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Abstract

While ordinary differential equations (ODEs) form the conceptual framework for modelling
many cellular processes, specific situations demand stochastic models to capture the
influence of noise. Motivated by that, we seek a stochastic framework based on Markov
processes to represent intracellular processes. We review the formal relationships between
different stochastic approaches referred to in the systems biology literature.

The most common formulation of stochastic models for biochemical networks is the
chemical master equation (CME). While stochastic simulations are a practical way to realise
the CME, analytical approximations offer more insight into the influence of randomness.
Towards that end, the two-moment approximation (2MA) is a promising addition to the
established analytical approaches including the chemical Langevin equation (CLE) and
the related linear noise approximation (LNA). The 2MA approach directly tracks the
mean and (co)variance which are coupled in general. This coupling is not obvious in CME
and CLE and ignored by LNA and conventional ODE models.

We extend previous derivations of 2MA by allowing a) non-elementary reactions and b)
relative concentrations. Often, several elementary reactions are approximated by a single
step. Furthermore, practical situations often require the use of relative concentrations.

We investigate the applicability of the 2MA approach to the well established fission
yeast cell cycle model. Our analytical model reproduces the clustering of cycle times
observed in experiments. This is explained through multiple resettings of a protein called
MPF, caused by the coupling between mean and (co)variance, near the G2/M transition.

v





Abstract in German (Zusammenfassung)

Während gewöhnliche Differentialgleichungen (ordinary differential equations - ODEs) den
konzeptionellen Rahmen für die Modellierung vieler zellulärer Prozesse bilden, erfordern
spezielle Situationen stochastische Modelle, um den Einfluss von Zufälligkeit mit einzube-
ziehen. Hierdurch motiviert suchen wir eine stochastische Formulierung System basierend
auf Markov-Prozessen, welches innerzelluläre Prozesse repräsentiert. Wir diskutieren die
formalen Beziehungen zwischen den verschiedenen stochastischen Ansätzen auf die, in der
Literatur der Systembiologie Bezug genommen wird.

Die gebräuchlichste Form von stochastischen Modellen für biochemische Netzwerke
ist die chemische Mastergleichung (chemical master equation – CME). Während sto-
chastische Simulationen ein praktischer Weg sind, um die CME numerisch zu loesen,
ermöglichen analytische Näherungen eine bessere Sicht auf den Einfluss von zufälligen
Variationen. Für diesen Zweck ist die ‘two-moment approximation’ (2MA) eine vielvers-
prechende Erweiterung zu den bewährten analytischen Ansätzen, inklusive der chemischen
Langevin-Gleichung (chemical Langevin equation - CLE) und der verwandten ‘linear noise
approximation’ (LNA). Der 2MA Ansatz beschreibt den Mittelwert und die (Ko-)Varianz,
die miteinander gekoppelt sein können. Diese Koppelung ist ersichtlich in der CME und der
CLE und wird bei der LNA und den konventionellen und konventionellen ODE-Modellen
ignoriert.

Wir erweitern bisherige Herleitungen des 2MA mit Bezug auf a) nicht-elementare
Reaktionen und b) relative Konzentrationen. Dies ist dadurch motiviert das oft meh-
rere elementare Reaktionen zu einem einzelnen Schritt zusammengefasst werden und in
praktischen Situationen die Anwendung relativer Konzentrationen von Bedeutung ist.
Desweiteren erfordern praktische Situationen die Anwendung relativer Konzentrationen.

Wir untersuchen die Anwendbarkeit des 2MA Ansatzes am Beispiel eines Zellzyk-
lusmodells. Unser analytisches Modell spiegelt die Gruppierung der in Experimenten
beobachteten Zykluszeiten wieder. Dieses kann durch das mehrfache Zurücksetzen des
Proteins MPF erklärt werden, hervorgerufen durch die Kuppelung zwischen Mittelwert
und (Ko-)Varianz nahe des G2/M Übergangs.
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Errata

Page 2, line 18 : reportd → reported

Page 2, last paragraph: Fluctuation-effected → Fluctuation-affected

Page 4, 30th line: the the → the

Page 30, 6th line: biomolecular → bimolecular

Page 37, 19th line: µN,i → 〈Ni〉

Page 38, 5th line: the the → the

Page 47, line 9: weakend → weakened

Page 52, Table 4.4 header row: fi → f̃i

Page 58, Table 4.6:



Case µCT σCT CVCT µdM σdM CVdM µBM σBM

(1) 131 47 0.358 2.22 0.45 0.203 1.21 0.24

(2) 138.8 12.4 0.09 1.59 0.058 0.0362 3.18 0.101

(3) 138.8 17.6 0.127 1.62 0.093 0.0576 3.25 0.178

(4) 138.8 23.9 0.172 1.66 0.12 0.0721 3.32 0.231

→

Case µCT σCT CVCT µDM σDM CVDM µBM σBM

(1) 131 47 0.358 2.22 0.45 0.203 1.21 0.24

(2) 138.8 12.4 0.09 3.18 0.101 0.0319 1.59 0.0575

(3) 138.8 17.6 0.127 3.25 0.178 0.055 1.623 0.0934

(4) 138.8 23.9 0.172 3.32 0.231 0.0697 1.657 0.12

Page 58, 13th line of the last paragraph:

The mean BM is much larger than the experimental BM

→ The mean values for both BM and DM are larger than the corresponding
experimental values

Page 71, last reference: , 2006.

→ . In Computational Intelligence and Bioinformatics, pages 786–791. Springer
Berlin, 2006.

Page 73, first publication heading:

Revised manuscript submitted to JTB . . .

→ Journal of Theoritical Biology, doi:10.1016/j.jtbi.2009.05.022
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Notation

General notes

• Symbols of the form Q(t) represent time-dependent quantities.

• Every integer-indexed quantity qi is also the ith element of a corresponding vector q
of appropriate dimensions. Similarly, every integer-pair indexed quantity Qij is also
the (i, j)th element of a corresponding matrix Q of appropriate dimensions.

• For a matrix S, the transpose is written ST , the ith row is denoted Si� and the jth
column is denoted by S�j .

• Any symbol denoting a random/stochastic variable/process has to be in capital.
Once defined, the corresponding symbol in small represents a sample/realisation
of the variable/process. The time-dependent version of the same symbol in small
represents a deterministic approximation of the corresponding stochastic process.
Thus if N(t) is a stochastic process, n is a typical sample of N(t) and n(t) is a
deterministic approximation of N(t).

• Symbols denoting operators such as probability are typset upright, e.g. Pr [·].

• The notation f(· · · , n, · · · ) is short-hand for f(· · · , n1, · · · , ns, · · · ) whenever an
s-vector n appears as an argument.

List of symbols

Xi ith chemical species/component

∅ null species

s number of chemical components

Rj jth reaction channel

r number of reaction channels

Ni(t) copy number

N c(t) continuous approximation of N(t)

xv



xvi

Xi(t) concentration

NA Avogadro’s constant

V volume

Ω system-size when scalar; scaling parameters when vector

S stoichiometry matrix

Zj(t) number of Rj occurrences during [0, t]

Pr [·] probability measure

P (n, t) state probability

P c(n, t) continuous approximation of P (n, t)

P (n|m, t) transition probability

vj(x) reaction rate

aj(n) reaction propensity

ãj(x) stochastic reaction rate

a0(n) sum of aj(n) over all reaction channels (exit rate)

Ej a step operator defined by Ej f(n) = f (n− S�j)

〈Y (t)〉 mean/expectation of the process Y (t)〈
Y, Y T

〉
covariance matrix

〈Yi, Yk〉 (i, k)th element of the above covariance matrix

Var [·] variance

µi(t) mean concentration

σik(t) pair-wise concentration covariance

ζii(t) NSR

ζik(t) xNSR



xvii

fi(n) copy-number flux

B(n) copy-number diffusion matrix

f̃(x) concentration flux

B̃(x) concentration diffusion matrix

A�B Hadamard product - element-wise product

A : B Frobenius inner product - sum of elements of A�B

Pj Poisson random variable

Nj standard normal random variable

Wj standard brownian motion, or Wiener process

O(x) first neglected order with respect to x in an expansion

o(x) terms vanishing faster than x, as the latter approaches zero
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1
Introduction

1.1 Why stochastic modelling?

At a coarse level, cellular functions are largely determined by spatio-temporal changes in
the abundance of molecular components. At a finer level, cellular events are triggered
by discrete and random encounters of molecules [PE06]. This suggests a deterministic
modelling approach at the coarse level (cell function) and a stochastic one at the finer level
(gene regulation) [RWA02, Pau04, KEBC05, RO05, PvO05, Man07, ABRB+08, LPB+06,
Pas07, BKvO05]. However, stochastic modelling is necessary when noise propagation from
processes at the fine level changes cellular behaviour at the coarse level.

Stochasticity is not limited to low copy numbers. The binding and dissociation events
during transcription initiation are the result of random encounters between molecules
[KEBC05]. If molecules are present in large numbers and the molecular events occur
frequently, the randomness would cancel out (both within a single cell and from cell to cell)
and the average cellular behaviour could be described by a deterministic model. However,
many subcellular processes, including gene expression, are characterised by infrequent
(rare) molecular events involving small copy numbers of molecules [KEBC05, PE06]. Most
proteins in metabolic pathways and signalling networks, realising cell functions, are present
in the range 10-1000 copies per cell [BPE00, LKM07, Pau05]. For such moderate/large
copy numbers, noise can be significant when the system dynamics are driven towards critical
points in cellular systems which operate far from equilibrium [EE03, TJD05, ZYDQ06].
The significance of noise in such systems has been demonstrated for microtubule formation
[DL93], ultrasensitive modification and demodification reactions [BPE00], plasmid copy
number control [PE01], limit cycle attractor [Qia02], noise-induced oscillations near a
macroscopic Hopf bifurcation [VKBL02], and intracellular metabolite concentrations
[EPBE03].

Noise has a role at all levels of cell function. Noise, when undesired, may be suppressed
by the network (e.g. through negative feedback) for robust behaviour [SK04, TvO02,
FHG+04, MA04, RWA02, PE00]. However, all noise may not be rejected and some noise
may even be amplified from process to process, and ultimately influencing the phenotypic
behaviour of the cell [HB08, LP06, PvO05, BKvO05, SU08]. Noise may even be exploited
by the network to generate desired variability (phenotypic and cell-type diversification)
[Blo06, CW06, HPDC00, RWA02, YUIS07]. Noise from gene expression can induce new
dynamics including signal amplification [SPA05], enhanced sensitivity (stochastic focusing)

1



2 Introduction

[PBE00, PvO05], bistability (switching between states) and oscillations [FX01, AMP07,
OTL+04, ADKC07, LL08], stabilization of a deterministically unstable state [TGOS08]
and even discreteness-induced switching of catalytic reaction networks [TK07]. These
are both quantitatively and qualitatively different from what is predicted or possible
deterministically.

In the rest of the present section, we illustrate the need for stochastic modelling by
selecting a few important aspects of biochemical reaction networks.

Identifiability: In the isomerisation reaction X1
k1−−−−−⇀↽−−−−−
k2

X2, proteins are converted back
and forth between the inactive form X1 and the active form X2 such that the total number
ntot of protein molecules remains constant. When treated deterministically, the number n
of proteins in the inactive form varies continuously with time according to the ODE, to
be derived in the next chapter,

dn
dτ = k2n

tot

(k1 + k2) − n,

where k1 and k2 are the respective rate constants of the activation and inactivation, and
τ denotes a non-dimensional time variable. Here we see that n(τ) depends on the fraction
k̂ = k2/(k1+k2) but not on the particular values of k1 and k2. In other words, experimental
data on protein copy numbers can only provide information about the fraction k̂, and not
on the particular values of k1 and k2 separately. This issue of identifiability is reportd
in [Wil06, Wil09]. The problem here is that changes in the protein copy numbers are
discrete and random, rather than continuous and deterministic. We will learn in Chapter
3 that the variance of n satisfies an ODE which involves the difference k1 − k2 between
the two parameters, in addition to the fraction k̂. Thus experimental data on fluctuations,
combined with the experimental data on the average protein copy numbers, would give
information about both k1 and k2 separately.

Extinction: Due to the continuous treatment of the copy number, n(t) in the above
example can never become zero for non-zero rate constants. However, when treated
stochastically, discrete changes admit questions to be asked about the probability of
extinction, n(t) = 0, and about the average time until the first extinction.

Fluctuation-effected mean: In the isomerisation example, the mean (copy number) of
the stochastic model was the same as the solution of the corresponding deterministic
model. However, we will learn in Chapter 3 that this is not true in general. For system
containing bimolecular reactions, the mean is also influenced by the fluctuations. In
some systems, the mean of the stochastic model can be considerably larger than the
deterministic prediction, and can lead to enhanced sensitivity of the network, known as
stochastic focusing [PBE00, PvO05].
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Figure 1.1 The time development of the histogram for the Schlögl reaction.

Bistability: A bistable system has two stable steady states separated by an unstable
steady state. In a deterministic framework, such a system settles to that steady state
whose basin of attraction is nearer to the initial condition. In a stochastic framework,
however, the behaviour is more complex: either steady state may be reached in different
realisations regardless of the initial condition. This behaviour is referred to as stochastic
switching [UIYS06, GUV07], illustrated in Figure 1.1 for the Schlögl reaction, to be
discussed in the following two chapters. The time varying histogram, which was obtained
from 10000 realisations, is unimodal initially and has a bi-modal pattern at the end.

To study a cell that can be in different states (e.g. apoptosis, cell differentiation), single
cell technologies are necessary. Averaging over ensembles of cells, as done in a western
blot, does not allow to disinguish between states. Using single cell technologies, such
as microscopy, a sample generated from a collection of cells under the same condition
has proportions of cells in each state. Stochastic approach is necessary for capturing the
variability in these experimental observations.

The notion of noise: The term noise can be confusing because it is not uniquely defined
for all systems. Similarly the classification of noise (e.g. internal/external) can have different
meanings for different system. However, noise and its various kinds in gene expression
have been clearly defined in [KEBC05, RO05, Pau05, DMK+06, BKvO05]. Following
[RO05], noise in gene expression refers to the stochastic variation of a (expressed) protein
concentration within isogenic cells having the same history and conditions (environment).
Placing two gene reporters in the same cell and quantifying their gene expression (by
the abundance of their target proteins) allows the following categorisation of noise (see



4 Introduction

Figure 2 in [RO05]). Intrinsic noise arises from sources that create differences (in the gene
expression) between the two reporters in the same cell, and extrinsic noise arises from
sources that have equal effect on the two reporters in the same cell but create differences
between two cells. Stochastic events during gene expression would then emerge as intrinsic
noise whereas differences between cells will appear as extrinsic noise. Extrinsic noise can
be global when fluctuations in basic reaction rates affect expressions of all genes, or it can
be pathway-specific. It is important to realise that extrinsic noise can be theoretically
isolated from the system but intrinsic noise is the very essence (discrete nature) of the
underlying molecular events and cannot be separated (even hypothetically) from the
system. Finally, we like to add that the word “noise” has often negative associations as
something undesirable, something that should be removed or avoided. In biology, noise
can also have a role and “randomness” may be a better word. In this text the word ‘noise’
is used, with the understanding that it may well be something desirable.

1.2 Established stochastic approaches

The most common formulation of stochastic models for biochemical networks is the
chemical master equation (CME). While stochastic simulations [TSB04, Pah08] are a
practical way to realise the CME, analytical approximations offer more insights into the
influence of noise on cell function. Formally, the CME is a continuous-time discrete-
state Markov process [Sin53, Gil77, Kam07a]. For gaining intuitive insight and a quick
characterisation of fluctuations in biochemical networks, the CME is usually approximated
analytically in different ways [Kam07a, Gou06], including the frequently used the chemical
Langevin approach [Gil00, Kam07b, Ste04, ZHCN07], the linear noise approximation
(LNA) [EE03, HJ04, SI05, SIK06] and the two-moment approximation (2MA) [Gou07,
GUV07, FLH07].

Of the analytical approaches mentioned above, we here focus on the 2MA approach
because of its representation of the coupling between the mean and (co)variance. The
traditional Langevin approach is based on the assumption that the time-rate of abundance
(copy number or concentration) or the flux of a component can be decomposed into a
deterministic flux and a Langevin noise term, which is a Gaussian (white noise) process
with zero mean and amplitude determined by the the dynamics of the system. This
separation of noise from the system dynamics may be a reasonable assumption for
external noise that arises from the interaction of the system with other systems (like
the environment), but cannot be assumed for internal noise that arises from within the
system [KEBC05, RO05, Pau05, BKvO05, DMK+06, SOS08]. As categorically discussed
in [Kam07b], internal noise is not something that can be isolated from the system because
it results from the discrete nature of the underlying molecular events. Any noise term
in the model must be derived from the system dynamics and cannot be presupposed
in an ad hoc manner. However the chemical Langevin equation (CLE) does not suffer
from the above criticism because Gillespie [Gil00] derived it from the CME description.
The CLE allows much faster simulations compared to the exact stochastic simulation
algorithm (SSA) [Gil77] and its variants. The CLE is a stochastic differential equation
(dealing directly with random variables rather than moments) and has no direct way of
representing the mean and (co)variance and the coupling between the two. That does
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not imply that CLE ignores the coupling like the LNA which has the same mean as the
solution of the deterministic model.

The merits of the 2MA compared to alternative approximations have been discussed
in [GUV07, Gou07, Tan08]. In [FLH07], the 2MA is developed as an approximation of
the master equation for a generic Markov process. In [GUV07], the 2MA framework is
developed under the name “mass fluctuation kinetics” for biochemical networks composed
of elementary reactions. The authors demonstrate that the 2MA can reveal new behaviour
like stochastic focusing and bistability. Another instance of the 2MA is proposed in
[Gou06, Gou07] under the names “mean-field approximation” and “statistical chemical
kinetics”. Again, the authors assume elementary reactions so that the propensity function
is at most quadratic in concentrations. The authors evaluate the accuracy of the 2MA
against the alternatives (such as LNA) for a few toy models. The derivation of the 2-MA
for more general systems with non-elementary reactions is one motivation for the present
paper.

The 2MA approaches referred to above assume absolute concentrations (copy number
divided by some fixed system size parameter). In systems biology, however, models
often use relative concentrations that have arbitrary units [NPCT01, NCT05, TCNN02,
CNBC+06]. In general, the concentration of each component in the system may have
been obtained by a different scaling parameter, rather than using a global system size.
For such models, the above mentioned approaches need modification. This was another
motivation for our derivation in this paper.

1.3 Research objectives

While most of the literature in systems biology focuses on numerical solutions and
stochastic simulations, the focus of the present work here is on analytical approaches.
In this text we develop a compact form of the 2MA equations - a system of ODEs for
the dynamics of the mean and (co)variance of the continuous-time discrete-state Markov
process that models a biochemical reaction system by the CME. This is an extension of
previous derivations, taking into account arbitrary concentrations and non-elementary
reactions. The compact form, obtained by careful selection of notation, of our derivation
allows for an easy interpretation. Using these analytical results, we develop our 2MA
model of the fission yeast cell cycle which has two sets of ODEs: one set for the mean
protein concentrations and the other set for concentration (co)variances. Numerical
simulations of our model show a considerably different behaviour. Especially, for the wee1-

cdc25∆ mutant (hereafter referred simply as double-mutant), the timings of S-phase and
M-phase are visibly different from those obtained for a deterministic model because of the
oscillatory behaviour of the key regulator. Since the 2MA is only an approximation, we
investigate its validity by comparing the statistics computed from the 2MA model with
experimental data. In summary, the research objectives of the present work are to:

• Present the stochastic description in a notation appropriate for system biology.

• Review various approximations to a stochastic process and clarify relationships
between them.
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• Seek an analytical approach that bridges the gap between the deterministic and
stochastic approaches by combining the intuition of derministic models with the
represention of noise and variability.

• Generalise the two-moment approximation to allow for non-elementary reactions
and relative concentrations.

• Apply the above theoretical approach to a real world application and compare the
model predictions with experimental data (here cell cycle).

• Demonstrate the value of the 2MA approach in comparison to the deterministic
approach using ODEs and the alternative stochastic approaches.

1.4 Outline of the text

The rest of the present work is organised as follows.

Chapter 2: We present the stochastic framework for modelling subcellular biochemical
systems. In particular, we make an effort to show how the notion of propensity, the
chemical master equation and the stochastic simulation algorithm arise as consequences
of the Markov property. This connection is not obvious from the relevant literature in
systems biology. Moreover, we review various analytical approximations of the chemical
master equation. The chapter is concluded with a sketch of interrelationships between
various stochastic approaches.

Chapter 3: This chapter develops a compact form of the 2MA equations - a system of
ODEs for the dynamics of the mean and (co)variance of the continuous-time discrete-
state Markov process that models a biochemical reaction system by the CME. This is
an extension of previous derivations, taking into account relative concentrations and
non-elementary reactions. The compact form, obtained by careful selection of notation,
allows for an easy interpretation.

Chapter 4: This chapter takes the Tyson-Novák model for the fission yeast cell cycle as a
case study. This deterministic model is a practical example using non-elementary reactions
and relative concentrations, the two central features of our extended 2MA approach.
This will allow us to investigate the price of higher-order truncations by comparing the
simulated cycle time statistics with experiments.

Conclusions: Here we summarise our key arguments, results and give suggestions for
further work.

Publications: A list of publications that have arisen from this work, including those
whose content has not been discussed in the present text in order to keep it concise.



2
Stochastic modelling

In this chapter, we present a stochastic framework for modelling subcellular biochemical
systems. In particular, we make an effort to show how the notion of propensity, the chemical
master equation (CME) and the stochastic simulation algorithm arise as consequences of
the Markov property. This connection is not obvious from the relevant literature in systems
biology. We review various analytical approximations of the CME, leaving out stochastic
simulation approaches reviewed in [TSB04, Pah08]. Moreover, we sketch interrelationships
between various stochastic approaches. The books by [PP01] and [Wil06] inspired this
chapter.

2.1 Chemical reactions and species

Imagine molecules of s chemical species homogeneously distributed in a compartment
of constant volume V at thermal equilibrium and interacting through r irreversible
(unidirectional) reaction channels. A reaction channel is usually assumed to be a single
step in which case it is called elementary. However, it may represent a simplification of
multiple elementary steps into a single step. Any reversible (bidirectional) reaction can
be listed as two irreversible reactions. We symbolise the ith species with Xi and the jth
reaction channel with Rj . The abundance of Xi present in the system at time t can be
described by the copy number Ni(t) or the concentration

Xi(t) = Ni(t)
Ω .

The scaling parameter Ω is called the system size. For molar concentrations the system size
is chosen as Ω = NAV where NA is the Avogadro’s constant. For relative concentrations
the system size is some fixed copy number. Take the isomerisation reaction as an example
where proteins are converted back and forth between the inactive form X1 and the active
form X2 such that the total number ntot of protein molecules remains constant. The
relative concentrations in this example are the fractions,

X1(t) = N1(t)
ntot and X2(t) = ntot −N1(t)

ntot

of proteins in the inactive and active form, respectively. It is sometimes more appropriate
to use a different scaling parameter Ωi for each component i. This will of concern to us in
the following chapter. In this chapter, we stick to the simpler case.

7



8 Stochastic modelling

The reaction channel Rj will be represented by the general scheme

Rj :
¯
S1jX1 + · · ·+

¯
SsjXs

kj−−−−−→ S̄1jX1 + · · ·+ S̄sjXs . (2.1)

The coefficient
¯
Sij (on the left) represents the participation of Xi as reactant and S̄ij

(on the right) is the corresponding participation as product. These coefficients are called
stoichiometries or stoichiometric coefficients. The rate constant, or coefficient, kj , written
over the reaction arrow will be explained later. The progress of channel Rj is quantified
by the degree of advancement (DA) Zj(t) defined as the number of occurrences of Rj
during the time interval [0, t]. One occurrence of Rj changes the copy number of Xi by
Sij = S̄ij − ¯

Sij , the (i, j)th element of the stoichiometric matrix S. During the time
interval [0, t], the change in the copy number of Xi contributed by Rj is SijZj(t). The
total change in the copy number is the sum of contributions from all reactions:

Ni(t) = Ni(0) +
r∑
j=1

SijZj(t) . (2.2)

Thus changes in copy numbers are determined by stoichiometries and DAs. Following the
usual vector notation, we write N(t) for the s× 1-vector of copy numbers, X(t) for the
s×1-vector of concentrations and Z(t) for the r×1-vector of DAs. The above conservation
relation can be written in the vector notation:

N(t) = N(0) + S Z(t) . (2.3)

Dividing by Ω gives the corresponding relation in concentrations:

X(t) = X(0) + S Z(t)
Ω . (2.4)

The copy number N(t), the concentration X(t) and the DA Z(t) are alternative
ways to describe our system. Description in terms of these macroscopic variables is
done in the hope that they approximately satisfy an autonomous set of deterministic
equations. Two problems stand in making such an effort. First, the reactions are discrete
events in time which means that the copy numbers do not vary continuously with time.
Secondly, the occurrence time of a reaction is a random quantity because it is determined
by a large number of microscopic factors (e.g. positions and momenta of the molecules
involved). Therefore, the deterministic description needs a few simplifying assumptions.
Alternatively the macroscopic variables are formulated as stochastic processes. Such a
stochastic description in terms of macroscopic variables is called mesoscopic.

Throughout this text, we will use the following academic examples. They are chosen
to demonstrate different ideas and methods in the discussion.

Isomerisation: Consider a protein that can exist in two different forms, an inactive form
X1 and an active form X2. The protein changes between the two forms by the reversible
isomerisation reaction

X1
k1−−−−−⇀↽−−−−−
k2

X2 (2.5)
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composed of an inactivation (forward) channel with rate constant k1 and an activation
(reverse) channel with rate constant k2. The reaction scheme (2.5) also represents the
opening and closing of an ion-channel and similar systems with two-state conformational
change. This example was used in the introduction to illustrate ideas of identifiability
and species extinction.

Lotka-Volterra model: Consider a system consisting of two interacting species: X1 and
X2. The species can either be animals (X1: prey, X2: predator), chemical species or any
interacting entities of two kinds. A large amount of a substance A is available for X1
which reproduces immediately after consuming one unit A. An encounter between the
two species results in the disappearance of X1 and the replication of X2. This is the only
way X1 dies (degrades) whereas X2 has a natural death (degradation). The system can be
represented by the following scheme

X1 + A k1−−−−−→ 2X1

X1 + X2
k2−−−−−→ 2X2

X2
k3−−−−−→ ∅

 (2.6)

with rate constants k1, k2 and k3. The symbol ∅ represents the dead (degraded) form of
X2. In general, the “null species” represents any species not included in the model. The
substance A is constantly replenished so that the copy number nA remains constant. This
system was first investigated by Lotka and Volterra [Lot20, Vol26]. Here it serves the
purpose of a simple system containing a bimolecular reaction and the resulting influence
of (co)variance on the mean.

Enzyme kinetic reaction: The enzyme kinetic reaction

E + S −→ E + P

can be decomposed into a set of three elementary reactions:

E + S k1−−−−−→ ES

ES k2−−−−−→ E + S

ES k3−−−−−→ E + P

 (2.7)

Here the enzyme E catalyses a substrate S into a product P that involves an intermediary
complex ES. We include this example because this type of reaction appears frequently
in the literature. It also serves the purpose of a simple system containing a bimolecular
reaction and how a mass conservation leads to a simplified model.

Schlögl model: An autocatalytic, trimolecular reaction scheme, first proposed by [Sch72]

A + 2X
k1−−−−−⇀↽−−−−−
k2

3X, B
k3−−−−−⇀↽−−−−−
k4

X
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can be decomposed into
A + 2X k1−−−−−→ 3X

3X k2−−−−−→ A + 2X

B k3−−−−−→ X

X k4−−−−−→ B


(2.8)

Here the concentrations A and B are kept constant (buffered). This example, mentioned in
the introduction, serves to illustrate the need for a stochastic approach to model systems
with bistability.

2.2 Deterministic description

Suppose that the reactions occur so frequently that the DA Z(t) can be approximated
by a continuous quantity z(t). This assumption requires that a large number of reactant
molecules are freely available (no crowding) in a large volume so that they can react easily.
It also requires that the energy and orientation of reactant molecules favour the reaction,
a fact summarised in a rate constant. Large numbers of molecules also mean that a change
resulted from a single occurrence of a reaction is relatively small. That means that the
copy number N(t) can be approximated by a continuous quantity n(t). The concentration
X(t) is similarly approximated by a continuous quantity x(t). In deterministic description,
equations (2.3) and (2.4) respectively translate to

n(t) = n(0) + S z(t) . (2.9)

and
x(t) = x(0) + S z(t)

Ω . (2.10)

Taking the time-derivatives we arrive at the deterministic chemical kinetic equations:

ṅ(t) = ΩS v
(
n(t)
Ω

)
and ẋ(t) = S v (x(t)) ,

where v = ż/Ω is the reaction rate vector whose ith element vj is the rate of Rj . The
reaction rate vj is the number of occurrences of Rj per unit time divided by the system
size. The notation v (x(t)) is based on the assumption that the reaction rate depends only
on the concentrations of the reactants. This is a realistic assumption in many reactions at
constant temperature. In general, the reaction rate can depend on temperature, pressure,
and the concentrations or partial pressures of the substances in the system.

The functional form vj(·) of the rate of Rj is called the rate law. There is a large class
of chemical reactions in which the reaction rate is proportional to the concentration of
each reactant raised to some power:

vj(x) = kj

s∏
i=1

x
gij
i , (2.11)
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which is called a rate law with definite orders [Mor08]. The rate constant kj summarises
factors such as enough energy and proper orientation of the reactant molecules to have
an encounter leading to the reaction. The exponent gij is the order with respect to the
species Xi. The sum of orders for a particular reaction channel is the overall order. For
elementary reactions, the orders gij are the same as the reactant stoichiometries

¯
Sij :

vj(x) = kj

s∏
i=1

x¯
Sij
i . (2.12)

This rate law is called mass action kinetics [HS96] and is justified by collision theory and
transition state theory [Wri04, Hou07, Mor08]. Reactions that cannot be described by
rate laws like (2.11) are said not to have a definite order. For such a reaction, the rate
law depends on the assumptions involved in the approximation of the constituent reaction
channels. Examples of rate laws for the reactions are Michaelis-Menten kinetics, Hill
kinetics and competitive inhibition [Fel97, CB04, HS96].

Isomerisation revisited: The reaction scheme (2.5) depicts the reversible conversion of
protein between two forms. Suppose there are ntot copies of this protein in a container,
n(t) of them being in the inactive form X1 at time t. The forward channel proceeds at a
rate ż1 = k1n and the reverse channel does at a rate ż2 = (ntot − n)k2. The rate equation
therefore reads

ṅ = −ż1 + ż2 = k2n
tot − (k1 + k2)n . (2.13)

With a non-dimensional, τ = (k1 + k2)t, the ODE takes the form

dn
dτ = k2n

tot

(k1 + k2) − n .

Lotka-Volterra model revisited: The reaction scheme (2.6) depicts the predator-prey
interactions. Let n1(t) and n2(t) denote the number of preys and predators, respectively.
The number of food units is assumed to be so large that it is not changed by consumption
during the time scale of our interest. The reaction rates according to the mass action
kinetics follow from (2.12) to be

v1 = k1nAn1, v2 = k2n1n2, v3 = k3n2 .

The rate equations are then given by

dn1
dt = v1 − v2 = k1nAn1 − k2n1n2,

dn2
dt = v2 − v3 = k2n1n2 − k3n2 .

 (2.14)

Enzyme kinetic reaction revisited: For the enzyme kinetic reaction (2.7), write xE(t),
xS(t), xES(t) and xP(t) for the respective the time-dependent molar concentrations of E,
S, ES and P. The solution has to respect two conservation laws

xE(t) + xES(t) = xtot
E , and xS(t) + xES(t) + xP(t) = xtot

S
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where xtot
E and xtot

S are the total concentrations of the enzyme and substrate, respectively.
The channel-wise mass action kinetic law for the reaction scheme (2.7) can be written
as:

vj
(
xS, xES

)
=


(
xtot

S − xES

)
k1xS if j = 1,

k2xES if j = 2,
k3xES if j = 3 .

The concentrations evolve according to the following set of nonlinear coupled ODEs

dxS
dt = v2 − v1 = k2xES −

(
xtot

S − xES

)
k1xS,

dxES
dt = v1 − v2 − v3 =

(
xtot

S − xES

)
k1xS − (k2 + k3)xES .

 (2.15)

For the enzyme kinetic reaction (2.8) the Michaelis-Menten rate law takes the form

v (xS) =
VmaxxS
KM + xS

where Vmax = k2x
tot
E and KM = (k1 + k3)/k2. The concentrations then evolve according

to the ODE
−

dxS
dt =

dxP
dt = v

(
xS

)
.

Schlögl model revisited: For the enzyme kinetic reaction (2.8), write xA and xB for the
constant respective concentrations of chemicals A and B, and x(t) for the time-dependent
concentration of chemical X. The reaction rates according to the mass action kinetics
follow from (2.12) to be

v1 = k1xAx
2, v2 = k2x

3, v3 = k3xB, v4 = k4x .

The deterministic ODE then follows

dx
dt = v1 − v2 + v3 − v4 = k1xAx

2 − k2x
3 + k3xB − k4x . (2.16)

2.3 Stochastic mesoscopic description

The validity of macroscopic approaches for description of the averages is limited because
the average of a nonlinear function is generally not the same as the function of the average.
This was first demonstrated for bimolecular reactions in [Rén53].

Since the occurrence of reactions involve discrete events at the microscopic level,
it is impossible to deterministically predict the progress of reactions in terms of the
macroscopic variables such as N(t) and Z(t). To account for this uncertainty, one of the
macroscopic variables N(t), Z(t), X(t) is formulated as a stochastic process. Choosing the
copy number N(t), a sample value n of the process is the state of our biochemical system
under consideration.
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How does the process N(t) evolve in time? Starting at time t = 0 from some initial
state N(0), every sample path of N(t) chain remains in state X(0) for a random amount of
time W1 until the occurrence of a reaction takes the process jumps to a new state X(W1);
it remains in state X(W1) for another random amount of time W2 until the occurrence
of another reaction takes the process to a new state X(W1 +W2), and so on. In other
words, N(t) is a jump process.

The stochastic process N(t) is characterised by a collection of state probabilities and
transition probabilities. The state probability

P (n, t) = Pr
[
N(t) = n

]
,

is the probability that the process N(t) is in state n at time t. The transition probability

Pr
[
N(t0 + t) = n |N(t0) = m

]
is the conditional probability that process N(t) has moved from state m to state n during
the time interval [t0, t0 + t]. The analysis of a stochastic process becomes greatly simplified
when the above transition probability depends on: i) the starting state m but not on the
states before time t0 and ii) the interval-length t but not on the start time t0. Property
(i) is the well-known Markov property and the process with this property is said to be a
Markov process. The process holding property (ii) is said to be a homogeneous process. If
the molecules are well mixed and are available everywhere for a reaction (space can be
ignored), then the copy number N(t) can be approximately formulated as a homogeneous
Markov process in continuous time. In this text, all Markov processes will be assumed
to be homogeneous unless stated otherwise. Now we use a simple notation for the above
transition probability

P (n|m, t) = Pr
[
N(t0 + t) = n |N(t0) = m

]
= Pr

[
N(t) = n |N(0) = m

]
. (2.17)

It should be remembered that t in the above equation is the length of the time interval.
The initial condition is usually fixed and the state probability can be written as a transition
probability

P (n, t) = P (n|n0, t) = Pr
[
N(t) = n |N(0) = n0

]
.

The Markov property has two important consequences, explained in the following two
sections.

2.3.1 Chapman-Kolmogorov equation

The Markov property places a consistency condition on the transition probabilities. To
see that, decompose the transition probability

Pr
[
X(t+ w) = n |X(0) = m

]
=
∑
n′

Pr
[
X(t+ w) = n |X(t) = n′ ∩ X(0) = m

]
Pr
[
X(t) = n′ |X(0) = m

]
=
∑
n′

Pr
[
X(t+ w) = n |X(t) = n′

]
Pr
[
X(t) = n′ |X(0) = m

]
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Figure 2.1
Graphical interpretation of the Chapman-Kolmogorov equa-
tion. The probability of a transition m → n can be ob-
tained by summing up the probabilities of all transitions
m→ n′ → n, via intermediate states n′. Drawing adopted
from [Gil92].

time

m
t0

t

n

n′

t+ w

where the Markov property allows a simplification of the 2nd line leading to the 3rd line.
In the compact notation for transition probabilities, the above consistency condition takes
the form

P (n|m, t+ w) =
∑
n′

P (n|n′, w)P (n′|m, t), (2.18)

which is known as the Chapman-Kolmogorov equation (CKE) for continuous-time Markov
processes. This equation expresses the probability of a transition (m → n) as the
summation of probabilities of all transitions (m → n′ → n) via the intermediate states
n′. Figure 2.1 illustrates the idea conveyed by the CKE. It is important to clarify that
the CKE is only a consistency condition imposed on every stochastic process by Markov
property and cannot characterise a particular process. We need dependence relations
between random variables of the process to characterise it. Typically that is achieved
by investigating the local behaviour of transition probabilities in a short time interval.
Replacing the length w of the time interval of the transition probabilities in (2.18) by ∆t
and fixing the initial condition, the CKE (2.18) reduces to

P (n, t+ ∆t) =
∑
n′

P (n|n′,∆t)P (n′, t), (2.19)

where the transition probabilities away from the fixed initial state have been replaced
by the state probabilities. Later we will see that the short-time transition probabilities
P (n|n′,∆t) can be expressed in terms of parameters of the particular process under
consideration. This will open the door for an analytical characterisation of a particular
Markov process.

2.3.2 Memoryless property

Suppose the Markov process N(t) is in state n at time t0 and let Tj(n) denote the
waiting time in state n until the occurrence of a reaction Rj takes the process to state
n+ S�j . If the reaction has not occurred during [t0, t0 +w], we can write Tj(n) > w. This
knowledge, however, does not change the uncertainty in time until the next reaction. In
other words, the process is memoryless and its subsequent behaviour is independent of w.
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Mathematically, this memoryless property is written as

Pr
[
Tj(n) > w + t |Tj(n) > w

]
= Pr

[
Tj(n) > t

]
. (2.20)

and holds true only for the exponential distribution, as seen in the following.

Exponential distribution: Consider a non-negative continuous random variable W satis-
fying the memoryless property. Then the complementary cumulative distribution function
(CCDF)

G(t) = Pr
[
W > t

]
satisfies

G(w + t) = Pr
[
W > w + t

]
= Pr

[
W > w + t ∩ W > w

]
= Pr

[
W > w

]
Pr
[
W > w + t |W > w

]
= Pr [W > w] Pr [W > t]
= G(w)G(t) .

Putting w = 0 gives G(t) = G(0)G(t) which has the nontrivial implication G(0) = 1. The
derivatives of G(w + t) with respect to w and t are equal,

dG(w)
dw G(t) = G(w)dG(t)

dt

which can be rearranged to

1
G(w)

dG(w)
dw = 1

G(t)
dG(t)

dt = −λ,

where λ is a constant. The nontrivial solution G(t) = exp(−λt) is bounded for λ > 0 and
corresponds to the exponential random variable. Hence it follows that any non-negative
continuous random variable W satisfying the memoryless property (2.20) is exponentially
distributed.

The memoryless property, and hence the fact that the times between reactions are
exponentially distributed, opens the door for stochastic simulations of biochemical reaction
networks. That will be our focus in the following section.

2.4 Propensity as the transition rate

It follows from the previous section that the time Tj(n) until the occurrence of reaction
Rj has an exponential distribution with a parameter, say aj(n). We can thus write

Pr
[
Tj(n) > t

]
= exp

(
−aj(n)t

)
, (2.21)
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for the probability that Rj will not occur in the next time interval of length t. Using a
Taylor series expansion, for arbitrarily short interval of length ∆t, the above probability
can be written as

Pr
[
Tj(n) > ∆t

]
= exp

(
−aj(n)∆t

)
= 1− aj(n)∆t+ o(∆t) . (2.22)

The probability of occurrence of Rj during the same short interval is complimentary to
the above:

Pr
[
Tj(n) ≤ ∆t

]
= aj(n)∆t+ o(∆t) . (2.23)

The parameter aj(n), which gives the probability per unit time of the occurrence of Rj in
state n, is referred to as the reaction propensity.

In a vanishingly short interval, it is highly improbable that a particular reaction will
occur more than once. To see that, the probability of two occurrences of Rj during a time
interval [t, t+ ∆t] is the joint probability of its first occurrence during [t, t+ α∆t] and a
second occurrence during (t+ α∆t, t+ ∆t]:

Pr
[
Tj(n) ≤ α∆t

]
Pr
[
Tj (n+ S�j) ≤ (1− α)∆t

]
=
(
aj(n)α∆t+ o(∆t)

)(
aj (n+ S�j) (1− α)∆t+ o(∆t)

)
= o(∆t),

where 0 < α < 1. Therefore, the probability in (2.23) is equivalent to the probability, in
state n, of one occurrence (i.e. a unit increment in the DA) of Rj during [t, t+ ∆t]:

Pr
[
Zj(t+ ∆t)− Zj(t) = 1 |N(t) = n

]
= aj(n)∆t+ o(∆t) .

The probability distribution, in state n, of the random progress Zj(t+ ∆t)− Zj(t) of the
jth reaction during [t, t+ ∆t) is

Pr
[
Zj(t+ ∆t)− Zj(t) = zj |N(t) = n

]
= o(∆t) +


aj(n)∆t if zj = 1
1− aj(n)∆t if zj = 0
0 if zj > 1

(2.24)

The expected value of this short-time DA increment is

〈Zj(t+ ∆t)− Zj(t) |N(t) = n〉

=
r∑
j=0

zj Pr [Zj(t+ ∆t)− Zj(t) = zj |N(t) = n] ==
zj=1︷ ︸︸ ︷

aj(n)∆t+
zj>1︷ ︸︸ ︷
o(∆t)

which is conditioned on N(t) = n. The unconditional expectation of the DA increment
can be obtained by summing the probabilities P (n, t) weighted by the above conditional
expectation over all possible states n:〈

Zj(t+ ∆t)− Zj(t)
〉

=
∑
n

〈
Zj(t+ ∆t)− Zj(t) |N(t) = n

〉
P (n, t)

=
∑
n

aj(n)P (n, t)∆t+ o(∆t)

=
〈
aj
(
N(t)

)〉
∆t+ o(∆t)
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which for vanishingly small ∆t leads to the ODE
d
dt 〈Zj(t)〉 =

〈
aj
(
N(t)

)〉
, (2.25)

Thus the mean propensity of a particular reaction can be interpreted as the average
number of occurrences per unit time of that reaction.

The state transition associated with Rj will be written as

n
aj(n)

−−−−−−−−→ n+ S�j .

The dependence relation of the propensity on the state n is determined by the system
being modelled and reflects the assumptions made about the system. If Rj is an elementary
reaction in a well-mixed system, it is reasonable to assume that each possible combination
of the Rj reactant molecules has the same probability per unit time, cj , to react. In other
words cjdt gives the probability that a particular combination of Rj reactant molecules
will react in a short time interval (t, t+ dt]. In the literature, cj is referred to as stochastic
reaction rate constant. If there are hj(n) different possible combinations of Rj reactant
molecules in state n, then the propensity aj(n) can be written as

aj(n) = cjhj(n) . (2.26)

The form of hj(n) depends on the order of the reaction Rj . For an elementary reaction
channel of the general form (2.1) we can write the combinatorial function

hj(n) =
s∏
i=1

(
ni

¯
Sij

)
. (2.27)

However, it is highly unlikely that a reaction of order higher than two will result from all
its reactants coming together and reacting in one step, for example by collision. A more
realistic model will decompose the high order reaction into two or more one step reactions.
For non-elementary reactions, the propensity can be computed from the reaction rate by
using (2.28). For elementary reactions, the stochastic rate constant c is closely related to
the deterministic rate constant, as shown below.

Deterministic and stochastic reaction rates: Using the interpretation of propensity as
the mean DA per unit time from (2.25), the propensity divided by the system size is
analogous to the reaction rate vj defined earlier in the deterministic framework. Hence, in
the stochastic framework, the stochastic reaction rate can be defined as

ã(x) = a(n)
Ω . (2.28)

which is analogous to the deterministic reaction rate v(x). The stochastic rate of a given
elementary reaction can be computed from (2.28), (2.26) and (2.27) whereas (2.12) can
be used for the deterministic reaction rate. The two kinds of reaction rates are given for
a few example elementary reactions in Table 2.1. The condition under which the two
reaction rates are equal is shown in the corresponding entry of the last column. This also
provides the relationship between the stochastic rate constant cj and the deterministic
rate constant kj . That relationship can be generalised in the following way.
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Table 2.1 Examples of elementary reactions and their reaction rates.

Rj aj(n) ã(x) v(x) ã(x) = v(x) if

∅
kj−−→ X1 cj

cj
Ω kj cj = Ωkj

X1
kj−−→? cjn1

cjn1
Ω kjx1 cj = kj

X1 +X2
kj−−→? cjn1n2

cjn1n2
Ω kjx1x2 cj = kj

Ω

2X1
kj−−→? cj

(n1−1)n1
2 cj

(n1−1)n1
2Ω kjx

2
1 cj = 2kj

Ω , Ω � 1

X1 +X2 +X3
kj−−→? cjn1n2n3 cj

n1n2n3
Ω kjx1x2x3 cj = kj

Ω2

X1 + 2X2
kj−−→? cjn1

(n2−1)n2
2 cj

(n2−1)n2n1
2Ω kjx1x

2
2 cj = 2kj

Ω2 , Ω � 1

Relationship between the deterministic and stochastic rate constants: Let us find
the conditions under which the deterministic and stochastic reaction rates of a general
elementary reaction are approximately the same. From (2.12), (2.28), (2.26) and (2.27)
we can propose:

kj

s∏
i=1

x¯
Sij
i = vj(x) ≈ ãj(x) = aj(n)

Ω = cj
Ω

s∏
i=1

(
ni

¯
Sij

)
.

The left-most expression is valid only in the deterministic framework which requires large
system size, Ω � 1. To the extent that this assumption is valid, the combinatorial function
can be approximated as(

ni

¯
Sij

)
= (ni − ¯

Sij + 1) · · · (ni − 1)ni

¯
Sij !

=
(

Ω¯
Sij

¯
Sij !

)(
xi − ¯

Sij − 1
Ω

)
· · ·
(
xi −

1
Ω

)
xi

≈
(

Ω¯
Sij

¯
Sij !

)
x¯
Sij
i for Ω � 1

Inserted into the previous equation leads to the stochastic rate constant

cj = kj
ΩKj−1

s∏
i=1

(
¯
Sij !) (2.29)

where Kj = ∑s
i=1 ¯

Sij is the number of Rj reactant molecules required to collide and
possibly result in a single occurrence of the reaction. The above derivation is a refinement
of our earlier attempt in [WUKC04].

Relation between the deterministic and stochastic reaction rates: We saw that in
general, the stochastic and deterministic reaction rates are not equal. Since the two are
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equal for infinitely large Ω, the difference between the two is of the order of Ω−1, namely
[Elf04]

ãj(x) = vj(x) +O
(
Ω−1

)
. (2.30)

Isomerisation reaction revisited: In the isomerisation reaction (2.5), the copy number
N(t) of the protein in the inactive form is a simple birth death process. Each copy of the
(inactive) protein X1 is activated at a rate k1. Similarly, each copy of the (active) protein
X2 is deactivated at a rate k2. With 0 < n < ntot proteins in the inactive form X2, the
over all activation (death) rate is the sum a1(n) = k1n and the overall deactivation (birth)
rate is the sum a2(n) = (ntot − n)k2. The state transitions in state n are listed here (on
the right) together with the corresponding reactions (on the left)

X1
k1−−−−−→ X2

X2
k2−−−−−→ X1

∣∣∣∣∣∣∣
n

k1n−−−−−−→ n− 1

n
(ntot−n)k2

−−−−−−−−−−−→ n+ 1

 (2.31)

Lotka-Volterra model revisited: The predator-prey model (2.6) can be formulated as
a 2-component 3-reaction network. Let N1(t) denote the population of the prey, and
N2(t) that of the predator. Then the Markov process N(t) = (N1(t), N2(t))T has states
n = (n1, n2)T . State transitions in state n are listed here (on the right) together with the
corresponding reactions (on the left):

X1 + A k1−−−−−→ 2X1

X1 + X2
k2−−−−−→ 2X2

X2
k3−−−−−→ ∅

∣∣∣∣∣∣∣∣∣∣
n

k1nA
n1

−−−−−−−−→ (n1 + 1, n2)T

n
k2n1n2−−−−−−−−→ (n1 − 1, n2 + 1)T

n
k3n2−−−−−−→ (n1, n2 − 1)T

 (2.32)

Enzyme kinetic model revisited: The enzyme kinetic model (2.8) is a 4-component
3-reaction network. Let NE(t) denote the copy number of the enzyme, NS(t) that of the
substrate, NES(t) that of the complex and NP(t) that of the product. The full state has
to respect two conservation laws

NE(t) +NES(t) = ntot
E , and NS(t) +NES(t) +NP(t) = ntot

S

where ntot
E and ntot

S are the total copy numbers of the enzyme and substrate, respectively.
The Markov process

N(t) =
(
NS(t), NES(t)

)T
having states n = (nS, nES)T is sufficient to describe the system, because the remaining
two variables can be determined from the conservation relations above. The transitions in
state n are listed here (on the right) together with the corresponding reactions (on the
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left):

E + S k1−−−−−→ ES

ES k2−−−−−→ E + S

ES k3−−−−−→ E + P

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

n

(
k1
Ω

)(
ntot

S −nES

)
n

S−−−−−−−−−−−−−−−−→
(
nS − 1, nES + 1

)T
n

k2nES−−−−−−−→
(
nS + 1, nES − 1

)T
n

k3nES−−−−−−−→
(
nS, nES − 1

)T


(2.33)

where Ω = NAV .

Schlögl model revisited: For the Schlögl reaction scheme (2.8), write xA and xB denote
the constant respective concentrations of chemicals A and B, and N(t) for the time-
dependent copy number of chemical X. State transitions in state n are listed here (on the
right) together with the corresponding reactions (on the left):

A + 2X k1−−−−−→ 3X

B k3−−−−−→ X


3X k2−−−−−→ A + 2X

X k4−−−−−→ B



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

n

(
k1xA

Ω

)
(n−1)n+k3xBΩ

−−−−−−−−−−−−−−−−−−−→ n+ 1

n

(
k2
Ω2
)
(n−2)(n−1)n+k4n

−−−−−−−−−−−−−−−−−−→ n− 1



(2.34)

where Ω = NAV .

2.5 Stochastic simulation

Time until the next reaction: The probability in state n that no reaction has occurred
in an interval of length t follows from (2.21) and independence of reaction channels:

Pr

⋂
j

Tj(n) > t

 =
∏
j

exp (−aj(n)t) = exp

−t∑
j

aj(n)

 .

Hence the time T0(n) until next reaction taking the process away from state n is exponential
with rate parameter

a0(n) =
∑
j

aj(n),

known as the exit rate of state n.
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Index of the next reaction channel: If it is known that a reaction has occurred in state
n, the (conditional) probability that it was an Rj reaction is determined as

lim
∆t→0

Pr
[
Tj(n) ≤ ∆t |T0(n) ≤ ∆t

]
= lim

∆t→0

Pr
[
Tj(n) ≤ ∆t

]
Pr
[
T0(n) ≤ ∆t

]
= lim

∆t→0

aj(n)∆t+ o(∆t)
a0(n)∆t+ o(∆t)

= aj(n)
a0(n) .

Thus the index J(n) of the next reaction known to have occurred in state n is a discrete
random variable taking values j with probability

Pr
[
J(n) = j

]
= aj(n)
a0(n) . (2.35)

This result, together with the exponentially of T0, allows a simple procedure to simulate
the Markov process: 1) Pick a sample τ from the exponential distribution with rate a0(n)
to realise the time until the next reaction will occur, and 2) pick a sample j from the
discrete distribution with probabilities (2.35) to realise the reaction channel.

Random number generation: Here is a brief review of one way to compute a sample y
of a random variable Y . The sample y is a random number picked from the probability
distribution of Y . We start with the cumulative distribution function (CDF) defined as

F (y) = Pr
[
Y ≤ y

]
.

The CDF of the transformed random variable U = F (Y ) can be worked out

Pr
[
U ≤ u

]
= Pr

[
Y ≤ F−1(u)

]
= F

(
F−1(u)

)
= u,

which is the CDF of the uniform random variable in the interval [0, 1]. Thus U is uniform
in the unit interval. The same holds true for the CCDF, defined as

G(y) = Pr
[
Y > y

]
= 1− F (y) .

If u is a uniform random number picked from the unit interval, then y = F−1(u) is a
sample of Y . Another sample of Y is G−1(u). Computation of the inverse F−1(u) is
straightforward when a closed form expression of F is available. When the distribution
has no unique inverse, the inverse is defined by

y = F−1(u) = min
w
{w : F (w) ≥ u} .
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Simulating the time until the next reaction: The time T0(n) until the next reaction in
state n is an exponential random variable with right-tailed distribution function

G(t) = Pr
[
T0(n) > t

]
= exp

(
−a0(n)t

)
.

If u1 is a uniform random number picked from [0, 1], then

τ = G−1(u1) = − log u1
a0(n) . (2.36)

is a sample of the time until the next reaction.

Simulating the Index of the next reaction channel: The index J(n) of the next reaction
known to have occurred in state n is a discrete random variable with a probability mass
function (2.35) and a cumulative distribution function

F (j) = Pr
[
J(n) ≤ j

]
=

j∑
l=1

al(n)
a0(n) .

If u2 is a uniform random number picked from [0, 1] then

j = F−1(u2) = min
w
{w : F (w) ≥ u2}

is a sample of the index J(n). For the range of values taken by J , the above condition is
equivalent to

F (j − 1) < u2 ≤ F (j) .

Multiplying both sides by a0(n) and plugging values for F (j) gives the following criteria

j−1∑
l=1

al(n) < u2a0(n) ≤
j∑
l=1

al(n) . (2.37)

for j to be a sample of the index J(n) of the next reaction known to have occurred in
state n.

Gillespie algorithm [Gil77]: The above two results (2.36) and (2.37) are at the core of
the stochastic simulation algorithm also known as the “Gillespie algorithm”. The steps
involved are listed in Algorithm 2.1. Over time, many improvements to the original SSA
have been made for efficient computation. See [TSB04, Pah08] for extensive reviews.

2.6 Chemical master equation

How does the state probability P (n, t) change with time? To answer this, we need to find
an expression for P (n, t+ ∆t), the probability to be in state n after a short time-interval
of length ∆t. How can the system fall in state n at time t+∆t? One possibility is that the
system was in state n at time t and no reaction occurred during the interval. Otherwise
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Algorithm 2.1 Gillespie’s stochastic simulation algorithm (direct method)

1. Initialise the system at t = 0 with initial numbers of molecules for each species,
n1, . . . , ns.

2. For each j = 1, . . . , r, calculate aj(n) based on the current state n.

3. Calculate the exit-rate a0(n) =
r∑
j=1

aj(n). Terminate if a0(n) = 0.

4. Compute a sample τ of the time until the next reaction using (2.36).

5. Update the time t = t+ τ .

6. Compute a sample j of the reaction index using (2.37).

7. Update the state n according to Rj . That is put n = n+ S�j , where S�j denotes jth
column of the stoichiometric matrix S.

8. If t < tmax, return to Step 2.

the state n was reached after the occurrence of one of r possible reactions. Mathematically
we can write

P (n|n′,∆t) = o(∆t) +



1− a0(n)∆t ifn′ = n

a1 (n− S�1) ∆t ifn′ = n− S�1
...
ar (n− S�r) ∆t ifn′ = n− S�r

0 elsewhere.

The term o(∆t) represents the probability of arriving in state n by the occurrence of more
than one reaction during the interval. Recall that a0(n) = ∑

j aj(n) is the exit-rate from
state n. Substituting the above expressions into (2.19) gives

P (n, t+ ∆t) = P (n, t)

1−
r∑
j=1

aj(n)∆t

+
r∑
j=1

P (n− S�j , t) aj (n− S�j) ∆t+ o(∆t),

which for vanishingly short ∆t can be re-arranged to what is known as the chemical master
equation (CME):

∂

∂t
P (n, t) =

r∑
j=1

[
aj (n− S�j)P (n− S�j , t)− aj(n)P (n, t)

]
. (2.38)

We will switch between the two alternative notations d
dtφ(t) and dφ

dt for any scalar quantity
φ(t). We will prefer the later when dependence on time variable is implicitly clear.

Using a negative-shift operator Ej for each reaction channel defined by its effect

Ej f(n) = f (n+ S�j)
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on an arbitrary scalar function f(n) of s-vector n, the CME can be written in the
alternative form

∂

∂t
P (n, t) =

r∑
j=1

(
E−1
j −1

)
aj(n)P (n, t) . (2.39)

Since there is one equation for each state n and there is potentially a large number of
possible states, it is impractical to solve the CME.

Isomerisation revisited:l Following from the state transitions (2.31) for the isomerisation
reaction scheme (2.5), the channel-wise summands in the CME are:

j
(
E−1
j −1

)
aj(n)P (n, t)

1 k1
[
(n+ 1)P (n+ 1, t)− nP (n, t)

]
2 k2

[(
ntot − n+ 1

)
P (n− 1, t)−

(
ntot − n

)
P (n, t)

]

Enzyme kinetic reaction revisited: Following the state transitions (2.33) for the enzyme
kinetic reaction scheme (2.7), the channel-wise summands in the CME are:

j
(
E−1
j −1

)
aj
(
nS, nES

)
P
(
nS, nES, t

)
1

(
k1
Ω

) [(
ntot

S − nES + 1
) (
nS + 1

)
P
(
nS + 1, nES − 1, t

)
−
(
ntot

S − nES

)
nSP

(
nS, nES, t

)]
2 k2

[(
nES + 1

)
P
(
nS − 1, nES + 1, t

)
− nESP

(
nS, nES, t

)]
3 k3

[(
nES + 1

)
P
(
nS, nES + 1, t

)
− nESP

(
nS, nES, t

)]

Lotka-Volterra model revisited: Following the state transitions (2.32) for the predator-
prey reaction scheme (2.6), the channel-wise summands in the CME are:

j
(
E−1
j −1

)
aj (n1, n2)P (n1, n2, t)

1 k1
[
(n1 − 1)P (n1 − 1, n2, t)− n1P (n1, n2, t)

]
2 k2

[
(n1 + 1) (n2 − 1)P (n1 + 1, n2 − 1, t)− n1n2P (n1, n2, t)

]
3 k3

[
(n2 + 1)P (n1, n2 + 1, t)− n2P (n1, n2, t)

]
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Schlögl model revisited: Following the state transitions (2.34) for the Schlögl reaction
scheme (2.8), the channel-wise summands in the CME are:

j
(
E−1
j −1

)
aj(n)P (n, t)

1
[(

k1xA
Ω

)
(n− 2)(n− 1) + k3xBΩ

]
P (n− 1, t)−

[(
k1xA

Ω

)
(n− 1)n+ k3xBΩ

]
P (n, t)

2
(
k2
Ω2

) [
(n+ 1)P (n+ 1, t)− (n− 2)P (n, t)

]
(n− 1)n+ k4

[
(n+ 1)P (n+ 1, t)− nP (n, t)

]

While the stochastic simulation algorithm and extensions provide a way to generate
sample paths of copy numbers for a biochemical system, the need for repeating many
simulation runs to get an idea of the probability distribution in terms of its moments
(mean and (co)variance) become increasing time consuming and even impractical for
larger systems. Therefore attempts have been made towards approximations of the CME
[Gil96, HJ04, PMK06, MK06], including the following.

2.6.1 Kramers-Moyal expansion and the Fokker-Planck equation

Suppose the propensity aj(n) is a smooth function and one is interested in solutions
P c(n, t) that can be represented by a smooth function. It is then reasonable to approximate
the problem by means of a description in which n is treated as a continuous variable.
The operator E−1

j , acting only on smooth functions, may be replaced with a Taylor
expansion,

E−1
j =

∞∑
m=0

1
m!

(
−
∑
i

Sij
∂

∂ni

)m

= 1−
∑
i

Sij
∂

∂ni
+ 1

2
∑
i,k

SijSkj
∂2

∂ni∂nk
+ · · · .

(2.40)

Inserting values into the master equation yields the Kramers-Moyal expansion,

∂

∂t
P c(n, t) =

r∑
j=1

∞∑
m=1

1
m!

(
−
∑
i

Sij
∂

∂ni

)m
aj(n)P c(n, t) .

Ignoring all derivatives beyond the second yields the Fokker-Planck equation (FPE),

∂

∂t
P c(n, t) =

r∑
j=1

−∑
i

Sij
∂

∂ni
+ 1

2
∑
i,k

SijSkj
∂2

∂ni∂nk

 aj(n)P c(n, t) . (2.41)
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2.6.2 System-size expansion

The cutting of higher moments in the Kramers-Moyal expansion to get the Fokker-Planck
approximation requires that the fluctuations, as measured by the standard deviations σ,
are small. However changes in copy numbers by chemical reactions are whole numbers and
there is no way to qualify small fluctuations in this way. This is true for any approximation
method that requires small fluctuations. Therefore one needs a systematic approximation
method in the form of an expansion in powers of a small parameter. Only in that case does
one have an objective measure for the size of the several terms. The expansion parameter
must appear in the master equation and must govern the size of the fluctuations. The
system size parameter Ω is a potential choice. Suppose the propensity aj(n) is a smooth
function and one is interested in solutions P c(n, t) that can be represented by a smooth
function. It is then reasonable to approximate the problem by means of a description
in which n is treated as a continuous variable. We can anticipate the way in which the
solution P c(n, t) will depend on the system size Ω. The initial condition is

P c(n, t) = δ(n− n0) .

The initial copy number X(0) = n0 = Ωx(0) is of order Ω. The Dirac’s delta function
δ(n− n0) is defined to be zero everywhere except at n = n0 where it integrates to unity.
One expects that at later times P c(n, t) is a sharp peak at some position of order Ω while
its width will be of the order

√
Ω. In order words it is assumed that the continuous

approximation N c(t) of the process N(t) fluctuates around a macroscopic trajectory of
the order Ω with a fluctuation of order Ω1/2. To express this formally we set

N c(t) = Ωφ(t) + Ω1/2Ξ(t), (2.42)

where φ(t) is equal to the macroscopic concentration x = n/Ω for an infinitely large
system size Ω and Ξ(t) models the fluctuation of N c(t) around φ(t). A realisation n of
N c(t) is related to a realisation ξ of Ξ(t) by the same relation above:

n = Ωφ(t) + Ω1/2ξ .

The probability distribution P c(n, t) of N c(t) transforms into a probability distribution
Π (ξ, t) of Ξ(t) according to

P c(n, t) = P c
(
Ωφ(t) + Ω1/2ξ, t

)
= Π (ξ, t) . (2.43)

The time derivative in the master equation is taken with constant n, that is where,

dn
dt = Ω dφ

dt + Ω1/2 dξ
dt = 0 =⇒ dξ

dt = −Ω1/2 dφ
dt .

This result can be used in the differentiation of the probability distributions with respect
to time to give

∂

∂t
P c(n, t) = ∂

∂t
Π (ξ, t)+

s∑
i=1

dξi
dt

∂

∂ξi
Π (ξ, t) = ∂

∂t
Π (ξ, t)−Ω1/2

s∑
i=1

dφi
dt

∂

∂ξi
Π (ξ, t) . (2.44)

Before we can compare this equation with the CME (2.39), we need to express the
propensity function aj(n) in terms of the fluctuation ξ and translate the operator Ej so
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that it can be applied to functions of ξ. The propensity is related to the deterministic
reaction rate vj(x) through (2.28) and (2.30):

aj(n) = Ωãj
(
n

Ω

)
= Ωãj

(
φ+ Ω−1/2ξ

)
= Ω

[
vj
(
φ+ Ω−1/2ξ

)
+O

(
Ω−1

)]
.

The operator E−1
j which changes n to n− S�j , effectively changing the fluctuation ξ to

ξ − Ω−1/2S�j , translates to E−Ω−1/2

j which can be applied to functions of ξ. Now we can
write the CME (2.39) so that the right side is a function of ξ only:

∂

∂t
P c(n, t) = Ω

r∑
j=1

(
E−Ω−1/2

j −1
) [
vj
(
φ+ Ω−1/2ξ

)
+O

(
Ω−1

)]
Π (ξ, t), (2.45)

where the replacement of P c(n, t) with Π (ξ, t) on the right follows from (2.43). The next
step is the Taylor expansion, around φ, of vj(x) and the operator E−Ω−1/2

j in several
dimensions:

vj
(
φ+ Ω−1/2ξ

)
= vj(φ) + Ω−1/2

∑
i

∂vj
∂φi

ξi +O
(
Ω−1

)
,

E−Ω−1/2

j = 1− Ω−1/2
∑
i

Sij
∂

∂ξi
+ 1

2Ω−1∑
i,k

SijSkj
∂2

∂ξi∂ξk
+O

(
Ω−3/2

)
,

where the later follows from (2.40) by replacing n with ξ and S with Ω−1/2S. Inserting
the above two expansions in (2.45) and then comparing the result with (2.44) leads to

∂

∂t
Π (ξ, t)− Ω1/2

s∑
i=1

dφi
dt

∂

∂ξi
Π (ξ, t) =

Ω
r∑
j=1

−Ω−1/2
∑
i

Sij
∂

∂ξi
+ 1

2Ω−1∑
i,k

SijSkj
∂2

∂ξi∂ξk
+O

(
Ω−3/2

)
×
[
vj(φ) + Ω−1/2

∑
i

∂vj
∂φi

ξi +O
(
Ω−1

)]
Π (ξ, t) .

The terms of the order Ω1/2 are proportional to the factors ∂Π/∂ξi. It is possible to make
the terms of each type cancel each other by choosing φ such that

dφi
dt =

r∑
j=1

Sijvj(φ), (2.46)

and we see that the macroscopic law emerges as the lowest approximation in the Ω
expansion. Comparing terms of the order Ω0 :

∂Π
∂t

=
r∑
j=1

−∑
i,k

Sij
∂vj
∂φk

∂ (ξkΠ )
∂ξi

+ 1
2vj(φ)

∑
i,k

SijSkj
∂2Π
∂ξi∂ξk

 .

Introducing matrices A and B with elements

Aik =
r∑
j=1

Sij
∂vj
∂φk

, and Bik =
r∑
j=1

SijSkjvj(φ), (2.47)
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the above differential equation can be written as

∂Π
∂t

= −
∑
i,k

Aik
∂ (ξkΠ )
∂ξi

+ 1
2
∑
i,k

Bik
∂2Π
∂ξi∂ξk

, (2.48)

which is a linear Fokker-Planck equation (FPE) with coefficient matrices A and B that
depend on time through the deterministic reaction rate vj (φ(t)). The solution of the
linear FPE (2.48) can be shown to be a multivariate Gaussian

Π (ξ, t) = (2π)−s/2 |Q(t)|−1/2 exp
(
−1

2ξ
T [Q(t)]−1 ξ

)
, (2.49)

with zero mean and covariance matrix Q(t) that satisfies the matrix Riccati equation:

dQ
dt = AQ+QAT +B . (2.50)

The proposed transformation (2.42) together with (2.46) and (2.48) forms the so-called
linear noise approximation (LNA) [Kam07a].

Since the LNA does not include terms of order higher than Ω0, the same could have
been obtained by applying the method of Ω-expansion to the nonlinear FPE (2.41).

2.6.3 Chemical Langevin equation

This section is based on Gillespie’s method [Gil00]. Suppose it is known that N(t) = n.
During the next short time interval [t, t+ τ ], the component-wise copy number will change,
according to (2.2), from ni to

Ni(t+ τ) = ni +
r∑
j=1

[
Zj(t+ τ)− Zj(t)

]
Sij . (2.51)

Assume the interval length τ is: (i) small enough that each reaction propensity aj(n) does
not change “appreciably” during the interval, and (ii) large enough that the expected
number of occurrences 〈Zj(t+ τ)− Zj(t)〉 of each reaction channel Rj during the interval
is very large. Assumption (i) allows the Poissonian approximation

Zj(t+ τ)− Zj(t) ∼ Pj
(
aj(n) τ

)
(2.52)

with mean and variance aj(n) τ for each reaction channel, where all the Poisson processes
Pj are statistically independent. Assumption (ii) implies

〈Zj(t+ τ)− Zj(t)〉 = aj(n) τ � 1,

and thus allows the normal approximation

Pj
(
aj(n)τ

)
∼ Nj

(
aj(n) τ, aj(n) τ

)
(2.53)

with the same mean and variance aj(n)τ for each reaction channel, where all the normal
processes Nj are statistically independent. Since any normal variable can be expressed as
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a sum of its mean and the standard normal variable scaled by its standard deviation, we
have

Nj
(
aj(n)τ, aj(n)τ

)
= aj(n)τ + (aj(n)τ)1/2Nj(0, 1) . (2.54)

Backward substitution through (2.51)-(2.54) leads to continuous approximation

N c
i (t+ τ) = n+

r∑
j=1

Sijaj(n)τ +
r∑
j=1

Sij (aj(n)τ)1/2Nj(0, 1),

where N c(t) denotes the continuous Markov process approximating the jump process
N(t). The factor

√
τNj(0, 1) in the 2nd summation on the right suggests a set {Wj(t)}

of independent standard Brownian motions, or standard Wiener processes, with Wiener
increments,

Wj(t+ τ)−Wj(t) =
√
τNj(0, 1) .

Combining this with N(t) = n, the previous equation can be written as

N c
i (t+ τ)−N c

i (t) =
r∑
j=1

Sijaj (N c(t)) τ +
r∑
j=1

Sij
(
aj (N c(t))

)1/2
[Wj(t+ τ)−Wj(t)] .

Making the replacement τ = dt gives the stochastic differential equation

dN c
i (t) =

r∑
j=1

Sijaj (N c(t)) dt+
r∑
j=1

Sij
(
aj (N c(t))

)1/2
dWj(t), (2.55)

known as the “standard-form” chemical Langevin equation (CLE). An equivalent “white-
noise form” of CLE can be written as

dN c
i (t)

dt =
r∑
j=1

Sijaj (N c(t)) +
r∑
j=1

Sij
(
aj (N c(t))

)1/2
Γj(t), (2.56)

where Γj(t) = dWj/dt are statistically independent Gaussian white-noise processes.

It was shown in [Gil96] that the probability density function P c(n, t) of the continuous
Markov process N c(t) obeys the FPE (2.41). Thus the CLE (2.55) and (2.41) are
equivalent.

The two conditions (i) and (ii) seem conflicting and require the existence of a domain
of macroscopically infinitesimal time intervals. Although the existence of a such a domain
cannot be guaranteed, Gillespie argues that this can be found for most practical cases.
Admitting that, “it may not be easy to continually monitor the system to ensure that
conditions (i) and (ii) [..] are satisfied.” He justifies his argument by saying that this “will
not be the first time that Nature has proved to be unaccommodating to our purposes.”
[Gil00].

Generating sample paths of (2.56) is orders of magnitude faster than doing the same
for the CME because it essentially needs generation of normal random numbers. See
[Hig01] for numerical simulation methods of stochastic differential equations such as (2.56).
However, solving the nonlinear FPE (2.41) for the probability density is as difficult as the
CME. Therefore, from an analytical point of view, the CLE and the associated nonlinear
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FPE do not provide any significant advantage. However, linearising the propensity function
around the mean [Gou06], or using the Ω-expansion [Kam07a], the nonlinear FPE (2.41)
can be reduced to the LNA whose solution is a Gaussian distribution with a mean that is
equal to the solution of the deterministic ODE model and a covariance matrix that obeys
a linear ODE. This is the main drawback of LNA because, for system containing at least
one biomolecular reactions, the mean of a stochastic model is not equal to the solution of
deterministic ODEs, as shown next.

2.7 Markov processes with both continuous and jump character

The CME describes a jump process while the FPE describes a diffusion process. A general
Markov process in continuous time can be made up of both continuous and jump parts.
Consider a Markov process Y (t) taking real values y from a state space Y with probability
densities p(y, t). If the process has only continuous sample paths, changes in p(y, t) are
described by the FPE. If the process has only discontinuous sample paths (with jumps),
changes in the density will be governed by a so called master equation:

∂

∂t
p(y, t) =

ˆ

Y

[
W (y | y′)p(y′, t)−W (y′ | y)p(y, t)

]
dy′,

a generalisation of the CME where the summation has been replaced by integration
(because of the real state space) and the propensity by the general transition rate W (y | q)
defined for the transitions q → y. If the process has sample paths made up of both the
continuous and jump parts, changes in the density p(y, t) will be governed by a differential
equation obtained by combining the above master equation and the FPE to get what is
known as the differential Chapman Kolmogorov equation (dCKE):

∂

∂t
p(y, t) = −

∑
i

∂

∂yi

[
αi(y)p(y, t)

]
+ 1

2
∑
i,k

∂2

∂yi∂yk

[
βik(y)p(y, t)

]
+
ˆ

Y

[
W (y | y′)p(y′, t)−W (y′ | y)p(y, t)

]
dy′ .

For detailed derivation, see [UW07, Gar04]. The dCKE describes a variety of Markov
processes: It becomes an FPE for W = 0, a master equation for α = 0, β = 0, a Liouville
equation for β = 0, W = 0 and a Liouville master equation for β = 0. The way in
which different equations and the corresponding models stem from the dCKE is sketched
in Figure 2.2 which also shows how simulation strategies connect to their modelling
counterparts. For a detailed discussion, see [Gar04] and our work in [UW07].

The analytical approximations discussed in this chapter do not allow direct tracking
of the mean and (co)variance which, in general, are coupled. This coupling is not obvious
in CLE and FPE, and ignored by LNA and conventional ODE models. The next chapter
presents the 2MA approach, which has a direct representation of the first two moments
and the coupling between them.
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Figure 2.2 Interrelationships for various stochastic approaches. The coefficients α, β,W respecti-
vely refer to the drift-vector, diffusion-matrix and the transition-rate in the dCKE. QSSA stands
for Quasi-Steady-State Assumption. For details, see [UW07].





3
The 2MA approach

This chapter develops a compact form of the 2MA equations - a system of ODEs for
the dynamics of the mean and (co)variance of the continuous-time discrete-state Markov
process that models a biochemical reaction system by the CME. This is an extension
of previous derivations, taking into account relative concentrations and non-elementary
reactions. The compact form, obtained by careful selection of notation, allows for an easy
interpretation.

3.1 Relative concentrations

The concentration Xi(t) is, in general, the copy number Ni(t) divided by some fixed
scaling parameter Ωi specific to that component. In other words

Ni(t) = ΩiXi(t) .

The copy number and concentration (vectors) are related by

N(t) = Ω �X(t),

where Ω is the s-vector of elements Ωi and � denotes the element-wise product of two
vectors (or matrices). Note that our approach is developed for the general case which
allows for relative concentrations instead of assuming one global system-size Ω.

Often we are interested in the first two moments of the probability distribution. The
first moment is the mean vector 〈N(t)〉 of copy numbers, defined element-wise by

〈Ni(t)〉 =
∑
n

niP (n, t),

the ith mean copy number. The 2nd central moment is the covariance matrix
〈
N,NT

〉
defined element-wise by

〈Ni, Nk〉 =
〈(
Ni − 〈Ni〉

)(
Nk − 〈Nk〉

)〉
,

the covariance between Ni and Nk. Here the superscript T denotes transpose of a matrix.
When obvious from the context, we will leave out dependence on time, as in the above.

33
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We are also interested in the mean concentration vector 〈X〉 with elements

〈Xi〉 = 〈Ni〉
Ωi

and the concentration covariance matrix
〈
X,XT

〉
with elements

〈Xi, Xk〉 = 〈Ni, Nk〉
ΩiΩk

.

The diagonal elements of the covariance matrix are the variances:

Var
[
Ni

]
= 〈Ni, Ni〉 , Var

[
Xi

]
= 〈Xi, Xi〉 .

3.2 Dynamics of the mean

Taking expectation on both sides of (2.2) gives the mean copy number,

〈Ni(t)〉 = Ni(0) +
r∑
j=1

Sij 〈Zj(t)〉 .

Taking the time-derivative and employing (2.25) yields

d 〈Ni〉
dt =

r∑
j=1

Sij
〈
aj
(
N
)〉

=
〈
fi
(
N
)〉
, (3.1)

where
fi(n) def=

r∑
j=1

Sijaj
(
n
)

(3.2)

referred to here as the copy-number flux. Dividing by Ωi gives the system of ODEs for the
mean concentration:

d 〈Xi〉
dt =

〈
f̃i
(
X
)〉

(3.3)

where
f̃i(x) def= fi(Ω � x)

Ωi
= 1

Ωi

r∑
j=1

Sijaj
(
Ω � x

)
(3.4)

referred to here as the concentration flux. When Ω is a scalar (system size), then (2.28)
allows a simpler expression for concentration flux

f̃(x) = f(Ωx)
Ω = S ã(x

)
. (3.5)

It is interesting to note that (3.1) is a direct consequence of mass conservation (2.2) and
definition of propensity because we have not referred to the CME (which is the usual
procedure) during our derivation.
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Isomerisation revisited: Following from the state transitions (2.31) for the isomerisation
reaction scheme (2.5), the reaction propensities are linear

a1 = k1n, a2 =
(
ntot − n

)
k2,

giving the linear copy-number flux

f(n) = −a1 + a2 = k2n
tot − (k1 + k2)n .

The mean copy number thus obeys

d 〈N〉
dt =

〈
f
(
N
)〉

= k2n
tot − (k1 + k2) 〈N〉 ,

which is the same as the deterministic ODE (2.13). In general, the mean of a system
composed solely of reactions of zero and/or first-order reactions is the same as the solution
of the corresponding deterministic ODE because of linear propensities.

Lotka-Volterra model revisited: Following the state transitions (2.32) for the predator-
prey reaction scheme (2.6), the reaction propensities are given by

a1 = k1nAn1, a2 = k2n1n2, a3 = k3n2,

giving the copy number flux vector

f(n) = S a(n) =

a1 − a2

a2 − a3

 =

k1nAn1 − k2n1n2

k2n1n2 − k3n2

 .
The mean copy number changes according to

d 〈N1〉
dt =

〈
f1
(
N
)〉

= k1nA 〈N1〉 − k2 〈N1N2〉 ,

d 〈N2〉
dt =

〈
f2
(
N
)〉

= k2 〈N1N2〉 − k3 〈N2〉 .

Since 〈N1N2〉 6= 〈N1〉 〈N2〉, the mean 〈N〉 is not the same as the solution of the determi-
nistic ODE (2.14). In general, the mean of a system containing 2nd and/or higher-order
reactions is not the same as the solution of the corresponding deterministic ODE because
of nonlinear propensities. Hence the deterministic model cannot be used, in general, to
describe the correct mean.

In general, the mean flux
〈
f
(
N
)〉

involves the unknown probability distribution P (n, t).
In other words, the mean copy number depends not just on the mean itself, but also involves
higher-order moments, and therefore (3.3) is, in general, not closed in 〈N〉. Suppose the
propensity aj(n) is a smooth function and that central moments 〈(N − 〈N〉)m〉 of order
higher than m = 2 can be ignored. In that case the Taylor series expansion of copy-number
flux fi(n) around the mean 〈N〉 is

fi(n) = fi
(
〈N〉

)
+ ∂fi
∂nT

(
n− 〈N〉

)
+ 1

2
(
n− 〈N〉

)T ∂2fi
∂n∂nT

(
n− 〈N〉

)
+ · · · .
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All the partial derivatives with respect to the state n are evaluated at n = 〈N〉. The
first-order partial derivative here is the ith row of the Jacobian ∂f

∂nT
. The second-order

partial derivative is the Hessian of fi. Expectation of the 2nd term on the right is zero.
Ignoring terms (moments) of order higher than two, the ODE (3.1) can be approximated
by:

d 〈Ni〉
dt = fi

(
〈N〉

)
+ 1

2
∂2fi
∂n∂nT

:
〈
N,NT

〉
. (3.6)

Here A : B denotes the Frobenius inner product, the sum of products of the corresponding
elements, between the two matrices A and B. The last term on the right, referred to here
as the stochastic copy-number flux, arises from the discrete and random nature of chemical
reactions. Note that this term has been derived from the CME instead of being assumed
like external noise. This shows that knowledge of fluctuations (even if small) is important
for a correct description of the mean. This also indicates an advantage of the stochastic
framework over its deterministic counterpart: starting from the same assumptions and
approximations, the stochastic framework allows us to see the influence of fluctuation on
the mean. Note that the above equation is exact for systems where no reaction has an
order higher than two because then 3rd and higher derivatives of propensity are zero.

Repeating the above procedure of Taylor series expansion for the concentration flux
f̃i(x) around the mean 〈X〉 will lead to the analogous system of ODEs

d 〈Xi〉
dt = f̃

(
〈X〉

)
+ 1

2
∂2f̃

∂x∂xT
:
〈
X,XT

〉
, (3.7)

where all the partial derivatives with respect to the state x are evaluated at x = 〈X〉.

3.3 Dynamics of the (co)variance

Before we can see how the (co)variances 〈NiNk〉 evolve in time, let us multiply the CME
with nink and sum over all n,

∑
n

nink
dP (n, t)

dt =
∑
n

nink

r∑
j=1

[
aj(n− S�j)P (n− S�j , t)− aj(n)P (n, t)

]

=
∑
n

r∑
j=1

[
(ni + Sij) (nk + Skj) aj(n)P (n, t)− ninkaj(n)P (n, t)

]

=
∑
n

r∑
j=1

(
nkSij + niSkj + SijSkj

)
aj(n)P (n, t)

where dependence on time is implicit for all variables except n and s. Recognising sums
of probabilities as expectations,

d 〈NiNk〉
dt = 〈Nkfi(N)〉+ 〈Nifk(N)〉+ 〈Bik(N)〉

where
Bik(n) def=

r∑
j=1

SijSkjaj(n) (3.8)
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forms the (i, k)th element of the s× s diffusion matrix B(n). The relation〈
N,NT

〉
=
〈
NNT

〉
− 〈N〉 〈N〉T

can be utilised to yield

d 〈Ni, Nk〉
dt = 〈(Nk − 〈Nk〉) fi(N)〉+ 〈(Ni − 〈Ni〉) fk(N)〉+ 〈Bik(N)〉 (3.9)

for the copy-number covariance. Multiplying by the inverse of ΩiΩk gives the analogous
system of ODEs for concentration covariance:

d 〈Xi, Xk〉
dt =

〈
(Xk − 〈Xk〉) f̃i(X)

〉
+
〈

(Xi − 〈Xi〉) f̃k(X)
〉

+

〈
B̃ik(X)

〉
√

ΩiΩk
(3.10)

where the diffusion matrix B̃ has (i, k)th element

B̃ik(x) def= Bik(Ω � x)√
ΩiΩk

= 1√
ΩiΩk

r∑
j=1

SijSkjaj(Ω � x) . (3.11)

When Ω is a scalar (system size), (2.28) allows a simpler expression for the above

B̃ik(x) = Bik(Ωx)
Ω =

r∑
j=1

SijSkj ãj(x) . (3.12)

Let us start with the component form of (3.9). The argument of the first expectation on
the right has Taylor expansion

fi(n)
(
nk − 〈Nk〉

)
= fi

(
〈N〉

)(
nk − 〈Nk〉

)
+ ∂fi
∂nT

(n− 〈N〉)
(
nk − 〈Nk〉

)
+ · · · .

Expectation of the first term on the right is zero. Ignoring moments of order higher than
two, the first expectation in (3.9) is then〈

(Nk − 〈Nk〉) fi(N)
〉

= ∂fi
∂nT

〈N,Nk〉 .

By a similar procedure, the second expectation in (3.9) is〈(
Ni − µN,i

)
fk(N)

〉
=
〈
Ni, N

T
〉 ∂fk
∂n

,

correct to 2nd-order moments. The element Bik(n) of the diffusion matrix has Taylor
expansion

Bik(n) = Bik
(
〈N〉

)
+ ∂Bik
∂nT

(
n− 〈N〉

)
+ 1

2
(
n− 〈N〉

)T ∂2Bik
∂n∂nT

(
n− 〈N〉

)
+ · · · .

Taking term-wise expectation, and ignoring 3rd and higher-order moments,

〈Bik(N)〉 = Bik
(
〈N〉

)
+ 1

2
∂2Bik
∂n∂nT

:
〈
N,NT

〉
.
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Summing up the three expectations above gives the ODE

d 〈Ni, Nk〉
dt = ∂fi

∂nT
〈N,Nk〉+

〈
Ni, N

T
〉 ∂fk
∂n

+Bik
(
〈N〉

)
+ 1

2
∂2Bik
∂n∂nT

:
〈
N,NT

〉
(3.13)

for the component-wise covariances. The drift matrix ∂f/∂nT reflects the dynamics for
relaxation (dissipation) to the steady state and the the (Taylor approximation to the 2nd-
order of) diffusion matrix B the randomness (fluctuation) of the individual events [PE06].
These terms are borrowed from the fluctuation-dissipation theorem (FDT) [Kei87, Lax60]
which has the same form as (4.2). Remember that (4.2) is exact for systems that contain
only zero- and first-order reactions because in that case the propensity is already linear.

Repeating the above procedures of Taylor series expansions around the mean 〈X〉 for
the analogous terms to the right of (3.10) will lead to the analogous system of ODEs

d 〈Xi, Xk〉
dt = ∂f̃i

∂xT
〈X,Xk〉+

〈
Xi, X

T
〉 ∂f̃k
∂x

+ 1√
ΩiΩk

[
B̃ik

(
〈X〉

)
+ 1

2
∂2B̃ik
∂x∂xT

:
〈
X,XT

〉]
, (3.14)

for the pair-wise concentration covariance.

3.4 Outline of the 2MA and examples

We can summarise the 2MA method, in terms of copy numbers, by the following steps:

1. Assign propensity aj(n) to each reaction channel.

2. Construct the flux fi(n) according to(3.2) and the partial derivatives ∂fi
∂nT

and ∂2fi
∂n∂nT

,
both evaluated at n = 〈N〉, for each species.

3. Construct the diffusion coefficient Bik(n) according to (3.8) and the partial derivative
∂2Bik
∂n∂nT

, evaluated at n = 〈N〉, for each pair of species.

4. Construct the element-wise product ∂2fi
∂n∂nT

: 〈N,NT 〉 between the Hessian of fi and
covariance matrix, for each species.

5. Construct the element-wise product ∂2Bik
∂n∂nT

: 〈N,NT 〉 between the Hessian of Bik and
covariance matrix for each pair of species.

6. Insert the above expressions in (3.6) and (3.13) to obtain the 2MA equations.

The procedure for the 2MA equations in terms of concentrations is the same except for
appropriate replacements such as N with X and so on.
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Isomerisation revisited: Following from the state transitions (2.31) for the isomerisation
reaction scheme (2.5), the reaction propensities are

a1 = k1n, a2 =
(
ntot − n

)
k2 .

The copy-number flux is given by

f(n) = S a(n) = −k1n+
(
ntot − n

)
k2,

and the corresponding diffusion coefficient by

B(n) = k1n+
(
ntot − n

)
k2 .

The drift matrix is given by
∂f

∂n
= − (k1 + k2) .

The Hessians of f and B are both zero:

∂2f

∂n2 = 0, ∂2B

∂n2 = 0 .

Finally we obtain the 2MA equations:

d 〈N〉
dt = − (k1 + k2) 〈N〉+ k2n

tot,

d Var [N ]
dt = −2 (k1 + k2) Var [N ] + (k1 − k2) 〈N〉+ k2n

tot .

(3.15)

We see that the growth of variance is influenced by the mean through the rate term. With
a rise in the mean, the growth of variance speeds up if k1 > k2, slows down if k1 < k2 and
is not influenced if k1 = k2. This is illustrated in Figure 3.1 which plots the standard
deviation (std) and the coefficient of variation (CV) for three pairs of parameter values
with the same sum k1 + k2 = 4. It is interesting to note that the transient overshoot
of the std is not shared by the CV. To get a qualitative idea about possible stochastic
realisations, the mean and the band of one std around it are plotted in Figure 3.2 for the
same three pairs of parameter values. In the non-dimensional time, τ = (k1 + k2)t, the
above pair of ODEs takes the form

d 〈N〉
dτ = −〈N〉+

(
k2

k1 + k2

)
ntot,

d Var [N ]
dτ = −2 Var [N ] +

(
k1 − k2
k1 + k2

)
〈N〉+

(
k2

k1 + k2

)
ntot .

Now we can see that experimental data on both the mean and variance is needed for
identifiability of both the parameters. The mean alone gives information about the fraction
k2/(k1+k2) only.

Here we have used the std and CV as measures of noise. In addition to these two, other
alternative measures of noise, including the Fano factor F=Var[N ]/〈N〉and the noise-to-signal
ratio ζ = Var[N ]/〈N〉2, are discussed in [Pau05].
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Figure 3.1 The time courses, for the isomerisation reaction, of : (a) standard deviation (std),
(b) coefficient of variation (CV), for the parameter pairs k1 = k2 = 2 sec−1 as solid lines, k1 =
1 sec−1, k2 = 3 sec−1 in dash-dotted lines, and k1 = 3 sec−1, k2 = 1 sec−1 in dashed lines. All the
parameter values satisfy k1 + k2 = 4.
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Figure 3.2 The time courses of mean and mean±std for the isomerisation reaction when the
parameters are: (a) k1 = k2 = 2 sec−1, (b) k1 = 1 sec−1, k2 = 3 sec−1, and (c) k1 = 3 sec−1, k2 =
1 sec−1. All the parameter values satisfy k1 + k2 = 4.
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Lotka-Volterra model revisited: Following the state transitions (2.32) for the predator-
prey reaction scheme (2.6), the reaction propensities are given by

a1 = k1nAn1, a2 = k2n1n2, a3 = k3n2 .

The copy number flux is given by

f(n) = S a(n) =

a1 − a2

a2 − a3

 =

k1nAn1 − k2n1n2

k2n1n2 − k3n2

 ,
and the corresponding diffusion matrix by

B =

a1 − a2 −a2

−a2 a2 − a3

 =

k1nAn1 − k2n1n2 −k2n1n2

−k2n1n2 k2n1n2 − k3n2

 .
The drift matrix can be worked out to be

∂f

∂nT
=

k1nA − k2 〈N2〉 −k2 〈N1〉

k2 〈N2〉 k2 〈N1〉 − k3

 .
The Hessian matrices of the elements of f can be worked out to be

∂2f1
∂n∂nT

=

 0 −k2

−k2 0

 , ∂2f2
∂n∂nT

=

 0 k2

k2 0

 .
The Hessian matrices of the elements of B can be worked out to be

∂2B11
∂n∂nT

= ∂2B12
∂n∂nT

= ∂2B21
∂n∂nT

=

 0 −k2

−k2 0

 , ∂2B22
∂n∂nT

=

 0 k2

k2 0

 .
The above expressions for f and its Hessian can now be inserted in (3.6) to obtain the
first set of the 2MA equations: ODEs for the concentration mean. The expressions for B
and its Hessian, together with the drift matrix ∂f/∂nT can be (3.13) to obtain the 2nd set
of 2MA equations: ODEs for the concentration (co)variance matrix.

Enzyme kinetic model revisited: Following the state transitions (2.33) for the enzyme
kinetic reaction scheme (2.7), the reaction rates are given by

v1 =
(
xtot

S − xES

)
k1xS, v2 = k2xES, v3 = k3xES .



42 The 2MA approach

The concentration flux is given by

f̃(x) = S ã(x) = S v(x) =

 −
(
xtot

S − xES

)
k1xS + k2xES(

xtot
S − xES

)
k1xS − k2xES − k3xES

 ,
and the corresponding diffusion matrix by

B̃(x) =


(
xtot

S − xES

)
k1xS + k2xES −

(
xtot

S − xES

)
k1xS − k2xES

−
(
xtot

S − xES

)
k1xS − k2xES

(
xtot

S − xES

)
k1xS + k2xES + k3xES

 .
The drift matrix can be worked out to be

∂f̃

∂xT
=

−
(
xtot

S −
〈
xES

〉)
k1 k1

〈
xS

〉
+ k2(

xtot
S −

〈
xES

〉)
k1 −k1

〈
xS

〉
− k2 − k3

 .
The Hessian matrices of the elements of f̃ can be worked out to be

∂2f̃1
∂x∂xT

=

 0 k1

k1 0

 , ∂2f̃2
∂x∂xT

=

 0 −k1

−k1 0

 .
The Hessian matrices of the elements of B̃ can be worked out to be

∂2B̃11
∂x∂xT

= ∂2B̃22
∂x∂xT

=

 0 −k1

−k1 0

 , ∂2B̃12
∂x∂xT

= ∂2B̃21
∂x∂xT

=

 0 k1

k1 0

 .
The above expressions for f̃ and its Hessian can now be inserted in (3.6) to obtain the
first set of the 2MA equations: ODEs for the concentration mean. The expressions for B̃
and its Hessian, together with the drift matrix ∂f̃/∂xT can be (3.13) to obtain the 2nd set
of 2MA equations: ODEs for the concentration (co)variance matrix.

Schlögl model revisited: Following the state transitions (2.34) for the Schlögl reaction
scheme (2.8), the reaction propensities are given by

a1 = (n− 1)k̂1n+ k̂3, a2 = (n− 2)(n− 1)k̂2n+ k4n,

where
k̂1 =

k1xA
Ω , k̂2 = k2

Ω2 , k̂3 = k3xBΩ .

The copy-number flux is given by

f = S a(n) = −k̂2n
3 +

(
k̂1 + 3k̂2

)
n2 −

(
k4 + 2k̂2 + k̂1

)
n+ k̂3,
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and the corresponding diffusion coefficient by

B = k̂2n
3 +

(
k̂1 − 3k̂2

)
n2 +

(
k4 + 2k̂2 − k̂1

)
n+ k̂3 .

The drift coefficient can be worked out to be

∂f

∂n
= −3k̂2 〈N〉2 + 2

(
k̂1 + 3k̂2

)
〈N〉 − k̂1 − 2k̂2 − k4 .

The Hessian of f can be worked out to be

∂2f

∂x2 = −6k̂2 〈N〉+ 2k̂1 + 6k̂2 .

The Hessian of B can be worked out to be

∂2B

∂x2 = 6k̂2 〈N〉+ 2k̂1 − 6k̂2 .

The above expressions for f and its Hessian can now be inserted in (3.6) to obtain the
first set of the 2MA equations: ODEs for the concentration mean. The expressions for B
and its Hessian, together with the drift matrix ∂f/∂n can be (3.13) to obtain the 2nd set
of 2MA equations: ODEs for the concentration (co)variance matrix.

The examples used above served as an illustration of the 2MA method. The next
chapter investigates the 2MA approach for a practical example of a complex system with
non-elementary reactions and relative concentration.





4
The 2MA cell cycle model

This chapter takes the Tyson-Novák model [NPCT01] for the fission yeast cell cycle as a
case study. This deterministic model is a practical example using non-elementary reactions
and relative concentrations, the two central features of our extended 2MA approach.
This will allow us to investigate the price of higher-order truncations by comparing the
simulated cycle time statistics with experiments.

4.1 The 2MA equations revisited

In this chapter, we adopt a simplified notation, for the mean concentration vector µ(t)
with elements

µi(t) = 〈Xi(t)〉 = 〈Ni(t)〉
Ωi

and the concentration covariance matrix σ(t) with elements

σik(t) = 〈Xi(t), Xk(t)〉 = 〈Ni(t), Nk(t)〉
ΩiΩk

When obvious from the context, we will leave out dependence on time.

The two-moment equations (3.7) and (3.14), in the simplified notation, take the form

dµi
dt = f̃i (µ) + 1

2
∂2f̃i
∂x∂xT

: σ (4.1)

dσik
dt =

∑
l

[
∂f̃i
∂xl

σlk + σil
∂f̃k
∂xl

]
+ 1√

ΩiΩk

[
B̃ik(µ) + 1

2
∂2B̃ik
∂x∂xT

: σ
]

(4.2)

where
f̃i(x) = 1

Ωi

r∑
j=1

Sijaj(Ω � x)

B̃ik(x) = 1√
ΩiΩk

r∑
j=1

SijSkjaj(Ω � x)
(4.3)

The effective flux on the right in (4.1) is the sum of a deterministic flux f̃i(µ) and a
stochastic flux 1

2
∂2f̃i
∂x∂xT

: σ, the latter determined by the dynamics of both the mean and
(co)variance. This influence of the (co)variance implies that knowledge of fluctuations

45
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Figure 4.1
Phases of cell cycle regulation. Adopted from
[AJL+02].
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is important for a correct description of the mean. This also indicates an advantage
of the stochastic framework over its deterministic counterpart: starting from the same
assumptions and approximations, the stochastic framework allows us to describe the
influence of fluctuations on the mean. This can be posed as the central phenomenological
argument for stochastic modelling.

The scaling by Ω confirms the inverse relationship between the noise, as measured by
(co)variance, and the system size. Note the influence of the mean on the (co)variance in
(4.2).

Since the 2MA approach is based on the truncation of terms containing 3rd and
higher-order moments, any conclusion from the solution of 2MA must be drawn with care.
Ideally, the 2MA should be complemented and checked with a reasonable number of SSA
runs.

In [GUV07, Gou07], the 2MA has been applied biochemical systems, demonstrating
quantitative and qualitative differences between the mean of the stochastic model and
the solution of the deterministic model. The examples used in [GUV07, Gou07] all
assume elementary reactions (and hence propensities at most quadratic) and the usual
interpretation of concentration as the moles per unit volume. In the next section, we
investigate the 2MA for complex systems with non-elementary and relative concentrations.
The reason for our interest in non-elementary reactions is the frequent occurrence of
rational propensities (reaction rates), e.g. Michaelis-Menten type and Hill type, in models
in the system biology literature (e.g. [TCN03]).

4.2 Fission yeast cell cycle modelling

The growth and reproduction of organisms requires a precisely controlled sequence of events
known as the cell cycle [AJL+02, Mor07]. On a coarse scale, the cell cycle is composed of
four phases: the replication of DNA (S phase), the separation of DNA (mitosis, M phase),
and the intervening phases (gaps G1 and G2) which allow for preparation, regulation
and control of cell division. These phases are illustrated in Figure 4.1 for a generic cell
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cycle. The central molecular components of cell cycle control system have been identified
[Nur00, Mor07].

Cell cycle experiments show that cycle times (CTs) have different patterns for the wild
type and for various mutants [SNM96, SN02]. For the wild type, the CTs have almost a
constant value near 150 min ensured by a size control mechanism: mitosis happens only
when the cell has reached a critical size. The double-mutant of fission yeast (namely wee1-

cdc25∆) exhibits quantised cycle times: the CTs get clustered into three different groups
(with mean CTs of 90, 160 and 230 min). The proposed explanation for the quantised
cycle times is a weakend positive feedback loop (due to wee1 and cdc25) which means cells
reset (more than once) back to G2 from early stages of mitosis by premature activation of
a negative feedback loop [SCNG+00, SN02].

Many deterministic ODE models describing the cell cycle dynamics have been construc-
ted [NCNG+98, NPCT01, NT03, TCNN02]. These models can explain many aspects
of the cell cycle including the size control for both the wild type and mutants. Since
deterministic models describe the behaviour of a non-existing ‘average cell’, neglecting
the differences among cells in culture, they fail to explain curious behaviours such as the
quantised cycle times in the double-mutant. To account for such curiosities in experiments,
two stochastic models were constructed by Sveiczer: The first model [SCNG+00, SN02]
introduces (external) noise into the rate parameter of the protein Pyp3. The second
model [STN01] introduces noise into two cell and nuclear sizes after division asymmetry.
Full stochastic models that treat all the time-varying protein concentrations as random
variables are reported in [YJT+08, Ste04]. They provide a reasonable explanation for the
size control in wild type and the quantised CTs in the double-mutant type. Both models
employ the Langevin approach and hence require many simulation runs to provide an
ensemble for computing the mean and (co)variance. However, the simulation results of
stochastic models in [SCNG+00, SN02, STN01, Ste04, YJT+08] represent one trajectory
(for a large number of successive cycles) of the many possible in the ensemble from which
the CT statistics (time averages) are computed. We will see that the time-averages
computed from the 2MA simulation are for the ensemble of all trajectories.

4.2.1 The deterministic cell cycle model

We base our 2MA model on the deterministic ODE model for the fission yeast cell cycle,
developed by Tyson-Novák in [NPCT01]. As shown in Figure 4.2, the cell cycle control
mechanism centres around the M-phase promoting factor (MPF), the active form of
the heterodimer Cdc13/Cdc2, and its antagonistic interactions with enemies (Ste9, Slp1,
Rum1) and the positive feedback with its friend Cdc25. These interactions, among many
others, define a sequence of check points to control the timing of cell cycle phases. The
result is MPF activity oscillation between low (G1-phase), intermediate (S- and G2-phases)
and high (M-phase) levels that is required for the correct sequence of cell cycle events. For
simplicity, it is assumed that the cell divides functionally when MPF drops from 0.1.

Table 4.1 lists the proteins whose concentrations xi, together with MPF concentration,
are treated as dynamic variables that evolve according to

dxi
dt = f̃+

i (x)− f̃−i (x) . (4.4)
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Figure 4.2 Regulation of fission yeast cell cycle. Reproduced from [NPCT01].

Table 4.1 Proteins and fluxes. Here x denotes the vector of concentrations x1 to x8.

Index Protein Production flux Elimination flux

i f̃+
i (x) f̃−i (x)

1 Cdc13T k1M (k′2 + k′′2x3 + k′′′2 x5)x1

2 preMPF (x1 − x2) kwee (k25 + k′2 + k′′2x3 + k′′′2 x5)x2

3 Ste9 (k′3+k′′3x5)(1−x3)
J3+1−x3

(k′4x8+k4xmpf)x3
J4+x3

4 Slp1T k′5 + k′′5x
4
mpf

J4
4 +x4

mpf
k6x4

5 Slp1 k7
(x4−x5)x6
J7+x4−x5

k6x5 + k8
x5

J8+x5

6 IEP k9
(1−x6)xmpf
J9+1−x6

k10
x6

J10+x6

7 Rum1T k11 (k12 + k′12x8 + k′′2xmpf)x7

8 SK k13xtf k14x8
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Table 4.2 Parameter values for the Tyson-Novák cell cycle model of the fission yeast (wild type)
[NPCT01]. All constants have units min−1, except the Js, which are dimensionless Michaelis
constants, and Kdiss, which is a dimensionless equilibrium constant for trimer dissociation. For
the double-mutant type, one makes the following three changes: k′′wee = 0.3, k′25 = k′′25 = 0.02 .

k15 = 0.03, k′2 = 0.03, k′′2 = 1, k′′′2 = 0.1, k′3 = 1, k′′3 = 10, J3 = 0.01,
k′4 = 2, k4 = 35, J4 = 0.01, k′5 = 0.005, k′′5 = 0.3, k6 = 0.1, J5 = 0.3,
k7 = 1, k8 = 0.25, J7 = J8 = 0.001, J8 = 0.001, k9 = 0.1, k10 = 0.04,
J9 = 0.01, J10 = 0.01, k11 = 0.1, k12 = 0.01, k′12 = 1, k′′12 = 3, Kdiss = 0.001,
k13 = 0.1, k14 = 0.1, k15 = 1.5, k′16 = 1, k′′16 = 2, J15 = 0.01, J16 = 0.01,
Vawee = 0.25, Viwee = 1, Jawee = 0.01, Jiwee = 0.01, Va25 = 1, Vi25 = 0.25,
Ja25 = 0.01, Ji25 = 0.01, k′wee = 0.15, k′′wee = 1.3, k′25 = 0.05, k′′25 = 5, ρ = 0.005

Here f̃+
i (x) is the production flux and f̃−i (x) is the elimination flux of ith protein. Note

that the summands in the fluxes f̃+
i (x) and f̃−i (x) are rates of reactions, most of which,

are non-elementary (summarising many elementary reactions into a single step). Quite a
few of these reaction rates have rational expressions which requires the extended 2MA
approach developed in this paper. The MPF concentration xmpf can be obtained from
the algebraic relation

xmpf = (x1 − x2) (x1 − xtrim)
x1

(4.5)

where
dM
dt = ρM

xtrim = 2x1x7

Σ +
√

Σ2 − 4x1x7
xtf = G

(
k15M,k′16, k

′′
16xmpf , J15, J16

)
kwee = k′wee +

(
k′′wee − k′wee

)
G (Vawee, Viweexmpf , Jawee, Jiwee)

k25 = k′25 +
(
k′′25 − k′25

)
G (Va25xmpf , Vi25, Ja25, Ji25)

Σ = x1 + x7 +Kdiss,

G(a, b, c, d) = 2ad
b− a+ bc+ ad+

√
(b− a+ bc+ ad)2 − 4(b− a)ad

(4.6)

Note that the cellular mass M is assumed to grow exponentially with a rate ρ, and
the concentrations (xtrim, xtf , kwee, k25) are assumed to be in a pseudo-steady-state to
simplify the model. Note that we use a slightly different notation: ρ for mass growth rate
(instead of µ), xtrim for Trimmer concentration and xtf for TF concentration. We have
to emphasise that the concentrations used in this model are relative and dimensionless.
When one concentration is divided by another, the proportion is the same as a proportion
of two copy numbers. Hence, such a concentration should not be interpreted as a copy
number per unit volume (as misinterpreted in [YJT+08]). The parameters used in the
Tyson-Novák model [NPCT01] are listed in Table 4.2.
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The deterministic ODE model describes the behaviour of an ‘average cell’, neglecting
the differences among cells in culture. Specifically, it fails to explain the experimentally
observed clusters of the CT-vs-BM plot and the tri-modal distribution of CT [SNM96,
SCNG+00, STN01, SN02].

4.2.2 Feasibility of Gillespie simulations

Ideally, we should repeat many runs of Gillespie’s SSA and compute our desired moments
from the ensemble of those runs. At present, there are two problems which this. The first
problem is the requirement of elementary reactions for SSA. The elementary reactions
underlying the deterministic model [NPCT01] are not known. Many elementary steps
have been simplified to obtain that model. Trying to perform SSA on non-elementary
reactions is not an option because that will lose the discrete event character of SSA.
The second problem arises from the fact that the SSA requires copy numbers which in
turn requires knowledge of measured concentrations. All protein concentrations in the
model are expressed in arbitrary units (a.u.) because the actual concentrations of most
regulatory proteins in the cell are not known [CNBC+06]. Tyson and Sveiczer1 define
relative concentration xi of the ith protein as xi = ni/Ωi where Ωi = CiNAV . Here Ci
is an unknown characteristic concentration of the ith component. The idea is to make
the relative concentrations xi free of scale of the actual (molar) concentrations ni/NAV .
Although one would like to vary Ci, this is computationally intensive. This problem is
not so serious for the continuous approximations such as CLE, LNA and the 2MA which
are all ODEs and can be numerically solved.

4.2.3 The stochastic model using Langevin’s approach

In [YJT+08] a stochastic model is proposed that replaces the ODE model (4.4) with a set
of chemical Langevin equations (CLEs)

dxi
dt = f̃+

i

(
x
)
− f̃−i

(
x
)

+ 1
Ω

[√
f̃+
i (x)Γ+

i (t)−
√
f̃−i (x)Γ−i (t)

]
,

which uses the Langevin noise terms: White noises Γ+
i and Γ−i scaled by

√
f̃+
i (x) and√

f̃−i (x) to represent the internal noise. The system parameter Ω has been described as
the volume by the author. As we discussed before, the concentrations are relative levels
with different system size parameters. That means that concentrations are not the same
as copy numbers per unit volume.

Another stochastic model employing the Langevin’s approach is reported in [Ste04]
which approximates the squared noise amplitudes by linear functions:

dxi
dt = f̃i (x(t)) +

√
2DixiΓi(t),

where Di is a constant. The reason why the model dynamics f̃(x) are missing in this
model is that the author wanted to represent both the internal and external noise by the
second term on the right.

1Personal communication.
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Table 4.3 Rows of the drift matrix of the 2MA cell cycle model.

i ∂f̃i
∂xT

1
[
−k′2 − k′′2µ3 − k′′′2 µ5, 0,−k′′2µ1, 0,−k′′′2 µ1, 0, 0, 0

]
2

[
kwee,−kwee − k25 − k′2 − k′′2µ3 − k′′′2 µ5,−k′′2µ2, 0,−k′′′2 µ2, 0, 0, 0

]
3

[
0, 0,−(k′4µ8+k4µmpf)J4

(J4+µ3)2 − (k′3+k′′3µ5)J3

(J3+1−µ3)2 , 0, (1−µ3)k′′3
J3+1−µ3

, 0, 0,− k′4µ3
J4+µ3

]
4 [0, 0, 0,−k6, 0, 0, 0, 0]

5
[
0, 0, 0, k7J7µ6

(J7+µ4−µ5)2 ,−k6 − k7J7µ6
(J7+µ4−µ5)2 − k8J8

(J8+µ5)2 ,
(µ4−µ5)k7
J7+x4−µ5

, 0, 0
]

6
[
0, 0, 0, 0, 0,− k9xmpfJ9

(J9+1−µ6)2 − k10J10
(J10+µ6)2 , 0, 0

]
7

[
0, 0, 0, 0, 0, 0,−k12 − k′12µ8 − k′′2µmpf ,−k′12µ7

]
8

[
0, 0, 0, 0, 0, 0, 0,−k14

]

4.2.4 The 2MA cell cycle model

For the cell cycle model, the flux f̃ and the diffusion matrix B̃, defined in (4.3), have
elements

f̃i(x) = f̃+
i (x)− f̃−i (x), B̃ik(x) =

{
f̃+
i (x) + f̃−i (x) if i = k

0 if i 6= k .

The off-diagonal elements of B̃ are zero because each reaction changes only one component,
so that SijSkj = 0 for i 6= k. Once these quantities are known, it follows from (4.1) and
(4.2) that the following set of ODEs:

dµi
dt = f̃i(µ) + 1

2
∂2f̃i
∂x∂xT

: σ (4.7)

dσii
dt = 2

∑
l

∂f̃i
∂xl

σli + 1
Ωi

[
B̃ii(µ) + 1

2
∂2B̃ii
∂x∂xT

: σ
]

(4.8)

dσik
dt =

∑
l

[
∂f̃i
∂xl

σlk + σil
∂f̃k
∂xl

]
i 6= k (4.9)

approximates (correctly to the 2nd-order moments) the evolution of component-wise
concentration mean and covariance. See Table 4.3 for the respective expressions of the
drift matrix, Table 4.4 the stochastic flux and Table 4.5 for the 2nd-order term in the
Taylor expansion of B̃ii in (4.8).
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Table 4.4 Stochastic flux, the 2nd-order term in the Taylor expansion of f̃i around the mean.

i 1
2

∂2fi
∂x∂xT

: σ

1 −k′′2σ13 − k′′′2 σ15

2 −k′′2σ23 − k′′′2 σ25

3
[

(k′4µ8+k4µmpf)J4

(J4+µ3)3 − (k′3+k′′3µ5)J3

(J3+1−µ3)3

]
σ33 −

k′′3 J3σ35
(J3+1−µ3)2 −

k′4J4σ38
(J4+µ3)2

4 0

5 k7J7µ6(2σ45−σ44−σ55)
(J7+µ4−µ5)3 + k7J7(σ46−σ56)

(J7+µ4−µ5)2 + k8J8
(J8+µ5)3σ55

6
[

k10J10
(J10+µ6)3 −

k9µmpfJ9
(J9+1−µ6)3

]
σ66

7 −k′12σ78

8 0

Table 4.5 The 2nd-order term in the Taylor expansion of B̃ii around the mean.

i 1
2
∂2B̃ii
∂x∂xT

: σ

1 k′′2σ13 + k′′′2 σ15

2 k′′2σ23 + k′′′2 σ25

3 −
[

(k′4µ8+k4µmpf)J4

(J4+µ3)3 + (k′3+k′′3µ5)J3

(J3+1−µ3)3

]
σ33 −

k′′3 J3σ35
(J3+1−µ3)2 + k′4J4σ38

(J4+µ3)2

4 0

5 k7J7µ6(2σ45−σ44−σ55)
(J7+µ4−µ5)3 + k7J7(σ46−σ56)

(J7+µ4−µ5)2 − k8J8
(J8+µ5)3σ55

6 −
[

k10J10
(J10+µ6)3 + k9µmpfJ9

(J9+1−µ6)3

]
σ66

7 k′12σ78

8 0
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Having at hand the moments involving the eight dynamic variables x1 to x8, the mean
MPF concentration can also be approximated. Towards that end, we start with the MPF
concentration

xmpf = (x1 − x2)
(

1− xtrim
x1

)
= x1 − x2 − xtrim + xtrim

x2
x1
.

The ratio x2/x1 can be expanded around the mean,

x2
x1

= 1
µ1

x2

1 + (x1−µ1)
µ1

= 1
µ1

[
x2 −

(x1 − µ1)x2
µ1

+ (x1 − µ1)2 x2
µ2

1
+ · · ·

]
.

Taking expectation on both sides,〈
X2
X1

〉
= 1
µ1

〈
X2

1 + (X1−µ1)
µ1

〉

= 1
µ1

〈
X2 −

(X1 − µ1)X2
µ1

+ (X1 − µ1)2X2
µ2

1
+ · · ·

〉

= 1
µ1

[
µ2 −

σ12
µ1

+ µ2σ11
µ2

1

]
.

Finally, with the understanding that xtrim is in pseudo steady state, the mean MPF
concentration follows from the expectation of xmpf to be

µmpf = µ1 − µ2 − xtrim + xtrim
µ1

[(
1 + σ11

µ2
1

)
µ2 −

σ12
µ1

]
. (4.10)

This expression for the average MPF activity demonstrates the influence of (co)variance
on the mean as emphasised here. We see the dependence of mean MPF concentration
µmpf on the variance σ11 and covariance σ12 in addition to the means µ1, µ2 and xtrim.

4.2.5 Simulations of the 2MA model

The system of ODEs (4.7)-(4.9) was solved numerically by the MATLAB solver ode15s
[Mat07]. The solution was then combined with algebraic relations (4.10). For parameter
values, see Table 4.2. Since information about the individual scaling parameters Ωi used
in the definition of concentrations is not available, we have used Ωi = 5000 for all i. Note,
however, that the 2MA approach developed here will work for any combination of {Ωi}.
The time courses of mass and MPF activity are plotted in Figure 4.3a for the wild type and
in Figure 4.3b for the double-mutant type. For the wild type, the 2MA predicted mean
trajectories do not differ considerably from the corresponding deterministic trajectories.
Both show a constant CT of near 150 min. Thus internal noise does not seem to have a
major influence for the wild type.

For the double-mutant type, the difference between the 2MA and deterministic predic-
tions is significant. The deterministic model (4.4) predicts alternating short cycles and
long cycles because cells born at the larger size have shorter cycle, and smaller newborns
have longer cycles [NPCT01]. This strict alternation due to size control is not observed



54 The 2MA cell cycle model

0 100 200 300 400 500 600

0.5

1

1.5

M
P

F
 (

a.
u.

)

Time (min)

1

1.5

2

M
as

s 
(a

.u
.)

(a)

0 100 200 300 400 500 600

0.5

1

1.5

M
P

F
 (

a.
u.

)

Time (min)

1

2

3

M
as

s 
(a

.u
.)

(b)

Figure 4.3 The time courses of mass and MPF activity: (a) for the wild type, (b) for the double-
mutant type. The 2MA predicted mean trajectories are plotted as solid lines and the corresponding
deterministic trajectories as dashed lines. The difference between the two predictions is negligible
for the wild type, but significant for double-mutant type.

in experiments: cells of same mass may have short or long cycles (excluding very large
cells that have always the shortest CT) [SNM96, SCNG+00]. This lack of size control is
reproduced by the 2MA simulations: the multiple resettings of MPF to G2, induced by
the internal noise, result in longer CTs (thus accounting for the 230 min cycles observed
experimentally). Such MPF resettings have been proposed in [SCNG+00, SN02] to explain
quantised CTs. No such resetting is demonstrated by the deterministic model.

Figure 4.4 additionally shows time courses of slp1, Ste9 and Rum1T. For the wild-type,
the difference in the Rum1T concentrations near the G2/M transition has no significant
effect on the MPF activity because Rum1T tries to inhibit MPF in G2-phase. For the
double-mutant type, the oscillatory behaviour of Ste9 and Slp1 may have resulted in the
oscillatory behaviour of the MPF near the G2/M transition which in turn delays the
mitosis by a noticeable period.

Note that the mean µ(t) of the 2MA describes the average of an ensemble of cells.
Yet the MPF resettings observed in Figure (4.3b), near G2/M transition, introduce the
required variability that explains the clustering of the cycle time observed in experiments.
This is in contrast to the alternative stochastic approaches in [SCNG+00, SN02, STN01,
Ste04, YJT+08] that use one sample trajectory rather than the ensemble average.

How do we explain this significant effect of noise for the double-mutant on one hand
and its negligible effect for the wild type on the other hand? If we look at expression
(4.10), we see the influence of the variance σ11 (of Cdc13T) and covariance σ12 (between
Cdc13T and preMPF) on the mean MPF concentration µmpf . The two (co)variances are
plotted in Figure 4.5a for the wild type and in Figure 4.5b for the double-mutant type. It
is clear that the two (co)variances have very small peaks for the wild type compared to
the large peaks for the double-mutant type. Note that the larger peaks in Figure 4.5b are
located at the same time points where the MPF activity exhibits oscillations and hence
multiple resettings to G2. This suggest that the oscillatory behaviour of MPF near the
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Figure 4.4 The time courses of protein concentrations: (a) for the wild type, (b) for the double-
mutant type. The 2MA predicted mean trajectories are plotted as solid lines and the corresponding
deterministic trajectories as dashed lines.
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Figure 4.5 Variance σ11 (of Cdc13T) and covariance σ12 (between Cdc13T and preMPF): (a) for
the wild type, (b) for double-mutant type.
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Figure 4.6 Noise-to-signal ratio (NSR): (a) for the wild type, (b) for double-mutant type.

G2/M transition is due to the influence of the oscillatory (co)variances. This coupling
between the mean and (co)variance is not captured by the deterministic model.

To allow for comparison between component-wise variances, the variance is usually
normalised by the squared mean gives a dimensionless ratio which also removes the
dependence of the variance on the scale of the mean. The normalised variance,

ζii = σii
µ2
i

is known as the signal-to-noise ratio (NSR). The NSR as a measure of noise is usually
preferred because of being dimensionless and allowing for additivity of noise and using
indirectly measured concentrations [GUV07]. See [Pau05] for different measures of noise
and their merits.

The component-wise NSR is plotted in Figure 4.6. We note that the NSR for the
double-mutant have irregular oscillations compared to the almost periodic for the wild-
type. This may be one of the reasons behind the significant difference in the evolution
mean compared to the deterministic evolution for the double-mutant type. The pair-
wise variation between components is better described by the cross signal-to-noise ratio
(xNSR)

ζik = σik
µ2
i
.

The xNSR, for selected component pairs appearing in the expression for stochastic flux
(see Table 4.4), is plotted in Figure 4.7. The oscillatory behaviour in both plots suggests
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Figure 4.7 Cross noise-to-signal ratio (xNSR) of selected component pairs: (a) for the wild type,
(b) for double-mutant type.
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Table 4.6 Statistics over 465 successive cell cycles of the double-mutant type cells, predicted by
the 2MA model, compared with experimental data, see [SNM96, Table 1].

Case µCT σCT CVCT µdM σdM CVdM µBM σBM

(1) 131 47 0.358 2.22 0.45 0.203 1.21 0.24

(2) 138.8 12.4 0.09 1.59 0.058 0.0362 3.18 0.101

(3) 138.8 17.6 0.127 1.62 0.093 0.0576 3.25 0.178

(4) 138.8 23.9 0.172 1.66 0.12 0.0721 3.32 0.231

(1) experimental data, (2) Ω = 5000, (3) Ω = 5200, (4) Ω = 5300.

that the off-diagonal elements of the covariance matrix may have influenced the mean
on one hand and have a mutual influence on each other. At these points the system is
sensitive to noise. Capturing these phenomena is of particular importance if one considers
cells in their context (e.g. tissue) where cell-cell variations form the basis for functional
mechanisms at higher levels of cellular organisation.

It has to be realised that the above proposition requires validation since the 2MA
approach ignores 3rd and higher-order moments. We cannot know whether that truncation
is responsible for the oscillations in Figures 4.3 and 4.5, unless compared with a few
sample trajectories simulated by the SSA. However, as discussed before, the SSA cannot be
performed (at present) for the model in consideration. Therefore we need to compare the
2MA predictions for the double-mutant type cells with experimental data. Towards that
end, values of cycle time (CT), birth mass (BM) and division mass (DM) were computed
for 465 successive cycles of double-mutant cells. Figure 4.8 shows the CT-vs-BM plot and
the CT distribution for three different values {5000, 5200, 5300} of system size Ω.

To make this figure comparable with experimental data from [SNM96, SN02], we
assume that 1 unit of mass corresponds to 8.2 μm cell length [SCNG+00]. We can see
the missing size control (CT clusters), in qualitative agreement with experimentally
observed ones (see [SNM96, Figure 6] and [SN02, Figure 5] for a comparison). There
are more than four clusters, which may have arisen from the truncated higher-order
moments. The extreme value of CT higher than 230 min suggests more than two MPF
resettings. Furthermore, more than three modes in the CT distribution may have arisen
from the truncated higher-order moments. Table 4.6 compares the statistics for the
double-mutant type cells, computed with the 2MA approach, with data from [SNM96,
Table 1]. Column 2-4 tabulate, for CT, the mean µCT, the standard deviation σCT
and the coefficient of variation CVCT, respectively. The other columns tabulate similar
quantities for the division mass (DM) and birth mass (BM). We see that only the mean
CT is in agreement with the experimental data. The mean BM is much larger than the
experimental BM. The other statistics are much smaller the corresponding experimental
values. This table and the above plots suggest that the 2MA should be used with caution.
However, another aspect of the cell cycle model deserves attention here. The way the
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Figure 4.8 Cycle time behaviour over 465 successive cycles of the double-mutant cells, predicted
by the 2MA model. (a,c,e): CT vs BM, (b,d,f): CT distribution, (a,b): Ω = 5000, (c,d): Ω = 5200,
(e,f): Ω = 5300. The plots are in qualitative agreement to experiments, see Figure 6 in [SNM96]
and Figure 5 in [SN02] for a comparison.
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relative protein concentrations have been defined implies unknown values of the scaling
parameters {Ωi}. Since Ωi = CiNAV , knowing the volume V does not solve the problem:
the characteristic concentrations {Ci} are still unknown. Our simulations have chosen
typical values Ω = {5000, 5200, 5300}. The corresponding three pairs of plots in Figure 4.8
and rows in Table 4.6 demonstrate a dependence of the results on a suitable system size.
There is no way to confirm these values. The scaling parameters could be regulated in a
wider range in order to improve the accuracy of our simulation, motivating future work
for us. The conclusion is that the quantitative disagreement of the 2MA predictions can
be attributed to two factors: 1) the truncated higher-order moments during the derivation
of the 2MA, and (2) the unknown values of scaling parameters.

4.3 Conclusions on the cell cycle model

The recently developed two-moment approximation (2MA) [Gou07, GUV07] is a promising
approach because it accounts for the coupling between the means and (co)variances. We
have extended the derivation of the 2MA to biochemical networks and established two
advances to previous efforts: a) relative concentrations and b) non-elementary reactions.
Both aspects are important in systems biology where one is often forced to aggregate
elementary reactions into single step reactions. In these situations one cannot assume
knowledge of elementary reactions to formulate a stochastic model. Previous derivations
assumed elementary reactions and absolute concentrations. However, numerous existing
models in systems biology use relative concentrations.

We investigated the applicability of the 2MA approach to the well established fission
yeast cell cycle model. The simulations of the 2MA model show oscillatory behaviour near
the G2/M transition, which is significantly different from the simulations of deterministic
ODE model. One notable aspect of our analytical model is that, although it describes the
average of an ensemble, it reproduces enough variability among cycles to reproduce the
curious quantised cycle times observed in experiments on double mutants.



5
Conclusions

The discrete and random occurrence far from thermodynamic equilibrium of chemical
reactions, and low copy numbers of chemical species, in single cells necessitate stochastic
approaches for modelling.

This work presents a stochastic framework for modelling subcellular biochemical
systems. In Chapter 2, we make an effort to show how the notion of propensity, the
chemical master equation and the stochastic simulation algorithm arise as consequences
of the Markov property. This connection is not obvious from the relevant literature in
systems biology. Moreover, we sketch the formal relationships between various stochastic
approaches referred to in the systems biology literature. Throughout the text we use four
simple systems to illustrate ideas and motivate stochastic modelling.

The central theme of the present work, however, is the two-moment approximation
(2MA) as a bridge between deterministic and stochastic approaches. The 2MA combines
the intuition of derministic models with the represention of noise and variability. In
contrast to other stochastic approaches, an analytical 2MA model allows us to study the
coupling of mean and co-variance. In Chapter 3, we introduce the 2MA approach and
develop extensions to allow (a) non-elementary reactions and (b) relative concentrations.

Both aspects, (a) and (b), are characteristic of the Tyson-Novák model for the fission
yeast cell cycle, which we use as a case study in Chapter 4. Our analytical model
reproduces the clustering of cycle times observed in experiments. This is explained
through multiple resettings of a protein called MPF, caused by the coupling between mean
and (co)variance, near the G2/M transition. The conclusion is that the 2MA approach
can infer new properties in a single simulation run, something that is neither possible with
the deterministic approach (no representation of noise) nor other stochastic approaches
(requiring many simulation runs).

With regard to further work, the development of a tool to automate the construction of
2MA equations would be desirable, since the 2MA equations involve complicated symbolic
operations. Furthermore, the truncation of higher-order moments used by the 2MA
approach suggests the development of some form of error control. Finally, a sensitivity
analysis of the mean and (co)variance in terms of the system size would be of interest.
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In this article, the framework provided by systems biology is used to argue that the same
can be true for molecular biology. In particular, and using basic modular methods of
mathematical modelling which are standard in control theory, a set of dynamic models
is developed for some illustrative cell signalling processes. These models, supported by
recent experimental evidence, are used to argue that a control theoretical approach to the
mechanisms of feedback in intracellular signalling is central to furthering our understanding
of molecular communication. As a specific example, a MAPK (mitogen-activated protein
kinase) signalling pathway is used to show how potential feedback mechanisms in the
signalling process can be investigated in a simulated environment.

O.Wolkenhauer, M.Ullah, W.Kolch, K.-H.Cho. Modelling and Simulation of
IntraCellular Dynamics: Choosing an Appropriate Framework. IEEE Transactions on
NanoBioScience, Vol. 3, No. 3, 200-207, September 2004.

We discuss in this paper the relationship between the stochastic and deterministic re-
presentations of biochemical reaction networks. Toward this end, we provide a novel
compact derivation for the stochastic rate constant that forms the basis of the popular
Gillespie algorithm. Comparing the mathematical basis of the two popular conceptual
frameworks of generalized mass action models and the chemical master equation, we argue
that some of the arguments that have been put forward are ignoring subtle differences and
similarities that are important for answering the question in which conceptual framework
one should investigate intracellular dynamics.
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Theses for the doctoral research

1. The discrete and random occurrence far from thermodynamic equilibrium of chemical
reactions, and low copy numbers of chemical species, in single cells necessitate
stochastic approaches for correct system descriptions.

2. This work presents a stochastic framework for modelling subcellular biochemical
systems. We make an effort to show how the notion of propensity, the chemical
master equation and the stochastic simulation algorithm arise as consequences of
the Markov property. This connection is not obvious from the relevant literature in
systems biology.

3. We sketch the formal relationships between various stochastic models referred to in
the systems biology literature.

4. The central theme of the present work is the two-moment approximation (2MA)
as a bridge between deterministic and stochastic approaches. The 2MA combines
the intuition of derministic models with the represention of noise and variability.
In contrast to other stochastic approaches, an analytical 2MA model allows us to
study the coupling of mean and co-variance.

5. We introduce the 2MA approach for modelling subcellular biochemical systems and
develop extensions to allow a) non-elementary reactions and b) relative concentra-
tions.

6. We investigate the applicability of the 2MA approach with the Tyson-Novák model
for the fission yeast cell cycle model.

7. Our analytical model reproduces the clustering of cycle times observed in experiments.
This is explained through multiple resettings of a protein called MPF, caused by
the coupling between mean and (co)variance, near the G2/M transition.

8. One notable aspect of our analytical model is that, although it describes the average
of an ensemble, it reproduces enough variability among cycles to reproduce the
clustering of cycle times observed in experiments on double mutants.

9. The 2MA approach can thus infer new properties in a single simulation run that
is neither possible with deterministic approach (no representation of noise) nor
stochastic approach (requiring many simulation runs).
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