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Abstract

We consider character correspondences between the characters of a group
lying over a fixed character of a normal subgroup, and a similar defined set
of characters of a subgroup. This situation occurs in many applications,
for example in the proof of important character correspondences found by
Glauberman, Dade and Isaacs. With our methods we can give more trans-
parent proofs of the results of Dade and Isaacs. We also consider ratio-
nality questions and generalizations to modular representation theory. We
show that the Isaacs part of the Glauberman-Isaacs correspondence preserves
Schur indices.
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Introduction

Character correspondences play an important role in the character theory of
finite groups. Often they allow to obtain information about the character
theory of a group from information about a smaller group. An elementary
and well known example is the following: Let N be a normal subgroup of the
finite group G and let ϑ ∈ IrrN . Let T = Gϑ be the inertia group of ϑ in G.
Then induction provides a bijection between Irr(T | ϑ) and Irr(G | ϑ), the so
called Clifford correspondence.

A less simple example is a correspondence found by Glauberman in 1968:
Let G be a finite group and A a finite solvable group acting on G and of
order coprime to the order of G. Then there is a canonical bijection between
the A-invariant characters of G and the characters of CG(A), the centralizer
of A in G. If A is a p-group, then the correspondence is particulary easy to
describe: The Glauberman correspondent of χ ∈ IrrAG is the unique con-
stituent of χCG(A) occurring with multiplicity not divisible by p [34, Theorem
13.14], [26, §18]. When A is a p-group, the Glauberman correspondence can
be obtained by using the Brauer homomorphism from modular representa-
tion theory, as was pointed out by Alperin. (See also the expositions of
Navarro [50] or Huppert [26, §18].)

When A is not solvable, then by the Odd Order Theorem of Feit and
Thompson A has even order and so G has odd order. In this case Isaacs [27]
constructed a canonical correspondence between IrrAG and IrrCG(A) by
completely different methods. The Isaacs correspondence is defined whenever
|G| is odd. Later, Thomas R. Wolf [69] showed that the Isaacs and the
Glauberman correspondence agree whenever both are defined (that is, when
|G| is odd and A is solvable). Various other properties of the Glauberman-
Isaacs Correspondence have been found in the meantime (for examples, see
[16, 37, 69, 70]). There is also an expository paper of Navarro [51] listing
some open problems connected with the Glauberman-Isaacs Correspondence.
Some of these problems have been solved since the paper was published in
1994.

This work arose from an attempt to better understand character corre-
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Introduction iv

spondences connected with fully ramified sections of a group G. These play
a major role in the proof of the Isaacs correspondence, but also in other
questions concerning the character theory of solvable groups. Let L�K and
suppose ϑ ∈ IrrK with ϑL = nϕ for some ϕ ∈ IrrL such that n2 = |K/L|.
Then ϕ is said to be fully ramified in K and ϑ is said to be fully ramified
over L.

The importance of fully ramified sections for the character theory of solv-
able groups comes from the so-called “Going Down” Theorem on characters
of chief sections of finite groups: Suppose K/L is an abelian chief factor of
the group G and ϑ ∈ IrrK is invariant in G. Then either ϑL ∈ IrrL or
ϑ = ϕK for some ϕ ∈ IrrL or ϑ is fully ramified over L [27, Theorem 6.18].
In the first two situations, when studying a specific problem, it is usually
rather easy to proceed by inductive arguments. The last situation, however,
requires deep investigations. Most of Isaacs’ important paper is devoted to
such investigations.

Now suppose that K/L is some section of a group G and ϕ ∈ IrrL is fully
ramified in K, and ϑ ∈ Irr(K | ϕ). Under certain mild conditions there is a
(proper) subgroup H and a correspondence between Irr(G | ϑ) and Irr(H | ϕ)
such that for corresponding χ and ξ one has χ(1)/ξ(1) = n. Results of this
type for abelianK/L have been proved by Dade and Isaacs [27, Theorem 9.1],
[6, Theorem 5.10], [30, Theorem B]. Lewis [43, 44] has generalized their results
to not necessarily abelian fully ramified sections under additional restrictions
(essentially coprimeness).

The results of Isaacs and Dade have been applied in a great variety of
problems, the most prominent being the Isaacs half of the Glauberman-
Isaacs Correspondence and the solution of the McKay Conjecture for solvable
groups [27, 30]. Other applications include Dade’s construction of a injec-
tive map from the irreducible characters of a Sylow system normalizer of a
solvable group G into the irreducible characters of that group G [7]. This
example is certainly less known, but it is the origin of the π-special characters
invented by Gajendragadkar [17, 18].

The results are stronger when K/L is of odd order, and have been used
to prove special properties of characters of odd groups [11, 13, 29, 33, 35, 52].

We now motivate the main idea of this thesis. In the situation above,
let eϕ = eϑ be the central idempotent of CK belonging to ϕ (and to ϑ, by
assumption). We have

CGeϕ
∼=
⊕

χ∈Irr(G|ϑ)

Mχ(1)(C) and CHeϕ
∼=
⊕

ξ∈Irr(H|ϕ)

Mξ(1)(C).

If a correspondence, degree proportional as above, is given then we can ar-
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range the summands in pairs and we see (since Mmn(C) ∼= Mn(Mm(C))) that
CGeϕ

∼= Mn(CHeϕ). Of course an isomorphism is far from being unique
given just the correspondence above. Is it possible to prove directly that
CGeϕ

∼= Mn(CHeϕ)? This would provide a somewhat different proof of the
cited correspondences, and a more transparent explanation “why” there is
such a correspondence.

The main result of this work is that there is indeed a nearly canonical
isomorphism from CGeϑ to Mn(CHeϕ), and we can describe it without as-
suming the existence of a degree proportional correspondence. This means
that we obtain alternative proofs of these correspondences.

We now describe the general idea that leads to the isomorphism above.
The idea works in a situation that is more general than that of an abelian
fully ramified section of a group. Suppose that K � G and H � G with
G = HK and let L = H ∩ K. Suppose that ϑ ∈ IrrK is G-invariant,
that ϕ ∈ IrrL is H-invariant and that (ϑL, ϕ) = n > 0. (See Figure 1.)
Let i = eϑeϕ, an idempotent invariant under the action of H. We will

�
�
�
�
�
�

�
�
��

�
�
�
�
�
�

�
�
��

Lϕ
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Figure 1: The Basic Configuration

show, and it is not difficult to do so, that S = CiCKi(L) ∼= Mn(C). By
general elementary ring theoretic principles, it follows that iCGi ∼= Mn(C),
where C is the centralizer of S in iCGi. The action of H/L on S defines a
projective representation σ : H/L→ S. If this representation turns out to be
linear, we get an isomorphism from CHeϕ to C that is uniquely determined
by σ, and thus in general is determined up to multiplication with a linear
character of H/L. Therefore we have an isomorphism iCGi ∼= Mn(CHeϕ).
The characters of CGeϑ are determined by their values on iCGi, and thus we
can derive that there is a bijection between Irr(G | ϑ) and Irr(H | ϕ) which is
defined uniquely up to multiplication with a linear character of H/L ∼= G/K.
For the exact statement, see Theorem 2.8 one page 10.
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From this point of view, proving the existence of the character correspon-
dences boils down to showing that a certain projective representation is an
ordinary linear one, or, in cohomological terms, that a certain 2-cocycle is a
coboundary. This remains a nontrivial task, but at least in the case where
K/L is odd abelian and fully ramified, we obtain a significant simplification
of Isaacs’ original proof [27]. We also generalize the result for“strong”abelian
fully ramified sections [6, 30] from our point of view to show the power of the
methods used here.

We mention that the general situation of Figure 1 is also studied in a
paper of Isaacs, Malle and Navarro on the McKay conjecture [36], but the
methods and results are different.

We generalize our main result in different directions: First, not neces-
sarily algebraically closed fields are considered, and the existence of corre-
spondences preserving fields of values of the characters and Schur indices is
examined. The condition that the characters are invariant in H is relaxed
to “semi-invariance” (see Section 2.2). As an application we show in Sec-
tion 4.6 that the Isaacs correspondence preserves Schur indices. This result
seems to be new, although not particulary difficult. Turull [61, 63, 65] has
done related work concerning correspondences connected with the McKay
conjecture; he showed that there is a bijection between the characters of G
with degree not divisible by p, and the characters of the normalizer of a Sy-
low p-subgroup with the same property, such that this bijection preserves,
among other things, Schur indices and fields of values over a relatively small
field, when G is solvable. Recently, he extended this result to p-solvable
groups over the field of p-adic numbers [64]. Some of his arguments certainly
overlap the ones given here. But while he makes heavy use of his theory
of Clifford classes [60, 62] respective of the Brauer-Clifford group, the proof
given here is independent of this theory. Instead we use some ideas of Riese
and Schmid [55].

Second, we also consider discrete valuation rings and give a modular ver-
sion of some results. Work of Watanabe [67], [68], Hoshimoto [24] and Harris
and Koshitani [20] shows that the Isaacs correspondence preserves certain
p-blocks, and indeed that there are Morita equivalences behind the corre-
spondences of the characters of these blocks.

We begin this thesis with a short chapter collecting some more or less
well known results on matrix rings and rings containing a central simple
subalgebra which we need.

In Chapter 2, we develop the general main idea described above (Fig-
ure 1), first for fields containing the values of the characters (Section 2.1),
and then for general fields (Section 2.2). We introduce the magic repre-
sentations and crossed magic representations which are crucial for our work.
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Moreover we prove some general properties of magic representations and give
some simple examples.

In Chapter 3 we describe the correspondence or, to put it more exactly, the
category equivalence behind the correspondence, for discrete valuation rings
and fields of prime characteristic, and consider reduction and lifting modulo
a prime of the correspondence. We do this only for ϕ and ϑ characters of
p-defect zero.

Chapter 4 is mainly concerned with fully ramified sections, that is we
assume that K/L is a fully ramified section of G. We call the figuration
(G,K,L, ϑ, ϕ) a character five. After some preliminaries on a bilinear form
of Isaacs and Dade, we prove more properties of magic representations in this
special situation. The very short section 4.3 considers character fives with
G/K and K/L of coprime order. It includes a very short proof of the main
results of two papers of M. Lewis [43, 44]. Then we reprove Isaacs’ fundamen-
tal results on character fives with K/L odd abelian (Section 4.4). We extend
a result of Dade [6], which we can reduce quickly with our methods to the
situation of a character five. Finally, we show that the Isaacs correspondence
preserves Schur indices (Section 4.6).

Chapter 5 considers the situation where ϕ and ϑ are Glauberman cor-
respondents. The result is known, and wa s strengthened recently by Tu-
rull [64].

In an appendix, we review shortly the theory of the Brauer-Clifford group,
and sketch another proof of our main result using that theory.



Chapter 1

Central Simple Algebras

We collect some easy facts about a ring which is a matrix ring over some
other ring.

1.1 Definition. Let n ∈ N. A subset {Eij | i, j = 1, . . . , n} of a ring A is a
full set of matrix units in A if

EijEkl = δjkEil and
n∑

i=1

Eii = 1A.

If C is a ring, then the n × n-matrix ring Mn(C) has a “canonical” set
of matrix units, namely the set of matrices with exactly one entry equal to
1 and all the other entries zero. Let I be the n × n-identity matrix. The
set {aI | a ∈ C} is a subring of Mn(C) which is naturally isomorphic with
C. An easy computation shows that this subring is the centralizer of the
full set of matrix units. The following well known lemma can be viewed as
a converse to the last remarks. We formulate it for algebras in view of the
applications we have in mind.

1.2 Lemma. Let A be an algebra over some commutative ring F. Suppose
{Eij | i, j = 1, . . . , n} is a full set of matrix units in A. Let

C = CA({Eij | i, j = 1, . . . , n}).

Then A ∼= Mn(C). Let S =
∑

i,j FEij be the F-subalgebra generated by the
set of matrix units. Then S ∩ C = F · 1A and S ⊗F C ∼= A via s⊗ a �→ sa.

Proof. This is fairly well known (see, for example, [40, Theorem 17.5]). The
map

Mn(C) � (cij)i,j �→
∑
i,j

cijEij ∈ A

1
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is an isomorphism: Its inverse is the map

A � a �→ (aij)i,j where aij =
n∑

k=1

EkiaEjk.

Indeed it sends a to an element in Mn(C) (that is, aij ∈ C), and is the
inverse of the map defined before. The isomorphism from Mn(C) to A sends
Mn(F ·1A) onto S, and thus S ∼= Mn(F ·1A). It follows that C ∩S = Z(S) =
F · 1A. Since S ⊗ C =

⊕
i,j Eij ⊗ C, it is not difficult to see that s⊗ c �→ sc

is an isomorphism.

Suppose F is a field. If an F-algebra A contains a full set of matrix units
of size n × n, then A contains the split central simple algebra S ∼= Mn(F)
as above. Next we will consider algebras containing a (not necessarily split)
central simple algebra over a field. By a central simple F-algebra, we mean
an algebra simple as a ring with center F and finite dimensional over F. We
need an easy, well known lemma.

1.3 Lemma. Let A and B be algebras over a field F and X � A and Y � B
subspaces containing 1A and 1B, respectively. Then

CA⊗FB(X ⊗F Y ) = CA(X)⊗F CB(Y ).

Proof. Let {ai | i ∈ I} a basis of A such that {ai | i ∈ I0}, where I0 ⊆ I, is a
basis of CA(X). In the same way, let {bj | j ∈ J} be a basis of B containing
the basis {bj | j ∈ J0} of CB(Y ). If

c =
∑
i∈I
j∈J

λijai ⊗ bj ∈ CA⊗B(X ⊗ Y ),

then from c(x⊗ 1) = (x⊗ 1)c we see∑
i,j

λijaix⊗ bj =
∑
ij

λijxai ⊗ bj.

It follows that λij = 0 when i /∈ I0. Analogously, λij = 0 when j /∈ J0. Thus
c ∈ CA(X)⊗CB(Y ) as claimed.

The following lemma generalizes Lemma 1.2.

1.4 Lemma. Let A be an F-algebra containing a unitary subalgebra S which
is central simple. Let C = CA(S). Then A ∼= S ⊗F C canonically (via
s⊗ c �→ sc).
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Proof. Let (s ⊗ c)κ = sc ∈ A. This defines an algebra homomorphism from
S ⊗F C into A. Now let E be a splitting field for S, so that S ⊗F E ∼= Mn(E)
where n2 = dimF S. By Lemma 1.3, CA⊗FE(S ⊗F E) = C ⊗F E. From the
splitting case (Lemma 1.2) we see that A ⊗F E ∼= (S ⊗F E) ⊗E (C ⊗F E).
Since (S ⊗F C) ⊗F E ∼= (S ⊗F E) ⊗E (C ⊗F E) canonically, it follows that
κ⊗ 1: (S ⊗F C)⊗F E → A⊗F E is an isomorphism, and thus is κ.

Notation. Let A be an F-algebra. We denote by ZF(A,F) the set of central
F-forms on A, that is the set of F-linear maps τ : A→ F with τ(ab) = τ(ba)
for all a, b ∈ A.

For an algebra A, let

[A,A] = 〈ab− ba | a, b ∈ A〉
be the F-subspace generated by the additive commutators. Then ZF(A,F)
is just the set of linear maps from A to F with [A,A] in the kernel.

Let A and B be two F-algebras. Since

[A⊗F B,A⊗F B] = A⊗F [B,B] + [A,A]⊗F B,

we have A⊗F B/[A⊗F B,A⊗F B] ∼= A/[A,A]⊗F B/[B,B]. It follows that

ZF(A,F)⊗F ZF(B,F) ∼= ZF(A⊗F B,F).

To describe a canonical isomorphism concretely, let σ ∈ ZF(A,F) and τ ∈
ZF(B,F) be central forms. Then σ⊗ τ becomes a central form of A⊗F B by
setting (σ ⊗ τ)(a⊗ b) = σ(a)τ(b).

We denote the reduced trace of a central simple F-algebra S by trS/F or
simply tr, if no confusion can arise. Remember that the reduced trace is
computed as follows: first choose a splitting field E of S and an isomorphism
ε : S⊗FE →Mn(E), then let trS/F(s) be the ordinary matrix trace of (s⊗1)ε.
Then indeed trS/F(s) is a welldefined element of F [54, Section 9a]. The kernel
of trS/F is exactly the subspace [S, S]. Thus ZF(S,F) = F · trS/F

∼= F.
Combining the results of the last two paragraphs, we get that

ZF(S ⊗F C,F) ∼= ZF(C,F)

for a central simple F-algebra S and any algebra C. Any central form χ ∈
ZF(S ⊗F C,F) can be written as trS/F⊗τ for some τ ∈ ZF(C,F).

1.5 Lemma. Let A be an F-algebra containing the central simple subalgebra
S and let C = CA(S). Define ε : ZF(A,F) → ZF(C,F) by

χε(c) = χ(s0c) for any s0 ∈ S with trS/F(s0) = 1.
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Then ε is an isomorphism and

χ(sc) = trS/F(s)χ
ε(c) for all s ∈ S and c ∈ C.

Proof. By Lemma 1.4, A ∼= S ⊗F C. The remarks above show that for every
χ ∈ ZF(A,F) there is τ ∈ ZF(C,F) such that χ(sc) = trS/F(s)τ(c) for all
s ∈ S and c ∈ C. It is clear that then τ = χε. In particular, ε is an
isomorphism. The proof is complete.

1.6 Lemma. Let the assumptions be as in Lemma 1.5. Let V be the simple
right S-module, and let m2 = dimF(EndVS). Let χ ∈ ZF(A,F). If χε is
the character of an C-module M , then mχ is the character of the A-module
V ⊗F M . If S is split, then χε affords a C-module if and only if χ affords an
A-module.

Proof. Identify A with S ⊗ C. The trace of S on V is m tr and the trace of
s⊗ c on V ⊗F M is thus m tr(s)χε(c) = mχ(sc) as claimed.

That S is split means that m = 1. Thus if χε is the character of the
module M , then χ is the character of the module V ⊗F M . Conversely,
suppose χ is the character of the S ⊗F C-module N . Since S is split, there
is an idempotent e ∈ S of trace 1. Then the character of Ne as C-module is
obviously χε.

Next we will consider field automorphisms and central forms. Suppose
that A is an F-algebra and E is a field extension of F. Let α be a field
automorphism of E fixing the elements of F. We have the algebra A⊗F E =
AE obtained by scalar extension from A, and we may extend α to a ring
automorphism of AE that sends a ⊗ λ to a ⊗ λα for a ∈ A and λ ∈ E. For
simplicity of notation, we denote this algebra automorphism by α, too. Now
suppose that τ : AE → E is a central form. Then τα defined by τα(aα) = τ(a)α

is a central form on AE, too. In this way, AutF E acts on the central forms
of AE.

1.7 Lemma. In the situation of Lemma 1.5, let E � F be a field extension
and α ∈ AutF E. Then S ⊗F E is a central simple E-subalgebra of A ⊗F E

with centralizer C ⊗F E, and (χε)α = (χα)ε for χ ∈ ZF(A⊗F E,E).

Proof. Since trS⊗FE/E = trS/F⊗1 by the definition of the reduced trace, we
see that there is s0 ∈ S ⊗F E of trace 1 with sα

0 = s0. Thus

(χε)α(cα) = χε(c)α = χ(s0c)
α = χα(sα

0 c
α) = (χα)ε(cα)

as claimed.
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We also need a result concerning central forms and full idempotents of an
algebra. An idempotent i ∈ A is called a full idempotent of A if AiA = A. It
is well known that A and iAi are Morita equivalent when i is full [40, 18.30].

1.8 Lemma. Let A be an F-algebra and i ∈ A an idempotent with A =
AiA. Set C = iAi. Then restriction defines an isomorphism δ : ZF(A,F) →
ZF(C,F). Here τ δ is the character of a C-module if and only if τ is the
character of an A-module.

Proof. Suppose 1A =
∑r

k=1 xkiyk with xk, yk ∈ A. For ξ ∈ ZF(C,F) define

ξ̂(b) =
∑r

k=1 ξ(iykbxki). Then

ξ̂(bc) =
∑

k

ξ(iykbcxki) =
∑

k

ξ(iykb
(∑

l

xliyl

)
cxki)

=
∑
k,l

ξ(iykbxli · iylcxki) =
∑
k,l

ξ(iylcxki · iykbxli)

=
∑

l

ξ(iylcbxli) = ξ̂(cb),

so that ξ̂ ∈ ZF(A,F). It is now easy to see that ξ �→ ξ̂ is the inverse of δ.
It is clear that if χ is the character of the A-module M , then χ|C is

the character of Mi as C-module. Conversely if χ|C is the character of the
C-module N , then χ is the character of the A-module N ⊗C iA.

Again, the isomorphism is compatible with field automorphisms:

1.9 Lemma. Let A be an F-algebra, i ∈ A a full idempotent and F � E a
field extension, and α ∈ AutF E. Then i⊗ 1 is a full idempotent in A⊗F E,
and the isomorphism of Lemma 1.8 commutes with α.

Proof. This is clear since (i⊗ 1)α = i⊗ 1.

The following simple observation is sometimes useful.

1.10 Lemma. Let F be a field and A a simple F-algebra which is separable
over F, and suppose E = Z(A) is a Galois extension of F. Let e be a central
primitive idempotent of AE = A ⊗F E. Then A ∼= AEe via a �→ ae, and the
inverse is 1⊗ TE

F
restricted to AEe.

Proof. Since A is separable, AE is semisimple. Clearly Z(AE) = E ⊗F E has
|E : F| different primitive idempotents which are Galois conjugate. Thus if
1 �= α ∈ Gal(E/F) and b ∈ (AE)e, then bαe = 0. Therefore, TE

F
(b)e = be = b

for b ∈ (AE)e. Conversely, TE

F
(ae) = aTE

F
(e) = a1A = a for a ∈ A.



Chapter 2

A Character Correspondence

2.1 Magic Representations

Throughout this section we assume the following situation:
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Figure 2.1: The Basic Configuration

2.1 Hypothesis. Let C be an algebraically closed field (not necessarily of
characteristic zero). Suppose G = HK is a finite group where K � G and
H � G, and set L = H ∩K. Let ϑ ∈ IrrCK be the character of a simple,
projective CK-module, and ϕ ∈ IrrC L the character of a simple, projective
CL-module. Assume that ϑ and ϕ are invariant in H, and let n > 0 be the
multiplicity of ϕ as a constituent of ϑL. Let F ⊆ C be a field containing the
values of ϑ and ϕ. Let eϑ and eϕ be the central idempotents of FK and FL
belonging to ϑ and ϕ. We set i = eϑeϕ and S = (iFKi)L = (FK)Li. We call
the six-tuple (G,H,K,L, ϑ, ϕ) the Basic Configuration.

If the characteristic of C is a prime p > 0, the assumption of projec-
tiveness means that ϑ and ϕ belong to simple modules of p-defect zero, and

6
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thus can be lifted to ordinary complex characters of p-defect zero. Note
that in any case, FKeϑ and FLeϕ are central simple F-algebras, in the prime
characteristic case even matrix algebras over F.

Since FKeϑ is a simple ring, FKeϑ = FKiFK. We can thus apply
Lemma 1.8 with A = FGeϑ and C = iFGi. Our aim is to show that un-
der certain conditions iFGi ∼= S ⊗F FHeϕ.

2.2 Lemma. S is a central simple F-algebra of dimension n2 over F and
CiFKi(S) = FLi ∼= FLeϕ.

Proof. Since i is not zero by assumption, the ring homomorphism α �→ αi =
αeϑ from FLeϕ to FLi is not zero. As FLeϕ is simple, the map α �→ αi is
injective. Thus FLeϕ

∼= FLi. The algebra FKeϑ is central simple, as is iFKi
. By definition, S is just the centralizer of FLi in iFKi. By the Centralizer
Theorem [15, Theorem 3.15][49, Theorem 2.4.6], S is central simple, too,
and the centralizer of S is again FLi. Also iFKi ∼= S ⊗F FLi. To show the
statement on the dimension, we have to show that dimF(iFKi) = n2ϕ(1)2.
To do this we can extend the field and assume that F is a splitting field of
the groups involved. If V is a FK-module affording ϑ, then V i = V eϕ is the
ϕ-part of VFL, and thus V i ∼= nU for some simple FL-module affording ϕ.
As iFKi ∼= EndF(V i) ∼= Mnϕ(1)(F), the result follows.

2.3 Lemma. Let C = CiFGi(S). Then iFGi ∼= S ⊗F C. If S is split, then
even iFGi ∼= Mn(C).

Proof. Straightforward application of Lemma 1.4.

The last lemma reduces the study of the characters of iFGi to the study
of the characters of C. Of course this is only of use when we know C better
than iFGi. The following simple observation is essential for all that follows:

2.4 Lemma. Let T be the inertia group of ϕ in NG(L). Then T/L acts
on S = (iFKi)L (by conjugation). There is a projective representation
σ : T/L→ S such that sg = sσ(Lg) for all s ∈ S and g ∈ T .

Observe that by Hypothesis 2.1, we have H � T .

Proof. As ϑ is G-invariant, T acts on S and clearly L acts trivial on S.
Since S is a central simple F-algebra, all automorphisms are inner by the
Skolem-Noether Theorem [15, Theorem 3.14][49, Theorem 2.4.6]. We can
thus choose σ(Lg) ∈ S for every g ∈ T such that sg = sσ(Lg) for all s ∈ S.
This determines σ(Lg) up to multiplication with an element of Z(S) = Fi.
In this way we get a projective representation σ from T/L to S with the
desired property.



Section 2.1 Magic Representations 8

2.5 Definition. Assume Hypothesis 2.1. We say that σ : H/L → S =
(iFKi)L is a magic representation (for G,H,K,L, ϑ, ϕ), if

1. σ(Lh1h2) = σ(Lh1)σ(Lh2) for all h1, h2 ∈ H and

2. sh = sσ(Lh) for all s ∈ S and h ∈ H.

The character of a magic representation, that is the function ψ : H/L → F

with ψ(Lh) = trS/F(σ(Lh)), is called a magic character.

Here trS/F is the reduced trace of S. As S ⊗F E ∼= Mn(E) for some field
E � F, a magic representation is a representation in the classical sense. If a
magic representation exists, we have the following:

2.6 Theorem. Assume Hypothesis 2.1 and let σ : H/L → S be a magic
representation. Then the linear map

κ : FH → C = CiFGi(S), defined by h �→ hσ(Lh)−1 for h ∈ H,

is an algebra-homomorphism and induces an isomorphism FHeϕ
∼= C.

Proof. For h ∈ H let ch = hσ(Lh)−1 = σ(Lh)−1h. (The inverse σ(Lh)−1 is
the inverse in S, so σ(Lh)σ(Lh)−1 = i.) Clearly ch ∈ C. Note that

cgch = gσ(Lg)−1hσ(Lh)−1 = gh(σ(Lg)−1)σ(Lh)σ(Lh)−1

= ghσ(Lh)−1σ(Lg)−1 = ghσ(Lgh)−1 = cgh.

Thus extending the map h �→ ch linearly to FH defines an algebra homomor-
phism κ : FH → C. For l ∈ L we have l �→ lσ(L)−1 = li = l · 1C . Thus κ
restricted to FL is just multiplication with i, so that eϕκ = eϕi = i = 1C ,
and any other central idempotent of FL maps to zero. Therefore

(FL)κ = (FLeϕ)κ = FLi.

For any h ∈ H we have (FLeϕh)κ = FLich. Let T be a transversal for the
cosets of L in H. As FHeϕ =

⊕
t∈T FLeϕt, the proof will be finished if we

show that C =
⊕

t∈T FLict. The decomposition FG =
⊕

Kg∈G/K FKg yields

the decomposition iFGi =
⊕

Kg∈G/K iFKgi which defines a G/K-grading1

on iFGi. For Kg ∈ G/K set CKg = C ∩ FKg = CiFKgi(S). Since S ⊆ iFKi
we conclude that

C =
⊕

Kg∈G/K

CKg.

1See Definition A.1
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As ch ∈ C ∩ iFKih = C ∩ iFKhi = CKh and ch is a unit of C, we conclude
that

CKh = CKhc
−1
h ch ⊆ CKch ⊆ CKh,

so equality holds throughout. As CK = CiFKi(S) = FLi by assumption, the
proof follows.

Remark. If the projective representation of Lemma 2.4 is not equivalent with
an ordinary representation, we still get some result. Let α be a factor set
associated with σ, that is, σ(x)σ(y) = σ(xy)α(x, y) for x, y ∈ H/L. Nearly
the same proof as above shows that C ∼= Fα−1

[H]eϕ. Here we view α as factor
set of H which is constant on cosets of L. The ordinary group algebra FL
can be embedded in the twisted group algebra Fα−1

[H] in an obvious way,
and thus it is meaningful to view eϕ as an idempotent in Fα−1

[H].

The following is an immediate consequence:

2.7 Corollary. Assume Hypothesis 2.1 and that there is a magic represen-
tation for this configuration. Then iFGi ∼= S ⊗ FHeϕ and if S ∼= Mn(F),
then FGeϑ and FHeϕ are Morita equivalent.

Proof. The first assertion follows by combining Theorem 2.6 with Lemma 2.3.
If S ∼= Mn(F), then FHeϕ and iFGi ∼= Mn(FHeϕ) are Morita-equivalent, and
FGeϑ and iFGi are Morita-equivalent, as we observed earlier.

This corollary maybe justifies the terminology of “magic” representations
and characters. The existence of a magic representation has as a consequence
that the character theories of G over ϑ and of H over ϕ are “the same”. This
will be stated more precisely below. We now give a list of situations where a
magic representation is known to exist:

1. H/L and n = (ϑL, ϕ) are coprime (Proposition 2.15).

2. L�G, K/L is abelian of odd order and ϕ is fully ramified inK. Then at
least for some H there is a magic representation σ (see Theorem 4.23).
The magic character and the character correspondence in this case were
first described by Isaacs [27]. There even exists a canonical magic char-
acter, and this canonical character is called “magic” by some authors
(Navarro [52], Lewis [44]).

3. L � G and there is L � M � H such that (|K/L|, |M/L|) = 1 and
CK/L(M) = 1 (see Theorem 4.38). This result is in essence due to
Dade [6].
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4. Assume that there is M � G such that MK � G and (|K|, |M |) = 1,
and let H = NG(M) and L = H ∩ K = CK(M) as usual. Assume
that M is solvable. If ϕ ∈ IrrL is the Glauberman correspondent
of ϑ with respect to M , then there is a magic representation for this
configuration (Theorem 5.1). Again this follows from work of Dade [8],
including deep results on endo-permutation-modules.

Observe that via the canonical isomorphism G/K ∼= H/L we can view ψ as
character of G/K. We also can view ψ as character of G or H and we will
do so if convenient.

Next we state the main theorem. We use the following notation: For
γ : G → C a class function and ϑ an irreducible character of some (normal)
subgroup, set γϑ =

∑
χ∈Irr(G|ϑ)(γ, χ)χ.

2.8 Theorem. Assume Hypothesis 2.1 with F � C. Every magic representa-
tion σ : H/L → S∗ determines a linear isometry ι = ι(σ) from C[Irr(G | ϑ)]
to C[Irr(H | ϕ)]. Let ψ be the character of σ, and let χ ∈ C[Irr(G | ϑ)]. The
correspondence ι has the following properties:

1. χ ∈ Irr(G | ϑ) if and only if χι ∈ Irr(H | ϕ).

2. χ(1)/ϑ(1) = χι(1)/ϕ(1).

3. If α is a field automorphism fixing F, then (χα)ι = (χι)α.

4. F(χ) = F(χι).

5. If S is split and χ ∈ Irr(G | ϑ), the Schur index of χ over F and that
of χι are the same.

6. (βχ)ι = βχι for all β ∈ C[Irr(G/K)].

7. (In this and the next property, U is a subgroup with K � U � G, and
V = H ∩ U .) (χU)ι = (χι)V .

8. (τG)ι = (τ ι)H for τ ∈ C[Irr(U | ϑ)].

9. (χH)ϕ = ψχι.

10. (ξG)ϑ = ψξι−1
for all ξ ∈ C[Irr(H | ϕ)].

Proof. Let E � F be any extension field. By Lemma 1.8, we have an isomor-
phism from ZF(EGeϑ,E) to ZF(iEGi,E), which commutes with field auto-
morphisms over F by Lemma 1.9. By Lemma 1.5, we have an isomorphism
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from ZF(iEGi,E) to ZF(CiEGi(SE),E), again commuting with field automor-
phisms by Lemma 1.7. The isomorphism κ : FHeϕ → CFGi(S) of Theorem 2.6
yields, by scalar extension, an isomorphism κ⊗ 1 from EHeϕ onto CiEGi(S).
This yields an isomorphism (κ⊗1)∗ : ZF(CiEGi(S),E) → ZF(EHeϕ,E) which
commutes with field automorphisms over F. Identifying ZF(CGeϑ,C) with
C[Irr(G | ϑ)] and ZF(CHeϕ,C) with C[Irr(H | ϕ)], we get the desired iso-
morphism ι. It commutes with field automorphisms, which is Property 3. To
compute χι explicitly, choose an element s0 ∈ S with reduced trace 1: then
for h ∈ H we have χι(h) = χδεκ∗(h) = χ(s0σ(Lh)−1h) (see Lemma 1.5 and
Lemma 1.8).

By Lemma 1.8 applied to CGeϑ and Lemma 1.6 applied to iCGi, irre-
ducible characters are sent to irreducible characters. This proves Property 1
and shows that ι is an isometry with respect to the usual inner product on the
space of class functions (it sends an orthonormal basis to an orthonormal ba-
sis). To show that 2. holds, we choose s0 = (1/n)i = (1/n)eϑeϕ. Remember
that n = (ϑL, ϕ)L, so that ϑ(eϕ) = nϕ(1). Thus

χι(1)

ϕ(1)
=
χ((1/n)eϑeϕ)

ϕ(1)
=
χ(eϕ)

nϕ(1)
=

(χK , ϑ)ϑ(eϕ)

nϕ(1)
= (χK , ϑ) =

χ(1)

ϑ(1)
.

Property 3 was proved above, and Property 4 immediately follows from
it.

Suppose that S ∼= Mn(F). Then by Lemma 1.6 the isomorphism ε of
Lemma 1.5 maps characters of iFGi-modules to characters of C-modules.
The isomorphisms δ and κ∗ (see above) fulfill this condition anyway, and
thus does ι. To show Property 5, we may assume that F(χ) = F(χι) = F,
by Property 4. Then the Schur index of χ is the smallest positive integer m
such that mχ is afforded by an FG-module, and similar for χι. The result
now follows.

Now suppose that β ∈ C[Irr(G/K)]. Let s0 ∈ S be any element of S with
tr(s0) = 1. Then

(βχ)ι(h) = (βχ)(s0σ(h)−1h).

Letting s0σ(h)−1 =
∑

k∈K λkk, we get

(βχ)ι(h) =
∑
k∈K

λkβ(kh)χ(kh) = β(h)
∑
k∈K

λkχ(kh)

= β(h)χ(s0σ(h)−1h) = β(h)χι(h).

This proves 6.
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In the next property, it is understood that (χU)ι is defined by the restric-
tion of σ to V/L. The property is now immediate from the definition of the
correspondence: χι(v) = χ(s0σ(Lv)−1v) and here s0σ(Lv)−1v is in CU .

Property 8 follows since induction and restriction are adjoint maps and ι
is an isometry: Letting χ ∈ Irr(G | ϑ), on has

((τG)ι, χι) = (τG, χ) = (τ, χU) = (τ ι, (χU)ι) = (τ ι, (χι)V ) = ((τ ι)H , χι).

Since every element of Irr(H | ϕ) is of the form χι, it follows that (τG)ι =
(τ ι)H as claimed.

Property 9: For χ ∈ C[Irr(G | ϑ)] we have

(χH)ϕ(h) = χ(heϕ) = χ(heϕeϑ) = χ(hi).

Now note that hi = ih = σ(Lh)σ(Lh)−1h for h ∈ H, and thus by Lemma 1.5
and the definition of ι,

χ(hi) = χδ(hi) = tr(σ(Lh))χδε(σ(Lh)−1h) = ψ(h)χι(h)

as claimed in 9.
To prove 10, it suffices to show that (ψξι−1

, χ)G = (ξG, χ)G for all χ ∈
Irr(G | ϑ). Using what we have already proved, we get

(ψξι−1

, χ)G = (ξι−1

, ψχ)G

= (ξ, (ψχ)ι)H (as ι is an isometry)

= (ξ, ψχι)H (by 6.)

= (ξ, (χH)ϕ)H (by 9.)

= (ξ, χH)H (as ξ ∈ C[Irr(H | ϕ)])

= (ξG, χ)G

as was to be shown. The proof is complete.

2.9 Remark. Property 5 can be generalized: Let χ ∈ IrrG. Then χ defines
uniquely a division algebra over F with center isomorphic to F(χ). We write
[[χ]]F to denote the equivalence class of this division algebra in the Brauer
group of F(χ). It is also the class of F(χ)Geχ

∼= FGe, where e := eF,χ is the
central primitive idempotent of FG with χ(e) �= 0. If ξ = χι, then we have
iFGeF,χi ∼= S ⊗F FHeF,ξ. This means that [[χ]]F = [[S ⊗F F(χ)]] · [[ξ]]F in the
Brauer group of F(χ) = F(χι).

Suppose α ∈ Aut F. Then α extends naturally to an automorphism of
the group algebra FG. More generally, if α : F → E is a field isomorphism,
we get a ring isomorphism FG→ EG which we denote by α, too.
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Similarly, if α : G → Gα is a group isomorphism, then we get naturally
an algebra isomorphism α : FG→ FGα.

If we have any ring isomorphism α : FG → A, where A is another ring,
then we get by restriction a field isomorphism from F to Fα and a group
isomorphism from G to Gα, and A ∼= FαGα. So ring isomorphisms from the
group algebra to another ring generalize both field isomorphisms and group
isomorphisms. When χ is a character of some subgroup X � G with values
in F, then χα defined by χα(xα) = χ(x)α is a character of Xα with values in
Fα. Keep this in mind for the following proposition.

2.10 Proposition. Let B = (G,H,K,L, ϑ, ϕ) be a basic configuration over
the field F, and let α : FG → FαGα be a ring isomorphism. If σ : H/L → S
is a magic representation for B, then

σα : Hα/Lα → Sα defined by σα(hα) = σ(h)α

is a magic representation for Bα. Let ι(σ) and ι(σα) be the associated char-
acter correspondences. Then

χαι(σα) = χι(σ)α for χ ∈ Irr(G | ϑ).

Proof. Note that eα
ϑ = eϑα for the central primitive idempotent belonging to

ϑ. Thus σα : Hα/Lα → Sα = (iαFαKαiα)Lα
with iα = eϑαeϕα is a magic

representation for the basic configuration Bα.
Let χ ∈ Irr(G | ϑ) and pick s0 ∈ S with reduced trace 1. The isomorphism

α maps the reduced trace of S to the reduced trace of Sα, by uniqueness of
the reduced trace. Thus trSα/Fα(sα

o ) = 1. Therefore

(χα)ι(σα)(hα) = χα(sα
0σ

α(Lαhα)−1hα) = χα
(
(s0σ(Lh)−1h)α

)
= χ(s0σ(Lh)−1h)α =

(
χι(σ)(h)

)α
= χι(σ)α(hα),

as was to be shown.

Note that if α is a field automorphism, this generalizes Property 3 of
Theorem 2.8.

2.11 Remark. Let π be the set of prime divisors of n. If there is any magic
representation, then there is a magic representation σ such that detσ has
order a π-number.

Proof. Suppose σ : H/L → S is given. Let λ = detσ, a linear character of
H/L. Let b be the π′-part of ord(λ). As n = dimσ is π, there is r ∈ Z with
rn+ 1 ≡ 0 mod b. Then det(λrσ) = λrn+1 has π-order.
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The following consequence of Theorem 2.8 is clear in view of Properties 7
and 8.

2.12 Corollary. Assume Hypothesis 2.1 with a magic representation σ and
associated character correspondence ι. Assume K � U � G. Pick τ ∈ IrrU .
Then the restriction of ι to C[Irr(G | τ)] is an isometry onto C[Irr(H | τ ι)].

Note that when U � G and τ invariant in G, this corollary implies that
the character triples (G,U, τ) and (H,H ∩ U, τ ι) are isomorphic in the sense
of Isaacs [34, Definition 11.23].

The bijection of the theorem depends on the magic representation σ. If
such a representation exists, it is unique up to multiplication with a linear
character of H/L (with values in F). Different choices of σ give bijections
which differ by multiplication with a linear character of H/L. Note that if
ψ(h) �= 0 for all h ∈ H, then χι is determined by the equation (χH)ϕ = ψχι.
Otherwise on needs the representation σ to compute χι.

The theorem depends on the hypothesis that a certain projective represen-
tation turns out to be linear. It is possible that over some field F containing
the values of ϕ and ϑ, the projective representation is not equivalent to a
linear one, while over some bigger field Theorem 2.8 applies. The following
example illustrates this and other points. It is taken from a paper of Dade [6].

2.13 Example. Let K = 〈x, y〉 be the quaternion group of order 8. The
symmetric group on 3 elements acts on K as follows: let t be the automor-
phism permuting x, y and xy cyclically, and u the one with xu = y−1 and
yu = x−1. Then C = 〈t, u〉 ∼= S3. Let G be the semidirect product of C and
K. (In fact G ∼= GL(2, 3).) Let L = Z(K) and H = CL. Further let ϕ be
the linear character of L of order 2 and ϑ the irreducible character of K lying
above ϕ. Here Theorem 2.8 applies, at least if we work over an algebraically
closed field. This follows from a general result which we will prove later and
which is essentially equivalent to a result of Dade [6, 30]. We can see this
directly here as follows: Let F = Q(

√−2) and S = FKeϕ = (FKeϕ)L. Set
σ(t) = (1/2)(−1 + x + y + xy)eϕ and σ(u) = (1/

√−2)(x − y)eϕ. This can
be extended to an homomorphism σ : C → S, and then sh = sσ(h) for s ∈ S
and h ∈ C. (It suffices to check this for s = xeϕ, yeϕ and h = t, u.) As
H/L ∼= C, we see that Theorem 2.8 applies for F = Q(

√−2). Now since ϕ
and ϑ are rational valued, it is natural to ask wether Theorem 2.8 applies
over Q, too. However, we cannot find σ0(u) ∈ QKeϕ with sσ0(u) = su and
σ0(u)

2 = eϕ, since this would imply σ0(u) = ±σ(u). Thus Theorem 2.8 does
not apply over Q. Observe that the character of σ is the irreducible character
of H/L ∼= C ∼= S3 of degree 2, which is afforded by a rational representation.
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There are two different magic representations here, as |Lin(H/L)| = 2, but
both have the same magic character.

That Theorem 2.8 can not apply over Q can also seen from the character
table of G: The characters in Irr(H | ϕ) are rational, while the two irreducible
characters of G of degree 2, that lie above ϑ, are not: They are complex
conjugate. Therefore we see that QHeϕ has three nonisomorphic (absolutely)
irreducible modules while QGeϑ has two nonisomorphic irreducible modules.
It is also clear now that none of the two possible bijections is better than the
other, so that no canonical bijection can be defined. In Dade’s paper, the
example served to illustrate this lack of uniqueness.

In general it is difficult to decide wether a magic representation exists,
given only the data of Hypothesis 2.1. A big part of this work will be devoted
to give sufficient conditions, when K/L is a fully ramified section of G. In
this way we will reprove and generalize the classical results of Dade and
Isaacs [6, 27, 30].

However there is an easy special case that we can prove already in our
quite general setting. We need the following fact:

2.14 Lemma. Let F be a field, X a group and α ∈ Z2(X,F∗). Suppose
that S is a central simple F-algebra and σ : X → S∗ a map with σ(x)σ(y) =
α(x, y)σ(xy). If dimF S = n2, then αn ∈ B2(X,F∗). If (|X|, n) = 1, then
α ∈ B2(X,F∗).

Proof. This is well known, at least in the case where S ∼= Mn(F) [26, 20.5 and
20.6]. In the general case, let E � F be a field such that S⊗FE ∼= Mn(E). The
restriction of the determinant to S gives a multiplicative map det : S → F,
also known as reduced norm of S over F [54, Section 9a]. Then as usual we
see that α(x, y)n = det(σ(x)) det(σ(y)) det(σ(xy))−1.

2.15 Proposition. Assume Hypothesis 2.1 with (|H/L|, n) = 1. Then there
is a unique magic representation σ with det(σ) = 1, and the corresponding
character bijection between Irr(G | ϑ) and Irr(H | ϕ) is invariant under all
automorphisms of G fixing H,ϑ and ϕ. The magic character is nonzero on
every element of prime power order mod L.

That the Clifford extensions associated with the characters ϑ invariant in
G and ϕ invariant in H are isomorphic was already proved by Dade [5, 0.4] in
a more general situation, but over an algebraically closed field. Schmid [58]
has generalized it to arbitrary fields, under additional assumptions. The
description using the magic character ψ seems to be new, however. We re-
mark that it would be nice to have a purely character theoretic description
of the correspondence. The last part of the proposition yields that for H/L a
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p-group, one needs only the magic character (not the magic representation)
to describe the correspondence. In the general case, no simply character the-
oretic description seems to be known, although the existence und uniqueness
of the correspondence was proved by Dade [5] in 1970.

Proof of Proposition 2.15. The action of H/L on S defines a projective rep-
resentation σ. As (|H/L|, n) = 1, we see that the associated factor set is
trivial. Thus we can assume that σ is a magic representation. Multiplication
of σ with λ ∈ LinF(H/L) causes a multiplication of detσ with λn and λ �→ λn

is a permutation of LinF(H/L), since |LinF(H/L)| divides |H/L|. Thus there
is a unique magic representation σ that has determinant 1. It is clear now
that the correspondence is invariant under automorphisms fixing H, ϑ and ϕ.
If ord(Lh) = pr with p a prime, then ψ(Lh) ≡ ψ(1) = n mod p. (This is well
known, it follows since ω − 1 ∈ P where ω is a primitive pr-th root of unity
and P any prime ideal of Z[ω] lying over pZ.) It follows that ψ(Lh) �= 0.
The result follows.

The assumption of the last proposition obviously holds if n = 1, that
is, (ϑL, ϕ) = 1. In this case the natural choice is ψ = σ = 1. If χ and ξ
correspond, then by Theorem 2.8(9), (χH)ϕ = ξ. The last equation in fact
defines then the correspondence. It follows that ξ is the unique element in
Irr(H | ϕ) with (χH , ξ) �= 0 and the correspondence can also be defined by
this condition. This fact is known and can be proved just using elementary
character theory [32, Lemma 4.1]. Theorem 2.8 also implies that the map
χ �→ (χH)ϕ preserves Schur indices if n = 1: Because then clearly S ∼= F is
split. In fact, FHeϕ

∼= iFGi when n = 1, where the isomorphism is given by
multiplication with i (or eϑ).

If n = ψ(1) > 1 in Proposition 2.15, then ψ is reducible (at least over a
field big enough) since its degree is prime to |H/L|. It follows that (χH)ϕ is
reducible for any χ ∈ Irr(G | ϑ).

We return to the general situation and give some more properties of the
correspondence of Theorem 2.8.

2.16 Proposition. Assume Hypothesis 2.1 and let C � CH(S) with L �
C �H. For χ ∈ Irr(KC | ϑ) and ξ ∈ Irr(C | ϕ) define χ ↔ ξ if and only if
(χC , ξ)C > 0.

1. “↔” defines a bijection between Irr(KC | ϑ) and Irr(C | ϕ), which has
all the properties of Theorem 2.8 with ψ = n1C/L. So if χ ↔ ξ, then
(χC , ξ)C = n.

2. The bijection is H-invariant, that is for h ∈ H we have χ ↔ ξ if and
only if χh ↔ ξh.
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3. Assume that ξ ∈ Irr(C | ϕ) is H-stable and χ ↔ ξ. Then T =
(eξFKCeχeξ)

C and S = (eϕFKeϑeϕ)L are isomorphic as H-algebras.

Note that if n = 1, then CH(S) = H.

Proof. Theorem 2.8 applies to the configuration (KC,C,K,L, ϑ, ϕ) with
σ : C/L → S, σ(c) = 1S = i for all c ∈ C. Observe that then ψ = n1C .
From Property 9 in Theorem 2.8 it now follows that the restriction χC of
every χ ∈ Irr(KC | ϑ) has a unique constituent in Irr(C | ϕ), which occurs
with multiplicity n, as claimed. Conversely, for ξ ∈ Irr(C | ϕ), the induced
character ξG has a unique constituent lying in Irr(KC | ϑ), by Property 10.
The correspondence↔ is thus just the correspondence ι of Theorem 2.8. The
first claim follows. That ↔ is compatible with the action of H is clear from
the definition. Let j = eχeξ, where we assume that ξ ↔ χ are H-invariant.
Thus T = (jFKCj)C . The idempotent j centralizes S, as eχ is in the center
of FKC, and eξ ∈ C centralizes S by assumption. It follows that for every
s ∈ S, we have sj = js = jsj ∈ T . As eχeϑ = eχ and eξeϕ = eξ, it follows
that ij = j. The map s �→ sj is thus an algebra homomorphism from S into
T . Since S is simple and dimF S = n = dimF T , the map is an isomorphism.
It is compatible with the action of H as j is H-stable.

Next we show a result that may be useful in inductive proofs.

2.17 Proposition. Assume Hypothesis 2.1. Let H � U � G and N =
K ∩ U . Let η ∈ IrrN be invariant in U with n1 = (ϑN , η) > 0 and n2 =
(ηL, ϕ) > 0, and F(η) = F. Assume that there are magic representations

σ1 : U/N → S1 = (eηFKeϑeη)
N and σ2 : H/L→ S2 = (eϕFNeηeϕ)L.

By Theorem 2.8 we have bijections

ι(σ1) : C[Irr(G | ϑ)] → C[Irr(U | η)] and

ι(σ2) : C[Irr(U | η)] → C[Irr(H | ϕ)].

Then there is a magic representation

σ : H/L→ S = (eϕFKeϑeϕ)L

such that
ι(σ) = ι(σ1)ι(σ2).

We think of the configuration (G,H,K,L, ϑ, ϕ) as composed of the config-
urations (G,U,K,N, ϑ, η) and (U,H,N, L, η, ϕ). The proposition says that
if Theorem 2.8 applies to the smaller configurations, then it applies to the
composed configuration, and the resulting character correspondence is just
composition of the correspondences of the smaller configurations.
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Figure 2.2: A composed basic configuration

Proof. Consider the map

μ : S1 ⊗F S2 → S, s1 ⊗ s2 �→ s1s2.

Then μ(1S1 ⊗ 1S2) = μ(eϑeη ⊗ eηeϕ) = eϑeηeϕ = eη · 1S �= 0. Clearly
μ(S1 ⊗ 1) = S1eϕ and μ(1 ⊗ S2) = eϑS2 commute. Thus μ is an algebra
homomorphism, in general not unitary. Since S1 ⊗ S2 is simple, it follows
that μ is injective. Clearly μ(S1 ⊗ S2) ⊆ eηSeη. We claim that equal-
ity holds. To show this, we compute the dimension of S0 := eηSeη. For
this computation, we can assume that F is a splitting field for the charac-
ters involved. Let V be a FK-module affording ϑ. Then V eη

∼= W n1 as
FN -module, where W affords η, and V eηeϕ

∼= Xn1n2 as FL-module, where
X affords ϕ. Thus S0 = (eηeϕFKeϑeηeϕ)L ∼= EndFL(V eηeϕ) ∼= Mn1n2(F).
Therefore dimF(S0) = (n1n2)

2. As also dimF(S1 ⊗ S2) = n2
1n

2
2, we conclude

that S1S2 = μ(S1 ⊗ S2) = S0 as claimed.
Let σ0(h) = σ1(h)σ2(h) ∈ S0. For s1 ∈ S1 and s2 ∈ S2 we have then

(s1s2)
σ0(h) = s

σ1(h)
1 s

σ2(h)
2 , as the images of S1 and S2 in S commute. (The

inverses of σi(h) are to be computed in Si.) We also have σ0(h1h2) =
σ0(h1)σ0(h2), again since μ(S1) and μ(S2) commute.

On the other hand, there is a projective representation σ : H/L→ S such
that sh = sσ(h) for all s ∈ S. In particular, this holds for elements of S0.
The idempotent eηeϑeϕ = eη1S is H-invariant by assumption, so that σ(h)
centralizes eη for every h ∈ H. Thus eησ(h) = σ(h)eη ∈ S0, and this element
is invertible in S0. For s ∈ S0 we have thus seησ(h) = sσ(h) = sh = sσ0(h).
As S0 = eηSeη is simple, it follows that eησ(h) = λhσ0(h) for some λh ∈ F.
Therefore σ is projectively equivalent with a representation.

From now on, assume that σ : H/L → S is such that eησ(h) = σ0(h) =
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σ1(h)σ2(h). We want to show that ι(σ) = ι(σ1)ι(σ2). Choose si ∈ Si with
trSi

(si) = 1. Then trS(s1s2) = trS0(s1s2) = trS1(s1) trS2(s2) = 1. Let χ ∈
C[Irr(G | ϑ)]. Let u ∈ U and α ∈ FN . Writing α =

∑
n∈N αnn and using

N � kerσ1, we see that χι(σ1)(αu) = χ(s1σ1(u)
−1αu). Using this, we get for

h ∈ H

χι(σ1)ι(σ2)(h) = χι(σ1)(s2σ2(h)
−1h)

= χ(s1σ1(h)
−1s2σ2(h)

−1h) (see above)

= χ(s1s2σ0(h)
−1h)

= χ(s1s2σ(h)−1h) (as s1s2 ∈ eηSeη)

= χι(σ)(h) (as trS(s1s2) = 1) .

2.2 The Character Correspondence for Semi-

Invariant Characters

Let K � G and ϑ ∈ IrrK. Classical Clifford theory reduces the study of
Irr(G | ϑ) to the study of Irr(Gϑ | ϑ) where Gϑ is the inertia group of ϑ in
G. Namely, Frobenius induction provides a bijection between Irr(Gϑ | ϑ) and
Irr(G | ϑ).

Suppose that ϕ and ϑ in Hypothesis 2.1 are not H-invariant. In the
applications often the actions of H on the orbit of ϕ and on the orbit of
ϑ are isomorphic, so that Hϕ = Hϑ. (For example, this is the case if ϑ
and ϕ are fully ramified with respect to each other.) Observe that always

Lϕ

Kϑ

Gϑ

G

Hϕ

H
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Figure 2.3: Generalized Basic Configuration

Gϑ = KHϑ if G = KH. Thus if Theorem 2.8 applies to Gϑ, Hϕ and so on,
we may compose the resulting character correspondence with the Clifford
correspondences between Irr(G | ϑ) and Irr(Gϑ | ϑ), and between Irr(H | ϕ)
and Irr(Hϕ | ϕ) and we obtain a bijection between Irr(G | ϑ) and Irr(H | ϕ).
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However, the Clifford correspondence is not well behaved with respect to
fields of values and Schur indices: Let F be a field (a subfield of C, say). If
τ ∈ Irr(T | ϑ), we may have that F(τG) < F(τ). Also, the Schur index of τG

over the field F may be bigger than that of τ . Our aim in this section is to
relax the condition of H-invariance of the characters ϑ and ϕ, and to obtain
correspondences preserving Schur indices and fields of values over smaller
fields than those generated by the values of ϑ and ϕ. This will be applied in
Section 4.6 to prove that the Isaacs correspondence preserves Schur indices.

Clifford Theory with Fields

Most of the following proposition is well known [55, Theorem 1]:

2.18 Proposition. Let K �G. Let E be algebraically closed and ϑ ∈ IrrEK
the character of a simple EK-module. Suppose F � E and U is an FK-module
whose character contains ϑ as constituent. Let T be the inertia group of U
in G. Then induction defines a bijection between IrrE(T | ϑ) and IrrE(G | ϑ).
For τ ∈ IrrE(T | ϑ) on has

F(τ) = F(τG) and [[τ ]]F = [[τG]]F.

Proof. Let I be the maximal G-invariant ideal of FK contained in the anni-
hilator of U . (Thus I = AnnFK(UG).) Regard A = FG/IFG as G/K-graded
algebra. Then A1 is semisimple and its blocks are permuted transitively by
G. The inertia group T is the stabilizer of one of these blocks, with central
primitive idempotent e, say. By Proposition A.14 in the appendix, we get
that Frobenius induction is a category equivalence between AT e-modules and
A-modules. The same proposition may be applied to A⊗F E.

Let τ ∈ IrrE(T | ϑ) and let V be the unique simple FT -module whose
character contains τ as a constituent. Then V e = V , so that V is an
AT e-module. As [[τ ]]F is the Brauer equivalence class of EndFT (V, V ), it
follows [[τ ]]F = [[τG]]F from Proposition A.14.

As F(τ) ∼= Z(HomFT (V, V )) and F(τG) ∼= Z(HomFG(V G, V G)), it follows
that F(τ) ∼= F(τG). Since F(τG) � F(τ) and both field extensions are finite,
equality follows.

For an elementary proof, see [55], but note that there only equality of
Schur indices is proved. Our next purpose is to elucidate the relation be-
tween the inertia group of a simple FK-module and the inertia groups of its
absolutely irreducible constituents.

First we review the central character associated with an absolutely irre-
ducible E-character ϑ of K. Let D : EK → Mϑ(1)(E) be a representation
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affording ϑ. Then D(EK) = Mϑ(1)(E) [49, Theorem 2.3.3]. If z ∈ EK is
such that z + kerD ∈ Z(EK/ kerD), then D(z) = ωϑ(z)I with ωϑ(z) ∈ E.
We call ωϑ(z) the central character associated with ϑ. From the definition it
follows that ωϑ(z) = ϑ(az) where a ∈ EK is any element with ϑ(a) = 1.

If F � E and V is a simple FK-module whose character contains ϑ as
constituent, then ωϑ induces an isomorphism from Z(FK/ annFK V ) onto
F(ϑ), as is well known [49, Theorem 2.6.2].

The next result is known [28, Lemma 2.1], except perhaps the last part.

2.19 Lemma. Let V be a simple FK-module where K � G. Let E � F be
a splitting field of K and ϑ ∈ IrrEK an absolutely irreducible constituent
of the character of V . Let T be the inertia group of V in G. Set Z =
Z(FK/ annFK V ). Then

(a) T = {g ∈ G | there is γ ∈ Gal(F(ϑ)/F) such that ϑgγ = ϑ}.
(b) For every g ∈ T , there is a unique γg ∈ Gal(F(ϑ)/F) with ϑgγg = ϑ. The

map g �→ γg is a homomorphism with kernel Gϑ.

(c) Gϑ = {t ∈ T | zt = z for all z ∈ Z}.
(d) For z ∈ Z and g ∈ T , we have ωϑ(zg) = ωϑ(z)γg .

Proof. Let α be the character of V . Then α = m
∑

γ∈Gal(F(ϑ)/F) ϑ
γ [26, 38.1].

If g ∈ T , then αg = α and thus ϑg = ϑγ for some γ. Conversely, if ϑg = ϑγ

with γ ∈ Gal(F(ϑ)/F), then

αg = m
∑
γ′
ϑγ′g = m

∑
γ′
ϑgγ′ = m

∑
γ′
ϑγγ′ = α,

so g ∈ T . This proves (a).
Since only the identity of Gal(F(ϑ)/F) can fix ϑ, the γg with ϑgγg = ϑ is

unique. For g, h ∈ T one has

ϑghγgγh = ϑgγghγh = ϑ

and so γgh = γgγh. The kernel of g �→ γg is obviously Gϑ.
Next we prove (d). Suppose g ∈ T . We claim that there is e ∈ FK with

ϑ(e) = ϑ(geg−1) = 1. First, there is e0 ∈ F(ϑ)K such that ϑ(e0) = 1 and

ϑ̃(e0) = 0 for any absolutely irreducible character ϑ̃ different from ϑ. Now

set e = T
F(ϑ)
F

(e0) ∈ FK. Then ϑ(e) = ϑ(e0) = 1 and ϑ(geg−1) = ϑg(e) =

ϑγ−1
g (e) = 1. Now we get for z ∈ Z

ωϑ(zg) = ϑ(ezg) = ϑg−1

(geg−1z) = ϑγg(geg−1z)

= (ϑ(geg−1z))γg = (ωϑ(z))γg ,
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since ϑ(geg−1) = 1. This shows (d). Now (c) follows from (b) and (d)
and the fact that ωϑ is an isomorphism: If t ∈ Gϑ then γt = Id and thus
ωϑ(zt) = ωϑ(z) for all z ∈ Z. This yields zt = z for all z. Conversely, if
zt = z for z ∈ Z, then ωϑ(z) = ωϑ(zt) = ωϑ(z)γt and thus γt = Id. By Part
(b) we get t ∈ Gϑ.

2.20 Corollary. Let Γ � Gal(F(ϑ)/F) be the image of the map t �→ γt from
the last lemma. Set

Θ0 =
∑

t∈[T :Gϑ]

ϑt and Θ1 =
∑

g∈[G:Gϑ]

ϑg.

Then F(Θ0) = F(Θ1) = (F(ϑ))Γ, so that Γ = Gal(F(ϑ)/F(Θ0)).

Proof. As F(ϑg) = F(ϑ), we clearly have F(Θ1) � F(Θ0) � F(ϑ). Let γ ∈ Γ.
Then ϑγ = ϑt for some t ∈ T and thus γ permutes the constituents of Θ0.
It follows Θγ

0 = Θ0 and so F(Θ0) � (F(ϑ))Γ. It remains to show (F(ϑ))Γ �
F(Θ1), and this is equivalent to CGal(F(ϑ)/F)

(
F(Θ1)

)
� Γ. But this follows

from Lemma 2.19, Part (a).

When interested in the fields of values and Schur indices of characters
of G lying over ϑ, it is thus no loss to work over the field F(Θ0). This is
sometimes convenient, but seldom really necessary.

Following Isaacs [28], we say that ϑ ∈ IrrEK is F-semi-invariant in G,
where K �G, if for every g ∈ G there is γ ∈ Gal(F(ϑ)/F) with ϑgγ = ϑ.

The results so far yield that it is no loss to assume that ϑ is semi-invariant
in G, when interested in questions of Schur indices and fields of values. For
completeness we mention the following result of Riese and Schmid [55, Theo-
rem 1]. Here mF(χ) denotes the Schur index of the character χ over the field
F.

2.21 Proposition. Let K�G and suppose ϑ ∈ IrrK is F-semi-invariant in
G. Let η ∈ Irr(Gϑ | ϑ) and χ = ηG. Then

1. F(η) = F(χ, ϑ).

2. mF(χ) = tmF(η) where t ∈ N divides |G : Gϑ|.

Magic Crossed Representations

We collect the assumptions and fix the notation for this section:

2.22 Hypothesis. Let G be a group, K�G and H � G with G = HK and
set L = H ∩K. Let E be an algebraically closed field and let ϕ ∈ IrrE L and
ϑ ∈ IrrEK be characters of simple, projective modules over EL respective
EK and F ⊆ E a field such that the following conditions hold:
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1. n = (ϑL, ϕ) > 0.

2. F(ϕ) = F(ϑ).

3. For every h ∈ H there is γ = γh ∈ Gal(F(ϕ)/F) such that ϑhγ = ϑ and
ϕhγ = ϕ.

For later use, we fix the following notation: Let e be the central primitive
idempotent of FK with ϑ(e) �= 0, and f the central primitive idempotent of
FL with ϕ(f) �= 0. Let eϑ and eϕ be the central primitive idempotents of
EK and EL corresponding to ϑ and ϕ, and set i =

∑
γ∈Gal(F(ϕ)/F) e

γ
ϕe

γ
ϑ. Set

S = (iFKi)L, Z = Z(iFKi) and Z0 = ZH = CZ(H).

Observe that h �→ γh is a group homomorphism by Lemma 2.19. By the
third condition, e and f are H-invariant.

2.23 Lemma. Assume Hypothesis 2.22.

1. The H-sets

{ϕγ | γ ∈ Gal(F(ϕ)/F)} and {ϑγ | γ ∈ Gal(F(ϑ)/F)}
are isomorphic via ϕγ �→ ϑγ.

2. Z(FKe) ∼= Z(FLf) as fields with H/L-action.

Proof. By assumption, F(ϕ) = F(ϑ). As only the identity of Gal(F(ϕ)/F) =
Gal(F(ϑ)/F) can fix ϕ, the map ϕγ �→ ϑγ is well defined. It is a bijection
between the sets in the statement of the lemma. If h ∈ H, then

(ϕγ)h = ϕhγ = ϕγhγ �→ ϑγhγ = ϑhγ = (ϑγ)h.

This means that ϕγ �→ ϑγ commutes with the action of H, as desired.
For the last part, consider the diagramm

Z(FKe)
ωϑ−−−→ F(ϑ) = F(ϕ)

ωϕ←−−− Z(FLf).

Every map here is an isomorphism and commutes with the action of H by
Part (d) of Lemma 2.19. This completes the proof.

2.24 Lemma. Let eϕ and eϑ be the central idempotents corresponding to ϕ
and ϑ, respectively. Then

i =
∑

γ∈Gal(F(ϕ)/F)

eγ
ϕe

γ
ϑ

is a H-stable nonzero idempotent in FKe, and we have ei = i = ie and
fi = i = if .
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Proof. Clearly, e =
∑

γ∈Gal(F(ϑ)/F) e
γ
ϑ. Thus ie = i = ie follows from eγ

ϑe
γ′
ϑ = 0

for γ �= γ′ ∈ Gal(F(ϑ)/F). A similar argument shows that fi = i = if . By
assumption, eϕeϑ �= 0 and thus i �= 0, as eϑi = eϕeϑ. For h ∈ H, we have

ih =
∑

γ

ehγ
ϕ ehγ

ϑ =
∑

γ

eγhγ
ϕ eγhγ

ϑ = i

as desired.

As FKe is simple, it follows that FKiFK = FKe and thus iFKi and FKe
are Morita equivalent. We have Z(iFKi) ∼= Z(FKe) ∼= F(ϑ) ∼= Z(FLf) as
H-algebras.

2.25 Lemma. Set Z = Z(iFKi) and let S = (iFKi)L. Then S is a simple
subalgebra of iFKi with center Z, and dimension n2 over Z, and

CiFKi(S) = FLi ∼= FLf.

Proof. Set i0 = eϕeϑ. The following diagram is commutative:

FLf
·i−−−→ iFKi

⊆−−−→ FKe

·eϕ

⏐⏐� ·i0
⏐⏐� ·eϑ

⏐⏐�
F(ϑ)Leϕ

·i0−−−→ i0F(ϑ)Ki0
⊆−−−→ F(ϑ)Keϑ.

By Lemma 1.10, its vertical maps are isomorphisms. The result now fol-
lows from the corresponding result when F contains the values of ϑ and ϕ,
Lemma 2.2.

As before, we have that iFKi ∼= S⊗Z FLf . But now H may act nontriv-
ially on Z, so Z is in general not in the center of iFGi.

2.26 Lemma. Z(iFGi) ∩ iFKi = ZH .

Proof. Let H = ·⋃
t∈T Lt. Then iFGi =

⊕
t∈T iFKit. Thus CiFKi(iFGi) =

ZH as claimed.

What we need is a subalgebra S0 of S such that Z(S0) = Z0 and S =
S0Z. We now add to Hypothesis 2.22 the assumption that there is such a
subalgebra S0 in S. We emphasize that S0 need not be invariant under H.

We have now collected all the ideas necessary to generalize Theorem 2.8
to the situation of Hypothesis 2.22. In particular, the reader will see that
i and S are the right objects to work with (and not the idempotent ef , for
example).
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2.27 Lemma. Suppose Hypothesis 2.22 and let S0 ⊆ S with Z(S0) = Z0 and
S = S0Z. Define ε : H → AutS by (s0z)

ε(x) = s0z
x. For any x ∈ H/L there

is σ(x) ∈ S such that for every s ∈ S0 we have sx = sσ(x). For x, y ∈ H/L
we have

σ(x)ε(y)σ(y) = α(x, y)σ(xy) for some α(x, y) ∈ Z∗,
and α ∈ Z2(H/L,Z∗).

Proof. Let x ∈ H. The action of x on S, restricted to S0, gives an injection
μ : S0 → S. We may extend μ uniquely to a Z-algebra automorphism μ̂
of S. We apply the Skolem-Noether Theorem to μ to get σ(x) ∈ S∗ with
sμ̂ = sσ(x) for all s ∈ S. Note that then for s0 ∈ S0 and z ∈ Z, we have
(s0z)

σ(x) = (s0z)μ̂ = sx
0z and thus

(s0z)
x = sx

0z
x = s

σ(x)
0 zx = (s0z

x)σ(x) = (s0z)
ε(x)σ(x).

Thus
s

σ(xy)
0 = (sx

0)
y = (s

σ(x)
0 )y = (s

σ(x)
0 )ε(y)σ(y) = s

σ(x)ε(y)σ(y)
0 .

Since CS(S0) = Z, it follows that σ(x)ε(y)σ(y) = α(x, y)σ(xy) for some
α(x, y) ∈ Z∗. Comparing(

σ(x)ε(y)σ(y)
)ε(z)

σ(z) = α(x, y)zσ(xy)ε(z)σ(z) = α(x, y)zα(xy, z)σ(xyz)

with

σ(x)ε(yz)
(
σ(y)ε(z)σ(z)

)
= σ(x)ε(yz)α(y, z)σ(yz) = α(x, yz)α(y, z)σ(xyz)

yields that α ∈ Z2(H/L,Z∗).

We may call σ : H/L → S a “crossed projective representation”. Note
that S0 = CS(ε(H)), so that S0 is determined by ε.

The image of α in H2(H/L,Z∗) does depend on the choice of S0. Details
can be found in the next subsection.

2.28 Definition. We call σ : H/L → S a magic (ε-) crossed representation
for the configuration of Hypothesis 2.22, if

1. σ(x)ε(y)σ(y) = σ(xy) for all x, y ∈ H/L and

2. sx = sε(x)σ(x) for all x ∈ H/L and s ∈ S.



Section 2.2 Magic Crossed Representations 26

2.29 Remark. In particular, σ(x)σ(y) = σ(xy) and sx = sσ(x) for x, y ∈
Hϕ. This looks like a magic representation of Hϕ, but we defined magic
representations only when the ground field contains the values of ϕ and ϑ.
On the other side, we have the canonical isomorphism FKe → F(ϕ)Keϑ,
a �→ aeϑ. If g ∈ Gϑ, then obviously (aeϑ)g = ageϑ. If s ∈ S, then seϑ =
seϕeϑ ∈ eϑF(ϑ)Keϕeϑ. Thus Hϕ/L � x �→ σ(x)eϑ is a magic representation
in the sense of Definition 2.5.

Here is the main result of this section:

2.30 Theorem. Assume Hypothesis 2.22 and let σ : H/L → S be a magic
crossed representation, with respect to S0 ⊆ S. Then iFGi ∼= S0 ⊗Z0 FHf .
If S0

∼= Mn(Z0), then iFGi ∼= Mn(FHf) and FGe and FHf are Morita
equivalent.

Proof. All assertions follow from the first. Let C = CiFGi(S0). Then by
Lemma 1.4 we have iFGi ∼= S0 ⊗Z0 C (Remember that Z0 ⊆ Z(iFGi)). We
define a map κ from FH to C by extending the map h �→ ch = hσ(Lh)−1

linearly. It is easy to see that indeed ch ∈ C. We compute

chcg = hσ(Lh)−1gσ(Lg)−1 = hg
(
σ(Lh)−1

)ε(g)σ(Lg)
σ(Lg)−1

= hgσ(Lg)−1
(
σ(Lh)ε(g)

)−1
= hg

(
σ(Lh)ε(g)σ(Lg)

)−1

= hgσ(Lhg)−1 = chg.

Thus κ is an algebra homomorphism. From σ(1)ε(1)σ(1) = σ(1) we see that
σ(1) = 1S = i, and thus κ(FLf) = FLi and κ(f ′) = 0 for any other central
idempotent f ′ of FL. Let H = ·⋃

t∈T Lt be the partition in left cosets. Then

C =
⊕
t∈T

C ∩ FLt =
⊕
t∈T

FLict.

Therefore κ maps FLft onto FLict. It follows that κ induces an isomorphism
from FHf onto C as claimed. The proof is finished.

As for magic representations, we have

2.31 Corollary. Assume Hypothesis 2.22 with F � C. Every magic crossed
representation σ defines a linear isometry ι = ι(σ) from C[Irr(G | ϑ)] to
C[Irr(H | ϕ)] with Properties 1–8 from Theorem 2.8 (where S has to be
replaced by S0).

Proof. By Hypothesis, E = F(
∑

g∈G ϑ
g) = F(

∑
h∈H ϕ

h), and F(χ) contains
E for χ ∈ Irr(G | ϑ) ∪ Irr(H | ϕ). Also ϕ and ϑ remain semi-invariant over
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E. Let e0 =
∑

α∈Gal(F(ϑ)/E) e
α
ϑ, then FGe ∼= EGe0 via multiplication with e0.

In a similar way, FHf ∼= EHf0, where f0 =
∑

α∈Gal(F(ϑ)/E) e
α
ϕ. Via these

isomorphisms we may replace F by E. It is thus no loss of generality to
assume that F = E. Then Z0

∼= F, and we have iFGi ∼= S0 ⊗F FHf . The
proof of Theorem 2.8 now carries over verbatim.

For the next result, compare with the introduction to this section and
Figure 2.3 on Page 19.

2.32 Proposition. Assume Hypothesis 2.22 and let σ : H/L → S be a
magic crossed representation. Let j = eϑeϕ and T = (jF(ϕ)Kj)L. De-
fine τ : Hϕ/L → T by τ(h) = σ(h)j. Then τ is a magic representation for
the configuration (Gϑ, Hϕ, K, L, ϑ, ϕ) and for χ ∈ Irr(Gϑ | ϑ) we have

(χG)ι(σ) = (χι(τ))H .

Proof. That τ is a magic representation was remarked earlier. Take h ∈ H.
If h /∈ Hϕ, then all ξ ∈ Irr(H | ϕ) vanish on h, since every such ξ is induced
from Hϕ and Hϕ �H. So the equation holds in this case.

Now assume h ∈ Hϕ. Choose s0 ∈ S0 with trS0/Z0(s0) = 1 = trS/Z(s0).
Then trT/F(ϑ)(s0j) = 1. Note that for h ∈ Hϕ and x ∈ H, one has

σ(hx) = σ(x−1)ε(hx)σ(h)ε(x)σ(x) = σ(x)−1σ(h)ε(x)σ(x) = σ(h)x.

Also note that for s ∈ S one has js = jis = eϕs = eϑs. We get

(χι(τ))H(h) =
∑

x

χι(τ)(xhx−1)

=
∑

x

χ(s0jσ(xhx−1)−1xhx−1)

=
∑

x

χ(s0eϑ(σ(h)−1h)x−1

)

=
∑

x

χ(s0(σ(h)−1h)x−1

) as χ lies over ϑ

=
∑

x

χ(s
σ(x−1)
0 (σ(h)−1h)x−1σ(x−1)) as χ is a central form

=
∑

x

χ(sx−1

0 (σ(h)−1h)x−1

) as σ(h−1)h centralizes S

= χG(s0σ(h−1h)) = (χG)ι(σ)(h),

as desired.
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This result just means that we get the correspondence ι(σ) by composing
the Clifford correspondences associated with ϑ and ϕ and a correspondence
induced by a magic representation.

As in the invariant case, we have the following application:

2.33 Proposition. Assume Hypothesis 2.22 with (n, |H/L|) = 1. Then there
is a central simple Z0-algebra S0 ⊆ S unique up to conjugacy in S, such that
iFGi ∼= S0 ⊗Z0 FHf .

Proof. As Γ is a factor group of H/L, it follows that |Γ| and dimF(ϕ) S are
coprime. Thus by a result of Dade [10, Theorem 4.4] (see Proposition 2.36
below), there is S0 ⊆ S with Z(S0) = Z0 and S0Z = S, and S0 is unique up
to inner automorphisms of S. By Lemma 2.27 there is an ε-crossed projective
representation with factor set α ∈ Z2(H/L,Z∗), say. But as n is coprime to
|H/L|, it follows that the cohomology class of α is trivial. Thus there exists a
magic crossed representation and the proposition follows from Theorem 2.30.

Digression: Group Action on Simple Algebras

In the last section we introduced rather ad hoc the assumption that S is
obtained by scalar extension from a central simple Z0-algebra S0. Here we
consider the following questions:

1. When does such a subalgebra S0 exist?

2. How many really different such subalgebras do exist?

3. How does the cocycle defined in Lemma 2.27 depend on the choice of
S0?

The results of this subsection will not be needed elsewhere in this thesis.
The following result is due to Hochschild [23, Lemma 1.2]:

2.34 Proposition. Let S be a simple algebra with center Z and X a finite
subgroup of the automorphism group of S with X ∩ InnS = {Id}. Then
S0 = SX is a simple algebra with center Z0 = ZX and S ∼= S0 ⊗Z0 Z.

This gives the following corollary:

2.35 Corollary. Let S be a simple algebra with center Z and let Z0 � Z be
a subfield such that Z is a Galois extension of Z0 with Galois group Γ. Then
S contains a unitary central simple Z0-algebra S0 with S ∼= S0 ⊗Z0 Z if and
only if the restriction-homomorphism AutZ0 S → Γ is surjective and splits.
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Proof. If S0 is such a subalgebra, then for τ ∈ Γ we may define ε(τ) ∈ AutS
by (s0⊗z)ε(τ) = s0⊗zτ , and this gives a splitting ε : Γ → AutZ0 S. Conversely,
if ε : Γ → AutZ0 S with ε(τ)|Z = τ for all τ ∈ Γ is given, we may apply the
result of Hochschild with X = Im ε.

Observe that both statements are trivially true if S is a matrix ring over
Z. More generally, we have the following result, which can be found in papers
of Dade [10, Theorem 4.4] and Schmid [57, Theorem 2]:

2.36 Proposition. Let Z/Z0 be a Galois extension with Galois group Γ and
S a central simple Z-algebra such that AutZ0 S � α �→ α|Z ∈ Γ is surjective.
If the Schur index of S is prime to |Γ|, then the last homomorphism splits.
If Γ is prime to dimZ S then the splitting is unique up to conjugacy.

This can be derived from Teichmüller’s work on noncommutative Galois
theory, as Schmid [57] has pointed out. (Teichmüller considered simple alge-
bras such that AutZ0 S → Gal(Z/Z0) is surjective in general. See [14] for an
exposition and related results.)

This is all we have to say about the first question. Before considering the
two other questions, we develop some general theory.

Let X be a group and S a simple artinian ring with center Z. Suppose
that ε : X → AutS is a group homomorphism, that is, ε describes an action
of X on S as ring. If X centralizes Z, so that X acts on S as Z-algebra,
then every automorphism is inner by the Skolem-Noether Theorem, and we
may choose σ(x) ∈ S∗ with sε(x) = sσ(x). Then the cohomology class of
f(x, y) = σ(xy)−1σ(x)σ(y) is determined uniquely by ε. It follows that we
may associate a unique element of H2(X,Z∗) to ε.

The situation is different if we drop the assumption that X centralizes Z.
Then in general there is no unique way to associate a cohomology class to
the action of X on S. The group action of X on S yields an action of X on
Z, and we can form the cohomology group H2(X,Z∗) with respect to that
action. We will consider different actions of X on S, but all will agree on Z∗,
so that formulas like H2(X,Z∗), Z2(X,Z∗) will be unambiguous.

For the rest of this section, S is a central simple Z-algebra. Now suppose
that ε, η : X → AutS are two group homomorphisms, which induce the same
action of X on Z. This means that the compositions

X
ε−−−→
η

AutS
ResZ−−−→ AutZ

are the same. We now show that an element of H2(X,Z∗) may be associated
uniquely to the pair (η, ε). Since ε(x) and η(x) agree on Z = Z(S), ε(x)−1η(x)
is a Z-algebra homomorphism, and thus by the Skolem-Noether Theorem
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inner. Therefore we may choose ux ∈ S∗ with sη(x) = sε(x)ux for all s ∈ S.
From

sε(xy)uxy = sη(x)η(y) = sε(x)uxε(y)uy = sε(xy)u
ε(y)
x uy

it follows that f(x, y) = u
ε(y)
x uyu

−1
xy ∈ Z∗. Comparing

(uε(y)
x uy)

ε(z)uz = f(x, y)zuε(z)
xy uz = f(x, y)zf(xy, z)uxyz

with

uε(y)ε(z)
x (uε(z)

y uz) = uε(yz)
x f(y, z)uyz = f(y, z)f(x, yz)uxyz

shows that f : X × X → Z∗ is a 2-cocycle. (The reader may think of the
map x �→ ux as a projective crossed representation with associated factor set
f .)

2.37 Definition. We write [η/ε]S to denote the cohomology class of the
cocycle f just constructed.

Before we show that [η/ε]S is well defined and give some simple proper-
ties, we review the concept of inflation in cohomology. Suppose γ : G → X
is a group homomorphism. Then also G acts on Z∗. We have a natural
map γ∗ : Z2(X,Z∗) → Z2(G,Z∗), sending f to fγ∗ defined by fγ∗(g, h) =
f(γ(g), γ(h)). γ∗ sends cohomologous elements to cohomologous elements
and thus induces a map H2(X,Z∗) → H2(G,Z∗) which we also call γ∗.
(Note that in the situation above, ker γ acts trivial on Z∗. Inflation can be
defined without this restriction [59, p. 124], but we will only need the above
special case.)

2.38 Lemma. Let ε, η, ζ : X → AutS be group homomorphisms with zε(x) =
zη(x) = zζ(x) for all x ∈ X and z ∈ Z = Z(S). The element [η/ε]S ∈
H2(X,Z∗) only depends on the pair (η, ε). It has the following properties:

1. [ζ/η]S[η/ε]S = [ζ/ε]S.

2. If η and ε are conjugate under InnS, then [η/ε]S = 1.

3. Suppose γ : G → X is a group homomorphism. Then [η ◦ γ/ε ◦ γ]S =
[η/ε]Sγ

∗.

4. [η/ε]nS = 1, where n2 = dimZ S.

Proof. The choice of the ux in the construction above is unique up to scalars
from Z, and thus [η/ε]S is independent of this choice.
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To prove the first property, choose units vx with sζ(x) = sη(x)vx . Set
g(x, y) = v

η(y)
x vyv

−1
xy , so that g is a cocycle in [ζ/η]S. Now

h(x, y) : = (uxvx)
ε(y) uyvy (uxyvxy)

−1

= uε(y)
x uyv

ε(y)uy
x vy v

−1
xy u

−1
xy

= uε(y)
x uy v

η(y)
x vyv

−1
xy u

−1
xy

= f(x, y)g(x, y).

As sζ(x) = sε(x)uxvx , we see that the cohomology class of h is in [ζ/ε]S. Thus
[ζ/ε]S = [ζ/η]S[η/ε]S.

Now suppose η and ε are conjugate under InnS, so that for all x ∈ X
one has η(x) = κ−1ε(x)κ, where κ is conjugation with some u ∈ S∗. Thus

sη(x) = su−1ε(x)u = sε(x)[ε(x),u].

As [ε(xy), u] = [ε(x), u]ε(y)[ε(y), u], we see that [η/ε]S = 1 as wanted.
For the third assertion, observe that for g ∈ G we have

sη(γ(g)) = sε(γ(g))uγ(g) .

Thus
(fγ∗)(g, h) = f(γ(g), γ(h)) = u

ε(γ(h))
γ(g) uγ(h)u

−1
γ(gh)

is a cocycle in [η ◦ γ/ε ◦ γ]S and the assertion follows.
To show the last assertion, we use the reduced norm of S over Z which

we denote by nr = nrS/Z . We have then

f(x, y)n = nr(f(x, y) · 1S) = nr(uε(y)
x uyu

−1
xy ) = nr(ux)

ε(y) nr(uy) nr(uxy)
−1.

Thus fn is a coboundary, so that [η/ε]nS = 1. The proof is complete.

Note that the cocycle in Lemma 2.27 associated with the subalgebra S0

is just [κ/ε], where κ : H/L → AutS is given by the conjugation action of
H/L on S. (ε was defined in Lemma 2.27.)

Next we examine the uniqueness of the central simple Z0-algebra S0.

2.39 Lemma. Let S be a simple algebra with center Z. Let Γ � AutZ with
|Γ| <∞ and Z0 = ZΓ. Let ε and η : Γ → AutZ0 S extend the action of Γ on
Z. Equivalent are:

(i) There is ϕ ∈ AutZ S such that η(x) = ε(x)ϕ for all x ∈ Γ.

(ii) Sε(Γ) and Sη(Γ) are conjugate in S.
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(iii) Sε(Γ) and Sη(Γ) are isomorphic as Z0-algebras.

Proof. Assume (i). By the Skolem-Noether Theorem, ϕ is conjugation with
u ∈ S∗, say. Thus sη(x) = su−1ε(x)u for all s ∈ S. It follows Sη(Γ) = Sε(Γ)u,
which is (ii). That (ii) implies (iii) is clear. Suppose α : Sε(Γ) → Sη(Γ) is
an isomorphism. By Hochschild’s result (Proposition 2.34) we have S =
Sε(Γ)Z ∼= Sε(Γ) ⊗Z0 Z and analogously for η, so that α can be extended
uniquely to an Z-algebra automorphism of S which is inner by the Skolem-
Noether Theorem. Thus there is u ∈ S∗ with Sε(Γ)u = Sη(Γ). Then for
s ∈ Sε(Γ), z ∈ Z and x ∈ Γ we get

(suz)η(x) = suη(x)zx = suzx = sε(x)uzx = (suz)u−1ε(x)u.

As S = Sε(Γ)uZ, it follows that η = u−1εu as claimed.

2.40 Corollary. There is a bijection between the InnS-conjugacy classes of
homomorphisms Γ → AutZ0 S splitting AutZ0 S → Γ, and the isomorphism
classes of central simple Z0-algebras S0 that are contained in S such that
S = S0Z.

We may apply the construction preceding Definition 2.37 to the various
splittings of AutZ0 S → Γ. We get a sharper result then.

2.41 Proposition. Hold the assumptions above, and set

H = {η : Γ → AutZ0 S | zη(x) = zx for all z ∈ Z and x ∈ Γ}.
Let ε ∈ H be fixed. Then η �→ [η/ε, S] induces an injective map from the set
of InnS-conjugacy classes of H into H2(Γ, Z∗).

Proof. We will need some general properties of cohomology theory. As Γ
acts on S∗, Z∗ and S∗/Z∗ via ε, we can form Z1(Γ, S∗/Z∗) and H1(Γ, S∗/Z∗)
with respect to this action [59, Chapitre VII, Annexe]. For the convenience of
the reader we review the definitions here. Set, for the moment, P = S∗/Z∗.
Then

Z1(Γ, P ) = {u : Γ → P | uxy = uε(y)
x uy for all x, y ∈ Γ}.

The elements of Z1(Γ, P ) are called cocycles. Two cocycles u and v are said
to be cohomologous, if there is a ∈ P with vx = (aε(x))−1uxa. Then H1(Γ, P )
is the factor set of Z1(Γ, P ) modulo this equivalence relation. The exact
sequence

1 −−−→ Z∗ −−−→ S∗ −−−→ P −−−→ 1

yields an exact sequence

H1(Γ, Z∗) −−−→ H1(Γ, S∗) −−−→ H1(Γ, P )
δ−−−→ H2(Γ, Z∗).
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The connecting homomorphism δ is defined as follows: Suppose ū ∈ Z1(Γ, P ).

We may lift ū to some map u : Γ → S∗. Then u
ε(y)
x uy = uxyf(x, y) for some

f(x, y) ∈ Z∗. We define δ(ū) = fB2(Γ, Z∗). It is easily shown that δ(ū) is
independent of all choices made and that cohomologous cocycles are mapped
to the same element. As here Γ is the Galois group of Z/Z0, by a result of
Galois cohomology, one has H1(Γ, S∗) = 1 [59, p. 160, Exercice 2]. Thus
δ : H1(Γ, S∗/Z∗) → H2(Γ, Z∗) is an injection.

To show the proposition, remember the construction of [η/ε]S: We chose
units ux ∈ S∗ with the property that sη(x) = sε(x)ux . The image uxZ

∗ in P =
S∗/Z∗ is uniquely determined by this property. With the above notations at
hand, we now see that x �→ ūx = uxZ

∗ is a cocycle, that is, ū ∈ H1(Γ, P ):

Namely, we have f(x, y) = u−1
xy u

ε(y)
x uy ∈ Z∗. Moreover, we now see that

[η/ε]S = δ(ū). As δ is injective, it suffices to show that if η and ζ yield
cohomologous 1-cocycles ū and v̄, then ζ and η are conjugate in InnS. So,
suppose there is a ∈ P with v̄x = (aε(x))−1ūxa for all x ∈ Γ. Then

sζ(x) = sε(x)(aε(x))−1uxa = sa−1ε(x)uxa = sa−1η(x)a.

This shows that ζ and η are conjugate under InnS. The proof is complete.

Combing the last result with Lemma 2.38, we see that the cocycle defined
in Lemma 2.27 is unique up to multiplication with elements of a certain subset
of H2(Γ, Z∗), where here Γ ∼= H/Hϕ.

2.3 Clifford Extensions

In this section we review the theory of Clifford extensions. First suppose N�
G and μ ∈ IrrN is G-invariant. Suppose that F ⊆ C is a field containing the
values of μ. It is well known that μ determines an element in the cohomology
group H2(G/N,F∗). This can be defined as follows: Let e = eμ be the
central primitive idempotent of FN associated with μ. Let C = (FGe)N =
CFGe(FN) be the centralizer of FN in FGe. For x ∈ G/N set Cx = C ∩ Fx,
where Fx is the F-subspace of FG generated by the elements of x. It can be
shown that every Cx has dimension 1 over F and contains units of C. Thus

C =
⊕

x∈G/N

Cx =
⊕

x∈G/N

uxF

for some units ux ∈ Cx. Then uxuy = uxyf(x, y) for some f(x, y) ∈ F,
and the cohomology class of f does not depend on the choice of the ux.
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We write [μ,F]G/N to denote the corresponding element of H2(G/N,F∗). Of
course, if E � F is a field extension of F, then [μ,E]G/N is the image of
[μ,F]G/N under the natural map from H2(G/N,F∗) to H2(G/N,E∗). If the
field is clear from context, we simply write [μ]G/N . A word of caution is
maybe appropriate: The more classical way of associating factor sets to μ
is the following: An F-representation affording μ is extended to a projective
representation of G. One can do this so that the factor set associated with
the representation is constant on cosets of N and thus defines a factor set of
G/N . The resulting cohomology class obtained thus is the inverse of [μ]G/N .
Under our assumptions, there may be no F-representation affording μ, but
an approach working with FNe itself still goes through: As FNe is simple
with center F, there is ag ∈ FNe for every g ∈ G such that aag = ag for all
a ∈ FNe. (This follows from the Skolem-Noether Theorem.) These units are
unique up to multiplication with scalars, and thus agah = aghα(g, h) with
α(g, h) ∈ F∗. Observe that then a−1

g g ∈ CNg. A suitable choice of the ag’s
ensures that uNg = a−1

g g is well defined. It is then easy to see that α = f−1.
The importance of [μ]G/N lies in the fact that it determines to a large

extent the character theory over μ. Namely, we have (see Lemma 1.4)

FGe = FNe · C ∼= FNe⊗F C,

and C is a twisted group algebra which is determined by [μ]G/N up to iso-
morphism. If there is an F-representation affording μ, then FNe ∼= Mμ(1)(F)
and thus even FGe ∼= Mμ(1)(C).

Let Ω =
⋃

x∈G/N Fx ∩ C∗ be the set of graded units in C. The central
extension

1 −−−→ F∗ −−−→ Ω −−−→ G/N −−−→ 1

is called the Clifford extension [4] associated with (G,N, μ). We write GF〈μ〉
to denote it, and simply G〈μ〉 if the field is clear from context or algebraically
closed. Let (Go, N o, μo) be another character triple. An isomorphism between
the two Clifford extensions corresponding to these two character triples is a
pair of isomorphisms κ : G/N → Go/N o and ω : Ω → Ωo such that

1 −−−→ F∗ −−−→ Ω −−−→ G/N −−−→ 1∥∥∥ ω

⏐⏐� κ

⏐⏐�
1 −−−→ F∗ −−−→ Ωo −−−→ Go/N o −−−→ 1

is commutative. The following fact is well known and not difficult to prove:
When an isomorphism κ : G/N → Go/N o is given, then there is an isomor-
phism of Clifford extensions from GF〈μ〉 to Go

F
〈μo〉 if and only if [μ]G/N =
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(
[μo]Go/No

)
κ∗. Here κ∗ : H2(Go/N o,F∗) → H2(G/N,F∗) is the isomorphism

induced by κ as usual.
It is quite clear that if o : GF〈μ〉 → Go

F
〈μo〉 is an isomorphism of Clifford

extensions and F � E, then o extends uniquely to an isomorphism of Clifford
extensions GE〈μ〉 → Go

E
〈μo〉. (The converse is false.) An isomorphism of

Clifford extensions determines various bijections, which we now describe.

Subgroups: If N � H � G, then there is a unique subgroup Ho with
N o � Ho � Go and (H/N)κ = Ho/N o.

The twisted group algebra: Write C = (FGeμ)N as before and Co =
(FGoeμo)No

. Then ω can be extended to an F-algebra isomorphism
C → Co, and this extension is unique. Abusing notation, we write o
for this isomorphism. Now C is naturally G/N -graded, and we have
(Cx)

o = (Co)xκ.

Characters: Let N � H � G, and let τ : FHeμ → F be a central form.
Let CH = C ∩ FH. Since FHeμ

∼= FNeμ ⊗F CH , and FNeμ is central
simple, we have a bijection between the central F-forms on FHeμ and
those on CH (Lemma 1.5). The algebra isomorphism of the last item
restricts to an isomorphism CH → (Co)Ho = (CH)o, and induces an
isomorphism from ZF(CH ,F) to ZF((CH)o,F). Again by Lemma 1.5,
a canonical isomorphism ZF((CH)o,F) → ZF(FHoeμo ,F) is given. The
composition of these isomorphisms is again denoted o, so that now τ o

is a central form on FHoeμo . In different terms: There is a bijection
from class functions of H lying over μ to the class functions of Ho lying
over μo.

If F � E, then the extension of o to GE〈μ〉 defines maps C ⊗F E → Co ⊗F E

and ZF(EHeμ,E) → ZF(EHoeμo ,E), and these are obtained from the above
maps by scalar extension, as is to be expected. The following properties are
well known.

2.42 Proposition. Let o : GF〈μ〉 → GF〈μo〉 be an isomorphism of Clifford
extensions. Let N � K � H � G, ϑ ∈ C[Irr(K | μ)] and τ, σ ∈ C[Irr(H |
μ)]. Then

1. (τ + σ)o = τ o + σo.

2. (τ o, σo)Ho = (τ, σ)H .

3. (τK)o = (τ o)K.

4. (ϑH)o = (ϑo)H .
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5. (βτ)o = βκτ o for β ∈ C[Irr(H/N)].

6. F(τ o) = F(τ).

The next result is also well known. Isaacs [27] proves a similar result
for character triples instead of Clifford extensions. However, it should be
remarked that Isaacs’ notion of “Character triple isomorphism” is weaker
than that of Clifford extension isomorphism. We include here a proof for the
sake of completeness although it is in essence a translation of Isaacs’ proof
from character triple isomorphisms to Clifford extension isomorphisms. We
work over an algebraically closed field, C, say.

2.43 Proposition. Let (G,N, μ) be a character triple. There exists a char-
acter triple (Go, N o, μo) such that

(a) G〈μ〉 ∼= Go〈μo〉,
(b) μo is linear and faithful and

(c) every coset of N o in Go contains an element x, such that N ∩ 〈x〉 = 1.

Proof. Let C = (CGeμ)N and Cx = C ∩ Cx as before. For each coset x ∈
G/N choose a nonzero element ux ∈ Cx, and make the choice such that for
k = ord(x) one has uk

x = 1C(= eμ). This can be done since the field is
algebraically closed. As CxCy = Cxy, we have uxuy = α(x, y)uxy for some
α(x, y) ∈ C∗, and α is a factor set of G/N .

Let N o be the subgroup of C∗ generated by the values of α. We claim that
N o has finite order: Let δ(x) be the determinant of ux acting by right mul-
tiplication on C. Then δ(x)|G/N | = 1. We have δ(x)δ(y) = α(x, y)|G/N |δ(xy)
and it follows that α(x, y)|G/N |2 = 1. This proves the claim.

Set Go = 〈ux | x ∈ G/N〉. From the claim it follows that Go has finite
order and Go ∩ F∗ = N o. Let μo be the inclusion N o ↪→ F∗. It is clear
that μo is a linear faithful character of N o, and that N o ⊆ Z(Go). It is also
clear that the Clifford extensions G〈μ〉 and Go〈μo〉 are isomorphic, and that
Go = ·⋃

x∈G/N N
oux, where ord(N oux) = ord(x) = ord(ux).

The following result will be used later with N = L.

2.44 Proposition. Let B be a basic configuration as in Hypothesis 2.1 and let
N � L with N�G. Suppose that μ ∈ IrrN is invariant in G and (ϕN , μ) �= 0.
Let o : G〈μ〉 → Go〈μo〉 be an isomorphism of Clifford extensions. Then o
induces in a natural way a bijection between the magic representations for
the basic configuration B and the magic representations for the configuration
Bo. For the corresponding magic characters ψ and ψo we have ψo = ψκ.
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Proof. Note that S = (eϕFKeϑeϕ)L ⊆ (FGeμ)N . Let x ∈ H and cx ∈
(FGeμ)N ∩FNx. As N centralizes S, we get sx = scx , if cx is a unit. Suppose
σ : H/L→ S is magic. Then define σ̂ : Ho/Lo → So by σ̂(xκ) = σ(x)o. It is
clear that σ̂ is multiplicative. Let s ∈ S so that so ∈ So. Then

(so)σ̂(xκ) = (so)σ(x)o

= (sσ(x))o = (sx)o = (scx)o = (so)(cx)o

= (so)xκ

,

as (cx)
o ∈ (FGoeμ)N ∩ Fxκ. This shows that σ̂ is magic. The inverse of the

Clifford extension isomorphism o defines in a similar way the inverse of the
map σ �→ σ̂. The part on the characters is clear.



Chapter 3

Magic Representations and
Discrete Valuation Rings

3.1 Reducing Magic Representations Modulo

a Prime

We now turn our attention to group algebras over discrete valuation rings.
In this section, we assume that in Hypothesis 2.1, F is a field with a discrete
valuation ν : F → Z and valuation ring R, and that the residue class field of
R has characteristic p > 0. Moreover we assume that eϑ ∈ RK and eϕ ∈ RL.

If S ∼= Mn(F) and if there is a magic representation σ, then FGeϑ and
FHeϕ are Morita equivalent. We want to show that then also RGeϑ and
RHeϕ are Morita equivalent. There is a quite general result of Broué of
this kind [2], but verifying the premises of Broué’s result is nearly the same
amount of work as proving the desired result directly.

We denote reduction modulo the maximal ideal of R by “ ”, thus : R→
R = R/ J(R). We use the same symbol for its extension : RG → RG. As
in Hypothesis 2.1, set i = eϕeϑ.

3.1 Lemma. RKeϑ = RKiRK.

Proof. As RKeϑ is central simple, we have RKeϑ = RKiRK and thus
RKeϑ = RKiRK + J(R)RKeϑ. By Nakayama’s lemma, the proof fol-
lows.

It follows that RGeϑ and iRGi are Morita equivalent. We now assume
that a magic representation σ : H/L → S ∼= Mn(F) exists. We know that
then iFGi ∼= Mn(FHeϕ), and we want to show that the same is true if we
replace F by R. We split the proof into two lemmas.

38
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3.2 Lemma. If S ∼= Mn(F), then Σ = (iRKi)L ∼= Mn(R).

Proof. Since R has finite characteristic, we have RKeϑ
∼= Mϑ(1)(R) and

RLeϕ
∼= Mϕ(1)(R). Thus Σ = (iRKi)L ∼= Mn(R) by Lemma 2.2 applied

with R instead of F. If R is complete, then we can lift the matrix units of Σ
to matrix units of Σ and the result follows.

Otherwise, let F̂ be the completion of F and let Ŝ = (iF̂Ki)L ∼= F̂ ⊗F S

and Σ̂ = (iR̂Ki)L ∼= R̂ ⊗R Σ. We have seen that Σ̂ ∼= Mn(R̂). Thus it is

a maximal R̂-order in Ŝ [54, Theorem 8.7]. But then also Σ is a maximal
R-order in S [54, Theorem 11.5]. Thus it follows that Σ ∼= Mn(R) [54,
Theorem 18.7].

Remark. If ϑ and ϕ are afforded by FK- respective FL-modules, one can give
a proof independent of lifting idempotents (respective matrix units) and the
theory of maximal orders: Just assume that R ⊆ F is a ring with quotient
field F, and such that every finitely generated torsionfree R-module is free.
As before, eϑ ∈ RK and eϕ ∈ RL. Let V be a FK-module affording ϑ and U
an FL-module affording ϕ. There are R-free nonzero submodules M � VRK

and N � URL, by assumption on R. Let ε : FK → EndF V = E be the
corresponding representation and τ : E → FKeϑ be defined by

ατ =
ϑ(1)

|K|
∑
k∈K

trV (αkε)k−1.

The representation ε makes E into a K-K-bimodule and a routine calcula-
tion shows that τ is a bimodule homomorphism. Since ε is surjective, τ is
an algebra homomorphism from E to FK. Now it is clear that ετ is just
multiplication with eϑ = 1Eτ , and that τε = IdE. Let Λ be the subset of
E mapping M into itself. Then Λ ∼= EndRM ∼= Mϑ(1)(R), the first isomor-
phism being just restriction to M . (As Λτ ⊆ RKeϑ, we see, by the way, that
RKeϑε = Λ.) Now Meϕ = Mi is a direct summand of M and an RL-lattice
affording nϕ. Since RLeϕ

∼= Mϕ(1)(R), there is, up to isomorphism, only one
RL-lattice affording ϕ, namely N . Thus Meϕ

∼= Nn as RL-modules. We
have EndR(Meϕ) ∼= eϕΛeϕ and End(Meϕ)RL

∼= (eϕΛeϕ)L canonically. The
last is isomorphic with Mn(R). Since (iRKi)L =

(
(eϕΛeϕ)L

)
τ , the result

follows.

We return to our original assumption. As Σ ∼= Mn(R), we have that
iRGi ∼= Mn(Γ), where Γ = CiRGi(Σ). It is clear that Γ = RG ∩ C, where
C = CiFGi(S). We have to show that the isomorphism of Theorem 2.6 sends
RHeϕ onto Γ.

3.3 Lemma. Keep the notation above and assume that σ : H/L → S is
magic. Then the homomorphism κ of that theorem maps RHeϕ onto Γ.
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Proof. We first show that σ(H) ⊆ Σ = (iRKi)L. Let h ∈ H. Then Σh = Σ,
so conjugation with h or σ(h) induces an automorphism of Σ. As Σ is a
matrix ring over a local ring, this automorphism is inner [49, Theorem 2.4.8],
and thus λσ(h) ∈ Σ∗ for some λ ∈ F. This means that also (λσ(h))−1 =
λ−1σ(h−1) ∈ Σ∗. As λ or λ−1 is in R, it follows that σ(h−1) or σ(h) is in
Σ. But as σ is a representation and h has finite order, both are in Σ. Thus
σ(H) ⊆ Σ as claimed.

It follows that ah = hσ(Lh)−1 ∈ C ∩ RG = Γ. Therefore (RHeϕ)κ ⊆ Γ.
As in the proof of Theorem 2.6, we see that Γ =

⊕
t∈T Γ1at, where Γ1 =

Γ ∩ RK and T is a set of representative of the cosets of L in H. Thus it
suffices to show that (RLeϕ)κ = Γ1. We know that (RLeϕ)κ = RLi and that
Γ1 = FLi ∩ RK. But RLeϕ is a maximal R-order in FLeϕ (by Jacobinski’s
formula [54, Theorem 41.3], say, or for a splitting field F see the remark
above). The same is thus true for RLi in FLi. As FLi ∩ RK is also an
R-order in FLi, it follows that RLi = FLi ∩RK, as was to be shown.

3.4 Remark. The conclusion that Imσ ⊂ (iRKi)L holds for all rings R inte-
grally closed in F (and with i ∈ RK), since such a ring is the intersection of
the valuation rings of F containing it [41, p. 302].

From what we have done so far it follows that, the hypothesis above given,
RHeϕ and RGeϑ are Morita equivalent, and the equivalence induces the
character bijection of Theorem 2.8. The equivalence can be described more
concretely: First, choose an primitive idempotent j ∈ Σ = (iRKi)L. Then we
have jRGj = jiRGij ∼= Γ ∼= RHeϕ, where an isomorphism from RHeϕ onto
jRGj is induced by the map sending h ∈ H to jhσ(Lh)−1 = hσ(Lh)−1j =
jhσ(Lh)−1j. Also we have i = 1S ∈ ΣjΣ and eϑ ∈ RGiRG = RGeϑ, so
that RGjRG = RGeϑ. The idempotent j is thus full in RGeϑ and we have
a Morita equivalence between RGeϑ and jRGj = jRGeϑj sending an RGeϑ-
module V to V j and an jRGj-module U to U⊗jRGj jRG [40, Example 18.30].
Since jRGj ∼= RHeϕ, this gives also an Morita equivalence between RGeϑ

and RHeϕ. We now have proved:

3.5 Theorem. Assume Hypothesis 2.1 and let σ : H/L → S be a magic
representation. Furthermore, assume that ν : F → Z is a discrete valuation
of F with valuation ring R and residue class field of characteristic p > 0.
Suppose that ϑ and ϕ have p-defect 0 and that S ∼= Mn(F). Then there is an
idempotent j ∈ (iRKi)L = Σ such that RHeϕ

∼= jRGj via the map defined
by h �→ jhσ(Lh)−1, and RGjRG = RGeϑ. The rings RHeϕ and RGeϑ are
Morita equivalent.

We record some properties of the Morita equivalence:
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3.6 Proposition. Assumptions as before, and let U be a subgroup with K �
U � G and V = H ∩ U . Let M be an RGeϑ-module, N an RUeϑ-module
and X an R[G/K]-module. The category equivalence associated with j has
the following additional properties:

6. Mj ⊗R X ∼= (M ⊗R X)j as RH-modules,

7. MUj ∼= (Mj)V as RV -modules,

8. (NG)j ∼= (Nj)H as RH-modules,

9. Meϕ
∼= Mj ⊗R jΣ as RH-modules, where jΣ is viewed as RH-module

via σ.

Proof. Maybe some explanations are appropriate: First, since G/K ∼= H/L,
any G/K-module can be view as H/L-module and vice versa, and also as
G-module with K acting trivial respective as H-module with L acting trivial.

Second, if M and X are G-modules, the action of G on M⊗RX is defined
by (m⊗ x)g = mg⊗ xg, this is extended linearly to RG. If K acts trivial on
X, then (M ⊗R X)eϑ = (Meϑ)⊗R X: in fact, for any a =

∑
k∈K rkk ∈ RK

we have (m⊗x)a =
∑

k∈K rk(mk⊗x) = ma⊗x. Thus tensoring with X over
R maps RGeϑ-modules to RGeϑ-modules. An analogous statement holds for
RHeϕ-modules and X viewed as H/L-module.

Remember thatMj is anRHeϕ-module via the homomorphism κ : RH →
Γ. To distinguish this action from the action of h on M coming from the
RG-module-structure, we denote it by ‘◦’: thus mj ◦ h = mjσ(h)−1h =
mσ(h)−1hj.

We begin with Property 6. The injection Mj ↪→ M is split (as R-homo-
morphism) and thus induces an injection μ : Mj ⊗R X ↪→ M ⊗X. (Maybe
this is a good place to emphasize that we do not assume M or X to be
R-free.) As j ∈ RK, the image of this injection is just (M ⊗X)j. We have
to show that μ is compatible with the action of H. Let m ∈ M , x ∈ X and
h ∈ H. Then

((mj ⊗ x)h)μ = (mj ◦ h⊗ xh)μ = mjσ(h−1)h⊗ xh = (mjσ(h−1)⊗ x)h

= (m⊗ x)jσ(h)−1h = (mj ⊗ x)μ ◦ h.

Thus μ is H-linear. Property 6 is proved.
Property 7 is trivial. For Property 8 we can not argue as in the proof of

Theorem 2.8, so we need to find another argument. Define a map

ϕ : Nj ⊗RV RH → N ⊗RU RG by (n⊗ h)ϕ = nσ(h−1)⊗ h
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for n ∈ Nj and h ∈ H. This is well defined: If v ∈ V then

(n⊗ vh)ϕ = nσ(h−1v−1)⊗ vh

= nσ(h−1)σ(v−1)v ⊗ h

= nσ(v−1)vσ(h−1)⊗ h (as σ(v−1)v centralizes σ(h−1) ∈ S)

=
(
(n ◦ v)σ(h−1)

)⊗ h

= (n ◦ v ⊗ h)ϕ.

Furthermore, (Nj ⊗RV RH)ϕ ⊆ (N ⊗RU RG)j:

(n⊗ h)ϕj = nσ(h−1)⊗ hj h−1h = nσ(h−1)⊗ jσ(h−1)h

= nσ(h−1)jσ(h−1) ⊗ h = njσ(h−1)⊗ h

= nσ(h−1)⊗ h = (n⊗ h)ϕ

as n ∈ Nj. Thus ϕ : Nj⊗RV RH → (N⊗RURG)j. The last is an RH-module
via the ‘◦’-action. We now show that ϕ is H-linear:

(n⊗ h)ϕ ◦ h̃ = (nσ(h−1)⊗ h)σ(h̃−1)h̃ = nσ(h−1)⊗ hσ(h̃−1)h−1hh̃

= nσ(h−1)σ(h̃−1)σ(h−1) ⊗ hh̃ = nσ(h̃−1h−1)⊗ hh̃

= (n⊗ hh̃)ϕ.

To show that ϕ is bijective we describe the inverse. Let H = ·⋃
t∈T V t. Then

G = ·⋃
t∈T Ut and thus N ⊗RU RG =

⊕
t∈T N ⊗ t. Define

ψ : N ⊗RU RG→ Nj ⊗RV RH by (
∑
t∈T

nt ⊗ t)ψ =
∑
t∈T

ntσ(t)j ⊗ t.

That ϕψ = 1Nj⊗RV RH is easy. In the other direction we have

(
∑
t∈T

nt ⊗ t)ψϕ =
∑
t∈T

ntσ(t)jσ(t−1)⊗ t =
∑
t∈T

nt ⊗ jt−1

t = (
∑
t∈T

nt ⊗ t)j

and thus the restriction of ψ to (N ⊗RU RG)j is the inverse of ϕ. This shows
that Nj ⊗RV RH ∼= (N ⊗RU RG)j and finishes the proof of Property 8.

For Property 9, remember that Σ ∼= Mn(R). We may choose a full set
of matrix units {Ekl | k, l = 1, . . . , n} with j = E11. Then i =

∑
k Ekk and

jΣ =
⊕n

k=1E1kR. Define a map μ : Mj⊗RjΣ →Mi = Meϕ by m⊗s �→ ms.
If
∑

k mk⊗E1k �→ 0, then 0 =
∑

k mkE1kEl1 = mlE11 = ml, so μ is injective.
If m ∈ Meϕ, then m = mi =

∑
k mEk1E1k = (

∑
k mEk1 ⊗ E1k)μ, so μ is

surjective. Finally, let us see that μ is compatible with the H-action:

((mj ⊗ js)h)μ = (mj ◦ h⊗ jsσ(h))μ = mhσ(h)−1jsσ(h) = mjsh

= (mj ⊗ js)μh.

The proof is finished.
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Remark. The author has been unable to decide wether the appropriate gen-
eralization of Property 10 in Theorem 2.8 holds.

3.2 Lifting Magic Representations

Assume that F is a field of characteristic p > 0, and R a discrete valuation
ring with R/ J(R) ∼= F. We want to show that then a magic representation
over F can be lifted to one over R, if certain additional conditions hold. First
of all, we have to assume that R is complete. We do this from now on.
Remember that then R∗ ∼= F∗ × (1 + J(R)) [59, Chap. II, Prop. 8]. We need
the following lemma.

3.7 Lemma. Let R be a complete valuation ring with residue class field of
characteristic p and let X be a group. Let α ∈ Z2(X, 1 + J(R)). Then the
order of the cohomology class of α is a p-number (or ∞, if |X| is not finite).

Proof. It suffices to show that if the cohomology class of α has p′-order,
then α is a coboundary. So suppose that α is such an element with order
k a p′-number. Thus α(x, y)k = ν(x)ν(y)ν(xy)−1 for some ν : X → R∗.
Let π a prime element of R. We can assume that ν(x) ∈ 1 + Rπ, since
R∗ = (R/Rπ)∗ × (1 + Rπ) and α(x, y) ∈ 1 + Rπ by assumption. We now
construct a sequence of maps μn : X → R∗ (n = 1, 2, . . . ) such that

α(x, y)μn(xy) ≡ μn(x)μn(y) mod πn and

μn+1(x) ≡ μn(x) mod πn

for all n. Set μ1(x) = 1R for all x ∈ X. Choose a, b ∈ Z with ak + bp = 1.
We define μn recursively by setting μn+1(x) = ν(x)aμn(x)bp. Use induction
to prove the above properties: By assumption α(x, y) ≡ 1 mod π for all
x, y ∈ X. Also μ2(x) = ν(x)a ≡ 1 = μ1(x) mod π since ν(x) ∈ 1 + Rπ by
assumption. From μn+1(x) ≡ μn(x) mod πn it follows μn+1(x)

p ≡ μn(x)p

mod πn+1 and thus

μn+2(x) = ν(x)aμn+1(x)
bp

≡ ν(x)aμn(x)bp mod πn+1

= μn+1(x).

Assuming that α(x, y) ≡ μn(x)μn(y)μn(xy)−1 mod πn by induction, we get

α(x, y) = α(x, y)ak+bp = ν(x)aν(y)aν(xy)−aα(x, y)bp

≡ ν(x)aν(y)aν(xy)−aμn(x)bpμn(y)bpμn(xy)−bp mod πn+1

= μn+1(x)μn+1(y)μn+1(xy)
−1.
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Thus for μ(x) = limn→∞ μn(x), we have α(x, y) = μ(x)μ(y)μ(xy)−1, as was
to be shown.

3.8 Theorem. Assume Hypothesis 2.1 with F a field of characteristic p >
0 and R a complete discrete valuation ring with residue class field F. Let
: RG → FG be the natural ring epimorphism. Let eϑ ∈ RK and eϕ ∈ RL

be the central idempotents as usual and i = eϑeϕ. Suppose that there is a
magic representation σ : H/L → S = (iFKi)L. Then for every p′-subgroup
V/L � H/L there is a magic representation σ̂ : V/L→ (iRKi)L lifting σV/L.
If n = (ϑL, ϕ) �≡ 0 mod p, then there is a magic representation σ̂ : H/L →
(iRKi)L lifting σ.

Proof. Since R is complete, we have (iRKi)L ∼= Mn(R) (see the proof of
Lemma 3.2). Since (iRKi)L is a matrix ring over the local ring R, auto-
morphisms of (iRKi)L are inner. Thus there is a projective representation
σ̂ : H/L → (iRKi)L with sh = sσ̂(h) for all s ∈ (iRKi)L. We can choose σ̂
such that σ̂(h) = σ(h) for h ∈ H. Let α ∈ Z2(H/L,R∗) be the cocycle asso-
ciated with σ̂. Then α has values in 1 + J(R), since σ is multiplicative. By
Lemma 3.7, the cohomology class of α has p-order. In particular, αV/L ∼ 1
for any p′-group V/L. Thus σ̂V/L is projectively equivalent with an ordinary
representation. If n �≡ 0 mod p, then it follows α ∼ 1, since the class of α
has order dividing n. The proof is finished.

3.3 Vertices and Defect Groups

In this section, R is either a complete discrete valuation ring or a field of
characteristic p > 0, and we assume Hypothesis 2.1 for the quotient field of
R with eϑ ∈ RK and eϕ ∈ RL. Moreover, we assume that there is a magic
representation σ : H/L → (iRKi)L ∼= Mn(R), and we let j be a primitive
idempotent of (iRKi)L.

3.9 Proposition. Let M be an indecomposable RGeϑ-module. Let D be a
vertex of M and E a vertex of Mj (as RH-module). Then DK =G EK,
D ∩K = 1 = E ∩ L and D ∼= E. If K is a p′-group, then even D =G E.

Proof. Let b be the block of M . Then a defect group of b has trivial in-
tersection with K, since b covers a block of defect zero of K, namely eϑ.
Since a vertex of M is contained in a defect group of the block b, it follows
D ∩ K = 1, and for the same reason we have E ∩ L = 1. Now let U be a
minimal subgroup of G containing K such that M is U -projective (a “vertex
modulo K”). From proposition 3.6, Property 8, we see that V = U ∩ H is



Section 3.3 Vertices and Defect Groups 45

a minimal subgroup containing L such that Mj is V -projective. We may
assume that D � U and E � V . But since clearly M is DK-projective, we
have U = DK. In the same way we see that V = EL. Therefore DK = EK.
As D ∩ K = 1 = E ∩ K, it follows D ∼= DK/K = EK/K ∼= E. If K is a
p′-group, then D and E are conjugate in DK by the conjugacy part of the
Schur-Zassenhaus Theorem. The proof is complete.

As RGeϑ and RHeϕ are Morita-equivalent, there is a correspondence
between blocks of G covering eϑ and blocks of H covering eϕ. Since every
block contains modules with vertex a defect group of the block, we have the
following corollary:

3.10 Corollary. Assumptions as before, let b and c corresponding block idem-
potents of G and H, respectively. If D is a defect group of b and E a defect
group of c, then DK =G EK, D ∩K = 1 = E ∩ L and D ∼= E. If K is a
p′-group, then even D =G E.

3.11 Proposition. In the situation of the last corollary, assume that there
is s ∈ ΣH with trS(s) invertible in R. Then D =G E.

This assumption holds, if, for example, (ϑL, ϕ) �≡ 0 mod p. We can then
take simply s = i.

Proof. First we show that TK
L (s) is invertible in RKeϑ. From ϑ(TK

L (s)) =
|K : L|ϑ(s) = |K : L| trS(s)ϕ(1) we see that νp(ϑ(TK

L (s))) = νp|K : L| +
νp(trS(s)) + νp|L| = νp|K| = νp(ϑ(1)), and since (RKeϑ)K = Reϑ it follows
that TK

L (s) = λeϑ with λ ∈ R invertible. So we can and will assume that
eϑ = TK

L (s) = TG
H(s) for some s ∈ ΣH .

Next, observe that the isomorphism κ : RHeϕ → C = CiRGi(S) preserves
conjugation with elements of H:

(xh)κ = (xκ)hκ = (xκ)σ(h−1)h = (xκ)h

since xκ ∈ C centralizes σ(h−1) ∈ S. So if c = TH
E (x) for some x ∈ (RHeϕ)E,

then cκ = TH
E (xκ) and xκ ∈ CE. Since c and b correspond, we have cκ =

ibi = bi. It follows

b = beϑ = bTG
H(s) = TG

H(bis) = TG
H(TH

E (xκ)s) = TG
E(xκs).

Thus E contains a defect group of b, and since these defect groups have the
same order, equality follows. The proof is finished.
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Character Fives

4.1 Good Elements

We now assume that L � G in Hypothesis 2.1. Then we can use a bilinear
form, introduced by Dade and Isaacs [27], to obtain more information about
the character ψ. Suppose that ϕ ∈ IrrL is invariant in G and let F be a field
containing the values of ϕ. For every g ∈ G we can choose a cg ∈ FLeϕ such
that αg = αcg for all α ∈ FLeϕ, since FLeϕ is central simple. If x, y ∈ G with
[x, y] ∈ L then [x, y]eϕ and [cx, cy] induce the same action (by conjugation)
on FLeϕ and so these elements differ by some scalar. We denote this scalar
by 〈x, y〉ϕ ∈ F. So by definition,

〈x, y〉ϕeϕ = [x, y][cy, cx].

It is easy to see that 〈x, y〉ϕ does not depend on the choice of cx or cy. Al-
ternatively, given a representation ρ : L→Mϕ(1)(F) affording ϕ, choose γg ∈
Mϕ(1)(F) with ρ(lg) = ρ(l)γg for all l ∈ L and define 〈x, y〉ϕ = ρ([x, y])[γy, γx].
Since the restriction of ρ to FLeϕ is an isomorphism between FLeϕ and
Mϕ(1)(F), both definitions agree. From the first definition we see, however,
that 〈x, y〉ϕ ∈ Q(ϕ), while for the second we have to assume that F splits
ϕ. On the other hand the second definition works for absolutely irreducible
representations over fields of any characteristic.

In most of this work, ϕ will be fixed, and so we drop the index if no
confusion can arise. The original definition is different, but from the definition
given here it is easier to prove that 〈 , 〉 is indeed a bilinear alternating form.
(I learned this definition from Knörr.)

4.1 Lemma. Let g, x, x1, x2, y ∈ G with [x, y], [xi, y] ∈ L and l1, l2 ∈ L, and
define 〈x, y〉ϕ = 〈x, y〉 as above. Then

46
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1. 〈x, y〉 does not depend on the choice of cx or cy.

2. 〈x1x2, y〉 = 〈x1, y〉〈x2, y〉.
3. 〈y, x〉 = 〈x, y〉−1.

4. 〈xl1, yl2〉 = 〈x, y〉.
5. 〈xg, yg〉 = 〈x, y〉.

Proof. The first part follows since cx is determined up to multiplication with
a nonzero scalar. The rest can be verified by routine calculations using com-
mutator identities.

The definition given by Isaacs [27, p. 596] was from the next lemma for
H = 〈L, h〉. It shows that the form can be computed using only characters.

4.2 Lemma. Let L � H � G and χ be a class function of H with all its
irreducible constituents lying over ϕ. Let h ∈ H and g ∈ G with [h, g] ∈ L.
Then χ(hg) = χ(h)〈h, g〉.
Proof. We work in the subgroup 〈L, h〉 of H. Writing χ〈L,h〉 as a linear
combination of irreducible characters lying above ϕ, we see that it is no loss to
assume thatH = 〈L, h〉, and that χ is irreducible and extends ϕ. Let ρ̂ : H →
Mϕ(1)(C) be a representation affording χ that extends the representation ρ
affording ϕ. We may choose ch = ρ̂(h). Then

ρ̂(hg) = ρ̂(h[h, g]) = ρ̂(h)ρ[h, g][cg, ch][ch, cg] = ρ̂(h)〈h, g〉[ρ̂(h), cg]
= ρ̂(h)cg〈h, g〉.

Taking the trace yields the desired result.

4.3 Definition. Let H � G and g ∈ G. Then g is called H-ϕ-good if
〈c, g〉ϕ = 1 for all c ∈ CH(Lg). We drop ϕ if it is clear from context. We also
drop H if H = G.

By Lemma 4.1, Part 4., g is (H-ϕ-) good if and only if any other element
of Lg is. Also if g is H-good, then any H-conjugate of g is H-good. We can
thus speak of good conjugacy-classes of G/L. Gallagher [19] has shown that
|Irr(G | ϕ)| equals the number of ϕ-good conjugacy classes of G/L. From
the last lemma we see that class functions belonging to C[Irr(G | ϕ)] vanish
on elements that are not good. Even more is true: there is a C-basis of
C[Irr(G | ϕ)] where every basis-element vanishes on every but one conjugacy
class of G/L.

A slightly different view on the form 〈 , 〉 gives the following lemma.
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4.4 Lemma. Let L�G and ϕ ∈ IrrL invariant in G.

1. (FGeϕ)L =
⊕

x∈G/L Fsx with units sx ∈ FLeϕx.

2. If [x, y] ∈ L, then 〈x, y〉ϕeϕ = [sx, sy] = s−1
x sy

x.

Proof. The first assertion means that (FGeϕ)L is a twisted group algebra of
G/L over F and is well known. We get the sx as follows: For x ∈ G choose
cx ∈ FLeϕ with ax = acx for all a ∈ FLeϕ. Then sx = xc−1

x = c−1
x x ∈

(FGeϕ)L ∩ FLeϕx. Suppose that [x, y] ∈ L. As cy centralizes sx, we have
s

sy
x = sy

x and

[sx, sy] = s−1
x sy

x = cxx
−1xy(c−1

x )y = [x, y]c[cx,cy ]
x (c−1

x )cy

= [x, y][cy, cx] = 〈x, y〉ϕeϕ.

It will sometimes be convenient to speak of H-ϕ-good elements even if ϕ
is not H-invariant. We say that g ∈ Gϕ is H-ϕ-good, if 〈c, g〉ϕ = 1 for all
c ∈ CH(Lg) ∩Hϕ.

4.5 Lemma. Let L � G and ϕ ∈ IrrL. Assume g ∈ Gϕ and L � H � G.
Then g is H-ϕ-good if and only if g centralizes (eϕFCH(Lg)eϕ)L.

Proof. If h /∈ Hϕ, then eh
ϕ �= eϕ and thus eh

ϕeϕ = 0. It follows eϕheϕ = 0.
Therefore (eϕFCH(Lg)eϕ)L = (FCHϕ(Lg)eϕ)L and the result follows from
Lemma 4.4.

For later use, we state the following simple lemma [27, p. 600]:

4.6 Lemma. Let g ∈ Gϕ and K � L. If gm is K-good where (m, |K/L|) = 1
then g is K-good.

Proof. For c ∈ CK(Lg), we have 〈c, g〉|K/L| = 〈c|K/L|, g〉 = 1 = 〈c, gm〉 =
〈c, g〉m. Thus 〈c, g〉 = 1.

We return to the character correspondence of Theorem 2.8, but now we
assume that (L, ϕ) is invariant in G. As we remarked earlier, if ψ(h) = 0
for some h ∈ H then it is more difficult to compute the correspondent of a
character. The next result shows that elements that are not K-good behave
“bad” in this sense.

4.7 Lemma. Assume Hypothesis 2.1 with L�G and ϕ invariant in G. Let
σ be the projective representation of Lemma 2.4. If h ∈ H is not K-ϕ-good,
then tr(σ(h)) = 0.
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Proof. We can assume that G = 〈K,h〉. Thus H/L = 〈Lh〉. Observe that
then the projective representation σ : H/L → S is automatically equivalent
to an ordinary representation since H/L is cyclic. We can thus assume that
Theorem 2.8 applies (with F = C, say). Let ψ be the magic character.
Observe that ϑL = nϕ and thus (χH)ϕ = χH for class functions χ lying
above ϑ. Let χ be an extension of ϑ to G. Then χH = ψξ for some extension
ξ of ϕ. As h is not ϕ-good, χ(hx) = 0 for all x ∈ L. Thus

0 =
∑
x∈L

|χ(hx)|2 =
∑
x∈L

|ψ(hx)ξ(hx)|2 = |ψ(h)|2
∑
x∈L

|ξ(hx)|2 = |ψ(h)|2|L|

where the last equation follows from a result of Gallagher [19, Lemma on
p. 178], as ξL = ϕ is irreducible. The result follows.

In our still quite general setting it may happen that ψ(h) = 0 even if h
is ϕ-good. For an example, let G = GL(2, 5), K = SL(2, 5), L = Z(K) =
{1,−1} and H = 〈L, h〉 where h is the diagonal matrix with entries 2 and
1. Let ϕ be the faithful character of L and ϑ the character of degree 4 lying
above ϕ. (The character table of SL(2, 5) can be found in [26, p. 140].) As
ϕ is linear, we have 〈x, y〉ϕ = ϕ([x, y]). Since h and −h are not conjugate in
G, we have CK/L(h) = CK(h)/L. It follows that h is ϕ-good. However, the
extensions from ϑ to G vanish on h, while the extensions of ϕ to H do not
vanish (they are linear). This forces ψ(h) = 0.

4.2 Generalities on Character Fives

Examples like the one at the end of the last section do not occur if Irr(K |
ϕ) = {ϑ}, that is if ϕ is fully ramified in K. First we remind the reader of
some easy and well known equivalent conditions for a character to be fully
ramified. (The last condition is a consequence of the result of Gallagher [19]
about |Irr(K | ϕ)| mentioned before.)

4.8 Lemma. Let L �K, ϕ ∈ IrrL and ϑ ∈ Irr(K | ϕ). Then the following
are equivalent:

1. ϑL = nϕ with n2 = |K : L|,
2. ϕK = nϑ with n2 = |K : L|,
3. ϕ is invariant in K and Irr(K | ϕ) = {ϑ},
4. ϕ is invariant in K and ϑ vanishes outside L,
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5. eϕ = eϑ,

6. ϕ is invariant in K and {L} is the only ϕ-good conjugacy class of K/L.

If ϕ has these properties, we say that ϕ is fully ramified in K. We remark
that Howlett and Isaacs [25] have proved, using the classification of finite
simple groups, that K/L is solvable if some ϕ ∈ IrrL is fully ramified in K.

An interesting consequence of the last condition of the lemma is the fol-
lowing:

4.9 Corollary. Suppose ϕ ∈ IrrL is fully ramified in K, where K/L is
abelian. Let e be the exponent of K/L. Then Q(ϕ) contains a primitive e-th
root of unity.

Proof. The last condition of the lemma implies that 〈 , 〉ϕ is a nondegen-
erate alternating form on K/L × K/L. Since it has values in Q(ϕ)∗, this
enforces Q(ϕ) to contain a primitive e-th root of unity.

The following definition describes the situation we will be concerned with
in the rest of this chapter:

4.10 Definition. A character five is a quintuple (G,K,L, ϑ, ϕ) where G is
a finite group, L � K are normal subgroups of G, ϕ and ϑ are G-invariant
irreducible characters of L and K respectively and ϑL = nϕ where n2 =
|K : L|. An abelian (nilpotent, solvable) character five is a character five
(G,K,L, ϑ, ϕ) with K/L abelian (nilpotent, solvable1).

The term character five is due to Isaacs [27], but observe that he defines
a character five to be abelian, and he only considers character fives where
K/L is abelian. Since some of our results are valid when K/L is not abelian,
we drop the hypothesis of commutativity of K/L from the definition of a
character five. We hope that this change of definition will not cause too
much confusion.

The next result generalizes a result of Lewis [43, Theorem 4.3], which
itself generalizes a former result of Isaacs [27, Theorem 3.2]. The proof given
here is, however, completely different from their proofs, is shorter than Lewis’
proof, and does not depend on these former results.

4.11 Theorem. Let (G,K,L, ϑ, ϕ) be a character five and g ∈ G. Then the
K-ϕ-good cosets of L contained in Kg are all conjugate under K.

1Of course, by the before-mentioned result of Howlett and Isaacs [25], every character
five is solvable.
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Proof. We may assume G = 〈K, g〉. Let x ∈ K. Then xg is K-good if and
only if it is good in G, since CG(Lxg) = CK(Lxg)〈xg〉 and 〈xg, xg〉 = 1. Let

ϑ̂ ∈ Irr(G | ϑ). Then ϑ̂ is an extension of ϑ and
∑

x∈K |ϑ̂(xgj)|2 = |K| for

every j ∈ N [19, Lemma on p.178]. Therefore ϑ̂(xgj) �= 0 for some x ∈ K.
But then the element xgj is ϕ-good. Thus every coset of K contains at least
one ϕ-good conjugacy class of G/L (more precisely, the pre-image of such a
conjugacy class in G). The number of ϕ-good conjugacy classes of G/L is
|Irr(G | ϕ)| = |Irr(G | ϑ)| = |G/K|. It follows that every coset of K contains
exactly one conjugacy class of ϕ-good cosets of L. In particular, the good
cosets of L in the coset Kg are conjugate under G. Since G = 〈K, xg〉 for
any x ∈ K, they are conjugate under K.

Let (G,K,L, ϑ, ϕ) be a character five and S = (eϕFKeϑeϕ)L, where F

is a field containing the values of ϕ. As we saw earlier in the more general
situation of Hypothesis 2.1, the group G/L acts on S and S is central simple,
so that we can choose σ(g) = σ(Lg) ∈ S with sg = sσ(g) for all s ∈ S. This
defines a projective representation from G/L into S. We now prove some
simple facts about this projective representation. We keep the notation just
introduced.

4.12 Lemma. S = (FKeϕ)L =
⊕

x∈K/L Fsx with units sx ∈ S ∩ FLeϕx. If

g ∈ G and x ∈ CK/L(g) then sg
x = 〈x, g〉sx.

Proof. Since ϕ is fully ramified in K, we have in fact eϑ = eϕ. The rest of
the lemma now follows from Lemma 4.4.

The next result describes the character of σ.

4.13 Proposition. Let g ∈ G and choose σ(g) ∈ S with sg = sσ(g) for all
s ∈ S. Then

tr(σ(g)−1) tr(σ(g)) =
∑

x∈CK/L(g)

〈x, g〉 =

{
|CK/L(g)| if g is K-good

0 otherwise.

Proof. The second equation is clear. Without loss of generality, we can as-
sume that S splits, that is S ∼= Mn(F). The F-linear map κ from S to S
sending s to sσ(g) has trace tr(σ(g)−1) tr(σ(g)), as an easy computation with
matrix units shows. Now we use as basis of S the sx, x ∈ K/L, of the last
lemma. If x /∈ CK/L(g) then (sx)

g is a multiple of another basis element and
so it contributes nothing to the trace of κ. If x ∈ CK/L(g), the contribution
is 〈x, g〉 by the last lemma. The result now follows.
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It is interesting that for a K-good element g we can give a σ(g) in terms
of the sx explicitly. We use here an idea of Ward [66, Proposition 2.1].

4.14 Proposition. Suppose g ∈ G is K-good. Set

σ(g) :=
∑

x∈K/L

s−1
x sg

x.

Then σ(g) is an invertible element of S independent of the choice of the sx

and we have sg = sσ(g) for all s ∈ S.

Proof. The sx are unique up to scalars and so σ(g) is independent of their
choice.

From the definition of σ(g) we get at once s−1
y σ(g)sg

y = σ(g) for all y ∈
K/L. As the sy form a basis of S, we have σ(g)sg = sσ(g) for all s ∈ S. It
follows that σ(g)σ(g−1) ∈ Z(S). Therefore σ(g)σ(g−1) = λ1S = λs1 for some
λ ∈ F. We compute

λ =
∑

x∈K/L

∑
y∈K/L

[x,g][y,g−1]=1

s−1
x sg

xs
−1
y sg−1

y =
∑

x∈K/L
c∈CK/L(g)

s−1
x sg

xs
−1
cxgs

g−1

cxg

=
∑

x∈K/L
c∈CK/L(g)

s−1
x sg

x(s
g
x)
−1s−1

c sg−1

c sx =
∑

x∈K/L
c∈CK/L(g)

s−1
x 〈c, g−1〉sx

= |K/L||CK/L(g)| �= 0.

Thus σ(g) is invertible. The proof is complete.

If g is not K-good then by Theorem 4.11 there is x ∈ K sucht that xg is
K-good. Then we can define σ(xg) as above, and set σ(g) = s−1

x σ(xg).
In view of Theorem 2.8 we are interested in the case where the projective

representation is in fact a linear representation when restricted to a comple-
ment H/L of K/L, so that we have a magic representation.

We now prove some properties of magic characters and the associated
character correspondences for character fives. The first restates part of The-
orem 2.8.

4.15 Corollary. Let (G,K,L, ϑ, ϕ) be a character five with a magic charac-
ter ψ defined on H. Suppose χ ∈ Irr(G | ϑ) and ξ ∈ Irr(H | ϕ) correspond
to each other under the bijection of Theorem 2.8. Then

χH = ψξ and ξG = ψχ.

Proof. Follows from Theorem 2.8, since now (χH)ϕ = χH and (ξG)ϑ = ξG.
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The following is an additional property of the character correspondence:

4.16 Proposition. Let (G,K,L, ϑ, ϕ) be a character five where G is π-sepa-
rable and K/L a π-group. Let ψ be a magic character with ord(ψ) a π-num-
ber, and ι the character correspondence of Theorem 2.8. Then χ ∈ Irr(G | ϑ)
is π-special if and only if χι is.

We will need the following properties of π-special characters in the proof:
Suppose that G is π-separable and N �G. Then

1. If G/N is a π-group, ζ ∈ IrrN and χ ∈ Irr(G | ζ), then χ is π-special
if and only if ζ is π-special.

2. If G/N is a π′-group and ζ ∈ IrrN is invariant in G and π-special, then
the unique extension χ of ζ to G with (|G/N |, ord(χ)) = 1 is the only
π-special character in Irr(G | ϑ). Conversely, if G/N is a π′-group and
χ ∈ IrrG is π-special, then ζ = χN is irreducible and π-special.

See [26, §40].

Proof of Proposition 4.16. By induction on |G/K|. If G = K then the result
is clear. Suppose K < G and let N � G be a maximal normal subgroup of
G containing K. Set ξ = χι. Let ζ be a irreducible constituent of χN . Then
τ = ζ ι is a constituent of ξN∩H = (χι)N∩H by Property 7 in Theorem 2.8.
By induction, ζ is π-special if and only if τ is. If G/N is a π-group the
result follows. Suppose that G/N is a π′-group. From χH = ψξ we get by
computing determinants

det(χH) = (detψ)ξ(1)(det ξ)ψ(1).

From this formula it follows that ord(ξ) is a π-number if and only if ord(χH)
is a π-number: remember that ord(ψ) and ψ(1) are π-numbers. As |G : H| is
also a π-number, ord(χH) is a π-number if and only if ord(χ) is a π-number.
Thus ξ has π-order if and only if χ has π-order.

If now χ is π-special, it has π-order. Also ζ = χN is π-special. By
induction, τ is π-special. We can conclude that ξ is the unique extension of
τ that has π-order and as such it is π-special. The same argument works in
the other direction.

4.17 Proposition. Assume that the magic character ψ has π-order, where π
is the set of prime divisors of |K/L|. If ord(hL) is π′, then ψ(h) is rational.
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Proof. By Propositions 2.43 and 2.44 we can assume that L ⊆ Z(G) and
that ϕ ∈ LinL. Now let P be a Hall π-subgroup of K and set Q = P ∩ L.
As K/Z(K) is a π-group, such a Hall subgroup exists and is characteristic
in K, thus normal in G. As P Z(K) = K, ϑP is irreducible. It follows that

CPeϑP
� a �→ aeϑ ∈ CKeϑ

is an isomorphism. Let F be the field that is obtained by adjoining a |P |-th
root of unity to Q, and set T = FPeϑP

. Since F is a splitting field for P , we
have T ∼= Mn(F). Let σ be a magic representation with character ψ. Now
conjugation with σ(h), h ∈ H, leaves T ⊂ S invariant. Thus there is λ ∈ C

with λσ(h) ∈ T . Let d = ord(hL). Then (λσ(h))d = λd1T ∈ T , that is
λd ∈ F. Also det(λσ(h)) = λn det(σ(h)) ∈ F. If d is π′ then det(σ(h)) = 1
and so λn ∈ F. Since (d, n) = 1 we get λ ∈ F. It follows that σ(h) ∈ T ∼=
Mn(F) and ψ(h) ∈ F. But the eigenvalues of σ(h) lie in a field E obtained
by adjoining a primitive d-th root of unity to Q. Again from (d, |P |) = 1 we
get F ∩ E = Q [41, Corollary on p. 204]. Thus ψ(h) ∈ Q as claimed.

4.18 Remark. Actually, we have shown more than stated in the proposition: if
U/L � H/L is coprime withK/L, then σU is afforded by an F-representation.

4.3 Coprime Character Fives

When does a character five admit a magic representation? In the next few
sections we give some sufficient conditions. The first one is essentially Propo-
sition 2.15 applied to character fives.

4.19 Proposition. Let (G,K,L, ϑ, ϕ) be a coprime character five (that is,
(|G : K|, |K : L|) = 1). Then there is H � G with G = HK and H ∩K = L
and a rational magic character ψ of H/L vanishing nowhere such that the
equation χH = ψξ defines an isometry between CF (G | ϑ) and CF (H | ϕ).

Proof. By the Schur-Zassenhaus Theorem, there is a complement H/L of
K/L in G/L. Apply Proposition 2.15 to get a magic character ψ. By
Lemma 4.6, every h ∈ H is K-good and thus ψ(h) �= 0 for all h ∈ H by
Proposition 4.13. We can choose a ψ with detψ = 1. By Proposition 4.17,
this ψ is rational. The character correspondence of Theorem 2.8 is deter-
mined by the equation χH = ψξ since ψ has no zeros.

4.20 Remark. Suppose x ∈ H/L has order pr where p is a prime. Let ω ∈ C

be a primitive pr-th root of 1. Then it is well known that ω − 1 ∈ P where



Section 4.3 Coprime Character Fives 55

P is the prime ideal of Z[ω] with P ∩ Z = pZ. It follows that ψ(x) ≡ ψ(1)
mod P. This holds for any character and is well known. Since here ψ(x) is
rational, we even have that ψ(x) ≡ ψ(1) mod p. If p is an odd prime, then
ψ(x) is completely determined by the two conditions

ψ(x)2 = |CK/L(x)| and ψ(x) ≡ n mod p.

We emphasize that we need only the character ψ to compute the corre-
spondence: The correspondent of χ ∈ Irr(G | ϑ) is (1/ψ)χH and the corre-
spondent of ξ ∈ Irr(H | ϕ) is (1/ψ)ξG. If |K/L| is odd, even more can be
said.

4.21 Corollary. In the situation of Proposition 4.19 assume that |K/L| is
odd. Let H/L be a complement of K/L in G/L and ψ the unique magic
character with detψ = 1. Then for every U/L � H/L with |U/L| odd, 1U is
the unique constituent of ψU with odd multiplicity.

Proof. By Proposition 4.17 we know that the magic character ψ with detψ =
1 is rational. By Proposition 4.13, |ψ(h)|2 = |CK/L(h)| for all h ∈ H. Since
|K/L| is odd, ψ(h) ∈ Z is odd for all h ∈ H. For U � H with |U/L| odd, let
β = ψU−1U , a (generalized) character of U with L � ker β. For τ ∈ Irr(U/L)
we have

|U/L|(β, τ)U/L =
∑

u∈U/L

β(u)τ(u) ∈ 2Z

since β(u) is even for all u ∈ U . As |U/L| is odd, we conclude that (β, τ)U

is even. Thus every τ ∈ Irr(U/L) occurs with even multiplicity in β. Thus
1U occurs with odd multiplicity in ψ = 1U + β, while all other constituents
occur with even multiplicity, as claimed.

We remark that in the proof we have shown that β can be divided by
2. For this we could have appealed to a more general result of Knörr [39,
Proposition 1.1(iii)], but for the convenience of the reader we have repeated
the simple argument here.

The following result includes two related results of Lewis [43, 44, Theo-
rem A in both]:

4.22 Corollary. Let (G,K,L, ϑ, ϕ) be a coprime character five with |G : L|
odd and H/L a complement of K/L in G/L. In the bijection of Proposi-
tion 4.19, χ ∈ Irr(G | ϑ) and ξ ∈ Irr(H | ϕ) correspond if and only if (χH , ξ)
is odd.

Proof. From the last result follows that ψ = 1 + 2γ for some character γ of
H/L. From χH = ψξ we get χH = ξ+ 2γξ. Thus ξ is the only constituent of
χH occurring with odd multiplicity.
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In the next section we will see that we can remove the hypothesis of
coprimeness when we add the hypothesis that K/L is abelian (and odd).

4.4 Odd Abelian Character Fives

The main goal of this section is to give alternative proofs of some results due
to Isaacs [27].

4.23 Theorem. Let (G,K,L, ϑ, ϕ) be an odd abelian character five2 and F

a field containing the values of ϕ. Then there is H � G with G = HK
and L = H ∩ K, such that every element of H is K-good, and a magic
representation σ : H/L→ (FKeϕ)L.

We will first prove the theorem for an algebraically closed field. Then
we will show that there is a canonical magic character, and finally we will
compute the field of values of this canonical character. As this field of val-
ues happens to be contained in Q(ϕ), we will be able to conclude that the
magic representation belonging to the canonical magic character has image
in (FKeϕ)L.

We will need the following proposition in the proof.

4.24 Proposition. Let (G,K,L, ϑ, ϕ) be a character five. Assume that there
is τ ∈ AutG that leaves invariant K, L and ϑ, and that CK/L(τ) = 1. Set
U/L = CG/L(τ). Then every element of U is K-good and there is a magic
representation σ : U/L→ S = (CKeϕ)L.

Proof. First we show that U contains only K-good elements. Let u ∈ U and
C = CK/L(u). As (Lu)τ = Lu, it follows that Cτ = C. From CC(τ) = 1 we
get [C, τ ] = C. Thus every element in C has the form c−1cτ for some c ∈ C.
We have

〈c−1cτ , u〉ϕ = 〈c, u〉−1
ϕ 〈cτ , u〉ϕ = 〈c, u〉−1

ϕ 〈cτ , uτ 〉ϕ = 〈c, u〉−1
ϕ 〈c, u〉ϕ = 1

since Luτ = Lu and 〈cτ , uτ 〉ϕ = 〈c, u〉ϕ. It follows that u is K-good. (This is
in fact exactly the same proof as that of Isaacs [27, Lemma 3.7] for abelian
K/L.)

We now work towards the existence of a magic representation. For conve-
nience, we let notation be as if τ ∈ G. This is no loss of generality, since we
can work in the semidirect product 〈τ〉�G. As S is isomorphic to a matrix
ring, we can choose, for every Lu ∈ U/L, a σ̃(Lu) ∈ S with su = sσ̃(Lu) for

2This means that K/L is abelian of odd order
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all s ∈ S. We have then σ̃(Lu)σ̃(Lv) = α(Lu,Lv)σ̃(Luv) for some factor set
α of U/L. Let k = ord(τ). Then σ̃(τ)k centralizes S, and thus is some scalar
a ∈ C. Let α be a k-th root of a and set t = α−1σ̃(τ).

Let V be the simple S-module (unique up to isomorphism). We claim
that t has the following properties:

1. tk = 1,

2. |trV t| = 1,

3. the eigenspaces of t are invariant under σ̃(u) for all u ∈ U .

That tk = 1 is clear from the definition. As tk = 1, we have

|tr(t)|2 = tr(t−1) tr(t) = |CK/L(τ)| = 1,

where the second equation follows from Proposition 4.13. To show that the
eigenspaces of t are σ̃(U)-invariant, it suffices to show that σ̃(u)t = tσ̃(u)
for all u ∈ U . As (Lu)τ = Lu, we have σ̃(u)t = λσ̃(u) for a scalar λ. But
tr(σ̃(u)) �= 0 since u is good. Therefore λ = 1 and σ̃(u)t = tσ̃(u). The claim
is shown.

Now let ε1, . . . , εr be the different eigenvectors of t. Let Vj = {v ∈ V |
vt = εjv} be the space of eigenvectors of t with eigenvalue εj. Then V is the
direct sum of the Vj (as tk = 1). Set dj = dimVj and δj(u) = det(σ̃(u) on Vj).
From σ̃(u)σ̃(v) = α(u, v)σ̃(uv) we get δj(u)δj(v) = α(u, v)djδj(uv). As
tr(t) =

∑
j djεj is an algebraic integer of norm 1, it follows that the greatest

common divisor of the dj in Z is 1. Choose kj ∈ Z with
∑

j kjdj = −1 and
put

σ(u) =

(
r∏

j=1

δj(u)
kj

)
σ̃(u).

Then

σ(u)σ(v) =

(
r∏

j=1

δj(u)
kj

)
σ̃(u)

(
r∏

j=1

δj(v)
kj

)
σ̃(v)

=

(
r∏

j=1

(
δj(uv)α(u, v)dj

)kj

)
α(u, v)σ̃(uv)

=

(
r∏

j=1

δj(uv)
kj

)
σ̃(uv) = σ(uv).

Thus σ is the required magic representation.
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4.25 Remark. The proposition is also true for every field F containing a
primitive k-th root of unity, and such that (FKeϕ)L ∼= Mn(F). (Here as
before k = ord(τ).)

Proof. The only step in the proof of the proposition that needs further jus-
tification is the definition of t. Let t0 = σ̃(τ) be any element with st = sτ .
We have tk0 = a ∈ F. Let α be a root of the polynomial Xk − a. We have to
show that α ∈ F. By assumption, F contains a primitive kth root of unity, ε.
It follows that F(α) has cyclic Galois group over F of order d which divides
k and that αd ∈ F [41, Chapter VIII, Theorem 10]. Let αd = b, say. The
minimal polynomial of t0 over F divides

Xk − a =

(k/d)−1∏
i=0

Xd − εdib.

A matrix of t0 in canonic rational form contains thus only blocks of the form⎛⎜⎜⎜⎜⎜⎜⎝

0 1 0 . . . 0

0 0 1
. . .

...
...

. . . . . . 0

0
. . . 1

εdib 0 . . . . . . 0

⎞⎟⎟⎟⎟⎟⎟⎠ .

However, τ is K-good and thus tr(t0) �= 0 by Proposition 4.13. This is only
possible when d = 1, which means α ∈ F.

In our proof of Theorem 4.23 we will also need the following result:

4.26 Lemma. [27, Corollary 4.4], [31, Lemma 3.3 and proof of Theo-
rem 3.1] Let K � G with K ′ � L = Z(K) � Z(G), |K/L| odd, and L
cyclic, and suppose that every coset of L in K contains an element, k, such
that L∩〈k〉 = 1. Then there is τ ∈ AutG of order 2 which inverts K/L such
that for H = CG(τ) we have G = HK and H ∩K = L.

Proof of Theorem 4.23 for F = C. Using Lemma 2.43, we can assume that
L � Z(G), that L is cyclic and that every coset of L inK contains an element,
x, such that L ∩ 〈x〉 = 1. As K/L is odd, we can apply Lemma 4.26. Let H
be as in that lemma. Now Proposition 4.24 applies so that there is a magic
representation σ : H/L→ (CKeϕ)L.

The proof for a general field F will be given at the end of this section.
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In the odd abelian case, it is possible to choose a canonical ψ, as Isaacs
has shown. The existence and the most important properties of this canonical
magic character can be derived from what we have done so far, with (I hope)
simpler proofs. Some of the arguments we need are taken from the original
proof, but for the convenience of the reader and the sake of completeness
we repeat them here. The following is an adaption of Isaacs’ definition of
“canonical” [27, Definition 5.2] to our purposes.

4.27 Definition. Let (G,K,L, ϑ, ϕ) be a character five with |K/L| odd. Let
π be the set of prime divisors of |K/L|. A magic character ψ ∈ Z[Irr(H/L)]
is called canonical if

1. ord(ψ) is a π-number and

2. If p ∈ π and P ∈ Sylp(H), then 1P is the unique irreducible constituent
of ψP which appears with odd multiplicity.

4.28 Remark. Assume Hypothesis 2.1 with (G,K,L, ϑ, ϕ) a character five. If
a canonical magic character ψ : H → C exists, then all h ∈ H are good.

Proof. Let h ∈ H. We have to show that 〈h, c〉ϕ = 1 for all c ∈ CK/L(h).
Write h =

∏
p hp as product of its p-parts. Since CK/L(h) =

⋂
p CK/L(hp), we

may assume that h itself has prime power order. If p does not divide |K/L|,
then h is good by Lemma 4.6. If p divides |K/L|, then let P ∈ Sylp(H)
be a Sylow p-subgroup containing h. Then, by canonicalness, ψP = 1P +
2β for some character β. It follows that ψ(h) �= 0 and thus h is good by
Proposition 4.13.

If K/L is not abelian, it may happen that there is no canonical ψ even if
there is a magic character. For example it may be that there are p-elements
in a complement that are not good. An example where this occurs has been
given by Lewis [42]. In his example, K/L is a p-group, and the complement
H is unique up to conjugacy.

4.29 Lemma. The complement H given, there is at most one canonical
magic character ψ.

Proof. [27, p. 610] Suppose ψ and ψ1 are canonical. Then ψ1 = λψ for some
λ ∈ Lin(H/L). Let π be the set of primes dividing |K/L|. If some prime q /∈ π
divides ord(λ), then from detψ1 = λn detψ and (q, n) = 1 we conclude that
q divides ord(ψ1), but this contradicts ψ1 being canonical. Therefore ord(λ)
is a π-number. Let p ∈ π and P ∈ SylpH. Then [λP , (ψ1)P ] = [1P , ψP ]
and the last is odd by the definition of canonical. From the assumption
that ψ1 is canonical too we conclude that λP = 1P . This holds in fact for all
π-subgroups of H. As ord(λ) is a π-number, we have λ = 1H and ψ1 = ψ.
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4.30 Theorem. If (G,K,L, ϑ, ϕ) is an odd abelian character five, then there
is a canonical magic character ψ. Let H/L be the complement of K/L in G/L
on which ψ is defined. For every subgroup U/L � H/L with |U/L| odd, 1U is
the unique irreducible constituent of ψ which appears with odd multiplicity.

Proof. (cf. Isaacs [27, Theorem 5.3].) As in the proof of Theorem 4.23 we
can assume that G has an automorphism τ of order 2 inverting K/L and
leaving K, L and ϕ invariant. After replacing G by the semidirect product
of 〈τ〉 with G, we can assume that τ ∈ G. By Theorem 4.23 there is a
magic character ψ, and by Lemma 2.11 we can assume that ψ has π-order.
As Lτ ∈ Z(H/L), we can write ψ = ψ+ + ψ− where ψ+(τ) = ψ+(1) and
ψ−(τ) = −ψ−(1).

Let L � U � H with |U/L| odd and take u ∈ U . As τ centralizes Lu and
Lu has odd order, we have Lτ = (Lτu)ord(u). Thus CK/L(τu) ⊆ CK/L(τ) = 1.
Therefore

1 = |ψ(τu)| = |ψ+(u)− ψ−(u)|
for every u ∈ U . This yields (ψ+−ψ−, ψ+−ψ−)U = 1 and hence (ψ+−ψ−)U =
±λ where λ ∈ LinU/L. The sign depends not on U , but only on wether
ψ+(1) > ψ−(1) or ψ+(1) < ψ−(1). We conclude

ψU = 2γU + λ, where γ =

{
ψ− if ψ+(1) > ψ−(1)

ψ+ if ψ+(1) < ψ−(1).

This equation shows that λ is the only constituent of ψU occuring with odd
multiplicity. Taking determinants in the equation yields detψU = (det γU)2λ.
Thus λ can be extended to a linear character of H/L, namely to μ =
detψ(det γ)−2. Write μ = μπμπ′ where μπ is the π-part of μ. Then μπψ
still has determinantal order a π-number. For P ∈ Sylp(H) where p ∈ π we
have (μπ)P = μP and thus the unique irreducible constituent of μπψ with
odd multiplicity is 1P . This shows that μπψ is canonical and completes the
proof of the existence of a canonical magic character.

Now assume that ψ is canonical. We have already seen that for |U/L| odd,
ψ has a unique constituent λ of odd multiplicity and that this constituent
is linear. To show that λ = 1U it suffices to show that λP = 1P if P/L is a
p-subgroup of U/L. If p ∈ π this is clear from the definition of canonical. If
p /∈ π, then (|P/L|, |K/L|) = 1 and ψP is rational by Corollary 4.17. Thus
every field automorphism of the complex numbers fixes ψP and, a fortiori,
its unique irreducible constituent occurring with odd multiplicity, λ. Since p
is odd if P/L �= 1, we conclude λP = 1P . The proof is complete.

We remark that the last few sentences of the proof can be replaced by an
appeal to Corollary 4.21, applied to P .
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As in the coprime case, we get as a corollary:

4.31 Corollary. Let (G,K,L, ϑ, ϕ) be an abelian character five with |G : L|
odd. Then there is a complement H/L of K/L in G/L and a bijection between
Irr(G | ϑ) and Irr(H | ϕ) where χ and ξ correspond if and only if (χH , ξ) is
odd.

We have now proved the most important properties of the character cor-
respondence. In his paper, Isaacs describes an algorithm for computing the
values of the canonical character ψ. Actually, this is part of his proof of the
existence of the character correspondence. We now give alternative proofs of
some of his results. These are strong enough to obtain the value field of the
canonical magic character.

We assume throughout that (G,K,L, ϑ, ϕ) is a character five with K/L
odd abelian and that there is τ ∈ G with xτ = x−1 for all x ∈ K/L, and
H = CK/L(τ). We need a lemma.

4.32 Lemma. Hold the assumptions just introduced. Then for every x ∈
K/L there is a unique element

sx ∈ (CKeϕ)L ∩ Cx with (sx)
τ = s−1

x and (sx)
ord(x) = eϕ.

For these elements, we have

sxsy = α(x, y)sxy with α(x, y)2 = 〈x, y〉ϕ and α(x, y) = 〈x, y〉
n+1

2
ϕ .

In particular, α : K/L×K/L→ C is bilinear and alternating.

Proof. Let x ∈ K/L and tx ∈ (CKeϕ)L∩Cx. As dimC

(
(CKeϕ)L∩Cx−1

)
= 1,

we have tτx = λt−1
x for some λ ∈ C. Take α with α2 = λ. Then (α−1tx)

τ =
α−1λt−1

x = αt−1
x = (α−1tx)

−1. Set k = ord(x). Then (α−1tx)
k = εeϕ ∈ Ceϕ.

We have
εeϕ = (εeϕ)τ = (α−1tx)

kτ = (α−1tx)
−k = ε−1eϕ.

Thus ε = ±1. As k is odd, sx = εα−1tx is an element as required. Uniqueness
is also clear now.

Let α be the factor set of K/L defined by the sx’s. Then

α(x, y)s−1
xy = (α(x, y)sxy)

τ = (sxsy)
τ = s−1

x s−1
y = 〈x, y〉ϕs−1

y s−1
x

= 〈x, y〉ϕ(sxsy)
−1 = 〈x, y〉α(x, y)−1s−1

xy ,

where we have used Lemma 4.4. It follows that α(x, y)2 = 〈x, y〉.
We claim that α(x, y)n2

= 1 for all x, y ∈ K/L: Taking determinants, we
first get det(sx) det(sy) = α(x, y)n det(sxy). The abelian group K/L of order
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n2 carries a nondegenerate bilinear form, and thus has exponent dividing
n. Thus sn

x = 1, and the claim follows. As n is odd, it now follows that

α(x, y) = 〈x, y〉
n2+1

2
ϕ . So a posteriori we get α(x, y)n = 1. The proof now

follows.

4.33 Theorem. Let ψ be a magic character of an odd abelian character five
(G,K,L, ϑ, ϕ), and let v and w ∈ H/L. Then

ψ(vw) =
ψ(v)ψ(w)

ψ(1)|CK/L(v)||CK/L(w)|
∑

x,y∈K/L
[x,v][y,w]=1

〈xv, x〉2ϕ〈yw, y〉2ϕ.

Proof. Let σ be the magic representation affording the magic character ψ.
We may assume that Lemma 4.32 applies, so choose the sx as done there.
Observe that trS(sx) = 0 if x �= 1 and trS(s1) = trS(eϕ) = ψ(1) = n. From
this and Proposition 4.14 it follows that for v good, we have

σ(v) =
ψ(v)

ψ(1)|CK/L(v)|
∑

x∈K/L

s−1
x sv

x, (∗)

and similar for w. To compute ψ(vw) = trS(σ(vw)), we determine the co-
efficient of 1S = s1 in σ(v)σ(w). Observe that our special choice of the sx

ensures that s−1
x = sx−1 and sv

x = sxv . This gives

ψ(vw) = ψ(1) · ψ(v)ψ(w)

ψ(1)2|CK/L(v)||CK/L(w)|
∑

x,y∈K/L
[x,v][y,w]=1

s−1
x sv

x · s−1
y sw

y

=
ψ(v)ψ(w)

ψ(1)|CK/L(v)||CK/L(w)|
∑

x,y∈K/L
[x,v][y,w]=1

α(x−1, xv)α(y−1, yw).

As |K/L| is odd, the map x �→ x2 is a bijection of K/L on itself. Also, if
[x, v][y, w] = 1, then [x2, v][y2, w] = [x, v]2[y, w]2 = 1, as K/L is abelian.
Thus ∑

x,y∈K/L
[x,v][y,w]=1

α(x−1, xv)α(y−1, yw) =
∑

x,y∈K/L
[x,v][y,w]=1

α(x−2, (x2)v)α(y−2, (y2)w)

=
∑

x,y∈K/L
[x,v][y,w]=1

α(x, xv)−4α(y, yw)−4

=
∑

x,y∈K/L
[x,v][y,w]=1

〈xv, x〉2ϕ〈yw, y〉2ϕ,

as required.
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The following corollary generalizes a result of Isaacs [27, Theorem 6.1].

4.34 Corollary. Let ψ be the canonical magic character of a odd abelian
character five, and let u ∈ H have odd order modulo CH(K/L). Then

ψ(u) =
1

ψ(1)

∑
x∈K/L

〈x, xu〉2ϕ.

Proof. We may assume that there is τ ∈ G inverting K/L and centralizing
H/L, where ψ is defined on H/L. In the proof of Theorem 4.30 it was shown
that

ψ(τu) = ψ+(u)− ψ−(u) = ±1 = ψ(τ).

We now apply the last theorem with v = τ and w = τu and get

ψ(u) =
ψ(τ)ψ(τu)

n

∑
x,y∈K/L

[x,τ ][y,τu]=1

〈xτ , x〉2ϕ〈yτu, y〉2ϕ

=
1

n

∑
x,y∈K/L

x−2[y,τu]=1

〈x−1, x〉2〈(y−1)u, y〉2

=
1

n

∑
y∈K/L

〈y, yu〉2ϕ,

since x �→ [x, τ ] = x−2 is a bijection of K/L.

4.35 Corollary. Assumptions as in the last corollary, and let ε be a primitive
n-th root of unity. Let Γ = Gal(Q(ε)/Q). Let F be the fixed field of Γ2. Then
the canonical character ψ has values in F.

Proof. An automorphism α of Q(ε) sends ε to εk, where (k, n) = 1. It follows
〈x, y〉α2

ϕ = 〈xk, yk〉ϕ. If u ∈ H has odd order modulo L, then it follows from

the formula in the last corollary that ψ(u)α2
= ψ(u), since xk runs through

K/L if x does. If the order of t modulo L is a power of 2, then ψ(t) ∈ Q by
Proposition 4.17. For arbitrary h, write h = tu with t of order 2r and u of
odd order, and apply Theorem 4.33. Consider the set

E = {(x, y) ∈ K/L×K/L | [x, t][y, u] = 1}.
Sending (x, y) to (xk, yk) permutes this set. It follows that∑

(x,y)∈E

〈xt, x〉2ϕ〈yu, y〉2ϕ ∈ F.

Thus ψ(h) ∈ F as claimed.
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Remark. F depends on the prime divisors of n, but not on their multiplicity.
Instead of n we could have taken the exponent of K/L. Note that

Gal(F/Q) ∼= Γ/Γ2 ∼= C
{p|p prime and divides n}
2 .

Finally, let us show that the canonical magic representation has image in
(Q(ϕ)Keϕ)L.

Proof of Theorem 4.23 for arbitrary field. Let F be any field containing the
values of ϕ. Let e be the exponent of K/L. By Corollary 4.9, F contains
primitive e-th roots of unity. By Corollary 4.35, F contains the values of
the canonical magic character ψ. From equation (∗) on page 62, we see that
σ(h) ∈ (FKeϕ)L for all h ∈ H. This finishes the proof of Theorem 4.23.

4.5 Strong Sections

We give now another sufficient condition for the existence of magic represen-
tations. This result is in essence due to Dade [6], but we can considerably
generalize it without to much effort.

First we adapt Isaacs’ definition of a“strong section” [30] to our purposes:

4.36 Definition. Let K/L be a section of G, assume that ϑ ∈ IrrK is
G-invariant and let ϕ ∈ IrrL be a constituent of ϑL. Then (G,K,L, ϑ, ϕ) is
strong if there is M � Gϕ, such that the following conditions hold:

1. MK �G,

2. CK/L(M) = 1,

3. M ∩K = L,

4. (|M/CM(K/L)|, |K/L|) = 1,

5. Every element of CM(K/L) is K-ϕ-good.

If we replace the last three conditions by the condition (|M/L|, |K/L|) =
1, we get a special case. By Lemma 4.6, the last condition is equivalent to
every element of M being K-ϕ-good. By Lemma 4.5, it is equivalent to the
condition that CM(K/L) centralizes (CKeϕ)L. (We do not assume that ϕ is
invariant in K.) The hypotheses mean that M induces a coprime fixed point
free operator group of K/L. It follows from the classification of finite simple
groups that K/L is solvable [56]. The solvability of K/L will be assumed
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in what follows. (The reader may simply consider this to be an additional
hypothesis in Definition 4.36.)

The original definition does not depend on the character ϕ given, but is
completely group theoretic. However, I found that unavoidable. We digress
to show that our definition extends Isaacs’ definition. Recall that an abelian
character five is a character five (G,K,L, ϑ, ϕ) with K/L abelian.

4.37 Proposition. An abelian character five (G,K,L, ϑ, ϕ) is strong in the
sense of Definition 4.36 if and only if there is N � G such that the group
A ∼= N/CN(K/L) of automorphisms of K/L induced by N satisfies

1. CK/L(A) = 1 and

2. (|A|, |K/L|) = 1.

Proof. First suppose (G,K,L, ϑ, ϕ) is strong as defined in Definition 4.36.
Let N = MK. Since K/L is abelian, we have K � CG(K/L). Thus
CN(K/L) = CM(K/L)K. This yields

N/CN(K/L) = MK/CM(K/L)K ∼= M/(M ∩CM(K/L)K)

= M/CM(K/L),

as M ∩K = L. The conditions on A follow.
Conversely, let N as above be given. Let C = CG(K/L) and B = {c ∈

C | 〈c, x〉ϕ = 1 for all x ∈ K}. Thus B = K⊥ with respect to the form
〈 , 〉ϕ : K × C → C. We conclude |C/B| � |K/L|. Since elements of B are
good, we have B ∩ K = L. Therefore |K/L| = |BK/B| � |C/B|. Thus
C = BK and |C/B| = |K/L|. We may assume C � N (otherwise replace N
by NC). By assumption, |N/C| is prime to |K/L| = |C/B|. Therefore C/B
is a normal Hall subgroup of N/B. Let M/B be a complement. Then N =
MC = MBK = MK �G (Condition 1 in Definition 4.36) and CM(K/L) =
M ∩ C = B (Condition 5). Thus M/CM(K/L) ∼= N/C ∼= A, which acts
fixed point freely and coprimely on K/L. Thus Conditions 2 and 4 hold.
Finally, Condition 3 follows from M ∩ K = CM(K/L) ∩ K = B ∩ K = L.
The proof is finished.

The following is essentially Theorem B of Isaacs [30], but without the
hypothesis that K/L is abelian or ϕ is fully ramified in K.

4.38 Theorem. Suppose (G,K,L, ϑ, ϕ) is strong. Then there is H � G
with G = HK and L = H ∩K and a magic representation σ : H/L → S =
(CKeϕ)L.
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To prove his Theorem B, Isaacs uses an intermediate result [30, The-
orem 6.1] saying that if ϕ can be extended to H in the situation of Theo-
rem 4.38, then ϑ can be extended to G. Our proof of Theorem 4.38 follows the
lines of Isaacs’ proof of this result. While Isaacs assumes K/L to be abelian
and ϕ fully ramified in K, we will suppose only that K/L is solvable. As
remarked above, this follows, since by assumption K/L has a coprime fixed
point free operator group. However, the first very easy step of the proof will
be to reduce the situation to one where (G,K,L, ϑ, ϕ) is an abelian character
five.

First we prove the following technical lemma, which will be used in the
proof of Theorem 4.38. It is another induction-type result.

4.39 Lemma. Let (G,K,L, ϑ, ϕ) be a character five with K/L abelian and
let H � G such that G = HK and L = H ∩ K. Let A be a subgroup with
L � A � K and set U = NH(A). Suppose we have the following:

1. K/L =
∏

h∈[H:U ]A
h/L.

2. Different conjugates of A are orthogonal with respect to 〈 , 〉ϕ.

Then |Irr(A | ϕ)| = 1. Let Irr(A | ϕ) = {η}, say, and T = (CAeϕ)L. If there
is a magic representation τ : U/L → T for (AU,A, L, η, ϕ), then there is a
magic representation σ : H/L→ S for (G,K,L, ϑ, ϕ).

Proof. We first show that K/L is the direct product of the different con-
jugates of A/L. Since K/L is abelian and ϕ fully ramified in K, the form
〈 , 〉ϕ is defined on all of K/L and nondegenerate. If a ∈ A ∩∏h/∈NH(A)A

h,

then 〈a, x〉 = 1 for all x ∈ K and thus a ∈ L. The same argument holds if A
is replaced by one of its conjugates. It follows that K/L is the direct product
of the different conjugates of A/L and that the restriction of the form to A
is nondegenerate. From this it follows that ϕ is fully ramified in A.

It remains to construct a magic representation σ : H/L→ S, if τ is given.
For the readers knowing about tensor induction, we remark that the σ we
are going to construct is isomorphic with the tensor induced representation
of τ .

As in Lemma 4.12, choose sx ∈ S∗ ∩ CLx for x ∈ K/L. For a ∈ A
and b ∈ Ah �= A we have ssb

a = sb
a = 〈a, b〉sa = sa by Lemma 4.12 and the

assumption. Therefore T and T h centralize each other if h /∈ U . Let R be
a transversal of U in H. For x =

∏
r∈R a

r
r ∈ K/L =

∏
r∈RA

r/L we have
sx = λ

∏
r∈R s

r
ar

with some λ ∈ C. Thus S is generated by the T r, r ∈ R.
(In fact, S ∼=⊗r∈R T

r canonically, but we will not need this.)



Section 4.5 Strong Sections 67

Since ϕ is fully ramified in A, we have that T ∼= Md(C) for some d.
Let {Eij | i, j = 1, . . . , d} be a full set of matrix units in T . For maps
k, l : R→ {1, . . . , d} = [d] we define

Ek,l :=
∏
r∈R

Er
k(r),l(r) ∈ S =

∏
r∈R

T r.

The Ek,l, where k, l run through all the maps from R to [d], form a full set of
matrix units of S: Namely, let k, l, k̃ and l̃ ∈ [d]R. Using that the different
conjugates of T centralize each other, we get

Ek,lEk̃,l̃ =
∏
r∈R

Er
k(r),l(r)

∏
r∈R

Er
k̃(r),l̃(r)

=
∏
r∈R

(
Er

k(r),l(r)E
r
k̃(r),l̃(r)

)
= δl,k̃Ek,l̃.

Furthermore,

1S =
∏
r∈R

(1T )r =
∏
r∈R

d∑
k(r)=1

Er
k(r),k(r) =

∑
k∈[d]R

∏
r∈R

Er
k(r),k(r) =

∑
k∈[d]R

Ek,k.

Thus the Ek,l form a full set of matrix units.
The permutations onR act on [d]R by kπ(r) = k(rπ−1). For a permutation

π of R we now define
α(π) =

∑
k∈[d]R

Ek,kπ .

The straightforward computation

α(π1)α(π2) =
∑

k,l∈[d]R

Ek,kπ1El,lπ2 =
∑

k∈[d]R

Ek,kπ1π2 = α(π1π2)

shows that α is a homomorphism from the group of permutations of R into
S∗.

We claim that for r0 ∈ R and t ∈ T we have tr0α(π) = tr0π. It suffices to
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prove this for a matrix unit t = Eij. For this,

E
r0α(π)
ij =

∑
k∈[d]R

Ekπ ,k E
r0
ij

∑
l∈[d]R

El,lπ

=
∑

k

∏
r∈R

Er
k(rπ−1),k(r) E

r0
ij

∑
l

∏
r∈R

Er
l(r),l(rπ−1)

=
∑

k∈[d]R

k(r0)=i

∑
l∈[d]R

l(r0)=j

∏
r

Er
k(rπ−1),k(r)E

r
l(r),l(rπ−1)

= Er0π
ij

∑
k∈[d]R\{r0}

∏
r 
=r0

Erπ
k(r),k(r)

= Er0π
ij

∏
r 
=r0

∑
ν∈[d]

Erπ
νν

= Er0π
ij ,

as desired.
For h ∈ H and r ∈ R we write r • h for the unique element in R ∩ Urh.

This defines an action of H on R. We view α as being defined on H (via
that action), and we just have proved that trα(h) = tr•h.

Now suppose τ : U/L→ T is a magic representation. We define

σ(h) =

(∏
r∈R

τ(rh(r • h)−1)r

)
α(h).

First we show that this is an homomorphism. Let g, h ∈ H and set ur =
rg(r • g)−1 and vr = rh(r • h)−1 for r ∈ R. Then

rgh = ur(r • g)h = urvr•g(r • g • h) = urvr•g(r • (gh)).
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We get

σ(gh) =

(∏
r∈R

τ
(
rgh
(
r • (gh)

)−1
)r
)
α(gh)

=

(∏
r∈R

τ(urvr•g)r

)
α(g)α(h)

=

(∏
r∈R

τ(ur)
r

)(∏
r∈R

τ(vr•g)r

)
α(g)α(h)

=

(∏
r∈R

τ(ur)
r

)
α(g)

(∏
r∈R

τ(vr•g)rα(g)

)
α(h)

= σ(g)

(∏
r∈R

τ(vr•g)r•g
)
α(h)

= σ(g)σ(h).

Second we have to show that sh = sσ(h) for all s ∈ S. It suffices to do this
for elements tr where t ∈ T and r ∈ R. For these we have

trσ(h) = tr
∏

r′∈R τ
(
r′h(r′ • h)−1

)r′
α(h)

= trτ(rh(r • h)−1)rα(h)

= tτ(rh(r • h)−1)rα(h)

= trh(r • h)−1(r • h) = trh

as desired. This finishes the proof that σ is a magic representation.

As we remarked earlier, we have in fact constructed the tensor induced
representation of τ within S.

While the construction of σ in the proof apparently depends on the choice
of the Eij and of R, it turns out that sσ(h) = sh for all s ∈ S and the last
property determines σ(h) up to a scalar.

In the proof of Theorem 4.38, we will also need some standard facts on
coprime action, namely:

4.40 Lemma. Let A act on X and leave Y � X invariant, and assume
(|A|, |Y |) = 1. Then CX/Y (A) = CX(A)Y/Y .

4.41 Lemma. [30, Lemmas 2.4 and 2.5] Suppose A acts on K leaves L�K
invariant, and (|A|, |K/L|) = 1.
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1. If ϑ ∈ IrrA(K), then CK/L(A) acts transitively on IrrA(ϑL), which is
not empty. (That is, ϑL has an A-invariant constituent.)

2. Let K/L be abelian. If ϕ ∈ IrrA(L), then ϕK has an A-invariant con-
stituent ϑ; if CK/L(A) = 1, then ϑ is unique.

Both follow from a lemma of Glauberman [34, Lemma 13.8 and Corol-
lary 13.9]. The second part of Lemma 4.41 holds without the assumption
that K/L is abelian, but becomes more difficult to prove.

Proof of Theorem 4.38. We begin by producing the subgroup H. We have
CM(K/L) � KM and also KCM(K/L) � KM . The definition of strong
ensures that

|KCM(K/L)/CM(K/L)| = |K/L|
and |KM/KCM(K/L)| = |M/CM(K/L)|

are coprime. Thus KCM(K/L)/CM(K/L) is a normal Hall subgroup of
KM/CM(K/L) with complement M/CM(K/L). Let H = NG(M). The
Frattini argument yields G = HMK = HK. We have [H∩K,M ] ⊆M∩K =
L and thus (H ∩K)/L ⊆ CK/L(M) = 1. Thus H ∩K = L.

Since CK/L(M) = 1, it follows from Lemma 4.41 that ϕ is the only
M -invariant constituent of ϑL. Thus ϕ is invariant under H.

We now show that there is a magic representation σ : H/L → S. (The
proof will also show that CH(K/L) � kerσ.) Suppose that there is not
always a magic representation and let (G,K,L, ϑ, ϕ) be a counterexample
with |G : L| minimal. We derive properties of (G,K,L, ϑ, ϕ) until we reach
a contradiction.

Step 1. (G,K,L, ϑ, ϕ) is a character five and K/L a chief factor of G.

Proof. Suppose N/L is a chief factor of G with N < K. As the action of
A = M/CM(K/L) on K/L is coprime and fixed point free, Lemma 4.40
yields that the A acts coprime and fixed point freely on K/N and N/L.
The first part of Lemma 4.41 implies the existence of a unique irreducible
M -invariant constituent η, say, of ϑN . The unique M -invariant constituent
of ηL must be ϕ, since this is the unique M -invariant constituent of ϑL. By
uniqueness, η is H-invariant.

Let U = HN . We wish to apply the inductive hypothesis to the configu-
rations (G,U,K,N, ϑ, η) and (U,H,N, L, η, ϕ).

First we show that (G,K,N, ϑ, η) is strong. Let M̃ = MN . We verify

the conditions of Definition 4.36. The first is clear since M̃K = MK � G.
That CK/N(M̃) = 1 follows from Lemma 4.40. Condition 3 follows from
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Figure 4.1: Proof of Step 1

M̃ ∩ K = MN ∩ K = (M ∩ K)N = N , and Condition 4 from C̃ :=

CM̃(K/N) = CM(K/N)N . Finally, we verify that elements of C̃ are good.
As (eηCKeη)

N embeds into (eϕCKeϕ)L, the group CM(K/L) centralizes
(eηCKeη)

N and thus elements of CM(K/L) are N -η-good. By Lemma 4.6
and since |M/CM(K/L)| is coprime to |N/L|, also elements of CM(K/N)

are N -η-good. As C̃ = CM(K/N)N , elements of C̃ are good, so that Con-
dition 5 in the definition of “strong” holds for (G,K,N, ϑ, η). Thus we can
apply induction to (G,U,K,N, ϑ, η).

That (U,N,L, η, ϕ) is strong is seen as follows: First, MN = MK∩U�U ,
so Condition 1 holds. Conditions 2, 3 and 4 are clear. It was remarked earlier
that in fact the elements of M are K-ϕ-good, and thus the elements of M
are N -ϕ-good, so Condition 5 holds.

By Proposition 2.17, (G,H,K,L, L, ϕ) can not be a minimal counterex-
ample. Thus K/L is chief. As K/L is solvable, it is elementary abelian.
Then one of three possibilities occurs [34, Theorem 6.18]: Either ϑL = ϕ, or
ϑ = ϕK or ϕ is fully ramified in K. In the first two cases, however, we have
(ϑL, ϕ) = 1 and thus Proposition 2.15 would apply in these cases. Thus ϕ is
fully ramified in K, as claimed.

Step 2. All elements of C = CH(K/L) are K-good, that is, C centralizes
S = (CKeϕ)L.

Proof. We have to show that 〈x, c〉 = 1 for all x ∈ K/L and c ∈ C. Since
M/(M ∩ C) acts coprimely and fixed point freely on K/L, we have K/L =
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[K/L,M ]. We may thus assume that x = y−1ym for some y ∈ K/L and
m ∈M . Then

〈y−1ym, c〉 = 〈y−1, c〉〈ym, c〉 = 〈y, c〉−1〈ym, cm〉〈ym, [m, c]〉 = 〈ym, [m, c]〉.

Since [M,C] ⊆ M ∩ C and elements of M are good, 〈ym, [m, c]〉 = 1, as was
to be shown.

As a result, we can replace M by MC and assume C � M .

Step 3. We may assume that M/C is a chief factor of H.

Proof. LetM0/C be a chief factor ofH withM0 ⊆M . AsM0�H we see that
CK/L(M0) is invariant under H. As K/L is chief, we have CK/L(M0) = 1.
Also M0K �G since H normalizes M0 and G = HK. We may thus replace
M by M0.

Step 4. H/M is a noncyclic p-group where p is the prime dividing |K/L|.
Proof. The action ofH/C on S induces a projective representationH/C → S
with associated cohomology class α ∈ H2(H/C,C∗), say. Then α = 1 if and
only if the restriction of α to every Sylow subgroup of H/C is 1. (The “if”
part follows by using corestriction [26, 20.10-20.12 and proof of 21.4].) Since
α comes from a projective representation with degree a power of p, for every
group Q/C � H/C of p′-order, αQ/C = 1. Since by assumption α �= 1,
there is P/C ∈ Sylp(H/C) with αP/C �= 1. By minimality of |G : L|, we
have H = PM . As H/M ∼= P/P ∩M = P/C has a nontrivial cocycle, it
is noncyclic. (Here we use that we are working over an algebraically closed
field.)

From now on we assume that A = M/C is solvable. We can do so by
using the Feit-Thompson theorem: If A is not solvable, then |A| is even and
so |K/L| is odd. We have already reduced to the case where K/L is abelian

(even chief) and thus can apply Theorem 4.23 to produce a complement H̃

and a magic representation. All elements of H̃ are good and thus C � H̃. It
follows that (MK∩H̃)/C is a complement of CK/C in MK/C and therefore

conjugate to M/C. We conclude that H̃ and H are also conjugate. Thus
Theorem 4.23 finishes the proof in the case |K/L| odd.

We remark that Dade [6] proves a result about the extendibility of a
nonlinear character of a normal extraspecial subgroup E in a similar situation
(a complement H of E is given with a normal subgroup acting coprimely and
fixed-point-freely on E) without using a solvability hypothesis or the Feit-
Thompson theorem.
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Step 5. M/C is noncyclic.

Proof. Let p and P ∈ Sylp(H/C) as in the proof of the last step. If M/C
is cyclic, then it has prime order by step 3 and solvability. Since P acts on
M/C this would imply that P/CP (M/C) is cyclic. Let T = CP (M/C). As
H = PM , we have T �H and thus CK/L(T ) is H-invariant. Since T/C and
K/L are p-groups, CK/L(T ) > 1 and thus CK/L(T ) = K/L. But then T = C
and this contradicts P/C noncyclic.

Step 6. There is A with L < A < K such that

1. M � U := NH(A),

2. K/L =
∏

h∈H:U A
h/L,

3. Different conjugates of A are orthogonal with respect to 〈 , 〉ϕ.

Proof. Let A0/L be a simple M -submodule of K/L and set N = CM(A0/L).
Then N < M and M/N is cyclic since M/C is abelian. We set A/L =
CK/L(N). Then we have L < A0 � A and also A < K, since N > C
by step 5. As K/L is chief and

∏
h∈H A

h is H-invariant, we conclude that
K/L =

∏
h∈H A

h. If h /∈ NH(A) then Nh �= N , so M = NhN . There-
fore CAh/L(N) = CAh/L(M) = 1. As M acts coprime on K/L, we con-
clude Ah/L = [Ah/L,N ]. Let a ∈ Ah/L, n ∈ N and b ∈ A/L. Then
〈a−1an, b〉 = 〈a, b〉−1〈a, b〉 = 1 as bn = b and the form is invariant under n.
Since [Ah/L,N ] = Ah/L we conclude that Ah and A are orthogonal (with
respect to 〈 , 〉).
Step 7. Contradiction.

Proof. Let A and U be as in the last step and let η ∈ Irr(A | ϕ). By
Lemma 4.39, Irr(A | ϕ) = {η}. The character five (AU,A, L, η, ϕ) is strong,
and thus by minimality there is a magic representation τ : U/L → (CAeϕ).
By Lemma 4.39, there is a magic representation σ : H → S, and this contra-
dicts G being a counterexample. This finishes the proof of Theorem 4.38.

4.6 Strong Odd Sections and Schur indices

Suppose ϕ ∈ IrrL is fully ramified in K, and ϑ ∈ IrrK is the unique ir-
reducible character lying above ϕ. Then F(ϕ) = F(ϑ) for any field F (of
characteristic zero), since ϑ vanishes outside L.

Now assume that L,K � G. Let E be some splitting field of G and
Γ = Gal(E/Q) be its Galois group. Then the direct product G × Γ acts on
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IrrK and IrrL. Let O and P be the G×Γ-orbits of ϑ and ϕ, respectively, and
O0 and P0 the G-orbits. Then the actions of G×Γ on O and P are naturally
isomorphic, the isomorphism sending ϑ′ ∈ O to the unique constituent of ϑ′L.
If K/L has a complement H/L in G/L, then clearly Hϕ = Hϑ. Observe that
also eϕ = eϑ. We have seen results to the end that EGϑeϕ

∼= Mn(EHϕeϕ)
when additional conditions are given (for example if K/L is abelian of odd
order). Clifford theory yields that also EGf0

∼= Mn(EHf0), where f0 =∑
ϕ′∈P0

eϕ′ . This also holds for f =
∑

ϕ′∈P eϕ′ . But as f ∈ QK, it is natural
to ask if even QGe ∼= Mn(QHf) holds.

We show this here for odd abelian character fives under the additional
condition that the section K/L is strong. I do not know wether this con-
dition is really necessary. As an application, we will prove that the Isaacs
correspondence preserves Schur indices. Apparently this has gone unnoticed
in the literature until now, although similar arguments are present in papers
of Turull [61, 65] on character correspondences in solvable groups and refine-
ments of the McKay conjecture. However, we do not use Turull’s theory of
Clifford classes. Character correspondences have already been used for Schur
index computations [21, 22].

4.42 Theorem. Let L, K � G with L � K and K/L abelian of odd order.
Assume ϕ ∈ IrrL is fully ramified in K and semi-invariant in G. Suppose
there is N � G with K � N � Gϕ and N/CN(K/L) acting coprimely and
fixed point freely on K/L. Let f be the primitive idempotent in Z(QL) with
ϕ(f) �= 0, and n =

√|K/L|. Then there is H � G such that HK = G,
H ∩ K = L, every element of Hϕ is K-ϕ-good, and QGf ∼= Mn(QHf) as
G/K-graded algebras.

It is important to note that H is determined by the assumptions up to
conjugacy:

4.43 Proposition. Assume the situation of Theorem 4.42. Then there is a
unique conjugacy class of subgroups H � G satisfying:

1. HK = G and H ∩K = L,

2. every element of H ∩CN(K/L) is K-ϕ-good.

We need a general lemma to show this.

4.44 Lemma. Let L�G, let ϕ ∈ IrrG and x, y ∈ Gϕ with [x, y] ∈ L.

(i) If g ∈ G, then 〈xg, yg〉ϕg = 〈x, y〉ϕ.

(ii) If α is a field automorphism, then 〈x, y〉ϕα = 〈x, y〉αϕ.
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Proof. Let E = Q(ϕ). Remember that 〈x, y〉ϕeϕ = [x, y][cy, cx], where cx ∈
ELeϕ is such that ax = acx for all a ∈ ELeϕ, and similar for cy. If g ∈ G,
then cgx ∈ (ELeϕ)g = ELeϕg . Any b ∈ ELeϕg can be written as b = ag. Thus

bc
g
x = (ag)cg

x = acxg = axg = agxg

= bx
g

.

It follows that

〈xg, yg〉ϕgeϕg = [xg, yg][cgy, c
g
x] = ([x, y][cy, cx])

g = (〈x, y〉ϕeϕ)g = 〈x, y〉ϕeϕg .

The first assertion follows. The proof of the second is similar: We may extend
α naturally to an automorphism of EG, acting trivially on G. Replacing g
with α in the above argument, we see that

〈x, y〉ϕαeϕα = [x, y][cαy , c
α
x ] = ([x, y][cy, cx])

α = (〈x, y〉ϕeϕ)α = 〈x, y〉αϕeϕα .

The proof follows.

Proof of Proposition 4.43. Let C = CN(K/L). Observe that then 〈 , 〉ϕ is
defined on C/L×K/L. Let

B = {c ∈ C | 〈c, x〉ϕ = 1 for all x ∈ K}.
We claim that B � G. Let b ∈ B and g ∈ G. There is α ∈ Aut(Q(ϕ)) such
that ϕαg = ϕ. Let k ∈ K. Using Lemma 4.44 twice, we get

〈bg, kg〉ϕ = 〈bg, kg〉ϕαg = 〈b, k〉ϕα = 〈b, k〉αϕ = 1.

Since kg ∈ Kg = K was arbitrary, it follows that bg ∈ B. This estabilshes
the claim.

Via the form 〈 , 〉, the factor group C/B is isomorphic to a subgroup
of Lin(K/L), and so |C/B| � |K/L|. Since ϕ is fully ramified in K/L,
〈 , 〉ϕ on K/L is nondegenerate, and thus we have B ∩K = L. Therefore
|K/L| = |BK/B| � |C/B|. It follows BK = C and C/B ∼= K/L. Since
|C/B| = |K/L| and |N/C| are coprime, there is a complement, M/B. Let
H = NG(M). By the Frattini-argument, G = HN = HMC = HBK =
HK. Moreover, we have [H ∩K,M ] � K ∩M = L, and so (H ∩K)/L �
CK/L(M) = CK/L(N/C) = 1, so that H ∩ K = L. Since K/L ∼= C/B as
group with M -action, the same argument shows that H ∩C = B, and every
element of B is good.

Now let U be another subgroup with the properties given above. Then
U ∩ C � B, since U ∩ C is good. Since C = C ∩ UK = (C ∩ U)K, it
follows that C ∩ U = B. Since N = N ∩ UC = (N ∩ U)C, it follows that
(N ∩ U)/B is a complement of C/B in N/B. By the conjugacy part of
the Schur-Zassenhaus Theorem, N ∩ U = M c with c ∈ C. It follows that
Hc = NG(M c) � U , and thus NG(M c) = U as claimed.
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4.45 Corollary. If (|N/K|, |K/L|) = 1 in Theorem 4.42, then H is deter-
mined up to conjugacy by the properties HK = G and H ∩K = L.

Note. One can prove this special case directly using standard, purely group
theoretic methods.

Proof. For such a subgroup, we have (H ∩ N)K = HK ∩ N = N , and
|(H ∩ N)/L| = |N/K| is prime to |K/L|. From Lemma 4.6 it follows that
every element of H ∩N is good. Thus the proposition yields the result.

Theorem 4.42 will be derived from the following more precise proposition.

4.46 Proposition. In the situation of Theorem 4.42, set S = (QKf)L and
E = Z(QKf) ( = Z(QLf) = Z(S) ∼= Q(ϕ)). Then S ∼= Mn(E), and there
is a complement H/L of K/L in G/L and a magic crossed representation
σ : H/L→ S, such that Hϕ � h �→ σ(Lh)eϕ is a canonical magic representa-
tion.

The magic crossed representation is crossed with respect to the map H →
Aut E → AutS, where the last map comes from an isomorphism S ∼= Mn(E),
that is, Aut E acts on the entries of Mn(E).

Theorem 4.42 follows from the proposition by Theorem 2.30.

Proof of Proposition 4.46. In the proof it will be convenient to view the bi-
linear form 〈 , 〉ϕ defined earlier as a form with values in E. Namely, every
x ∈ Gϕ acts trivially on Z(QLf) = E and thus there is ax ∈ QLf with
bax = bx for all b ∈ QLf . If [x, y] ∈ L, then 〈x, y〉 := [x, y][ay, ax] ∈ E. As in
Lemma 4.4, on shows that 〈x, y〉 = [xa−1

x , ya−1
y ] = (xa−1

x )−1(xa−1
x )y.

We divide the proof in a number of steps.

Step 1. Let

Ω =
⋃
k∈K

(S∗ ∩QLk)

be the set of graded units of S and set

P = [Ω, N ] and C = P ∩ E.

Then P/C ∼= K/L and PE∗ = Ω.

Proof. By Lemma 4.12, S ∼= (Q(ϕ)Keϕ)L is a twisted group algebra of K/L
over E, so that Ω/E∗ ∼= K/L. Thus P/C ∼= K/L will follow, if we can show
PE∗ = Ω.

The groupN acts on Ω and centralizes E, sinceN � Gϕ. AsN/CN(K/L)
acts coprimely and fixed point freely on K/L ∼= Ω/E∗, we have [Ω/E∗, N ] =
Ω/E∗. It follows that [Ω, N ]E∗ = Ω, as claimed.
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Step 2. P is finite and every coset of C in P contains an element u with
|C ∩ 〈u〉| = 1.

Proof. For r ∈ N, let Br = {x ∈ K/L | xr = 1}. Then Br is a characteristic
subgroup of K/L and thus is normalized by N . It follows that [Br, N ] = Br.
Let Ωr be the inverse image of Br in Ω under the natural map Ω → K/L. It
follows that [Ωr, N ]E∗ = Ωr, and thus [Ωr, N ]C = Ωr ∩ P .

Suppose r divides |K/L|. We claim that [Ωr, N ] has exponent r. Let
x, y ∈ Br and choose sx ∈ S∗ ∩Qx and sy ∈ S∗ ∩Qy. Then

(sxsy)
r = sr

xs
r
y[sx, sy]

(r
2) = sr

xs
r
y〈x, y〉(

r
2) = sr

xs
r
y

as r is odd and xr = 1.
Let a ∈ N . Then

[sx, a]
r = (s−1

x sa
x)

r = s−r
x (sr

x)
a = 1,

as N centralizes E∗. It follows that [Ωr, N ] is generated by elements of order
r. The claim follows, since we saw (sxsy)

r = sr
xs

r
y before.

Taking for r the exponent of K/L yields that P has the same exponent
as K/L, and thus C is finite (and cyclic). Then also |P | = |K/L||C| is finite.

To show the last assertion, let v ∈ P and set r = ord(Cv). Then u ∈
Cv ∩ [Ωr, N ] has order r as desired. This finishes the proof.

Step 3. View the inclusion μ : C → E as a linear character and let eμ be
the corresponding central primitive idempotent of the group algebra EC.
Then S ∼= EPeμ naturally. The character μ is fully ramified in P , and
P ′ � C = Z(P ), and the commutator map yields a nondegenerate alternating
form on P/C × P/C with values in C.

Proof. The map EP → S induced by the inclusion P ⊂ S sends eμ to 1S = f .
It follows S ∼= EPeμ. As S is central simple, μ is fully ramified in P . The
other assertions follow now.

Remark. Indeed, the character triple (P,C, μ) is isomorphic to (K,L, ϕ) over
E ∼= Q(ϕ).

Step 4. The action of G on S defines an homomorphism

κ : G→ Ĝ := {α ∈ AutS | Pα = P}

with L in the kernel.

Proof. Clear. (Here AutS are the ring automorphisms of S.)
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Step 5. Let I = {α ∈ CĜ(E) | αP ∈ InnP}. Then I ∼= InnP , and I is the

kernel of the natural map Ĝ→ Aut(P/C)× Aut E.

Proof. The map CĜ(E) → AutP is injective, since E and P generate S and

Ĝ � AutS. By definition, I maps to InnP . As S ∼= EPeμ, where μ ∈ LinC,
we see that every inner automorphism of P induces an automorphism of S,
which is in CĜ(E).

Clearly I is in the kernel of Ĝ→ Aut(P/C)×Aut E. Conversely, suppose

α ∈ Ĝ acts trivially on P/C and on E. Then α centralizes also C. It is
well known [27, 4.2] and not difficult to show that an automorphism of P
centralizing P/C and C is inner. Thus α ∈ I as claimed.

Step 6. There is τ ∈ Ĝ such that τ inverts P/C, centralizes E, τ 2 = 1, and

U = CĜ(τ) is a complement of I in Ĝ.

Proof. There is τ0 ∈ AutP of order 2, inverting P/C and centralizing C [27,

Lemmas 4.2, 4.3]. This τ0 can be extended to an element τ of Ĝ of order 2
and centralizing E. Observe that τ maps to a central element of Aut(P/C)×
Aut E. The rest of Isaacs’ proof of a slightly less general result [27, 4.3]

now runs through: 〈I, τ〉� Ĝ and 〈τ〉 ∈ Syl2〈I, τ〉, and thus by the Frattini

argument Ĝ = I CĜ(τ). As τ inverts P/C, it follows CI(τ) = 1, as desired.

Step 7. Let R = {r ∈ P | rτ = r−1} with τ the automorphism of the last
step. Then P = ·⋃

r∈R Cr.

Proof. For arbitrary x ∈ P one has xτ = cx−1 for some c ∈ C. There is a
unique d ∈ C with d2 = c as C has odd order. For this d we get d−1x ∈ R.
Thus every coset of C contains exactly one element of R, as claimed.

Step 8. LetX,Y � P be two maximal abelian subgroups of P withX∩Y = C
and XY = P . There is a unique element λ ∈ Irr(X | μ) that is fixed by τ .
Then

{Er,s = r−1eλs | r, s ∈ R ∩ Y }
is a full set of matrix units in EPeμ

∼= S.

Proof. First note that X is a maximal abelian subgroup of P if X/C is a
maximal isotropic subspace of P/C with respect to the commutator form
P/C × P/C → C. Thus X and Y as above exist.

As X is abelian, it follows that R ∩ X is a subgroup: We have (rs)τ =
r−1s−1 = (rs)−1 for r, s ∈ R ∩X. It follows that X = (X ∩R)× C.



Section 4.6 Strong Odd Sections 79

As τ inverts X/C, there is a unique λ ∈ Lin(X | μ) that is fixed
by τ , namely λ = 1X∩R × μ. In particular, λ has values in E. Then
λP ∈ IrrP , as μ is fully ramified in P and |P/X| = |X/C|. (It follows
EPeμ

∼= M|P :X|(EXeλ) ∼= M|P :X|(E) from general Clifford theory, see Propo-
sition A.14.) Since λy �= λ for y ∈ P \ X, it follows er

λe
s
λ = 0 if rs−1 /∈ X.

Since P = ·⋃
r∈R∩Y Xr, it follows Er,sEu,v = δs,uEr,v for r, s, u, v ∈ R∩ Y and

eμ =
∑

r∈R∩Y e
r
λ.

Step 9. There is a group homomorphism ε : Aut E → U = CĜ(τ) such that
ε(α)|E = α for all α ∈ Aut E and Sε(Aut E) ∼= Mn(Q).

Proof. Let {Er,s} be the set of matrix units of the last step. Now define
ε : Aut E → AutS by(∑

x,y∈Y

cx,yEx,y

)ε(α)

=
∑

x,y∈Y

cαx,yEx,y for cx,y ∈ E.

It is clear that ε(α)E = α and that the centralizer of the image of ε contains
the full set of matrix units {Er,s}.

As Eτ
r,s = Er−1,s−1 , it follows that ε(α) centralizes τ for all α ∈ Aut E.

It remains to show that the image of ε is in Ĝ, that is, ε(α) maps P onto
itself for α ∈ Aut E. As C is a finite subgroup of E, there is k ∈ N with
cα = ck for all c ∈ C. Let x ∈ X. Then

xε(α) =

(
x
∑

r∈R∩Y

er
λ

)ε(α)

=
∑

r∈R∩Y

(λr(x))αer
λ =

∑
r∈R∩Y

λr(xk)er
λ = xk.

Thus ε(α) maps X onto X.
Now we show that ε(α) maps R ∩ Y onto itself:

rε(α) =

(
r
∑

s∈R∩Y

es
λ

)ε(α)

=

( ∑
s∈R∩Y

Esr−1,s

)ε(α)

=
∑

s∈R∩Y

Esr−1,s = r,

so in fact ε(α) centralizes R ∩ Y . As P = (R ∩ Y )X, it follows that ε(α)

maps P onto itself, and thus ε(α) ∈ Ĝ.

Step 10. Let γ : Ĝ → Aut E be the homomorphism defined by restriction
from S to E = Z(S). There is an ε ◦ γ-crossed representation σ̃ : U → S∗

with su = sε(γ(u))σ̃(u) for all u ∈ U and σ̃|CU (E) canonical in the sense of
Definition 4.27.
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Proof. First we show the existence of σ̃CU (E). Form the semidirect product

G̃ = CU(E)P . Then μ ∈ IrrC is invariant in G̃ and fully ramified in P , and
we may apply the results of Section 4.4. We let σ̃ : CU(E) → S ∼= EPeμ be
the canonical magic representation that exists by these results.

Now we want to extend this to the whole of U . Observe that U acts on
S and on CU(E). We claim that for all u ∈ CU(E) and v ∈ U ,

σ̃(uv) = σ̃(u)v.

View v as fixed and consider the map u �→ σ̃v(u) = σ̃(uv−1
)v. We will

show that this is also a canonical magic representation. The claim will then
follow from uniqueness. It is clear that σ̃v is magic. Also the order of the
determinant is unchanged. Let ψ be the character of σ̃CU (E) with values in E

on which U acts. Then ψv defined by ψv(uv) = ψ(u)v is the character of σ̃v.
Now observe that for Q � CU(E) we have

(ψv
Qv , 1Q) =

1

|Q|
∑
q∈Q

ψv(qv) =
1

|Q|
∑
q∈Q

ψ(q)v = (ψQ, 1Q)v = (ψQ, 1Q).

Applying this to Q ∈ Sylq(CU(E)), we see that ψv is canonical. The claim
follows.

Now we extend σ̃ to U by defining σ̃(vu) = σ̃(u) for v ∈ ε(Γ), and claim
that σ̃ has the required properties.

Let u1, u2 ∈ Uϕ and v1, v2 in ε(Γ). Then

σ̃(v1u1)
v2σ̃(v2u2) = σ̃(u1)

v2σ̃(u2) = σ̃(uv2
1 u2) = σ̃(v1v2u

v2
1 u2) = σ̃(v1u1v2u2).

Suppose v = ε(γ). Then

svu = sε(γ)u = sε(γ)σ̃(u) = sε(γ)σ̃(vu).

This finishes the proof.

Step 11. Let H = κ−1(U). Then G = HK and H ∩K = L.

Proof. As the bilinear form on K/L is nondegenerate, we see that K maps

onto I under κ. Thus I = Kκ ⊆ Gκ. Let g ∈ G. Since Ĝ = UI, we get
gκ = u · kκ with u ∈ U and k ∈ K. Thus (gk−1)κ ∈ U , and it follows that
G = HK. If k ∈ H ∩K, then kκ ∈ U ∩ I = 1, so that k centralizes S. As ϕ
is fully ramified in K, it follows k ∈ L.

Step 12. There is a magic crossed representation σ : H → S extending the
canonical magic representation Hϕ/L→ S.
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Proof. Set σ = σ̃ ◦ κ. Then σ has the required properties. This step finishes
the proof of Proposition 4.46 and Theorem 4.42.

Together with Corollary 2.31 we get:

4.47 Corollary. Assume the situation of the theorem. Then there is a
choice-free bijection between Irr(G | ϑ) and Irr(H | ϕ) preserving fields of
values and Schur indices over any field (of characteristic zero).

Next we prove the following theorem.

4.48 Theorem. Let L,K �G with L � K and K/L of odd order. Suppose
there is M � G with MK �G, (|M/L|, |K/L|) = 1 and CK/L(M) = 1. Let
ϕ ∈ IrrM L and ϑ ∈ IrrM K with (ϑL, ϕ) > 0 and set H = NG(M). Then
there is a natural choice free bijection between Irr(G | ϑ) and Irr(H | ϕ) which
commutes with field automorphisms and preserves Schur indices.

Note. The solvability of K/L will be assumed.

We need the following version of the Going Down Theorem [34, Theo-
rem 6.18] for semi-invariant characters:

4.49 Lemma. Let K/L be an abelian chief factor of G and suppose ϑ ∈ IrrK
is F-semi-invariant in G. Then one of the following possibilities occurs:

1. ϑ = ϕK with ϕ ∈ IrrL, and either ϕ is F-semi-invariant in G and
K/L ∼= Gal(F(ϕ)/F(ϑ)), or F(ϕ) = F(ϑ) and induction defines a bijec-
tion from {ϕα | α ∈ Gal(F(ϕ)/F)} onto {ϑα | α ∈ Gal(F(ϑ)/F)}.

2. ϑL ∈ IrrL.

3. ϑL = eϕ with ϕ ∈ IrrL and e2 = |K/L|, and F(ϑ) = F(ϕ).

Proof. Let ϕ be an irreducible constituent of ϑL. Let

T = {g ∈ G | ϕg is Galois conjugate to ϕ over F}.

Let g ∈ G and pick α ∈ Gal(F(ϑ)/F) with ϑg = ϑα. Then

((ϑα)L, ϕ
α) = (ϑL, ϕ) = (ϑg

L, ϕ
g) = (ϑα

L, ϕ
g),

and thus ϕα = ϕgk for some k ∈ K. It follows that G = KT . Since K/L is
abelian, K ∩ T �KT = G and thus either K ∩ T = L or K ∩ T = K.
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If K ∩ T = L, then ϕK = ϑ. Thus clearly F(ϑ) � F(ϕ). Let α ∈
Gal(F(ϕ)/F(ϑ)). Then (ϑL, ϕ

α) = (ϑL, ϕ) > 0 and thus ϕα = ϕk for some
k ∈ K ∩ T = L, so that ϕα = ϕ. It follows that Gal(F(ϕ)/F(ϑ)) = 1, and
thus F(ϑ) = F(ϕ). Then induction is a bijection from the Galois orbit of ϕ
onto that of ϑ.

Now suppose K ∩ T = K, that is T = G and ϕ is semi-invariant in G.
Consider the inertia group Kϕ. For g ∈ G, there is αg ∈ Aut F(ϕ) with
ϕg = ϕαg , so that

Kg
ϕ = Kϕg = Kϕαg = Kϕ.

It follows that Kϕ �G. Again, either Kϕ = K or Kϕ = L.
If Kϕ = L, then again ϕK = ϑ ∈ IrrK. By Lemma 2.19, K/L is iso-

morphic with a subgroup of the Galois group of F(ϕ). The fixed field of
this subgroup is, by Corollary 2.20, the field generated by the sum of the
K-conjugates of ϕ. However, F(

∑
k∈K ϕk) = F(ϑ) as ϑ vanishes on K \ L.

Thus K/L ∼= Gal(F(ϕ)/F(ϑ)).
Now assume Kϕ = K, so that ϕ is invariant in K. Set

Λ = {λ ∈ Lin(K/L) | λϑ = ϑ} and U =
⋂
λ∈Λ

kerλ.

We claim that U � G. If ϑλ = ϑ, then ϑαλ = ϑα for field automorphisms
α, as ϑα and ϑ have the same zeros. Let g ∈ G and λ ∈ Λ. From the
semi-invariance of ϑ it follows that there is α ∈ Aut F(ϑ) with ϑαg = ϑ. Thus

ϑλg = (ϑαλ)g = ϑαg = ϑ.

Thus λg ∈ Λ, so that Λ is invariant in G. It follows that U �G. Thus either
U = K or U = L. Now the proof is finished as the proof of the original Going
Down Theorem: If U = K, then Λ = {1} and thus the ϑλ with λ ∈ Lin(K/L)
are |K/L| different constituents of ϕK occurring with the same multiplicity,
e, so that

|K/L|ϕ(1) = ϕK(1) = e|K/L|ϑ(1) = e2|K/L|ϕ(1),

and it follows e = 1.
If U = L, then it follows that ϑ vanishes on K \ L, and thus ϑL = eϕ

with e2 = |K/L|. It is clear that then F(ϑ) = F(ϕ).

Proof of Theorem 4.48. As M/L acts coprimely and fixed point freely on
K/L, it follows that over every ϕ ∈ IrrM L lies a unique ϑ ∈ IrrM K, and
conversely (see Lemma 4.41). This bijection commutes with the action of H
and with Galois action. In particular, Q(ϑ) = Q(ϕ) and Hϑ = Hϕ. It is thus
no loss to assume that ϕ is semi-invariant in H and ϑ is semi-invariant in G.
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We use induction on |G/L|. Let L < N � K with N/L a chief factor.
By Lemma 4.41, there is a unique η ∈ IrrM N that lies above ϕ, and is a
constituent of ϑN . This η is also semi-invariant in H and has the same field of
values as ϕ and ϑ. Let U = NG(MN). If N < K, then induction applies to
yield natural bijections between Irr(G | ϑ) and Irr(U | η) with the required
properties, and between Irr(U | η) and Irr(H | ϕ). We may thus assume
that K/L is a chief factor of G. Then, by our Going Down Theorem for
semi-invariant characters, one of three possibilities occurs.

First, suppose that ϕK = ϑ. Here ϕ can not be semi-invariant in K,
since this would imply Q(ϑ) < Q(ϕ) which is impossible. It follows that H is
the inertia group of the Galois orbit of ϕ. Now Clifford correspondence (see
Proposition 2.18) gives the desired bijection.

Now suppose that ϑL = ϕ ∈ IrrL. As Q(ϑ) = Q(ϕ), Proposition 2.33 ap-
plies with n = 1 and yields the bijection. Here the bijection is just restriction
from G to H.

Thus we assume that ϕ is fully ramified in K. Now Corollary 4.47 (with
N = MK) applies and yields the result.

Note that oddness of |K/L| was only applied in the last sentence of the
proof (if solvability is assumed). Nevertheless the result is false for |K/L|
even.

The following corollary about the Isaacs correspondence is not true for
the Glauberman correspondence.

4.50 Corollary. Let A act coprimely on G, where |G| is odd. Let C = CG(A)
and χ ∈ IrrAG. Then the Isaacs correspondent χ∗ of χ has the same Schur
index as χ.

Proof. Let K = [G,A] and L = K ′. There is an A-invariant constituent ϑ of
χK , and a unique A-invariant constituent ϕ of ϑL. We work in the semidirect
product of A and G. Set M = AL and H = ALC. Then MK � AG,
CK/L(M) = 1 and H = NAG(M). Thus the theorem applies and yields
a bijection between Irr(G | ϑ) and Irr(LC | ϕ) preserving Schur indices. It
maps, by the very definition of the Isaacs correspondence, χ to an character ξ
which is the Isaacs correspondent of χ∗. Now induction yields the result.

4.51 Remark. All the results remain true if “Schur index” is replaced by the
Brauer equivalence class [[χ]]F defined by an irreducible character χ.



Chapter 5

Glauberman Correspondence

5.1 Theorem. Let G be a finite group, K �G and M � G with KM �G,
(|M |, |K|) = 1 and M solvable. Set H = NG(M) and L = H ∩K. Then

1. The Glauberman correpondence defines a bijection between IrrM K and
IrrL as H-sets.

2. If ϑ ∈ IrrK and ϕ ∈ IrrL correspond, then there is a magic represen-
tation for the configuration Gϑ, Hϕ, K, L, ϑ, ϕ over C.

3. If M is a p-group, p a prime, then there is a magic representation over
the field F = Qp(ϑ), where Qp is the field of p-adic numbers.

Proof. Note that L = CK(M). Thus the Glauberman correspondence is a
bijection β(K,M) from IrrM K onto IrrL. It follows from the uniqueness
of the Glauberman correspondence that ϑβ(K,M)h = ϑhβ(K,M) for all
h ∈ H. So if ϕ = ϑβ(K,M) where ϑ ∈ IrrM K, then Gϑ ∩ H = Hϕ. Note
that by the Frattini argument we have G = KH. It follows Gϑ = KHϕ. In
the proof of 2., we assume that Gϑ = G to simplify notation. We work by
induction on |M/CM(K)|. Choose P � M such that P/CM(K) is a chief
factor of H. It is known that β(K,M) = β(K,P )β(CK(P ),M/P ) [27]. Let
η = ϑβ(K,P ) ∈ IrrM(CK(P )). Then η is H-invariant and thus invariant in
NG(P ) = CK(P )H. We may apply induction to NG(P ), H,CK(P ), L, η, ϕ.
If P < M we also may apply induction to G,NG(P ), K,CK(P ), ϑ, η and use
Proposition 2.17 to finish the proof. Thus we may assume that M/CM(K)
is a chief factor of H, in particular a p-group.

For the rest of the proof, let P = M/CM(K) be a p-group. Let F =
Qp(ϑ) = Qp(ϕ). (The last equation results from the fact that the Glauberman
correspondence commutes with field automorphisms.) Setting i = eϑeϕ and
S = (iFKi)L, we have to show that there is a magic representation σ :
H/L→ S∗.

84
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Let R be the integral closure of Zp in F. This is an unramified extension
of Zp with maximal ideal Rp. Let k = R/Rp and let ˜ : RG → kG be the
canonical homomorphism. Since K is a p′-group, we have eϑ, eϕ and i ∈ RK.

We set Σ = (iRKi)L and T = (̃ikKĩ)L = Σ/pΣ. Note that T ∼= Mn(k), and
as R is complete we can lift matrix units and it follows that Σ ∼= Mn(R) and
S ∼= Mn(F).

Our first goal is to show that there is a magic representation τ : H/L→
T ∗. Now remember that there is a connection between the Glauberman
correspondence and the Brauer homomorphism: The action of the group P
makes kK into a P -algebra and we have the Brauer homomorphism βP :
(kK)P → kCK(P ) = kL sending

∑
k∈K λkk to

∑
k∈L λkk. This map is an

algebra homomorphism. Moreover, βP (ẽϑ) = ẽϕ [26, §18]. It follows that

βP (̃i) = βP (ẽϑẽϕ) = ẽϕ and βP (T P ) ⊆ (kLẽϕ)L = kẽϕ. Since βP (i) = ẽϕ �= 0
and βP is an k-algebra homomorphism, equality holds, so βP (T P ) = kẽϕ.

Note that T is a permutation P -algebra, which means that T has a basis
that is permuted by P : It is a direct summand of (kK)L and the last has a
P -invariant basis, namely the L-conjugacy class sums.

We will next appeal to a theorem of Dade which we explain now: First,
the action of P on T defines uniquely a group homomorphism from P to
T ∗, as H2(P, k∗) = 1 = H1(P, k∗). We let notation as if P ⊆ T ∗, which is
harmless even if the homomorphism is not injective. Now Dade’s theorem
can be stated as follows: There is a group homomorphism ε : NT ∗(P ) → k∗

extending the canonical map (T P )∗ → k∗. In this form it was proved by
Puig [53]. In particular, for λ ∈ k∗ we have λε = λ.

The action of H on T defines a projective representation τ : H/L→ T ∗.
As H normalizes P , we see that τ(H/L) ⊆ NT ∗(P ). So we can replace τ(Lh)
by ε(τ(Lh))−1τ(Lh) to get a magic representation from H/L into T ∗.

Now it follows from Theorem 3.8 that there is σ : H/L → Σ∗ lifting τ .
This finishes the proof.

We should remark that this theorem was announced by Dade, at least
in the case where M is a p-group [8]. He used it to prove the McKay
conjecture for p-solvable groups, more precisely to construct a bijection be-
tween the p′-characters of a p-solvable group G and those of the normal-
izer of a Sylow p-subgroup of G. A simpler proof of the McKay-conjecture
was given by Okuyama and Wajima using an argument that is now known
as the “Okuyama-Wajima counting argument”. This argument proves that
|Irr(G | ϑ)| = |Irr(L | ϕ)| in the above situation by showing that h ∈ Hϕ

is ϕ-good if and only if h is ϑ-good. This in turn follows from Theorem 5.1
for H/M abelian [46, §15], [38]. The proof of Dade’s theorem, which we
used, depends on his classification of endo-permutation modules for abelian
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p-groups, a rather deep result. Recently, Turull [64] proved a stronger version
of Theorem 5.1 using a strengthened version of Dade’s theorem.

It is natural to ask wether a similar result holds for the Isaacs correspon-
dence. We conclude this section with some remarks on this topic. So assume
the situation of Theorem 5.1, but skip the condition that M is solvable. Then
Glauberman correspondence or Isaacs correspondence are defined, and when
both are defined, they are equal. It is thus unambiguous to speak of the
Glauberman-Isaacs correspondence. Given ϑ ∈ IrrM K and its Glauberman-
Isaacs correspondent ϕ, it is thus natural to ask wether the Clifford extensions
associated with the character triples (Gϑ, K, ϑ) and (Hϕ, L, ϕ) are isomor-
phic. For the Glauberman correspondence, this is true, as shown above. The
problem was stated in an expository paper of Navarro [51] on character cor-
respondences and coprime action, and is attributed to Llúıs Puig by him.
More precisely, Navarro asks wether the character triples above are isomor-
phic. Mark L. Lewis [45] answered this question in the positive, as he showed
for the Isaacs correspondence that the character triples are isomorphic in the
sense of Isaacs, and pointed out that for the Glauberman correspondence
a positive answer is contained in the work of Dade [8]. But while Dade
proves in fact that the associated cohomology classes are equal, Lewis proves
only an isomorphism of character triples in the weaker sense of Isaacs. The
slightly more general problem of proving equality of the associated cohomol-
ogy classes is thus still open, as far as I can see. We contend ourself with the
remark that in attempts to solve this, a situation as in Corollary 2.12 occurs
(with U �G).



Appendix A

Strongly G-Graded Algebras

A.1 G-Graded Algebras and Modules

We collect some facts about strongly G-graded algebras and their modules.
This material can be found in papers of Dade [9, 12] or in some books on
representation theory [3, 49]. There is also a book of A. Marcus especially on
group graded algebras [47]. G will always denote a group, and R a commu-
tative ring. We use the following conventions: module homomorphisms are
usually written opposite the scalars, and, if nothing else is said, A-module
means left A-module. Thus homomorphisms are mostly written on the right.

A.1 Definition. A G-graded R-algebra is an R-algebra A with a family of
R-submodules Ag, such that the following assertions hold:

1. A =
⊕

x∈GAx,

2. AxAy ⊆ Axy.

A is strongly (or fully) G-graded, if the stronger condition

2’ AxAy = Axy for all x, y ∈ G
holds.

If every g-component Ag contains a unit ug of A, then A is called a crossed
product (of G with A1).

Some authors [49] use the term
”
strongly graded algebra“ for what we call

crossed products.

A.2 Remark. If A is strongly graded, then G acts on the ideals of A1 via
Ix = Ax−1IAx.

Next we recall the Miyashita action:

87
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A.3 Theorem. [12, Theorem 2.1] Let A be a strongly G-graded algebra and
M and N be left A-modules.

1. For every g ∈ G and ϕ ∈ HomA1(M,N) there is a unique ϕg ∈
HomA1(M,N) such that

ag(mϕ
g) = (agm)ϕ for all ag ∈ Ag and m ∈M.

2. This defines an action of G on HomA1(M,N) respecting addition and
composition of homomorphisms.

3. For H � G, HomAH
(M,N) = HomA1(M,N)H , where AH =

⊕
h∈H Ah.

Sketch of proof. There are a1, . . . , an ∈ Ag−1 and b1, . . . , bn ∈ Ag with a1b1 +
· · · + anbn = 1A (since Ag−1Ag = A1). If bi(mϕ

g) = (bim)ϕ, then we must
have mϕg =

∑
i ai(bim)ϕ. Define ϕg by the last equation and check that it

has the required properties.

A.4 Remark. Similarly, G acts on CA(A1) by cg =
∑

i aicbi, and this action
fulfills agc

g = cag for c ∈ CA(A1) and ag ∈ Ag. Moreover, this action
respects the grading of CA(A1), so that G acts on Z(A1). It does so in
a way compatible with the action on the ideals of A1, in the sense that
zgA1 = (zA1)

g.

A.5 Proposition. [9, §3] Let A be a strongly G-graded algebra and M and
N G-graded A-modules. Suppose that G is finite or M finitely generated.
Then HomA(M,N) is G-graded by

HomA(M,N)g = {α ∈ HomA(M,N) |M1ϕ ⊆ Ng}.

Moreover, HomA(M,N)g
∼= HomA1(M1, Ng). If K is another graded A-mod-

ule, then
HomA(M,N)g HomA(N,K)h ⊆ HomA(M,K)gh.

In particular, EndA(M) is a G-graded ring.

A.6 Proposition. Let M be a graded module over the strongly graded ring
A. Then (EndAM)g contains a unit if and only if Mx

∼= M1 as A1-modules.
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A.2 Graded Morita equivalences

To study Clifford Theory in view of Schur indices and Galois action, Tu-
rull [60] introduced the concept of Clifford classes. These are certain equiv-
alence classes of simple G-algebras. Marcus [48] introduced the viewpoint of
strongly G-graded algebras. In the next sections we review these concepts
and show how the results of this thesis fit into that theory. We begin to
consider equivalence of strongly G-graded algebras.

We will need Morita’s theory of equivalences of module categories, as ex-
plained in [40, §18] or [1, Chapter II]. Let P be a left G-graded A-module. Let
(A,B, APB, BQA, α, β) be the Morita context associated with P [40, §18C].
That is, B = EndA P , Q = HomA(P,A) and α : P ⊗B Q → A is defined by
(p ⊗ q)α = pq, and β : Q ⊗A P → B is defined by p0(q ⊗ p)β := (p0q) · p.
From Proposition A.5 it follows that B and Q are graded, too, and it is
easy to check that α and β are homomorphisms of graded bimodules, that is
(Px ⊗Qy)

α ⊆ Axy and similarly for β.

A.7 Definition. A G-graded Morita context is a six-tuple (A,B,M,N, α, β)
where A and B are G-graded algebras, AMB and BNA are graded bimodules,
and α : AM ⊗B NA → A and β : BN ⊗A MB → B are homomorphisms of
graded bimodules, such that (m1 ⊗ n)αm2 = m1(n ⊗m2)

β (MNM -associa-
tivity) and (n1 ⊗m)βn2 = n1(m ⊗ n2)

α for all m, m1, m2 ∈ M and n, n1,
n2 ∈ N . The Morita context is called surjective if α and β are surjective.

Note that if A and B are R-algebras and if AMB is an A-B-bimodule,
then M has a left and a right R-module structure. It is not necessarily true
that rm = mr for all m ∈ M and r ∈ R, however. But for the rest of this
appendix, we tacitely assume: All A-B-bimodules AMB over R-algebras A
and B are R-balanced, that is rm = mr for r ∈ R and m ∈M .

A.8 Definition. We say that two G-graded R-algebras A and B are graded
Morita equivalent, if there is a graded surjective Morita context

(A,B, AMB, BNA, α, β)

(where M and N are R-balanced).

A graded Morita equivalence is a special case of an ordinary Morita equiv-
alence and so the Morita Theorems hold in this case. In particular, α and β
are isomorphisms, M and N are progenerators as A- and as B-modules, and
(A,B,M,N, α, β) is the Morita context associated with M . By

”
Morita I“,

X �→ X ⊗A M and Y �→ Y ⊗B N define a category equivalence between
right A-modules and right B-modules, and U �→ N ⊗A U and V �→M ⊗B V
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a category equivalence between left A-modules and left B-modules. In the
terminology of Bass [1, Chapter II], these are equivalences of R-categories,
since we assume M and N to be R-balanced. Before going on, we note

A.9 Lemma. Let A be strongly G-graded and M a graded left A-module.
Then

1. AM is finitely generated if and only if A1
M1 is.

2. AM is projective if and only if A1
M1 is projective.

3. If A1
M1 is a generator, then AM is a generator.

Proof. 1. Clear since M1 is a direct summand of M and M ∼= A⊗A1 M1.

2. If AM is projective, it is a summand of a free A-module. But A as
A1-module is projective, so M is a direct summand of a projective
A1-module. Since M1 is a direct summand of M as A1-module, it
follows that M1 is projective as an A1-module. Conversely, if M1 is
projective, then M1 is a direct summand of a free module F , and thus
M ∼= A⊗A1 M1 is a direct summand of the free A-module A⊗A1 F .

3. If A1
M1 is a generator, then there are finitely many ϕi ∈ HomA1(M1, A1)

and mi ∈ M1 with
∑

imiϕi = 1A1 . As M ∼= A ⊗A1 M1, the ϕi define
homomorphisms ϕ̂i : M → A by scalar extension. Then

∑
imiϕ̂i = 1,

so AM is a generator.

A.10 Example. Let G = {1, x} be a cyclic group of order 2, and let A =
M2(k). Set

A1 =

{(∗ 0
0 ∗
)}

, Ax =

{(
0 ∗
∗ 0

)}
, M1 =

{(∗
0

)}
,Mx =

{(
0
∗
)}

.

Obviously M = M1⊕Mx is an A-progenerator, but M1 is not an A1-progen-
erator.

A.11 Theorem. [47, Corollary 2.3.7] Assume that (A,B,M,N, α, β) is a
graded Morita context with α and β surjective. Then the following assertions
hold:

(i) B ∼= EndAM ∼= EndNA and A ∼= EndMB
∼= EndAN as G-graded

R-algebras.
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(ii)

N ∼= HomA(M,A) ∼= HomB(M,B)

and M ∼= HomA(N,A) ∼= HomB(N,B)

as graded bimodules.

(iii) Let AU , BV , XA and YB be G-graded modules. Then

N ⊗A U ∼= HomA(M,U) X ⊗A M ∼= HomA(N,X)

M ⊗B V ∼= HomB(N, V ) Y ⊗B N ∼= HomB(M,Y )

as G-graded modules over A or B, respectively.

For a subgroup H � G and a G-graded algebra we write AH =
⊕

h∈H Ah,
and similar for G-graded modules. Moreover, given a graded Morita context
as before, we write

αH : MH ⊗BH
NH → AH , (m⊗BH

n)α = (m⊗B n)α, and

βH : NH ⊗AH
MH → BH , (n⊗AH

m)α = (n⊗A m)α.

The inclusion AH ↪→ A induces the restriction functor from A-modules to
AH-modules, and similarly for B-modules. We also have induction from
AH-modules to A-modules, which sends the AH-module to the A-module
X ⊗AH

A. If no confusion can arise, we denote the induced module simply
by XG.

A.12 Theorem. [47, Corollary 2.3.7e] Let (A,B,M,N, α, β) be a G-graded
Morita context with α and β surjective, where A and B are strongly graded.
Then we have:

1. (AH , BH ,MH , NH , αH , βH) is an H-graded Morita context with αH and
βH surjective.

2. The resulting category equivalences commute with restriction and in-
duction of modules: That is, for an right A-module,

X ⊗A M ∼= X ⊗AH
MH

as right BH-modules, and for an right AH-module U ,

(U ⊗AH
A)⊗A M ∼= (U ⊗AH

MH)⊗BH
B

as right B-modules. Similar statements are true for left modules.
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3. Let C be another ring and CUA and CVA be bimodules. Then

Hom(CUA1 , CVA1)
∼= Hom(CU ⊗A MB1 , CV ⊗A MB1)

as G-modules (where the G-action is the Miyashita action).

4. CA(A1) ∼= CB(B1) as G-algebras.

A.13 Example. Let A be a G-graded R-algebra and e ∈ A1 an idempotent.
Suppose that AeA = A. Then (A, eAe,Ae, eA, α, β) is a graded Morita
context, where α and β are induced by multiplication. This Morita context
is surjective and yields that A and eAe are graded Morita equivalent. In
general, eAe will not be strongly graded, even if A is. But if we assume that
A is strongly graded and that A1eA1 = A1, then eAe is strongly graded, as
was observed by Dade [4, Corollary 3.3].

The next proposition is well known. It can be regarded as a special case
of the last example.

A.14 Proposition. Let A be strongly G-graded. Let e be a central primitive
idempotent of A1, and let

T = {x ∈ G | ex = e}

be its inertia group. Set f = TG
T (e) =

∑
g∈G:T e

g. Then induction defines an
equivalence from the category of AT e-modules to the category of Af -modules.
For any AT e-modules U and V ,

HomAT
(U, V ) ∼= HomA(U ⊗AT

A, V ⊗AT
A) via α �→ α⊗ 1.

Proof. We have AeA = Af , where f is a central idempotent of A. Thus
Af and eAe are graded Morita equivalent, by the last example. The action
of G on Z(A1) is such, that eAg = Age

g. It follows that for g /∈ T , we
have eAge = Age

ge = 0. Thus eAe = AT e = eAT . If U is an module over
eAe = AT e, then

U ⊗eAe eA = U ⊗AT e eA ∼= U ⊗AT
A

naturally, since Ue = U and U(1− e) = 0.

A.15 Theorem. Suppose that A and B are G-graded R-algebras, and let Λ
be another R-algebra. If A and B are graded Morita equivalent (as R-alge-
bras), then A ⊗R Λ and B ⊗R Λ are graded Morita equivalent, too. If Λ is
commutative, the equivalence is one of Λ-algebras and -categories.
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Proof. The grading of A ⊗R Λ is given by A ⊗R Λ =
⊕

x∈GAx ⊗R Λ, and
similar for B. Suppose the equivalence between A and B comes from the
surjective G-graded Morita-context

(A,B, AMB, BNA, α, β).

We may form the Morita context

(A⊗R Λ, B ⊗R Λ, A⊗RΛM ⊗R ΛB⊗RΛ, B⊗RΛN ⊗R ΛA⊗RΛ, α̂, β̂),

where α̂, for example, is defined by(
(m⊗R λ1)⊗B⊗RΛ (n⊗R λ2)

)α̂
= (m⊗B n)α ⊗R λ1λ2.

We skip the tedious verifications that the bimodule structures and maps
involved are well defined, since they are not difficult. We only remark that
to define the left A ⊗R Λ-module structure of M ⊗R Λ, we need that M is
R-balanced: This comes from the fact that M ⊗R Λ is defined via the right
R-module structure of M . It is then clear that the new Morita context is
G-graded and surjective, too, so that A⊗R Λ and B⊗R Λ are graded Morita
equivalent.

A.16 Definition. A strongly graded algebra A is called simple, if A1 has no
nonzero proper G-invariant ideals.

A.17 Theorem. Let A be a strongly G-graded R-algebra (G a finite group)
and U a simple A1-module. Suppose that A1 is semilocal. Set

I =
⋂
g∈G

(AnnA1(U))g.

The following strongly graded algebras are simple and belong to the same
equivalence class:

a) A/IA,

b) EndA(A⊗A1 V ) where V is an A1-module with IV = 0 and Ag⊗A1 V
∼= V

as A1-modules for all g ∈ G.

Proof. Let D = End A1U . Since A1/J(A1) is semisimple, we have that
dimUD is finite and by the density theorem, A1/AnnA1 U

∼= EndUD.
That A/IA is strongly graded and simple is clear.
Now let V as in b). Then V is semisimple and its annihilator is G-

invariant. Since I is the maximal G-invariant ideal contained in the maximal
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ideal AnnA1 U , we get I = AnnA1 V . As A1/I is a semisimple ring, V is
projective as an A1/I-module, and a generator. Thus A⊗A1 V is an A-pro-
generator, and thus A and E = EndA(A⊗A1V ) are graded Morita equivalent.
Since V is G-invariant, E is a crossed product over E1, in particular strongly
graded.

A.18 Remark. Suppose that A is a semisimple algebra over the field F of
characteristic 0. Let V be a simple A-module and χ the character of a simple
submodule of the A ⊗F F-module V ⊗F F. Marcus [48, 3.1] defines [[χ]] to
be the equivalence class of the simple strongly graded algebra EndA(A ⊗A1

V ). One can show that Z(A1)
G = F(χA1) = F({χ(a) | a ∈ A1}). Marcus

goes on to show that the same equivalence class is obtained if one chooses
another module which is

”
χ-quasihomogeneous“. This follows also directly

from Theorem A.17.

A.3 G-Algebras

Turull [60] introduced the concept of central simple G-acted F-algebras and
equivalence classes thereof to study Schur indices and related questions in the
context of Clifford theory. We shortly review (and generalize) this concept.

A.19 Definition. An G-algebra over R or an G-acted R-algebra is an R-al-
gebra S together with an homomorphism G→ AutR(S). We write the action
of G on S as sg.

To define an equivalence relation on the class of G-algebras, we first in-
troduce the concept of G-acted S-module. This is an S-module X together
with an action of G on X (as R-module), written exponentially, such that
(sx)g = sgxg.

A.20 Definition. An G-acted Morita context (over R) is a Morita context
(S, T, SPT , TQS, α, β), where S and T are G-algebras, P and Q are bimodules
with G-action, such that (spt)g = sgpgtg and (tqs)g = tgqgsg, and α and β
commute with the G-action.

A.21 Remark. With every Morita context (S, T, P,Q, α, β) is associated the
Morita ring (

S P
Q T

)
=

{(
s p
q t

)
| s ∈ S, p ∈ P, q ∈ Q, t ∈ T

}
.

Multiplication is given by formal matrix multiplication. If S and T are R-
algebras and P and Q are R-balanced bimodules, then the Morita ring is an
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R-algebra, too. The Morita context admits an G-action if and only if the
action of G on S and T can be extended to an action of G on the Morita
ring (as R-algebra).

A.22 Definition. Two G-algebras S and T are called equivalent, if there
is a Morita context with G-action (S, T, P,Q, α, β), such that α and β are
surjective.

This is not the original definition of Turull, but can be shown to be
equivalent for central simple algebras (see below).

A.23 Lemma. If the G-algebras S and T are equivalent, then Z(S) ∼= Z(T )
as G-algebras.

Proof. A faithfully balanced S-T -bimodule induces an isomorphism ε from
Z(S) to Z(T ) defined by zx = xzε for x ∈ X and z ∈ Z(S). If X admits an
G-action, then

xg(zε)g = (xzε)g = (zx)g = zgxg = xg(zg)ε.

Thus ε is an isomorphism of G-algebras.

Now we review how G-algebras and strongly G-graded algebras are re-
lated.

A.24 Definition. Let S be an G algebra. We denote by [G]S the crossed
product of G with S, that is the set of formal sums∑

g∈G

gsg, sg ∈ S,

with multiplication defined by

(gsg)(hsh) = ghsh
gsh.

A.25 Remark. [G]S is a strongly G-graded R-algebra in a natural way.

A.26 Theorem. Let G be a finite group. The maps

S �→ [G]S and A �→ EndA1 A

induce a bijection between the equivalence classes of G-acted R-algebras and
the equivalence classes of strongly G-graded R-algebras.
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If we would restrict our attention to, say, algebras finitely generated as
R-modules, then the set of equivalence classes is indeed a set. All equivalence
classes do not form a set.

Proof. The proof follows partly Marcus [48, 2.16]. Note that EndA1 A is
indeed a G-algebra by the Miyashita action.

Step 1. If the G-algebras S and T are equivalent, then [G]S and [G]T are
G-graded Morita equivalent.

Proof. Let (S, T, P,Q, α, β) be a Morita context inducing the equivalence
between S and T . Consider the R-module

[G]P =

{∑
g∈G

gpg

∣∣∣∣ pg ∈ P
}
.

We can make [G]P into a [G]S-[G]T -bimodule by defining(∑
g∈G

gsg

)(∑
h∈G

hph

)
=
∑

g,h∈G

ghsh
gph

and

(∑
g∈G

gpg

)(∑
h∈G

hth

)
=
∑

g,h∈G

ghph
g th.

Similarly, [G]Q becomes a [G]T -[G]S-bimodule. Now define a map

[G]α : [G]P ⊗[G]T [G]Q→ [G]S

by (∑
g∈G

gpg ⊗
∑
h∈G

hqh

)[G]α

=
∑
g,h

gh(ph
g ⊗ qh)

α.

Define [G]β similarly. It is now routine to verify that

([G]S, [G]T, [G]P, [G]Q, [G]α, [G]β)

is a surjective, graded Morita context. Its Morita ring is naturally isomorphic
with the skew group ring

[G]

(
S P
Q T

)
.

Step 2. If [G]S and [G]T are graded Morita equivalent, then S and T are
equivalent as G-algebras.
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Proof. Let
([G]S, [G]T, [G]SM[G]T , [G]TN[G]S, α, β)

be a graded surjective Morita context. Then

(S, T,M1, N1, α1, β1)

is a surjective Morita context by Theorem A.12 (as S ∼= ([G]S)1). Moreover
G acts on M1 via mg

1 := g−11S ·m1 ·g1T for m1 ∈M1 and g ∈ G. In the same
way, G acts on N1. Easy verifications now show that (S, T,M1, N1, α1, β1) is a
Morita context with G-action, and so S and T are equivalent, as claimed.

Until now we have shown that S �→ [G]S yields a well defined injective
map from the equivalence classes of G-algebras to the equivalence classes of
strongly graded algebras. The last step yields that the map is surjective, and
its inverse.

Step 3. [G](EndA1 A) and A are graded Morita equivalent for any strongly
G-graded algebra A.

Proof. Set M = A⊗A1 A and Mx = Ax ⊗A. View M as graded left A-mod-
ule. Forgetting about the grading, AM ∼= AA

|G|. It follows that AM is an
A-progenerator. Thus A and B = EndAM are graded Morita equivalent.

We conclude the proof by showing that B ∼= [G](EndA1 A). Remember
(Proposition A.5) that the grading of B is given by

Bg = {b ∈ B |M1b ⊆Mg}.

We define elements εg ∈ Bg as follows: First, choose elements ai,g ∈ Ag and
a′i,g ∈ Ag−1 (i ∈ Ig) with

∑
i ai,ga

′
i,g = 1 . Then set

(a⊗ b)εg =
∑

i

aai,g ⊗ a′i,gb.

The following statements hold:

1. εg is a well defined element of Bg.

2. εg is independent of the choice of the ai,g and a′i,g.

3. εgεh = εgh.

4. For ϕ ∈ EndA1 A, we have 1⊗ ϕg = εg−1(1⊗ ϕ)εg ∈ B1.
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We only show here that (aa1 ⊗ b)εg = (a⊗ a1b)εg for a1 ∈ A1 and leave the
other verifications to the reader. We have:

(aa1 ⊗ b)εg =
∑

i

aa1ai,g ⊗ a′i,gb =
∑

i

a
∑

j

aj,ga
′
j,ga1ai,g ⊗ a′i,gb

=
∑
i,j

aaj,g ⊗ a′j,ga1ai,ga
′
i,gb =

∑
j

aaj,g ⊗ a′j,ga1b

= (a⊗ a1b)εg.

As EndA1 A � ϕ �→ 1⊗ ϕ ∈ B1 is an isomorphism, it follows from the above
properties of εg that ∑

g

gϕg �→
∑

g

εg(1⊗ ϕg)

defines an isomorphism of G-graded algebras between [G](EndA1 A) and B =
EndAM = EndA(A⊗A1 A). The proof is finished.

A.27 Remark. Turull [60] calls a G-algebra S simple if it has no nontrivial
G-invariant ideals. A G-algebra S over a field F is called central simple, if it is
simple and Z(S)G = F. Finally, he calls two G-algebras S and T equivalent,
if there are FG-modules U and V such that S ⊗F EndF(U) ∼= T ⊗F EndF(V )
as G-algebras. Marcus [48] calls a strongly G-graded algebra A simple, if A1

has no G-invariant ideals. He also shows that the set of equivalence classes of
simple G-algebras is mapped bijectively to the equivalence classes of central
simple strongly G-graded algebras by the maps of Theorem A.26. From these
results it follows that Turull’s definition of equivalence and ours coincide for
central simple G-algebras.

A.4 The Brauer-Clifford group

It is not true that the equivalence classes of central simple strongly graded
algebras form a group, but we may multiply certain equivalence classes. This
is most easily described in the context of central simple G-algebras. First we
describe a more general construction:

A.28 Proposition. Suppose that S and T are two G-algebras. Let C be a
commutative G-algebra and C → Z(S) and C → Z(T ) homomorphisms of
G-algebras. Then S ⊗C T is a G-algebra and its equivalence class depends
only on the equivalence classes of S and T (and their C-algebra structures).
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Proof. The G-action is defined by (s⊗t)g = sg⊗tg. This is well defined since
(1S · c)g = 1S · cg for c ∈ C, and similarly for T . Suppose that S is equivalent

to S̃ and let (S, S̃,X, Y, α, β) be a surjective Morita context with G-action.
The faithfully balanced bimodule X induces an isomorphism of G-algebras
Z(S) ∼= Z(S̃), so that by composition we get a homomorphism C → Z(S̃) of

G-algebras. With respect to this C-algebra structure of S̃, we can form the
Morita context with G-action

(S ⊗C T, S̃ ⊗C T,X ⊗C T, Y ⊗C T, α⊗C T, β ⊗C T ),

where α⊗C T and β ⊗C T are defined in the obvious way. We leave out the
easy, but tedious verifications that this is well defined. (Note that the Morita
ring associated with this new context is isomorphic with(

S X

Y S̃

)
⊗C T

as G-algebra.) It follows that S⊗C T and S̃⊗C T are equivalent G-algebras,
as claimed.

Now let F be a field. We consider the set of equivalence classes of fi-
nite dimensional central simple G-algebras over F. This set has in general
no natural group structure. But using the last theorem, we get a partial
multiplication as follows:

A.29 Proposition. Let S and T be central simple G-algebras over the field
F. Also assume that we have an injection Z(S) ↪→ Z(T ) of G-algebras. Then
S ⊗Z(S) T is a central simple G-algebra.

Proof. It remains to show that S ⊗Z(S) T is central simple as G-algebra. Let
1S = e1 + . . .+er be a decomposition of 1S into central primitive idempotents
of S. For each i, let ei = fi1 + . . . + fin be a decomposition into central
primitive idempotents of T . Note that since G permutes transitively the ei’s,
the number n does not depend on i. We have

S ⊗Z(S) T ∼=
⊕

i

Sei ⊗Z(Sei) T
∼=
⊕
i,j

Sei ⊗Z(Sei) Tfij.

The algebra Sei ⊗Z(Sei) Tfij is simple with center isomorphic with Z(Tfij).
Thus S ⊗Z(S) T has center isomorphic with Z(T ), the isomorphism is given
by s ⊗ t �→ st. This is an isomorphism of commutative G-algebras, so since
T is central simple, it follows that Z(S⊗Z(S) T )G = F. Also S⊗Z(S) T has no
nontrivial G-invariant ideals, since its block ideals Sei ⊗ Tfij are permuted
transitively by G. The proof is finished.
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A.30 Theorem. Let C be a central simple, commutative G-algebra over
some field F. Then the set of equivalence classes of G-algebras with center
isomorphic to C forms an abelian group, with multiplication induced by S⊗C

T .

Proof. If S and T belong to the same equivalence class of central simple G-al-
gebras, their centers are isomorphic as G-algebras, so the definition makes
sense. The multiplication is compatible with the equivalence relation by
Proposition A.28. The equivalence class of C acts as identity under this mul-
tiplication. Finally, we show that S ⊗C S

op belongs to the same equivalence
class as C: As C is a direct products of fields and S is faithful as C-module,
it follows from a theorem of Azumaya [40, 18.11] that S is an progenerator
as C-module. The natural homomorphism S ⊗C S

op → EndSC is injective,
since its kernel is a G-invariant ideal of S⊗C S

op, which is simple. By reasons
of dimensions, it is an isomorphism. Also we have an action of G on S. Thus
the Morita context associated with the C-progenerator S admits an action
of G. This yields that C and S ⊗ Sop are equivalent.

A.31 Definition. We denote the group of the last theorem by BrCliff(G,C)
and call it the Brauer-Clifford group of G over C.

This terminology is due to Turull [64] who uses this group in his recent
work on the Glauberman correspondence.

A.32 Remark. Let C be a field with G-action. There is a natural homomor-
phism of abelian groups

BrCliff(G,C) → Br(C) → 0

defined by forgetting the G-action.

A.33 Corollary. If ϕ : C → Z is an homomorphism of commutative simple
G-algebras, then S �→ S ⊗C Z induces an homomorphism

BrCliff(G,C) → BrCliff(G,Z).

Proof. Clear from the last results and the isomorphism of G-algebras (S ⊗C

Z)⊗Z (T ⊗C Z) ∼= (S ⊗C T )⊗C Z.

By the bijections of Theorem A.26, we also get a multiplication of equiva-
lence classes of strongly graded algebras. We do not describe how to multiply
two equivalence classes of strongly graded algebras, but rather describe how
to multiply a simple G-algebra with a strongly graded algebra. This will be
used in our application.
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A.34 Lemma. Let A be a strongly G-graded algebra and S a simple G-al-
gebra, with Z(S) ∼= Z(A1) = C as G-algebras. Let A ∗ S be the following
algebra: As abelian group, A ∗ S = A⊗C S. Multiplication is defined by

(ag ⊗ sg)(ah ⊗ sh) = agah ⊗ sh
gsh for ag ∈ Ag, ah ∈ Ah and sg, sh ∈ S,

extended linearly. Then A ∗ S is graded equivalent with [G](S ⊗C EndA1 A).

Proof. Let B = A ∗ S. It is routine to verify that B is a ring with the
above multiplication. Observe that B is graded by Bg = Ag ⊗C S and
that B1 = A1 ⊗C S with the usual multiplication in the tensor product of
algebras. Note also that A � a =

∑
g ag �→

∑
g ag ⊗ 1 is an injective ring

homomorphism, so we can view A as a graded subring of B. SetM = B⊗A1A
and Mg = Bg ⊗A1 A. Then BM is finitely generated projective, since A1A
is, and BM is a generator, since the map M � b ⊗ a �→ ba ∈ B defines
a surjective B-linear map. Thus BM is a progenerator, and is graded as
B-module. It remains to show that EndB M ∼= [G](S ⊗C T ), where T =
EndA1 A. The proof is similar to that of Theorem A.26, where we proved
that EndA(A⊗A1 A) ∼= [G](T ). Thus define εg ∈ (EndB M)g by

(b⊗ a)εg =
∑

i

bai,g ⊗ a′i,ga,

where ai,g ∈ Ag and a′i,g ∈ Ag−1 with
∑

i ai,ga
′
i,g = 1 as before. Again, εg

is well defined, independent of the choice of the ai,g and εgεh = εgh. It
follows that EndB M is a skew group algebra over (EndB M)1. We finish
the proof by showing S ⊗C T ∼= (EndB M)1 as G-acted algebras. Define
ρ : S ⊗C T → EndB M by

(b⊗ a)(s⊗ t)ρ = bs⊗ at.

In verifying that this is well defined, on has to observe that the C-algebra
structure of T is given by a(c · t) = cat: Although T operates on the right
of A, the center of T consists of the left multiplications with elements of C.
Taking this into account, we get

(b⊗ a)(s⊗ ct)ρ = bs⊗ cat = bsc⊗ at = (b⊗ a)(sc⊗ t)ρ.

The other verifications are easy, so we omit them. We need to show that

(sg ⊗ tg)ρ = ε−1
g (s⊗ t)ρεg.

Remember that tg is defined by

atg =
∑

i

ai,g−1

(
(a′i,g−1a)t

)
.
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Thus we get

(b⊗ a)εg−1(s⊗ t)ρεg =

(∑
i

bai,g−1 ⊗ a′i,g−1a

)
(s⊗ t)ρεg

=

(∑
i

bai,g−1s⊗ (a′i,g−1a)t

)
εg

=
∑
i,j

bai,g−1saj,g ⊗ a′j,g
(
(a′i,g−1a)t

)
=
∑
i,j

bsgai,g−1aj,g ⊗ a′j,g
(
(a′i,g−1)t

)
=
∑

i

bsg ⊗ ai,g−1

(
(a′i,g−1a)t

)
= bsg ⊗ atg = (b⊗ a)(sg ⊗ tg)ρ.

The kernel of ρ must be G-invariant, and since S ⊗C T is simple, it follows
that ρ is injective. Let us show that ρ is surjective. Suppose ϕ ∈ (EndB M)1.
For all x ∈ G choose b′i,x ∈ Ax−1 and bi,x ∈ Ax with

∑
i∈Ix

b′i,xbi,x = 1. (Using
the notation introduced earlier, we can take bi,x = a′i,x−1 and b′i,x = ai,x−1 .)
Then choose sx,i,j ∈ S and cx,i,j ∈ A with (1⊗ bi,x)ϕ =

∑
j sx,i,j ⊗ cx,i,j. This

is possible since (1⊗ bi,x)ϕ ∈ B1⊗A and B1 = SA1. Let tx,i,j ∈ T be defined
by atx,i,j = aπxb

′
i,xcx,i,j, where πx : A → Ax is the projection. We show that

ϕ =
∑

x,i,j(sx,i,j ⊗ tx,i,j)
ρ:

(b⊗ a)ϕ =
∑

x

(b⊗ aπx)ϕ =
∑

x

(b⊗ aπx

∑
i

b′i,xbi,x)ϕ

=
∑
x,i

(baπxb
′
i,x ⊗ bi,x)ϕ =

∑
x,i

baπxb
′
i,x(1⊗ bi,x)ϕ

=
∑
x,i,j

baπxb
′
i,x(sx,i,j ⊗ cx,i,j) =

∑
x,i,j

bsx,i,jaπxb
′
i,x ⊗ cx,i,j

=
∑
x,i,j

bsx,i,j ⊗ aπxb
′
i,xcx,i,j =

∑
x,i,j

bsx,i,j ⊗ atx,i,j

as claimed. The proof of the lemma is finished.

Assume Hypothesis 2.22. It is well known that FG can be viewed as an
strongly G/K-graded algebra (even a crossed product). In the same way,
FH is H/L-graded. Let us write X = H/L ∼= G/K, and let us view FG and
FH as X-graded algebras. According to Theorem A.17, we may associate
equivalence classes of strongly X-graded algebras to ϕ and ϑ, respectively.
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We denote these equivalence classes by [[ϕ]]G,F and [[ϑ]]G,F, respectively. Also,
we have the simple algebra S = (iFKi)L on which X acts. This defines
an equivalence class of simple X-algebras, which we denote [S]. We have
seen that under Hypothesis 2.22, the algebras FKe, FLf and S have centers
isomorphic as G-fields, all of them being isomorphic with F(ϑ) = F(ϕ).

A.35 Theorem. In the Brauer-Clifford group BrCliff(X,F(ϕ)) we have

[[ϑ]]G,F = [S] · [[ϕ]]G,F.

Proof. By Example A.13 we have that FKe is graded Morita equivalent with
iFKi. By Lemma A.34, we are done if we can show that FHf ∗ S ∼= iFKi
as X-graded algebras. Set

κ : FHf ∗ S → iFKi, ah ⊗ s �→ ahs for ah ∈ FHfh, s ∈ S.

Then ϕ is a homomorphism since for h ∈ H and ah ∈ FLfh we have sah =
ahs

h. It is a bijection from FLf ⊗ S onto iFKi by Lemma 2.25. Since both
FH ∗ S and iFKi are crossed products of X, it follows easily that ϕ is an
isomorphism of graded algebras.

This theorem is related to Theorem 2.30. One can show that anX-algebra
S is equivalent to the trivialX-algebra Z(S) if and only if S ∼= Mn(Z(S)) and
the action comes from a crossed representation σ : X → S as in Lemma 2.27,
with respect to the subalgebra S0 = Mn(Z(S)X).



References

[1] Hyman Bass, Algebraic K-theory, W. A. Benjamin, New York, 1968. 89,
90
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List of Notation

N = {0, 1, 2, . . .}, natural numbers

Z ring of integers

Q rational numbers

C complex numbers

⊆ inclusion

⊂ strict inclusion

|A|, |z| cardinality of set A respective absolute value of z ∈ C

A ·∪B disjoint union of A and B

N �G N is a normal subgroup of G

N �G N is a normal subgroup of G strictly contained in G

CA(S) centralizer of S in A

AG alternative notation for CA(G), when A is a G-algebra

TG
H(a) TG

H(a) =
∑

r∈R a
r for G = ·⋃

r∈RHr and a ∈ AH

NG(H) normalizer of H in G

Z(G) center of group or ring G

Mn(R) set of n× n matrices with entries from R

ZF(A,F) Central forms on A, that is maps τ : A→ F with τ(ab) =
τ(ba)

trS/F reduced trace of central simple F-algebra S

nrS/F reduced norm of central simple F-algebra S

A∗ group of units of ring A

annAM annihilator of M in A

AutG automorphism group of group or ring G

InnG inner automorphisms of group or ring G

OutG AutG/ InnG

AutFA CAut A(F)

Gal(E/F) Galois group of Galois extension E/F, means the same as
AutF E

TE

F
field trace for Galois extension E/F
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List of Notation 111

SylpG set of Sylow p-subgroups of group G

ord(g) order of g

IrrG set of irreducible complex characters of G

LinG set of linear complex characters of G

χH restriction of class function χ to subgroup H

ξG induced character

(χ, ψ)G inner product of class functions χ, ψ : G→ C.

IrrEG set of characters of absolutely irreducible EG-modules, E

being a splitting field of G

IrrAG set of irreducible complex A-invariant characters of G,
where A acts on G

Irr(β) irreducible constituents of (generalized) character β

Irr(G | ϑ) Irr(ϑG) for ϑ ∈ IrrH with H � G

〈 , 〉ϕ Dade-Isaacs bilinear form, see Section 4.1.

γϑ

∑
χ∈Irr(G|ϑ)(γ, χ)Gχ for classfunctions γ

detχ determinant character of χ

ord(χ) order of detχ

F(χ) field generated by the values of χ over F

eχ central primitive idempotent belonging to irreducible char-
acter χ, if the field of values of χ has characteristic p > 0
it is assumed that the module of χ is also projective.

[[χ]]F the equivalence class of F(χ)Geχ in the Brauer group of
F(χ).

mF(χ) Schur index of χ over field F
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Thesen zur Dissertation

Character Correspondences in Finite Groups

Frieder Ladisch

1. Sei G eine endliche Gruppe, H � G und K �G mit HK = G, und sei
L = H ∩ K. Die Charaktere ϑ ∈ IrrK und ϕ ∈ IrrL seien invariant
in H und die Vielfachheit n von ϕ in ϑL sei nicht null. Unter welchen
Bedingungen existiert eine Bijektion zwischen Irr(G | ϑ) und Irr(H |
ϕ)?

2. Sei n die Vielfachheit von ϕ in ϑL. Die obige Konfiguration definiert eine
zentral einfache Algebra S der Dimension n2 über jedem Körper, der die
Werte von ϑ und ϕ enthält. Außerdem hat man einen Homomorphismus
von H/L in die Automorphismengruppe von S.

3. Falls der Homomorphismus von H/L in AutS sich zu einem Homo-
morphismus von H/L nach S∗ heben läßt, ist dadurch eine Bijektion
zwischen Irr(G | ϑ) und Irr(H | ϕ) definiert. Wir nennen eine solche
Hebung eine “magische Darstellung” für die Konfiguration aus 1.

4. Eine magische Darstellung hat einen Charakter ψ. Die Charakterkor-
respondenz zu einer magischen Darstellung hat neben anderen Eigen-
schaften die, daß für χ ∈ Irr(G | ϑ) und den korrespondierenden Cha-
rakter ξ ∈ Irr(H | ϕ) die Gleichung χH = ψξ+Δ gilt, wobei (ΔL, ϕ) = 0
ist.

5. Falls (n, |H/L|) = 1 ist, existiert eine magische Darstellung. Die Iso-
morphie der Clifford-Erweiterungen zu ϑ und ϕ über algebraisch abge-
schlossenen Körpern wurde bereits 1970 von Dade bewiesen und von
Schmid (1988) verallgemeinert.

6. Sei jetzt L ein Normalteiler von K und ϕ vollständig verzweigt in K,
das heißt, ϕ ist invariant in K und n2 = |K/L|. Für diesen Fall exi-
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stiert bereits eine umfangreiche Literatur über die Beziehungen zwi-
schen Irr(G | ϑ) und Irr(H | ϕ).

7. Falls K/L abelsch und von ungerader Ordnung ist, garantiert ein Satz
von Isaacs die Existenz einer magischen Darstellung, sogar einer aus-
gezeichneten kanonischen unter diesen. Wenn G/L ungerade Ordnung
hat, entspricht einem Charakter χ über ϑ gerade derjenige Charakter
von H, der in χH mit ungerader Vielfachheit auftaucht. Die Methoden
dieser Arbeit erlauben eine signifikante Vereinfachung des Beweises.

8. Außerdem verallgemeinern wir das Resultat dahingehend, daß die Bi-
jektion unter einer zusätzlichen Voraussetzung Schur-Indices über allen
Körpern erhält, auch wenn die Voraussetzung aufgegeben wird, daß ϑ
und ϕ invariant in H sind.

9. Sei jetzt G eine endliche Gruppe und A eine Gruppe von Automor-
phismen von G, so daß (|A|, |G|) = 1 ist. Dann existiert eine Bijekti-
on zwischen den A-invarianten Charakteren von G und den Charak-
teren des Zentralisators CG(A) von A in G, die Glauberman-Isaacs-
Korrespondenz. Für G ungerader Ordnung wurde dies von Isaacs mit
Hilfe des in 7. beschriebenen Resultates gezeigt. Wir zeigen zusätzlich,
daß diese Korrespondenz (für |G| ungerade) Schurindizes über allen
Körpern erhält.

10. Falls in der Konfiguration aus 1. L ein Normalteiler von K ist, und
ein Normalteiler M � H existiert, so daß (|M/L|, |K/L|) = 1 und
CK/L(M) = 1 ist, dann existiert ebenfalls eine Magische Darstellung.
Dies läßt sich mit unseren Methoden recht einfach aus einem sehr viel
weniger allgemeineren Satz von Dade herleiten.

11. Eine magische Darstellung existiert auch, wenn ϕ der Glauberman-
Korrespondent von ϑ unter einer Automorphismengruppe P ist, und
H = NG(P ). Dies geht im wesentlichen aus einem Satz von Dade her-
vor, und benutzt einen tiefliegenden Klassifikationssatz, der ebenfalls
von Dade stammt.
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stock.

2002 – 2004 Stipendiat der Landesgraduiertenförderung Mecklenburg-
Vorpommern.

WS 2003/04 Lehrauftrag am Fachbereich Mathematik der Universität
Rostock.

seit 01. 10. 2004 Wissenschaftlicher Mitarbeiter am Institut für Mathema-
tik der Universität Rostock.

118



Bisherige Veröffentlichungen
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