relies on the findings

from Section 1.5, where the most promising methods with respect to the criteria specified in

Section 1.7 were extracted from the approaches used by related projects work. Interestingly

enough, the course of the sections in this chapter follows in parallel the same hierarchy levels

as introduced later in the proposed Team DBN. Starting at the team task level with aspects

from social psychology the chapter continues with the user task level in the cognitive psychol-

ogy section and finally ends at the sensor signal level with a review of the more technical field

of signal processing.
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2.2 Social Psychology Perspective on Teams

While intention recognition in Smart Environments is an ongoing research domain and the

focus on teams rather than single users is not really established yet, in psychology exists the

field of social psychology which is focused on group behavior. A Merriam–Webster definition

describes social psychology as “the study of the manner in which the personality, attitudes, moti-

vations, and behavior of the individual influence and are influenced by social groups” (Merriam–

Webster Online Dictionary, 2008b), and an extensive amount of literature on group behavior is

already available in the social psychology area. A review of this literature might provide help-

ful insight into the structure of meetings and information present in teams. Because these are

aspects relevant to my approach that sustain the proposed team (execution) intention model

a summary of the social psychology perspective on teams should be included.

The structure of this paragraph is mainly influenced from work done by Forsyth (2006) who

gave an excellent overview on Group Dynamics. He identified properties and dynamics that

all kinds of groups possess and divided the so called “nature of groups” into six categories –

interaction, interdependence, structure, goals, cohesiveness, and stage. These categories are

picked up for the further structure of this section.

Table 2.1: Categories of IPA (Interaction Process Analysis) System from 1950 and revised
1970 (Source: Adapted from Bales 1970)

General Categories IPA 1950 IPA 1970

A. Positive (and mixed) actions 1. Shows solidarity 1. Seems friendly

2. Shows tension release 2. Dramatizes

3. Agrees 3. Agrees

B. Attempted answers 4. Gives suggestion 4. Gives suggestion

5. Gives opinion 5. Gives opinion

6. Gives orientation 6. Gives orientation

C. Questions 7. Asks for orientation 7. Asks for orientation

8. Asks for opinion 8. Asks for opinion

9. Asks for suggestion 9. Asks for suggestion

D. Negative (and mixed) actions 10. Disagrees 10. Disagrees

11. Shows tension 11. Shows tension

12. Shows antagonism 12. Seems unfriendly
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2.2.1 Interaction

Bales (1950) identified two classes of interactions that are characteristic for group situations.

One is task interaction. It usually covers behavior that focuses on goals a group wants to

achieve with its work or projects. Therefore members of a group have to motivate each other

and coordinate their skills and resources so that the group can dispose decision to succeed

with their plans. When a group of software engineers present their suggestions of a software

architecture to each other and the chief software architect and discuss those presentations to

agree on a common interface definition, the interaction of the group is task focused.

The second class of interaction is focused on relationship – the interpersonal and social as-

pects occurring in groups. With socio-emotional interaction group members try to sustain the

linkage of members to one another and to the group. This does not directly lead to task com-

pletion but helps to create and maintain group well-being. It occurs if a member needs support

that others will help with a shoulder to lean on or constructive suggestions or if someone of

the group does not follow the norms that he will be criticized and made to feel uncomfortable.

The Interaction Process Analysis (IPA) from Bales (1950, 1970) relies on this distinction be-

tween task and relationship interaction processes and provides a measure for the interaction

process in group situations. Therefore the conversation during a group-meeting is broken

down into sequences of IPA categories (see Table 2.1).

An elaboration of IPA is the also process-based SYMLOG system (System of Multiple Level

Observation of Groups) from Bales et al. (1979), where it was assumed that behaviors vary

in three dimensions: Upward – dominant vs. Downward – submissive, Positive – friendly vs.

Negative – unfriendly, and Forward – accepting authority vs. Backward – non-accepting au-

thority (see Figure 2.1). The observation here concentrates on the attitudes of the individual

group members.

2.2.2 Interdependence

In most kinds of groups interdependences exist. According to Wageman (2001) group mem-

bers influence parts of other members actions, thoughts or feelings. For instance the success

of the chief software architect from the scenario in Section 1.6 is depending on how excellent

her software engineers complete their work. She can personally do best but if her engineers
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Label & General Behavior

U Active, dominant, talks a lot

UP Extrovert, outgoing, positive

UPF A Purposeful, democratic task leader

UF An assertive, business like manager

UNF Authoritarian, controlling, disapproving

UN Domineering, Tough-minded, powerful

UNB Provocative, egocentric, shows off

UB Jokes around, expressive, dramatic

UPB Entertaining, sociable, smiling, warm

P Friendly, egalitarian

PF Works cooperatively with others

F Analytical, task-oriented, problem-solving

NF Legalistic, has to be right

N Unfriendly, negativistic

NB Irritable, cynical, won’t cooperate

B Shows feelings and emotions

PB Affectionate, likable, fun to be with

DP Looks up to others, appreciative, trustful

DPF Gentle, willing to accept responsibility

DF Obedient, works submissively

DNF Self-punishing, works too hard

DN Depressed, sad, resentful, rejecting

DNB Alienated, quits, withdraws

DB Afraid to try, doubts own ability

DPB Quietly happy just to be with others

D Passive, introverted, says little

DP
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Figure 2.1: The three-dimensional SYMLOG-space shows 26 directions of behavior resulting
from a combination of the six main directions. The description of the general behavior is listed
left. (Source: Adapted from Bales et al. 1979, pp. 61, 63)

do not succeed then she fails. So this member of a group is strongly interested in a support-

ive and assistive climate within the group. Thus, he will probably influence the other group

members in this direction.

In strong hierarchies the relation of staff members to the boss is an example for nearly uni-

lateral interdependence, as he influences his employees much stronger then the other way

round. But in other groups with less distinctive hierarchies a rather mutual influence is prob-

able (see Figure 2.2): Either as a sequential interdependence where one member influences

another member who then influences the next or as reciprocal interdependence where two or

more members may influence each other. If a group is nested in a larger environment multi-

level interdependence probably occurs and the group is able to influence, or can be influenced

by, others outside the group.
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Figure 2.2: a) Unilateral interdependence, b) Sequential interdependence, c) Mutual, recipro-
cal interdependence, and d) Multilevel interdependence (Source: Adapted from Forsyth 2006,
pg. 12)

2.2.3 Structure

A group is not a randomly composed entity, but rather shows predictable organizational pat-

terns. Regularities exist that determine who bears responsibility, who reports to whom, or

who assists whom. The group structure is formed by these regularities that Forsyth (2006)

categorized as roles, norms and inter-member relations.

Roles define the expected behavior of a person that takes a certain position within a group.

Fundamental roles in most group configurations are leaders and followers. Moreover Benne

and Sheats (1948) identified additional roles that should exist in every well-balanced group.

Besides many other important roles are the information seeker, information giver, elaborator,

Table 2.2: Types of roles in groups (Source: Adapted from Benne and Sheats 1948, pp. 41–49)

Role Function

Task Role

Information seeker Emphasizes getting the facts by calling for background informa-

tion from others.

Information giver Provides data for forming decisions, including facts that derive

from expertise.

Elaborator Gives additional information – examples, re-phrasings, implica-

tions – about points made by others.

Procedural technician Cares for operational details, such as materials, machinery, and

so on.

Relationship Role

Encourager Rewards others through agreement, warmth, and praise.

Harmonizer Mediates conflicts among group members.

Compromiser Shifts his or her own position on an issue in order to reduce con-

flict in the group.
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Table 2.3: Various types of norms (Source: Adapted from Forsyth 2006, pg. 171)

Common Features Description

Prescriptive norm A consensual standard that identifies preferable, positively sanctioned

behaviors.

Proscriptive norm A consensual standard that identifies prohibited, negatively sanc-

tioned behaviors.

Descriptive norm A consensual standard that describes how people typically act, feel,

and think in a given situation.

Injunctive norm An evaluative consensual standard that describes how people should

act, feel, and think in a given situation rather than how people do act,

feel, and think in that situation.

procedural technician, encourager, harmonizer, and finally the compromiser (see Table 2.2).

But the behavior of group members, their action and interaction is also related to implicit or

explicit norms of a group that describe what is suitable and what is an outrage in a certain

situation. Norms are usually grouped to be prescriptive, proscriptive, descriptive, or injunctive

(see Table 2.3) and derive from various types of social relations that exist in groups. Some

are based on status and authority, and others are based on liking and affection. The most

common types are status, attraction and communication.

Status in a group is often derived from the hierarchy within a group. The boss or the professor

has more prestige than rank-and-file members. But status can also be earned in groups where

people start from the same basis. Members with extraordinary aptitudes or hard-working

members may gain higher status.

Attributes that have little relation to the focus of a group but rely on widespread but denied

prejudices may have the opposite influence, as the higher status of men vs. women, Whites

vs. Black, older people vs. younger people. These two types of status allocation are covered

by the “Expectation-States Theory” introduced by Berger et al. (1992).

Attraction forms the sociometric structure of a group (Doreian, 1986). In the same way as

some group members have higher status than others some people are more liked than others.

Sociometry – introduced by Moreno (1934, revised 1953) – is the underlying technique to

determine a group’s social relationship where group members are asked who they like the

most and who they dislike the most. Statistical summarization then identifies the popular

individuals and the isolated members. Several studies use this method to group the attraction

36



Modeling Team Intention Recognition

a) b) c)

Figure 2.3: a) Three-person networks: wheel (top), comcon (bottom), b) Four-person net-
works: wheel (top), circle, and comcon (bottom), c) Five-person networks: wheel (top),
circle, and comcon (bottom)(Source: Adapted from Shaw 1978)

of peers from “popular” to “rejected” as a group measure of the social competence (Coie et al.,

1990; Newcomb et al., 1993).

Communication in groups is rather centralized than decentralized where leaders usually send

and receive information from the others. A centralized communication network tends to be

most efficient as long as the group’s communication rate is low enough to route all informa-

tion. If the amount of information raises too high the central node becomes a bottleneck.

As argued by Shaw (1978), communication than can break down resulting in a fading group

structure. Typical centralized and decentralized communication networks for small groups

are shown in Figure 2.3. Note that the communication in these examples is bidirectional but

networks with one-way communication links can also exist.

The structure of a group is the often underestimated core of most dynamic group processes.

People spend much time to comply with requirements of a role in a group and find themselves

in conflicts if they fail to match demands or violate norms that a group defined over time. If

some people form a subgroup based on liking and disliking their influence within the group

raises compared to isolated group members. If a member controls information exchange in a

group, this also increases his influence on the others.

2.2.4 Goals

Groups exist for a certain reason. Members form a group to pursue common goals. Groups

make it easier to achieve goals. That’s why work is rather done by groups than by individu-

als. But groups engage in so many different things, they create ideas, research for solutions,
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present approaches, discuss proposals, and develop respectively deploy implementations. This

opens various options to classify group goals.

A prevailed and accepted classification of group tasks is the “Circumplex Model” by McGrath

(see Figure 2.4). It provides four basic categories: Generating, Choosing, Negotiating, and

Executing. In a generating task a group can as well create approaches to their problem defi-

nition (creativity task) as develop strategies to achieve their goals (planning task). Choosing

tasks exist when groups have to decide about what is the one correct solution to their prob-

lem (intellective task). If the goal can be achieved in many different ways the group must

decide which way to go (decision-making task). When groups are negotiating, two kinds of

tasks are relevant too, the group must either resolve differences in group members’ opinions

about the group goal (cognitive-conflict task), or a negotiation addresses rather social or sta-
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Figure 2.4: McGrath’s task circumplex orders the eight basic undertakings for groups along
two continua: cooperative – competitive and conceptual – behavioral (Source: Adapted from
McGrath 1984)
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tus competition (mixed-motive task). And finally, most groups actually do things, and while

executing groups can just perform tasks (performances) or they act in competition to other

groups (contest/battles). Note that in a group not all categories of the Circumplex Model

must exist. Various groups just perform a subset of tasks (McGrath, 1984).

2.2.5 Cohesiveness

Groups are not just a set of independent individuals. Whenever a group is forming its members

build a unified social entity over time that is more than the sum of the individual members.

This observation has its root in the emergence property, a key principle of Gestalt psychology.

Cohesiveness describes the solidarity and integrity of a group. The quality of cohesiveness

may differ regarding the nature of a group, but according to Dion (2000) a group would fall

apart if they had not a minimum of cohesiveness.

2.2.6 Stage

The nature of a group is also influenced by time. Starting with a bunch of unrelated individu-

als the group process assigns members to roles, sets up communication, or forms friendships.

People join and leave, and the group sometimes shows strong unity where in other situations

the cohesion is not that distinctive. Changes in a group over time follow predictable patterns.

As depicted in Table 2.4, Tuckman identified five stages of group development: the Forming

phase, Storming phase, Norming phase, Performing phase (Tuckman, 1965), and Adjourning

phase (Tuckman and Jensen, 1977).

Forming is the phase where group members get to know each other. All act polite and first

social relation are developed. In the Storming phase the first conflicts appear and the group

seeks for a solution to improve the performance of the group. The Norming phase is governed

by the development of standards for behavior and roles that regulate behavior. During the Per-

forming phase the group works as a unit and very goal oriented. This is the stage of the highest

progress regarding the group goals. In the Adjourning phase the progress stops because the

mission was completed (or for some other reasons), and the group dissipates. Groups tend

to oscillate forth and back between the task oriented issues and the socio-emotional issues of

those stages. So sometimes group members work hard on goals but other times strengthening

their interpersonal bonds, argued Bales (1965).

39



Chapter 2

Table 2.4: The five stages of group development after Tuckman (Source: Adapted from Tuck-
man 1965)
Stage Major Processes Characteristics

Orientation: Forming Members become familiar with Communication is tentative,

each other and the group; depen- polite; concern of ambiguity,

dency and inclusion issues; accep- group’s goals; leader is active

tance of leader and group consensus members are compliant

Conflict: Storming Disagreement over procedures; Criticism of ideas; poor atten-

expression of dissatisfaction; dance; hostility; polarization

tension among members; and coalition formation

antagonism toward leader

Structure: Norming Growth of cohesiveness and unity; Agreement on procedures;

establishment of roles, standards, reduction in role ambiguity;

and relationships; increased increased “we-feeling”

trust, communication

Work: Performing Goal achievement; high task Decision making, problem

orientation; emphasis on solving; mutual cooperation

performance and production

Dissolution: Adjourning Termination of roles; completion Disintegration, withdrawal;

of tasks; reduction of dependency increased independence and

emotionality; regret

From an individual perspective people also experience changes in their group socialization.

It is not that a person is instantly a fully integrated member of a group, rather this social-

ization process also runs through stages. Moreland and Levine (1982) developed a model of

group socialization of individuals joining a group (see Figure 2.5), and distinguish between

Investigation stage (The individual is still outsider but interested in joining a specific group),

Socialization stage (The person has entered the group, and now learns norms, and takes re-

sponsibilities according to his assigned role), Maintenance stage (The group member has to

learn new ways, and accept disliked responsibilities).

If the individual successfully acts within the group he stays onMaintenance stage. If he fails to

meet the requirements of group structure he enters Resocialization stage where the group re-

minds the individual to abide group norms. If the group member continues failing he probably

will leave the group, and with leaving enters Remembrance stage.
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Figure 2.5: The five types of roles (e.g., new member, full member) and five role stages (e.g.,
socialization, maintenance) from Moreland and Levine’s model of group socialization. Points
on the curved line mark the four role transitions (Source: Adapted from Moreland and Levine
1982)

2.2.7 Relevant Essence

From the categories described above I identified interaction and goals as most relevant to the

design of a team intention model because these aspects of group nature are focused on actual

tasks and goals of an existing team. The other categories consider a team’s life-cycle or well-

being. Clearly, this can influence team intentions too, but on a higher level and in longer term

than I required for my proposal of a team intention model. That is why cohesion is completely

beyond the scope of this work.

For the stage category it is considered that teams which match the meeting scenario outlined

in Section 1.6 operate in the most productive performing stage (see Table 2.4), where interde-

pendence and structure of these teams are well-established. It is assumed that the teams are

homogeneous with members having equal rights, and without a special polarizing of roles,

norms, or status. This assumption was taken into account by choosing mutual reciprocal in-

terdependence (see, Figure 2.2) for the approach. Furthermore the structure of the team in

the scenario is a three-person comcon network (see Figure 2.3) where everyone communicates

with each other. That is a focus that allows to center on the task respectively goal-oriented

team processes.

Assessment methodologies in social psychology range from self-report measures and struc-
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Table 2.5: Different Coding Systems for Group Meetings in Social Psychology

System IPA

Basis Process-based

Lexicon Positive actions Answers Questions Negative actions

show solidarity; give suggestion ask for orientation disagree

show tension release give opinion ask for opinion show tension

agree give orientation ask for suggestion show antagonism

System Task Circumplex

Basis Task-based

Lexicon Generate Choose Negotiate Execute

planning task intellective task cognitive conflict task contest or battle

creativity task decision-making mixed-motive task performance

tured observational measures to physiological measures, among others (Forsyth, 2006). Ob-

viously the observational approach is particularly relevant in a smart environment setting

with sensor and actor appliances. Sensor appliances in this context can act as the described

observers. They objectively observe team meeting situations from an external point of view.

On the other hand according to Suchman (1995) an observation turns under the influence

of the context into an interpretation or analysis of the observer. Therefore intention analysis

based on sensor data and prior knowledge fits well into the observational paradigm of social

psychology. Observations in social psychology usually try to reach objectivity by using coding

systems of group behavior. As stated by McCowan et al. (2005) the codes of these particular

categorizations are non-overlapping and cover the duration of an entire meeting. Relevant

to my approach is the distinction between process-based and task-based coding systems; i.e.

between coding systems where the codes describe behavior to observe in group processes and

others where the codes separate specific tasks.

An example for a process-based coding system is the Interaction Process Analysis (IPA) pro-

posed by Bales (1950) mentioned in Section 2.2.1. It provides a measure for the interaction

process in group situations. Observers listen to a meeting and break the verbal content into

sequences of IPA categories (see Table 2.5). An elaboration of IPA is the also process-based

SYMLOG system (System of Multiple Level Observation of Groups) by Bales et al. (1979).

Observation here concentrates on attitudes of the individual group members.

The Circumplex Model of Group Tasks mentioned in Section 2.2.4 introduced by McGrath
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(1984) is a representative of task-based coding systems. This model distinguishes between

four basic goals: generating, choosing, negotiating, and executing tasks. These basic cate-

gories are subdivided further into a dictionary of eight different group tasks (see Table 2.5).

Others extended the dictionary with group tasks they observed in their specific setting (Ward

et al., 1995).

Observing group behavior using the categorization of coding systems has direct relevance for

the design of a team intention tracking tool. Usage of a coding system enables observers to

separate out stages of group situations like meetings, and enlarge them into agenda topics.

According to Bales (1950), categories are made to develop the framework of major events

during an observation.

Transferring this experience from social psychology to the application field of smart environ-

ments, intention analysis can be considered as a structured observational measurement with

the challenge to recognize continuous, non-overlapping sequences of entries from a coding

system. Since a coding system provides nothing else than a dictionary of meeting events, it is

intelligible that an a-priori meeting agenda is a good candidate for such a lexicon.

Summarizing this section on social psychology, this subject area provides valuable background

knowledge for a design of a team intention tracking tool. I have learned that

• the “nature of groups” includes much more than task or goal-oriented acting of a team

respectively , but

• interdependences and structures in groups can be modeled in forms where team mem-

bers have equal rights,

• sensor observations in a smart environment fit well to the observational technique called

structured observational measure,

• usually coding systems are applied with this technique to recognize group events objec-

tively and systematically, and

• an a-priori agenda can be utilized as a coding system, because categories of such a

dictionary are selected to reveal an agenda of group events.

After identifying relevant social aspects for observing and inferring team behavior it is now

mandatory to determine if it is possible to model behavior of individual humans. Therefore
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the chapter switches from team level to user level and now reviews approaches from cognitive

psychology including human-computer interaction aspects. The findings are presented in the

next section.

2.3 Cognitive Psychology View on Tasks

Cognitive psychology is another psychological field relevant to my proposal as it investigates a

human’s mental states. Merriam–Webster defines cognitive psychology as “a branch of psychol-

ogy concerned with mental processes (as perception, thinking, learning, and memory) especially

with respect to the internal events occurring between sensory stimulation and the overt expression

of behavior” (Merriam–Webster Medical Online Dictionary, 2008).

Cognitive psychology is interested in describing the mental processes that occur between a

stimulus and the related response. It is concerned with all human activities rather than some

portions of it from a cognitive point of view. As claimed by Neisser (1967) the question that

cognitive psychology addresses is how a sensory input is transformed, reduced, elaborated,

stored, recovered, and used by a human processor. Metaphors and terminology used in cog-

nitive psychology are rather computational and research is fairly intermeshed with artificial

intelligence research as a significant aspect of the interdisciplinary subject of cognitive science.

Table 2.6: Major research areas in cognitive psychology.

Perception Categorization Memory

General perception, Category induction and Sensory memory

Psychophysics, acquisition, Short-term or working memory

Attention and Filter theories, Categorical judgement Long-term memory

Pattern recognition, and classification, Declarative memory

Object recognition, Category representation Procedural memory

Time sensation and structure Autobiographic & flashbulb memory

Similarity False & constructive memory

Knowledge Representation Language Thinking

Mental imagery Numerical cognition Choice theory

Propositional encoding Grammar and linguistics Concept formation

Dual-coding theories Phonetics and phonology Decision making, Judgment

Mental models Language acquisition Logic, formal & natural reasoning

Problem solving
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Besides others the main categories in cognitive psychology are perception, memory, learning

(with knowledge representation and language aspects), and thinking (see Figure 2.6). As I

look at cognitive psychology with the motivation to gain insights to how to model human

behavior I restrict my investigations to aspects of cognitive psychology that are related to user

modeling, reasoning and problem solving strategies. In the following sections I first focus on

reasoning and problem solving. Later I explain some well-known approaches that address

different aspects of modeling.

2.3.1 Reasoning

Reasoning is a means of inferring new information from existing knowledge. Humans use

three different types of reasoning in everyday situations that differ significantly: deductive, in-

ductive, and abductive reasoning (Dix et al., 2004). Deductive reasoning utilizes given premises

to deduce a logically necessary conclusion:

Premises: If it is Friday then she will go out and dance.

It is Friday.

Conclusion: Therefore she will go out and dance.

As the derive is just the logical conclusion it must not reflect one’s understanding of truth:

Premises: If it is Friday then the next day will be Monday.

It is Friday.

Conclusion: Therefore the next day will be Monday.

Both above conclusions are totally valid but the second collides with the knowledge about the

normal order of days in a week. The other way round people often infer invalid conclusions

if they use their world knowledge in reasoning processes:

Premises: Some female people are students.

Some students learn diligently.

An obvious conclusion for the above example might be ’Some female people learn diligently’.

This of course is an invalid deduction because there is no statement saying if all students

are female. So it is possible that all diligent students are non-female, but people assume a
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certain amount of shared knowledge (e.g., the common view that males are less laborious

than females) and use it to shortcut the deduction process.

With inductive reasoning people generalize from experiences to reason about non-experienced

cases. For example, if all polar bears that a person had seen during his life had white fur he

will assume that polar bears in general are white. This always includes some uncertainty

because it is not possible to prove the assumption to be true. The best way to strengthen the

belief is to collect evidence that sustains the induction. Inductive reasoning is useful while

learning about the environment. Since a person can never check all polar bears on earth he

will tend to trust his knowledge that has been inferred inductively.

Abduction is the third reasoning type, and it infers from an observed fact to its cause. With this

method people try to explain events they observed. An example could be that a person knows

from stereotypes if he recognizes a trailer combination with yellow license plates on a german

autobahn that the driver is a camping enthusiastic Dutch man. As one would expect this

is an uncertain assumption because other explanations could validate the observed situation.

Maybe when his car passes the trailer he notices that actually a french license plate is mounted

on that truck. With this more detailed evidence his assumption now might be that a French

man is the driver. But as long as no better evidence endorses an alternative explanation

people infer reasons by so-far knowledge and cleave to the inferred cause1. The summary

in Table 2.7 reflects the relationship between these three different ways to conclude about

domains of interest from experience and knowledge.

1BTW stereotypes have been utilized by some early user behavior modeling approaches (e.g., Rich, 1979).

Table 2.7: Classical terminology and relationships for the three types of reasoning.
Deduction takes a Case of the form X ⇒ Y ,

matches it with a Rule of the form Y ⇒ Z ,

then adverts to a Fact of the form X ⇒ Z .

Induction takes a Case of the form X ⇒ Y ,

matches it with a Fact of the form X ⇒ Z ,

then adverts to a Rule of the form Y ⇒ Z .

Abduction takes a Fact of the form X ⇒ Z ,

matches it with a Rule of the form Y ⇒ Z ,

then adverts to a Case of the form X ⇒ Y .

Deduction Induction Abduction

Premiss Rule Case Fact

Premiss Case Fact Rule

Conclusion Fact Rule Case
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2.3.2 Problem Solving

In contrast to reasoning that gathers new information from already known facts, problem

solving is the process to find solutions to unexplored ventures from the knowledge that people

have. It is characterized by the human ability to adapt available information and come up

with original creative solutions for new situations.

The view how people solve problems changed over time. Behaviorism claimed that solving

problems is reproductive, e.g., it uses a reproduction of known feedback or a trial and error

approach. Gestalt psychologists extended this theory with a productive part. Productive prob-

lem solving also employs previous experiences but utilizes insight into the problem domain

and restructuring of the problem itself to come up with a solution.

A well-kown experiment that focused on the question if insight and restructuring can lead to

problem solutions was the analysis of the pendulum problem implemented by Maier (1931).

The setup of the experiment was as follows: in a room two pieces of string were hanging from

the ceiling. Additionally the room was equipped with tools like pliers, poles and extensions.

The subjects had the task to tie the strings together but the problem was that those two pieces

were too far apart to reach both of them at once. The subjects provided various solutions but

without the insight that the plier could be used as pendulum weight only a few provided this

solution. Other subjects received the pendulum insight as an experimenter moved a string

and then came up with the obvious pendulum solution.

An element of problem solving that is reminiscent of the understanding of productive restruc-

turing and insight is the use of analogies. The suggestion about analogies is that people use

existing knowledge about a domain similar to the problem domain to map solutions from the

known field to the new problem. This process was observed with experiments that provide

subjects with analogous stories. Gick and Holyoak (1980) assigned the following task to their

study subjects:

A doctor is treating a malignant tumor. In order to destroy it he needs to blast it with

high-intensity rays. However, these will also destroy the healthy tissue surrounding

the tumor. If he lessens the rays’ intensity the tumor will remain. How does he destroy

the tumor?

The experimenters observed that only about 10 % found the solution to fire a set of low-
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intensity rays from different directions that converge at the tumor without any hints. But

this number increased significantly to around 80 % if the subjects were provided with this

analogical story from Gick and Holyoak (1980):

A general is attacking a fortress. He can’t send all his men in together as the roads

are mined to explode if large numbers of men cross them. He therefore splits his men

into small groups and sends them in on separate roads.

The large number of subjects spotting this analogy came from the semantically close relation

of both stories. But not all analogies work that well. If an analogy is semantically not close

enough to the original problem, then people often have no benefit from it for achieving the

requested task.

Newell and Simon (1972) introduced the problem space. It consists of so called problem states.

With this approach a problem always has an initial state and a goal state. Problem solving

then is the process to move from former to latter state. Therefore it tries to find a sequence of

state transition operators that allow a legal transformation from initial to goal state.

Solutions to problems can take the form of algorithms for manageable circumstances, or

heuristics are employed if a huge problem space cannot guarantee a solution. Different prob-

lem solving models were proposed for navigating problem spaces, where the path from initial

state to goal state was generated in various fashions. Depending on what is required these

models tested if it is possible at all to find a path or tried to find the fastest, most efficient,

and/or most likely path.

2.3.3 Means-ends Analysis Models

One example is means-ends analysis. This is a heuristic approach that first compares initial

state and goal state and then tries to find an operator that reduces the difference between

both. Besides Newell and Simon’s General Problem Solver model various other approaches

were proposed. I will review some of them during the next paragraphs.

General Problem Solver

A basic means-ends analysis example is the General Problem Solver – GPS by Newell and

Simon (1972). The problem solving strategy of this model is based on a depth-first search.
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GPS separates the task from the problem solving mechanisms. This enables the use of the same

problem solving strategy for a wide range of tasks. In this model only the task information

needs to be adjusted to alter the model for new goals.

Using GPS an agent can access a set of objects and knows the goal states that are expected for

these objects. It identifies the objects’ states and is able to refine them using operators. The

agent then calculates the difference between actual states of the objects and their goal states

and utilizes operators to lessen the difference. The reduction process is in many circumstances

not linear but mostly realized recursively. Differences between the current states and the

goal states that are difficult to eliminate are divided into sub-goals with differences that are

easier to eliminate. Recursion by ‘sub-goaling’ is utilized as long as a progression towards the

ultimate goal states is made.

Standford Research Institute Problem Solver

An implementation using the GPS strategies is the problem solver STRIPS (Stanford Research

Institute problem solver) provided by Standford Research Institute by Fikes and Nilsson (1990).

In STRIPS a collection well-formed formulas (wffs) in first-order predicate logic define the

world. For the initial or current state the conjunction of those wffs is True. The goal state of

a problem is also modeled as a set of wffs and the goals are achieved or the problem is solved

if the goal state is part of the current world state. The operators have preconditions and the

results phrased as wffs. The precondition denotes whether or not an operator can be applied.

If it was applied the resulting wffs are added to the world model and some other wffs might

be removed.

Technically STRIPS uses a theorem prover to realize the GPS strategies. The prover attempts

to show that a goal follows from the defined world model. If the proof is successful the goal

is achieved, if not the proof fragment is used to illustrate the difference between the current

state and the goal.

Then STRIPS selects operators that allow the proof to proceed and validates the preconditions

of these operators. If some preconditions of the selected operators are unsatisfied these are

adopted as sub-goals and the problem solving process is repeated recursively.
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State, Operator and Result Architecture

In 1990 Newell proposed the state, operator and result (originally shortened SOAR, but now

referred as Soar) architecture as an implemented architecture for general cognition. Soar is

not a specific problem solver, but the effort to provide a minimal collection of mechanisms for

the complete range of intelligent behavior. The underlying structure enables a system built

upon Soar to “perform the full range of cognitive tasks, employ the full range of problem-solving

methods and representations appropriate to the tasks, and learn about all aspects of the tasks and

its performance on them” (Laird et al., 1987). This is realized by incorporating several aspects

of general intelligence into the architecture. According to Laird et al. (1987) these aspects

include:

• Physical symbol-system – A general intelligence must be realized with a symbolic system.

• Goal-structure – Control in general intelligence is maintained by a symbolic goal system.

• Uniform elementary representation – There is a single elementary representation for

declarative knowledge.

• Problem space – Problem spaces are the fundamental organizational unit of all goal-

directed behavior.

• Production system – Production systems are the appropriate organization for encoding

all long-term knowledge.

• Universal ‘sub-goaling’ – Any decision can be an object of goal-oriented attention.

• Automatic ‘sub-goaling’ – All goals arise dynamically in response to impasses and are

generated automatically by the architecture.

• Control-knowledge – Any decision can be controlled by indefinite amounts of knowledge,

both domain dependent and independent.

• Weak method – The weak methods form the basic methods of intelligence and the system

derives its power from acombination of them.

At the problem space level Soar is a collection of interacting problem spaces and each problem

space consists of states and operators that – applied to states – deliver new states. The task
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or goal to a problem space is introduced by a specification of an initial state and at least one

coveted state. If the knowledge to apply an operator to the current state is enclosed then state

transition is straight-forward. But if a precondition is not satisfied and knowledge is missing

then several techniques known from human behavior observation are applied (for instance,

search other problem spaces to locate the necessary knowledge or decide without additional

knowledge to probable errors and apply error recovery routines).

2.3.4 User Models

This section briefly catalogues some of the more notable user models that have mainly been

used from the human-computer interaction research community to analyze user interfaces

and identify usability issues of software products.

Task Action Grammars

Task Action Grammars (TAG) introduced by Payne and Green (1986) follow a slightly differ-

ent approach than the hierarchical representations of the user’s task and goal structures men-

tioned so far. This linguistic approach focuses on the interaction part of the human-computer

interaction triangle in terms of a task language. A well-known representative of linguistic HCI

modeling is Reisner’s use of the Backus-Naur-Form (BNF) (Reisner, 1981) to define an action

language on a purely syntactic level.

Ignoring semantics however makes it difficult to measure the cognitive load of interaction

processes that are described as a grammar. TAG aims to enable statements about cognitive

load in terms of the learnability of an interface. To overcome the lack of semantics in BNF

Payne and Green included elements called parametrized grammar rules.

Using these rules within a definition of an interaction process allows emphasizing consistency

or congruence of an interface and encoding the user’s world knowledge (e.g., up is the op-

posite of down). It is argued that consistency is related to the user’s understanding. And

as it influences the complexity of a rule set consistency also reflects the mental load of an

interaction process.

Consistent interfaces that make use of already known elements can be described in TAG with

more compact rule sets than others. The relative comparisons between the length of rule sets
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for different interface designs then enables the learnability measures. Compare the following

three interfaces for moving a toy around the floor:

Common interface:

Command interface 1:

name[Direction = left] → ’go 712’

name[Direction = right] → ’go 956’

Command interface 2:

name[Direction] → F(’FORWARD’)

* name[Direction = forward] → ’FORWARD’

* name[Direction = backward] → ’BACKWARD’

name[Direction] → F(’L’)

* name[Direction = left] → ’L’

* name[Direction = right] → ’R’

Command interface 3:

name[Direction] → known-item[Type = word, Direction]

* name[Direction = forward] → ’FORWARD’

* name[Direction = backward] → ’BACKWARD’

* name[Direction = left] → ’LEFT’

* name[Direction = right] → ’RIGHT’

( Source: Adapted from Dix et al. 2004, pg. 435, and Payne and Green 1986, pg. 105)

It becomes clear how TAG incorporates properties of consistency, congruence, and world

knowledge into grammar rules. The first interface uses machine code addresses that are

hard to remember to initiate a movement in a certain direction. In the second version com-

mands can be associated to some feature sets where it is easy to infer the according opposite

command if one is known. And the third interfaces just uses consistent commands known to

english-speaking users.

Note that starred rules are generated from their parent rules utilizing world knowledge and

therefore just the parent rules are counted in measures of complexity. So, in the shown

example one would assume that learnability for interface three is best, and that can also be

derived from the rule sets, where interface three requires three rules less than interface one.
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Goals, Operators, Methods, and Selection Rules

The well known Goals, operators, methods, and selection rules model GOMS was introduced

by Card et al. (1983). It is a very good example for the class of cognitive user models that

allow reasonable estimation of users’ internal processes and prediction of effects on human-

computer interaction that rely on those processes. GOMS comes in several flavors that make

different assumptions or restrictions.

The plain GOMS version also referred to as CMN-GOMS sets the basis – i.e., defines the four

elements that are common to all versions. As one may notice from the meaning of the acronym

these four elements are as follows:

• Goals – are assignments that the user has to accomplish. They describe what the user

wants to achieve and help to remind him where to return in case of occurring errors.

• Operators – are basic actions performed in service of a goal. They affect either the

system state or the user’s mental state.

• Methods – are sequences of operators that accomplish a goal. They are the actual hier-

archical goal decompositions into sequences of subgoals and/or operators.

GOAL: ICONIZE-WINDOW

. [select GOAL: USE-CLOSE-METHOD

. . MOVE-MOUSE-TO-WINDOW-HEADER

. . POP-UP-MENU

. . CLICK-OVER-CLOSE-OPTION

. GOAL: USE-L7-METHOD

. . PRESS-L7-KEY]

( Source: Adapted from Dix et al. 2004, pg. 423)

• Selection rules – are principles to decide which method is chosen if more than one

method is available to accomplish a goal. Instead of random selection of a method

GOMS attempts to predict the use of a method.

Therefore details about the particular user, the current state, and the goal state are

captured in rules. These rules then enable the selection of an appropriate method.
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User Sam:

RULE 1: Use the CLOSE-METHOD unless another rule applies.

RULE 2: If the application is ‘blocks ’ use the L7-METHOD.

( Source: Adapted from Dix et al. 2004, pg. 423)

A simplification to GOMS is the Keystroke Level Model (KLM) introduced by Card et al.

(1983). It makes assumptions that frame a very restricted version of GOMS. In KLM only

seven operations are allowed and the goals, methods, and selection rules part is blinded out.

The user can solely 1.) press a key K , 2.) press a button on pointing device B, 3.) move a

pointing device to a specific location on screen P, 4.) perform dragging with the pointing

device D, 5.) move his own hand to a certain location H, 6.) prepare mentally M , or 7.) wait

until a command execution is finished R. Using this model all operations are arranged as

sequences where placing of physical motor operations is straight-forward. The mental prepa-

ration operation is usually put at the beginning of a command – i.e., a sequence of pointer

and keystroke operations. And a command is followed by a system response operation if it is

reasonable that the computer needs some time for the execution of the command. Times for

all seven atomic tasks – {TK , TB, TP , TD, TH , TM , TR} – are determined empirically and once all

operations needed for a task are scheduled the calculation of the total execution time Texecute

is trivial.

Texecute = TK + TB + TP + TD + TH + TM + TR (2.1)

A variation to GOMS – the Natural GOMS Language (NGOMSL) was introduced by Kieras

(1988) and refined in Kieras (1997). Kieras’ intention was to provide an easy to use model

similar to KLM with the power and flexibility of standard GOMS. As GOMS, NGOMSL assumes

that goals will expand to a hierarchical structure of strictly sequential subgoals, methods,

and operators, but it provides a structured natural language which enables a program-like

representation of the procedures that a user must learn and execute to achieve a certain goal.

The execution time is predicted similarly to KLM but the ability to estimate the learning time

makes NGOMSL a unique approach. NGOMSL derived this property from its cognitive com-

plexity theory (CCT) roots (Kieras and Polson, 1985) that will be described in Section 2.9. Pre-

dicting the learning time also requires counting the amount of atomic NGOMSL statements.

Then, “the length of the methods, and the amount of transfer of training from the number of

methods or method steps previously learned” (Kieras, 1997, pg. 3) allow statements about the
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learning time. The total learning time Tlearning consists of terms of the sum pure method learn-

ing time TPML, long term memory item learning time TLTM, and training procedure execution

time TTPE. Thus:

Tlearning = TPML+ TLTM + TTPE (2.2)

where TPML is the number of atomic NGOMSL-statements nNGOMSL multiplied with a certain

learning time parameter ltp that reflects differences of learning time in different learning

situations (e.g., according to Kieras (1997) 30sec for rigorous procedure training and 17sec

for a typical learning situation):

TPML = ltp× nNGOMSL (2.3)

LTM item learning time TLTM is the number of LTM chunks accessed for a procedure nChunks

multiplied with an empirical access time parameter atp (e.g., the Model Human Processor

parameter from Card et al. (1983) of 10sec per chunk). Thus:

TLTM = atp× nChunks (2.4)

One chunk is added 1.) for each familiar pattern in the retrieval cue, 2.) for each familiar

pattern in the retrieved information, and 3.) for the association between the retrieval cue

and the retrieved information. And TLTM is only counted if the item is not known to the user

before.

TTPE considers similarities in the methods of a procedure. It is based on the suggestion that

similar parts in a procedure reduce learning time. To estimate the time that can be saved from

transfer of training 1.) candidate methods for transfer must be identified, 2.) methods must

be generalized, 3.) occurrences must be counted, and 4.) learning time for all but the first

occurrence must be deducted from overall Tlearning.

As KLM, NGOMSL breaks task down to the lowest level of atomic operators to enable rea-

sonable time predictions. From statements at this “keystroke” level one can assume that a

user knows how to execute them and that reasonable empirical time estimates for learning

and execution are available. But it does not consider situations where users do things in a

parallel, multitasking fashion.

Here a variation that was introduced by John (1990) and Gray et al. (1993) provides remedy.
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Figure 2.6: PERT-style view of a CPM-GOMS model for carefully moving the cursor to a target
and clicking the mouse button. (Source: Adapted from John et al. 2002)

The CPM-GOMS is the most complex version of GOMS and incorporates two key features: a

Cognitive Perceptual Model and the Critical Path Method (CPM) with PERT-charts2.

CPM-GOMS is unique because of its CPM elements that allow parallel processing of several

operation categories. It distinguishes between system response time and three different cat-

egories of operators: perceptual, cognitive, and physical motor operators, where perceptual

operators can be e.g. visual or aural perception. Physical motor operators are things like hand

movement, eye movement, or verbal responses. These categories of human activities can

be executed in parallel and thus enable goal decomposition in a multitasking fashion where

actions can overlap to happen in parallel (see Figure 2.6).

CPM-GOMS is the most economically successful variation of GOMS, but it is also by far the

most complicated to model. It takes usually hours to model a minute-long task. Recent work

proposes tool support for the modeling process – e.g., Apex in John et al. (2002) that auto-

mates the difficult task of interleaving the cognitive, perceptual, and physical motor resources

underlying common task operators.

2PERT (Program Evaluation and Review Technique) is a network model that allows random activity completion
and was developed in the 1950s for a large US Navy project.
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Figure 2.7: Overview of the EPIC architecture. Performances of task are simulated by the in-
teraction of an EPIC modeled simulated human (on the right) with a simulated task environ-
ment (on the left). Simulated perceptual-motor organs on one side and simulated interaction
devices on the other side form the interface. Solid lines indicate the information flow, whereas
dashed lines mark mechanical control. (Source: Adapted from Kieras and Meyer 1995, pg. 4)

Executive Process-Interactive Control

The distinction between particular peripheral sensory-motor processors and cognitive proces-

sors also influences the design of some cognitive architectures. Executive Process-Interactive

Control (EPIC) by Kieras and Meyer (1995) is a typical representative of this approach that is

especially suited for the modeling of human multimodal performance on parallel tasks. With

EPIC a model can be described where the process to achieve complex multimodal goals is

formulated as a set of production rules.

In contrast to other architectures like Soar in Section 2.3.3 and ACT-R described next the

production rule interpreter, which is basically the cognitive processor, is embedded in a strict

surrounding of different perceptual and physical-motor processors (see Figure 2.7). This make

EPIC mainly useful for explorations regarding the questions how the human ability to perform

multiple tasks in parallel influences performance speed and accuracy, and where the perfor-

mance bottlenecks in complex multimodal situations are.

Kieras and Meyer argued that “limitations on human ability are all structural; that is, perfor-

mance of tasks may be limited by constraints on peripheral perceptual and motor mechanisms,
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rather than a pervasive limit on cognitive processing” (Kieras and Meyer, 1995, pg. 3). There-

fore the EPIC architecture provides detailed but fixed sets of mechanisms with mostly fixed

empirical substantiated time properties for this peripheral processor. That reduces the degrees

of freedom in model construction and draws the focus to the cognitive processes.

For example the visual processor models the eye including a retina. The retina contains three

zones around a focal point; that is, a) the fovea with a 1◦ viewing angle, b) the parafovea

that covers 10◦, and c) the periphery (60◦). The fovea can capture for example the content

of a button label, whereas the parafovea recognizes information about what kind of objects

occupy a screen region. The periphery finally just notices if an object recently appeared or dis-

appeared. From appearance to pattern recognition of a screen object EPIC assumes different

fixed standard delays. The occurrence of an object in the periphery is noticed after 50ms, the

recognition of properties (e.g., shape) takes an additional 100ms, and finally the perception

of certain patterns in the fovea lasts 250ms. Other processors of the architecture are realized

in a similar fashion, because the design of EPIC aims at the explicit linkage between detailed

mechanisms to handle perceptual-motor processes and a procedural cognitive task analysis

represented by production-system models (Kieras and Meyer, 1995).

Adaptive Character of Thought Theory

The Adaptive Character of Thought (ACT-R) theory introduced by Anderson (1993) and sum-

marized in Anderson (1996) stands in a long line of earlier cognitive models developed by

Anderson. ACT theory originated as the human associative memory (HAM) theory (Anderson

and Bower, 1973). HAM dealt with the question how memory could be represented and how

such a representation was related to experimental observation. With the upcoming distinction

between declarative and procedural knowledge in the seventies the theory was enhanced to

ACTE (Anderson, 1976), which embodied these new issues. In ACT* (Anderson, 1983) pro-

duction rules reflected the assumptions about neural and psychological functionality at that

time. The current ACT-R system enabled the tuning of knowledge representation, acquisition,

and deployment.

Knowledge representation in ACT-R is a closed interleaving of declarative and procedural

knowledge. Like in Soar (see Section 2.3.3) and in EPIC (see Section 2.3.4) procedural

knowledge is defined as set of production rules. A production rule represents a task goal

in its conditions. Subgoals that form an abstract, hierarchical structure on human behavior
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IF the goal is to solve an equation

and a number has been read

and there is no second argument

THEN store it as the second argument. x + 7

Expr

arg1 op arg2

isa

Figure 2.8: This is a step taken from an equation solving process. The figure on the right
shows a declarative knowledge chunk and indicates how the second argument of the equation
x+4+3= 13 is stored in it. On the left the corresponding production rule is shown. (Source:
Adapted from Anderson 1996, pg. 358)

while execution might be created recursively . Production rules apply if their preconditions

are satisfied by knowledge currently available in either working memory or long-term mem-

ory. Both of them hold declarative structures. So, preconditions and effects of a production

are mentioned as declarative knowledge.

Declarative knowledge in ACT-R is represented as chunks – i.e. schema-like structures that

hold pointers to their categories (e.g. isa �→ Expr) and additional pointers that encode the

contents (e.g. arg1 �→ x , op �→ +, arg2 �→ 7). Figure 2.8 indicates how the second argument

from the example is stored in a declarative knowledge chunk and reflects what granularity of

analysis of human cognition is recommended by ACT-R in order to obtain "faithful models"

(Anderson, 1996).

Long-term knowledge and the evolving understanding of the problem – i.e., the goal state

are represented by production rules and chunks. Besides representation ACT-R also addressed

knowledge acquisition – i.e., the origin of rules and chunks. As a matter of principle chunks

in ACT-R originate from actions of production rules (like in Figure 2.8) and production rules

can be created from the encodings in chunks.

Additionally chunk encoding from the environment was incorporated as an independent

source to avoid a ‘the chicken and the egg’ causality dilemma. Perceptual components syn-

thesize object features into chunk representations in ACT-R’s working memory and recognize

the objects. This process is identical to the process of categorizing objects given a set of prop-

erties. This is the way a stimulus is prepared for use as declarative knowledge in production

rule conditions.

Production rules on their part are simply transformations of chunks. ACT-R either uses them

to find some mappings from knowledge that satisfy conditions directly or restructures or sub-

goals the production rules respectively. Therefore ACT-R mimics examples of similar solutions
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either by providing the right chunks required to bridge transformations or by specifying a

sequence of subgoals that can be achieved from current knowledge.

The third major issue addressed by ACT-R was knowledge deployment. It addresses the prob-

lem, how to select appropriate knowledge in certain situation. This causes a serious problem

in systems where a large amount of knowledge is available for solving problems and search-

ing the whole problem space becomes slow. ACT-R therefore provides a two-pass solution that

quickly identifies relevant knowledge.

An activation process pinpoints the knowledge structures (chunks and production rules) that

are most likely to be relevant for achieving the goal state in background. Then those structures

determine the problem solving process (just as in other approaches – e.g., Soar, EPIC). The

activation process introduced as rational analysis by Anderson (1990) calculates odds for

knowledge that refer to the likelihood that this knowledge will be used in a certain situation.

For ACT-R Anderson (1996) claimed that the human mind combines general usefulness and

contextual appropriateness to infer what knowledge to use in a certain context and put this

in the equation3:

activation_level= base_level+ contextual_priming (2.5)

In the calculation Bayesian inference is implicitly used where the posterior probability p of a

hypothesis h being correct given some evidence e is:

p (h|e)
p
�
h̄|e� =

p (h)

p
�
h̄
� × p (e|h)

p
�
e|h̄� (2.6)

and therefore:

posterior_odds= prior_odds× likelihood_ratio (2.7)

Transformed to log terms this is:

logposterior_odds= logprior_odds+ log likelihood_ratio (2.8)

similar to Equation (2.5), where activation_level reflects logposterior_odds, base_level is im-

plicitly logprior_odds, and contextual_priming correlates to log likelihood_ratio. The actual

3Equations (2.5 – 2.8) all adapted from Anderson 1996, pg. 360
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activation of a chunk structure in ACT-R is realized this way4:

Ai = Bi +
∑
j

Wj × Sji (2.9)

where the activation of a chunk i (Ai) is the sum of the activation base-level of this chunk Bi

(i.e., how likely was an activation of i in the past) and a term that represent the contextual-

priming. Contextual priming is calculated by the sum of all products representing the weight

of a contextual chunk j and its associative strength to i.

In summary, ACT-R encodes things of the environment in declarative knowledge. Procedural

knowledge contains encodings of observed transformation processes. The application of either

declarative or procedural knowledge can be tuned by encoding the statistics of knowledge use,

which helps to organize knowledge according to complex goal structures.

2.3.5 Task Models

Task models are normative approaches from the human-computer interface design field that

have been developed as a means for formally describing human problem solving behavior

in situations where task-driven interactions of users with computing devices take place. Hu-

man perception and interpretation of information were barely considered in human-computer

interface design until task models bridged the gap. Designing task models aims at the iden-

tification of those interaction techniques that are most valuable in assisting users to perform

their intended tasks.

A task model is a breakdown of a composite activity into individual atomic steps, between

which a partial order may be defined, roughly speaking: a “plan”, that mainly can be induced

by the preconditions and effects of the individual atomic steps. The term “action” will denote

an atomic step of a task. The concept of task models originates from cognitive psychology as

well as from signal processing, which will be reviewed later in Section 2.4.

In the area of human-computer interface design, hierarchical task graphs are used where

tasks can be refined by sub-tasks and their ordering constraints. With respect to hierarchical

task models, one of the most popular notations is the ConcurTaskTree notation introduced by

Paternò (1999).

4Equation (2.9) adapted from Anderson 1996, pg. 361
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Table 2.8: Temporal operators specified in CTT. (Source: Adapted from Paternò 1999; Mori
et al. 2002)
Enabling (α >> β) β cannot begin until α was performed.

Choice (α [] β) α∧ β are enabled. Once one has started the other one is disabled.

Enabling & (α []>> β) β cannot begin until α was performed, and information produced

Info-Passing by α is used as input for β .

Concurrency (α | | | β) α∧ β can be performed in any order, simultaneous,oroverlapping.

Concurrency & (α |[]| β) α∧ β can exchange information while performing concurrently.

Info-Exchange

Order (α |= | β) α∧ β can be performed in any order, but when one has started

Independence it has to be finished before the other one can start.

Disabling (α∗ [> β) α∗(usually an iterative task; indicated by an asterisk) is completely

interrupted by β .

Suspend- (α∗ |> β) α∗ can be interrupted by β . When β terminates α∗ can be

Resume reactivated from the state reached before.

ConcurTaskTree Environment

The ConcurTaskTree Environment (CTTE) described by Mori et al. (2002) is a toolkit that pro-

vides support for design and analysis of complex task models for multi-user applications. Task

models are described in the ConcurTaskTree notation (CTT) proposed by Paternò (1999). As

abstraction levels of tasks can range from very high level decisions for problem solving strate-

gies to very concrete actions (such as pressing a specific button), task models evolved a hier-

archical tree-like structure similar to other cognitive modeling approaches (see Section 2.3.3

or Section 2.3.4).

The ConcurTaskTree notation includes a set of operators to describe temporal relationships of

hierarchically structured tasks. Each task is associated with a type, a category, attributes, and

objects to manipulate. CTT uses graphical syntax to enable easy interpretation of the logical

structure of a task. A compound activity is represented by a task tree. Each node in the tree

represents a task. Composite tasks may be broken down into subtasks. For each task node it

may be specified if this activity is executed by the user, by the application, or by an interaction

between user and application, or between cooperating users.

In addition, the possible execution sequences of a composite task’s sibling nodes may be fur-

ther constrained by temporal relations such as “α |= | β” (α and β may be executed in any
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Figure 2.9: Cooperative task model specifying a simplified sales negotiation situation. (Source:
Adapted from Paternò 1999; Dix et al. 2004)

sequence) or “α >> β” (α has to be executed before β). Table 2.8 shows and explains the

other temporal operators specified for the ConcurTaskTree notation.

Figure 2.9 presents typical task trees, describing a rather simplistic sales negotiation between

a customer and a salesman. Initiated by an email advertisement a customer requests some

product information via an online application. A sales person on the other end responds to

the request with the provision of information for the requested product. As indicated by the

∗-operator customer and salesman can iterate over a bunch of products until the customer de-

cides for a product. Then the customer has to order a product via the application to concretize

his decision. This confirmation finally enables the sales person to confirm this specific product

order on his part. With both confirmations the goal of the sales negotiation task is achieved,

and negotiation ends.

In spite of the fact that in this example cooperation of two individuals is incorporated, task

models are more often used to specify the behavior of individual users interacting with a

software system. A simulation environment such as the CTTE proposed by Mori et al. (2002)

that allows generation of user interfaces from task models provides valuable insights into

the dynamic behavior of the model. With simulation it is possible to compare two models

that describe similar tasks, or to analyze large specifications where global and local views
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have to be considered. This way human-computer interface design can reflect findings from

the precise analysis of what users want to do with a software system, and is able to define

interfaces that are related very closely to tasks of application users.

2.3.6 Relevant Essence

With respect to the team intention model for smart environments that is introduced in this work

the field of cognitive psychology has provided some valuable insight into human behavior. I

was most interested in reasoning and problem solving aspects that are part of human thinking.

These categories of cognitive psychology offered a large body of approaches to model human

behavior. So, the first and most essential realization was that it is admissible to model human

behavior.

The next aspect that I could extract from the pool of approaches was that human reasoning

and problem solving is goal oriented. People turn to specific tasks in order to achieve certain

goals. Originating from an initial state they try to find an efficient path of state transformations

to reach the desired goal state. Most often subdividing composite tasks into individual atomic

actions is employed to tackle a certain problem in a “divide & conquer” manner. Models from

means-ends analysis models (see Section 2.3.3) to task models (see Section 2.3.5) pick up

this approach and formulate hierarchies of subtasks with preconditions and effects as paths

for solving problems or in other word achieving desired goals. Interesting with respect to the

team intention model is that – like in CTTE (see Section 2.3.5) – cooperative multi-user tasks

are divided into individual subtasks for the persons involved.

Let us elaborate on the task enabling preconditions. In cognitive psychology models the ex-

ecution of a task is initiated by satisfied preconditions. Satisfaction then again is induced

by knowledge that could be either perceived from the environment (perceptual processor),

remembered from long-term memory, or reasoned by combining perception and memory in

adequate way. Several of the approaches mentioned above – especially the user models CPM-

GOMS (see Section 2.3.4), EPIC (see Section 2.3.4), or ACT-R (see Section 2.3.4) – addressed

the knowledge acquisition question. They provided separate channels or processors for per-

ception, effectors, or memory. ACT-R even incorporates a probabilistic weighting function

to assess how essential a certain knowledge chunk is for the next state transformation (see

Equations (2.5 – 2.9)).
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Summarizing this section on cognitive psychology, this subject area provides valuable knowl-

edge on how to structure a team intention model. I have learned that

• modeling human behavior is possible at all; even cooperative behavior can be modeled,

• usually hierarchical structures are applied to reflect typical problem solving strategies,

• the temporal sequence is tied to preconditions and effects of a certain action,

• the knowledge for solving problems is derived from perception, memory, or reasoning.

However, hierarchical task models are mostly used to specify the behavior of users interacting

with a software system. They allow to describe the basic temporal structure of compound ac-

tivities. For inferring the activity of a user from sensor data, additional information is needed:

a specification of how input stimuli (sensor data) are related to a certain output (execution

sequence). The next sections review current approaches sensor signal level – connectionist as

well as probabilistic – that address this question.

2.4 Modeling in Signal Processing

In signal processing, models have been developed as a means for estimating the actual behavior

of a signal source. Depending on the purpose of modeling and the quality of observation data,

different modeling approaches have been found suitable for achieving intelligent behavior.

If the data is precise and covers the significant information of an operating process, then a

connectionist5 method, like a neural network, is probably the right choice for modeling. Such

a method can also yield good solutions if the problem is not understood quite well but a large

amount of precise data was collected (Dix et al., 2004).

On the other hand, if only incomplete and noisy observations are available, but a-priori knowl-

edge can be brought into design, a probabilistic approach for modeling provides the better

solution. The fundamental algorithmic method here is Bayesian Filtering: Given a hypothesis

about a signal source’s behavior repertoire, a hypothesis about which behavior will cause what

5According to the Merriam–Webster definition connectionism is “a school of cognitive science that holds that
human mental processes (as learning) can be explained by the computational modeling of neural nets which are
thought to simulate the actions of interconnected neurons in the brain” (Merriam–Webster Online Dictionary, 2008c)
with a number of interconnected processors.
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observation, and a set of noisy observations, a Bayesian filter will yield the most probable ex-

planation for the observed data, that is, the most probable behavior of the signal source given

those observations.

This section provides selective insight into these two large areas of signal processing. Se-

lection was derived from the criteria catalogue in Section 1.7. Related smart environment

projects from current research usually apply similar methods to address signal processing.

The significant methods from the project×method-matrices (cp., Figures 1.1 & 1.2) receive a

detailed review in this section.

2.4.1 Neural Networks

Neural networks arose from the connectionist community that claimed that parallel distributed

processing models would be an adequate way to model cognitive processes of the microstruc-

ture of human thought. The first contributions came from Rosenblatt (1958). But after a

critical analysis of this work published by Minsky and Papert (1969) interest on neural net-

work has been waned until the mid-Eighties of last century. Then, Rumelhart et al. (1989b)

and McClelland et al. (1988) coined the term parallel distributed processing (PDP) for cog-

nitive information processing. In their respected eponymous companion they described the

interactions of large numbers of single entities called units, which send to each other excita-

tory and inhibitory signals. Applying PDP to cognitive tasks, sets of units stand for possible

hypotheses and interconnections between units reflect the constraints that exist between dif-

ferent hypotheses.

On a time scale of seconds and minutes human cognition – the process between sensory stim-

ulation and the overt expression of behavior – shows a noticeably sequential character (see

Section 2.3). But remember for instance the CPM-GOMSmodel of ‘carefully moving the cursor

to a target and clicking a mouse button’ shown in Figure 2.6. Although the macrostructure of

this task forms almost a sequence of actions, some perceptual and physical motor actions start

in parallel to cognitive actions. The question that is addressed by connectionism is how the

internal structure of an atomic action from symbol-manipulating approaches like CPM-GOMS

can be explained and modeled incorporating knowledge about the physiology of the brain.

Sequential modeling, which is widely utilized in symbol-manipulating approaches for the ma-

crostructure of human cognition, is rejected by connectionists for the microstructure of human
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thought because, as Feldman and Ballard (1982) emphasized, biological hardware is just too

sluggish for sequential models. Neurons operate on a milliseconds time scale (Rumelhart

et al., 1989b) whereas desktop PCs run 106 times faster on a nanoseconds time scale. If the

symbol-manipulating “computer metaphor” is replaced by the connectionist “brain metaphor”

as representatives of connectionism wish, this means that for processing a certain action in

appropriate time only around a hundred time steps can be involved. This constraint that Feld-

man (1985) stated as the “100-step program” constraint leads connectionists to the assump-

tion that considerable parallelism must be involved in models for microstructure cognition.

Utilizing the “brain metaphor” connectionism argues that micro-structural processing of hu-

man thought incorporates neuron-like units, which can be split into input, hidden, and output

entities, and synapsis-like connections, which form relationships between neurons and can be

modeled through directed weighted links between units. Eight major aspects for PDP-style

connectionist models were identified by Rumelhart et al. (1989b, pg. 46):

• a set of processing units,

• a state of activation,

• an output function for each unit,

• a pattern of connectivity among units,

• a propagation rule combining inputs and current state of a unit to a new activation level,

• a learning rule whereby patterns of connectivity are modified by experience, and

• an environment within which the system must operate.

Figure 2.10 illustrates these basic aspects. A model consists of a set of units indicated by the

larger circles in the drawing. If N is the number of units then units can be ordered in a way of

which the n-th unit is designated as un. At a certain moment t each unit un holds an activation

value a(t)n . This value is processed by an output function fn to produce an output o(t)n . This

output is propagated through a set of unidirectional connections to the other units of the

model, which is represented by the lines in the figure. The strength of a connection between

two units determining the effect that one unit um has on another unit un is incorporated into

the model by a weight wnm. Thus the input from one unit un is the result of weighting the

output of um accordingly. From the connected units all of the inputs of the same type p are
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Figure 2.10: Basic components of a parallel distributed processing model. (Source: Adapted
from Rumelhart et al. 1989b, pg. 47)

combined by some specific propagation rule6 resulting in the net input netpn (If all input is

of the same type the first subscript can be suppressed). Then the activation function Fn takes

the current activation value of the unit a(t−1)n from the previous run of Fn and the net input

netn to compute a new activation state a(t)n .

Processing the state of activation of a model is primarily done by applying two functions to the

activation values of each unit. These are the output function fn and the activation function Fn.

In Figure 2.11 the transfer functions utilized usually are depicted. For the output a mapping

of the current activation value of a unit to an output signal is defined. In some cases the

6Usually addition is used for this purpose.
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Figure 2.11: The basic processing functions of a parallel distributed processing model.
(Source: Adapted from Rumelhart et al. 1989b, pg. 47)
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output value is desired to be equal to the activation value. Then the identity function

o(t)n = fn
�
a(t)n

�
= a(t)n (2.10)

is employed. But more often fn is some sort of threshold function as indicated by the left

curve in Figure 2.11. That way a unit has no effect on other units unless its activation value

surpasses a certain threshold value θ .

In principle the same assumptions apply for activation functions. The simplest case, again, is

the identity function where the new activity value a(t)n inherits the value of net input net(t)n :

a(t)n = Fn
�
a(t−1)n ,net(t)n

�
= net(t)n (2.11)

Another possibility is to use threshold functions, where the net input net(t)n must surpass a

certain threshold θ to influence the activation value. Some activation functions allow for

the fact that there is maybe no net input for a unit and utilize the current activation value

a(t−1)n for a slow decay instead of an instant deactivation of that unit. If activation values

are assumed to be continuous usually sigmoid activation functions as represented by the right

curve in Figure 2.11 are chosen.

In other special cases the activation value of a unit is assumed to be, for instance, the proba-

bility that this specific unit is ON . Then, the likelihood is provided by a stochastic activation

function Fn like the following one introduced by Hinton and Sejnowski (1983) for the Boltz-

mann machine7:

a(t)n = Fn
�
a(t−1)n ,net(t)n

�
= p

�
o(t)n == ON

�
=

1

1+ e−net(t)n
(2.12)

where the activation value of a unit a(t)n is the probability p that the output of this unit o(t)n

takes the value ON . Note that in that case only the net input contributes to the computation of

p
�
o(t)n == ON

�
. The output functions f in such stochastic units usually apply deterministic

step functions (e.g. {1,0} or {1,−1}). Obviously, it is also conceivable to put the stochastic

part of those units into the output function.

The modification of a PDP-style connectionist model is a function of utilizing experiences made

7The Boltzmann machine is a stochastic recurrent neural network in which the random variation of the network
is built into stochastic activation functions of the units.
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over time to learn connectivity patterns. Rumelhart et al. (1989b) have identified three kinds

of modification, there are 1.) the development of new connections, 2.) the loss of existing

connections, and 3.) the adjustment of the strengths of existing connections . In approxima-

tion the first two kinds can be considered as special cases of the third simply by changing the

weight wnm away from 0 or vice versa respectively. For the third kind of modification over

the years many different learning rules (e.g., the perceptron learning rule (Rosenblatt, 1958),

competitive learning (Grossberg, 1976), the Widrow-Hoff or delta rule (Sutton and Barto,

1981), or back-propagation (Rumelhart et al., 1989a)) were developed that are more or less

variants of the basic idea described by Hebb (1949, cited by Rumelhart et al., 1989b, pg. 53):

“If a unit un receives an input from another unit um; then, if both are highly active, the weight

wnm, from um to un should be strengthened.” Furthermore, approaches from related fields like

optimization (e.g., simulated annealing (Hinton and Sejnowski, 1983)) were introduced to

overcome early issues in converging and finding optimal model configurations.

The dominant form of PDP-style connectionist models are artificial neuronal networks. Admit-

tedly the literature distinguishes between biological neural network (BNN) and artificial neural

networks (ANN) but although the “brain metaphor” was heavily influenced by BNNs this work

does not address the biological form of neural networks further than mentioned to this point.

Henceforth the term neural network is used in the meaning of artificial neural network. ANNs

usually refer to Multi-layer Perceptrons introduced with the PDP Volumes (Rumelhart et al.,

1989b; McClelland et al., 1988), since those replaced the Single-layer Perceptron of Rosenblatt

after the neural network crisis. Although there are many different types of neural networks,

connectionists distinguish primarily between feedforward neural networks, which are networks

wherein no directed cycles are allowed, and recurrent neural networks where connections can

form directed cycles and incorporate dynamic systems theory. Brief descriptions of these con-

cepts follow.

Single-layer Perceptrons

The earliest and simplest kind of neural networks were Single-layer Perceptrons first described

by Rosenblatt (1958). His so-called Perceptron model consisted of a retina (set of inputs)

and association units (output layer). The input values were forwarded from the retina to the

output layer, where the inputs were combined with weights. Units of the output layer, then,

triggered the associated threshold output functions to produce the particular output values.
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Figure 2.12: Single-layer Perceptron (left) and linear separability in common logic functions
(right).

As indicated by the network on the left side of Figure 2.12 each input value is connected to

each unit in the output layer8. Computation of output on of the nth unit of a perceptron can

be described by:

on = f (an) = f

�∑
m

wnmxm− θn
�

(2.13)

where xm is the mth input, wnm is the weight for the connection from mth input to nth output,

θn is the bias or offset and f (·) is the step output function.

But this first attempt on artificial decision making had several limitations. Those were fully

realized by Minsky and Papert (1969) in their review on perceptrons. They found that only

linearly separable problems (cp., with the examples on the right side of Figure 2.12) could be

solved by single-layer perceptrons. To show this limitation they chose the exclusive-or (XOR)

problem as a simple example for linear inseparability. A solution to this problem would require

a layer of internal units. But at that time no reliable training method for such a network was

available, which caused a regular crisis of research on connectionist-style systems.

Multi-Layer Perceptrons

Connectionist-style systems rekindled with the introduction of networks with layers of inter-

nal units and an appropriate training method for these networks. The so-called Multi-layer

Perceptrons incorporated usually one or two hidden layers which process the input values be-

fore they are proceeded to the output layer. Input values represent some feature external to

8In the literature this kind of networks are also referred to as two-layered networks considering inputs as a
layer, too. But since just the values from the input set are relevant as facts for the network there is no actual
reason to mention this set as a separate layer.
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the net. The values are provided to each hidden unit that is connected to the input. Then,

each of these hidden units calculates its own activation value from the received input values.

After that activation values are passed either to the units of the output layer or if another

hidden layer exists they are propagated to this layer’s units. Whether another hidden layer

or output layer, here units compute their activation values in the same way as before. If an

output layer was reached the output functions producing a network’s output are applied in

addition to the activation values.

Feedforward Neural Networks The sort of Multi-layer Perceptron illustrated above could

be a feedforward neural network (FNN). As indicated by the network in Figure 2.13, signal

activation flows forward in one direction from the inputs over units on hidden layers to the

output units. The signature of a network’s output depends on the weights or connection

strengths between units respectively. To produce an optimal solution the appropriate weight

for each connection must be found. Those could be set by hand, but as a typical neural

network might have a couple of hundred weights a training phase is needed to find the optimal

set of weights.

In principle training algorithms follow a cycle to refine the weight values in a neural network.

Starting with a random assignment of weight values this cycle includes the following: 1.) run

the network with input values from a training set and a tentative set of weights, 2.) compare

the inferred output values to the expected output from the training set and compute the

difference, 3.) average the differences from the entire set of training data to an error value,

4.) propagate the error backward through the network and compute the gradient of change

in error with respect to changes in weight values, and 5.) adjust the weights to reduce the
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Figure 2.13: Feedforward Neural Network.
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error. This type of training typical for Multi-layer Perceptrons is called back-propagation and

was first described by Rumelhart et al. (1989a). Back then they used the gradient descent

algorithm to adjust the weights towards convergence. Nowadays faster and more reliable

converging algorithms are used at the core (e.g., simulated annealing (Hinton and Sejnowski,

1983), wake-sleep algorithm (Hinton et al., 1995), or a hybrid Monte Carlo method (Neal,

1996)). But a backward propagation of error information through the neural network is used

by nearly all training algorithms even though the term back-propagation is often associated

with the gradient descent version of Rumelhart, Hinton, and Williams.

Recurrent Neural Networks In neural networks like those mentioned above repeated pre-

sentations of the same input vector lead to same output every time. But this static quality is

in contrast to the dynamic character of most human behavior. Humans remember repeating

stimuli, habituate to them and learn to react adequately. The serial nature of such temporal

adaption could hardly be expressed in feedforward neural networks.

The obvious work-around was to represent the temporal course of an event with the dimen-

sionality the input vector (e.g., Elman and Zipser, 1988). This spatial representation of time

has the drawback that it needs a register which buffers the temporal input. Defining such a

buffer at design-time of a network incorporates difficulties. Size has to be limited and thus the

longest possible temporal pattern needs to be known in advance. A limited register also sug-

gests a constant size of the input vector, and temporal interpretations of absolute and relative

position in time are challenging in such a system.

Another approach to represent time in a neural network is to remember the effects of pro-

cessing and use this memory as a dynamic input for the processing system. Many attempts

were made to accomplish the incorporation of memory into neural networks. For example

Hopfield (1982) introduced a recurrent network in which besides input and output connec-

tions recurrent connections between binary threshold units of the same layer existed. Those

connections fulfilled the conditions that 1.) for every connection a symmetric counterpart ex-

isted, and 2.) no unit had a connection to itself. The later introduced Boltzmann machines

(Hinton and Sejnowski, 1983) rely on such Hopfield networks but, as mentioned earlier, use

stochastic update functions.

Later Jordan (1986) proposed a simple recurrent neural network (RNN) relying on multi-

layer perceptron. His network incorporated one-for-one connections from output to so-called
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Figure 2.14: Simple Recurrent Neural Network (left), Long Short-term Memory Cell (right).
(Source: Adapted from Elman 1990, pg. 184 (left), and Hochreiter and Schmidhuber 1997,
pg. 1740 (right))

state units. State units, then, served as additional input for the units of the hidden layer.

This allowed the hidden units to see their own previous output. Elman (1990) modified

this approach in that way that instead of the network’s output the activation values from the

hidden unit were saved in a layer similar to the state layer of Jordan. Elman called this layer

context layer. The left side of Figure 2.14 gives an impression of such a network. Backward

connections from hidden layer to context layer were again one-for-one. So, the context layer

had the same number of units as the hidden layer. In contrast the forward connections from

context units to hidden units were fully distributed, which allowed each hidden unit to see

the full context from the previous time step.

Even though simple recurrent neural networks consider temporal patterns in a time series of

input vectors, a training phase is still needed to set the optimal weight configuration with

respect to the training set. In Elman networks back-propagation in the version of Rumelhart

et al. (1989a) is utilized. However, recurrent connections are not subject of optimization and,

thus, keep their fixed weight9 of 1.0.

A variation of the internal memory concept of Elman is the long short-term memory intro-

duced by Hochreiter and Schmidhuber (1997). They replaced traditional hidden and context

layer summation units by multi-part memory cells like the one on the right side of Figure 2.14.

The input vector to such a cell was used as input for the cell of course and additionally to ac-

tivate the input and output gating units of the cell. If those gates allowed access to the cell,

then the input was processed and the activation value maintained in a simple summation unit

9Activation functions used in Elman network bound weight between 0.0 and 1.0.
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with a self-recurrent link until the next input vector was allowed to access the cell. The prop-

agation of a cell’s activation value was regulated by the gating units in the same manner as

the input.

Evolving Connectionist Systems An approach known as the evolving connectionist system

(ECoS) paradigm enhances the concepts of feedforward and recurrent neural networks by

the facility to adapt the structure of a network. Ghobakhlou et al. (2003) described a simple

evolving connectionist system (SECoS) relying on one of first and best known implemen-

tations of the ECoS paradigm – the evolving fuzzy neural network (EFuNN) introduced by

Kasabov (1998). In contrast to EFuNN Ghobakhlou et al. omitted the fuzzified input space

in their version, which led to a much plainer architecture with simple units instead of multi-

part cells like those mentioned above. But simultaneously the simple evolving connectionist

system respected the general principle of adaptation, which was essential for this paradigm.

Therefore this work explains the much simpler approach of Ghobakhlou et al..

During the training phase SECoS adapts to input data in an real-time manner using expan-

sion and aggregation of its evolving layer. An exemplified diagram of adaptation in a SECoS

network is given on the left side of Figure 2.15. Expansion works as follows; the evolving

layer increases its set of units by a new unit whenever the maximum activation amax in the

evolving layer is less than a coefficient called sensitivity threshold. In the other cases – if the

sensitivity threshold was surpassed – the error between the calculated output vector and the

desired output vector is evaluated. If this error is larger than an error threshold or another

output unit than the desired output unit is most highly activated, then a new unit is added
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Figure 2.15: Simple Evolving Cognitive System: Expansion of Evolving Layer (left) and Addi-
tion of an Output Unit (right). (Source: Adapted from Ghobakhlou et al. 2003, pg. 77 (left),
pg. 79 (right))
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to the evolving layer as well. If a unit was added, then the connections are applied from the

set of inputs to the new unit and thence to all output units. Incoming weights vector of the

added unit is set to the input vector, and its outgoing weights are set to the desired output

vector. To limit the expansion of the evolving layer after a certain number of training cycles,

aggregation is utilized.

Aggregation searches for a subset of units from the evolving layer for which the Euclidian

distances between 1.) entire input weight vector and subset weight vector, and 2.) entire

output weight vector and subset output vector are below a specific threshold. This subset of

units is then merged into one unit with averaged weights for input and output connections.

Furthermore, as Ghobakhlou et al. (2003) noted, evolving connectionist systems allow for an

easier accommodation to a classification of new input classes than the networks mentioned

earlier. In SECoS, for example, just a new output unit is added and supplied with zero-

weighted incoming connections from the units of the evolving layer (cp., with the right side

of Figure 2.15). After that training can proceed from the point before the new output unit was

added with training data containing entities of the additional input class to adapt the evolving

layer and the weights of its new connections to the added output unit optimally. A rewind of

the training phase as common in other neural network approaches is not needed.

2.4.2 Temporal Probabilistic Models

Almost in parallel to the connectionist approach from the previous section another approach

to address signal processing arose from the control and statistics community. Common to both

communities is that they usually have to deal with time series of sparse and noisy perceptions

as well as uncertainty about how the observed environment will change over time. Consider

dynamic processes as for example navigating a robot through an unknown region that is just

observable by some sensors or to forecast weather or the stock market from past observations.

At each particular point in time those processes are in a certain state, which can be described

by a set of causally connected random variables called temporal probabilistic model.

The classical problem of this approach is that not all variables’ values may be known at a

given time. Some may be observable, others may not. Therefore such systems apply Bayesian

inference that tries to infer the probability distribution over the hidden nodes’ values from the

values of the known (observable) nodes. Formally speaking, let Xt denote the unobservable
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set of variables, and Et denotes the set of observations at a certain time slice t. If further a

sequence from i to j is denoted by i:j, then, following the notation of Murphy (2002), the

idea of temporal probabilistic systems is to model how Xt causes Et and Xt+1 and, then, to

infer X1:t given E1:t by the invert mapping using Bayes’ theorem.

Another challenge in temporal probabilistic systems is that, since they include new variables

with every additional time step, the set of variables is virtually unrestricted. With every vari-

able also a conditional probability table (CPT) or conditional probability distribution (CPD)

respectively must be specified, which defines the conditions for a state transition of that vari-

able. This implies that a virtually unlimited number of CPTs or CPDs might need modeling.

Additionally, if there exists an unrestricted number of variables, then each may have an un-

bounded quantity of parents. Without constraining assumptions this quasi-infinite character

would cause problems in both modeling and inference. Therefore, temporal probabilistic

models include two restrictions to prevent those problems.

The first assumption, which merely facilitates modeling, is that changes over time are caused

by a stationary process. The stationary character, i.e., assuming that the principles responsible

for state transitions of variables do not alter themselves, enables for exemplary conditional

probability modeling only for variables within a time slice.

Secondly, such systems must restrict their reasoning to a finite time frame to allow a constant

complexity per time step. Assume a fixed lag �≥0 so that t−�: t is the finite frame of time;

then the performance of a system would suffer if its reasoning depended on states beyond the

lag. Temporal probabilistic models address this constraint by applying the assumption that

the current state of a system depends on only a constant set of previous states that contain

all needed history information10. This belief was studied in depth by Markov (e.g., Markov,

1971) and hence is named Markov assumption. Similarly, processes satisfying the assertion

are called Markov processes or Markov chains.

The order of a Markov chain describes how far a state’s dependencies reach into the past,

i.e., if the current state of a system depends on only the previous state, the system is called

first-order Markovian. Using the formal notation, the corresponding conditional independence

10The connectionist approach suffers history information mainly. Recurrent neural networks mentioned in the
previous section also incorporate history by adding internal state units, but, according to Bengio et al. (1994),
those are not able to model long-term dependencies between states.
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assertion of a temporal probabilistic model usually is:

P
	
Xt | X0:t−1



= P

	
Xt | Xt−1



, (2.14)

which indicates that the entire evolution of the system is enclosed in the conditional distribu-

tion P
	
Xt | Xt−1



. This is called the transition model, in this case for a first-order Markov pro-

cess. In higher-order processes the conditional distribution is P
	
Xt | Xt−h, . . . , Xt−1



where

h is the order of the process. However, by augmenting the state-space higher-order processes

can be transformed to comply to the first-order Markovian condition (cp. e.g., Murphy, 2002).

Evidence variables Et must be restricted for the same reason. Russell and Norvig (2002) stated

that those typically depend only on the current state. Hence the conditional distribution called

sensor model is:

P
	
Et | X0:t , E1:t−1



= P

	
Et | Xt



(2.15)

In addition to transition and sensor model a temporal probabilistic system must always define

a prior probability distribution P
	
X0


over the state-space, which enables easy incorporation

of a-priori knowledge into the model. Combined with the conditional distributions from Equa-

tions (2.14 & 2.15) the joint distribution over all variables of the complete model can be given

as follows:

P
	
X0, X1, . . . , Xt , E1, . . . , Et



= P

	
X0

 t∏

i=1

P
	
Xi | Xi−1



P
	
Ei | Xi



(2.16)

This provides the general framework for temporal probabilistic reasoning, which for now is

independent of particular specifications of state-space, and prior, transition model or sensor

model. More concrete models are described in the following sections.

Hidden Markov Models

The hidden Markov model (HMM) introduced by Baum and Petrie (1966) and described in

detail by Rabiner (1989) and Bengio (1999) is a temporal probabilistic model with a single,

discrete random variable describing the state of the modeled temporal process at a certain

time. That is, the unobservable set of variables Xt ∈ {1, . . . , S}, where {1, . . . , S} is the finite
set of discrete states which the system can adopt. Usually S specifies a variable with a single

value, but additional values can be added by combining them into a variable of value tuples.
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The state set then consists of all combinations of individual values.

With the finite set of discrete states in HMMs the transition model P
	
Xt | Xt−1



turns into a

S × S matrix T, where the probability of a transition from one state i to another state j is

Ti j = P
	
Xt = j | Xt−1 = i



. Similar simplifications can be made for the other parameters of

HMMs, namely prior turns into πi = P
	
X0 = i



and sensor-model turns into a positive semi-

definite (psd) matrix O, where Oi = P
	
j | Xt = i



because Et is observable and, thus, known

to be j.

In principle the evidence variables Et in HMMs are not restricted to be symbols from a discrete

set Et ∈ {1, . . . , C}. So another option for Et is to form N -dimensional feature vectors in �N .

For this case it is common to represent the sensor model as a Gaussian:

pEt | Xt

	
j | i
=
	

j; μi , Σi


, (2.17)

with mean μi and covariance Σi or as a mixture of M Gaussians:

pEt | Xt

	
j | i
= M∑

m=1

pMt | Xt
(m | i)
	

j; μmi , Σmi


, (2.18)

where 
	
j; μmi , Σmi



is the Gaussian density with mean μmi and covariance Σmi evaluated

at j:


	
j; μmi , Σmi



=

1

(2π)
C
2 |Σmi | 12

exp
�
−1

2

	
j −μmi


′Σ−1mi

	
j −μmi




, (2.19)

and Mt is a hidden variable that specifies which mixture component to use based on the

conditional prior weight Wim = P
	
Mt = m | Xt = i



of each mixture component (cp. e.g.,

Murphy, 2002, pg. 7).

However, HMMs have one serious drawback. Due to the constraint that a complete hidden

state must fit into one single variable the number of possible values grows exponentially with

every addition of a new state feature. Consider the tracking (e.g., intentions) of a group

N of n individuals. If each person is in one of s possible states from the specified state set

S, then the hidden state of the model Xt =
�
X 1
t , . . . , X

n
t

� ∈ {1, . . . , S×N} can take O (sn)

different values from the Cartesian product of S and N . This leads inference as well as learning

into intractable problems. Many proposals were made to overcome these problems (e.g.,

factorial HMM (FHMM) (Ghahramani and Jordan, 1997), coupled HMM (CHMM) (Saul and
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Jordan, 1995; Brand, 1996), hierarchical HMM (HHMM) (Fine et al., 1998), or abstract HMM

(AHMM) (Bui et al., 2000)). However, this work does not dig further into details of those

proposals, since DBNs described in Section 2.4.2 generalize HMMs and simultaneously make

improvements to the issues (see e.g., Murphy (2002) or Bengio (1999) for more insights on

HMM variations).

Kalman Filter Models

The Kalman filter model (KFM) also known as linear dynamical system or – more informative –

as linear Gaussian model was introduced by Kalman (1960) to provide a model which is able

to describe the physical motion of objects as a temporal probabilistic process. Motion (e.g.,

the trajectory of an object) is usually characterized by continuity and linearity, and KFMs

provide several continuous random variables to model this sort of problems. For the trajectory

example that is, the state-space for object tracking might consist of a location L = (A, B) and a

velocity V =
�
Ȧ, Ḃ

�
in �2. Thus, the unobservable state at a given point in time is a vector of

continuous random variables Xt =
	
Lt , Vt



=
�
At , Bt , Ȧt , Ḃt

� ∈ �4. Note that for notation

reasons the mentioned case exemplifies the general case, where the hidden state is specified

by a vector of S variables and thus is Xt = (1, . . . , S) ∈ �S and the observable evidence is

Et = (1, . . . , C) ∈ �C .
Gaussian distributions are used to model the parameters for KFMs, which implies that the

current state Xt causes the next state Xt+1 with the help of a linear function plus a certain

amount of Gaussian noise. This means that the hidden state is Xt = TXt−1 +
	
μX , Q



and

its transition is modeled as:

pXt | Xt−1
	
j | i
=
	

j; Ti +μX , Q


, (2.20)

where T is a S × S matrix and Q is a S × S psd matrix called process noise. The evidence

function is specified similarly; i.e., Et = OXt +
	
μE , R



and the sensor model is:

pEt | Xt

	
j | i
=
	

j; Oi +μE , R


, (2.21)

where O is a C × S matrix and R is a C × C psd matrix called sensor noise. According to

Roweis and Ghahramani (1999), μX and μE can be added to the first columns of matrices T

and O respectively and hence are set 0 within the next equations.
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Returning to the above trajectory example, if a constant velocity V =
�
Ȧ, Ḃ

�
is assumed and

external influences are considered , then the hidden state expands to:

⎛⎜⎜⎜⎝
at
bt
ȧt
ḃt

⎞⎟⎟⎟⎠ =
⎛⎜⎜⎜⎝

1 0 δ 0
0 1 0 δ

0 0 1 0
0 0 0 1

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

at−1
bt−1
ȧt−1
ḃt−1

⎞⎟⎟⎟⎠+
 (0, Q) , where Q=

�
qa qab
q′ab qb

�
(2.22)

Then, assuming that just the position of the tracked object can be observed, the evidence is:

�
eat
ebt

�
=

�
1 0 0 0
0 1 0 0

�⎛⎜⎜⎜⎝
at
bt
ȧt
ḃt

⎞⎟⎟⎟⎠+
 (0, R) , where R=

�
ra rab
r ′ab rb

�
(2.23)

The problem with Kalman filter models is that they only allow for linear Gaussian transition

and sensor models. This always leads to a state distribution like the one on the left side of

Figure 2.16 (i.e., a multivariate Gaussian with a single maximum), even if another explanation

would obviously be more reasonable (e.g., the one shown on the right side of Figure 2.16).

In addition many real world applications, such as e.g., smart environments, require to in-

corporate nonlinearity and discontinuity into the model. Consider, for instance, inferring

the location of a person in a smart meeting room where places are modeled as nodes on

an undirected cycled path graph. If a single Gaussian is used to include all these places,

then usually the most probable location of the person would be everywhere but not at those

Figure 2.16: A bird flying toward an obstacle (top views). A Kalman filter will predict the
location of the bird using a single Gaussian centered on the obstacle (left). A more realistic
model allows for the bird’s evasive action, predicting that it will fly to one side or the other
(right). (Source: Adapted from Russell and Norvig 2002, pg. 563)
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places. Some attempts were made to overcome the very strong assumptions of linearity and

continuity and instead allow multimodality (e.g., extended KFM (EKF) (Bar-Shalom and Fort-

mann, 1988), unscented KFM (UKF) (Wan and van der Merwe, 2001), switching KFM (SKF)

(Murphy, 1998)).

Again, this work does not dig further into details of those attempts, since DBNs described in

the next section generalize KFMs, too. Furthermore, they allow for complex combinations of

discrete and continuous variables and, thus, overcome the limitations of KFMs.

Dynamic Bayesian Networks

With last century’s early Nineties a framework for representing temporal probabilistic models

was introduced that had much more expressive power than the models mentioned so far. It is

called dynamic Bayesian network (DBN), which is a variation of the term ‘dynamic belief net-

work’ coined first by Dean and Kanazawa (1988), and reflects the use of Bayesian inference in

such models. A key feature is the sparse encoding of Markov processes, which leads to slim-

mer modeling in comparison to, e.g., HMMs. Since their first usage by Dean and Kanazawa

(1988, 1990), Nicholson (1992), and Kjærulff (1992) DBNs were used in several approaches.

They became popular in various communities (e.g., computer vision (Bui et al., 2000; Duong

et al., 2005)), robotics (Liao et al., 2003), activity recognition (Patterson et al., 2003), and

activity monitoring (McCowan et al., 2003; Dielmann and Renals, 2004)) over the last years.

A DBN consists, as the other temporal probabilistic models, of a sequence of time slices. Each

time slice describes the possible state of a system at a given time t. A time slice consists of

a set of nodes that represent the system’s state variables at that time. State variables may be

connected through directed causal links. A connection such as X→ Y means that the current

value of Y depends on the current value of X . This dependency is described by a conditional

probability distribution (CPD).

The simplest form of CPD is a table, which is suitable when all node’s variables are discrete-

valued. Tabular CPDs, also called conditional probability tables (CPT), are denoted in the

following form:
X P (Y=0 | X ) P (Y=1 | X )
0 0.9 0.1

1 0.3 0.7

(2.24)

which in this example says that, in case X is 0, the value of Y will be 0 with a probability of
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Figure 2.17: Frequently utilized probability distributions: Gaussian (left), Cauchy (center),
and Exponential distribution (right) with different parameters.

0.9 and it will be 1 with a probability of 0.1. (If X is 1, Y will be 0 with a probability of 0.3

and 1 with a probability of 0.7.) Causal links may connect nodes within a time slice, they may

also connect nodes between time slices – the latter is used to express the fact that the state at

time t depends on the previous state at time t − 1. Note, as mentioned before, that this work

considers only temporal probabilistic models that are first-order Markovian; i.e., DBNs where

the state t depends only on state t − 1 and no previous states.

In case of continuous-valued nodes the CPD is specified by the probability density function

(PDF) of the underlying continuous distribution. Virtually every continuous distribution could

be used to describe the conditional probability of a node’s value. Figure 2.17 shows some one-

dimensional distribution exemplars. If, for example, the values are Exponential-distributed11,

then the CPD has the following form:

pY | X
	
j| i
= f

	
j;λi



=

⎧
⎨
⎩λi e

−λi j , j ≥ 0

0 , j > 0
(2.25)

where λ is the rate parameter12. In contrast, if the values are Beta-distributed the CPD looks

as follows:

pY | X
	
j| i
= f

	
j;αi ,βi



=

jαi−1 	1− j

βi−1

B
	
αi , βi


 , (2.26)

where α and β are shape parameters and B
	
α, β



is the beta function or Euler integral.

Several other CPDs and PDFs are regularly used with DBN modeling. Murphy (2002) provides

a well structured and detailed overview on this topic in his work’s appendices.

11Exponential distribution can be used to model events, which take place during a fixed time span but tend to
prolongations (e.g., talks, lectures).

12A rate parameter is the reciprocal of a scale parameter that both must affect the size of a distribution. Other
parameters could be location or shape parameters that shift and reshape a distribution respectively; e.g., Gaussian
and Cauchy distribution apply location and scale parameters, and others apply shape parameters.
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The characteristics of dynamic Bayesian networks drawn above indicate that DBNs are able to

generalize the previously mentioned HMMs and KFMs. This is shown in Figure 2.18 where the

HMM and KFM examples from the previous sections are depicted as DBN structures respec-

tively. The representations follow the standard convention where shading means that a node

is observed. Clear nodes represent hidden variables of the network. Two slices of the network

are depicted representing the state-space of the current and the previous time slice. The di-

rected links between nodes in combination with CPTs and CPDs describe the dependencies of

discrete-valued and continuous-valued variables in the network respectively.

The difference between DBNs and HMMs is characterized by Murphy (2002, pg. 15), report-

ing “that a DBN represents the hidden state in terms of a set of random variables, X 1
t , . . . , X

Nh
t ,

i.e., it uses a distributed representation of state. By contrast, in an HMM, the state space consists

of a single random variable X t .” The DBN representation of the KFM in Figure 2.18 shows

a trivial exemplar of such a distributed state representation, since it distinguishes between

position P and velocity V . The distribution has the advantage that in contrast to HMMs just

the required variables and ‘real’ dependencies must be stored instead of the Cartesian product

of variables and values (cp., Section 2.4.2). About the difference between DBNs and KFMs

Murphy (2002, pg. 15) stated: “that a KFM requires all the conditional probability distributions

(CPD) to be linear-Gaussian, whereas a DBN allows arbitrary CPDs.” Generalization in DBNs

overcomes the typical limitations of KFMs, i.e., linearity and continuity (cp., Section 2.4.2),

and enables tracking for nonlinear discontinued real world applications, such as smart envi-

EtEt−1

Xt−1 Xt

P (X0 = t)
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t

f

P (Xt = t)
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t

f

P (Et = t)

0.9
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slice t − 1 slice t
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N (j; Oi + μE , R)
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Figure 2.18: DBN structure for a HMM (left): Discrete valued conditional distributions of
prior, transition model and sensor model in a HMM. A row in these CPTs must sum to 1.
P
	
X0 = f



, P

	
Xt = f



, and P

	
Et = f



were skipped, since those can be derived from the

other values. DBN structure for a KFM (right): Xt =
	
Lt , Vt



=
�
At , Bt , Ȧt , Ḃt

�
is the hidden

state-space. The structure indicates that the velocity V̇ just depends on its previous state but
the position P depends on the previous position as well as the velocity of the tracked object.
Position is observed by sensors. All CPDs are linear Gaussian.
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ronments. Obviously the generalization introduces additional costs in modeling and forces

extended computational power, but the distributed state-space, the nonlinearity and disconti-

nuity; all advantages, that follow not least from the less restricted topology and more general

graph structure respectively, introduce a good balance between expressiveness and manage-

ability, and make DBNs the representation of choice in the control and statistics community.

2.4.3 Relevant Essence

Reviewing methods for modeling in signal processing has brought the realization that the

granularity of the modeling itself and the selection of an appropriate method for modeling is

strongly related to the goal of modeling and the capabilities that observation of the environ-

ment can provide. The modeling may aim to exactly understand the one process that leads

to an output, or the purpose is to model a process that provides an appropriate explanation

and prognosis of output data respectively. Cowell et al. (2007) categorized the different pur-

poses of modeling as scientific versus technological modeling and put a definition of both the

following way:

Scientific modelling is concerned with attempting to understand some assumed ‘true’

objective process underlying the generation of data. This process, if it were known,

could be used for purposes of explanation, or causal understanding, as well as predic-

tion. By definition, there can only be one true process, and the purpose of inference

is to say something about what it might be.

Technological modelling has less grandiose aims. The purpose of such a model is

to provide a good explanation of past data, and good forecasts for future data, ir-

respective of whether it corresponds to any underlying ‘reality’. Thus, the object of

inference is now the usefulness, rather than the truth, of a model. From such a

viewpoint, one can allow the co-existence of several different models for the same

phenomenon. (Cowell et al., 2007, pg. 244)

In principle both ‘schools’ of modeling, connectionist as well as probabilistic, are equally ap-

plicable to both purposes of modeling, scientific as well as technological. However, it ap-

pears that the connectionist approach (instance-based, non-parametrizable) is more likely

used for scientific modeling due to its neurobiological “brain metaphor” roots (cp. with Sec-

tion 2.4.1), whereas for a technological modeling purpose the probabilistic approach (model-
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based, parametrizable) obviously seems reasonable because Bayesian inference on random

variables provides the most probable explanation for an observation.

Another influencing question for selecting modeling methods is whether the model has to

handle sequences of data (e.q., time or genome) or not. If the current state of a system

depends on previous states in a sequence, then this has to be considered when choosing a

modeling method. Both approaches provide methods for modeling recurrence of stationary

states, but according to Bengio et al. (1994) the connectionist approach of recurrent neural

networks shows amnesia to long-term dependencies, whereas probabilistic approaches avoid

this problem.

Further, the amount and the quality of observation data as well as a-priori knowledge about

a process may have an impact on the modeling decision. If the data is precise and covers the

significant information of an operating process, then a connectionist method is probably the

right choice for modeling. Also if the problem is not understood quite well but a large amount

of precise data was collected such a method can yield good solutions. On the other hand, if

only incomplete and noisy observations are available, but a-priori knowledge can be brought

into the design, a probabilistic approach for modeling provides a better solution.

Finally, the application domain constrains which types of models are suitable for modeling

the processes of the domain. If a highly dynamic environment must be observed, such as the

Smart Meeting Room Environment sketched in Section 1.6, then it is mandatory to decide for

flexible modeling techniques. Here, connectionist methods show a disadvantage compared

to probabilistic methods due to their long training phase. Besides ECoS (cp., Section 2.4.1)

all discussed neural networks must be retrained from the beginning if the structure of the

network is changed.

Summarizing the section on modeling in signal processing, this subject area provides several

modeling methods, connectionist as well as probabilistic. I have learned that

• modeling is driven by the overall purpose, i.e., scientific versus technological,

• sequences require special attention, since they incorporate intractable issues quickly,

• method selection is tied to process insight, available data, and observation capabilities,

• dynamic processes need modeling techniques that flexible scaling with the problem.
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This knowledge in combination with the findings from the psychological areas mentioned

before offers a good starting point for the conception of a model for robust and training-free

prior knowledge real-time intention analysis in teams. But before starting the introduction of

my concept for such a model in the next chapter I briefly summarize the current chapter.

2.5 Summary

The current chapter reviewed fields from psychology, namely social psychology and cognitive

psychology. The review identified on the one hand social aspects from the nature of groups

and on the other hand functionalities of human cognition that both exert influence on deci-

sions to make in the design and method selection for this work’s system concept. Afterwards

this chapter enlightened on a selection of different methods from the signal processing field.

This selection based on the findings from Section 1.5 and aimed to contrast the varying fea-

tures of these methods. Pertinent aspects for each section were condensed in a Relevant Essence

subsection (cp., with Sections 2.2.7, 2.3.6 & 2.4.3). Together these subsections provide the

findings that are essential for a revision of the concept criteria. The next chapter explains in

adequate detail this work’s proposal for a team intention model based on the revisited criteria

catalogue.

87



88



Chapter 3

The Team Intention Model Approach

3.1 Introduction

This chapter explains the concept of a robust system for real-time intention analysis in teams.

It starts with the refinement of criteria based on a reworking of the scenario given in Sec-

tion 1.6 and a description of the concrete lab situation in my department’s SmartAppliance-

Lab. Then the proposal of this work – the agenda-driven Team DBN – is introduced. It is

explained which methods from the previous chapter can be utilized to structure team tasks

and to design team intention models in general. A short note outlines an approach for model

generation. After that inference tasks are identified that must be solved for the Team DBN

and the approaches utilized for this concept are explained in detail.

To prove the proposed concept, tools and an experimental infrastructure were designed and

realized. Hence, this chapter also explains requirements and architecture for the implemented

experimental infrastructure. Finally, the usage of the enclosed components and modules is

described. But next this chapter starts with considerations about the scenario and the lab in

order to refine the criteria catalogue.

3.2 Instrumenting the Lab

Fields from psychology, specifically social psychology and the problem solving subfield of

cognitive psychology, showed that it is possible and suitable to break down human behavior

and the nature of groups into categories and that individuals as well as groups apply several
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correlated individual and group tasks to achieve certain team goals. If one is interested in

inferring team goals to be able to offer goal oriented assistance – as my department does –

a task oriented framework or lexicon seems to fit best for such a “goal–task–action” break

down. Once such a lexicon of tasks – an agenda exists, a major question is how such a-priori

knowledge about a team can be utilized for a team intention model.

Several pieces of information can be extracted from an agenda. First, an agenda (e.g., the

one from Figure 1.3) provides a temporal sequence of a set of group tasks which will probably

occur during the course of a meeting. Secondly, a person’s name assigned to a task may refer

to a special role of that person within the team. He adopts this role very likely, if the team

intends to process this specific task. That is, ‘Presentation of Proposal of Software Architect

Sheldon’ from the agenda example means that Sheldon has the presenter role and all other

team members may adopt the listener role but at least are not presenters at the same time.

Finally, a specific agenda can be split into a kind of task hierarchy. It may consist of a set of

somehow related team tasks or actions that may form a tree-like hierarchy, but at least splits

into a set of quasi-parallel user action sequences of the team members. Imagine the following

more concrete scenario to realize how agenda information fits into the process.

3.2.1 Concrete Scenario

The scene starts at the ‘meeting attendees entering room’-situation of the scenario given in

Section 1.6: Remember Sheldon, Leonard, and Penny. The three staff members of an IT de-

partment enter the Smart Meeting Room to meet for a presentation and discussion session.

The appliance ensemble of the room is aware of the purpose of the meeting. Preliminary

agenda information was incorporated into a model that provides information about usually

aspired team tasks and related user actions as a-priori knowledge. While Sheldon, Leonard,

and Penny move within the room their motion is tracked utilizing ToA-positioning of their RF-

badges. Those pieces of sensor information are not as reliable as one would expect. Sparse,

intermittent, and noisy sensor readings are challenges that the model has to handle. At the

beginning of the meeting the team of software architects changes the course of the appointed

presentations spontaneously. Leonard walks to the presentation stage to give his talk. With

the assistive power of the appliance ensemble this represents no problem. The incorporated
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model provides inference mechanisms that are able to recognizes the deviation1. So, the

appliance ensemble of the room guesses the correct team intention, brings forward the pre-

sentation of Leonard, and puts it onto the screen just before he enters the presentation stage.

After Leonard’s talk, the team turns back to the agenda and Sheldon presents. Finally, chief

architect Penny moves for presentation (shown in Figure 3.1 on the left side). The ensemble

infers one team intention after another and every speaker is proactively provided with his

particular presentation.

This description is a subset of the scenario given in Section 1.6 and contains assumptions

which limit the scope that the proposed concept has to cover. Note that the limitations were

made merely for experimental reasons. In summary the scenario allows 5 team intentions

aka. activities or tasks (i.e., presentation of Sheldon, Leonard, and Penny, discussion, exit) ×
2 team actions (i.e., prepare a task, and perform a task) × 3 users (Sheldon, Leonard, and

Penny) × 4 user actions (i.e., wandering around, sit & listen, presenting slides, and leave

room). Limitations that may rely on the available laboratory infrastructure are described in

the next section, which gives an overview about the SmartApplianceLab.

3.2.2 Concrete Lab Situation

The right side of Figure 3.1 shows the built-in appliances of the SmartApplianceLab. Remem-

ber, the purpose of this laboratory is to assist teams in meeting situations. Thus, it obviously

has to contain typical meeting room equipment. So, built into the lab is a battery of projec-

tors (one of them steerable), and there are several controllable motor screens2 and lamps.

Further the lab is equipped with a few different sensor systems. These include presence sen-

sors, RFID-based access control, and a ultra-wideband-based (UWB) indoor-positioning sys-

tem called Ubisense Platform to observe users in the room. Additionally, some environment

sensors (e.g. inside and outside temperature, humidity, luminosity) are available to capture

the overall environments state. Note that this work exclusively utilizes sensor information

from the Ubisense Platform due to two reasons: 1.) some sensor equipment was not available

in the lab as experiments took place, and 2.) the focus of this work is rather on modeling the
1Note that Leonard could walk to presentation stage for other reasons (e.g. to adjust the mic or to pic some

whiteboard markers). But because the inference process considers his activity not independent from the other
team members’ activities it is still able to recognize that an activity is going on, which is not on the agenda. In
this situation the ensemble could ask the team what to do or it could show no reaction. This would be a matter of
strategy planning and the available acting appliances.

2In both drawings of Figure 3.1 eight rather hard to recognize motor screens are depicted by slim red and gray
lines; three on each side wall and two screens that simultaneously work as window blinds on the end wall above.
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Figure 3.1: Schematic bird views of the SmartApplianceLab: A scene from the scenario de-
scribed in Section 3.2.1 (left), where are Ubisense Platform sensors for localizing the in-
herent tags worn by persons . Equipment of the laboratory (right), furthermore, includes
switches , buttons , and dimmers to control projection surfaces (red and gray lines near
the walls) and lamps manually. and are stenciled projectors where the icon with
arrows indicates that this projector is steerable.

negotiation process of a team about the course of their intended tasks than on fusing sensor

data. Thus, in Figure 3.1 just the Ubisense Platform sensors and tags are depicted. Obviously

the very existence of sensing and acting appliances or perception and motor components re-

spectively does not lead to smart assistance of the lab’s user. Reasoning components have to

infer user needs, and decision making is needed to plan an appropriate strategy for assistance.

Furthermore, as Coen et al. (1999) phrased it, some “computational glue” has to be provided

for interconnecting all SmartApplianceLab components and channelling information among

them.

Ensemble Communication Framework

Figure 3.2 shows the components of the Ensemble Communication (ECO) framework built

for the SmartApplianceLab. The ECO framework incorporates the components needed for the

software infrastructure of a smart environment in a distributed manner where no central com-

ponent is required. Rather, Zeroconf3 communication channels enable seamless subscription

3“[Zeroconf is a]n IETF specification that enables devices on an IP network to automatically configure themselves
and be discovered without manual intervention. If required, Zeroconf can assign an IP address and alternate host
name to a device. Once assigned, Zeroconf lets users and applications readily discover the service it offers.” (TechWeb:
TechEncyclopedia, 2008)
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Figure 3.2: ECO framework components utilized to form an ensemble out of the equipment
and optional mobile devices mentioned in Figure 3.1. Blue color in the drawing means third-
party hardware and software. ECO framework components are colored red and green, where
green represents test and helper components. Beige emphasizes the reasoning component
the concept of this work is intended for. Socket interfaces provide homogenous access to the
devices. Adapters encapsulate device specific hardware interfaces. FS indicates access to the
file system. Other abbreviations on the socket level indicate device specific communication
protocols. A device in combination with an ECO framework service forms an appliance. All
appliances can interconnect via two Zeroconf channels to exchange context information and
action requests. CC means ContextChannel and AC stands for ActionChannel.

of appliances and take care that sent messages get through to their addressees. As indicated

by the arrows from communication channels to different appliances and vice versa, the ECO

framework allows its appliances to subscribe to communication channels in various ways. Ap-

pliances can connect to each of the available channels as sender and/or as listener. Virtually

every combination of subscriptions is possible, but depending on the purpose of an appliances

only a certain subscription patterns may be meaningful:

• Send to the CC – Several appliances act as perceptual components (e.g., LightService,

SurfaceService, DisplayService, AgendaService, LocationService) and thus load the Con-

textChannel (CC) with context, status or sensor information respectively.

• Listen at and send to CC – The IntentionAnalyzer is the reasoning component that sub-

scribes to CC as listener and sender in order to read data from CC, interpret it, and

upload the interpretations or predictions back to the CC.
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• Listen at the CC and send to the AC – The StrategyPlaner is the decision making com-

ponent that reads appliance states and intention interpretations to decide for a set of

appropriate assisting actions. Then, these actions are requested via the ActionChannel

(AC).

• Listen at the AC and send to the CC – Finally, another set of appliances, which is not

inevitably disjunct from the perceptual components above, runs as motor components

(e.g., LightService, SurfaceService, DisplayService, ContentService) and processes the

action requests from the AC.

Virtually every component could run on its own computer, or even better, the computer itself

could be integrated into the smart appliance. Thanks to Zeroconf, these smart appliances can

then form and configure a smart environment in an ad-hoc manner to share their states and

negotiate about user needs.

Note on Ubisense Platform

Ubisense is a precise real-time location system (RTLS) company, utilizing UWB technology to

deliver a six-dimensional feature vector (i.e., {X,Y,Z,Roll,Pitch,Yaw}) of position in, as they

claimed, “unprecedented levels of precision, responsiveness, reliability and scalability” (Ubisense,

2008). The frequency range for UWB is specified as between 3.1 and 10.6GHz. Using such ex-

tremely short pulsed signals provides mainly two advantages for position calculation: 1.) these

signals are able to pass through objects such as walls and clothing, which results in compu-

tations that are not influenced by signal covering (RFID and laser range finders suffer from

this problem.) and much less affected by multi-path distortions (This is a serious problem for

conventional RF technologies and ultra-sonic waves.), and 2.) if multi-path distortions still

appear (e.g., on metal surfaces or objects with high water content), then the filtering of the

correct signal is much easier than with conventional RF technologies.

In addition to the advantages inherent to UWB technology itself the Ubisense Platform com-

bines the two common methods for location calculation, namely time difference of arrival

(TDOA) and angle of arrival (AOA), to get more reliable results than others. Ubisense stated

that their UWB-based RTLS “can be typically accurate to about 15cm” (Ubisense, 2008). This

was one argument to utilize Ubisense Platform in the SmartApplianceLab, because accurate
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reliable sensor data may be crucial for learning robust model parameters4. Another argu-

ment was that the localization with ID-tags incorporates a simple way for identifying single

users in team environments, and, thus, avoids a problem described by Schulz et al. (2003) as

track confusion, which appears with the use of anonymous sensors such as presence sensors

or pressure mats in environments where multiple users need to be tracked.

3.3 Criteria Revisited

After the in-depth investigations made in Chapter 2, the appropriation to a concrete scenario

in Section 3.2.1 and the introduction of the SmartApplianceLab in the previous section it is

reasonable to revisit the criteria catalogue for the team intention model from Section 1.7 and

decide which methods fit best to the criteria and which conflict with them. Remember, the

relevant criteria for the team intention model are:

• pursuance of a training-free prior knowledge approach,

• capability of using various lexica of team activities (i.e., agendas),

• allowance for easy extensions (e.g., to larger teams),

• support of real-time recognition,

• provision of robust recognition from simple sensor data,

• tracking of team activity history, and

• separate modeling of complex team and atomic user activities.

Several criteria indicate that a neural network approach is inadequate for team intention

recognition. First of all, this is because neural networks enable hardly the integration of prior

knowledge. Thus, they always need a training phase to adjust the weights of their particular

neurons. This also balks the easy extension to larger teams or new sensors and inhibits the

change of team activity lexica in such a model, because after every change of the network’s

structure the whole network must be retrained. Here, ECoS’ form an exceptional case, since

these networks just retrain new or changed nodes in the net. Nevertheless ECoS’ need initial

4However, in fact it turned out that the claims made by Ubisense were somewhat ambitious.
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training too. Finally, even a fourth criterion is an argument against a neural network ap-

proach. With a neural network it is difficult to ensure tracking of history, since this approach

in some characteristics (e.g., feedforward neural nets) does not enable modeling of memory

and in other characteristics (e.g., recurrent neural nets) tends to unlearn its memories.

KFMs are also unsuitable to address intention inference. Never even the people tracking issue

allows the usage of a KFM approach. Various furniture in the SmartApplianceLab (cp. with

left side of Figure 3.1) indicate that localization of people is not a linear tracking problem,

which KFMs could handle. Besides this, modeling the system state in more than one hidden

node is not allowed in KFMs, which is in contrast to the separate modeling criterion and also

inhibits an easy model extension.

HMMs suffer from the same problems. In their original form they also bar modeling sys-

tem states in more than one hidden node and, thus, violate the separate modeling and easy

model extension criteria too. Additionally HMMs have this complexity problem mentioned

in Section 2.4.2 due to their modeling restrictions. Remember that the state space grows

exponentially with the number of state features.

DBNs, in contrast, fit well to the criteria catalogue. With DBNs it is easy to incorporate a-

priori knowledge, which makes them usable without a training period. The state space can

consist of several hidden nodes, which in fact enables separate modeling of team and user

activities. A virtually unlimited number of hidden nodes provides enough space for the track-

ing of even large histories. Further, the first Markov assumption inherent to all mentioned

temporal models combined with DBN-specific sparse encoding of node dependencies allows

for a compact mapping of a temporal process on a stationary model. Combined with an ap-

proximative inference method (e.g., particle filters) such a stationary DBN can deliver robust

recognition results in real-time. Finally, choosing a modular and hierarchical design for a

model permits the required capabilities to change the lexica of team activities and adjust the

model to different team sizes easily.

Table 3.1 again summarizes the above discussion and indicates that a DBN is the representa-

tion of choice for the concept proposed with this work, since all criteria are satisfied.
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Table 3.1: Matrix summarizing Criteria Satisfaction of the different modeling approaches.
Gray fields mean that the approach satisfies the criterion partly; e.g., RNNs and ECoS’ have a
memory but tend to amnesia, or HMMs and KFMs can handle various agendas but due to the
single hidden node it is hard to change them.

Neural Networks Probabilistic Models

FNN RNN ECoS HMM KFM DBN

Criteria

training-free prior

various agendas

easy extension

real-time recognition

robust recognition

history tracking

separate modeling

3.4 Agenda-driven Team DBN

Now that the modeling approach is chosen, the next step is to deliberate how agenda infor-

mation like that described in the scenarios (cp., Sections 1.6 & 3.2.1), can be prepared to fit

into an explicit probabilistic team intention model as a-priori knowledge. As already men-

tioned in Section 3.2.1, the earlier review of the social psychology aspects regarding teams

in Section 2.2 indicated that an agenda could be seen as an outline of a goal-oriented team

process, which roughly describes a sequence of team tasks that a team intends to execute.

And the review of problem solving strategies in Section 2.3 revealed that it is reasonable to

model such a sequence as a hierarchical breakdown into atomic actions. Hence, the approach

for this work is to define a task model that specifies the breakdown of a sequence of composite

activities into individual atomic steps, between which a partial order may be defined. Roughly

speaking it describes a plan of actions, where the term action will denote an atomic step in

the task sequence. Remember, the concept of task models originates independently from two

research areas:

In cognitive psychology, task models have been developed as a means for formally describing

human problem solving behavior. Section 2.3 presented a set of very good examples for this

class of models that are merely applied as the foundation of several proposals for model-based

adaptive user interface design (e.g., Mori et al., 2002). These models can be used in two ways:
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1.) for analyzing the cognitive complexity of given user interfaces or workflows, and 2.) for

designing user interfaces or workflows by first developing a model of the task at hand and

then choosing appropriate (dialogue) elements for the individual atomic activities.

As introduced in Section 2.4 in signal processing, technological task models have been devel-

oped as a means for estimating the actual behavior of a signal source, for which only incomplete

and noisy observations are available. The fundamental algorithmic approach is Bayesian fil-

tering. A Bayesian filter requires a hypothesis about a signal source’s behavior repertoire,

a hypothesis about which behavior will cause what observation, and a set of observations.

Based on this information, the filter will yield the most probable explanation for the observed

data – i.e., the most probable behavior of the signal source given the observations (see e.g.,

Russell and Norvig (2002) for an introduction to Bayesian filtering).

However, the specific kinds of task models used for addressing the above two challenges differ

significantly. In the area of adaptive user interfaces and work flows, hierarchical task graphs

are used whereas for behavior inference, probabilistic temporal models – such as dynamic

Bayesian networks – are employed for describing behavior by specifying the probabilities of

different possible causes for a certain situation. Consequently, in both areas models are cur-

rently developed independently.

But, once signal sources are human users, as in the scenario described in Section 3.2.1, and

the Bayesian filter wants to infer what the users probably do, then the relation between both

origins for task models becomes clear. Intuitively, one would assume that a model which

specifies the temporal orderings of subtasks of a team should have some relation to a model

that specifies what a team of users will probably do next.

If observation data is provided by location sensors (e.g., the UbiSense Platform mentioned

in Section 3.2.2 or GPS), accelerometers attached to a user’s body (or his mobile phone),

or information about objects touched by the user (using, e.g., RFID), then a model correctly

describing a team’s strategy for achieving a certain goal is an ideal hypothesis for a Bayesian

filter. Given a task model and a set of sensor readings, a Bayesian filter will output the user’s

most probable goal.

In essence this means, that, from a viewpoint of mobile and ubiquitous computing, combining

the independent developments of task models from cognitive psychology and signal process-

ing origins for the use in smart environments has two important uses:1.) As a means for
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deriving the dialogue structure of a mobile human computer interface or the workflow of a

collaborative group situation (hierarchical tasks models). 2.) As a means for providing activity

support for users (and teams) through proactive assistance (probabilistic behavior models).

3.4.1 Structuring Team Tasks

With respect to hierarchical task models, one of the most popular notations is the CTT nota-

tion already mentioned in Section 2.3.5. In this notation, a compound activity is represented

by a task-tree. Each node in the tree represents a task; composite tasks may be broken down

into subtasks. For each task node it may be specified if this activity is executed by the user,

by the application, or by an interaction between user and application. Remember that in ad-

dition, the possible execution sequences of a composite task’s sibling nodes may be further

constrained by temporal relations such as “α |= | β” (α and β may be executed in any se-

quence), “α | | | β” (α and β can be performed in any order, overlapping, or at the same time),

or “α >> β (α has to be executed before β).

Figure 3.3 presents typical CTTs, describing the agenda from the scenario in Section 3.2.1. The

meeting consists of three talks by users A, B, C (represented by the task nodes A Presents, B

Presents, and C Presents, respectively in the task tree that is labeled “Cooperative Part”) and

Cooperative Part

Presenter Role

Move to Stage Give Talk

Present Slides

Listener Role

Move to Seat Listen

Sit & Listen

Panelist Role

Move to Seat Debate

Sit & Debate

>>>>>>

Discussion

Debate
(Panelist:C)

|||

Debate
(Panelist:B)

Debate 
(Panelist:A)

|||

C Presents

Listen
(Listener:B)

|||

Listen
(Listener:A)

Give Talk
(Presenter:C)

|||

B Presents

Listen
(Listener:C)

|||

Listen
(Listener:A)

Give Talk
(Presenter:B)

|||

A Presents

Listen
(Listener:C)

|||

Listen
(Listener:B)

Give Talk
(Presenter:A)

|||

|=| |=| >>

Process Agenda

Figure 3.3: Task model in CTT notation specifying the schedule of the meeting described by
the scenario in Section 3.2.1 as a cooperative composite task. Node icons correspond to the
legend of Figure 2.9.
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a discussion (task node Discussion in the same task tree). The talks can be given in any order,

which is specified by the temporal relation order independency (“|= |”). But the discussion

can only be performed after all talks were presented. This is specified by the enabling relation

(“>>”), which implies that all tasks left from the operator have to be finished first.

During the meeting users can adopt three different roles, namely Presenter, Listener, and

Panelist. The role task trees arrange the atomic actions that are associated with each role.

In this model each role consists of a preparation stage (i.e., ‘Move to Stage’ or ‘Move to

Seat’) and an acting stage (i.e., ‘Give Talk’, ‘Listen’, ‘Debate’). The enabling relation (“>>”)

indicates that acting only starts if preparation is done and the bidirectional arrows expresses

that the acting stage is a cooperative action where users may influence each other. How

people influence each other during acting stage is communicated by the relations between the

atomic action leaves of the task tree representing the cooperative part. Here, the users just

act in parallel. This is indicated by the concurrency relation (“| | |”).
Typically, hierarchical task models are used to specify how users behave while interacting ei-

ther with a software system or with each other in cooperative scenarios. Although they allow

to describe the basic temporal structure of compound activities in smart environments, which

is required for the concept proposed with this work, additional information are needed for

inferring activities and intentions of users from sensor data. Methods for intention inference

must know how probable at all a certain execution sequence of the agenda is, and how proba-

ble a particular team activity as a cause for a set of observations is. The next section describes

the approach to address this problem.

3.4.2 Team DBN Proposal

As outlined above, computing a user’s current activity from sensor data requires a task model

that allows to make statements about the plausibility of sensor data given a specific activ-

ity. A system can then try to identify the user’s current task by selecting that task whose

action sequence is most plausible with respect to the observed sensor data. As the related

work presented in Section 1.4 has shown, probabilistic methods for identifying a user’s cur-

rent task, specifically Bayesian Filtering, have been successfully used in several projects that

aim at supporting user activities in classrooms, meeting rooms, and office environments (e.g.,

Franklin et al., 2002; Bui, 2003; Duong et al., 2005). Even offline annotation frameworks
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use Bayesian approaches to segment recorded meeting corpora into sequences of user activ-

ities (Zhang et al., 2004; McCowan et al., 2005). Projects from the application fields just

mentioned increasingly investigate dynamic Bayesian networks (DBN) for modeling a user’s

activities (e.g., Patterson et al., 2003, 2004; Zhang et al., 2006).

As mentioned earlier, this work also proposes a DBN-based approach, but it looks at using

DBNs for inferring the current activity and the intention of upcoming activities of a team

of users. Given (noisy and intermittent) sensor readings of the team members’ positions in

a meeting room, I am interested in inferring the team’s current objective – such as having a

presentation delivered by a specific team member, or having a round table discussion, a break,

or the end of the meeting. In order to define a complete probabilistic model, sub-models have

to be provided for the following three aspects:

• How a team produces a sequence of joint intentions (Team model),

• Which actions a user performs in response to a joint intention (User model), and

• Which sensor data are caused by what actions (Sensor model).

Hence, the basic structure of the DBN proposed for modeling the cooperation of such a team

can be given by the directed acyclic graph (DAG) that is shown in Figure 3.4. The principal

approach is to layer the DBN into three descending levels, specifically team level, user level,
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Figure 3.4: Two-sliced dynamic Bayesian network (DBN) modeling team intention inference.
It shows the three levels, the intra-slice dependencies between observable (double-contoured)
and hidden variables, as well as the inter-slice dependencies between consecutive states.
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and sensor level that break down the complex inference task to the unit level of atomic sensor

readings. Besides the team level that contains just a single node, each level consists of a set

of nodes (proportional to the number of team members) that encode the current composite

state of this level’s variables. The depicted DBN shows how the goal-oriented behavior of a

team of three users during a meeting is modeled. In order to exploit agenda information, a

DBN structure is needed that is able to incorporate an explicit agenda, and that represents

a technological mapping of the negotiation process between the team and its members dur-

ing activity selection. In principal a team’s negotiation about new activities (team and user

respectively) can be put as follows:

done ← TRUE;
for i = 1 to #U do

if U (i)t .done 
= TRUE then
done← FALSE;
return;

if done = TRUE then
Tt .history ← Tt−1.history∪ Tt−1.activity;
Tt .activity ← a probable team activity from the agenda that is not in Tt .history yet;
for i = 1 to #U do

intialize G(i)t ;
G(i)t .activity ← an user activity that is related to the selected team activity;

else
for i = 1 to #U do

G(i)t ← U (i)t ;

Team Level

At the top level, the TeamNode Tt represents the current team intention. The team’s intention

at time t depends on what the team has already achieved (i.e., TeamNode T at time t −
1, Tt−1), and what the users i are currently trying to achieve (the UserNodes U (i)t , where

i ∈ {A,B,C}). If all users have achieved their individual assigned sequence of actions for

the current team intention, the team T will adopt a new intention. This may cause new

assignments to the users. The UserNodes G(i)t represent these – possibly new – assignments.

For decision making in this group process this means that at each time slice the team looks at

what the users have achieved so far, and then decides what the users should do next. The CPT

of TeamNode T therefore represents the negotiation process by which the team members
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Table 3.2: Conditional probability table of TeamNode T .
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agree on the next joint activity. For instance, if the team decides that the next activity should

be the presentation of user A, it would assign to user A the presenter role with the tasks to

go to the speaker stand and deliver his contribution, while users B and C would adopt the

listener role, which refers to the tasks to take a seat in the audience and listen carefully.

The CPT of the TeamNode T in the proposed network basically looks as shown in Table 3.2.

The history slot of the T node records the team’s previous activities. Given a set of team

activities A, an execution history is a set of team activities that already have been performed.

The set of all execution histories is the power set of A, which is denoted by 2A. Note that

this model makes the simplifying assumption that the exact sequence of team activities is not

important for recording history. However, it is easy to change the history model to a sequence

model. The activity slot denotes the team’s current goal that the users try to achieve jointly

through their individual assigned sequence of atomic actions. If all users are done with their

assignment, the TeamNode T will add the current activity α to its history h and it will then

choose a new activity ξ. Otherwise, it will continue its current activity.

In the depicted CPT, mmodel is the essential point. It is a function that, given the execution

history of TeamNode T at current time step t and a new activity ξ, will yield the probability

that the team will choose ξ as next activity. The mmodel-function includes a-priori informa-

tion, namely the agenda, and decides from agenda and execution history about what a team

will most likely do next in a certain situation. Remember the task model for the cooperative
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A B C D|=| |=| >>

Figure 3.5: Task model specifying the schedule of a meeting.

part of the scenario from Figure 3.3 described in Section 3.2.1, a more schematic drawing

of the preliminary knowledge about the meeting structure in Figure 3.5 indicates that the

possible activities of the team are the elements of the set {A,B,C,D} and the system knows

that the team has an agenda stating the sequence of team activities 〈A,B,C,D〉. Obviously,

in this situation mmodel should return the highest probability for team activity B when given

the history {A} – modeling the prejudice that a team tends to follow its agenda. However,

the same function should also assign non-zero probabilities to the other actions in order to

account for the possibility of deviations from an agenda.

A possible model for the simple four-step agenda from the scenario that states “A, B, C may

happen in any order but most probably in the order 〈A,B,C〉, while D must be the last action.”

is given in Figure 3.6. The figure indicates that mmodel essentially specifies a Markov Model

where the states are partial execution histories (e.g., {A}, {A,B}, etc.) and the edges are tran-

sitions between execution histories. Transitions are labeled with probabilities of how likely

the team will try a certain new team activity after a particular execution history. Probability

values encode the most probable execution sequence.

∅
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Figure 3.6: Markov model of the agenda driven team activity selection process with exemplary
transition probabilities.

104



The Team Intention Model Approach

Table 3.3: Deterministic mapping of team goals to user roles and assigned action sequences
for the concrete scenario.

Team Goal User Role Action Sequence

A Presents A Presenter Move to Stage Give Talk

B Listener Move to Seat Listen

C Listener Move to Seat Listen

B Presents A Listener Move to Seat Listen

B Presenter Move to Stage Give Talk

C Listener Move to Seat Listen

C Presents A Listener Move to Seat Listen

B Listener Move to Seat Listen

C Presenter Move to Stage Give Talk

Discussion A Panelist Move to Seat Debate

B Panelist Move to Seat Debate

C Panelist Move to Seat Debate

User Level

With new team activities, new user activities must be assigned to the team members, too. The

negotiation about new assignments of user actions can be either deterministic or probabilistic.

A probabilistic negotiation would follow the approach described above for the TeamNode T .

But in closed scenarios where team goals lead to unambiguous user goals also deterministic

assignments of atomic user action sequences may be used for simplification. Staged meeting

scenarios as described in Section 3.2.1 and implemented for the experiments of this work

(cp., with Chapter 4) are representatives of this category. Thus, a fixed mapping between

team activities and user assignments was specified for the proposed team intention model.

This mapping is shown in Table 3.3. In principle, the team members can adopt three roles,

namely Presenter, Listener, Panelist. If a user adopts a particular role (e.g., Presenter), then

he has to achieve a certain user goal that consists off a fixed sequence of atomic actions (e.g.,

〈‘Move to Stage’, ‘Give Talk’〉). Note that one would like to apply a probabilistic negotiation

about atomic user actions in a specific situation, then one would have to specify a similar

function as the mmodel function for every role that the members of a team could adopt in that

certain situation.

The proposed DBN shown in Figure 3.4 models negotiation at the user level by the depen-
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Table 3.4: Conditional probability table of a UserNode U .
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dencies around the UserNode U (i) and G(i). Whether a user i has achieved his assignment

at time t – given by UserNode U (i)t – depends on the user’s current action A(i)t and his pre-

vious assignment G(i)t−1. UserNode G handles the mapping of team goals to user goals and,

hence, depends on the current team state Tt and the status of the user’s assignment U (i)t that

is represented by the UserNode’s done and perform variables. The ActionNode A(i)t records

the current state of the user’s action. Related variables can be the user’s current position and

velocity (in case he has to reach a certain location as for the ‘Move to Stage’ or ‘Move to

Seat’ actions) or his speaking duration (in case he has to deliver his presentation as during

the ‘Give Talk’ action). The actual action A(i)t that a user is doing at time t depends on his

previous action and assignment – A(i)t−1 and G(i)t−1.

The corresponding CPTs and CPDs respectively are shown in the Tables 3.4 – 3.6. Essential

for a UserNode U ’s CPT is the distinction between the prepare and perform stage of an assign-

ment. As indicated by the mapping in Table 3.3 each user activity consists of a preparation

and a performing action. Due to the scenario these parts are restricted to a single atomic

action each. In more complex settings where a user activity includes a larger action sequence

more than one action may be processed in either stage, but categorization into preparation
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Figure 3.7: The motion graph links every relevant location to each other.

and performing remains the same. In Table 3.4 two functions control whether a user assign-

ment has reached performing stage or goal stage respectively. The atLoc-function compares

the actual position of a user provided by the user’s ActionNode A with a location foreseen

for the user assignment. Therefore the positions from the A node are mapped orthographi-

cally on the edges of an undirected motion graph that includes all relevant locations of the

smart meeting room as nodes. Figure 3.7 shows the motion graph for the SmartAppliance-

Lab. Once arrived at this location the user can start performing. During performing stage the

Table 3.5: Conditional probability table of a UserNode G.
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Table 3.6: Motion model of an ActionNode A.
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atEnd-function controls the progress of the user’s performance. If the user i reaches the end

of his performance, then goal achievement is signaled by changing the U (i)t .done variable to

true. Essential for a UserNode G’s CPT shown in Table 3.5 is the map-function that imple-

ments the above mentioned deterministic mapping of team activities to user activities (cp.,

with Table 3.3). If a new activity was assigned to a user i, then the activity progress control

variables G(i)t .done and G(i)t .perform are reset to false. Table 3.6 depicts the transitions in an

ActionNode G. Depending on whether a user i is done or not with his last assignments the

corresponding A(i)t .velocity or A(i)t .duration variables are initialized (init-function) or updated

(change-function) respectively. If a user is additionally in performing stage, then the duration

of this action is tracked as well.

Sensor Level

Finally, the sensor observations of user i at time t – the SensorNode S(i)t – depend on the

user’s action at that time – A(i)t . Note that these sensor nodes are the only observable nodes

in the proposed team intention model. The available sensor data – the set of S(i)t values for

the times up to t – is utilized to find the sequence of values for Ts, s ∈ {1 . . . t} that best

explains the observed data. So, the team’s negotiations about joint activities is estimated

from the observable behavior of the team members so far. Remember the proposed DBN

given in Figure 3.4, only the SensorNode labeled S are observable where all the other ones

are hidden. Each of these nodes represents a sensor observation from the in Section 3.2.2

mentioned Ubisense RTLS. Data that reports just the position of a user.
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Table 3.7: Conditional probability distribution for the sensor model of a SensorNode S.

pS(i)t .posi t ion | A(i)t .posi t ion

	
psS(i) , psA(i)



�
�
psS(i) ; psA(i) + x0S(i).posi t ion

,γ
�

The corresponding sensor model which describes the distribution of the available data is

shown in Table 3.7. In this table � represents the Cauchy-distribution, which was chosen

for its heavy-tailed character. In cases where the tracked targets tend to abrupt changes of

their acceleration (obviously humans show these characteristics) heavy-tailed distributions

enable approximate inference algorithms, namely particle filters5, to produce more reliable

result than the Gaussian distributions usually utilized (Ikoma et al., 2001; Ichimura, 2002).

Now that a proposal for a probabilistic team intention model is available, the inference of user

and team activities or intentions respectively can move into the focus. But before describing

this part of the concept in Section 3.5, the next section gives a note on a challenge related to

the model itself, namely the efficient synthesis of at least parts of the model.

3.4.3 Note on Synthesizing Team DBN

One may agree that the proposed model fits reasonably well to the concrete scenario given

in Section 3.2.1, but at the same time it is also noticeable that the envisioned scenario obvi-

ously includes a rather simplistic meeting agenda6. Since the number of history states grows

exponentially in the number of available activities, a crucial question is how such a model,

especially the agenda, can be specified efficiently.

Sure, model generation or high-level behavior modeling respectively is not the core of this

work but it might be important for the acceptance of the model introduced in the last sec-

tion to provide a concept for this issue. Therefore an approach proposed in Giersich et al.

(2007) is mentioned that shows one possible way to find at least naive procedures that enable

the synthesis of the TeamDBN. This procedure utilizes hierarchical task models for defining

the structure and transition probabilities of the team level in the proposed DBN. Specifically,

an annotated CTT graph forms the basis for generating the initial proposal of the mmodel-

5Sections 3.5.2 & 3.5.3 will show that particle filter is the algorithm of choice for inference in a state space like
the one modeled by the proposed DBN.

6A rather simplistic agenda was chosen merely for simplification reasons. A limited number of agenda items
and user activities enable for clear model description and experiments.

109



Chapter 3

function. Next, I explain how task models such as task-trees can be used to simplify the

definition of the team intention model.

Consider that a task model M defined over a set of actions A basically specifies a DAG on

possible execution histories h ∈ 2A, with the additional constraint

(h,h′) ∈M⇒ ∃α ∈ A : h∪ {α}= h′, (3.1)

where h and h′ are the nodes of the graph and (h,h′) denotes an edge. This means that in a

task model M, a history h′ directly results from a history h through the execution of a single

activity α. The empty history � is the root of the DAG. Note, if histories are represented by

sequences instead of sets, then this graph is a tree.

For a given history h, the set C(h) denotes the set of activities that may directly follow this

history. C(h) is defined as follows:

C(h) = {α ∈ A | (h,h∪ {α}) ∈M} . (3.2)

Clearly, the graph M directly represents the structure of a corresponding Markov model. At

this point, the question to be addressed is how to provide initial proposals for the transition

probabilities of this Markov model.

The idea is to allow developers of task models to annotate their task-trees with additional

information from which these initial proposals for the transition probabilities can be derived.

One straightforward approach is to annotate each sibling activity α with a “priority” prio(α),

which is a number that indicates how important an early execution of this node is in relation

to the other siblings. This is outlined schematically in Figure 3.8 for the scenario’s agenda.

For independently ordered tasks (temporal relation order independency “|= |”), the priorities

indicate the probabilities of being executed first. Then, for a given history h and a possible

A
90

B
9

C
1

D|=| |=| >>

Figure 3.8: Extended task model specifying the schedule of a meeting.

110



The Team Intention Model Approach

extension ξ ∈ C(h), the probability of a transition from h to h ∪ {ξ} is calculated from the

priorities by:

P(h∪ {ξ}|h) = prio(ξ)∑
α∈C(h)

prio(α)
. (3.3)

Generating mmodel from the hierarchical task model in Figure 3.8 using the above calculation

results in a Markov model like the one shown in Figure 3.6. In this example the probability

that the meeting starts with the presentation of A first is 0.9. Accordingly, it is 0.09 for

presentation B. The probability that the meeting starts with the third talk C is 0.01. If the

meeting has started with talk B, the probabilities for the following two possible transitions to

{B,C} and {A,B} are given by

prio(C)
prio(A) + prio(C)

≈ 0.01, and
prio(A)

prio(A) + prio(C)
≈ 0.99.

Note that the most probable path through the generated Markov model is indeed the one

following the agenda: � → A → {A,B} → {A,B,C} → {A,B,C,D}. Also, if an activity is

taken out of order, the Markov model specifies that the team will try to return to the agenda.

That is, e.g., when the meeting has been started with B, the most probably following activity

will be to return to the planned sequence by executing A. Thus, the generated Markov model

represents the intuition behind the task-tree annotations of execution priorities.

The considerations just made show at least that a proposal for a probabilistic model of user

behavior can be generated from an annotated hierarchical task model. This enables the ex-

ploitation of well established user interaction design methodologies (e.g., task-tree modeling)

for the purpose of model generation.

An interesting question is now how well the intended Markov model can be specified by the

priority annotations. Not all possible distributions for the transition probabilities can be gen-

erated from these task-tree annotations (after all, the number of priority annotations is much

smaller than the number of transitions in the Markov model).

However, it seems sufficient if the generated model is approximately correct: the exact tran-

sition probabilities are not known in advance anyway. They have to be learned from the

observation of real team behavior. The generated probabilities only have to be as exact as to

permit a system a reasonable assistance right from the start, before training data is available,

but of course, the better the initial estimate, the less training data will be required. The salient

111



Chapter 3

point will be a useful definition of “reasonable” and “approximate” in this context. It appears

to be possible to provide such definitions. However, the proposed approach is just a marking

of a question, which holds research issues that are beyond the scope of this work.

So, e.g., the specific task-tree annotations and the accompanying probability computation

given in Section 3.4.3 implicitly assume that the team uses a particular agenda management

strategy. Specifically, the synthesized model assumes that a team prefers to execute activities

in the order of their original priority, independent of the history. This is called a return to

agenda strategy. Sometimes, teams might use other strategies. One example is to continue

with the successor, which means that if the meeting had started with talk B, the most probable

next activity would be C. In this strategy the original successor of an activity actually executed

in the agenda is the most probable following activity. Another strategy of a team could be to

stick to a timetable and execute each activity as close as possible to the original schedule.

Different strategies may require different annotations to a hierarchical task model. For in-

stance, in case of using continue with successor, priority annotations must be provided at the

parent task level rather than at the sibling level. In addition, it might be conceivable to pro-

vide a set of mechanisms for inheriting such annotations within a task-tree. Further a set of

annotations must be identified that allows to specify the typical team strategies for agenda

management with sufficient precision, whereas the set of annotation mechanisms has to be

kept as small as possible.

Obviously, this list could be continued, but this section was merely intended to show that

sensitive parts of the proposed Team DBN, like the mmodel function that tends to grow expo-

nentially, can be generated using simple enhancements of established methodology.

3.5 Team Intention Inference

The previous sections described the probabilistic modeling approach of this work to infer user

and team activities or intentions respectively. The choice for a DBN-based model indicates that

the question of how to update the model given the sensor measurements is addressed using

a Bayesian inference approach. This section identifies the basic inference tasks needed to

enable reasoning as mentioned in the concrete scenario in Section 3.2.1 and describes issues

of inference that arise from the proposed model. Finally, the specific particle filter approach

used for inferring team intentions is explained.
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Figure 3.9: Basic inference tasks in temporal probabilistic models. Shade segments are the
intervals for which observations are available. Arrows pointing up represent the time steps
for which the system states are inferred. T denotes the length of a complete data sequence, t
is the current time, h represents the prediction horizon, and � is the time lag that inference is
behind current time. (Source: Adapted from Murphy 2002, pg. 3)

3.5.1 Inference Tasks

Russell and Norvig (2002) listed a number of basic inference tasks that must be solved for

temporal probabilistic models like the DBN proposed as team intention model. Figure 3.9

summarizes these tasks graphically and indicates that the applicability of a certain inference

task depends on the availability of observation data. Merely two categories can be distin-

guished: 1.) real-time inference that uses data up to the current time step, and 2.) offline

inference that in contrast utilizes recorded complete data sequences.

The envisioned scenario requires real-time inference of actual activities and intended next

activities (intentions) of a team during a meeting. The constraint that data has to be processed

immediately as it arrives involves the restriction that only observations up to the current time

step t in the meeting are available for inference. Furthermore, the assistance is focused on

present and future activities of the team so that only inference of actual and future states of

the model matters. Thus, relevant corresponding inference tasks in the proposed concept are

filtering and prediction respectively.

Filtering using the Bayesian approach is “the task of computing the belief state – the poste-

rior distribution over the current state, given all evidence to date” (Russell and Norvig, 2002,

pg. 546). In other words a filter has to estimate p
	
xt |e1:t
 for a continuous stream of ev-

idences in the interval 1: t. From using Bayes’ theorem in terms of likelihood, it is known

that the posterior probability is proportional to the product of the prior probability and the
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likelihood. Hence, the belief state can be defined recursively as:

p
	
xt |e1:t
= p

	
et |xt ,e1:t−1
 p 	xt |e1:t−1


p
	
et |e1:t−1


∝ p
	
et |xt ,e1:t−1
 p 	xt |e1:t−1


= p
	
et |xt ,e1:t−1


�∫
p
	
xt |xt−1,e1:t−1
 p 	xt−1|e1:t−1
 dxt−1

�

= p
	
et |xt


�∫
p
	
xt |xt−1
 p 	xt−1|e1:t−1
 dxt−1

�
(3.4)

with a normalizing constant 1/αt = p
	
et |e1:t−1
 = ∫

p
	
et |xt
 p 	xt |e1:t−1
 dxt . Note that

the likelihood p
	
et |xt ,e1:t−1
 can be replaced immediately by p

	
et |xt
 due to the first

Markov assumption on evidence space. Similarly, the transition model p
	
xt |xt−1,e1:t−1
 can

be simplified to p
	
xt |xt−1
.

Prediction is “the task of computing the posterior distribution over the future state, given all

evidences to date” (Russell and Norvig, 2002, pg. 546). Hence, prediction has to determine

p
	
xt+h|e1:t
 for a system state situated a horizon h>0 time steps in future using the evidence

stream 1: t. Using marginalization in combination with the Chapman-Kolmogorov equation

for conditional probability, a formal definition for the prediction case can be put as:

p
	
xt+h|e1:t
=

∫
p
	
xt+h|xt+h−1
 p 	xt+h−1|e1:t
 dxt+h−1. (3.5)

Obviously, one-step ahead prediction, p
	
xt |e1:t−1
, computed from the prior belief state

p
	
xt−1|e1:t−1
, is already enclosed in the filtering definition formulated in Equation (3.4)(cp.,

with terms put in square brackets).

This indicates that applying inference the Bayesian way consists of two major steps: prediction

and update. First the prediction step projects the posterior probability density over the actual

state of the model forward from time-step t to t + 1 using the explicitly modeled transition

probabilities. And then the update step adapts the estimated posterior probability density

over the future state using possibly new evidences et+1 from the sensor model. Speaking in

terms of Equation (3.4), that is, the posterior distribution over the actual state is p
	
xt |e1:t
,

the transition model is p
	
xt+1|xt
, the sensor model is p

	
et+1|xt+1
, and the posterior dis-

tribution over the future state is represented by p
	
xt+1|e1:t+1
.

Note, if the model has to predict a future state h > 1 time steps ahead, then just the h
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transitions of the current distribution without any update from the sensor model are involved.

3.5.2 Bayesian Filter Approach

In principle, the inference task within the proposed team intention model can be condensed

to the following line of questioning:

Given a series of sensor readings e1:t up to a time t, what is the probability distri-

bution of the next system state p
	
xt+1|e1:t
, and what is the probability distribu-

tion if the “next state” becomes the actual system state p
	
xt+1|e1:t+1
 due to an

observation et+1 at time t + 1.

First, the joint probability of the system state for a single time step of the DBN-based team

intention recognition process proposed in Section 3.4.2 can be given by

p (x) = p
�
T,U (1), . . . ,U (N),G(1), . . . ,G(N),A(1), . . . ,A(N)

�
=

N∏
i=1

p (T |π (T )) p�U (i)|π�U (i)�� p�G(i)|π�G(i)�� p�A(i)� , (3.6)

where T,U (i),G(i), and A(i) are the hidden nodes of the proposed DBN (cp., Figure 3.4) and

π (·) denotes the sets of conditioning parents for the respective nodes. Expanding this joint

probability over the whole period of time leads to

p
	
x1:T



=

T∏
t=1

N∏
i=1

p
	
Tt |π	Tt
 ,θ 	Tt

 p�U (i)t |π�U (i)t �

,θ
�
U (i)t

��

p
�
G(i)t |π

�
G(i)t

��
p
�
A(i)t |θ

�
A(i)t

��
,

(3.7)

where θ (·) represents the particular sets of conditioning parents from the previous time step.

For the particular DBN proposed in Section 3.4.2 this can be substantiated to

p
	
x1:T



=

T∏
t=1

N∏
i=1

p
�
Tt |U (i)t , Tt−1

�
p
�
U (i)t |A(i)t ,G(i)t−1

�
p
�
G(i)t |Tt ,U (i)t

�
p
�
A(i)t |A(i)t−1,G(i)t−1

�
.

(3.8)

Now, let’s consider that the unfolding of the system state sequence 〈x0, . . . ,xt+1; t ∈ �〉 is
defined recursively by a state transition function

xt+1 = ft+1
	
xt ,vt



, (3.9)
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where ft+1 (·, ·) : �nx ×�nv → �nx is a nonlinear transformation of the nx-dimensional state

vector xt and the nv-dimensional noise vector vt out of the independent and identical dis-

tributed (i.i.d.) process noise sequence 〈v0, . . . ,vt ; t ∈ �〉. Then, the recursive observation

function to estimate the state xt+1 from sensor readings is given by

et+1 = ht+1
	
xt+1,nt+1



, (3.10)

where ht+1 (·, ·) : �nx ×�nn → �ne is a nonlinear transformation of the nx-dimensional state

vector xt+1 and the nn-dimensional noise vector nt+1 out of the i.i.d. sensor noise sequence

〈n0, . . . ,nt+1; t ∈ �〉. Obviously, estimation should be derived from the sequence of all sensor

readings up to the present, denoted as e1:t+1.

Equations (3.9 & 3.10) in combination with the assumption that the initial value of the de-

manded posterior probability density function (pdf) of the state vector – p
	
x0

7 is known in ad-

vance, in principle, enable the recursive two-stage computation of posterior pdf p
	
xt+1|e1:t+1


as a solution for the inference task. First, given the availability of posterior pdf p
	
xt |e1:t
 and

transition model p
	
xt+1|xt
 (defined by Equation (3.9) and the statistics of the process noise

v), a prediction of the next system state can be obtained by prior pdf

p
	
xt+1|e1:t
=

∫
p
	
xt+1|xt
 p 	xt |e1:t
 dxt . (3.11)

Note that like in Equation (3.4)the first Markov assumption applies to the transition model and

hence p
	
xt+1|xt ,e1:t
= p

	
xt+1|xt
. Secondly, when the observation et+1 becomes available,

an update of the prior pdf can be gained using Bayes‘ rule, i.e. the posterior pdf can be given

by

p
	
xt+1|e1:t+1
= p

	
et+1|xt+1
 p 	xt+1|e1:t
∫

p
	
et+1|xt+1
 p 	xt+1|e1:t
 dxt+1 , (3.12)

which obviously denotes the same as Equation (3.4) but one step further in time.

A related question arising from the described two-stage process of prediction and update is

how to calculate the transition model p
	
xt+1|xt
? Given the transition function xt+1 =

ft+1
	
xt ,vt



and process noise density p

	
vt


the objective is to obtain p

	
xt+1|xt
.

7p
	
x0|e0
≡ p

	
x0


, because e0 is the set of no observation.
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First, the sum rule is utilized to expand the transition model:

p
	
xt+1|xt
=

∫
p
	
xt+1|xt ,vt
 p 	vt
 dvt

=

∫
p
	
xt+1 = ft+1

	
xt ,vt


 |xt ,vt
 p 	vt
 dvt .
(3.13)

Clearly, it must apply here that

∀ xt+1 
= ft+1
	
xt ,vt



: p

	
xt+1 = ft+1

	
xt ,vt


 |xt ,vt
= 0.

The Dirac delta measure δ (·) complies with this constraint. Hence, Equation (3.13) can be

written as

p
	
xt+1|xt
=

∫
δ
	
xt+1 = ft+1

	
xt ,vt




p
	
vt


dvt . (3.14)

Now considering a function s (e, v) that solves an equation e for a variable v and is utilizing

convolution characteristic of the Dirac delta measure
∫
δ
	
x= x0



f (x) dx = f

	
x0


, then

Equation (3.14) can be updated and further substituted to

p
	
xt+1|xt
=

∫
δ
	
vt = s

	
xt+1 = ft+1

	
xt , v



, v




p
	
vt


dvt

= p
	
s
	
xt+1 = ft+1

	
xt , v



, v




.

(3.15)

The observation model p
	
et+1|xt+1
 can be calculated analogously:

p
	
et+1|xt+1
= p

	
s
	
et+1 = ht+1

	
xt+1, v



, v




. (3.16)

In general, the calculation of an optimal Bayesian solution which would provide the exact

posterior probability density is intractable due to the unrestricted complexity of the density

function. This issue could be addressed specifying restrictive constraints (e.g. Gaussian dis-

tributed noise densities, linear transition and observation functions, or discrete state space)

to allow to use optimal algorithms such as Kalman filters or Grid-based methods (see Arulam-

palam et al. 2002 for details).

However, the scenario of this work describes a situation where those constraints are not valid.

Hence, a suboptimal algorithm like an approximative nonlinear Bayesian filter must be applied

to the proposed team intention model.
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3.5.3 Particle Filter Approach

For doing inference on the DBN proposed in this work the particle filter algorithm is used.

A particle filter is a Monte Carlo (MC) method which represents a complex posterior pdf

by a set of weighted samples that approximate this demanded pdf. Formally speaking, if�
x(i)t+1,w

(i)
t+1

�N

i=1
is a random set of N particles with associated weights, then the posterior pdf

at time t + 1 can be approximated by

p
	
xt+1|e1:t+1
≈ N∑

i=1

w(i)t+1δ
�
xt+1 = x(i)t+1

�
, (3.17)

where
∑N

i=1w
(i)
t+1 = 1. In order to enable an appropriate approximation, weights of the parti-

cles must be chosen proportional to the importance of a particular sample for the demanded

pdf. Since it is usually difficult to draw samples from p (·), a common practice is to select

an easy to sample importance density function (idf) q (·) from which the particles are drawn.

Arulampalam et al. (2002) described the importance sampling approach in detail. Samples

are obtained by x(i)t+1 ∼ q
�
xt+1|x(i)t ,et+1

�
so that the weighting procedure can be given re-

cursively by

w(i)t+1 ∝ w(i)t
p
�
et+1|x(i)t+1

�
p
�
x(i)t+1|x(i)t

�
q
�
x(i)t+1|x(i)t ,et+1

� . (3.18)

Besides the number of particles8, an adequate choice for the idf is essential for the quality

of approximation. For pragmatical reasons the particle filter used in this work applies the

obvious approach to select the prior pdfs ∀i : p
�
x(i)t+1|x(i)t

�
as importance densities, because

this yields a simplified equation for the weighting

w(i)t+1 ∝ w(i)t p
�
et+1|x(i)t+1

�
. (3.19)

Other more sophisticated methods to find a near optimal idf, can be found in literature (e.g.,

Doucet et al. 2000b; Arulampalam et al. 2002).

Another common issue while using particle filter is the degeneracy phenomenon, where after

a few iterations, all but one particle will have negligible weight (Arulampalam et al., 2002).

Usually, this problem is addressed by a resampling step in the particle filter algorithms that

8The larger the set of random samples with associated weights becomes, the closer the approximation gets to
the functional description of the posterior pdf.
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(9)1x(8)0x(7)1x(6)0x(5)3x(4)0x(3)0x(2)3x(1)1x

N -1

wi

Figure 3.10: Example of the systematic resampling procedure introduced by Kitagawa (1996).

is executed, if the effective particle number Ne f f drops below a certain threshold. Different

approaches exist to estimate Ne f f , but this work employs a variant of the sampling importance

resampling (SIR) filter introduced by Gordon et al. (1993) as bootstrap filter, where resampling

is implemented independent of Ne f f in every time step.

A new set of samples
�
x∗(i)t+1,w

∗(i)
t+1

�N

i=1
is generated from the filtered posterior probability den-

sity function introduced in Equation (3.17) so that Pr
�
x∗(i)t+1 = x( j)t+1

�
= w( j)t+1. The associated

weights are reset to w(i)t+1 = N−1, because the resampled particles are now i.i.d. samples of the

posterior pdf. Figure 3.10 shows the procedure of resampling as a sample-raster representa-

tion. The cumulative weights of particles x(1)t+1 up to x(N)t+1 are stored in a sequence 〈c1, . . . , cN 〉.
Starting at a random position drawn from the interval

 
0,N−1

!
, the resampling algorithm

walks along this sequence with a step width of N−1 and decides, whether to generate a copy

of the currently indexed particle or to increase the particle index accordingly and copy the

new representative. This is done until N new particles are generated. At the bottom line of

Figure 3.10 is denoted how often each particle was replicated for the new sample set.

Figure 3.11 depicts the overall operation of a SIR filter. Starting with a sample set drawn from

the idf p
	
xt |xt−1
 at time t, first, the importance weights are computed for each particle. This

results in a set of samples with associated weights. Then, the resampling step replicates the

most vital particles in the replacing particle set
�
x∗(i)t ,N−1

�
. Finally, the prediction of the next

time step t + 1 is made by drawing a new set of samples that now approximates p
	
xt+1|xt
.

Although the introduction of a resampling step decreases degeneracy of samples, it brings
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Figure 3.11: Operation of a particle filter. (Source: Adapted from Doucet et al. 2001, pg. 12)

in a new issue called sample impoverishment, which is a problem especially for systems with

rather small process noise v1:t+1. The smaller the process noise is, the faster the particle

population will lump in a single system state. Obviously in such a situation the particles

hardly approximate the demanded posterior pdf.

A SIR filter is sensible to small process noise merely due to its idf. The choice of p
�
x(i)t+1|x(i)t

�
as importance density for an ith particle implies that first a process noise sample v(i)t ∼ p

	
vt



is generated and then the new particle x(i)t+1 follows from x(i)t+1 = ft+1
�
x(i)t ,v(i)t

�
. In combi-

nation with the application of resampling during each time step this can imply – if process

noise is small – a nearly instant erosion of particle diversity. Nevertheless, if the amount of

process noise is not critical, then Arulampalam et al. (2002) recommended a SIR filter be-

cause of its rather easy weight evaluation and sampling procedures. For the other case they

identified two alternatives, namely the auxiliary sampling importance resampling (ASIR) filter

introduced by Pitt and Shephard (1999) and the regularized particle filter (RPF) proposed by

Musso et al. (2001). Here, just the ASIR approach is explained, because this method and the

SIR filter are the two algorithms, which are exemplarely used by the tools of the experimental

infrastructure that is described in the next section.

The idea of an ASIR filter to address the sample impoverishment phenomenon is to re-weight

particles of the previous time step in order to support particles in likely states of the current

time step. Therefore Pitt and Shephard added an auxiliary variable k to the process that

works as an index to the previous particle set. Thus a joint posterior pdf can be given similar
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to Equation (3.17) by

p
	
xt+1, k|e1:t+1
≈ w(k)t+1δ

�
xt+1 = x(k)t+1

�
∝
"
w(k)t p

�
et+1|x(k)t

�#
δ
�
xt+1 = x(k)t+1

�
=

�
w(k)t

∫
p
	
et+1|xt+1
 p�xt+1|x(k)t

�
dxt+1

�
δ
�
xt+1 = x(k)t+1

�
.

(3.20)

The part of the right-hand side term in square brackets describes p
	
k|e1:t+1
 and can usually

not be evaluated exactly. Thus a simulation step was included to approximate it.

This step includes 1.) the selection of a characterizing value μ(k)t+1 from distribution p
�
xt+1|x(k)t

�
(e.g., mean or expectation were suggested as appropriate values in literature), and 2.) the

computation of the simulation weight λ(k)t for k using

λ
(k)
t ∝

w(k)t p
�
et+1|μ(k)t+1

�
∑N

i=1w
(i)
t p

�
et+1|μ(i)t+1

� . (3.21)

Using these weights the joint idf can be put as

q
	
xt+1, k|e1:t+1
= λ(k)t q

�
xt+1|x(k)t ,et+1

�
, (3.22)

and thus, samples are obtained by x(i)t+1 ∼
∑N

k=1λ
(k)
t q

�
xt+1|x(k)t ,et+1

�
so that the weighting

procedure can be given recursively by

w(i)t+1 ∝
∑N

k=1w
(k)(i)
t p

�
et+1|x(i)t+1

�
p
�
x(i)t+1|x(k)

(i)

t

�
∑N

k=1λ
(k)(i)
t q

�
x(i)t+1|x(k)

(i)

t ,et+1
� . (3.23)

Besides these approaches and the RPF other widely known methods exist (e.g., see Doucet

et al. 2000a; van der Merwe et al. 2000), and various slightly different particle filter algo-

rithms were introduced recently (e.g., see Klaas et al. 2005; Saboune and Charpillet 2005).

But those (including RPF) were not incorporated into the tools of the experimental infrastruc-

ture yet. Hence, these approaches are not an object of this work.

The next section describes the tools and experimental infrastructure just mentioned which

were developed to enable evaluating experiments on the proposed concept.
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3.5.4 Core Tools and Team Intention Tracker

As mentioned earlier one aim of this work, besides the conceptual part, was to provide tools

and an experimental infrastructure, which on the one hand enable rapid development and

evaluation of different models, model parameters, or algorithms and on the other hand fit into

the ECO framework mentioned in Section 3.2.2. This section gives insight into the Intention

Analyzer component (cp., with Figure 3.2) that was developed to achieve this objective. First,

requirements are deduced from the identified constraints and the consequent architecture for

this component is explained. And subsequent to this projecting section, two major modules,

namely Core Tools and Team Intention Tracker, are described in more detail.

Requirements and Architecture

Chiefly, three aspects influenced requirements for the Intention Analyzer component. The

rather commonplace need is that the component must fit into a framework, in this case the

ECO framework. Therefore, it is required that communication channels demanded for ECO

framework components must be implemented within the Intention Analyzer.

In principle the ECO framework’s communication channels provide all required data for team

intention inference (i.e., team members’ positions and preliminary meeting agenda). But at

the same time the Intention Analyzer component should function as an experimental infras-

tructure, where the inference process for different models and model parameters respectively

can be tested and evaluated. Obviously, an adequate architecture addressing such a require-

ment should facilitate a rather simple replacement of the Team Intention Model and must

allow direct tapping and inserting of data in virtually every stage of the inference pipeline.

Figure 3.12 shows the architecture of the Intention Analyzer component. The core of the

component consists of four modules, namely an Adapter, the Learner, the Filter, and the Team

DBN plugin. These modules form a pipeline that channels the inference process. First, the

Adapter module reads available sensor observations (i.e., a position update of a particular

team member) and wraps it into a specific team observation message. Then, the Filter module

uses this message to update the posterior pdf for the connected model. Computations of the

Filter module are influenced by its customization through the Team DBN plugin module and

its associated parameter sets. The message is extended to hold the posterior pdf of the current

model state and, then, piped to the Team Intention Tracker module. This module includes a
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Figure 3.12: Experimental infrastructure. This enlargement of a part of Figure 3.2 shows
the Meeting Recorder component on the right and the architecture of the Intention Analyzer
component on the left, where beige boxes indicate modules of the Intention Analyzer and
gray boxes depict observed and processed data files as well as configuration files. The arrows
represent the data flow through the inference process, where black arrows show the real-time
inference pipeline and colored arrows stand for the offline mode.

visualization engine. So it can either visualize probability distributions of team and user

intentions that are encoded in the posterior pdf, or it only broadcasts the most probable team

intention over the context channel. This procedure describes the real-time inference process

and can be comprehended in Figure 3.12 by following the black arrows from the lower left to

the context channel.

The Learner module is used by the offline inference pipeline. The offline mode9 is intended to

record meetings (scripted as well as in situ) in order to 1.) learn optimal parameter settings

for a model, or 2.) evaluate different models and model parameters. Note that learning in this

context does not mean that the real-time mode cannot be done without a trained parameter

setting. Quite the contrary, the Intention Analyzer can start directly with an training-free

prior knowledge-based parameter set and the Learner module provides an additional chance

to refine these a-priori parameters.

Therefore, a Meeting Recorder component enables the recording of available sensor data. Ad-

ditionally, tracking of the intention truth is available in cases of scripted meetings (orange

arrows). Then, after transformation into team observation messages the recorded meeting

data can be used by the Learner module to adjust model parameters (red arrows). Finally,

9In Figure 3.12 offline mode is indicated by the colored arrow starting with orange via red and blue to green.
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the Filter module uses the same data to compute the posterior pdf for the connected model

(blue arrows). The final data set can be evaluated by standard tools to compare expediences

of certain models and model parameters (green arrow).

The next two sections describe the modules used during the inference process a bit more

detailed, list their features, and explain the usage of each module. Further it is shown how to

encode the Team DBN and how to read the visualization of Team Intention Tracker.

Core Tools

The Adapter, Filter, and Learner modules are stand-alone command-line tools subsumed under

the term Core Tools. The Team DBN and its parameter sets are linked to the modules at

runtime. The Adapter module is a flexible converter that reads in sensor data either from

a data file recorded by the Meeting Recorder component or from the context channel, which

holds the position information that was provided by the LocationService (cp., with Figure 3.2).

This module provides various options to prepare data for a filtering or learning process10.

One sort of options enables the Adapter module to eliminate several sorts of data entries from

the conversion. User positions outside of a bounding box can be skipped (’-b’ option) as

well as data observed during the first s seconds (’-f <s>’ option) or data that arrives after a

certain point of time s (’-p <s>’ option). Additionally, it is possible to erase truth data entries

(i.e., ’i <time> <state> <action>’ records) from files recorded by the Meeting Recorder

component using a predefined Meeting Script. Then, the Adapter module provides a few

mapping options, where e.g., the different tag identifications a server might produce can be

mapped explicitly to internal indices (’-l <nr>=<id>’ option). Furthermore some switching

options cause minor changes to the output of Adapter module.

The Filter module gets its data either from a file or from a direct coupling with the Adapter

module via a (network) socket. In order to use the Filter module, some options are mandatory.

These options are used to define the model and model parameters utilized by the Filter mod-

ule11. The ’-X <dir>’ option provides the Filter module with a location where the source of

the desired model can be found and related executables can be put. The ’-M <name>’ option

specifies the name of the desired model’s main source file and the ’-P <name>’ option refers

to the name of a file containing the corresponding parameter set.

10The interface of the Adapter module is shown by its usage listing in Figure A.1.
11The usage listing for the Filter module is shown in Figure A.2.
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The other options can be divided into two categories, options that change default settings of

the Filter module and options that route the different kinds of statistical output data. Options

changing particle filter settings include capabilities to change the number of particles used

in the filter (the ’-n <np>’ option), the resampling threshold (the ’-r <thr>’ option), the

minimal particle weight threshold (the ’- b <num>’ option), and the relative weighting of

sensor data (the ’-a <num>’ option). Further, it is possible to change the default inference

mode of the Filter module by the ’-f <mode>’ option. Besides real-time forward filtering (the

’forward’ mode), one can select offline ’viterbi’ mode to get the most probable state se-

quence given a full observation data sequence (i.e., MAP explanation), or offline ’smoothing’

mode to get a smoothed probability distribution for a particular state given an observation

sequence (i.e, fixed lag smoothing or fixed interval smoothing respectively).

Output routing options contain abilities to dump full particle data (the ’-d <path>’ option)

or just intention votes (the ’-v <path>’ option), to collect effective particle statistics (the ’-e

<path>’ option), to list filter parameters (the ’-l’ option), and to save sensor data (the ’-s

<path>’ option).

The Learner module provides in principle similar options as the Filter module12. The Learner

modules provides the same capital letter options to specify the desired model and model

parameters. Likewise output routing options and options changing particle filter settings built

into the Learner module are a subset of the options that the Filter module makes available.

Unique additional options in the Learner module are related to its iterative character. So the

number of learning cycle iterations can be specified (the ’-i <nr>’ option) and intermediate

statistic parameters for each cycle can be collected using the ’-s <path>’ option.

Besides Adapter, Filter and Learner module at least one model must be specified as part of the

Core Tools. As mentioned above the model is provided as source code and then compiled and

linked into the particular module at runtime. Listing 3.1 shows essential parts of the C++ style

model definition, here the proposed Team DBN for the scenario specified in Section 3.2.1. The

C++ template approach chosen for the implementation of the modules was mainly selected

for performance reasons. As each particle of the particle filter that is utilized for inference

includes an instance of the whole Team DBN, a large amount of data must be processed by

the modules with every single time step, and the realized C++ solution is optimized for speed.

The basic DBN structure for the Team DBN case is always the same and hence can be included

12The Learner module’s usage listing is depicted in Figure A.3.
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Listing 3.1: Excerpt of the C++ style model definition of Team DBN for the specified scenario.
//∗∗∗∗∗
//∗ model . cpp
//∗∗∗∗∗
. . .
//∗∗∗∗∗ BASIC DBN STRUCTURE
#include " AgendaTeamDBN . h "
. . .
//∗∗∗∗∗ TEAM SIZE
#define TSS 3

//∗∗∗∗∗ AVAILABLE TEAM ACTIVITIES AND TITLES
typedef enum TeamAction { PresentA , PresentB , PresentC , Discuss , Ex i t , MaxTeamAction } ;
char ∗actnames [MaxTeamAction+1] =

{ " P r e s en t A " , " P r e s en t B " , " P r e s en t C " , " D i s c u s s i o n " , " E x i t " , "Wander " } ;

//∗∗∗∗∗ DETERMINISTIC MAPPING OF TEAM ACTIVITIES TO USER ACTION SEQUENCES
template<bool B , in t TSize , typename TeamState , typename TeamAction , TeamState MaxTeamState ,

TeamAction MaxTeamAction , in t NumAgendaItems> TeamGoal<TSize>
AgendaTeam<B , TSize , TeamState , TeamAction , MaxTeamState , MaxTeamAction , NumAgendaItems>
: : preparegoals [MaxTeamAction ] = {

{Goal ( Astage ) , Goal ( Bseat ) , Goal ( Cseat )} , // Present A: Goto
{Goal ( Aseat ) , Goal ( Bstage ) , Goal ( Cseat )} , // Present B : Goto
{Goal ( Aseat ) , Goal ( Bseat ) , Goal ( Cstage )} , // Present C: Goto
{Goal ( Aseat ) , Goal ( Bseat ) , Goal ( Cseat )} , // Discus s ion : Goto
{Goal (TheDoor ) , Goal (TheDoor ) , Goal (TheDoor )} // Ex i t : Goto

} ;
template<bool B , in t TSize , typename TeamState , typename TeamAction , TeamState MaxTeamState ,

TeamAction MaxTeamAction , in t NumAgendaItems> TeamGoal<TSize>
AgendaTeam<B , TSize , TeamState , TeamAction , MaxTeamState , MaxTeamAction , NumAgendaItems>
: : performgoals [MaxTeamAction ] = {

{Goal ( Atime ) , Goal ( ) , Goal ( ) } , // Present A: Present + L i s t en
{Goal ( ) , Goal ( Btime ) , Goal ( ) } , // Present A: Present + L i s t en
{Goal ( ) , Goal ( ) , Goal ( Ctime )} , // Present A: Present + L i s t en
{Goal (Dtime ) , Goal (Dtime ) , Goal (Dtime )} , // Discus s ion : Debate
{Goal ( ) , Goal ( ) , Goal ( )} // Ex i t : F i n i sh

} ;

//∗∗∗∗∗ AGENDA DEFINITION
template<bool B , in t TSize , typename TeamState , typename TeamAction , TeamState MaxTeamState ,

TeamAction MaxTeamAction , in t NumAgendaItems> TeamAction
AgendaTeam<B , TSize , TeamState , TeamAction , MaxTeamState , MaxTeamAction , NumAgendaItems>
: : actionmap [] =

#i f USE_AGENDA
{ PresentA , PresentB , PresentC , Discuss , Ex i t } ;

const in t AGENDA_ITEMS = 5;
#else

{ Ex i t } ;
const in t AGENDA_ITEMS = 0;
#endif
. . .
//∗∗∗∗∗ TRACKER PARAMETERS
//∗∗ MARKOV MODEL
//∗ PRIOR PROBABILITIES − { Preparing , Act ing , Wandering , Wrapup}
double t e am In i t i a l [MaxTeamState ] = {0.6 , 0 .0 , 0 .4 , 0 . 0 } ;
//∗ TRANSITION PROBABILITIES
double teamTrans i t [MaxTeamState ][MaxTeamState ] = {

{0.0 , 1 .0 , 0 .0 , 0 .0} , // from Prepar ing
{0.6 , 0 .0 , 0 .4 , 0 .0} , // from Act ing
{0.0 , 0 .0 , 0 .4 , 0 .6} , // from Wandering
{1.0 , 0 .0 , 0 .0 , 0 .0} , // from Wrapup

} ;
template<> MarkovPDF<MaxTeamState>

AgendaTeam<fa lse , TSS , TeamState , TeamAction , MaxTeamState , MaxTeamAction , AGENDA_ITEMS>
: :mm( t e amIn i t i a l , teamTrans i t ) ;

//∗∗ PROBABILITY THAT THE TEAM WILL FOLLOW THE AGENDA
template<> AgendaPDF

AgendaTeam<fa lse , TSS , TeamState , TeamAction , MaxTeamState , MaxTeamAction , AGENDA_ITEMS>
: : agenda ( 0 . 8 ) ;
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from elsewhere. So, in a typical file just those parts of the model must be specified that are

subject to regular change. Obviously, these include the team size and a set of the possible

team activities that the inference process should be able to distinguish. Further, such a file

has to define how the team activities can be brought into relation to individual user roles

and action sequences. In case of Listing 3.1 team intentions are mapped deterministically

to two-stage prepare-perform-sequences of user actions for each team member. Here, with

a preparing action a user attempts to achieve his goal to bring hisself into the appropriate

position for his performance. Afterwards he aims at acting for a certain amount of time to

achieve the performing goal.

Moreover the model file must contain an agenda. The agenda definition is basically a list

containing a sequence of team activities. In addition, a set of tracker parameters must be

specified, namely the prior and transition probabilities for the Markov model and a value

for the probability that the team will follow its preliminary agenda during the course of the

meeting. As described above these parameters can be changed via command-line options of

Filter or Learner module respectively.

Team Intention Tracker

The Team Intention Tracker module was developed for two purposes. First, it is used by

the Intention Analyzer component of the ECO framework to get a reliable estimation of the

current team intention. The Intention Analyzer, then, provides this estimation via the ECO

Context Channel to appliances of my department’s prototype smart meeting room ensemble

(cp. with Figures 1.1 & 3.1). Different research approaches rely on this context information,

e.g., the team intention is used for a computer controlled multi-display environment (Heider,

2006; Heider et al., 2006) as well as light and air condition control.

The second purpose of the Team Intention Tracker is the realtime visualization of the actual

inference process. The GUI that encloses a set of important statistics is shown in Figure 3.13.

The large area named Bird View on the left side of the screenshot depicts our smart meeting

room as a schematic 2D-map. It shows one possible room topology – adequate for the meeting

scenario described in Section 3.2.1. Dark grey and black areas represent obstacles, e.g., walls

or furniture like chairs and tables. Furthermore, this area pictures the location estimates of the

particle filter for each team member. The location estimates are drawn as a curve of the last

ten estimation updates. A longer tail indicates a faster moving. The color encoding represents
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Figure 3.13: Team Intention Tracker visualization.

the affiliation to a particular team member. The actual sensor observation for the same person

is depicted as a black contoured labeled circle filled with the same color as the estimation tail.

Finally, the remaining particles are drawn using a transparency value proportional to the

number of particles used by the particle filter. This makes accumulations of particles more

noticeable than single occurrences. Note that if graph-based probabilistic location estimation

is used all particles are located on an invisible graph (cp., with Figure 3.7).

In the lower part of Figure 3.13 two areas, named Team Intention and Team State, depict

the probability distributions for the current team intention. The Team Intention area holds

the possible high-level team activities. The level meters indicate how the particles’ opinions

about the current team intention are distributed. High-level team activities break down into

a sequence of atomic team actions. The distribution of currently inferred team actions is

encoded in the level meters of the Team State area. Finally, the visualization shows the

probability distributions of associated user actions for team members A, B and C in the center

of Figure 3.13. In the situation shown the currently inferred team intention is Present C. The

team members are currently in Preparing state and thus user C is on his way to the presenting
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stage while user B walks back to take a seat to listen. Accordingly, the assigned user action is

Goto for all team members13.

Based on the team objective inferred, a room as my department’s prototype smart meeting

room may automatically configure itself to support this goal (e.g., the current speaker’s pre-

sentation is mapped to one of the displays and the lighting is adjusted). In the shown case a

rather rigid model was used, i.e., the state transition probabilities of the Markov model (cp.,

with Figure 3.6) represent a strong probability that the team will follow the agenda.

Those team activity that is deduced from particles as the estimate is highlighted in the Team

Intention area by a green label. Analogously the estimated action appears with green label in

the Team State area. If corresponding truth data is available, then truth is represented by a

red label background for the respective activity or action. Colors used for truth and estimate

labeling and those that are assigned to each activated activity recur in the Curve View area on

the right side of Figure 3.13. This area shows how the posterior probability distribution of the

system develops over time and draws true and estimated team activities and actions for every

single time step.

Rough statistics about the congruity of truth and estimate in percentages and seconds is given

by the Hit Ratio, the Delay Ratio, the Error Ratio, and in total as well as per topic the Saved Time

values in the lower part of Figure 3.13. The Hit Ratio counts the rate of time in percentage

that truth and estimate are equal. The remaining time divides into delay (i.e., the rate of time

that the estimation needs to recognize new intentions) and error (i.e., the rate of time that a

wrong intention is estimated). These rates are represented by the Delay Ratio and the Error

Ratio respectively.

The Saved Time values count the amount of time that an inferred team intention is recognized

in advance of the actual performing action of that team activity. One sums up the seconds to

a total amount of saved time and one averages the time by the number of agenda topics. Note

that this Saved Time value is interesting, because it would enable a smart meeting room to

plan and perform strategies for the team assistance before the performing stage was reached

by the team itself.

13Even A gets a Goto assigned. But as he is obviously arrived at his target location he is already done with the
Preparing activity and waits to get a new activity assigned.
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3.6 Summary

The current chapter proposed the concept of a team intention analysis system. Based on a

concrete scenario and the concrete lab situation criteria for the modeling approach were re-

vised in order to allow robust inference of team activities in real smart meeting environments.

Then the procedure was explained that enables flexible structuring of team intentions for

agenda-driven meeting situations. All of this was incorporated into the general design of the

Team DBN. Afterwards the chapter outlined an approach for model generation and elaborated

on the inference processes used with the concrete model. It provided a proof of concept for

the proposed Team DBN by sketching an architecture for an implementation. The implemen-

tation of the proposed concept was on the one hand integrated in the ECO framework and on

the other hand designed to serve simultaneously as a stand-alone experimental infrastructure.

Finally, the usage of the implementation’s components and modules was clarified. Now that

the proof of concept for the Team DBN is given, the next chapter addresses the question how

valuable this concept is.
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Experiments and Conclusions

4.1 Introduction

This final chapter substantiates my concept for a robust and training-free probabilistic sys-

tem for real-time intention analysis in teams. Therefore, two experiments are introduced

that utilize the particular Team DBN within the experimental infrastructure mentioned in the

previous section. In the first instance a simulation study based on an early version of the

Intention Analyzer was developed. Then, after a phase of redesign a second in situ study

was performed in my department’s prototype SmartApplianceLab with a group of volunteers.

This chapter describes the study methodologies and discusses results of both experiments in

separate sections. Finally it summarizes this work and draws the conclusions from it.

4.2 Experiment #1: Simulation Study

The first experiment that was conducted with the proposed Team DBN studies whether incom-

plete, unreliable, and hence sometimes misleading knowledge about the needs of a team of

users (i.e., a preliminary agenda) can be used to improve the quality of intention recognition.

Specifically, attention is focused on the usefulness of an unreliable agenda for improving the

recognition of team activities during a meeting. Before the results of this first exploration

are presented, the next part first explains the overall setup of the simulation experiment,

namely questioning, procedure, and particular tools used. Afterwards follows an analysis of

the findings.
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4.2.1 Study Methodology

The simulation study that based on the Bayesian filtering approach and an early version of

the explicit probabilistic team behavior model described in the previous chapter was carried

out to find answers to the following questions:

• How accurate and how fast can cooperative behavior of a team be predicted with an

agenda assumption and history knowledge?

• What influence do deviations of the team from the planned agenda assumption have on

the prediction quality, i.e., does a wrong a-priori agenda degrade the quality of intention

recognition?

• When does an explicit agenda improve prediction quality, and where are the drawbacks?

• How flexible does an agenda assumption need to be in order to optimally predict team

behavior?

In the early stages of work when this experiment took place a simulation of data was chosen

over real world data. This enabled a configuration of the simulated sensor model’s parame-

ters, such that different probability distributions of sensor readings could be examined. The

setting includes Gaussian and Cauchy distributed sensor readings with a variety of different

parameter sets to study the influence of the sensor model on the prediction quality.

As the aim of the experiments in this chapter is to analyze my approach of agenda-supported

team intention recognition the basis for all evaluations is the scenario given in Section 3.2.1

of a staged meeting, where users will adopt different roles within the team. In the meeting

that was described there, someone who is actually involved1, will adopt both listener role and

speaker role during the course of the track. If the team wants a certain team member to give

a presentation he will adopt the objective to go to the presentation stage. Otherwise he will

sit in the circle of attendees and listen. The drawing in the upper-left quarter of Figure 4.1

shows a snapshot of such a situation.

It is common sense that meetings should have structure or agendas in order to be effective

(e.g., Carnes, 1980). However, meeting attendees usually follow these a-priori agendas in

a more or less reliable manner only. Nevertheless these agendas obviously denote the prior

1Involvement of a person is easily derived from an agenda.
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hints about the intention of the team and the course of the event. As already mentioned in

Section 3.4.2, due to the straight relation between team and user intentions, in reality the

staged meeting scenario enables a deterministic assignment of user actions to team activities.

Remember that this simplifying assumption is incorporated into the Team DBN. Thus, the use

of the proposed Team DBN combined with location and motion observations from simulated

sensors provides excellent information for inference of team intentions.

Experimental Design

Obviously, agenda information should improve the quality of team intention recognition if

a team follows its agenda. However, as soon as a team deviates from the a-priori agenda,

recognition quality may drop. The recognizer may draw wrong conclusions from misleading

a-priori information that potentially defeat the expected benefit completely. The objective

of this first evaluation is to investigate whether a-priori agenda information can be used to

improve recognition quality in case the team complies to a certain agenda, without sacrificing

recognition quality in the case of non-compliance with that agenda.

The main interest of this first experiment is shown in two questions:

• How reliable is agenda-based team intention recognition in case of compliance and

non-compliance, compared to an agenda-free team activity tracking?

• How fast will an agenda-based team intention recognizer identify a change in the team

objective (Again, in relation to agenda-free team activity tracking for compliant and

non-compliant teams)?

So to assess the usefulness of this work’s approach using a probabilistic behavior model that

incorporates agenda and history knowledge, a simulation experiment series was set up to

answer these questions. The answers, then, enable a statement about how rigid an agenda

assumption must be to optimally predict team activities (at least for the staged meeting sce-

nario), where rigid means that the state transition probabilities of the Markov model (cp.,

with Figure 3.6) represent a high probability that the team will follow the agenda.

For this experiment three different meeting sequence truths (one compliant, two non-com-

pliant) were chosen to analyze the effect of an agenda on reliability and speed of intention

recognition in case of compliance and non-compliance. First, it is assumed that the users
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Figure 4.1: Experimental setup: Snapshot from the staged meeting scenario (upper-left);
Spatial distributions of sensor readings of a 〈A,B,C,D〉 sequence with Gaussian (
 , upper-
right) and Cauchy (� , lower-left) sensor model with parameters: delay 0.15, error 15.0;
Temporal distribution for the simulated truths (lower-right), where notable spots with long
residence times are places as seats and presenting stages.

follow the agenda and deliver their contributions in the sequence 〈A,B,C,D〉. In the second

version the sequence is slightly changed where user C presents before B 〈A,C,B,D〉. And a

third course is the reverse sequence 〈C,B,A,D〉.
Further four different parameter settings were used for the sensor model. In two settings the

sensor data was simulated to be Gaussian (
 ) distributed. In the two other settings sensor

data was generated to follow the Cauchy (� ) distribution. The settings for each distribution

differed in delay between consecutive sensor readings and sensor error. Figure 4.1 shows

typical simulation data sets generated from these sensor models. Simulation changed with the

modification of the sensor model parameters. Gaussian distributed sensor data is closer to the
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Table 4.1: Summary of experimental design: 12 different truth sequences, 4 different tracker
configurations, 6 runs in any combination, 288 simulation data logs.

A-priori agenda:

(Pfollow = probability that the team will choose the next objective on the agenda)

(n = number of agenda items)

We tested three tracker models TPfollow with different agenda strengths.

Probabilities used for Pfollow are {0.6, 0.8, 0.95}.

TPfollow = P(ξ′|ξ) =
$
Pfollow if ξ′is next agenda item after ξ
(1−Pfollow)

n−1 otherwise

We compared these to the tracker model Tuniform without any agenda information.

Tuniform = P(ξ′|ξ) = 1
n

3 different truth agendas: 4 different truth sensor models (columns):

〈A,B,C,D〉, 
 �
〈A,C,B,D〉, 0.15 0.25 0.15 0.25 sensor delay

and 〈C,B,A,D〉 15.0 30.0 5.0 10.0 sensor error

real path of the user as shown in the lower right quarter of Figure 4.1, but the Cauchy model

relates closer to the real sensor data provided by the Ubisense Platform UWB positioning

system of my department’s prototype smart meeting room.

Finally, four different models for a-priori agenda information were used for the evaluation

of recognition accuracy: a random model, where every activity has the same probability and

the history is not tracked, and three models that correspond to the model in Figure 3.6 with

different probabilities that the users will follow their a-priori agenda {0.6, 0.8, 0.95}. For

every tracker model six filter runs with 5.000 particles were logged. Table 4.1 provides an

overview of the entire setup.

4.2.2 Results

The illustrations of two typical representatives of model T.8 and model Tuniform simulation

runs in Figure 4.2 show that the main uncertainty about the teams objective prevails during
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Figure 4.2: Inference of a 〈A,B,C,D〉 truth from Cauchy distributed sensor data (delay 0.25,
error 10.0) with the trackers T.8 (left) and Tuniform (right).

the phase of an objective shift. The left picture shows the advantage of agenda knowledge.

For instance the objective shift from user B presents (PB) to C presents (PC) around time

slice 40 is recognized faster and more reliable than in the right picture. Further it shows that

agenda knowledge leads to less misinterpretation of sensor readings. Thus the overall error

rate shrinks.

Figure 4.3 shows two cases where actual team behavior is non-compliant to the a-priori

agenda 〈A,B,C,D〉. The true course of the meeting is the reverse agenda 〈C,B,A,D〉. The

comparsion of the depicted representatives of model T.8 and model Tuniform tracking runs

show that despite an outlier the overall inference accuracy and speed using the agenda-driven

model looks very reasonable. Comparing these particular two examples, the inference of the

model with the misleading agenda does indeed even better than the agenda-free model. Ob-

viously already the information which agenda items are about to appear and what the team

has done so far is some practical knowledge for the inference of the next team intention.

This information is not available from an agenda-free random model, whereby its inference

accuracy suffers.

The average results over the 6 simulation runs for the 48 different parameter settings (12
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Figure 4.3: Inference of the non-compliant truth 〈C,B,A,D〉 from Cauchy distributed sensor
data (delay 0.25, error 10.0) with the trackers T.8 (left) and Tuniform (right).
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Table 4.2: Average accuracy: where the rows hold the targets that the trackers T.6, T.8, T.95
and Tuniform had to predict. The accuracy values are averaged over the six runs each. T.8
improves accuracy about 10% over Tuniform.

T.6 T.8 T.95 Tuniform

〈A,B,C,D〉 
 0.15 15.0 91.657 91.853 84.620 75.163

0.25 30.0 90.745 89.812 90.278 83.867

� 0.15 5.0 96.893 96.893 96.847 95.740

0.25 10.0 97.045 96.983 97.202 89.903

〈A,C,B,D〉 
 0.15 15.0 96.118 95.917 95.918 94.453

0.25 30.0 84.198 82.645 81.935 79.362

� 0.15 5.0 93.075 93.055 95.583 80.937

0.25 10.0 89.283 89.258 70.993 75.922

〈C,B,A,D〉 
 0.15 15.0 88.700 88.837 86.618 73.368

0.25 30.0 76.743 87.440 73.260 84.685

� 0.15 5.0 88.105 88.372 78.673 83.888

0.25 10.0 90.857 92.988 83.687 79.915

all 
 0.15 15.0 92.158 92.202 89.052 80.995

agendas 0.25 30.0 83.895 86.632 81.824 82.638

� 0.15 5.0 92.691 92.773 90.368 86.855

0.25 10.0 92.395 93.046 83.961 81.913

average accuracy over all takes 90.285 91.163 86.301 83.100

sensor model parameters × 4 tracker parameters) are shown in Tables 4.2 & 4.3. Here,

Table 4.2 gives the team intention recognition reliability (in % correct). Therefore accuracy

is measured by the percentage of time where the team intentions recognized by the trackers

equal those team activities given by the simulated truth sequences. The average delay between

true objective shifts of the team (i.e., where a team starts with preparing a new activity) and

the trackers’ recognitions of these shifts is given in Table 4.3 (in seconds s behind true shift).

The comparison of the reliability values for T.8 and Tuniform gives the most important result of

this first study:

It is possible to improve the recognition accuracy for the compliant case by using

an agenda, without sacrificing recognition accuracy for the non-compliant case.

Therefore, it always pays to include available a-priori agenda information into the recognition
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Table 4.3: Average delay: where the rows hold the targets that the trackers T.8 and Tuniform
had to predict. The time values in seconds are averaged over the six runs each. T.8 recognizes
ca 33% faster then Tuniform.

T.8 Tuniform

〈A,B,C,D〉 
 0.15 15.0 0.00 4.20 0.30 1.57 0.08 4.20 0.40 13.98

0.25 30.0 0.00 2.50 1.32 0.00 0.20 2.50 3.13 0.20

� 0.15 5.0 0.00 0.10 0.90 1.33 0.07 0.33 0.92 1.52

0.25 10.0 0.00 1.30 0.20 0.80 0.08 1.40 0.38 4.65

〈A,C,B,D〉 
 0.15 15.0 0.00 0.72 0.47 2.00 0.37 0.80 0.55 2.00

0.25 30.0 0.00 1.27 0.85 10.03 0.42 1.38 1.77 11.70

� 0.15 5.0 0.00 2.17 1.00 0.48 0.00 0.23 1.00 7.60

0.25 10.0 0.00 5.65 1.05 1.38 0.00 5.68 1.22 11.15

〈C,B,A,D〉 
 0.15 15.0 0.60 1.00 1.50 4.80 0.50 1.00 1.50 15.13

0.25 30.0 0.4 5.60 1.90 0.90 0.17 5.73 2.83 1.08

� 0.15 5.0 0.20 0.90 5.50 2.10 0.15 0.92 8.80 2.33

0.25 10.0 0.55 1.45 1.52 0.90 0.03 1.43 6.33 3.57

all 
 0.15 15.0 0.20 1.97 0.76 8.37 0.32 2.00 0.82 10.37

agendas 0.25 30.0 0.13 3.12 1.36 3.64 0.26 3.20 2.58 4.33

� 0.15 5.0 0.07 1.06 2.47 1.30 0.07 0.49 3.57 3.82

0.25 10.0 0.18 2.80 0.92 1.03 0.04 2.84 2.64 6.46

average delay over all takes 0.15 2.24 1.38 3.59 0.17 2.13 2.40 6.25

Σ 7.36 Σ 10.95

system, even if the correlation between the agenda sequence and the true activity sequence

is not very strong in every case. Consider that inference with an agenda-free model tends to

select agenda items plurally on a random basis. This is prevented by agenda-based models

with inherent history tracking.

However, as can be seen by comparing the results of the agenda-driven models T.6, T.8, and

T.95, it is important to assign a suitable probability to the agenda’s preferred sequence. On the

one hand, if this value is too high (e.g., .95), then the agenda becomes too rigid. Thus, the

system will tend to assume that the team follows the agenda, even if the observation data from

the sensors tell a different story. On the other hand, a further increasing of the looseness of

an agenda (e.g., to .6) does not imply a further improvement in recognition of especially the

non-compliant action sequences. It seems that unnecessary looseness will presumably degrade
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recognition capability. But even though the data shows appropriate indications supporting this

guess, those do not significantly substantiate it.

Finally, by looking at the delay data, it becomes visible that an agenda reduces the delay,

specifically for the later team actions. As already mentioned in the context of Figure 4.3 that

compares the most accurate tracker configuration T.8 with the agenda-free model Tuniform this

is due to the agenda model specific history tracking. An agenda-driven model like T.8 will

not reconsider items already worked off. In comparison to the agenda-free variant Tuniform

this aspect, clearly, reduces the degrees of freedom for decision making on the next team

intention with every completed agenda topic .

Conclusion

The results of this first experiment regarding intention recognition for cooperative teams,

namely inference accuracy and speed, show that despite noisy observable sensor data and a

rather ad hoc prior probability distribution for the occurrence of agenda items a precise and

robust inference is possible. Adding agenda knowledge to a team behavior model is identi-

fied as an improvement for the compliant cases and as non-disturbing for the non-compliant

cases. This supports the claim that even unreliable agendas have positive effects on inferring

intentions of cooperative teams.

The promising findings from the first experiment encouraged a further in-depth development

of the team intention model to cover the “team meeting” domain appropriately. A distinc-

tion between the preparing and performing stages was added to the model and an ability

to learn adequate probability distributions for the agenda compliance and state changes as

well as sensor model and timer model parameters using the expectation maximization (EM)

algorithm was incorporated into the experimental infrastructure. The second experiment de-

scribed in the next section evaluates how these enhancements influence in-situ recognition in

my department’s SmartApplianceLab.

4.3 Experiment #2: Instrumented Field Study

The second experiment carried out with the proposed Team DBN determines how this ap-

proach handles real sensor data. Using a corpus of instrumented meeting recordings it studies
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whether the results of experiment #1 that even unreliable agenda knowledge improves recog-

nition quality can be repeated in an in-situ setting. Another question of interest is, if the added

division of a team activity into two team actions, i.e., a preparing stage and an acting stage,

involves a more reliable recognition of the current team intentions. This experiment investi-

gates the robustness of intention analysis using the proposed Team DBN in case of incomplete

sensor observations. And it examines incidentally whether the quality of agenda-driven team

intention recognition can be improved by learning adequate sensor model and timer model

parameters using the methods implemented in the experimental infrastructure so far. Again,

before the results of this second exploration are presented and the findings are analyzed,

the overall setup of the in-situ experiment is described, namely questioning, procedure, and

particular tools used.

4.3.1 Study Methodology

The instrumented field study was again based on the Bayesian filtering approach and used the

final version of the explicit probabilistic team behavior model proposed in Section 3.4.2, which

includes the two stages approach that distinguishes between a preparation and a performance

phase. The questioning of this experiment #2 is similar to the first exploration just for a real

world setting. It tries to find answers to the queries:

• How accurate and how fast can cooperative behavior of a team be predicted with an

agenda assumption and history knowledge using real sensor data?

• What influence do deviations of the team from the planned agenda assumption have on

the prediction quality in an in-situ setting?

• When does an explicit agenda improve prediction quality, and where are the drawbacks?

In addition to the first experiment’s queries it addresses the following questions:

• How robust can cooperative behavior of a team be recognized if sensor data of single

team members is lacking?

• Does recognition using an explicit agenda improve prediction robustness over the agenda-

free approach?

• Is learning of the sensor model and timer model parameters a way to better results?
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For this experiment an in-situ setting was chosen to enable statements about the proposed

approach that are based on real world data. Therefore a corpus of instrumented meetings

was set up to provide a collection of data that was gathered in a controlled environment to

allow a comparison of the demanded measures.

Experimental Design

The basis for the structure of the instrumented meetings is the staged meeting scenario given

in Section 3.2.1, where the team members will perform different activities and adopt different

roles within the group. In the run-up of the experiment a preliminary agenda for the meet-

ings was defined that corresponds to the scenario. The durations of the presentations of the

different team members in the agenda were set to the following values: A presents 60s, B

presents 90s, and C presents 60s, too. The discussion is scheduled with 30s2. Accordingly, the

preliminary agenda for all instrumented meetings recorded for the corpus lists as follows:

60 seconds Presentation of the proposal of person A

90 seconds Presentation of the proposal of person B

60 seconds Presentation of the proposal of person C

30 seconds Discussion of the proposals

End of the meeting

All scripts for the instrumented meetings follow the 〈Present, Present, Present, Discuss〉 struc-
ture described in the scenario, but only a part of the recorded meetings are compliant with the

agenda 〈A,B,C,D〉 outlined. The other recorded courses deviate from the meeting agenda

randomly. All in all, 7 compliant and 13 non-compliant of a total of 20 meetings were recorded

by a semi-automatic meeting recorder. Therefore three-person teams of volunteers acted on

the audio instructions of the meeting recorder and an observer annotated every transition

from the preparing stage to the performing stage by clicking a button in the application. Then,

the meeting recorder writes all sensor readings together with the observed state transitions

into a file. This file represents the truth for the recorded meeting. Figure 4.4 gives an impres-

sion how the recorded data looks like. Here the sensor footprints of all recorded meetings are

lapped. The drawing on the right side indicates the sequence of data occurrence.

2Obviously the durations selected here are rather short, but the interest in this experiment was merely on the
transition phases of the meeting.
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Figure 4.4: Recorded sensor footprints lapped for all recordings of instrumented meetings.
Colors encode the different team members A (green), B (yellow), and C (blue). Red stars
indicate the related locations on the path graph (see, Figure 3.7).

The structure of this experiment has three parts. First is the precision test. To analyze the

precision of the team intention recognition two different settings of the sensor model and two

different settings of the timer model were combined with three different configurations of

Pfollow (i.e., the probability that the team will follow the agenda). The resulting tracker setups

(T.6, T.8, T.95) are used to filter the 20 different recorded meetings. These filter runs3 are

compared to the according filter runs using the agenda-free tracker Tuniform. In summary, each

of the four parameter configurations is filtered 20 times for each of the four trackers.

As second part a reliability test was added to emphasize the reliability of the result from the

precision test. Therefore two of the recorded meetings (a compliant one and a non-compliant

one) were selected randomly. These two meetings were filtered 10 times with each of the 16

parameter×tracker combinations to enable a statement about the variation in result of the

precision test.

The third part of the experiment was the robustness test. This was set up to examine how the

precision of the recognition changes if some of the observation data is not available. Therefore

the recorded meeting data was slightly modified. For each of the recorded meetings three

additional data sets were produced where the data of one of the three team members A, B,

and C was skipped. Now the same procedure as for the precision test was applied to the

modified data set. Table 4.4 provides an overview of the entire setup.

3Again, filtering was done with a number of 5.000 particles.
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Table 4.4: Summary of experimental design: 20 different recorded truth sequences (7 compli-
ant, 13 non-compliant), 4 different tracker configurations, 1 filter run per parameter set over
each of the 20 recorded meetings for precision and robustness, 10 filter runs per parameter
set over 2 randomly selected meetings for reliability.

A-priori agenda:

Settings are analogous to the settings in Table 4.1.

Precision

20 different recorded meetings: 4 different initial parameter settings (columns):

7 compliant, 
 � sensor model

13 non-compliant 150,150 9.75


 � 
 � timer model

85 85 85 85

Robustness

20 recordings lacking data of A: 4 different initial parameter settings (columns):

20 recordings lacking data of B: 
 � sensor model

20 recordings lacking data of C: 150,150 9.75

7 compliant, 
 � 
 � timer model

13 non-compliant 85 85 85 85

Reliability

10 × 2 different recorded meetings: 4 different initial parameter settings (columns):

1 compliant, 
 � sensor model

1 non-compliant 150,150 9.75


 � 
 � timer model

85 85 85 85

Remember that this study also asked the question if learning of sensor model and timer model

parameters can yield better results in team intention analysis than the a-priori parameter

settings provides anyway. Hence the precision test was rerun with learned parameter settings

as soon as the learner had determined the values for the parameter setting by iterating the

data of each recorded meeting for every parameter×tracker combination 5 times. The result

of the parameter learning are mentioned in a separate section later on. Next section focuses

on the results of the precision, reliability and robustness tests.
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Figure 4.5: Inference of a compliant truth with the initial 
sensor ×
timer configuration. The
three top rows show the distribution of the particle votes for team intentions as well as the
estimates for the objective and the stage of the team in comparison to the true team objective
and stage for the tracker T.8. The three bottom rows depict the same for the tracker Tuniform.

4.3.2 Results

The illustrations of the T.8 and Tuniform tracker results of the best recognized agenda-compliant

meeting truth in Figure 4.5 show similar characteristics as the results of the simulation experi-

ment explained in Section 4.2.2. Again, the uncertainty about the team’s objective rises in the

phases of transition from one intention to another. The three top drawings illustrating tracker

T.8 indicate the advantage of agenda knowledge. Compared to the three bottom drawings that

are related to the Tuniform tracker they show that with the use of an agenda a more reliable

inference of the team’s objective is possible, especially at the beginning of a meeting.

Further it can be noticed that the decisions of both trackers for an intention transition lag a

certain amount of time behind the true team objective shift. This is similar to the result of the

simulation study, too. But thanks to the enhancement of the Team DBN, which in the current

version can distinguish between the preparation and the performance of an activity, it can be

seen at the same time that the trackers decide on a new team intention noticeable prior to the

144



Experiments and Conclusions

start of the acting stage of a team activity. Table 4.5 indicates that the delay just mentioned

depends on the existence of an agenda and on the parameterization of the tracker. This table

breaks down the portion of the meeting filtering results where truth and estimation differ.

The rows hold the results for the different parameter settings, i.e., all combinations of 1. the

agenda compliance, 2. the Gaussian sensor model, and 3. the timer model – Gaussian 
 or

Exponential � .
The values of a row encode from left to right the delay rate (i.e., the percentage of the meeting

time that the estimation needs to shift to new team intentions), the total error rate (i.e., the

percentage of the meeting time that the estimation decides for wrong team intentions), and

the acting error rate (i.e. same as the total error rate, but for the acting time only), first for

the agenda-driven tracker T.8 and second for the agenda-free tracker for Tuniform.

From the first values of the table it can be seen that on the one hand for agenda compliant

meetings a delay rate of a tracker using an agenda is on average smaller than the delay rate of

an agenda-free tracker. On the other hand for non-compliant meetings it is just the other way

round. Obviously, this indicates that for compliant cases an agenda-driven model is closer to

the truth and for non-compliant cases an agenda-free model might be favorable. But with

dropping the agenda the chance for tracking history is lost, too. This can be seen from the

second values: the error rates. These increase dramatically for the agenda-free model, even

for non-compliant meetings. So using a list of things to do (e.g. a preliminary agenda) and

keeping track of what has been done so far (i.e., using a history) seems a good idea for a team

intention model, even if the team deviates from the order in the list. The third values, i.e., the

acting error rates, finally indicate when recognition errors mainly occur. They demonstrate

Table 4.5: Average delay and error: The values encode LTR the delay rate, the total error rate,
and the acting error rate for the different setting parameter×tracker values.

T.8 Tuniform

compliant 
 
 6.064 0.606 0.000 6.484 2.639 0.587

� 5.897 1.750 1.147 6.242 2.436 0.000

non- 
 
 6.406 1.053 0.000 5.899 2.597 0.261

compliant � 6.337 1.060 0.000 5.522 2.551 0.248

all 
 
 6.235 0.829 0.000 6.192 2.618 0.424

agendas � 6.117 1.405 0.573 5.882 2.494 0.124
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Table 4.6: Average accuracy: The values encode the accuracy results for all tested
parameter×tracker configurations. The accuracy figures list the mean filtering accuracies
of the respective meeting recordings. According to paired t-Tests over the results the agenda-
driven trackers T.6, T.8, and T.95 outperformed the agenda-free tracker Tuniform significantly.

T.6 T.8 T.95 Tuniform

compliant 
 
 93.047 93.330 93.497 90.876

� 92.081 92.353 92.295 91.322

� 
 84.732 87.352 86.556 64.759

� 85.032 86.255 84.744 73.187

non-compliant 
 
 92.466 92.541 92.324 91.504

� 92.215 92.603 92.037 91.927

� 
 67.088 65.969 67.930 69.555

� 70.445 67.765 69.700 71.461

all 
 
 92.756 92.935 92.910 91.190

agendas � 92.148 92.478 92.166 91.624

� 
 75.910 76.660 77.243 67.157

� 77.738 77.010 77.222 72.324

that the usage of an agenda-driven tracker reduces the vulnerability to errors in recognition

during the acting stages of the team activities in all meeting types in comparison to trackers

without agenda knowledge.

The averaged accuracy figures for filter runs with initial parameter values are shown in Ta-

ble 4.6. The table lists the results for all parameter configurations of 1. the agenda compli-

ance, 2. the sensor model – Gaussian 
 or Cauchy � , and 3. the timer model – Gaussian 

or Exponential � combined with the trackers T.6, T.8, T.95 and Tuniform. As in the simulation

study, the tracker T.8 shows the most promising results. Especially in combination with the


sensor ×
timer and 
sensor × �timer configurations it significantly improves recognition qual-

ity over the agenda-free tracker Tuniform. The Box-Whisker plots in Figure 4.6 illustrate these

improvements. The left side of this figure compares the filter results of the two variants of

tracker T.8 with the two variants of tracker Tuniform for agenda-compliant meeting recordings,

whereas the right side of the figure compares the results for the meeting recordings that are

not compliant with the preliminary agenda.

In order to allow a statement about how reliable these accuracy results are a reliability test was
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Figure 4.6: Accuracy: These Box-Whisker plots depict the median and the mean variation
in the accuracy results of the different filter runs for the recorded meetings. The drawings
show the comparisons of differently parametrized T.8 and Tuniform trackers using initial pa-
rameter values. In this context cgg means: compliant, 
sensor × 
timer and nge stands for:
non-compliant, 
sensor × �timer. The other abbreviations cge and ngg are respective combina-
tions of these meanings.

performed. For this test two representatives of the meeting recordings were chosen randomly,

one from the agenda-compliant meetings and one from the non-compliant cases. 10 filter

runs were performed with each representative to examine how the filtering results vary. The

results related to the 
sensor×
timer and 
sensor×�timer configurations of the trackers T.8 and

Tuniform are shown in Figure 4.7. The left side of the figure compares the reliabilities of the

filtering accuracy of the compliant representative, and the right side of the figure shows a

comparison of the results when using the non-compliant meeting.

From these plots it can be seen that the accuracy results from the agenda-driven trackers are

far more reliable than the results from the agenda-free tracker. Furthermore they state that

using an agenda leads to more consistent filtering results than using an agenda-free tracker.

This shows again that incorporating an agenda into the team intention model and keeping

track of the history improves the quality of team intention recognition.

The introduction of the two phases of a team activity (i.e., preparation and performance)

into the team intention model reveals another interesting result. Remember, while recording

the meetings for the experimentation corpus an observer annotated the transition between

preparing stage and acting stage by clicking a button on the meeting recorder. The preparation

phase is typically the time frame a smart environment has to recognize the situation and must

147



Chapter 4

cgg  cge  

91

92

93

94

Different Parameter Configurations

Pe
rc

en
ta

ge
 o

f 
C

or
re

ct
 E

st
im

at
io

n

ngg  nge  

91.5

92.0

92.5

93.0

93.5

94.0

94.5

Different Parameter Configurations

Pe
rc

en
ta

ge
 o

f 
C

or
re

ct
 E

st
im

at
io

n

Figure 4.7: Reliability: These Box-Whisker plots depict the median and the mean variation in
the accuracy results of the 10 filter run iterations of two randomly selected meeting record-
ings, one from compliant meetings (left) and one from non-compliant meetings (right). Again,
the drawings show the comparisons of differently parametrized T.8 and Tuniform trackers using
initial parameter values. The abbreviations encode the same meanings as in Figure 4.6.

provide appropriate assistance. Table 4.7 shows when the T.8 and Tuniform trackers decide

for new team objectives. The values encode from left to right the saved time per topic (i.e.,

the averaged time frame from an estimator’s transition to a correct new team intention up to

the truth’s transition from preparing to acting), the percentage of saved time on the entire

meeting, and percentage of saved time on the preparation phases of the meetings.

The table indicates that the trackers always recognize the objective shift before the team starts

performing its current activity. Again, agenda-driven trackers in all cases decide significantly

Table 4.7: Average saved time: The values encode LTR the saved time per topic, the percent-
age of saved time on the entire meeting, and percentage of saved time on the preparation
phases of the meetings for the different setting parameter×tracker values.

T.8 Tuniform

compliant 
 
 3.783 7.613 53.301 3.058 6.155 41.896

� 3.814 7.675 54.145 3.160 6.359 42.289

non- 
 
 4.068 8.204 52.378 3.764 7.592 47.969

compliant � 4.113 8.296 52.864 3.907 7.878 50.169

all 
 
 3.925 7.908 52.819 3.411 6.874 45.046

agendas � 3.964 7.986 52.472 3.533 7.119 46.314
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Table 4.8: Exemplary results of the Paired t-Test emphasizing that time savings with model T.8
are statistically significant in comparsion to the agenda-free model Tuniform. In this example
the compliant, 
sensor×
timer configurations of both models were compared.

P value and statistical significance:

The two-tailed P value equals 0.0037

By conventional criteria, this difference is considered to be very statistically significant.

Confidence interval:

The mean of T.8 minus Tuniform equals 0.90750

95% confidence interval of this difference: From 0.33297 to 1.48203

Intermediate values used in calculations:

t = 3.3061 T.8 Tuniform
df = 19 Mean 7.99690 7.08940

standard error of difference = 0.274 SD 1.13296 1.66723

faster on a new team objective than the agenda-free tracker. On average the decision is

made in the first half of the preparing stage. Note that the moment when all team members

arrived at their associated location was selected for the observer’s annotation of the preparing-

acting transition. In typical meeting situations this is the time when the struggle with the

presentation hardware really begins. Thus the proposed agenda-driven team intention model

provides enough reserves to configure the room, even more than an agenda-free approach.

A final question was how the different trackers behave in cases lacking sensor data. Therefore

the sensor readings of one team member at a time was erased from the meeting recordings

and then the same filter runs as for the precision test were performed. The Box-Whisker

plots in Figure 4.8 show selected results of this robustness test (i.e., trackers T.8 and Tuniform).

Not only that agenda-driven trackers obviously demonstrate a stronger robustness than the

agenda-free trackers. They also achieve similar accuracy results as in the precision test, at least

when filtering agenda-compliant meetings. For non-compliant meetings mean variation rises

and the filtering results depend strongly on the quality of the remaining sensor data. Agenda-

free trackers demonstrate even worse behavior. Thus this test demonstrated clearly that the

robustness of a team intention model profits from incorporation of agenda knowledge.
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Figure 4.8: Robustness: These Box-Whisker-plots depict the results from runs where the
recorded data of one team member at a time was dropped. Set up as in Figures 4.6 & 4.7, in
the runs shown by the first row drawings sensor data from A was dropped. The runs shown
in the second row lack B’s data, and in the runs in third row data from C was dropped.
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Note on Parameter Learning

Up to this point this work did not made any attempt to describe the learning approach used

in the experimental infrastructure that may enable the refinement of a-priori parameter set-

tings. This is simply due to the fact that the implementation of learning algorithms in the

experimental infrastructure was not completed. It was planned to implement the expectation

maximization (EM) method introduced by Dempster et al. (1977) for parameter learning. The

operation of algorithms of this category is as follows:

Given a joint probability distribution p
	
e1:T ,x1:T |θ
 over observed variables e1:T and

hidden variables x1:T , controlled by the parameters θ , the objective is to maximize the

likelihood p
	
e1:T |θ
, and therefore

1. Select the initial parameters θ old.

2. Evaluate p
�
x1:T |e1:T ,θ old

�
and calculate the Expectation

� �
θ ,θ old

�
=

∫
x1:T

p
�
x1:T |e1:T ,θ old

�
ln p

	
e1:T ,x1:T |θ
 .

3. Determine the revised parameters θnew by Maximizing the function

θnew = arg maxθ�
�
θ ,θ old

�
.

4. Check for convergence. If the convergence criterion is not satisfied, then let θ old ← θnew
and reiterate by returning to step 2.

Again, the virtually indefinite complexity of the density function makes a calculation of the

optimal parameter setting for the proposed team intention model intractable (cp. with Sec-

tion 3.5.2). Therefore the idea was to realize two approximative Bayesian smoothing ap-

proaches within the parameter learning environment, namely the forward-backward smoother

and the maximum a-posteriori (MAP) smoother described in detail e.g., by Klaas et al. (2006).

But the implementation was not finished in time to be evaluated during this second experi-

ment. At this stage of work only a simple forward smoother could be utilized that adopts the

filtering step of the particle filter for smoothing. This obviously includes merely the obser-

vations up to the current time step instead of the knowledge from the complete timeframe

observed. Hence different sources warn that it may fail to converge (Bishop, 2006) and can

perform poorly (Klaas et al., 2006) due to the lack of hindsight. However, utilizing the for-
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Figure 4.9: Inference of a compliant truth with the initial 
sensor ×
timer configuration. The
three top rows show the distribution of the particle votes for team intentions as well as the
estimates for the objective and the stage of the team in comparison to the true team objective
and stage for the tracker T.8. The three bottom rows depict the same for the tracker T.8 with
trained parameters.

ward learner was the only way to address the last question of this experiment: Is learning of

the sensor model and timer model parameters a way to better results?

Figure 4.9 shows the T.8 representative from Figure 4.5 in comparison to the trained version’s

result. The learning of the parameters of the sensor model resulted in tighter scale parameters

(i.e., a scale of {150,150} vs. a scale of {61.8,57.6}). The direct comparison shows that this

led to a faster but more error-prone recognition of the team objectives. Despite this tendency

to more errors in recognition the accuracy in fact increased for the depicted case. This is

mainly a result of the rather good availability of sensor data. The phase of the meeting

where C holds his presentation indicates what happens if sensor observations get sparser or

respectively noisier. In these cases a tighter scale compromises the viability of potentially

important particles of the filter. Not all meeting recordings provide the same quality of sensor

data as the representative depicted in Figure 4.9. Thus, the over-all results of this first test on

how learning could help to refine a-priori parameter settings are moderate. The Box-Whisker
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Figure 4.10: Accuracy: These Box-Whisker plots depict the median and the mean variation
in the accuracy results of the different filter runs for the recorded meetings. The drawings
display the comparisons of differently parametrized T.8 and Tuniform trackers using trained
parameter values. In this context cgg means: compliant, 
sensor ×
timer and nge stands for:
non-compliant, �sensor × �timer. The other abbreviations cge, ccg, cce, ngg, nge, and ncg are
respective combinations of these meanings.

plots shown in Figure 4.10, which summarize the accuracy results of the different T.8 trackers

in comparison to the respective Tuniform trackers, indicate this phenomenon. The variation

of the accuracy results heavily increased after refining the sensor model parameters with the

mentioned forward learner. Even though especially compliant meetings filtered with agenda-

driven trackers tend to a better recognition with learned parameters (medians of these runs

gather around 92% correct), the number of unsubstantial recognized meetings increased, too.

Conclusion

Despite the rather awkward results of the learning test that need further investigation the ex-

periment #2 showed once again that the proposed approach of agenda-driven team intention

recognition based on a Team DBN is a preeminent idea that can pass in a real world setting,

too. The important result from the first study that it is possible to improve the recognition accu-

racy for the compliant case by using an agenda, without sacrificing recognition accuracy for the

non-compliant case, also holds for the in-situ experiment. Again, the accuracy and reliability

results of the different variants of the agenda-driven trackers outperform the results of the

agenda-free Tuniform tracker versions. This statement that adding agenda knowledge to a team

behavior model is an improvement holds for the average error rate, too, but in this case the
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advance is made at the expense of recognition speed, especially while filtering non-compliant

meetings. On the other hand the analysis of experiment #2 showed that the time savings that

can be realized with trackers using agenda knowledge are larger than the savings of cases

where no agenda information was used. This compensates for the speed drawback.

The second important finding is that the additional knowledge of an unreliable a-priori agenda

dramatically improves recognition quality in cases of missing sensor data, no matter if the

meeting has an agenda-compliant course or a non-compliant course. Thus an agenda-driven

Team DBN is a real improvement for the robustness of team intention recognition. Finally,

the experiment showed that appropriate initial parameters for the sensor model and the timer

model enable very reasonable recognition results without any help of parameter learning.

Nevertheless parameter learning provides a way to optimize the recognition results but simul-

taneously involves the danger of the memorization of training data at the expense of flexibility

and robustness.

In summary, the results of this second experiment regarding intention recognition for coop-

erative teams show that a precise and robust inference in a real world situation is possible.

Adding agenda knowledge to a team behavior model is again identified as an improvement

for the compliant cases and as non-disturbing for the non-compliant cases. The excellent find-

ings on precision and robustness support the claim that even unreliable agendas have positive

effects on inferring intentions of real cooperative teams. The findings about time savings indi-

cate the usefulness of team intention models in assistive smart environments. And, the rather

moderate findings on learning should encourage further in-depth research on appropriate

learning strategies for the team intention model.

4.4 Summary and Outlook

Smart Environments as representatives of the ubiquitous computing paradigm are a promising

approach to assist users with their real world problems. In the surroundings of a real world

scenario it is valuable to provide user assistance in an unobtrusive implicit manner. Especially

in team situations a deducible objective of the team might provide a solid base for a Smart

Environment to decide on an assistance strategy. This work determined how such a system

for the intention analysis in teams could be designed.

Therefore, a criteria catalogue was developed by means of a typical ubiquitous computing
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scenario. The relevant criteria that were identified for the team intention model are 1.) pur-

suance of a training-free prior knowledge approach, 2.) capability of using various lexica

of team activities (i.e., agendas), 3.) allowance for easy extensions (e.g., to larger teams),

4.) support of real-time recognition, 5.) provision of robust recognition from simple sensor

data, 6.) tracking of team activity history, and 7.) separate modeling of complex team and

atomic user activities. Simultaneously, the related ubiquitous computing projects were exam-

ined to identify appropriate methods by which the criteria related problems of team intention

analysis could be addressed.

Considering the constraints from the scenario and the respective criteria, it turned out that

the concept of choice is a probabilistic model for real-time team intention recognition. The

evaluation of the state of the art in ubiquitous computing showed that so far very few attempts

have been made to model a team’s negotiation process on a future team objective. Besides

considerations by Zhang et al. (2004) and McCowan et al. (2005), which are interested in the

subsequent annotation of meetings, to the best of my knowledge no other approach is known

that complies with the identified criteria for team intention recognition in smart environments.

Nevertheless other research directions exist that already studied the behavior of groups and

teams. In order to learn from these interdisciplinary findings this work reviewed research on

human behavior in a group and as an individual made by social psychologists and cognition

psychologists respectively and identified ideas that might help to model a team negotiation

process as desired.

Reviewing the field of social psychology provided valuable insights into the “nature of groups”.

These clearly influenced the design decisions regarding the team intention model. The review

showed that 1.) if a group is a team in terms of collaboration a task or respectively goal-

oriented acting of the team members can be presumed, 2.) interdependences and structures

in groups can exist, where group members have equal rights and, thus, the behavior of the

different members of a team can be modeled equally, and 3.) the sensor observation of

the team is an adequate technique that, combined with a coding scheme (e.g., an a-priori

agenda), allows an objective and systematic recognition of team events.

In addition to the findings from reviewing social psychology research the evaluation of the

cognitive psychology field showed that especially reasoning and problem solving aspects as part

of the cognitive psychology subfield thinking promise insights into human behavior that are

constructive with respect to the design of a team intention model. The fundamental statement
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here is that human reasoning and problem solving is goal oriented. People tackle a certain

goal in a “divide & conquer” manner. Abstracting this behavior, that is, they try to find an

efficient transformation from an initial state to a desired goal state by subdividing the possibly

composite activity into a set of atomic actions. The different models from cognitive research

typically enable a hierarchical formulation of the individual user goal. Here, the CTTE was the

most interesting approach with respect to the design of a team intention model as it allows

to subdivide cooperative multi-user tasks into individual subtasks for the persons involved in

a team. In summary, the review of this research field showed that 1.) cooperative behavior

of individuals can be modeled by hierarchical structures that reflect typical problem solving

strategies, 2.) the temporal sequence of certain activities is tied to observable preconditions

and effects of the underlying actions, and 3.) the knowledge for solving problems can be

derived from perception, memory4, or reasoning.

The reviews of the social and cognitive psychology fields clearly influenced the design of the

team intention model’s structure and the description of temporal dependencies of compound

activities. Nevertheless these research areas provided few information about how input stimuli

(sensor data) are related to a certain output (execution sequence). This question is rather a

matter of signal processing research that develops scientific as well as technological models

as a means for estimating the actual behavior of an observed signal source. Two fundamental

approaches from the signal processing area were examined with respect to their usefulness in

the scenario specified for this work. The selection of the methods was derived from the criteria

catalogue. Hence this work compared the connectionist approach with the probabilistic

method only. And, the purpose for modeling was rather technological than scientific because

this work was interested in a model that explains a certain state in the team negotiation

process on the basis of sensor observations. Hence the focus of this work was limited to

technological modeling.

The in-depth interdisciplinary recherche of the several different aspects in team behavior

recognition provided a solid knowledge base of criteria that contribute to an easier but sound

decision on an appropriate modeling approach for team behavior recognition. Combined with

the revised criteria catalogue and based on the concrete scenario in this work the recherche

led to the decision to utilize the temporal probabilistic modeling approach for the design of

the proposed team intention model.

4That are, in context of temporal probabilistic models sensor observations, preliminary agenda knowledge and
history tracking.
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The development of the agenda-driven Team DBN for real-time intention analysis in teams is

a second contribution of this work. After the recherche part the considerations made during

the design process and the model itself were described in detail. The core of the DBN-based

model is the two-stage team negotiation on new team objectives. The two-way interaction

introduced between the Team Node T and the User Nodes U (i) was to the best of my knowl-

edge never proposed this way before. This specific design shows several advantages. The

unbundling of the team level and the user level enables a flexible extensibility of the model to

larger teams than in the specific scenario. Furthermore it provides an easy way to synchronize

different user activities that are related to the same compound team activity.

Obviously, the decision to use a hierarchical structure to model the team negotiation on new

team objectives was derived from the in-depth recherche. And this might be seen as benefit,

too, because the similarity to hierarchical task models additionally incorporates the chance

for an effective automatic generation of team intention models from team task specifications

even though the proposed Team DBN was handcrafted. The inference in the proposed model

follows an approximative approach as usual for DBNs, namely MCMC. Therefore the particles

of the utilized particle filter hold a copy of the Team DBN each. The DBN states of the particles

propagate in time and with every sensor reading the particle states are evaluated, weighted,

and resampled.

An experimental infrastructure that enables the evaluation of the particular model and the

particular inference process is a further contribution. Here, the reason for a customized so-

lution was twofold. First an own solution enables full control on every single parameter or

respectively every single probability distribution. And secondly, the tools that were imple-

mented should be used beyond the experimental evaluation of this work in my department’s

prototypical SmartApplianceLab.

But with respect to this work the experimental infrastructure was merely used to carry out ex-

periments on the team intention model. Two studies were executed to evaluate the proposed

concept of a Team DBN. The simulation study in the early stage of this work was intended to

prove that the ideas for the model design head in the right direction. The in-situ experiment

was meant as test of the intention recognition concept with real sensor data occurring from a

real meeting situation.

In combination both experiments showed the overall feasibility of team intention recognition

using the proposed approach. The introduced probabilistic team intention model performs
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impressingly well with an ad-hoc a-priori setting of the transition probabilities of the model.

Further it turned out that it was a good idea to incorporate a-priori agenda knowledge into

the model even though this does not imply a guarantee that a team indeed would follow

this included agenda. Both experiments showed that it is possible to improve the recognition

accuracy for the compliant case by using an agenda, without sacrificing recognition accuracy

for the non-compliant case. Furthermore they showed that built-in agenda knowledge has a

positive effect on the robustness of the system. On average the accuracy of agenda-driven

trackers is significantly higher than the accuracy of the agenda-free versions even in cases of

non-compliant meeting courses and lacking sensor data.

In summary, this work outlined that the development of explicit team behavior models is a

challenging issue for providing proactive assistance in smart environments. Even though the

selected methods and the considered design have been developed into a concept that has

been proven as appropriate, more work needs to be done to exploit the full potential of the

proposed agenda-driven DBN-based team intention model.

Speaking in terms of the efficient development of team intention models, it makes sense to

dedicate further research to the methodology and the tools that enable an easy generation

of sufficiently precise models. Such a research must consider the correct declaration of the

overall team intentions for a certain domain and the appropriate representation of the prob-

lem solving strategies of specific team members. Then, it must find a suitable process to

translate such a description into a customized team intention model with appropriate model

parameters and agenda entries.

Regarding the recognition of the system state, more effort should be spent on incorporating

a more complex sensor landscape. Heterogeneous sources of sensor data could provide the

ability to detect a wider range of activities and this in turn could lead to a more reliable

inference of team activities or might enable the recognizability of more complex cooperative

activities and team behavior.

From the model optimization point of view, the briefly discussed learning aspect should be

examined further in future research. Obviously, in the first instance the learner tool of the ex-

perimental infrastructure must be finished to enable forward-backward and MAP smoothing.

Simultaneously it would be sensible to extend the existing corpus of meeting recordings or

to set up corpora for other smart environment scenarios. These could then be used to opti-

mize the quality of the model’s inference by learning the optimal parameter settings. Maybe
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it could even be valuable to determine if the learning of the team intention model’s structure

promises further improvements regarding the recognition of a team’s current intention.

Finally, it can be stated that the concept of a robust and training-free probabilistic system as

introduced in this thesis is an appropriate and useful basis for expocauchy intention analysis

in teams. The proof of the concept is given by this work. But to take the full benefit from

this concept, at least some of the mentioned issues must be addressed. In short term, the

smoother implementation and the parameter learning study could be tackled. The model

generation and the extension to other sensors are rather mid-term issues, whereas structural

learning of the team intention model is a long-term challenge.
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Appendix A

Core Tool Features

This appendix list the features of the three Core Tool components Adapter, Filter, and Learner.

Because these components are commandline tools for the representation of their feature sets

the usage listing was chosen that will be returned when typing the ’-h’ option at the prompt.
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Figure A.1: Adapter module’s usage listing.

Figure A.2: Filter module’s usage listing.

Figure A.3: Learner module’s usage listing.
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Results Experiment #2

This appendix contrasts the results that the different parameter configurations achieved in

the three tests of experiment #2. Each of the following double pages shows all results of

one aspect of these tests. Starting with initial precision test, the appendix continues with

the precision results of the test that used trained parameters for the sensor model. Then

the results of the reliability test follow. Finally, three double pages show the results of the

robustness test. In the first of these three robustness runs the sensor data of A was lacking.

Then B’s sensor data was skipped. Finally the sensor data of C was not available.

The abbreviations utilized to label the parameter configurations in the figures stick to the

following conventions. The first letter denotes the agenda compliance, where c means com-

pliant, n says non-compliant, and a is all or both respectively. The second letter identifies

the sensor model used. Here, g stands for Gaussian and c means Cauchy-distributed. The

last letter indicates the configured timer model, where g again means Gaussian-distributed

and e denotes the Exponential distribution. Then usually follows a real number or the term

UNI. The numbers represent the probability Pfollow that the team will follow its preliminary

meeting agenda. UNI indicates that this an agenda-free model, where agenda information has

not been used.
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Figure B.1: Precision tests with the Gaussian-distributed sensor model that was configured
with an initial parameter setting.
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Figure B.2: Precision tests with the Cauchy-distributed sensor model that was configured with
an initial parameter setting.
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Figure B.3: Precision tests with the Gaussian-distributed sensor model that was configured
with a trained parameter setting.
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Figure B.4: Precision tests with the Cauchy-distributed sensor model that was configured with
a trained parameter setting.
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Figure B.5: Reliability tests with the Gaussian-distributed sensor model that was configured
with an initial parameter setting.
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Results Experiment #2

ccg 0.6 ccg 0.8 ccg 0.95 ccg UNI

75

80

85

90

Different Parameter Configurations

Pe
rc

en
ta

ge
 o

f 
C

or
re

ct
 E

st
im

at
io

n

cce 0.6 cce 0.8 cce 0.95 cce UNI

76

78

80

82

84

86

88

Different Parameter Configurations

Pe
rc

en
ta

ge
 o

f 
C

or
re

ct
 E

st
im

at
io

n

nge 0.6 nge 0.8 nge 0.95 nge UNI

92.5

93.0

93.5

94.0

94.5

Different Parameter Configurations

Pe
rc

en
ta

ge
 o

f 
C

or
re

ct
 E

st
im

at
io

n

nce 0.6 nce 0.8 nce 0.95 nce UNI

75

80

85

90

Different Parameter Configurations

Pe
rc

en
ta

ge
 o

f 
C

or
re

ct
 E

st
im

at
io

n

acg 0.6 acg 0.8 acg 0.95 acg UNI

65

70

75

80

85

90

Different Parameter Configurations

Pe
rc

en
ta

ge
 o

f 
C

or
re

ct
 E

st
im

at
io

n

ace 0.6 ace 0.8 ace 0.95 ace UNI

75

80

85

90

Different Parameter Configurations

Pe
rc

en
ta

ge
 o

f 
C

or
re

ct
 E

st
im

at
io

n

Figure B.6: Reliability tests with the Cauchy-distributed sensor model that was configured
with an initial parameter setting.
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Figure B.7: Robustness !ABC tests with the Gaussian-distributed sensor model that was con-
figured with an initial parameter setting.
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Figure B.8: Robustness !ABC tests with the Cauchy-distributed sensor model that was config-
ured with an initial parameter setting.
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Figure B.9: Robustness A!BC tests with the Gaussian-distributed sensor model that was con-
figured with an initial parameter setting.
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Figure B.10: Robustness A!BC tests with the Cauchy-distributed sensor model that was con-
figured with an initial parameter setting.
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Figure B.11: Robustness AB!C tests with the Gaussian-distributed sensor model that was
configured with an initial parameter setting.
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Figure B.12: Robustness AB!C tests with the Cauchy-distributed sensor model that was con-
figured with an initial parameter setting.
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