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Abstract 

This cumulative thesis deals with the application of the Borrowing Hydrogen methodology in 

organic synthesis. This concept combines the dehydrogenation and hydrogenation with 

numerous of organic transformations. The introduction gives an overview of the current 

research in the area of Borrowing Hydrogen, which expands from activation of C-C bonds to C-O 

bonds and finally to C-N bonds. During my research, the Borrowing Hydrogen methodology was 

applied in the synthesis of secondary and tertiary amines starting from secondary alcohols by C-

O activation. Furthermore, I was able to introduce the selective synthesis of monoalkylated aryl 

amines using primary, secondary, and tertiary amines by C-N activation. This new method was 

continuously applied in the alkylation of t-alkyl amines. Additionally, mechanistic studies in the 

activation and deactivation of the Shvo catalyst (2) were performed.  

 

The results of my work, reported in the publications I-IX listed on the preceding page, are 

integrated and associated with state-of-the-art chemistry in this field.  

 

My ambition is to help the reader to get interested in this field and to understand these 

transformations. I also want to emphasize the work I have been responsible for. 

 



   

  

Zusammenfassung 

Diese kumulative Dissertation befasst sich mit der Anwendung der Borrowing Hydrogen 

(Ausleihen von Wasserstoff) Methodik in der organischen Synthese. Dieses Konzept 

kombiniert die Schritte der Hydrierung und Dehydrierung mit einer Vielzahl von organischen 

Reaktionen. Die Einleitung gibt einen Überblick über die aktuelle Forschung auf dem Gebiet 

der Borrowing Hydrogen Methodik. Diese umfasst die Aktivierung von C-C Bindungen, C-O 

Bindungen sowie von C-N Bindungen. In meiner Forschung wurde diese Methodik in der 

Synthese von sekundären sowie tertiären Aminen mittels sekundärer Alkohole angewandt. 

Weiterhin befasste ich mich mit der selektiven Synthese von monoalkylierten Aryl aminen. 

Dabei konnten primäre, sekundäre sowie tertiäre Alkyl amine eingesetzt werden. Diese neue 

Methode wurde ebenfalls in der Alkylierung von t-Alkyl aminen angewandt. Zusätzlich zur 

organischen Synthese befasste ich mich mit mechanistischen Studien zur Aktivierung sowie 

Deaktivierung des eingesetzten Shvo Katalysators (2).  

 

Die Ergebnisse meiner Forschung, welche in den Publikationen I-IX auf den vorherigen 

Seiten aufgelistet sind, wurden in diese Übersicht integriert und mit der aktuellen Forschung auf 

diesem Gebiet verknüpft. 

 

Mein Bestreben mit dieser Arbeit ist es, das Interesse für dieses sehr interessante Gebiet 

sowie ein Verständnis für die damit möglichen Reaktionen in der organischen Chemie zu 

wecken.  



   

  

Abbreviations 

 

BINAP 2,2'-Binaphtyldiphenyldiphosphine 

Bn Benzyl 

Bu Butyl 

CO Carbonyl 

cod Cyclooctadien 

Cp* Pentamethylcyclopentadienyl 

DME Dimethoxyethane 

DMSO Dimethylsulfoxide 

dppf 1,1'-Bis(diphenylphosphino)ferrocene 

dppp 1,3-Bis(diphenylphosphino)propane 

ee enantiomeric excess 

E-factor Environmental Factor 

Et Ethyl 

et al. et alia 

ip-foxap (S,S)-[2-(4'-Isopropyloxazolin-2'-yl)ferrocenyl]diphenylphosphine 

i- iso- 

Me Methyl 

MPV Meerwein-Pondorf-Verley reduction 

Ph Phenyl 

Pr Propyl 

Py Pyridinium 

R Alkyl-, Aryl moiety  

t-  tert- 

THF Tetrahydrofurane 

TsDPEN Tosyldiphenylethylendiamine 

Xantphos 4,5-Bis(diphenylphosphino)-9,9-dimethylxanthene 
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1. Introduction 

1.1. Transfer Hydrogenation 

Hydrogen is the smallest atom in the periodic table and exists as the tiniest known molecule 

(H2). By losing a proton, a hydride can be formed (Scheme 1). Hydrogen is used in a magnitude 

of catalytic reactions as reducing agent. The E-factor,1 defined by the mass of the waste divided 

by the mass of the product, is very low since the reactions generally go to completion and no 

waste is generated. As hydrogen is explosive, the handling requires expensive and specialized 

equipment. Due to the high reactivity of hydrogen gas, another drawback is the low 

chemoselectivity towards other functional groups.2  

H HH2

proton hydridehydrogen  

Scheme 1: Separation of hydrogen into a proton and a hydride 

One of the most popular procedures, the use of different borohydrides, has the disadvantage 

that stoichiometric amounts of reduction agent are required. Consequently, a lot of waste is 

produced, giving a high E-factor. Moreover, the workup requires tedious acid/base extractions 

that lower the yield and further increase the E-factor.  

An attractive way to circumvent the hazard use of hydrogen and the stoichiometric use of 

metal hydrides is to employ alternative hydrogen sources such as 2-propanol or formic acid. 

2-Propanol is cheap, liquid, non-toxic, and volatile. During the process, 2-propanol is oxidized 

to acetone. This makes the reduction of ketones a reversible process where the equilibrium is 

regulated by the excess of starting material or the removement of products. 

R1 R2

OHO

R1 R2

OOHOppenauer oxidation

Meerwein-Pondorf-
Verley reduction H R2

OO

R1

Al
i-PrO OPr-i

Scheme 2: Oppenauer oxidation of alcohols and Meerwein-Pondorf-Verley reduction of ketons 

                                                                                                                                                       
(1)  (a) R. A. Sheldon, Green Chem. 2007, 9, 1273 - 1283. (b) R. A. Sheldon, Pure Appl. Chem. 2000, 72, 1233-1246. 

(2)  S. Gladiali, E. Alberico, in Transition Metals for Organic Synthesis, (Eds.: M. Beller and C. Bolm) Wiley-VCH, 

  Weinheim, 2004, Vol. 2, p. 145. 
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Acetone is unreactive and can easily be removed from the reaction mixture by distillation. 

Since the introduction of classical aluminium-based reagents used in the Meerwein-Pondorf-Verley 

reduction of ketones by 2-propanol in 19253 and the reverse reaction, the Oppenauer oxidation of 

alcohols by acetone in 19374 (Scheme 2), many other metals have been shown to be catalytically 

active for the transfer hydrogenation of carbonyls into alcohols. In particular, late transition 

metal catalysts combined with asymmetric ligands have widely been investigated for asymmetric 

hydrogenation reactions (Scheme 3).5 Here, Noyori’s ruthenium-based catalysts comprising the 

combination of BINAP and a chiral diamine constitute state-of-the-art transfer hydrogenations 

systems. 6  

R2

O OH Ocatalyst
� R2

OH

R1 R1
base

 

Scheme 3: Transfer hydrogenation of ketones using 2-propanol 

Unfortunately, the reversibility of the reaction remains a major drawback in asymmetric 

hydrogen transfer. As the conversion increases, the rate of the reverse reaction becomes higher 

and thus thermodynamic control of the enantiomers can occur, which is shown in a decrease of 

the enantiomeric purity of the product. This limitation can be overcome by continuously 

distilling off acetone as soon as it is formed.  

Compared to 2-propanol, formic acid and its salts are better hydrogen donors and constitute 

a cheap and nontoxic hydrogen source. Pure formic acid can be stored as solid or as liquid in a 

mixture of formic acid/triethylamine 5:2. This mixture is miscible with many solvents at 

20-60 °C. Under thermal conditions it can decay into hydrogen and carbon dioxide, which is 

released as gas and can be reused for further applications (Scheme 4).  

R1 R2

O catalyst

R1 R2

OH
HCOOH CO2

base  

Scheme 4: Transfer hydrogenation of ketones using formic acid 

                                                                                                                                                       
(3)   a) H. Meerwein, R. Schmidt, Liebigs Ann. Chem. 1925, 44, 221-238. b) K. Nishide, M. Node, Chirality 2002, 14, 

759-767. 

(4)   a) R.V. Oppenauer, Rec. Trav. Chim. 1937, 56, 137-144. b) M. L. S. Almeida, P. Kocovsky, J.-E. Bäckvall, J. 

Org. Chem. 1996, 61, 6587-6590. 

(5)   Review of asymmetric transfer hydrogenation, see: a) S. Gladiali, E. Alberico, Chem. Soc. Rev. 2006, 35, 226-

 236. b) J. S. M. Samec, J.-E. Bäckvall, P. G. Andersson, P. Brandt, Chem. Soc. Rev. 2006, 35, 237-248. 

(6)  X. Wu, X. Li, F. King, J. Xiao, Angew. Chem. Int. Ed. 2005, 44, 3407-3411; Angew. Chem. 2005, 117, 3473-3477. 
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However, the use of formic acid is restricted. Several complexes undergo fast decomposition 

on attempted dissolution. Formic acid can also inhibit one of the steps of the activation process 

promoted by a base, which leads to the complete loss of the catalytic activity. In addition, the 

catalyst usually has to activate by a base. However, organic synthesis needs economically and 

technically more beneficial methods.  

 

The hydride transfer takes place according to two mechanisms: Direct H-transfer (metal-

templated concerted process) and hydridic H-transfer (metal hydride mediated multi-step 

process). The direct H-transfer proceeds via a complex, in which both the donor and the 

acceptor are bound to the metal. A cyclic transition state like in the Meerwein-Pondorf-Verley 

reaction is involved (see Scheme 2). The hydridic H-transfer involves the intermediate 

formation of metal hydrides by interacting with hydrogen donors followed by hydride transfer 

to the substrates. Depending on a ligand coordinated to the metal, either mono- or dihydride 

species are involved. In contrast to this, ligand metal bifunctional catalysts involve proton 

transfer from N-H or O-H bonds and hydride transfer from Ru-H species. Many remarkably 

reactive ruthenium hydrogenation catalysts are known, based on the chiral diamine ligands 

discovered by Noyori and co-workers7 (catalyst 1) or the cyclopentadienone ligands discovered 

by Shvo8 (catalyst 2).5 Recently, Casey applied the iron catalyst 3, developed by Knölker et al.,9 in 

transfer hydrogenation.10   

Ru
H

Ru
CO CO

CO CO

O O
H

Ph
Ph

Ph
Ph

Ph

Ph
Ph

Ph

2

N

NH2

Ph

Ph
Ru

Cl

Ts

1

TMS

TMS

OH

Fe
HOC

OC

3  

Scheme 5: Ligand metal bifunctional catalysts 

                                                                                                                                                       
(7)  R. Noyori, S. Hashiguchi, Acc. Chem. Res. 1997, 30, 97 -102. 

(8)  a) R. Karvembu, R. Prabhakaran, N. Natarajan, Coord. Chem. Rev. 2005, 249, 911-918. b) Y. Shvo, D. Czarkie, 

 Y. Rahamim, J. Am. Chem. Soc. 1986, 108, 7400-7402. c) Y. Blum, D. Czarkie, Y. Rahamim, Y. Shvo, 

Organometallics 1985, 4, 1459-1461. d) Y. Shvo, R. M. Laine, J. Chem. Soc., Chem. Comm. 1980, 753-754.  

(9)  H.-J. Knölker, E. Baum, H. Goesmann, R. Klauss, Angew. Chem. Int. Ed. 1999, 38, 2064-2066; Angew. Chem. 

  1999, 111, 2196-2199. 

(10)  a) C. P. Casey, H. Guan, J. Am. Chem. Soc. 2007, 129, 5816-5817. b) R. M. Bullock, Angew. Chem. Int. Ed. 2007, 

  46, 7360-7363; Angew. Chem. 2007, 119, 7504-7507. 
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2. Borrowing Hydrogen Methodology  

2.1. Principles of the Borrowing Hydrogen Methodology 

The Borrowing Hydrogen methodology also called Hydrogen Auto Transfer Process combines the 

advantages of transfer hydrogenation with additional transformations (Scheme 6). The hydrogen 

donor compound is not a waste compound such as 2-propanol. After dehydrogenation by a 

metal catalyst, the corresponding unsaturated compound can undergo further reactions and 

transformations such as condensation reactions with amines or Wittig reactions in order to form 

new unsaturated compounds. The corresponding compound can be hydrogenated by the metal 

hydride complex, which was generated in the dehydrogenation of the unsaturated starting 

material. The development of catalytic systems is therefore likely to involve metal complexes, in 

which H2 dissociation and re-coordination is facile, preferably without the requirement of 

forcing conditions. Due to the stability of metal hydride complexes, most metal catalysts are 

inactive in the Borrowing Hydrogen methodology. Ideally, the hydrogenation step is irreversible, 

resulting in the complete shift of the equilibrium to the product. Under consideration of no 

hydrogen loss, even by side reaction or by gas evolution, the Borrowing Hydrogen methodology 

can refrain from using additional hydrogen sources, resulting in a very low E-factor. Thus, the 

Borrowing Hydrogen methodology is probably one of the best possibilities not only from a 

chemical point of view but also from an economical and environmental point of view. Based on 

these aspects, the Borrowing Hydrogen methodology received high attention in the last years. This 

atom efficient attractive method was applied in various reactions, which are discussed on the 

following pages. 

 

catalyst

[MH2]

[M]

dehydrogenation hydrogenation

R1

Y
R'

R

X

R

X

R

Y
R'

transformation
1-2 steps

X, Y = C, N, O  

Scheme 6: Basic scheme of the Borrowing Hydrogen methodology 
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2.2.Activation of C-C Bonds 

The carbon-carbon single bond represents one of the most stable single bond ever. Thus, it 

is of high interest to activate these bonds. One method to cleave carbon-carbon single bonds is 

the activation by dehydrogenation. The olefin can undergo transformations such as metathesis 

to cleave the unsaturated carbon-carbon double bond.  

2.2.1. Alkane Metathesis11 

Alkane conversion has been a major focus of petrochemical research in the last century.12 

The olefin metathesis received high attention which led to the development of important 

industrial processes such as the Lummus ABB process (conversion of ethylene to propylene).13 

The combination of heterogeneous hydrogenation/dehydrogenation and olefin metathesis 

catalysts led to the first alkane metathesis process, the so called Chevron process,14 which allows a 

specific alkane to be converted into its lower and higher homologues (Scheme 7). As catalysts a 

combination of Pt/Al2O3 (dehydrogenation/hydrogenation) and WO3 on silica (metathesis) was 

developed. Unfortunately, the dehydrogenation is highly disfavoured. Therefore, high 

temperatures of 400 °C is required for high concentration of olefins. 

 
Pt/Al2O3 WO3/SiO2 Pt/Al2O3

metathesis  

Scheme 7: Chevron process 

Basset et al. reported heterogeneous catalysts based on tantalum (catalysts 4 and 5, 1997)15 and 

tungsten (catalysts 6 and 7, 2005).16 Some examples of these catalysts are displayed in Scheme 8. 

Notably, in contrast to the Chevron process, alkane metathesis is carried out on a dual catalyst 

                                                                                                                                                       
(11)  J.-M. Basset, C. Coperet, D. Soulivong, M. Taoufik, J. Thivolle-Cazat, Angew. Chem. Int. Ed. 2006, 45, 6082-

  6085; Angew. Chem. 2006, 118, 6228-6231. 

(12)  J. A. Labinger, J. E. Bercaw, Nature 2002, 417, 507-514. 

(13)  J. C. Mol, J. Mol. Catal. 2004, 213, 39-45.  

(14)  a) L. F. Heckelsberg, R. L. Banks (Phillips Petroleum Co.), US3445541, 1969. b) T. R. Hughes (Chevron 

  Research Co.), US3773845, 1971. 

(15)   V. Vidal, A. Theolier, J. Thivolle-Cazat, J.-M. Basset, Science 1997, 276, 99-102. 

(16)  E. Le Roux, M. Taoufik, C. Copéret, A. de Mallmann, J. Thivolle-Cazat, J.-M. Basset, B. M. Maunders, G. J. 

  Sunley, Angew. Chem. Int. Ed. 2005, 44, 6755-6758; Angew. Chem. 2005, 117, 6913-6916. 
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based on a single metal having all the required properties such as C-H activation, 

dehydrogenation, hydrogenation, and metathesis. 

O
Ta

O

Hx

EEO
O Ox O Ox

O

O
Ta

EO
O Ox

t-Bu t-Bu

t-Bu

E = Si, Al

O
W

O

H

AlAlO
O Ox O Ox

O

H

O
W

AlO
O Ox

t-Bu

t-Bu

t-Bu

4 5 6 7  

Scheme 8: Catalysts for alkane metathesis developed by Basset et al.  

The first homogenous catalyst system based on a combination of the iridium complexes 

8-10, 17 as dehydrogenation and hydrogenation catalyst, and Schrocks molybdenium imido olefin 

catalyst 11 was reported in 2006 (Scheme 9) by Goldman et al..18 This process converted n-hexane 

to a range of C2 to C15 n-alkanes. 

O

O Pt-Bu

Ir

Pt-Bu

L

L = H2 or C2H4

Pt-Bu

Ir

Pt-Bu

L

Pi-Pr

Ir

Pi-Pr

LMeO

Mo
N

H3C(F3C)2CO
H3C(F3C)2CO

8 9 10 11

i-Pr i-Pr

C(CH2)2Ph

 

Scheme 9: Catalysts for alkane metathesis developed by Brookhart, Goldman, and Chevron 

Recently, Basset et al. described a very efficient molybdenium alkyl alkylidene imido complex 

12 as precursor for alkane metathesis (Scheme 10).19 

Mo
N

O

12

i-Pr i-Pr

t-Bu
t-Bu

SiO
O

Ox

 

Scheme 10: Molybdenium alkyl alkylidene imido complex for alkane metathesis developed by Basset et al. 

                                                                                                                                                       
(17)  M. Gupta, C. Hagen, R. J. Flesher, W. C. Kaska, C. M. Jensen, Chem. Commun. 1996, 2083-2084. 

(18)  A. S. Goldman, A. H. Roy, Z. Huang, R. Ahuja, W. Schinski, M. Brookhart, Science 2006, 312, 257-261. 

(19)  F. Blanc, C. Coperet, J. Thivolle-Cazat, J.-M. Basset, Angew. Chem. Int. Ed. 2006, 45, 6201-6203; Angew. Chem. 

  2006, 118, 6347-6349.  
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2.3.Activation of C-O Bonds 

Alcohols have a limited reactivity without any type of activation such as addition of base in 

order to form nucleophilic alkoxides, or addition of acid to form electrophilic species. The 

temporary conversion of alcohols into carbonyl compounds provides more active carbonyl 

compounds than alcohols. They can react as electrophilic compounds in addition reactions such 

as condensation reactions or Wittig reactions but also as nucleophilic enol or enolate substrates 

in aldol reactions.  

The activation of alcohols by the Borrowing Hydrogen methodology through a temporarily 

oxidized alcohol into a ketone has extensively been reviewed by Williams et al.20 and Yus et al. 21  

in 2007. Selected examples and new publications since these reviews are displayed in the 

following. 

2.3.1. Aldol Condensation 

The aldol condensation, the reaction of enolates derived from aldehydes or ketones with 

aldehydes or ketones into �,�-unsaturated carbonyl compounds via elimination of water, is one 

of the most common and famous C-C bond forming reactions in organic chemistry. Using the 

Borrowing Hydrogen methodology, the activation of primary or secondary alcohols to the 

corresponding aldehydes or ketones provides an access to this kind of C-C formation. The 

temporarily produced hydrogen can be used for hydrogenation of the �,�-unsaturated 

compounds to form alkylated alcohols (Scheme 11). 

[MH2]

[M]

R

OH

R

O

R

O

R'

R

OH

R'

O

R'
via enolate

(+ additional H2)

 

Scheme 11: Borrowing Hydrogen methodology combined with aldol reaction  

                                                                                                                                                       
(20)  M. H. S. A. Hamid, P. A. Slatford, J. M. J. Williams Adv. Synth. Catal. 2007, 349, 1555-1575.  

(21)  G. Guillena, D. J. Ramon, M. Yus, Angew. Chem. Int. Ed. 2007, 46, 2358-2364; Angew. Chem. 2007, 119, 2410-

2416. 
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Depending on the starting material, three different concepts are possible (Scheme 12):  

 (a) �-alkylation of ketones using alcohols 

 (b) �-alkylation of secondary alcohols with aldehydes 

 (c) �-alkylation of secondary alcohols with primary alcohols 

 

R

OH

R

O

O

R'

R

OH

R'

R

OH

OH

R'

OH

R'

(a)

(b)

(c)

 

Scheme 12: Starting concepts for the indirect aldol reaction  

All of these concepts lead to saturated alcohols. Several catalysts are described for these 

reactions, which are included in the reviews of Williams 20and Yus.21 Concerning the atom 

economical point of view, it is preferable to avoid additives such as hydrogen acceptor (e.g. 

dodecene) or hydrogen donor (e.g. dioxane as solvent). Thus, the catalyst RuCl2(DMSO)4 (Yus et 

al.)22 as well as the iridium catalyst [Cp*IrCl2]2 (Fujita et al.)23 can be highlighted, which are very 

active in the �-alkylation of ketones24 as well as �-alkylation of secondary alcohols with primary 

alcohols. A new homogenous high efficient catalyst has recently been introduced by Peris and 

co-workers25 for the �-alkylation of secondary alcohols with primary alcohols. 

Interestingly, only two heterogeneous catalysts are described for �-alkylation of secondary 

alcohols. In 2005, Park et al. reported the first heterogeneous catalyst consisting of 

Pd/AlO(OH), which is composed of palladium nanoparticles entrapped in aluminium 

hydroxide.26 This highly active catalyst was recovered by filtration or decantation. Furthermore, 

Uozumi described the palladium nanocatalyst nano-Pd-V, which is a mixture of palladium 

                                                                                                                                                       
(22)   R. Martinez, D. J. Ramon, M. Yus, Tetrahedron 2006, 62, 8982-8987. 

(23)  K.-i. Fujita, C. Asai, T. Yamaguchi, F. Hanasaka, R. Yamaguchi, Org. Lett. 2005, 7, 4017-4019. 

(24)  a) R. Martinez, D. J. Ramon, M. Yus, Tetrahedron 2006, 62, 8988-9001. b) R. Martinez, G. J. Brand, D. J. 

Ramon, M. Yus, Tetrahedron Lett. 2005, 46, 3683-3686. 

(25)  M. Viciano, M. Sanau, E. Peris, Organometallics 2007, 26, 6050-6054. 

(26)  M. S. Kwon, N. Kim, S. H. Seo, I. S. Park, R. K. Cheedrala, J. Park, Angew. Chem. Int. Ed. 2005, 44, 6913-

6915; Angew. Chem. 2005, 117, 7073-7075. 
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nanoparticles in viologen polymer.27,28 As base for the aldol condensation barium hydroxide 

(Ba(OH)2) was applied. In addition, this catalyst was used in the ring opening alkylation of 

diketones.28 

 

Theoretically, using combinations of iridium and ruthenium precursors with chiral ligands, it 

should be possible to obtain the reduced alcohol with high enantioselectivity. Until to date, this 

has not been reported before. Nishibayashi and co-workers circumvent this problem by applying 

a sequential reaction of iridium-catalyzed �-alkylation of ketones using alcohols, to obtain the 

racemic alcohol and ruthenium-catalyzed enantioselective transfer hydrogenation, to convert the 

racemic alcohols into optically pure alcohols (Scheme 13).29  

 

Ph

O OH

Ph

HO
OH

Ph

100 °C, 4 h

i-PrOH, rt, 2 h
13

14

15 16
75 %, 94 % ee

(1 mol%)[{IrCl(COD)}2]
(4 mol%)PPh3
(5 mol%)KOH

(1 mol%)
(4 mol%)

[RuCl2(PPh3)(ip-foxap)]
i-PrONa

 

Scheme 13: One-pot combination of �-alkylation of ketones and transfer hydrogenation  

A mixture of acetophenone (13) and 1-butanol (14) was converted in the presence of catalytic 

amounts of [{IrCl(COD)}2] and PPh3, followed by an addition of [RuCl2(PPh3)(ip-foxap)] to 

(R)-1-phenyl-1-hexanol (16) in 75 % yield and 94 % ee. Compared to this one-pot sequence, the 

direct enantioselective reaction catalyzed by using only [RuCl2(PPh3)(ip-foxap)], provided low–

to-moderate enantioselectivity. 

2.3.2. �-Bromination of Alcohols 

Activation of alcohols by reversible oxidation to ketones allows an access to enol and enolate 

chemistry. In 2003, Hamid and Williams described the indirect �-bromination of alcohols using 

the Borrowing Hydrogen methodology (Scheme 14).30 The bromination of ketones was easily 

achieved with pyridinium tribromide. For the reversible oxidation, one equivalent of aluminium 

t-butoxide from the Oppenauer/Meerwein-Pondorf-Verley transfer hydrogenation was chosen.  
                                                                                                                                                       

(27)  Y. M. A. Yamada, Y. Uozumi, Org. Lett. 2006, 8, 1375-1378. 

(28)  Y. M. A. Yamada, Y. Uozumi, Tetrahedron 2007, 63, 8492-8498. 

(29) G. Onodera, Y. Nishibayashi, S. Uemura, Angew. Chem. Int. Ed. 2006, 45, 3819-3822; Angew. Chem. 2006, 118, 

  3903-3906. 

(30)  M. H. S. A. Hamid, J. M. J. Williams, Synlett 2003, 124-126. 
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Ph

OH

Ph

OH
Br

toluene, 60 °C 24 h

17 18
62 %

(1 equiv)
(10 mol%)
(1.5 equiv)

PhCOMe
PyHBr3

Al(Otert-Bu)3

 

Scheme 14: Indirect �-bromination of alcohols introduced by Williams et al.  

2.3.3. Knoevenagel Reaction 

In combination with the Borrowing Hydrogen methodology, a modified aldol reaction, the 

Knoevenagel reaction, can be used for monoalkylation of C-H acid methylene compounds 

(Scheme 15). 

 

R1 OH
+[M]

-[MH2] R1 O

R = electron with drawing group

R R

Knoevenagel reaction

, Base
R1

R

R

+[MH2]

-[M]
R1

R

R

 

Scheme 15: Borrowing Hydrogen methodology combined with Knoevenagel reaction  

The first transition metal-catalyzed alkylation using the Knoevenagel reaction was described by 

Grigg and co-workers in 1981.31 By means of an in situ rhodium catalyst consisting of RhCl3 and 

PPh3, a small variety of arylacetonitriles derivatives such as 20 were converted to the 

monoalkylated arylacetonitrile 2132 which have a high potential as building blocks for the 

construction of amides, carboxylic acids, heterocyclic, and biologically active compounds. As 

alcohol substrates, primary alcohols such as methanol or ethanol (19) were chosen. Bulkier 

alcohols e.g. benzyl alcohol (34) seems to be problematic, long reaction times (132 h) were 

necessary and moderate yields were achieved. Compared to the rhodium in situ catalyst, the 

ruthenium catalyst [RuH2(PPh3)4] showed higher reactivity. 

                                                                                                                                                       
(31)  R. Grigg, T. R. B. Mitchell, S. Sutthivaiyakit, N. Tongpenyai, Tetrahedron Lett. 1981, 22, 4107-4110.  

(32)  Alkylated nitriles are traditionally synthesized using stoichiometric amounts of inorganic bases and alkyl 

halides. Major drawbacks with these methods are the toxicity of the alkylating agent, the concurrent formation 

of undesirable waste salts, and the potential for dialkylated by-products.   
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OH
RhCl3 +3 H2O
PPh3   
Na2CO3

Ph CN

Ph CN

ethanol, reflux, 48 h

(5 mol%)
(25 mol%)
(1.1 equiv.)

19

20

21
72 %

 

Scheme 16: First example of an indirect Knoevenagel reaction introduced by Grigg and co-workers 

No more than three years ago, in 2004, Kaneda described the same reaction catalyzed by 

ruthenium-grafted hydrotalcide.33 This heterogeneous catalyst was applicable with various 

substrates, however, only primary alcohols as reported by Grigg et al.31 were converted. The 

ruthenium-grafted hydrotalcide possesses both active Ru4+ species for dehydrogenation and 

hydrogenation, as well as surface base sites for the Knoevenagel reaction, thus no additional base 

or additives were required.  

In 2006, Grigg et al. described a highly efficient iridium-catalyzed alkylation of nitriles 

(Scheme 17).34 A large diversity of alcohols and nitriles were converted in high yields selectively 

to the corresponding monoalkylated nitriles (e.g. 24).  

[Cp*IrCl2]2   
KOH

CN

100 °C, 17 h or 10 min MW

(2.5 mol%)
(15 mol%)

HO

N
H

N

N

CN

NH

no MW :  77 % 
MW      :  67 %

22

23

24

 

Scheme 17: Iridium-catalyzed indirect Knoevenagel reaction using conventional and microwave heating  

For example, pyridine and indoles were tolerated. In addition to conventional heating, the 

reactions were performed using microwave technique. Thereby, a shortening of the reaction 

time to 10 minutes was achieved. The same iridium catalyst was deployed in the alkylation of 

1,3-dimethylbarbituric acid.35 

                                                                                                                                                       
(33) K. Motokura, D. Nishimura, K. Mori, T. Mizugaki, K. Ebitani, K. Kaneda, J. Am. Chem. Soc. 2004, 126, 5662-

 5663.  

(34) C. Löfberg, R. Grigg, M. A. Whittaker, A. Keep, A. Derrick, J. Org. Chem. 2006, 71, 8023-8027.  

(35) C. Löfberg, R. Grigg, A. Keep, A. Derrick, V. Sridharan, C. Kilner, Chem. Commun. 2006, 5000-5002.  
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At the same time, Williams studied the iridium-catalyzed alkylation of alcohols using 

nitroalkanes (nitroaldole reaction), malonates, 1,3-diketones, and ketonitriles.36 The reaction of 

dibenzylmalonate with benzyl alcohol provides an access to alkylated malonates although only 

moderate yields were achieved due to decarboxylation and transesterification. Recently, Williams 

reported a second generation ruthenium catalyst based on [RuH2(PPh3)3(CO)] and Xantphos for 

the alkylation of ketonitriles (Scheme 18).37 It can be highlighted that with benzylic alcohols 

(25), unrivaled low catalyst loading of 0.5 mol% ruthenium catalyst was achieved. With aliphatic 

primary alcohols, complete conversion was achieved, too, although a higher catalyst loading of 

5 mol% ruthenium catalyst was required.  

 

[RuH2(PPh3)3(CO)]   
Xantphos
Piperidinium acetat

CN

toluene, reflux, 4 h

(0.5 mol%)
(0.5 mol%)
(5.0 mol%)

OH

Br

t-Bu

O

CN
t-Bu

O

Br

25

26

27
79 %  

Scheme 18: Ruthenium-catalyzed indirect Knoevenagel reaction introduced by Williams et al.  

2.3.4. C-3 Alkylation of Indoles 

Recently, Grigg and co-workers reported the first hydrogen transfer mediated alkylation of 

indoles with alcohols (Scheme 19).38 Using the iridium complex [Cp*IrCl2]2, with aromatic, 

heteroaromatic, and aliphatic alcohols such as 29, indoles and substituted indoles were alkylated 

in the C-3 position. A proposed mechanism is displayed in Scheme 20. This mechanism was 

supported by the formation of minor bisindolylmethane side products resulting from Michael 

addition of indole 28 to intermediate 31. In addition, it can be mentioned that this reaction was 

applied in an one-pot sequence of oxidative cyclization–alkylation starting from 

2-aminophenethyl-alcohol (see chapter 2.3.7.) and benzyl alcohol.  

 

                                                                                                                                                       
(36)  P. J. Black, G. Cami-Kobeci, M. G. Edwards, P. A. Slatford, M. K. Whittlesey, J. M. J. Williams, Org. Biomol. 

  Chem. 2006, 4, 116-125. 

(37)  P. A. Slatford, M. K. Whittlesey, J. M. J. Williams, Tetrahedron Lett. 2006, 47, 6787-6789.  

(38)  S. Whitney, R. Grigg, A. Derrick, A. Keep, Org. Lett. 2007, 9, 3299-3302.  
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HO

110 °C, 24 h

N
H

[Cp*IrCl2]2
KOH

N
H

N N

28
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30
83 %

(2.5 mol%)
(20 mol%)

 

Scheme 19: C-3 Alkylation of indoles using alcohols 

 

N

RHO , base

[Cp*Ir]-H   +

O

R

H

baseN

R

H2O

[Cp*Ir]

[Cp*Ir]-H
N
H

R

28

31  

Scheme 20: Mechanism of the C-3 alkylation of indoles 

2.3.5. Wittig Reaction 

Ketones and aldehydes can undergo Wittig type reactions to form new C-C double bonds. 

Using the Borrowing Hydrogen methodology, alcohols can be used to generate an aldehyde, which 

undergoes Wittig type reactions to form alkenes (Scheme 21). The hydrogen is then returned in 

order to provide the corresponding alkane.   

[MH2]

[M]
R1

R'

R

OH

R

O

R

R'

R' PPh3  

Scheme 21: Indirect Wittig reaction with alcohols 

The group of Williams recently developed a variety of indirect Wittig type reactions36 such as 

iridium-catalyzed indirect Horner-Wadsworth-Emmons reaction of benzyl alcohol (34) with 



 

2.3. Activation of C-O Bonds  15 

 

phosphonates (e.g. 35)39 or Wittig reactions with cyanoylides (e.g 33) to obtain the 

corresponding propionitriles (Scheme 22).40 High yields and a high tolerance towards functional 

groups were achieved.  

 

Ph OH Ph
CO2Bn

(OMe)2P CO2Bn

34

toluene, 150 °C, 72 h

O

dppp
[IrCl(cod)]2

Ph3P CN

Ph
CN

toluene, 150 °C, 72 h

dppp
[IrCl(cod)]2

33 35

(5 mol%)
(5 mol%)
(5 mol%)Cs2CO3 Cs2CO3

(2 mol%)
(2 mol%)

(2 mol%)32
71 %

36
92 %

 

Scheme 22: Indirect Wittig and Horner-Wadsworth-Emmons reaction of benzyl alcohol  

In 2004, the ruthenium carbene complex 38 was described for the indirect Wittig reaction 

with phosphorane ester ylides, for example 37. This second generation catalyst showed high 

reactivity at lower temperature. Unfortunately, an additional hydrosilyation additive 

(vinyltrimethylsilane) for the activation of the catalyst was necessary (Scheme 23).41 In 2007, the 

active form of this ruthenium carbene complex was used in the transfer hydrogenation and 

Wittig reaction with cyanoylides.42 

Ph
Ru

PPh3

H
H

Ph3P
OC

NN

OH Ph
CO2Bn

Ph3P CO2Bn

SiMe3 (2 mol%)

Ru catalyst  3834

38
toluene, 80 °C, 24 h

(1 mol%)

37

36
80 %

 

Scheme 23: Indirect Wittig reaction with alcohols with a ruthenium carbene complex 

Notably, with an in situ catalyst based on [Ir(cod)Cl2]2 and dppf, an indirect Aza-Wittig 

reaction was reported (Scheme 24).43 Starting from primary alcohols (34), 
                                                                                                                                                       

(39)  M. G. Edwards, J. M. J. Williams, Angew. Chem. Int. Ed. 2002, 41, 4740-4743; Angew. Chem. 2002, 114, 4934-

 4937. 

(40) P. J. Black, M. G. Edwards, J. M. J. Williams, Eur. J. Org. Chem. 2006, 4367-4378.   

(41) M. G. Edwards, R. F. R. Jazzar, B. M. Paine, D. J. Shermer, J. M. J. Williams, D. D. Edney, Chem. Commun. 

 2004, 90-91. 

(42) S. Burling, B. M. Paine, D. Nama, V. S. Brown, M. F. Mahon, T. J. Prior, P. S. Pregosin, M. K. Whittlesey, 

 J. M. J. Williams, J. Am. Chem. Soc. 2007, 129, 1987-1995. 

(43)   H. Cami-Kobeci, J. M. J. Williams, Chem. Commun. 2004, 1072-1073.   
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phenyliminphosphoranes (39) can be converted into the corresponding secondary amines (40) 

in high yields. The substrate scope was limited to primary alcohols as well as 

phenyliminophosphoranes.  

Ph OH

Ph3P
N

Ph

34 40

Ph N
H

Ph

91 %
toluene, 110 °C, 24 h

dppf               (5 mol%)
[Ir(cod)Cl]2     (2 mol%)

K2CO3           (5 mol%)

39

 

Scheme 24: Indirect Aza-Wittig reaction with iminophosphoranes  

Latest research on the field of Wittig type reactions, is highlighted by asymmetric variations. 

The iridium precursor [Ir(cod)Cl2]2 combined with different chiral ligands were screened. 

Highest enantiomeric excess (ee) and yields were achieved with Noyori BINAP ligands. 44  

 

Ph OH Ph
CO2Et

Ph3P CO2Et

34 42

68 % conversion
58 % isolated yield
87 % ee

toluene, reflux, 72 h
(R)-BINAP     (6 mol%)
[Ir(cod)Cl]2     (2.5 mol%) Me

41

 

Scheme 25: First indirect asymmetric Wittig reaction developed by Williams et al. 

The shortening of the reaction time as well as the enhancement of the ee and the yield are 

considered desirable. It can be estimated that new and more efficient catalysts will be developed 

soon. 

2.3.6. N-Alkylation of Amines using AlcoholsI, II, III 

A variety of amines is of significant importance for the bulk and fine chemical industry as 

building blocks for polymers, dyes, but also for the synthesis of new pharmaceuticals and 

agrochemicals.45 In addition, a plethora of naturally bio-active compounds such as alkaloids, 

amino acids, and nucleotides contain amino groups. Traditionally, alkylation of amines is 

                                                                                                                                                       
(44)   D. J. Shermer, P. A. Slatford, D. E. Edney, J. M. J. Williams, Tetrahedron Asymmetry 2007, 18, 2845-2848.   

(45)  a) S. A. Lawrence in “Amines: Synthesis, properties, and applications”, Cambridge University, Cambridge 

2004. b) J. F. Hartwig in “Handbook of Organo-palladium Chemistry for Organic Synthesis”, Vol. 1 (Ed.: 

Negishi, E.-I.), Wiley-Interscience, New York, 2002, p. 1051. 
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achieved by using conventional alkylation reagents, such as alkyl halides.46 Despite numerous 

known non-catalytic procedures, the development of improved catalytic methods for the 

synthesis of amines continues to be a highly challenging and active area of research. During last 

decade, various catalytic aminations, like palladium- and copper-catalyzed aminations of aryl 

halides,47 hydroaminations,48 and hydroaminomethylations49 of olefins or alkynes have received 

increased attention. Less interest was paid to the further development of catalytic alkylations of 

amines such as reductive aminations.50 

Compared to the well-known classic N-alkylations of amines with alkyl halides and reductive 

alkylations, an atom economically51 and environmentally attractive method is the N-alkylation of 

amines using primary and secondary alcohols (Scheme 26). Thus, alcohols can be used as 

alkylating reagent.  

- H2O

catalyst

R, R1, R2 = H, alkyl, aryl

R NH2
- HX

catalyst, base

R1 R2

OH

R1 R2

HN
R

R1 R2

HN
R

R1 R2

X

X = halide  

Scheme 26: Catalytic N-alkylation of amines with alcohols or alkyl halides 

This domino reaction sequence is based on the in situ dehydrogenation of alcohols in order 

to give the corresponding aldehydes or ketones. Subsequent imine formation followed by 

                                                                                                                                                       
(46)   R. N. Salvatore, C. H. Yoon, K. W. Jung, Tetrahedron 2001, 57, 7785-7811. 

(47)   E. M. Beccalli, G. Broggini, M. Martinelli, S. Sottocornola, Chem. Rev. 2007, 107, 5318-5365. b) M. Taillefer, 

  N. Xia, N. Ouali, Angew. Chem. Int. Ed. 2007, 46, 934-936; Angew. Chem. 2007, 119, 952-954. 

(48)  a) K. Alex, A. Tillack, N. Schwarz, M. Beller, ChemSusChem 2008, 1, 333–338. b) J. J. Brunet, N. C. Chu, M. 

  Rodriguez-Zubiri, Eur. J. Inorg. Chem. 2007, 4711-4722; 

(49)   a) A. Moballigh, C. Buch, L. Routaboul, R. Jackstell, H. Klein, A. Spannenberg, M. Beller, Chem. Eur. J. 2007, 

  13, 1594 – 1601 and references therein.  

(50)   for Reductive Amination, see: a) A. V. Malkov, S. Ston�ius, P. Ko�ovsky, Angew. Chem. Int. Ed. 2007, 46, 

  3722-3724; Angew. Chem. 2007, 119, 3796-3798. b) G. Hughes, P. N. Devine, J. R. Naber, P. D. O’Shea, B. S. 

  Foster, D. J. McKay, R. P. Volante, Angew. Chem. Int. Ed. 2007, 46, 1839-1842; Angew. Chem. 2007, 119, 1871-

  1874 and references therein. 

(51)   a) B. M. Trost, M. U. Frederiksen, T. M. Rudd, Angew. Chem. Int. Ed. 2005, 44, 6630-6666; Angew. Chem. 2005, 

 117, 6788-6825. b) B. M. Trost, Angew. Chem. Int. Ed. Engl. 1995, 34, 259-281; Angew. Chem. 1995, 107, 285-

307. c) B. M. Trost, Science 1991, 254, 1471-1477. 
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reduction with the initially produced hydrogen leads to the N-alkylated amine (Scheme 27). To 

obtain the desired amine, it is necessary, that the hydrogenation of the imine is an irreversible 

process. 

catalyst

R, R1, R2 = H, alkyl, aryl

- H2O

+ RNH2

Condensation

Dehydrogenation Hydrogenation

R1 R2

HN
R

R1 R2

OH

R1 R2

O

R1 R2

N
R

[MH2]

[M]

 

Scheme 27: Catalytic hydrogen transfer in N-alkylation of amines with alcohols 

So far, N-alkylation of amines has predominantly been performed with various 

heterogeneous catalysts at high temperature and pressure.52 As an example, alkylations of 

aliphatic amines are catalyzed by Raney-Ni,53 alumina, silica, and montmorillonite at 

temperatures >200 °C.54,55 Industrial processes applying such amination reactions in the 

presence of heterogeneous catalysts involve the methylation of lower aliphatic amines with 

methanol.56  

Although the alkylation of amines with alcohols has frequently been applied, there is no 

catalytic method available, which can be used for functionalized and sensitive substrates 

(alcohols and amines) under milder conditions (T<100 °C). In order to stimulate further 

                                                                                                                                                       
(52) Review of N-Alkylations before 1992, see: D. M. Roundhill, Chem. Rev. 1992, 92, 1-27. 

(53)  a) N. Botta, D. de Angelis, R. Nicoletti, Synthesis 1977, 722-723. b) K. Kindler, D. Matthies, Chem. Ber. 1962, 

95, 1992-1998. c) R. G. Rice, E. J. Kohn, L. W. Daasch, J. Org. Chem. 1958, 23, 1352-1354. d) R. G. Rice, E. J.  

Kohn, J. Am. Chem. Soc. 1955, 77, 4052-4054. e) C. F. Winans, H. Atkins, J. Am. Chem. Soc. 1932, 54, 306-312. 

(54)   Review of heterogeneous-catalyzed amination reaction, see: a) R. E. Vultier, A. Baiker, A. Wokaun, Appl. 

Catal. 1987, 30, 167-176. b) A. Baiker, J. Kijenski, Catal. Rev.-Sci. Eng. 1985, 27, 653-697. c) A. Baiker, W. 

Richarz, Tetrahedron Lett. 1977, 22, 1937-1938. 

(55)  Review of aniline alkylation over solid acid catalyst, see: A. Narayanan, K. Deshpande, Appl. Catal. A: General 

2000, 199, 1-31.   

(56)   a) K. Weisermel, H. J. Arpe, “Industrial Organic Chemistry” Wiley-Interscience, New York, 2002. b) M. Bosch, J. 

Eberhardt, R. Roettger, T. Krug, J.-P. Melder, PCT Int. Appl. WO 005123658, 2005. c) T. Fujita, K. Ogura, K. 

Niwa, M. Fukatsu, Eur. Pat. Appl. EP 763519, 1997. 
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applications of this chemistry, the development of more active catalysts, which allow a broader 

substrate scope, is highly desired. A strategy to solve this problem might be the switch from 

heterogeneous to molecularly-defined organometallic catalysts. Here, a variety of transition 

metal complexes are known to have high activity for the dehydrogenation of alcohols to 

ketones and the hydrogenation of the resulting imines to amines by transfer hydrogenation, 

which are the basic requirements for the catalyst system.  

 

The first homogeneous catalysts for N-alkylation of amines with alcohols were introduced by 

Grigg et al.57 and Watanabe et al. 58 in 1981. Grigg and co-workers described the N-alkylation of 

primary and secondary alkyl amines with primary alcohols such as methanol or ethanol with the 

rhodium catalyst [RhH(PPh3)4] being the most active catalyst (Scheme 28). 

 

dioxane, reflux
[RhH(PPh3)4]     (5 mol%)

NHor

R  =
R' =

Me, Et, i-Pr, Bn
n-Bu,Cyclohexyl

R N
H

R NorR'
R OH

R' NH2 43

 

Scheme 28: First homogeneous N-alkylation of alkyl amines with alcohols by Grigg 

Simultaneously to Grigg, Watanabe and co-workers reported the ruthenium-catalyzed 

N-alkylation and N-heterocyclization of aniline (44) using alcohols and aldehydes (Scheme 29). 

In both reactions, only basic primary alcohols were applied to the reaction. 

 

180 °C, 5 h
[RuCl2(PPh3)3]     (1 mol%)

R  = Me, Et, Pr, Bu

R
N
H

NH2

R OH
R

Nand
R

44

 

Scheme 29: First homogeneous N-alkylation of aryl amines with alcohols by Watanabe 

                                                                                                                                                       
(57)  R. Grigg, T. R. B. Mitchell, S. Sutthivaiyakit, N. Tongpenyai, J. Chem. Soc., Chem. Commun. 1981, 611-612  

  (Ru/Ir). 

(58)  Y. Watanabe, Y. Tsuji, Y. Ohsugi, Tetrahedron Lett. 1981, 22, 2667-2670 (Ru). 
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Since these reports, N-alkylations forming secondary amines59,67,72 as well as tertiary amines 

by reacting secondary amines with alcohols60,61 or by reacting diols60,62,68 or aminoalcohols60 with 

primary amines have been reported. These reactions provide an access to important 

pharmaceutical N-substituted piperidines, morpholines, and piperazines. Recently, Williams et al. 

have reported a high efficient in situ ruthenium catalyst consisting of [Ru(p-cymene)Cl2]2 and 

dppf for the N-alkylation of amines with primary alcohols. The reaction conditions are relatively 

mild and applicable to the alkylation of aryl amines63 as well as cyclic aliphatic amines such as 

pyrrolidine (43)(Scheme 30).64  

[Ru(p-cymene)Cl2]2  (2.5 mol%)
dppf                          (5.0 mol%)

toluene, reflux, 24 h

Ph

OH

NH2

Ph

HN

34

44

45
80 % K2CO3                      (10 mol%)

molecular sieves 3Å

[Ru(p-cymene)Cl2]2  (1.25 mol%)
dppf                           (2.5 mol%)

toluene, reflux, 24 h
molecular sieves 3Å

HN 43

Ph

N

46
71 %

 

Scheme 30: Ruthenium-catalyzed N-alkylation of amines with primary alcohols by Williams et al. 

                                                                                                                                                       
(59)  a) A. Arcelli, B.-T. Khai, G. Porzi, J. Organomet. Chem. 1982, 235, 93-96 (Ru). b) Y. Watanabe, Y. Tsuji, H. Ige, 

Y. Ohsugi, T. Ohta, J. Org. Chem. 1984, 49, 3359-3363 (Ru). c) Y. Tsuji, R. Takeuchi, H. Ogawa, Y. Watanabe, 

Chem. Lett. 1986, 293-294 (Pt/Sn). d) K.-T. Huh, Y. Tsuji, M. Kobayashi, F. Okuda, Y. Watanabe, Chem. Lett. 

1988, 449-452 (Ru). e) Y. Watanabe, Y. Morisaki, T. Kondo, T. Mitsudo, J. Org. Chem. 1996, 61, 4214-4218 

(Ru). f) A. D. Zotto, W. Baratta, M. Sandri, G. Verardo, P. Rigo, Eur. J. Inorg. Chem. 2004, 524-529 (Ru). g) G. 

Cami-Kobeci, P. A. Slatford, M. K. Whittlesey, J. M. J. Williams, Bioorg. Med. Chem. Lett. 2005, 15, 535-537 

(Ir). h) S. Naskar, M. Bhattacharjee, Tetrahedron Lett. 2007, 48, 3367-3370 (Ru). i) D. Balcells, A. Nova, E. Clot, 

D. Gnanamgari, R. H. Crabtree, O. Eisenstein, Organometallics 2008, 27, 2529-2539 (Ir). j) A. Pontes da Costa, 

M. Viciano, M. Sanaú, S. Merino, J. Tejeda, E. Peris, B. Royo, Organometallics 2008, 27, 1305-1309 (Ir).  k) B. 

Blank, M. Madalska, R. Kempe, Adv. Synth. Catal. 2008, 350, 749-758.   

(60)  First homogeneous catalyst reported for preparation of tertiary amines from amines and alcohols, see: S.-I. 

Murahashi, K. Kondo, T. Hakata, Tetrahedron Lett. 1982, 23, 229-232 (Ru). 

(61)  a) G. Bitsi, E. Schleiffer, F. Antoni, G. Jenner, J. Organomet. Chem. 1989, 373, 343-352 (Ru). b) S. Ganguly, F. 

L. Joslin, D. M. Roundhill, Inorg. Chem. 1989, 28, 4562-4564 (Ru). c) S. Ganguly, D. M. Roundhill, Polyhedron 

1990, 9, 2517-2526 (Ru). e) N. Tanaka, M. Hatanka, Y. Watanabe, Chem. Lett. 1992, 575-578 (Ru). 

(62)  a) Y. Tsuji, K.-T. Huh, Y. Watanabe, J. Org. Chem. 1987, 52, 1673-1680 (Ru). b) J. A. Marsella, J. Org. Chem. 

1987, 52, 467-468 (Ru). c) G. Jenner, G. Bitsi, J. Mol. Catal. 1988, 45, 165-168 (Ru). d) R. A. T. M. Abbenhuis, 

J. Boersma, G. van Koten, J. Org. Chem. 1998, 63, 4282-4290 (Ru). e) K.-i. Fujita, T. Fujii, R. Yamaguchi, Org. 

Lett. 2004, 6, 3525-3528 (Ir). f) L. U. Nordstrøm, R. Madsen, Chem. Commun. 2007, 5034-5036 (Ir).   

(63)  M. H. S. A. Hamid, J. M. J. Williams, Chem. Commun. 2007, 725-727 (Ru). 

(64)  M. H. S. A. Hamid, J. M. J. Williams, Tetrahedron Lett. 2007, 48, 8263-8265 (Ru). 
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Unfortunately, in the presence of most known homogeneous catalysts, high reaction 

temperatures (up to 215 °C) and long reaction times are required to obtain sufficient yields of 

the alkylated amine, too. Additionally, selectivity problems such as dialkylation and the restricted 

use of primary alcohols limited these reactions. Thus, with regard to the substrates, mainly 

primary alcohols were used in the past, because they are more reactive compared to secondary 

alcohols. Before 2003, no efficient catalyst was known for the N-alkylation with secondary 

alcohols. In 2003, Fujita et al. introduced the iridium dimeric catalyst [Cp*IrCl2]2 for the 

N-alkylation with primary and secondary alcohols (Scheme 31).65
  

 

[Cp*IrCl2]2

toluene, 110 °C, 17 h

NH2

OH
H
N

92 %

44

47

48
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Scheme 31: Iridium-catalyzed N-alkylation with secondary alcohols introduced by Fujita et al. 

In the course of these studies, Fujita et al. was able to apply this novel catalyst to aryl amines 

(e.g. 44), primary alkyl amines (e.g. 49), secondary alkyl amines (e.g. 51), and cyclic alkyl amines 

(e.g. 43), respectively (Scheme 32).66  

[Cp*IrCl2]2
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H
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 (3 mol% Ir) NH2 NH
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N N
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(1 mol% Ir)

52
44 % 

(4 mol% Ir)

53
88 % 

(5 mol% Ir)

NaHCO3

110 °C, 17 h

44 43

47

49 51

  

Scheme 32: Compendium of the [Cp*IrCl2]2-catalyzed N-alkylation introduced by Fujita et al. 

                                                                                                                                                       
(65)  K.-i. Fujita, Z. Li, N. Ozeki, R. Yamaguchi, Tetrahedron Lett. 2003, 44, 2687-2690 (Ir). 

(66)  K.-i. Fujita, Y. Enoki, R. Yamaguchi, Tetrahedron 2008, 64, 560-571. 
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Furthermore, Fujita et al. described an one-pot sequential N-alkylation of benzylamine 

(Scheme 33). The sequential addition of two different alcohols to the reaction system, lead up to 

the selective formation of tertiary amines, having three different substituents.  

[Cp*IrCl2]2

toluene

NH2

NaHCO3

90 °C, 17 h

OH

MeO
OH

N

OMe

110 °C, 24 h

49

54 55

56
86 %

(2.0 mol%)
(2.0 mol%)

 

Scheme 33: [Cp*IrCl2]2-catalyzed one-pot sequential N-alkylation leading to tertiary amines  

Moreover, this catalyst was applied in N-heterocyclization,62,67,68,69 and transfer 

hydrogenation.70 The first ruthenium-catalyzed N-alkylation of primary amines with secondary 

alcohols was reported by our group in 2005 (Scheme 34).71  In the presence of the in situ 

ruthenium catalysts [Ru3(CO)12]/tri-o-tolylphosphine (ligand 59) or n-butyl-di-1-adamantyl- 

 

- H2O

PLigands:
P

Ph

OH

ligand 59 or 60 (ref 70) 
or ligand 61 (ref 71)

H2N

Ph

HN

N P

6159 60

17
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Scheme 34: Ruthenium-catalyzed N-Alkylation of primary amines with secondary alcohols by Beller et al. 

                                                                                                                                                       
(67)  K.-i. Fujita, K. Yamamoto, R. Yamaguchi, Org. Lett. 2002, 4, 2691-2964. 

(68)  K.-i. Fujita, Y. Enoki, R. Yamaguchi, in “Organic Syntheses”, Wiley and Sons, New Jersey, 2006, Vol. 83, pp. 

217-221. 

(69)  C. T. Eary, D. Clausen, Tetrahedron Lett. 2006, 47, 6899-6902.  

(70)  For review of [Cp*IrCl2]2 -catalyzed reactions, see: a) K.-i. Fujita, R. Yamaguchi, Synlett 2005, 560-571.  

(71)  A. Tillack, D. Hollmann, D. Michalik, M. Beller, Tetrahedron Lett. 2006, 47, 8881-8885. 
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phosphine (ligand 60) (both first generation catalysts)71 and the combination of Ru3(CO)12 and 

N-phenyl-2-(dicyclohexylphoshino)pyrrole (ligand 61, cataCXium®PCy, second generation 

catalyst)72 showed highest activity and selectivity. The alkylation reactions were performed under 

significantly milder conditions compared to most known amination reactions of alcohols. The 

catalyst systems showed their general applicability in the reaction of a variety of functionalized 

alcohols and amines, to give the corresponding secondary amines in high to excellent yields. A 

selection is displayed in Scheme 35.  
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N
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65
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87 %
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Scheme 35: Selection of products in the ruthenium-catalyzed N-alkylation with secondary alcohols 

Furthermore, different achiral but also chiral monodentate as well as bidentate ligands were 

tested to optimize and lower the reaction conditions.73 Monodentate amine ligands showed no 

influence on the reactivity. Compared to these ligands, a strong dependency on the basicity of 

phosphine ligands was observed. Bidentate ligands showed a strong decrease of the reactivity. 

However, with all chiral ligands (e.g. TsDPEN, BINAP) tested, only racemic product mixtures 

were determined. 

Ph

OH

17

HN 43

Ph

N

88 %
68

(2 mol%)

toluene, 120 °C

[Ru3(CO)12]
ligand 61 (6 mol%)

 

Scheme 36: Ruthenium-catalyzed N-alkylation of secondary amines with secondary alcohols by Beller et al. 

Furthermore, applying the same procedure secondary amines can be converted to the 

corresponding tertiary amines in high yield (Scheme 36).74 In the presence of the in situ 
                                                                                                                                                       

(72)  D. Hollmann, A. Tillack, D. Michalik, R. Jackstell, M. Beller, Chem. Asian J. 2007, 3, 403-410.   

(73)  D. Hollmann, unpublished results.   

(74)  A. Tillack, D. Hollmann, K. Mevius, D. Michalik, S. Bähn, M. Beller, Eur. J. Org. Chem. 2008, 4745-4750. 
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generated ruthenium catalyst of Ru3(CO)12 and N-phenyl-2-(dicyclohexylphoshino)pyrrole 

(ligand 61, cataCXium®PCy, second generation catalyst), selective amination takes place in high 

yield and selectivity with cyclic amines such as piperidine, pyrrolidine (43), and piperazine. The 

reaction is atom efficient leaving only water as side product and can conveniently be carried out 

without additional pressure. A selection of substrates is given in Scheme 37. 
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Scheme 37: Selection of products in the ruthenium-catalyzed N-alkylation of secondary amines 

2.3.7. N-Heterocyclization 

Alcohols and thus the intermediate aldehydes can be used for the N-heterocyclization to 

alkaloids such as indoles (28) or quinolines. These N-heterocyclic compounds have attracted 

considerable attention going to their functionality in pharmaceutical chemistry, material 

chemistry, synthetic organic chemistry, and dyes. The first N-heterocyclization was described by 

Watanabe in 1981. Simultaneously with the N-alkylation of aniline (44), Watanabe described the 

synthesis of 2,3-alkylquinolines starting from 2,3-unsaturated alcohols such as allylalcohol (74) 

and crotylalcohol (Scheme 38).58,75  

180 °C, 5 h
[RuCl2(PPh3)3]     (1 mol%)

NH2
OH

N
2

74

44

75
42 %  

Scheme 38: Synthesis of quinolines using 2,3-unsaturated alcohols by Watanabe 

Modifying this methodology, Watanabe reported the synthesis of indoles (e.g. 76) as well as 

quinolines such as 79 by reaction of dioles with aniline (44)76 or cyclization of 

2-aminophenethylalcohol (80) to indoles (28)77 as well as the synthesis of benzoxazoles (e.g. 83) 

                                                                                                                                                       
(75)  Y. Watanabe, Y. Tsuji, Y. Ohsugi, J. Shida, Bull. Chem. Soc. Jpn. 1983, 56, 2452-2457.  

(76)  Y. Tsuji, K.-T. Huh,  Y. Watanabe, J. Org. Chem. 1987, 52, 1673-1680.  

(77)  Y. Tsuji, S. Kotachi, K.-T. Huh, Y. Watanabe, J. Org. Chem. 1990, 55, 580-584. 
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and benzimidazoles (e.g. 84) from aniline derivatives and primary alcohols,78 the synthesis of 

1,3-disubstituted 2,3-dihydroimidazol-2-ones (e.g. 87) from N,N’-disubstituted ureas (e.g. 86),79 

and finally imidazol[1,2-a]pyridines (e.g. 89) starting from aminopyridines (e.g. 88) and dioles 

(e.g. 77).80 An overview of these reactions is shown in Scheme 39 and Scheme 40. 
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Scheme 39: Synthesis of indoles, quinolines, benzoxazoles, and benzimidazoles introduced by Watanabe und co-
workers 

 

 

                                                                                                                                                       
(78)  T. Kondo, S. Yang, K.-T. Huh, M. Kobayashi, S. Kotachi, Y. Watanabe, Chem. Lett. 1991, 1275-1278. 

(79)  T. Kondo, S. Kotachi, Y. Watanabe, J. Chem. Soc., Chem. Commun. 1992, 1318-1319. 

(80)  T. Kondo, S. Kotachi, S.-I. Ogina, Y. Watanabe, Chem. Lett. 1993, 1317-1320. 
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Scheme 40: Synthesis of 1,3-disubstituted 2,3-dihydroimidazol-2-ones and imidazol[1,2-a]pyridines introduced 
by Watanabe and co-workers 

Based on this excellent research, Cho and co-workers reported the ruthenium-catalyzed 

cyclization of aniline (44) with trialkanolamines81 and trialkanolammonium chlorides82 to indoles 

(e.g. 90 and 28) (Scheme 41) and allylammonium chlorides to quinolines (see chapter 2.4.2).  
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Scheme 41: Synthesis of indoles using trialkanolamines and trialkanolammonium chlorides 

Furthermore, Cho was able to introduce a new method for the synthesis of quinoxalines (e.g. 

96) using o-phenylenediamines such as (94) and vicinals diols such as (95) (Scheme 42).83 

Unfortunately, four equivalents of KOH as base and promoter and high temperature are 

necessary for the reaction which makes this reaction unattractive.   

                                                                                                                                                       
(81)  a) D. Y. Lee, C. S. Cho, J. H. Kim, Y. Z. Youn, S. C. Shim, H. Song, Bull. Korean Chem. Soc. 1996, 17, 1132-

  1135. b) C. S. Cho, H. K. Lim, S. C. Shim, T. J. Kim, H.-J. Choin, Chem. Commun. 1998, 995-996. c) C. S. Cho, 

  B. H. Oh, S. C. Shim, J. Heterocycl. Chem. 1999, 36, 1175-1178. d) C. S. Cho, D. T. Kim, T.-J. Kim, S. C. Shim, 

  Bull. Korean Chem. Soc. 2003, 24, 1026-1028. 

(82)  a) C. S. Cho, J. H. Kim, S. C. Shim, Tetrahedron Lett. 2000, 41, 1811-1814. b) C. S. Cho, J. H. Kim, T.-J. Kim, 

S. C. Shim, Tetrahedron 2001, 57, 3321-3329.  

(83)  a) C. S. Cho, S. G. Oh, Tetrahedron Lett. 2006, 47, 5633-5636.  
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Scheme 42: Synthesis of quinoxalines using o-phenylendiamines and diols 

In 2002, Fujita et al. described the iridium-catalyzed cyclization of 2-aminophenethyl alcohols 

to indoles.67 Using [Cp*IrCl2]2, a high variety of indoles were synthesized. No indoline products 

were observed. With longer alkyl groups (C3-C4) between the aromatic ring system and the 

alcohol functionality, Fujita did not observe oxidative products such as quinoline or 

dihydroquinoline, surprisingly the 1,2,3,4-tetrahydroquinoline (99) and 2,3,4,5-tetrahydro-1-

benzazepine (100) were determined in moderate to high yields (Scheme 43). Thus, hydrogen 

transfers proceed during the reaction.  
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Scheme 43: [Cp*IrCl2]2-catalyzed synthesis of 1,2,3,4-tetrahydroquinoline  and 2,3,4,5-tetrahydro-1-
benzazepines 
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Scheme 44: [Cp*IrCl2]2-catalyzed synthesis of 1,2,3,4-tetrahydroquinoxalines 

Adapted from Fujita, Eary and Clausen recently reported a procedure for the synthesis of  

1,2,3,4-tetrahydroquinoxalines (e.g. 102) and 2,3,4,5-tetra-1-H-benzo[b][1,4]diazepines 

(Scheme 44).69 Compared to Fujita, higher catalyst loading of 20 mol% [Cp*IrCl2]2 as well as 

longer reaction times (2-5 d) are reported. Furthermore, Madsen et al. described the synthesis of 

piperazine with diols using the same iridium complex. 62f 
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2.3.8. N-Alkylation of Amides using Alcohols 

N-Alkylation is important for selective synthesis of amines but also of amides. Thus, various 

methods have been developed using conventional alkylating reagents such as alkyl halides. On 

the other hand alcohols as the alkylation reagents were reported (see chapter 2.3.6). In 1983, 

Watanabe described the first ruthenium-catalyzed N-alkylation of amides using alcohols 

(Scheme 45).84 Different alkyl-, benz-, and acetamides were achieved in high yields with 

alcohols. Nevertheless, only primary alcohols were converted. 

Ph NH2
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[RuCl2(PPh3)3]   (1 mol%)
180 °C, 4 h

Ph N
H

O
OH

103

19

104  

Scheme 45: N-Alkylation of amides 

The reaction pathway proceeds through an oxidation of alcohol to an aldehyde catalyzed by 

a ruthenium complex. Next, the aldehyde can react with amides to give N-acylamino alcohols, 

which undergo dehydration. The dehydrated product is hydrogenated by the ruthenium hydride 

to give the corresponding alkylated amides. 
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Scheme 46: Mechanism of the N-alkylation of amides 

                                                                                                                                                       
(84)  Y. Watanabe, T. Ohta, Y. Tsuji, Bull. Chem. Soc. Jpn. 1983, 56, 2647-2651. 
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2.4.Activation of C-N Bonds 

Imines play an important role as intermediates including reductions, additions, 

condensations, or cycloadditions. Typically, imines are prepared by condensation between 

aldehydes or ketones with amines. However, the very electrophilic nature of the 

aldimine/ketimine can cause problems during workup and purification. Hydrolysis often 

occurrs. Beside these problems, the aldehydes and ketones used are very reactive intermediates, 

so substrates often have to be protected by multistep synthesis. Therefore, it would be of 

interest to generate imines from a more stable precursor.  

 

As describe above in the amination of alcohols (see chapter 2.3.6), imines can be prepared by 

in situ oxidation of alcohols followed by condensation with amines. Beside alcohol substrates, 

alkyl amines constitute very attractive alkyl as well as hydrogen sources. Compared to alcohols, 

amines can directly be oxidized to the corresponding imines by abstracting hydrogen.85 Thus, 

amines are excellent starting material for the transformations using the Borrowing Hydrogen 

methodology. Although this transformation - alkylation of amines with amines - seems to be 

unusual at first sight, there is significant industrial interest in analogous transalkylations.86 

 

Due to the challenging oxidation of amines to imines by a transition metal catalyst, only a 

few reactions involving hydrogen transfer reactions such as transfer hydrogenation of amines87 

or racemization of amines88 are known. Latest research of our group point out that alkyl amines 

                                                                                                                                                       
(85)  For oxidation of amines, see: S.-I. Murahashi, Angew. Chem. Int. Ed. 1995, 34, 2443-2465; Angew. Chem. 1995, 

107, 2670-2693. 

(86)  a) T. Gerlach, H. Evers, J.-P. Melder (BASF Aktiengesellschaft, Germany) WO 2007036499, 2007. b) J.-P. 

 Melder, T. Krug (BASF Aktiengesellschaft, Germany), WO 2006082203, WO 2006082202, 2006. c) H. Evers, 

 J.-P. Melder, C. Benisch, M. Frauenkron, T. Gerlach, A. Alba Perez, J. Nouwen (BASF Aktiengesellschaft, 

 Germany), WO 2005061430, 2005. d) M. Frauenkron, T. Krug, H. Evers, J.-P. Melder, R. Roettger, M. 

Siegert, T. Gerlach, J. Nouwen, E. Dahlhoff, C. Miller (BASF Aktiengesellschaft, Germany), WO 

2005012223, 2005. e) X. Qiao, J. Zhang, M. Cui, J. Tang (Nanjing University of Technology, Peop. Rep. 

China), CN 1629132,  2005. f) S. Oikawa, H. Ando (Sumitomo Chemical Co., Ltd., Japan), JP 2003171353, 

2003. 

(87)  a) J. S. M. Samec, A. H. Éll, J.-E. Bäckvall, Chem. Eur. J. 2005, 11, 2327-2337. b) J. S. M. Samec, A. H. Éll, 

  J.-E. Bäckvall, Chem. Commun. 2004, 2748-2749. b) A. H. Éll, J. B. Johnson, J.-E. Bäckvall, Chem. Commun. 

  2003, 1652-1653. d) A. H. Éll, J. S. M. Samec, C. Brasse, J.-E. Bäckvall, Chem. Commun. 2002, 1144-1145. 

(88)  O. Pamies, A. H. Éll, J. S. M. Samec, N. Hermanns, J.-E. Bäckvall, Tetrahedron Lett. 2002, 43, 4699-4702. 
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can be used in the Borrowing Hydrogen methodology with different nucleophiles. These results are 

reviewed in the following. 

2.4.1. Condensation of AminesVIII 

The condensation of amines is a well known reaction. The first condensation of primary 

amines to secondary amines was reported by Rosenmund and Jordan in 1925 using a 

heterogeneous Pd catalyst.89  This reaction is displayed in Scheme 47, with benzylamine (49) as 

example.  

Ph NH2
Pd/BaSO4

xylene, reflux, 75 min

Ph N
H

Ph + NH3

105
90 %

49

 

Scheme 47: Condensation to symmetrical amines by Rosenmund and Jordan 

In addition to Rosenmund and Jordan, different heterogeneous catalysts are described.90 The 

reaction mechanism proceeds by dehydration of an amine to the corresponding imine, which 

can be attacked by a nuclephile, e.g. a second amine, to form an aminal as intermediate. After 

elimination of ammonia and hydrogenation, the desired secondary amine can be produced 

(Scheme 48).  

Ph NH2

Ph NH
Ph NH2

HN R
Ph N Ph

Ph N
H

Ph

-H2 +H2

+BnNH2

-NH3

49 105

 

Scheme 48: Mechanism of the condensation of amines  

 

                                                                                                                                                       
(89)  K. W. Rosenmund, G. Jordan, Ber. Dtsch. Chem. Ges. 1925, 58, 51-53 (Pd). 

(90)  a) K. Kindler, Liebigs Ann. Chem.  1931, 485, 113-126 (Pd). b) C. F. Winans, H. Atkins, J. Am. Chem. Soc. 1932, 

  54, 306-312 (Ni). c) E. T. Borrows, B. M. C. Hargreaves, J. E. Page, J. C. L. Resuggan, F. A. Robinson, J. 

  Chem. Soc., Chem. Commun. 1947, 197-202. d) K. Kindler, G. Melamed, D. Matthies, Liebigs Ann. Chem. 1961, 

 644, 23-30 (Raney-Ni). e) N. Yoshimura, I. Moritani, T. Shimamura, S.-I. Murahashi, J. Am. Chem. Soc. 1973, 

 94, 3038-3039 (Pd). f) F. de Angelis, I. Grhurina, R. Nicoletti, Synthesis 1979, 70-71 (Raney-Ni).  
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Recently, Miyazawa has employed the Pt/C catalyst for the synthesis of secondary amines 

using microwave irradiation.91 The reactions were performed in water as solvent. Unfortunately, 

the reaction mechanism involved hydrolysis of the imine with water to a ketone. Thus, tertiary 

amines can easily be generated, which is shown in a lower selectivity.  

The first homogeneous catalyst was reported by Porzi et al..92 The ruthenium catalyst 

[RuCl2(PPh3)3] converted primary amines to the symmetrical tertiary amines (106). High 

temperature of 185 °C was deployed. With short chains or benzylamines (49), high yields were 

observed. Moreover, with steric hindered amines (dodecylamine or cyclohexylamine) a mixture 

of secondary and tertiary amines was determined.  

[RuCl2(PPh3)3]      (5 mol%)

THF, 185 °C, 8 h

Ph NH2
Ph N Ph

Ph
106

97 %
49

 

Scheme 49: First homogeneous catalyzed condensation of amines 

Further catalysts were developed by Garrou et al.93  and Watanabe et al.,94 but showed no 

enhancements of the reaction conditions. Between tertiary amines alkyl exchanges were often 

observed. Heterogeneous95 as well as homogeneous96 catalysts are known.  

 

If cyclic secondary amines are used, trimerisation can occur.97 However, previous catalysts 

included only heterogeneous palladium or silicates catalysts. Our group has recently found that 

                                                                                                                                                       
(91)  A. Miyazawa, K. Saitou, K. Tanaka, T. M. Gädda, M. Tashiro, G. K. S. Prakash, G. L. Olah, Tetrahedron Lett. 

  2006, 47, 1437- 1439 (Pt/C). 

(92)  a) B.-T. Khai, C. Concilio, G. Porzi, J. Organomet. Chem. 1981, 208, 249-251. b) B.-T. Khai, C. Concilio, G. 

 Porzi, J. Org. Chem. 1981, 46, 1759-1760. c) A. Arcelli, B.-T. Khai, G. Porzi, J. Organomet. Chem. 1982, 231, C31-

C34. 

(93)   C. W. Jung, J. D. Fellmann, P. E. Garrou, Organometallics 1983, 2, 1042-1044.  

(94)   Y. Tsuji, J. Shida, R. Takeuchi, Y. Watanabe, Chem. Lett.  1984, 889-890. 

(95)   a) S.-I. Murahashi, T. Hirano, T. Yano, J. Am. Chem. Soc. 1978, 100, 348-350. b) R. M. Laine, D. W. Thomas, 

L. W. Cary, J. Am. Chem. Soc. 1982, 104, 1763-1765. c) S.-I. Murahashi, N. Yoshimura, T. Tsumiyama, T. 

Kojima, J. Am. Chem. Soc. 1983, 105, 5002-5011. 

(96)  a) Y. Shvo, R. M. Laine, J. Chem. Soc., Chem. Commun. 1980, 753-754. b) Y. Shvo, D. W. Thomas, R. M. Laine, 

J. Am. Chem. Soc. 1981, 103, 2461-2463. c) R. D. Adams, H.-S. Kim, S. Wang, J. Am. Chem. Soc. 1985, 107, 

6107-6108. d) R. B. Wilson, R. M. Laine, J. Am. Chem. Soc. 1985, 107, 361-369. e) Y. Shvo, M. Abed, Y. Blum, 

R. M. Laine, Isr. J. Chem. 1986, 27, 267-275. 

(97)   N. Yoshimura, I. Moritani, T. Shimamura, S.-I. Murahashi, J. Chem. Soc., Chem. Commun. 1973, 307-308. b) J. A. 

  Ballantine, H. Purnell, M. Rayanakorn, J. M. Thomas, K. J. Williams, J. Chem. Soc., Chem. Commun. 1981, 9-10. 
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the homogeneous Shvo catalyst 2 is highly active for the dehydrogenation of cyclic aliphatic 

amines and for the hydrogenation of the corresponding imines or enamines under comparably 

mild conditions (100-150 °C).98 Pyrrolidine was completely converted at 150 °C to the trimer 

108. Lowering the temperature results in the formation of dimeric intermediates.  Kinetic 

observations support a mechanism involving 107 as an intermediate and 108 as the 

thermodynamically stable final product.  
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H
N N
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- NH3

+ H2

107

H2N
N

H2N
N

HN
N

HN

N
N

NH2

N
N

N
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Scheme 50: Mechanism of the trimerization of pyrrolidine 

 

As illustrated in Scheme 50, the first step is the dehydrogenation of pyrrolidine (43) to 

1-pyrroline followed by a nucleophilic attack of a second pyrrolidine molecule. The second step 

is the ring opening (C–N cleavage) along with hydrogen shift resulting in the formation of 

enamine, which is hydrogenated to 107. Due to the higher reactivity of primary amines in 

dehydrogenation compared to secondary amines, the primary amine group of 107 will preferably 

                                                                                                                                                       
(98)   D. Hollmann, R. Parton, R. Altink, A. Tillack, S. Bähn, A. Spannenberg, H. Jiao, M. Beller, Organometallics 

2008, submitted for publication. 
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be dehydrogenated. After an intermolecular attack of a third pyrrolidine molecule, loss of 

ammonia and hydrogenation of the corresponding enamine, 108 could be formed.  

In addition to the ring opening of secondary cyclic amines by condensation, the ring opening 

was observed with benzeneselenolates to obtain aminoselenides, which was reported by 

Murahashi and Yano.99  

2.4.2. Alkylation of Aryl amines with Noncyclic Aliphatic AminesIV,V,IX 

Based on the formation of indoles (28) from aniline (44) and trialkanolamines (see chapter 

2.3.7.),81,100 Shim and co-workers were encouraged to study the reaction of aniline (44) by alkyl 

transfer reaction with triallylamine (109)101 and allylammonium chlorides102 to obtain quinolines 

(112) (Scheme 51). During these reactions, N-propylaniline (111) and N-allylaniline (112) were 

obtained as side products in 21 % yield. The formation of monoalkylated aryl amines was 

proposed by an amine exchange reaction between aniline (44) and triallylamine (109). The 

addition of one equivalent of tin(II)chloride was essential for effective heteroannulation. Instead 

of the trialkyl amines, allylammonium chlorides and 1-hexene as hydrogen acceptor can be used 

for the formation of quinolines. 103 

NH2

N

dioxane, 180 °C, 20 h

N 3

RuCl3 (5 mol%)
PPh3 (15 mol%)
SnCl2 (1 equiv)

NH NH

side products

44

109

110
51 %

111 112

 

Scheme 51: Formation of quinolines with triallylamine 

Using this information, Cho introduced the selective N-monoalkylation of anilines (44) with 

tetraalkylammonium halides (Scheme 52).104 The in situ ruthenium catalyst consisting of RuCl3 

and PPh3 as well as the ruthenium carbonyl catalyst [Ru3(CO)12] showed reactivity in the 

                                                                                                                                                       
(99)  S.-I. Murahashi, T. Yano, J. Am. Chem. Soc. 1980, 102, 2456-2458. 

(100) C. S. Cho, H. K. Lim, S. C. Shim, T.-J. Kim, H.-J. Choi, Chem. Commun. 1998, 995-996.  

(101) a) C. S. Cho, B. H. Oh, S. C. Shim, Tetrahedron Lett. 1999, 40, 1499-1500. b) C. S. Cho, T. L. Kim, N. T. Kim, 

T.-J. Kim, S. C. Shim, J. Organomet. Chem. 2002, 650, 65-68. 

(102) C. S. Cho, J. S. Kim, B. H. Oh, T.-J. Kim, S. C. Shim, N. S. Yoon,Tetrahedron 2000, 56, 7747-7750.  

(103) a) C. S. Cho, B. H. Oh, J. S. Kim, T.-J. Kim, S. C. Shim, Chem. Commun. 2000, 1885-1886. b) C. S. Cho, T. K. 

Kim, H.-J. Choi, T.-J. Kim, S. C. Shim, Bull. Korean Chem. Soc. 2002, 23, 541-542. 

(104) C. S. Cho, J. S. Lim, H. S. Kim, T.-J. Kim, S. C. Shim, Synth. Commun. 2001, 31, 3791-3797.  
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amination reaction. The addition of tin(II)chloride was found to be increasing the selectivity of 

monoalkylated product. But unfortunately, by adding tin(II)chloride, the reactivity decreased.  

Only a small variation of aniline derivatives or tetraalkylammonium halides was converted in 

moderate yields.  

dioxane, 180 °C, 20 h

RuCl3 / 3 PPh3 or [Ru3CO12] (1 mol%)
SnCl2 (2 equiv)

-NBr+ 4NH2 H
N

44

113

114
51 %

 

Scheme 52: N-Monoalkylation of aniline with tetraalkylammonium halides 

Recently, we have described the first arylation of primary aliphatic amines with anilines 

leaving ammonia as the only side product (Scheme 53).105 In the presence of 2, a variety of 

functionalized anilines and primary amines react smoothly to give the corresponding aryl amines 

in excellent yields.  

- NH3

Shvo 2  (1 mol%)
t-amylalkohol, 150 °C, 24 h

NH2

44

NH2 HN
57

115
99 %  

Scheme 53: N-Alkylation of aryl amines using the Shvo catalyst 

Furthermore, we were able to combine the selective synthesis of monoalkylated aniline 

derivates with the dealkylation of aliphatic amines. It was shown that starting from primary, 

secondary, and tertiary amines, a complete and selective transfer of all alkyl groups takes place 

highly selective. 106 

In analogy to the amination of alcohols, the reaction occurs through a Borrowing Hydrogen 

mechanism (Scheme 54). Initially, ruthenium-catalyzed dehydrogenation of the alkyl amine 

occurs via coordination and �-hydride elimination. Then, nucleophilic attack of the aryl amine 

on the resulting imine and elimination of ammonia yields the corresponding secondary imine. 

Subsequent catalytic hydrogenation leads to the alkylated aryl amine.  

                                                                                                                                                       
(105) D. Hollmann, S. Bähn, A. Tillack, M. Beller, Angew. Chem. Int. Ed. 2007, 46, 8291-8294; Angew. Chem. 2007,  

 119, 8440-8444. 

(106) D. Hollmann, S. Bähn, A. Tillack, M. Beller, Chem. Commun. 2008, 3199-3201. 
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In the first step, dehydrogenation of the alkyl amine occurs. After nucleophilic attack of the 

aniline (44) and elimination of ammonia, the corresponding secondary imine is hydrogenated to 

the alkylated aniline. The reaction was confirmed by using 15N-labeled aniline- and 

dibenzylamine. The resulting N-benzylaniline is obtained in 96 % isolated yield and showed >99 

% of 15N-labelling.106  

catalyst

R1, R2 = H, alkyl

[RuH2]

[Ru]

dehydrogenation hydrogenation

R1

HN
aryl

R1

NH2

R1

NH

R1

N
aryl

R1 NH2

HN
aryl NH3aryl-NH2

nucleophilic 
attack

elimination 
of ammonia  

Scheme 54: Mechanism of the arylation of aliphatic amines 

 

Noteworthy, in these alkyl transfer reactions, the hydrogen donors for the final 

hydrogenation step are the primary, secondary, and tertiary amines. Hence, no additional 

hydrogen or hydrogen transfer reagents are required during the process. Advantageously, there 

is no need for high pressure equipment, which is often used in hydrogenation reactions such as 

reductive amination. 

No additives such as acids, bases or ligands are necessary, which makes this reaction 

economically attractive. High tolerance towards solvents was determined, unpolar but also 

protic polar solvents are tolerated.  

In order to demonstrate the general applicability of 2 for this reaction and the scope of the 

process, various aryl amines and alkyl amines were investigated. In general, catalytic experiments 

were done with 1 mol% of the Shvo catalyst (2) in the presence of two equivalents of aryl amine 

in t-amylalcohol at 150 °C. The Shvo catalyst (2) shows a high tolerance towards functional 

groups. Ether- 116, halogen- 117, nitril- 118, and amide 119 functional groups are tolerated and 

thus the corresponding anilines and aliphatic amines react smoothly to give the corresponding 

aryl amines in excellent yields. It is important to emphasize that halogenated anilines and 

heterocyclic amino pyridine derivates 120 and 121 can easily be synthesized. 
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Scheme 55: Selection of products in the ruthenium-catalyzed N-alkylation with alkyl amines 

As mentioned before, primary, secondary as well as tertiary amines can be used for 

alkylation. This is shown in the application of the amination of aniline (44) with n-hexylamine 

(57), di-n-hexylamine (122), and tri-n-hexylamine (123). All different hexylamines are converted 

in high yields (75-87 %) to the same N-hexylaniline (115) (Scheme 56).  
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Scheme 56: Amination of aniline with different alkyl amines (isolated yields are based on hexyl groups) 

Upon optimization we found that two equivalents of aniline per hexyl group in the presence 

of 1 mol% of 2 in t-amylalcohol gave the best results. Notably, a mixture of mono-, di-, and tri-

n-hexylamine can be converted highly selective to give 115 (Scheme 57). 
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Scheme 57: Amination of aniline with a mixture of hexylamines (isolated yields are based on hexyl group). 

As shown in chapter 2.4.1., equilibrium between the mono-, di-, and trialkyl amines is 

observed under these reaction conditions. All alkyl amines are converted into each other and 

can be monitored until the reaction is finished (reversible steps). However, by reaction of the 

respective imines or iminium species with aniline (44), N-hexylaniline (115) is formed in an 

irreversible step. Thus, reaction of tri-n-hexylamine (123) with 44 yields exclusively 115 and di-n-
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hexylamine (122). Then, the next alkyl group is transferred. Finally, the reaction of n-hexylamine 

(57) with aniline (44) results in the formation of ammonia (irreversible step) (Scheme 58). 
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Scheme 58: Mechanism of the alkyl transfer with aniline 

 

In addition, the substrate scope was extended to secondary and tertiary amines. Thus, 

different alkyl amines and aminoalkoxyethers were converted in excellent selectivity and high 

yields.  

 

So far, conversion of steric hindered amines (tribenzylamine) and aryl amines (2,6-substituted 

aryl amines) and nitro groups possess a challenge. 

2.4.3. Alkylation of Aryl amines with Cyclic Aliphatic AminesVII 

In addition to noncyclic aliphatic amines, alkylation of aryl amines using cyclic amines such 

as pyrrolidine (43) and piperidine proceeds via Borrowing Hydrogen methodology in the presence 

of 1 mol% Shvo catalyst (2) (Scheme 59). Remarkably, in this catalytic transformation three 

carbon-nitrogen bond cleaving and forming steps take place. This novel reaction sequence leads 

to N-aryl-pyrrolidines and -piperidines.107 

 

                                                                                                                                                       

(107)  D. Hollmann, S. Bähn, A. Tillack, R. Parton, R, Altink, M. Beller, Tetrahedron Lett. 2008, 49, 5742-5745. 
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Scheme 59: N-Alkylation of aniline with pyrrolidine 

In analogy to the monoalkylation of aryl amines (Chapter 2.4.2.), the supposed reaction 

mechanism is illustrated in Scheme 60. Initially, ruthenium-catalyzed dehydrogenation of 

pyrrolidine (43) occurs via coordination and �-hydride elimination. Then, nucleophilic attack of 

the aryl amine on the resulting imine gives a diaminal. Ring opening and hydrogenation yields 

the corresponding 1,4-diamine 124. Here, dehydrogenation of the primary amino group is fast 

compared to the secondary amine. Subsequent nucleophilic attack on the imine, elimination of 

ammonia, and catalytic hydrogenation leads to the arylated pyrrolidine 125. 
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Scheme 60: Proposed mechanism for the reaction of pyrrolidine with aniline 

In order to demonstrate the general applicability of 2 and the scope of the process, the 

reaction of various aryl amines and cyclic alkyl amines was investigated (Scheme 61). Moderate 

to good yields were achieved. Noteworthy, the product yield depends on the electron density of 
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the aromatic ring and thus the nucleophilicity of the amino group.108 Apparently, the nuclephilic 

attack of the aryl amine is involved in the rate-determined step. Electron deficient aryl amines 

are problematic. No reaction was observed with 4-trifluoromethylaniline. 

126
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N OMeN

N OMeN OMeN Br
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128
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129
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Scheme 61: Selection of products in the N-alkylation with cyclic aliphatic amines 

2.4.4. Alkylation of t-Alkyl aminesVI 

Based on the alkylation of aryl amines (Chapter 2.4.2.), we got interested in the selective 

alkylation of tertiary aliphatic amines (Scheme 62).109 The resulting t-alkyl amines are of interest 

as intermediates. For example, this structural element is found in pharmaceuticals110 such as 

vildagliptin.111  
t-alkylH2N

NH2R

R = alkyl, aryl

N
H
t-alkyl

RN
H

R R NR R

R

or or

- NH3
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DME, 160 °C, 24 h

 

Scheme 62: Selective N-alkylation of t-alkyl amines 

Further nucleophiles such as aryl amines, are t-alkyl amines without having a �-carbon-

hydrogen group. Clearly, dehydrogenation of the t-alkyl group is not feasible since �-hydride 

elimination is not possible. Hence, a selective alkyl transfer takes place. This atom efficient alkyl 

transfer proceeds with primary as well as secondary, and tertiary aliphatic amines leaving 

ammonia as the only side product. 

 
                                                                                                                                                       

(108) F. Brotzel, Y. C. Chi, H. Mayr, J. Org. Chem. 2007, 72, 3679-3688. 

(109) S. Bähn, D. Hollmann, A. Tillack, M. Beller, Adv. Synth. Cat. 2008, 350, 2099-2103. 

(110) R. R. Ruffolo, Jr., W. Bondinell, J. P. Hieble, J. Med. Chem. 1995, 38, 3681-3716. 

(111) B. Boerk, H. D. Grenville, H. T. Edward, V. E. Bernard (Novartis A.G., Switz.), WO 2008057337, 2008. 
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In order to demonstrate the generality of the alkyl transfer, different amines were 

investigated in the reaction with t-octylamine (141), 1-adamantylamine, and t-butylamine. 

Primary amines as well as secondary gave the desired products in good to excellent yield. A 

selection of products is shown in Scheme 63. Remarkably, even tertiary amines such as 

trioctylamine can be used as alkylating agents, although activation of these substrates is known 

to be difficult. Problematic seems to be the reaction of steric hindered tribenzylamine and cyclic 

amines such as cyclohexylamine or cyclooctylamine. Thus, no reactions with t-octylamine or 

1-adamantylamine were observed. 
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Scheme 63: Selection of products in the N-alkylation of tertiary alkyl amines from secondary alkyl amines 

During our research we found that the formation of alkyl-t-alkyl amine is a reversible 

process.112 The corresponding alkyl-t-alkylimine can be attacked by primary and secondary 

amines to form the free t-alkyl amine and secondary as well as tertiary alkyl amines. This 

equilibrium with primary alkyl amines is shown in Scheme 64.  
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Scheme 64: Equilibrium in the N-alkylation of tertiary alkyl amines with primary alkyl amines 

During the reaction of octyl-(1,1,3,3-tetramethyl-butyl)-amine (138) with octylamine (139),  

34 % of the free t-octylamine (141) was observed (Scheme 65). Based on these results, it became 

clear that an excess of t-alkyl amine (141) is necessary to shift the equilibrium to the products.   
                                                                                                                                                       

(112) S. Bähn, diploma thesis, unpublished results. 
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Scheme 65: Reaction of octyl-t-octylamine with octylamine and adjustment of the equilibrium 

2.4.5. Alkylation of Phenols 

The synthetic procedure for alkylation using alkyl amines was attempted to phenols.113 

Unfortunately, optimization showed that high temperatures of 180 °C are necessary 

(Scheme 66). In addition, strong solvent influence was observed, which makes the reaction 

unattractive for chemists. Only moderate yields of 34 % for O-octyl-p-cresol (144) and O-octyl-

p-hydroxy-anisol (145) were achieved.  
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Scheme 66: Phenols as nucleophiles 

2.4.6. �-Alkylation of Ketones by Amines 

Based on the report of the alkylation of aryl amines with trialkyl amines (see Chapter 2.4.2.) 

in 2001, 104 Cho et al. reported an �-alkylation of ketones with trialkyl amines (Scheme 67).114 This 

alkyl group transfer was carried out with an in situ catalyst of RuCl3 and PPh3.   
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Scheme 67: �-Alkylation of ketones with trialkyl amines 

                                                                                                                                                       

(113) D. Hollmann, unpublished results. 

(114) C. S. Cho, B. T. Kim, M. J. Lee, T.-J. Kim, S. C. Shim, Angew. Chem. Int. Ed. 2001, 40, 958-960; Angew. Chem. 

2001, 113, 984-986. 
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Given these results, several ketones and amines were tested with this catalyst system. As side 

products, reductive amination products of the aldehydes with the excess amine were observed. 

The reaction proceeds via dehydrogenation of the tertiary amine to iminium cation, followed by 

nucleophilic attack of the enolate derivates formed from the ketones. Liberation of a secondary 

amine and dehydrogenation lead to the alkylated ketone. 
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2.5.Concluding Remarks 

The Borrowing Hydrogen methodology combined well-known organic reactions with transfer 

hydrogenation. But until now, this method is in the fledging stages, thus improved catalysts and 

reaction conditions will be developed soon. So far, best catalysts are the iridium catalyst 

[Cp*IrCl2]2 developed by Fujita and co-workers, as well as the ruthenium in situ catalyst [Ru(p-

cymene)Cl2]2 and dppf developed by Williams et. al., and [Ru3(CO)12] combined with ligand 63 

developed in our group. Recently, we introduced the ligand metal bifunctional Shvo catalysts (2), 

which showed significantly higher reactivity. But unfortunately, high temperatures are necessary 

for the activation of the Shvo catalyst. 

 

Until to date, no chiral transformation and dehydrogenation were performed. The reaction 

conditions are too harsh to obtain enantioselectivity. Thus, it will be of continuous interest to 

develop catalysts, which work under milder conditions (<50 °C).  

 

Furthermore, only a limited area of organic chemistry was combined with the Borrowing 

Hydrogen methodology. In future, more transformations will be explored. 
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3. Objectives of  the Work 

The Borrowing Hydrogen methodology, also called Hydrogen Auto Transfer Process, provides an 

alternative way for avoiding of use of hydrogen or other hydrogen donor compounds.  After 

dehydrogenation by a metal catalyst, the corresponding unsaturated compound can undergo 

further reactions and transformations to form new unsaturated compounds, which are finally 

hydrogenate. Under consideration of no hydrogen loss, even by side reaction or by gas 

evolution, the Borrowing Hydrogen methodology can refrain from using additional hydrogen 

sources. Thus, the Borrowing Hydrogen methodology is an economically and environmetally 

attractive strategy  in organic synthesis. During my research, the Borrowing Hydrogen methodology 

was first applied in the synthesis of secondary amines starting from secondary alcohols 

(Tetrahedron Lett. 2006 (I, see chapter 4.1) and Chem. Asian J. 2007 (II, see chapter 4.2)). 

Furthermore, tertiary amines can be prepared by applying secondary cyclic amines and 

secondary alcohols (Eur. J. Org Chem. 2008 (III, see chapter 4.3)). Next, we were able to 

introduce the selective synthesis of monoalkylated aryl amines with primary amines using the 

Shvo catalyst (2) (Angew. Chem. Int. Ed. 2007 (IV, see chapter 4.4)). In an expansion of this 

concept we showed that primary, secondary, and tertiary amines can be converted selectively to 

the monoalkylated aryl amines (Chem. Commun. 2008 (V, see chapter 4.5)). This new method was 

continuously applied in the alkylation of t-alkyl amines (Adv. Synth. Cat. 2008 (VI, see chapter 

4.6)). Finally, to round out this method, N-alkylation of aryl amines with cyclic alkyl amines was 

performed (Tetrahedron Lett. 2008 (VII, see chapter 4.7)). Additionally, mechanistic studies in the 

activation (Organometallics 2008 (VIII, see chapter 4.8)) and deactivation (Organometallics 2008 

(IX, see chapter 4.9)) of the Shvo catalyst (2) were performed.  
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4.1. A Novel Ruthenium-catalyzed Amination of Primary and Secondary 

Alcohols  

Annegret Tillack, Dirk Hollmann, Dirk Michalik, and Matthias Beller, Tetrahedron Lett. 2006, 47, 

8881-8885. 
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In this paper, I was involved in the investigation of different metal precursor and ligand 

screening (Table 1 and 2) as well as substrate screening (Table 3). My contribution as co-author 
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Abstract—An improved method for the N-alkylation of primary amines with primary and secondary alcohols has been developed.
Novel, effective catalyst systems, for example, Ru3(CO)12 combined with tri-o-tolylphosphine or n-butyl-di-1-adamantylphosphine,
allow for aminations in a good yield under comparatively mild conditions.
� 2006 Elsevier Ltd. All rights reserved.

The catalytic formation of carbon–nitrogen bonds is of
a broad interest to synthetic organic chemists since a
large number of nitrogen-containing molecules are of
importance for both the bulk and fine chemical indus-
tries, for example, for the production of solvents and
emulsifiers. In addition, a variety of naturally occurring
bio-active compounds such as alkaloids, amino acids
and nucleotides contain amino groups, which are parti-
cularly useful for the development of new pharmaceuti-
cals and agrochemicals.1 Thus, the development of
improved methods for the synthesis of amines continues
to be a challenging and active area of research.2

Among the various catalytic amination methods, palla-
dium-catalyzed amination of aryl halides,3 hydroamina-
tion,4 and hydroaminomethylation5 of olefins or alkynes
has received special attention in the last decade. Less
interest has been paid to the further development of
catalytic alkylations of amines.6 Compared to the
frequently applied N-alkylations with alkyl halides and
reductive aminations, an economically and environmen-
tally attractive method is the N-alkylation of amines
using primary and secondary alcohols (Scheme 1).

This consecutive domino reaction consists of an initial
dehydrogenation of the alcohol, subsequent imine for-
mation followed by reduction with the initially produced
hydrogen. The advantages of this method are the ubi-
quitous availability of alcohols and high atom efficiency,
for example, no salt formation, water as the only
by-product. Moreover, compared to reductive amina-
tions, it is possible to run these reactions in the absence
of hydrogen pressure.

The general principle of alkylation of amines with alco-
hols is well known.7 The methylation of lower aliphatic
amines with methanol is even performed on an indus-
trial scale.8 Until now mainly heterogeneous catalysts
are used for N-alkylation at a high temperature and
pressure. For example, alkylations of aryl amines are
catalyzed by Raney-Ni,9 alumina,10 silica and mont-
morillonite at temperatures >200 �C.11

The first homogeneous catalysts were introduced by
Grigg et al.12 and Watanabe et al.13 in 1981. Thereafter,
ruthenium,14 rhodium,15 platinum,16 and iridium com-
plexes15,17 have been introduced as molecular-defined
transition metal catalysts for such reactions. Similar to
heterogeneous systems the drawbacks of the known
homogeneous catalysts are the high reaction tempera-
tures (up to 215 �C) and long reaction times, which are
required to obtain sufficient yields. In addition, the
scope of these reactions is limited. With regard to the
alcohol, mainly primary alcohols have been used as sub-
strates. These are more reactive compared to secondary
alcohols. With the exception of [IrCp*Cl2], which was
introduced by Fujita et al.18 no efficient catalyst is
known for the N-alkylation with secondary alcohols.

0040-4039/$ - see front matter � 2006 Elsevier Ltd. All rights reserved.
doi:10.1016/j.tetlet.2006.10.042
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Scheme 1. Catalytic N-alkylation of amines with alcohols.
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Thus, a major challenge in this area is the development
of more active catalysts that work under milder condi-
tions and allow a broader substrate scope. Clearly, the
demands on improved catalysts for the N-alkylation of
amines with alcohols are: (1) High activity for the de-
hydrogenation of alcohols to ketones and the hydro-
genation of the resulting imines to amines via a
transfer hydrogenation process, and (2) low sensitivity
to water and functional groups on the substrate. From
an environmental point of view the use of additional
base for the activation of the catalyst should be avoided.

Based on our previous research in intermolecular hydro-
aminations of olefins and alkynes,19 we recently became
interested in the development of novel ruthenium com-
plexes for the amination of alcohols, especially second-
ary alcohols. Herein, we report our results from this
study and present Ru3(CO)12/ligand-systems which are
active for the N-alkylation of amines with different alco-
hols at 100–110 �C.

Initial studies were performed using n-hexylamine and
1-phenylethanol as the substrates in the presence of
different ruthenium sources. As a result of these reac-
tions the ruthenium cluster Ru3(CO)12 was tested in
the presence of different phosphine ligands. Typically,
the catalytic reactions were run without a solvent using
2 mol % Ru3(CO)12 and 6 (3) mol % of monodentate
(bidentate) ligands at 110 �C. The selected results and
the ligands used are shown in Table 1 and Scheme 2.

Notably, the reaction proceeds in a good yield (74%) in
the presence of the ruthenium carbonyl cluster (Table 1,
entry 1). With respect to the used ligands, there was no
clear trend observed. For example electron-rich bulky
phosphines such as tricyclohexylphosphine 1 and
n-butyl-di-1-adamantyl-phosphine20 2 behaved quite
differently (Table 1, entries 2 and 3). Similar divergent
behaviour was observed with aryl phosphines 3 and 4
(Table 1, entries 4 and 5). The best results were obtained
with 2 and 4 (>90% of N-(1-phenyl-ethyl)hexylamine).

For all other tested ligands the conversion of substrate
was significantly higher than the yield of the desired
product. In these cases the corresponding imine was
observed as the major side product. Thus, the hydro-
genation of the imine appears problematic.

Next, critical reaction parameters of the model reaction
were studied in more detail (Table 2). The Ru3(CO)12/
tri(o-tolyl)-phosphine catalyst system 4 was chosen for
its high yield, robustness and favourable price.

Reducing the catalyst loading from 2 to 1 mol %, the
conversion decreased from 100% to 79%, and the yield
of secondary amine dropped to 37%. Variation of the
alcohol/amine ratio demonstrated the importance of
the alcohol concentration for the hydrogenation step
(Table 2, entries 2–5). Although the conversion
decreased only slightly to around 80%, the product yield
decreased steadily to only 29%. Reducing the reaction
time to 7 h showed that almost 24 h are necessary for
a full conversion (Table 2, entry 8).

The two best catalysts identified from these studies were
applied to the alkylation of various amines under the
optimized conditions (Table 3).

In addition to the model reaction described above, the
N-alkylation of n-octylamine and benzylamine with
1-phenylethanol proceeded in moderate yield (64% and
49%, respectively) (Table 3, entries 4 and 8). Cyclooctyl-
amine gave 29% of the corresponding alkylated amine
(Table 3, entry 6). In all cases ligand 4 gave better prod-
uct yields than 2.

Finally, different alcohols were examined in the N-alkyl-
ation of n-hexylamine (Table 4). Again, all substrates
were tested in the presence of ligands 2 and 4. Notably,

Table 1. N-Alkylation of n-hexylamine with 1-phenyl-ethanol in the
presence of Ru3(CO)12 and different ligandsa

C6H13NH2 + OH
H3C

Ph

- H2O
C6H13HN

Ph

CH3

% Ru3(CO)12
 % Ligand, 110 °C 

2 mol
6 mol

Entry Ligand Conversion (%) Yield (%)

1 None 100 74
2 1 100 59
3 2 100 90

4 3 81 47
5 4 100 97

6 5 56 33
7 6 85 30
8 7 82 34

a Reaction conditions: 2 mmol n-hexylamine, 10 mmol 1-phenyletha-
nol, 0.04 mmol Ru3(CO)12, 0.12 mmol monodentate ligand (or
0.06 mmol bidentate ligand), 110 �C, 24 h, conversion and yield
were determined by GC analysis with hexadecane as the internal
standard.

P

P O

O
P

P
P P P

P

1 2 3

  4   5

 6 7

P

Scheme 2. Ligands for N-alkylation of amines with alcohols.
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secondary aliphatic alcohols such as 2-octanol and
cyclohexanol gave N-hexyl-2-octylamine and N-hexyl-
cyclohexylamine in excellent yields (90–94%) (Table 4,

entries 1–4). We were also pleased to find that hetero-
aromatic alcohols, for example, 1-(2-furyl)-ethanol
(Table 4, entries 5 and 6), furan-2-yl-methanol (Table
4, entries 7 and 8), and thiophen-2-yl-methanol (Table
4, entries 9 and 10) were converted to the corresponding
secondary N-hexylamines in moderate to good yields.
Ligand 4 was again superior to 2 in all cases studied.

In conclusion, we present a novel ruthenium-catalyzed
N-alkylation of amines with alcohols in the presence
of different sterically hindered phosphine ligands. The
reactions can be performed under significantly milder
conditions (110 �C) compared to the known ruthenium
catalysts and proceed with good yields.
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Table 3. N-Alkylation of different amines with 1-phenyl-ethanol in the
presence of Ru3(CO)12/2 or 4a

RNH2 + OH
H3C

Ph

- H2O
RHN

Ph

CH3

% Ru3(CO)12
6 mol 

2 mol
% Ligand 

Entry Amine Ligand Conversion (%) Yield (%)

1 Hexylamine 2 100 90
2 Hexylamine 4 100 97
3 Octylamine 2 100 35
4 Octylamine 4 100 64
5 Cyclooctylamine 2 56 21
6 Cyclooctylamine 4 44 29
7 Benzylamine 2 81 19
8 Benzylamine 4 72 49

a Reaction conditions: 1 mmol amine, 5 mmol 1-phenylethanol,
0.02 mmol Ru3(CO)12, 0.06 mmol ligand, 110 �C, 24 h, conversion
and yield were determined by GC analysis with hexadecane as

Table 4. N-Alkylation of n-hexylamine with different alcohols in the presence of Ru3(CO)12/2 or 4a 21

C6H13NH2 + ROH C6H13NHR
- H2O

% Ru3(CO)12
6 mol % Ligand

2 mol

Entry Alcohol Ligand Temperature (�C) Conversion (�C) Yield (%)

1
OH

2 110 100 92
2 4 110 100 90

3 OH 2 120 100 94
4 4 120 100 93

5 O
OH

2 110 100 17
6 4 110 100 49

7 O
OH

2 110 100 33
8 4 110 100 60

9 S
OH

2 110 66 7
10 4 110 100 70

a Reaction conditions: 2 mol % catalyst, 24 h, conversion and yield were determined by GC analysis with hexadecane as internal standard.

Table 2. N-Alkylation of n-hexylamine with 1-phenylethanol in the presence of Ru3(CO)12 and tri(o-tolyl)phosphine (4)a

C6H13NH2 + OH
H3C

Ph

- H2O
C6H13HN

Ph

CH3

% Ru3(CO)12
Ligand 4, 110 °C 

2 mol

Entry Catalyst (mol %) Amine/alcohol Temperature (�C) Time (h) Conversion (%) Yield (%)

1 1 1:5 110 24 79 37
2 2 1:5 110 24 100 97
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a Reaction conditions: 2 mmol n-hexylamine, 10 mmol 1-phenylethanol, 0.04 mmol Ru3(CO)12, 0.12 mmol 4, conversion and yield were determined
by GC analysis with hexadecane as the internal standard.
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An Improved Ruthenium Catalyst for the Environmentally Benign
Amination of Primary and Secondary Alcohols

Dirk Hollmann, Annegret Tillack, Dirk Michalik, Ralf Jackstell, and Matthias Beller*[a]

Introduction

A variety of amines is of significant importance for the
bulk- and fine-chemical industries not only as building
blocks for polymers and dyes, but also for the synthesis of
new pharmaceuticals and agrochemicals.[1] Furthermore, a
plethora of naturally bioactive compounds such as alkaloids,
amino acids, and nucleotides contain amine groups. Despite
numerous known procedures, the development of improved
methods for the synthesis of amines continues to be a highly
challenging and active area of research.[2] In the last decade,
various catalytic aminations, such as palladium- and copper-
catalyzed amination of aryl halides,[3] hydroamination,[4] and
hydroaminomethylation[5] of olefins or alkynes, have re-
ceived increased attention. However, less interest has been
paid to the further development of catalytic alkylations of
amines, such as reductive amination.[6]

As opposed to the well-known classic N-alkylations of
amines with alkyl halides and reductive alkylations, an
atom-economical[7] and environmentally attractive method is
the N-alkylation of amines by using primary and secondary
alcohols (Scheme 1). This domino reaction sequence is
based on the dehydrogenation of the alcohol in situ to give
the corresponding aldehyde or ketone. Subsequent imine
formation followed by reduction with the hydrogen initially
produced leads to the N-alkylated amine (Scheme 2). To

obtain the desired amine, it is necessary that the hydrogena-
tion of the imine is irreversible.

Interestingly, the same principle of the dehydrogenation–
functionalization–hydrogenation sequence was recently used
in alkane metathesis,[8] b alkylation of alcohols,[9] and C�C

Keywords: alcohols · amination ·
amines · ruthenium · transfer
hydrogenation

Abstract: The N-alkylation of amines in the presence of different ruthenium cata-
lysts generated in situ was investigated. Among the various catalysts tested, the
combination of [Ru3(CO)12] and N-phenyl-2-(dicyclohexylphosphanyl)pyrrole
showed the best performance. By applying this novel catalyst, a variety of func-
tionalized alcohols and amines were converted into the corresponding secondary
amines in high yield.

[a] D. Hollmann, Dr. A. Tillack, Dr. D. Michalik, Dr. R. Jackstell,
Prof. Dr. M. Beller
Leibniz-Institut f�r Katalyse an der Universit�t Rostock e.V.
Albert-Einstein-Str. 29a, D-18059 Rostock (Germany)
Fax: (+49)381-1281-5000
E-mail : matthias.beller@catalysis.de

Scheme 1. Catalytic N-alkylation of amines with alcohols or alkyl halides.

Scheme 2. Catalytic hydrogen transfer in N-alkylation of amines with
ACHTUNGTRENNUNGalcohols.
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bond formation by the Knoevenagel reaction.[10] The advan-
tages of this type of amination are the ubiquitous availabili-
ty of alcohols and the high atom efficiency of the reaction
sequence, which forms water as the only by-product. More-
over, as opposed to typical reductive aminations, it is possi-
ble to run these reactions in the absence of additional hy-
drogen. Hence, the reaction can be performed at ambient
pressure.

Until now, N-alkylation of amines has been predominant-
ly performed with various heterogeneous catalysts at high
temperature and pressure. As an example, alkylation of ali-
phatic amines can be catalyzed by Raney Ni,[11] alumina,
silica, or montmorillonite at temperatures greater than
200 8C.[12] Industrial processes that apply such amination re-
actions in the presence of heterogeneous catalysts involve
the methylation of lower aliphatic amines with methanol.[13]

Although the alkylation of amines with alcohols has been
frequently applied, there is no catalytic method available for
functionalized and sensitive substrates (alcohols and
amines) under milder conditions (<100 8C). To stimulate
further applications of this chemistry, the development of
more-active catalysts, which allow for a broader substrate
scope, is highly desirable. A strategy to solve this problem
might be the switch from heterogeneous to molecularly de-
fined organometallic catalysts. Here, a variety of transition-
metal complexes are known to have high activity for the de-
hydrogenation of alcohols to ketones and the hydrogenation
of the resulting imines to amines via transfer hydrogenation,
which are the basic requirements for the catalyst system.

The first homogeneous catalysts for N-alkylation of
amines with alcohols were introduced by Grigg et al.[14] and
Watanabe et al.[15] in 1981. Thereafter, ruthenium,[16] rhodi-
um,[17] platinum,[18] and iridium complexes[17,19] have been
described as homogeneous transition-metal catalysts for
such reactions. Unfortunately, for most known homogeneous
catalysts, high reaction temperatures (up to 215 8C) and long
reaction times are required to obtain sufficient yields of the
alkylated amine. With regard to the substrates, mainly pri-
mary alcohols have been used in the past because they are
more reactive than secondary alcohols. With the exception
of [IrCp*Cl2]2 (Cp*=1,2,3,4,5-pentamethylcyclopentadien-
yl), which was introduced by Fujita et al.,[20] and our recent-

ly developed ruthenium catalyst system,[21] no efficient cata-
lyst is known for N-alkylation with secondary alcohols.

Results and Discussion

On the basis of our interest in intermolecular hydroamina-
tions of olefins and alkynes,[22] we started a program to de-
velop novel catalysts for the amination of alcohols, especial-
ly secondary alcohols. In an initial communication, we re-
ported the use of ruthenium/n-butyldi-1-adamantylphos-
phine and ruthenium/tri-o-tolylphosphine as catalysts.[21]

Herein, we summarize our results from this study and pres-
ent a significantly improved in situ Ru catalyst that is highly
active for the N-alkylation of various amines with different
alcohols under comparably mild conditions (100–120 8C).

Initially, the reaction of n-hexylamine with 1-phenyletha-
nol was studied as a model reaction. In general, the amina-
tion reaction was run without solvent at 110 8C for 24 h in
the presence of 2 mol% [Ru3(CO)12] and 6 mol% of the
corresponding phosphine ligand. To obtain complete hydro-
genation of the corresponding imine n-hexyl-(1-phenylethyl-
ACHTUNGTRENNUNGidene)amine, an excess of alcohol with respect to amine
(typically a 5:1 ratio was employed) was necessary.

At the beginning of our investigation, we focused our at-
tention on the influence of different ruthenium precatalysts
(Table 1). Basically, all ruthenium sources tested showed
some activity for the conversion of the alcohol. However,
only the ruthenium carbonyl cluster [Ru3(CO)12] catalyzed
the N-alkylation of n-hexylamine to a significant extent
(Table 1, entry 1). Interestingly, the Shvo catalyst,[23] which is
known to be highly active in transfer hydrogenations,
showed high activity too, but mainly di-n-hexylamine was
obtained as product (Table 1, entry 7). In the presence of all
the other ruthenium complexes tested, the corresponding
imine was formed as product. Apparently, the hydrogena-
tion of imines seems to be problematic. These imines were
the only observed “by-products” formed with our described
catalyst system.

Table 1. Amination of 1-phenylethanol with hexylamine in the presence
of different ruthenium precatalysts.[a]

Entry Catalyst Conv. [%][b] Yield [%][b]

1 ACHTUNGTRENNUNG[Ru3(CO)12] 100 74
2 ACHTUNGTRENNUNG[RuCl2ACHTUNGTRENNUNG(bpy)2]·2H2O 22 <1
3 [Ru(CO)(H)2ACHTUNGTRENNUNG(PPh3)3] 65 2
4 ACHTUNGTRENNUNG[RuCp2] 18 2
5 ACHTUNGTRENNUNG[RuCp*Cl2]n 52 0
6 ACHTUNGTRENNUNG[RuCp* ACHTUNGTRENNUNG(cod)Cl] 48 0
7 Shvo catalyst 92 39

[a] Reaction conditions: 2 mol% catalyst, amine/alcohol=1:5, 110 8C,
24 h. [b] Conversion and yield determined by GC analysis with hexadec-
ACHTUNGTRENNUNGane as internal standard. Conversions and yields are based on the conver-
sion of hexylamine and the corresponding secondary amine. bpy=2,2’-bi-
pyridine, cod=1,5-cyclooctadiene, Cp=cyclopentadienyl.

Abstract in German: Die Synthese von sekund�ren Aminen
aus prim�ren Aminen und Alkoholen ist eine salzfreie und
damit umweltfreundliche Alternative zu den bisherigen Al-
kylierungsverfahren. Durch die in situ Dehydrierung–Kon-
densation–Hydrierung Reaktionsequenz, welche die Vor-
teile der Transferhydrierung nutzt, wurden die Produkte
atomeffizient hergestellt. Ermçglicht wird dies durch die
einen neuartigen Ruthenium Katalysator bestehend aus
[Ru3(CO)12] und N-phenyl-2-(dicyclohexylphosphanyl)pyr-
rol. Der robuste und wasserstabile Katalysator ermçglicht
die Synthese von funktionalisierten Aminen in guten bis
sehr guten Ausbeuten.
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Next, we investigated the influence of monodentate and
bidentate phosphine ligands in detail. For the sake of sim-
plicity and practicability, instead of using defined phos-
phine–ruthenium complexes, we formed the corresponding
ruthenium catalysts in situ from commercially available
[Ru3(CO)12] and phosphines 1–15 (Schemes 3 and 4) .

We employed the alkyl phosphines 1 and 2 (Table 2, en-
tries 2 and 3), the aryl phosphines 3 and 4 (Table 2, entries 4
and 5), the monophos ligand 5[24] (Table 2, entry 6), the pyr-
role phosphines 6, 7, and 8 developed inhouse[25] (Table 2,
entries 7–9), as well as the Buchwald ligands 9 and 10[26]

(Table 2, entries 10 and 11) as monodentate ligands. The re-
activity of the [Ru3(CO)12] complex is strongly dependent
on the ligand. Notably, the reaction proceeded in 74% yield
without ligand. With respect to the electronic and steric
properties of the ligands, no clear trend was observed. For
example, electron-rich bulky phosphines such as tricyclohex-
ylphosphine (1) and n-butyl-di-1-adamantyl-phosphine[27] (2)
behaved quite differently (Table 2, entries 2 and 3). Similar
divergent results were observed for aryl phosphines 3 and 4
(Table 2, entries 4 and 5) and the pyrrole ligands 6–8. In the
presence of racemic monophos ligand 5, only low conversion

Scheme 3. Monodentate ligands for N-alkylation of n-hexylamine with
1-phenylethanol.

Scheme 4. Bidentate ligands for N-alkylation of n-hexylamine with
1-phenylethanol.

Table 2. N-alkylation of n-hexylamine with 1-phenylethanol in the
ACHTUNGTRENNUNGpresence of [Ru3(CO)12] and different ligands.[a]

Entry Ligand Conv. [%][b] Yield [%][b]

1 none 100 74
2 1 100 59
3 2 100 90
4 3 81 47
5 4 100 97
6 5 56 33
7 6 100 98
8 7 100 74
9 8 100 84

10 9 100 84
11 10 88 42
12 11 85 30
13 12 82 34
14 13 80 40
15 14 90 50
16 15 82 34

[a] Reaction conditions: 2 mmol n-hexylamine, 10 mmol 1-phenylethanol,
0.04 mmol [Ru3(CO)12], 0.12 mmol monodentate ligand (or 0.06 mmol bi-
dentate ligand), 110 8C, 24 h. [b] Conversion and yield determined by GC
analysis with hexadecane as internal standard. Conversions and yields are
based on the conversion of hexylamine and the corresponding secondary
amine.
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and yield were obtained. With regard to N-phenyl-2-(dicy-
clohexylphosphanyl)pyrrole, the Buchwald ligands 9 and 10
showed lower activity. Among the different ligands, 2, 4, and
6 showed the best performance (100% conversion, �90%
yield) in the model reaction.

We were also interested in the effect of bidentate ligands.
1,2-Bis(diphenylphosphanyl)ethane (dppe) and 1,3-bis(di-
phenylphosphanyl)propane (dppp), rac-2,2-dimethyl-4,5-
bis(diphenylphosphanylmethyl)-1,3-dioxolane (rac-diop; 13),
rac-2,2’-bis-(diphenylphosphanyl)-1,1’-binaphthyl (rac-binap;
14), and xantphos (15) (Table 2, entries 12–16, respectively)
showed low reactivity. In general, these ligands inhibit the
dehydrogenation of the alcohol and the hydrogenation of
the imine. This effect is explained by the fact that the coor-
dination sites on the ruthenium are blocked by the bidentate
ligand.

Owing to the superior performance, we compared the
in situ system consisting of [Ru3(CO)12]/2, [Ru3(CO)12]/4,
and [Ru3(CO)12]/6 for the
more-difficult reaction of n-
hexylamine with 2-octanol, cy-
clohexanol, 1-methoxy-2-buta-
nol, 1-(2-furyl)ethanol, and 2-
thiophenylmethanol. In all
cases the new catalyst with 6
gave significantly higher prod-
uct yields compared to 2 and 4
(Table 3, entry 1 vs. 2 and 3,
entry 10 vs. 7–9, entry 14 vs. 15,
entry 18 vs. 19, entry 22 vs. 23).
The reactions of eight different
alcohols with n-hexylamine in
the presence of the best cata-
lyst system are shown in
Table 3. At 110 8C, 2-octanol
was converted into N-hexyl-2-
octylamine in the presence of 6
in excellent yield (98%) and
selectivity (Table 3, entry 1). In
this case, the alcohol/amine
ratio could be reduced without
much problem to 1:2, whereas
the catalyst system containing
ligand 4 needed a larger excess
of alcohol for the yield to
reach 90%.

On the other hand, by de-
creasing the temperature to
100 8C, a higher alcohol/amine
ratio of 1:5 was necessary for
excellent yield (Table 3, en-
tries 4 and 5). However, by
lowering the temperature to
90 8C, the conversion and yield
dropped to 64% and 23%, re-
spectively (Table 3, entry 6).
Apparently, the hydrogen-

transfer step requires higher reaction temperatures. Below
100 8C, considerable amounts of the corresponding Schiff
base were formed. In the presence of [Ru3(CO)12]/6, the
less-reactive substrate cyclohexanol was converted into N-
hexylcyclohexylamine in nearly quantitative yield (99%) at
100 8C (Table 3, entry 10). As opposed to ligand 6, full con-
version and yield were achieved with ligand 2 or 4 at 120 8C
(Table 3, entries 7 and 8). Notably, functionalized alcohols
such as 1-methoxy-2-butanol and 1-(N,N-dimethylamino)-2-
propanol also gave the corresponding secondary amines in
87–93% yield (Table 3, entries 15 and 16). With ligand 4,
only decomposition of 1-methoxy-2-butanol was observed
(Table 3, entry 14). Hence, synthetically interesting 1,2-ami-
noether derivatives as well as 1,2-diamines can be prepared
by this route.

Apart from linear and cyclic aliphatic alcohols, we also
tested different heterocyclic alcohols. We were pleased to
find that 1-(2-furyl)ethanol, 2-furylmethanol, and 2-thio-

Table 3. N-alkylation of n-hexylamine with different alcohols in the presence of [Ru3(CO)12]/2, [Ru3(CO)12]/4,
or [Ru3(CO)12]/6.

[a]

Entry Alcohol Product Ligand Amine/

alcohol

T
[8C]

Conv.
[%][b]

Yield
[%][b]

1 6 1:2 110 100 98
2 2 1:5 110 100 92
3 4 1:5 110 100 90
4 6 1:5 100 100 98
5 6 1:2 100 90 63
6 6 1:5 90 64 23

7 2 1:5 120 100 94
8 4 1:5 120 100 93
9 4 1:5 110 50 38

10 6 1:5 100 100 99
11[c] 6 1:5 100 84 65
12 6 1:2 100 100 78
13 6 1:5 90 50 29

14 4 1:5 110 80 <6
15 6 1:5 110 100 93

16 6 1:5 140 100 87 (78)[e]

17 6 1:5 120 100 73
18 4 1:5 110 100 49
19[d] 6 1:5 110 100 74

20 6 1:5 110 100 66
21[d] 6 1:5 110 100 49

22 4 1:5 110 100 70
23 6 1:5 110 96 84

[a] Reaction conditions: 2 mol% [Ru3(CO)12], 6 mol% ligand, 24 h. [b] Conversion and yield determined by
GC analysis with hexadecane as internal standard. Conversions and yields are based on the conversion of pri-
mary amines and the corresponding secondary amines. [c] 8 h reaction time. [d] 4 mol% [Ru3(CO)12],
12 mol% ligand. [e] Yield of isolated product.
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ACHTUNGTRENNUNGphenylmethanol (Table 3, entries 17, 20, and 23) gave the
corresponding secondary N-hexylamines in moderate to
good yields (66–84%). Interestingly, at 110 8C the primary
furyl alcohol led to more side reactions. Even at a higher
catalyst loading of 4 mol%, the yield dropped to 49%
(Table 3, entry 21) owing to the formation of difuryl side
products. This demonstrates the importance of the develop-
ment of new catalysts for this transformation under milder
conditions.

To demonstrate the usefulness of this novel amination cat-
alyst, we explored the alkylation of various amines
(Table 4). All catalytic reactions were run at the same reac-
tion temperature to observe the effect of steric and electron-
ic parameters. In some cases no full conversion was ob-
served (Table 4, entries 5, 7, 9, and 13). However, the yield
of the corresponding amination product could be optimized
by increasing the reaction temperature. As expected, the re-
activity and yield of the alkylated amine decreased in the
order n-hexylamine>n-octylamine=2-phenylethylamine>
benzylamine>cyclooctylamine (Table 4, entries 1–3, 5, and
13). These observations can be explained by steric effects of
the aliphatic amines, and in the case of aniline by the re-
duced nucleophilicity. With aniline, no conversion was ob-
served (Table 4, entries 11 and 12). Electron-rich anilines

(3,5-dimethoxyaniline and 2,4,6-trimethylaniline) also gave
no reaction at all. By comparing the reaction of benzyl-
ACHTUNGTRENNUNGamine, p-methoxybenzylamine, and p-chlorobenzylamine, it
became clear that there is no strong electronic influence on
the reaction (Table 4, entries 5, 7, 9). Notably, at 110 8C the
sterically more hindered cyclooctylamine was converted into
the desired amine in good yield (80%) and selectivity
(Table 4, entries 13 and 14).

Conclusions

In summary, we have presented a study on the ruthenium-
catalyzed N-alkylation of amines with alcohols. We tested 22
different ruthenium complexes as amination catalysts.
Among these, the novel in situ catalyst [Ru3(CO)12]/N-
phenyl-2-(dicyclohexylphosphanyl)pyrrole showed the high-
est activity and selectivity. The alkylation reactions were
performed under significantly milder conditions than those
of most known aminations of alcohols and proceeded in
good to excellent yield. The catalyst system showed its gen-
eral applicability in the reaction of 16 different functional-
ized amines and alcohols.

Experimental Section

General Remarks

All reactions were carried out under
argon atmosphere. Chemicals were
purchased from Aldrich, Fluka,
Acros, and Strem and, unless other-
wise noted, were used without further
purification. Amines and alcohols
were distilled under argon. All com-
pounds were characterized by 1H and
13C NMR and IR spectroscopy as
well as MS and HRMS. 1H and
13C NMR spectra were recorded on
Bruker AV 300, AV 400, and AV 500
spectrometers. For new substances,
complete assignment of the 1H and
13C signals is given. 1H and 13C NMR
chemical shifts are reported relative
to the center of the solvent resonance
(CDCl3: 7.25 (1H), 77.0 ppm (13C)).
EI mass spectra were recorded on an
AMD 402 spectrometer (70 eV,
AMD Intectra GmbH). IR spectra
were recorded on a Nicolet
Magna 550 spectrometer. Elemental
analysis was performed on a C/H/N/S
Analysator 932 instrument (Leco).
GC was performed on a Hewlett
Packard HP 6890 chromatograph
with an Optima 5 amine column
(Machery-Nagel, 30 m�0.25 mm,
0.5 mm film thickness, 50–8–200/5–8–
260/5–8–280/5–8–300/20). All yields
reported in Tables 1–4 were deter-
mined by GC with hexadecane as an

Table 4. N-alkylation of different amines with 1-phenylethanol in the presence of [Ru3(CO)12] and ligand 6.[a]

Entry Amine Product T
[8C]

Conv.
[%][b]

Yield
[%][b]

1 110 100 98

2 110 100 92

3 110 98 90
4 120 100 96

5 110 88 68
6 120 100 87

7 110 86 66
8 120 100 84

9 110 89 68
10 120 100 92

11 110 0 0
12 150 5 trace

13 110 80 58
14 120 98 80

[a] Reaction conditions: 1 mmol amine, 5 mmol 1-phenylethanol, 0.02 mmol [Ru3(CO)12], 0.06 mmol ligand 6,
110 8C, 24 h. [b] Conversion and yield determined by GC analysis with hexadecane as internal standard. Con-
versions and yields are based on the conversion of primary amines and the corresponding secondary amines.
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internal standard. To verify the reproducibility, all reactions were carried
out at least twice. In general, large-scale reactions were carried out with
tri-ortho-tolylphoshine as ligand at 110–140 8C. Here the products were
isolated in yields of up to 80%. The synthesis and experimental data of
N-(2-thiophenylmethyl)-n-hexyl-1-amine hydrochloride has been de-
scribed previously.[21]

Syntheses

General procedure for the amination reaction: In a pressure tube (ACE)
under argon atmosphere, [Ru3(CO)12] (0.02 mmol) and 6 (0.06 mmol)
were dissolved in the alcohol (5 mmol) and amine (1 mmol). The pres-
sure tube was fitted with a teflon cap and heated at 110 8C for 24 h in an
oil bath. The yield and conversion was determined by GC. In preparative
reactions the excess alcohol was distilled. The residue was purified by
column chromatography with hexane/ethyl acetate or chloroform/ethyl
acetate to give the corresponding amine as an oil.

n-Hexyl(1-methylheptyl)amine: FTIR (neat): ñ=3290 (br, NH), 2958 (s),
2926 (vs), 2856 (s), 1684 (m), 1467 (s), 1377 (m), 725 cm�1 (m); 1H NMR
(400 MHz, CDCl3): d=0.83–0.87 (m, 6H, 6-H, 14-H), 0.99 (d, 3J=6.2 Hz,

3H, 7-H), 1.12–1.31 (m, 16H, 3-H–5-
H,9-H–13-H), 1.32–1.48 (m, 3H, 2-H,
NH), 2.45–2.63 ppm (m, 3H, 1-H, 8-
H); 13C NMR (100 MHz, CDCl3): d=

14.0, 14.0 (2�CH3, C6, C14), 20.3
(CH3, C7), 22.6 (2�CH2), 26.0 (CH2),
27.1 (CH2), 29.5 (CH2), 30.4 (CH2),
31.7 (CH2), 31.8 (CH2), 37.2 (CH2),
47.4 (CH2), 53.2 ppm (CH, C8); MS

(EI, 70 eV): m/z (%)=214 (2) [M+H]+ , 213 (2) [M]+ , 212 (3) [M�H]+ ,
198 (41) [M�CH3]

+ , 142 (26) [M�C5H11]
+ , 129 (40), 128 (100)

[M�C6H13]
+ , 58 (17), 57 (13), 44 (24), 43 (23), 41 (15), 30 (11); HRMS:

m/z calcd for C14H30N: 212.2373 [M�H]+ ; found: 212.2363.

Cyclohexyl-n-hexylamine: FTIR (neat): ñ=3281 (br, NH), 2958 (s), 2926
(vs), 2854 (s), 1684 (m), 1450 (s), 1379 (m), 1133 (m), 726 cm�1 (m);
1H NMR (500, CDCl3): d=0.86 (t, 3J5-H,6-H=7.0 Hz, 3H, 6-H), 1.03 (m,
2H, 8-Hax), 1.13 (m, 1H, 10-Hax), 1.19–1.31 (m, 7H, 3-H–5-H, 9-Hax),

1.41–1.47 (m, 2H, 2-H), 1.59 (m, 2J10-Heq,10-Hax=12.3 Hz, 1H, 10-Heq), 1.70
(m, 2J9-Heq,9-Hax=13.2 Hz, 2H, 9-Heq), 1.85 (m, 2J8-Heq,8-Hax=12.5 Hz, 2H, 8-
Heq), 2.38 (tt, 3J7-H,8-Hax=10.5 Hz, 3J7-H,8-Heq=3.8 Hz, 1H, 7-H), 2.58 (t,
3J1-H,2-H=7.3 Hz, 2H, 1-H), 2.58 ppm (br, 1H, NH); 13C NMR (125 MHz,
CDCl3): d=14.0 (CH3, C6), 22.6 (CH2, C5), 25.1 (CH2, C9), 26.2 (CH2,
C10), 27.1 (CH2, C3), 30.5 (CH2, C2), 31.8 (CH2, C4), 33.6 (CH2, C8),
47.1 (CH2, C1), 56.9 ppm (CH, C7); MS (EI, 70 eV): m/z (%)=183 (8)
[M+], 140 (94) [M�C3H7]

+ , 112 (100) [M�C5H11]
+ , 56 (24), 55 (19), 43

(14), 41 (20), 30 (37), 29 (10); HRMS: m/z calcd for C12H25N: 183.1982;
found: 183.1979.

N-(1-methoxy-2-butyl)-n-hexylamine: FTIR (neat): ñ=3328 (w, NH),
2958 (s), 2926 (s), 2873 (s), 2840 (s), 1463 (s), 1378 (s), 1198 (s, CO),
1112 cm�1 (s, CO); 1H NMR (500 MHz, CDCl3): d=0.87 (t, 3J=7.0 Hz,
3H, 6-H), 0.89 (t, 3J=7.6 Hz, 3H, 10-H), 1.24–1.33 (m, 6H, 3-H–5-H),
1.36–1.54 (m, 4H, 2-H, 9-H), 1.82 (br, 1H, NH), 2.51–2.65 (m, 3H, 1-H,
8-H), 3.25 (dd, 3J7a-H,8-H=7.1 Hz, 2J7a-H,7b-H=9.5 Hz, 1H, 7a-H), 3.33 (s,

3H, 11-H), 3.37 ppm (dd, 3J7b-H,8-H=4.3 Hz, 2J7a-H,7b-H=9.5 Hz, 1H, 7b-H);
13C NMR (125 MHz, CDCl3): d=10.3 (CH3, C10), 14.1 (CH3, C6), 22.7
(CH2, C5), 24.2 (CH2, C9), 27.1 (CH2, C3), 30.4 (CH2, C2), 31.8 (CH2,
C4), 47.5 (CH2, C1), 58.9 (CH, C8), 59.0 (CH3, C11), 74.8 ppm (CH2,
C7); MS (EI, 70 eV) m/z (%): 187 (1) [M]+ , 186 (1) [M�H]+ , 158 (12)
[M�C2H5]

+ , 143 (21), 142 (100) [M�CH2OCH3]
+ , 116 (9) [M�C5H11]

+ ,
84 (7), 72 (12), 58 (38), 45 (13), 43 (16), 11 (52).

N2-hexyl-N1,N1-dimethylpropyl-1,2-diamine: FTIR (neat): 3303 (w, NH),
2958 (s), 2927 (s), 2854 (s), 2817 (s), 2792 (s), 2768 (s), 1458 (s), 1376 (m),
1337 (m), 1264 (m), 1143 (m), 1037 (m), 840 cm�1 (m); 1H NMR
(300 MHz, CDCl3): d=0.82 (t, 3J=6.8 Hz, 3H, 6-H), 0.91 (d, 3J=6.2 Hz,

3H, 7-H), 1.18–1.30 (m, 6H, 3-H–5-H), 1.38–1.48 (m, 2H, 2-H), 1.84 (s,
1H, NH), 1.94 (dd, 3J8a-H,9a-H=4.2 Hz, 3J8b-H,9a-H=12.1 Hz, 1H, 9a-H), 2.12
(s, 6H, 10-H), 2.22 (dd, 3J8a-H,9b-H=10.0 Hz, 3J8b-H,9b-H=12.1 Hz, 1H, 9b-
H), 2.35–2.43 (m, 1H, 8-H), 2.57–2.67 ppm (m, 2H, 1-H); 13C NMR
(75 MHz, CDCl3): d=14.1 (CH3, C6), 18.6 (CH3, C7), 22.7 (CH2, C5),
27.2 (CH2, C3), 30.3 (CH2, C2), 31.8 (CH2, C4), 45.8 (2�CH3, C10), 47.8
(CH2, C1), 50.6 (CH, C8), 66.4 ppm (CH2, C9); MS (EI, 70 eV): m/z
(%)=128 (100) [M�C2H6NCH2]

+ , 58 (30) [C2H6NCH2]
+ .

N-(1- ACHTUNGTRENNUNG(2-furyl)ethyl-n-hexylamine: FTIR (neat): ñ=3316 (br, NH), 3115
(w), 2957 (s), 2927 (s), 2856 (s), 2023 (w), 1938 (w), 1741 (m), 1505 (m),
1466 (m), 1372 (m), 1239 (m), 1150 (m), 1008 (m), 923 (m), 803 (m),
731 cm�1 (m); 1H NMR (500 MHz, CDCl3): d=0.86 (t, 3J=7.0 Hz, 3H, 6-

H), 1.23–1.31 (m, 8H, 2-H–5-H), 1.39 (d, 3J7-H,8-H=6.8 Hz, 3H, 8-H), 2.50
(t, 3J=6.8 Hz, 2H, 1-H), 3.83 (q, 3J7-H,8-H=6.8 Hz, 1H, 7-H), 6.11 (dd,
3J9-H,10-H=3.2 Hz, 4J9-H,11-H=0.8 Hz, 1H, 10-H), 6.29 (dd, 3J9-H,10-H=3.2 Hz,
3J10-H,11-H=1.9 Hz, 1H, 11-H), 7.33 ppm (dd, 3J10-H,11-H=1.9 Hz, 4J9-H,11-H=

0.8 Hz, 1H, 12-H); 13C NMR (125 MHz, CDCl3): d=14.1 (CH3, C6), 20.4
(CH3, C8), 22.6 (CH2, C5), 27.1 (CH2, C3), 30.2 (CH2, C2), 31.8 (CH2,
C4), 47.3 (CH2, C1), 51.3 (CH, C7), 105.1 (CH, C10), 109.8 (CH, C11),
141.3 (CH, C12), 158.1 ppm (Cq, C9); MS (EI, 70 eV): m/z (%)=195 (1)
[M]+ , 180 (34) [M�CH3]

+ , 124 (6), 110 (6), 96 (18), 95 (100), 41 (15);
HRMS: m/z calcd for C12H21ON: 195.16177; found: 195.19127.

N-(2-furylmethyl)-n-hexylamine: FTIR (neat): ñ=3319 (br, NH), 3119
(w), 2955 (s), 2927 (s), 2856 (s), 1505 (m), 1457 (m), 1148 (m), 1111 (m),
1010 (m), 919 (m), 803 (m), 729 (m), 599 cm�1 (m); 1H NMR (500
CDCl3): d=0.86 (t, 3J=7.0 Hz, 3H, 6-H), 1.23–1.32 (m, 6H, 3-H–5-H),
1.47 (m, 2H, 2-H), 1.83 (br, 1H, NH), 2.62 (t, 3J1,2=7.2 Hz, 2H, 1-H),
3.76 (s, 2H, 7-H), 6.15 (dd, 3J9-H,10-H=3.2 Hz, 4J9-H,11-H=0.7 Hz, 1H, 9-H),
6.29 (dd, 3J9-H,10-H=3.2 Hz, 3J10,11=1.8 Hz, 1H, 10-H), 7.34 ppm (dd,
3J10-H,11-H=1.8 Hz, 4J9-H,11-H=0.7 Hz, 1H, 11-H); 13C NMR (125 MHz,
CDCl3): d=14.0 (CH3, C6), 22.6 (CH2, C5), 27.0 (CH2, C3), 29.9 (CH2,
C2), 31.7 (CH2, C4), 46.2 (CH2, C7), 49.2 (CH, C1), 106.8 (CH, C9),
110.0 (CH, C10), 141.7 (CH, C11), 154.0 ppm (Cq, C8); MS (EI, 70 eV):
m/z (%)=181 (1) [M]+ , 110 (26), 96 (8), 81 (100); HRMS: m/z calcd for
C11H19ON: 181.14612; found: 181.14622.
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n-Hexyl(1-phenylethyl)amine:[28] FTIR (neat): ñ=3334 (br, NH), 3083,
3062, 3026 (w), 2958 (s), 2926 (vs), 2856 (s), 1492 (m), 1452 (vs), 1261
(m), 1130 (m), 1079 (m), 1027 (m), 804 (m), 761 (m), 700 cm�1 (s);
1H NMR (400 MHz, CDCl3): d=0.86 (t, 3J=6.9 Hz, 3H, CH3), 1.18–1.32
(m, 6H, CH2), 1.34 (d, 3J=6.5 Hz, 3H, CH3), 1.38–1.51 (m, 2H, CH2),
2.44 (m, 2H, CH2), 3.72 (q, 3J=6.5 Hz, 1H, CH), 7.20–7.35 ppm (m, 5H,
HAr);

13C NMR (100 MHz, CDCl3): d=14.0 (CH3), 22.6 (CH2), 24.3
(CH3), 27.0 (CH2), 30.2 (CH2), 31.7 (CH2), 47.9 (CH2), 58.4 (CH), 126.5
(CH, CAr), 126.8 (CH, CAr), 128.3 (CH, CAr), 145.9 ppm (Cq, CAr); MS
(EI, 70 eV): m/z (%)=205 (4) [M]+ , 190 (47) [M�CH3]

+ , 134 (25)
[M�C5H11]

+ , 106 (25), 105 (100) [PhCHCH3]
+ , 79 (11), 77 (11), 43 (13),

30 (45), 28 (22), 27 (11); HRMS: m/z calcd for C14H23N: 205.18304;
found: 205.18278.

n-Octyl(1-phenylethyl)amine:[29] FTIR (neat): 3333 (br, NH), 3083, 3062,
3025 (w), 2958 (s), 2925 (vs), 2854 (s), 1492 (m), 1452 (s), 1132 (m), 761
(m), 700 cm�1 (s); 1H NMR (400 MHz, CDCl3): d=0.87 (t, 3J=6.5 Hz,
3H, CH3), 1.17–1.28 (m, 10H, CH2), 1.34 (d, 3J=6.6 Hz, 3H, CH3), 1.38–
1.51 (m, 2H, CH2), 2.44 (m, 2H, CH2), 3.74 (q, 3J=6.6 Hz, 1H, CH),
7.19–7.35 ppm (m, 5H, HAr);

13C NMR (100 MHz, CDCl3): d=14.0
(CH3), 22.6 (CH2), 24.4 (CH3), 27.3 (CH2), 29.2 (CH2), 29.5 (CH2), 30.3
(CH2), 31.8 (CH2), 47.9 (CH2), 58.4 (CH), 126.5 (CH, CAr), 126.7 (CH,
CAr), 128.3 (CH, CAr), 145.9 ppm (Cq, CAr); MS (EI, 70 eV): m/z (%)=
233 (3) [M]+ , 218 (71) [M�CH3]

+ , 134 (35) [M�C7H15]
+ , 106 (24), 105

(100) [PhCHCH3]
+ , 85 (12), 71 (20), 58 (36), 56 (13), 43 (18), 41 (15), 30

(31), 29 (12); HRMS: m/z calcd for C16H27N: 233.21436; found:
233.21345.

2-Phenylethyl(1-phenylethyl)amine:[30] FTIR (neat): 3318 (br, NH), 3083,
3061, 3026 (w), 2960 (m), 2924 (m), 2835 (m), 1494 (m), 1452 (m), 1130
(m), 1079 (m), 1027 (m), 751 (m), 699 cm�1 (s); 1H NMR (300 MHz,
CDCl3): d=1.24 (d, 3J=6.6 Hz, 3H, CH3), 1.40 (s, 1H, NH), 2.59–2.72
(m, 4H, CH2), 3.69 (q, 3J=6.6 Hz, 1H, CH), 7.06–7.24 ppm (m, 10H,
HAr);

13C NMR (75 MHz, CDCl3): d=24.3 (CH3), 36.4 (CH2), 49.0 (CH2),
58.2 (CH), 126.0 (CH, CAr), 126.5 (CH, CAr), 126.8 (CH, CAr), 128.4 (2�
CH, CAr), 128.6 (CH, CAr), 140.0 (Cq), 145.5 (Cq); MS (EI, 70 eV): m/z
(%)=225 (1) [M]+ , 224 (1) [M�H]+ , 210 (8) [M�CH3]

+ , 134 (100)
[M�C7H7]

+ , 105 (100) [PhCHCH3]
+ , 91 (23) [PhCH2]

+ , 77 (35) [Ph]+ ;
HRMS: m/z calcd for C16H18N1: 224.14338 [M�H]+ ; found: 224.14310.

Benzyl(1-phenylethyl)amine:[31] FTIR (neat): ñ=3316 (br, NH), 3084
(w), 3062 (m), 3036 (m), 2969 (m), 2925 (w), 2864 (w), 1686 (m), 1602
(m), 1493 (s), 1493 (s), 1377 (m), 761 (s), 738 (m), 700 cm�1 (vs);
1H NMR (400 MHz, CDCl3): d=1.38 (d, J=6.5 Hz, 3H), 1.58 (s, 1H,
NH), 3.62 and 3.68 (ABX system, J=13.1 Hz, 2H), 3.83 (q, J=6.5 Hz,
1H), 7.21–7.40 ppm (m, 10H); 13C NMR (100 MHz, CDCl3): d=24.5
(CH3), 51.6 (CH2), 57.7 (CH), 126.7 (CH, CAr), 126.8 (CH, CAr), 126.9
(CH, CAr), 128.1 (CH, CAr), 128.3 (CH, CAr), 128.4 (CH, CAr), 140.6 (Cq,
CAr), 145.6 ppm (Cq, CAr); MS (EI, 70 eV): m/z (%)=211 (2), [M]+, 197
(11), 196 (67) [M�CH3]

+ , 105 (15) [PhCHCH3]
+ , 91 (100) [PhCH2]

+ , 77
(10); HRMS: m/z calcd for C15H17N: 211.13609; found: 211.136024.

(4-Methoxybenzyl)(1-phenylethyl)amine:[32] FTIR (neat): ñ=3328 (br,
NH), 3061 (m), 3026 (m), 2995 (m), 2959 (m), 2930 (m), 2833 (m), 1611
(m), 1512 (s), 1451 (m), 1301 (m), 1247 (s), 1036 (m), 822 (m), 761 (m),
702 cm�1 (m); 1H NMR (300 MHz, CDCl3): d=1.37 (d, 3J=6.6 Hz, 3H,
2-H), 1.59 (s, 1H, NH), 3.51 and 3.59 (ABX system, 2J=12.9 Hz, 2H, 3-
H), 3.78 (s, 3H, 12-H), 3.80 (q, J=6.6 Hz, 1H, 1-H), 6.81–6.86 (m, 2H, 5-
H), 7.17–7.22 (m, 2H, 6-H), 7.23–7.28 (m, 1H, 11-H), 7.32–7.37 (m, 4H,
9-H, 10-H); 13C NMR (75 MHz, CDCl3): d=24.6 (CH3, C2), 51.1 (CH2,
C3), 55.3 (CH3, C12), 57.5 (CH, C1), 113.8 (CH, C6), 128.5 (CH, C10),
126.8 (CH, C9), 127.0 (CH, C11), 129.4 (CH, C5), 132.9 (Cq, C4), 145.7
(Cq, C8), 158.6 ppm (Cq, C7); MS (EI, 70 eV): m/z (%)=241 (11) [M]+ ,

226 (99) [M�CH3]
+ , 136 (33), 121 (100) [CH2C6H4OMe]+ , 105 (35), 91

(16), 77 (31); HRMS: m/z calcd for C16H19N1O1: 241.14612; found:
241.146301.

(4-Chlorobenzyl)(1-phenylethyl)amine: FTIR (neat): ñ=3331 (br, NH),
3082 (s), 3061 (s), 3025 (m), 2962 (m), 2924 (m), 2832 (m), 1490 (s), 1451
(m), 1125 (m), 1088 (s), 1015 (m), 761 (m), 701 cm�1 (m); 1H NMR

(300 MHz, CDCl3): d=1.38 (d, 3J=6.6 Hz, 3H, CH3), 3.55 and 3.63
(ABX system, 2J=12.9 Hz, 2H, CH2), 3.79 (q, 3J=6.6 Hz, 1H, 1-H),
7.20–7.35 (m, 9H, HAr);

13C NMR (75 MHz, CDCl3): d=24.5 (CH3, C2),
50.9 (CH2, C3), 57.5 (CH, C1), 126.7 (CH, C9), 128.5 (CH, C10), 127.1
(CH, C11), 128.5 (CH), 129.5 (CH) (C5, C6), 132.5 (Cq, C7), 139.1 (Cq,
C4), 145.4 ppm (Cq, C8); MS (EI, 70 eV): m/z (%): 230 (100) [M�CH3]

+ ,
125 (100) [ClC6H4CH2]

+ , 105 (27) [C6H5CH2CH3]
+ ; HRMS: m/z calcd

for C14H13N1Cl1: 230.07310 [M�CH3]
+ ; found: 230.072815.

Cyclooctyl(1-phenylethyl)amine: FTIR (neat): ñ=3308 (br, NH), 3061
(w), 3024 (w), 2920 (vs), 2852 (s), 1668 (m), 1492 (w), 1481 (m), 1471
(m), 1367 (m), 1123 (m), 760 (s), 738
(m), 700 cm�1 (s); 1H NMR (400 MHz,
CDCl3): d=1.31 (d, 3J=6.6 Hz, 3H, 2-
H), 1.35–1.80 (m, 15H, CH2, NH), 2.49
(m, 1H, 3-H), 3.86 (q, 3J=6.6 Hz, 1H,
1-H), 7.19–7.33 ppm (m, 5H, HAr);
13C NMR (100 MHz, CDCl3): d=23.6
(CH2), 24.2 (CH2), 24.9 (CH3, C2),
25.6 (CH2), 27.1 (CH2), 27.6 (CH2),
31.0 (CH2), 33.9 (CH2), 54.3 (CH, C3),
54.9 (CH, C1), 126.5 (CH, C5), 126.7
(CH, C7), 128.3 (CH, C6), 146.3 ppm
(Cq, C4); MS (EI, 70 eV): m/z (%)=
231 (17) [M]+ , 216 (32) [M�CH3]

+ ,
188 (11), 160 (33) [M�C5H11]

+ , 147
(19), 126 (15), 106 (32), 105 (100) [PhCHCH3]

+ , 104 (11), 84 (12), 79
(11), 77 (10), 56 (39), 43 (12), 41 (10); HRMS: m/z calcd for C16H25N:
231.19870; found: 231.19847.
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The amination of secondary alcohols to give tertiary amines
in the presence of different in situ generated ruthenium cata-
lysts has been investigated in detail. By applying a combina-
tion of [Ru3(CO)12] and N-phenyl-2-(dicyclohexylphos-
phanyl)pyrrole as the catalyst, cyclic amines can be alkylated

Introduction
A variety of amines is of significant importance for the

bulk- and fine-chemical industry as building blocks for
polymers and dyes, but also for the synthesis of pharmaceu-
ticals and agrochemicals.[1] In addition, a plethora of natu-
rally bioactive compounds such as alkaloids, amino acids,
and nucleotides contain amino groups. Despite numerous
known procedures, the development of improved methods
for the synthesis of amines continues to be a challenging
and actual area of research.[2] In the last decade especially
catalytic aminations, such as palladium-, copper-, and
nickel-catalyzed aminations of aryl halides,[3] hydroamina-
tions,[4,5] as well as hydroaminomethylations[6] of olefins or
alkynes have received significant attention. Compared to
the well-known classic N-alkylations of amines by using
alkyl halides as starting materials[7] and reductive amina-
tions with carbonyl compounds,[8] an atom economical[9]

and environmentally attractive method is the amination of
primary and secondary alcohols (Scheme 1).

Although formally a nucleophilic substitution takes
place, this reaction is based on the in situ dehydrogenation
of the alcohol to give the corresponding aldehyde or ketone.
Then, the carbonyl intermediate reacts with an amine to
give the corresponding imine or iminium species. De-
pending on the substituents, an enamine intermediate might
also be involved, for example, R1 = RCH2 (R = H, alkyl,
aryl). Finally, reduction with the initially produced hydro-
gen produces the N-alkylated amine (Scheme 2).

As no additional hydrogen is needed, this reaction se-
quence has been coined by Williams and coworkers as the
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with different alcohols in high yield, whereas aliphatic
amines gave transalkylation side products.

(© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim,
Germany, 2008)

Scheme 1. Catalytic N-alkylation of amines with alcohols or alkyl
halides.

Scheme 2. Catalytic hydrogen transfer in the N-alkylation of sec-
ondary amines with secondary alcohols.

“borrowing hydrogen” mechanism.[10] Notably, the same
type of dehydrogenation–functionalization–hydrogenation
sequence has recently been used in alkane metathesis,[11] β-
alkylation of alcohols,[12] and C–C bond-formation pro-
cesses such as the Wittig or Knoevenagel reactions.[13–15]

Advantages of the catalytic amination of alcohols are the
availability of substrates and the high atom efficiency of the
reaction sequence, which forms water as the only sideprod-
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uct. Moreover, compared to typical reductive aminations, it
is possible to run these reactions in the absence of ad-
ditional hydrogen. Hence, the reaction can be performed at
ambient pressure in typical glassware.

The first homogeneous catalysts for N-alkylation of
amines with alcohols were introduced by Grigg et al.[16] and
Watanabe et al.[17] in 1981. Thereafter, ruthenium,[18,19] rho-
dium,[19] platinum,[20] and iridium complexes[19,21] have
been described as homogeneous transition-metal catalysts
for such reactions. Recently, we developed a general proto-
col for the synthesis of secondary aliphatic amines starting
from primary amines and secondary alcohols in the pres-
ence of ruthenium carbonyl {[Ru3(CO)12]} and N-phenyl-2-
(dicyclohexylphosphanyl)pyrrole (cataCXium® PCy) (I) as
catalyst system.[22] Moreover, we discovered a related syn-
thesis of secondary aromatic amines starting from aliphatic
amines and anilines by using the so-called Shvo catalyst.[23]

On the basis of this work, we became interested in the
synthesis of tertiary amines by N-alkylation of secondary
amines. Clearly, a variety of tertiary amines are of pharma-
ceutical interest,[24] especially piperazine derivatives.[25]

However, so far only few examples are known for catalytic
N-alkylations of secondary amines.[16,18g,19] For example,
Williams et al. reported recently the Ru-catalyzed synthesis
of tertiary amines from primary alcohols and secondary
amines.[18a] Earlier, Fujita et al.[21c] reported the N-alky-
lation of secondary amines, for example, N-methylaniline,
N-(1-phenethyl)aniline, and pyrrolidine, with cyclohexanol

Table 1. Catalytic N-alkylation of piperidine with 1-phenylethanol.[a]

Entry Ligand Solvent (mL) T [°C] Amine/Alcohol Conv.[b] [%] Yield[b] [%]

1 – – 130 1:5 72 32
2 cataCXium® PCy[c] – 130 1:5 80 50
3 cataCXium® PCy[c] – 140 1:5 87 71
4 cataCXium® PCy[c] – 150 1:5 84 70
5 – tert-amyl alcohol (0.5) 140 1:3 51 41
6 cataCXium® PCy[c] tert-amyl alcohol (0.5) 140 1:3 100 98
7 cataCXium® PCy[c] tert-amyl alcohol (0.5) 140 1:2 100 88
8 cataCXium® PCy[c] tert-amyl alcohol (0.3) 140 1:2 100 94
9 cataCXium® PCy[c] tert-amyl alcohol (0.5) 140 1:1.1 87 78
10 cataCXium® PCy[c] tert-amyl alcohol (0.2) 140 1:1.1 94 88
11 cataCXium® PCy[c] tert-amyl alcohol (0.3) 140 1:1.5 100 97 (92)
12 cataCXium® PCy[c] tert-amyl alcohol (0.4) 140 1:1.5 100 93
13 cataCXium® PCy[c] tert-amyl alcohol (0.2) 140 1:1.5 100 84
14 cataCXium® PCy[c] toluene (0.3) 140 1:1.5 99 86
15 cataCXium® PCy[c] dioxane (0.3) 140 1:1.5 97 84
16[d] cataCXium® PCy[c] tert-amyl alcohol (0.3) 140 1:1.5 83 64
17[e] cataCXium® PCy[c] tert-amyl alcohol (0.3) 140 1:1.5 88 77
18 2-(dicyclohexylphosphanyl)biphenyl tert-amyl alcohol (0.3) 140 1:1.5 80 68
19 (o-tolyl)3P[f] tert-amyl alcohol (0.3) 140 1:1.5 69 49
20 cataCXium® A[g] tert-amyl alcohol (0.3) 140 1:1.5 78 74

[a] Reaction conditions: pyridine (1.0 mmol), 1-phenylethanol (1.1–5.0 mmol), [Ru3(CO)12] (2.0 mol-%), ligand (6.0 mol-%), without or
with solvent (0.20–0.50 mL), 130–150 °C, 8–24 h. [b] Conversions and yields were determined by GC analysis with hexadecane as internal
standard, isolated yields are given in parenthesis. [c] CataCXium® PCy = N-phenyl-2-(dicyclohexylphosphanyl)pyrrole. [d] Catalyst
(1.0 mol-%). [e] Reaction time: 8 h. [f] Tri-o-tolylphosphane. [g] CataCXium® A = n-butyldi-1-adamantylphosphane.[26]
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as the secondary alcohol in the presence of [Cp*IrCl2]2.
However, to the best of our knowledge, there is no general
ruthenium-catalyzed synthesis of tertiary amines from sec-
ondary alcohols known.

Results and Discussion

Recently, we reported the advantageous use of ruthenium
carbonyl [Ru3(CO)12] and N-phenyl-2-(dicyclohexylphos-
phanyl)pyrrole[22] for the synthesis of secondary amines.
Hence, we started our investigations with this in situ gener-
ated catalyst system. Initially, the reaction of 1-phenyl-
ethanol with piperidine was investigated as a model system.
Preliminary results are shown in Table 1. By using an excess
amount of alcohol, only moderate yields and no complete
conversions were observed (Table 1, Entries 1–4).

Increasing the reaction temperature to 140 °C led to an
improved product yield of 71% (Table 1, Entries 2–4). Sur-
prisingly, in the presence of tert-amyl alcohol (2-methylbu-
tan-2-ol) as solvent, full conversion and excellent yield
(98%) of the desired product were obtained (Table 1, En-
try 6). Notably, under the same conditions without ligand
only 41% yield was observed (Table 1, Entry 5). Upon fur-
ther optimization (Table 1, Entries 7–20), the ratio of amine
to alcohol could be reduced without decreasing the yield
(Table 1, Entry 11).
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Next, the amination of 1-phenylethanol with different
secondary amines was explored. Unfortunately, it turned
out that all of the substrates performed in their own way.
Hence, each reaction needed its own set of optimized condi-
tions, which are shown in Table 2. Pyrrolidine gave the best
results (88% yield) without any stabilizing phosphane li-
gand present (Table 2, Entry 2).

Table 2. Catalytic N-alkylation of different secondary amines with
1-phenylethanol in the presence of [Ru3(CO)12] and cataCXium®

PCy (I).[a]

[a] Reaction conditions: amine (1.0 mmol), 1-phenylethanol (1.5–
5.0 mmol), [Ru3(CO)12] (2.0 mol-%), cataCXium® PCy (6.0 mol-
%), without or with tert-amyl alcohol (0.20–0.50 mL), 140 °C, 24 h.
[b] Yields were determined by GC analysis with hexadecane as in-
ternal standard; isolated yields are given in parenthesis. [c] Reaction
without ligand. [d] 120 °C. [e] 130 °C. [f] 62% conversion. [g] With-
out ligand, 49% conversion. [h] 90% conversion; main reaction is
the transalkylation to tribenzylamine and benzyl(1-phenylethyl)-
amine. In the presence of ligand, the conversion was �10%.

Eur. J. Org. Chem. 2008, 4745–4750 © 2008 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim www.eurjoc.org 4747

N-Methylpiperazine and N-benzylpiperazine led to the
corresponding tertiary amines in high yield (90–97%) with-
out any solvent (Table 2, Entries 6 and 7). By using morph-
oline only moderate conversion and yield (47%) were ob-
tained (Table 2, Entries 4 and 5). In addition to N-phenyl-2-
(dicyclohexylphosphanyl)pyrrole, 11 different ligands were
tested for this reaction. However, no improved yield was
obtained [e.g., tri-o-tolylphosphane: 42% conv., 28% yield;
tricyclohexylphosphane: 19% conv., 18% yield; n-butyldi-1-
adamantylphosphane: 55% conv., 42% yield; 2-(dicyclohex-
ylphosphanyl)biphenyl: 48% conv., 34% yield; and N-(2-
trimethylsilylphenyl)-2-(dicyclohexylphosphanyl)pyrrole: 52%
conv., 45% yield]. Because 2-methylpyrrolidine was used as
a racemic mixture, the corresponding tertiary amine was
obtained as a mixture of diastereomers in a ratio of 1:1

Table 3. Catalytic N-alkylation of piperidine and pyrrolidine with
different alcohols in presence of [Ru3(CO)12] and cataCXium® PCy
(I).[a]

[a] Reaction conditions: amine (1.0 mmol), alcohol (1.5–5.0 mmol),
[Ru3(CO)12] (2.0 mol-%), cataCXium® PCy (6.0 mol-%), without
or with tert-amyl alcohol (0.20–0.40 mL), 140 °C with piperidine
and 120 °C with pyrrolidine, 24 h. [b] Yields were determined by
GC analysis with hexadecane as internal standard, isolated yields
are given in parenthesis. [c] 91% conversion. [d] Reaction without
ligand. [e] 130 °C.
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Scheme 3. N-Alkylation of di-n-butylamine with 1-phenylethanol and transalkylation of di-n-butylamine.

(Table 2, Entry 3). However, by column chromatography
the two diastereomers could be separated.

Apart from cyclic amines, we also tested acyclic sub-
strates such as di-n-butylamine, N-methyl-N-octylamine, N-
cyclohexyl-N-methylamine, and dibenzylamine (Table 2,
Entry 8). Here, in general transalkylation of the different
alkyl groups to the aliphatic amine was observed as a side
reaction.[23,27] For example, in the case of the reaction of
di-n-butylamine with 1-phenylethanol, three n-butyl-substi-
tuted products were observed. Unexpectedly, dehydrogena-
tion of the aliphatic amine occurred to a considerable
amount and led to tri-n-butylamine and n-butylamine. The
latter product also reacts with 1-phenylethanol. Note-
worthy, the product ratio can be influenced by the reaction
conditions (Scheme 3). By applying mixed acyclic amines, a
variety of alkylated products was observed by GC as a re-
sult of the various transalkylation reactions.

Finally, piperidine and pyrrolidine were treated with aryl-
alkyl alcohols as well as with linear and cyclic aliphatic
alcohols to give the corresponding tertiary amines in high
yields (85–97%; Table 3). To our delight also some func-
tionalized and heterocyclic derivatives such as 1-methoxy-
2-butanol and 1-(2-furyl)ethanol provided the desired prod-
ucts in 85 and 75% yield, respectively (Table 3, Entries 3
and 8). With respect to the mechanism, it is interesting to
note that only small amounts (�5%) of the respective
ketones were found in the reaction mixtures.

Conclusions

In summary, we present a salt-free amination of second-
ary alcohols to give various tertiary amines. In the presence
of an in situ generated ruthenium catalyst selective amin-
ation takes place in high yield and selectivity with second-
ary cyclic amines such as piperidine, pyrrolidine, and piper-
azine. The reaction is atom efficient leaving only water as a
side product and can be conveniently carried out without
additional pressure. In the case of secondary alkylamines,
transalkylations occur as side reactions.

Experimental Section
General Procedure for N-Alkylation Reaction with Solvent: In a
pressure tube (ACE) under an argon atmosphere [Ru3(CO)12]

www.eurjoc.org © 2008 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim Eur. J. Org. Chem. 2008, 4745–47504748

(0.02 mmol) and ligand (0.06 mmol) were dissolved in tert-amyl
alcohol (0.2–0.5 mL). Then, the corresponding alcohol (1.5 or
3 mmol) and secondary amine (1 mmol) were added. The pressure
tube was fitted with a Teflon cap and stirred at 120–140 °C for
24 h. The solvent was removed in vacuo, and the crude product
was purified by column chromatography.

General Procedure for N-Alkylation Reaction without Solvent: In a
pressure tube (ACE) under an argon atmosphere [Ru3(CO)12]
(0.2 mmol) and ligand (0.6 mmol) were dissolved in the corre-
sponding alcohol (50 mmol) and secondary amine (10 mmol). The
pressure tube was fitted with a Teflon cap and stirred at 130–140 °C
for 24 h. The excess alcohol was distilled, and the crude product
was purified by column chromatography.

Supporting Information (see footnote on the first page of this arti-
cle): Experimental details and characterization data for compounds
1–6 and 8–13.
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Aromatische und heteroaromatische Amine haben eine her-
ausragende Bedeutung als biologisch aktive Substanzen.
Zudem sind Arylamine wichtige Ausgangsprodukte f�r Groß-
und Feinchemikalien sowie Agrarprodukte.[1] Dementspre-
chend ist die Entwicklung effizienter Methoden zur Synthese
von Anilinen von großem Interesse. Atom�konomische Me-
thoden wie die Lewis-S�ure-katalysierte Aminierung,[2] die
intermolekulare Hydroaminierung[3] und die Hydroamino-
methylierung[4] bieten einen guten Zugang zu substituierten
Anilinen. Besonders bedeutend ist die palladium- und kup-
ferkatalysierte Aminierung von Arenen mit Halogen-, Tosyl-
und Triflatsubstituenten.[5, 6] Aniline sind besser verf�gbar
und preiswerter als diese Substrate. Theoretisch ist es m�g-
lich, Aniline direkt und unter Abgabe von Ammoniak als
einzigem Nebenprodukt mit aliphatischen Aminen umzuset-
zen (Schema 1).

Wir entwickelten k�rzlich ein Verfahren zur Herstellung
von sekund�ren Aminen aus prim�ren und sekund�ren Al-
koholen.[7] Das Katalysatorsystem bestand dabei aus Ruth-
eniumcarbonyl ([Ru3(CO)12]) und N-Phenyl-2-(dicyclohexyl-
phosphanyl)pyrrol. Nach dieser Methode konnten wir zwar
aliphatische Amine, nicht jedoch Arylamine umsetzen. Wil-
liams und Hamid beschrieben einen alternativen Ruthenium-
dppf-Komplex, der die Umsetzung prim�rer Alkohole mit
aliphatischen Aminen und Anilinderivaten katalysiert.[8]

Hier pr�sentieren wir eine neue Methode zur Synthese
substituierter aromatischer Amine, die die Vorteile des Sys-
tems von Williams und unseres Katalysatorsystems kombi-
niert; dabei werden aliphatische Amine direkt mit Arylami-

nen umgesetzt. Analog zur Aminierung von Alkoholen l�uft
diese Reaktion nach einem Hydrogen-borrowing-Mechanis-
mus ab (Schema 2).[9] In der ersten Stufe entsteht durch De-

hydrierung des aliphatischen Amins ein Imin, das anschlie-
ßend nucleophil von einem Arylamin angegriffen wird, wobei
sich ein instabiles Aminoaminal bildet. Nach Eliminierung
von Ammoniak wird das Imin zum Amin hydriert.[10] Der
Wasserstoff f�r die Hydrierung wird aus der Dehydrierung
des Amins gewonnen, weshalb kein zus�tzlicher Wasserstoff
oder eine weitere Wasserstoffquelle ben�tigt werden. Anders
als bei der reduktiven Aminierung kann daher auf Hoch-
druckausr�stung verzichtet werden. Das Prinzip der Dehy-
drierung/Hydrierung in Kombination mit einer bestimmten
Reaktion fand auch bei der Alkanmethathese,[11] der b-Al-
kylierung[12] und der Wittig- oder Knoevenagel-Reaktion[13–15]

Anwendung.
Zu Beginn unserer Studien setzten wir Anilin mit

n-Hexylamin um. Zun�chst testeten wir verschiedene Ruthe-
niumkatalysatoren (Tabelle 1). Unter Standardbedingungen
(150 8C, kein L�sungsmittel) wurden 1 Mol-% Katalysator
und ein �berschuss an Anilin (2 �quiv.) eingesetzt. Dabei
zeigte sich, dass nur der Shvo-Komplex (1)[16,17] sowie der
(Shvo�H2)-Komplex (2) die Reaktion katalysieren (Tabel-
le 1, Nr. 15 und 16). 1 zeigte schon bei der Transferhydrierung
eine herausragende Aktivit�t. Studien zum Mechanismus
wurden von B�ckvall[18] und Casey et al.[19] durchgef�hrt.
Dabei wurde nachgewiesen, dass 1 in zwei Spezies dissoziiert:
Der 18-Elektronen-Komplex 1a ist aktiv in der Hydrierung
und der 16-Elektronen-Komplex 1b in der Dehydrierung
(Schema 3). Alle anderen getesteten Katalysatoren, darunter

Schema 1. Synthese von aromatischen Aminen.

Schema 2. Katalytischer Wasserstofftransfer bei der N-Alkylierung von
Anilinen mit aliphatischen Aminen.
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das Ruthenium-dppf-System von Hamid und Williams[8]

(Tabelle 1, Nr. 12), das TsDPEN-System von Noyori[20] (Ta-
belle 1, Nr. 11) und unser Rutheniumcarbonyl-Phosphan-
System[7] (Tabelle 1, Nr. 14), zeigten wenig oder keine Akti-
vit�t.

Da die Reaktion noch vergleichsweise hohe Temperatu-
ren erforderte, wollten wir als n�chstes die Temperaturbe-
dingungen optimieren (Tabelle 2, Nr. 1–4). Dabei zeigte sich,
dass Temperaturen �ber 140 8C wesentlich f�r die Reaktion
sind. Unter 140 8C war fand kaum eine Reaktion mit Anilin
statt, und Diamine entstanden als Nebenprodukte; dies

spiegelt sich auch in den niedrigen Ausbeuten wider. Wei-
terhin pr�ften wir, ob L�sungsmittel f�r die Reaktion genutzt
werden k�nnen (Tabelle 2, Nr. 5–11), was besonders wichtig
ist, da einige Arylamine nicht in fl�ssiger Form vorliegen.
Tats�chlich lassen sich unpolare (Heptan, Cyclohexan,
Toluol, Tabelle 2, Nr. 5–7), polare aprotische (Acetonitril,
DMSO, Tabelle 2, Nr. 8 und 10) und polare protische L�-
sungsmittel (2-Methylbutan-2-ol, Tabelle 2, Nr. 11) f�r die
Reaktion verwenden. In allen L�sungsmitteln wurden voll-
st�ndige Ums�tze und sehr hohe Ausbeuten erreicht.

Um die Anwendungsbreite von 1 zu demonstrieren,
wurden verschiedene Aryl- und Alkylamine untersucht. Die
Reaktionen wurden mit 1 Mol-% 1 und mit zwei �quiva-
lenten Anilin bei 150 8C[21] durchgef�hrt. Als L�sungsmittel
wurde 2-Methylbutan-2-ol eingesetzt, da es sich nach der
Reaktion sehr leicht durch Destillation abtrennen l�sst. Die
Ergebnisse der Umsetzung mit Arylaminen sind in Tabelle 3
zusammengefasst. Mit aktivierten und elektronenreichen
Anilinen wie o/p-Toluidin und o/p-Anisidin (Tabelle 3, Nr. 1,
2, 4 und 5) wurden hohe Ausbeuten von 93% und mehr er-
zielt. Schwierig war die Umsetzung von n-Hexylamin mit
sterisch gehinderten 2,6-dimethyl-substituierten Anilinen.
Dabei wurde eine niedrige Ausbeute von 34% erhalten (Ta-
belle 3, Nr. 3). Dar�ber hinaus konnten pharmazeutisch in-
teressante Aniline – 3,4,5-Trimethoxyanilin und 3,4-(Methy-
lendioxy)anilin – in hohen Ausbeuten von 97 bzw. 86% um-
gesetzt werden (Tabelle 3, Nr. 6 und 7).

Des Weiteren wurden halogenierte Aniline als selektive
Arylierungsmittel verwendet. Mit 4-Fluor-, 4-Chlor-, und 4-
Bromanilin entstanden die entsprechenden alkylierten Ani-
line in sehr guten Ausbeuten (Tabelle 3, Nr. 8–10). Diese
Umsetzungen sind besonders interessant, da sie einen Zugang
zu alkylierten Halogenanilinen er�ffnen, die mithilfe der
palladiumkatalysierten Buchwald-Hartwig-Aminierung
schwierig herzustellen sind. Im Anschluss wurde die Toleranz
gegen�ber funktionellen Gruppen untersucht, wobei wir
feststellten, dass der Katalysator Nitro-, Nitril- und Amid-

Tabelle 1: Screening von Katalysatoren f�r die Arylierung von n-Hexyl-
amin.[a]

Nr. Katalysator Ausb. [%][b]

1 – –
2 [{Ru[(+)-binap](Cl)}2] –
3 [Ru(Cl)2(bipy)2]·2H2O –
4 [RuCO(H)2(PPh3)3] 2
5 [Ru(Cl)2(PPh3)3] 5
6 [{Ru(Cl)(cod)}2] –
7 [RuCp2] –
8 [{RuCp*(Cl)2}x] –
9 [RuCp*(cod)(Cl)] –
10 [{Ru(p-Cymol)(Cl)2}2]

[c] 14
11 [{Ru(p-Cymol)(Cl)2}2]/TsDPEN

[d] –
12 [{Ru(p-Cymol)(Cl)2}2]/dppf

[d] 9
13 [Ru3(CO)12] –
14 [Ru3(CO)12]/cataCXium PCy –
15 Shvo (1) 94
16 Shvo�H2 (2) 70

[a] Reaktionsbedingungen: 1 Mol-% Katalysator in Bezug auf n-Hexyl-
amin, 2 mmol n-Hexylamin, 4 mmol Anilin, 150 8C, 24 h. [b] Ums�tze
und Ausbeuten wurden mit Hexadecan als internem Standard mittels
GC-Analyse bestimmt. Ums�tze und Ausbeuten basieren auf der Um-
setzung von n-Hexylamin und N-Hexylanilin. [c] 4 Mol-% K2CO3.
[d] 2 Mol-% Ligand, 4 Mol-% K2CO3, 4-�-MS. Binap=2,2’-Bis(diphenyl-
phosphanyl)-1,1’-binaphthyl, Bipy=Bipyridin, cod=Cycloocta-1,5-
dienyl, Cp=Cyclopentadienyl, Cp*=Pentamethylcyclopentadienyl,
TsDPEN=N-(4-Toluolsulfonyl)-1,2-diphenylethylendiamin, dppf=1,1’-
Bis(diphenylphosphanyl)ferrocen, cataCXium PCy=N-Phenyl-2-(dicyc-
lohexylphosphanyl)pyrrol.

Schema 3. Shvo-Komplex (1), aktive Spezies 1a, 1b und (Shvo�H2)-
Komplex (2).

Tabelle 2: Arylierung of n-Hexylamin mit Anilin unter verschiedenen
Bedingungen.[a]

Nr. T [8C] L�sungsmittel Ausb. [%][b]

1 150 – 95
2 140 – 95
3 130 – 60
4 120 – 12
5 140 Heptan >99
6 140 Cyclohexan >99
7 140 Toluol >99
8 140 Acetonitril 96
9 140 DMF 90[c]

10 140 DMSO >99
11 140 2-Methylbutan-2-ol >99

[a] Reaktionsbedingungen: 1 Mol-% Shvo-Komplex in Bezug auf n-Hexyl-
amin, 2 mmol n-Hexylamin, 4 mmol Anilin, 24 h. [b] Ums�tze und Aus-
beuten wurden mit Hexadecan als internem Standard mittels GC-Ana-
lyse bestimmt. Ums�tze und Ausbeuten basieren auf der Umsetzung
von n-Hexylamin und N-Hexylanilin. [c] Nebenprodukt war Formylanilin.
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gruppen toleriert (Tabelle 3, Nr. 11–14). Bei der Reaktion mit
4-Nitroanilin bildeten sich mehrere Zersetzungsprodukte,
was die geringe Ausbeute von nur 20% erkl�rt (Tabelle 3,
Nr. 11). Außer Anilinen konnten auch heterocyclische Ami-
nopyridine eingesetzt werden. 2- und 3-Aminopyridin wurden
vollst�ndig mit n-Hexylamin umgesetzt (Tabelle 3, Nr. 15 und
16).

Fazit: Die Ausbeuten h�ngen offenbar nicht stark von der
Donor- oder Akzeptorsubstitution des Arylamins ab. Des
Weiteren wird eine Vielzahl von funktionellen Gruppen to-
leriert. Lediglich die schlechte Umsetzung mit sterisch stark
gehinderten 2,6-dimethyl-substituierten Anilinen sowie die
Zersetzung von Nitroanilinen bleiben Probleme, die noch zu
l�sen sind (Tabelle 3, Nr. 3 und 11).

Zum Abschluss untersuchten wir das Substratspektrum
der Alkylamine (Tabelle 4). Unverzweigte Alkylamine wie n-
Octyl-, Phenethyl- und Benzylamin ergaben sehr gute Aus-
beuten (Tabelle 4, Nr. 1–3). Verzweigte Amine, wie 2-Octyl-
amin, Cyclohexylamin oder Cyclooctylamin, wurden eben-
falls in sehr guten Ausbeuten von 99% isoliert (Tabelle 4,
Nr. 4–6). Dar�ber hinaus wurden Furan-, Thiophen- und
Indol-substituierte Amine umgesetzt (Tabelle 4, Nr. 7–9).

Wir haben ein Verfahren entwickelt, das erstmals die
Synthese von alkylierten aromatischen Aminen aus einfachen

Tabelle 3: Aminierung von Aryl- und Heteroarylaminen.[a]

Nr. Anilin Produkt Ausb. [%][b]

1 98

2 93

3 34

4 98

5 97

6 97

7 86

8 99

9 97

10 94

11 20

12 76

13 95

14 83

15 96

16 77

[a] Reaktionsbedingungen: 1 Mol-% Shvo-Komplex 1 in Bezug auf n-
Hexylamin, 2 mmol n-Hexylamin, 4 mmol Arylamin, 2-Methylbutan-2-ol,
150 8C, 24 h. [b] Ausbeute an isoliertem Produkt basierend auf n-Hexyl-
amin.

Tabelle 4: Arylierung von Alkylaminen.[a]

Nr. Amin Produkt Ausb. [%][b]

1 99

2 99

3 94

4 99

5 99

6 99

7 89

8 97

9 93

[a] Reaktionsbedingungen: 1 Mol-% 1 in Bezug auf Alkylamin, 2 mmol
Alkylamin, 4 mmol Anilin, 2-Methylbutan-2-ol, 150 8C, 24 h. [b] Ausbeute
an isoliertem Produkt basierend auf Alkylamin.
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Anilinen �ber eine Transferhydrierung erm�glicht. Eine
Reihe von funktionalisierten Arylaminen und aliphatischen
Aminen wurde mithilfe des Shvo-Komplexes in hohen Aus-
beuten zu Alkylarylaminen umgesetzt. Es ist zu betonen, dass
halogenierte Aniline ebenso wie heterocyclische Aminopy-
ridine hergestellt werden k�nnen. Diese basen- und damit
salzfreie Methode kann eine vorteilhafte Alternative zu den
herk�mmlichen Methoden f�r die Synthese substituierter
Aniline bilden.

Experimentelles
Allgemeine Vorschrift am Beispiel der Synthese vonN-(2-(Thiophen-
2-yl)ethyl)anilin (Tabelle 4, Nr. 8): In einem ACE-Druckrohr wurden
unter Argon der Shvo-Komplex (1; 0.02 mmol) und 2-(Thiophen-2-
yl)ethanamin (2 mmol) in 2-Methylbutan-2-ol (0.5 mL) und Anilin
(4 mmol) gel�st. Das Druckrohr wurde verschlossen und 24 h bei
150 8C in einem�lbad erhitzt. Nach Entfernen des L�sungsmittels im
Vakuum wurde der R�ckstand s�ulenchromatographisch (Pentan/
Ethylacetat 20:1) gereinigt. N-(2-(Thiophen-2-yl)ethyl)anilin
(393.5 mg, 97%) wurde als schwach r�tliches �l erhalten.
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AGeneral Ruthenium-Catalyzed Synthesis of Aromatic Amines**
Dirk Hollmann, Sebastian B�hn, Annegret Tillack, and Matthias Beller*

Aromatic amines play a prominent role as biologically active
compounds and as industrial chemicals.[1] Hence, the develop-
ment of new efficient syntheses is of enormous interest.
Atom-economical methods such as Lewis acid catalyzed
amination,[2] intermolecular hydroaminations,[3] and hydro-
aminomethylations[4] represent attractive approaches for the
synthesis of substituted anilines. Among the various methods,
the widely used palladium- and copper-catalyzed aminations
of aryl halides, tosylates, and triflates are probably most
important.[5, 6] In comparison to these substrates, anilines are
readily available and inexpensive. In principle, aryl amines
could be aminated, leaving ammonia as the only by-product
(Scheme 1).

Recently, we developed a procedure for the synthesis of
secondary amines starting from the corresponding alcohols
using ruthenium carbonyl ([Ru3(CO)12]) and N-phenyl-2-
(dicyclohexylphosphino)pyrrole.[7] Using this method, we
were able to convert only aliphatic amines but no aryl
amines. Hamid and Williams described an alternative ruthe-
nium–dppf complex that is able to catalyze the amination of
primary alcohols with primary aliphatic and aryl amines.[8]

Herein, we present a new methodology for the synthesis
of substituted aniline derivatives, which combines the advan-
tages of our and of Williams�s catalyst systems. In analogy to
the amination of alcohols, the reaction occurs through a
hydrogen-borrowing mechanism (Scheme 2).[9] In the first
step, dehydrogenation of the alkyl amine to an imine occurs.
After nucleophilic attack of the aniline to form an unstable
aminoaminal and subsequent elimination of ammonia, the
corresponding secondary imine is hydrogenated to the
alkylated aniline.[10] In this reaction, the hydrogen donor for

the transfer hydrogenation is the primary amine. Hence, no
additional hydrogen or hydrogen transfer reagent is required.
An advantage of this method compared to most reductive
aminations is that there is no need for high-pressure equip-
ment. Interestingly, the same type of dehydrogenation–
reaction–hydrogenation sequence has recently been used in
alkane metathesis,[11] b-alkylation of alcohols,[12] and C�C
bond formation by means of a Wittig or Knoevenagel
reaction.[13–15]

To start our investigations, we examined the amination of
aniline with n-hexylamine. Different ruthenium complexes
were tested using 1 mol% catalyst and two equivalents of
aniline at 150 8C without solvent in a sealed tube (Table 1).
Several precatalysts and catalyst systems were investigated,
including the ruthenium–dppf system of Hamid and Wil-
liams[8] (Table 1, entry 12), the TsDPEN system reported by
Noyori and co-workers[16] (Table 1, entry 11), and our ruthe-
nium carbonyl–phosphine system[7] (Table 1, entry 14). Of all
ruthenium catalysts tested, the Shvo complex 1[17, 18] and the
analogous Shvo�H2 complex 2 showed the highest reactivity
(Table 1, entries 15 and 16). These catalysts are known to be
highly active in transfer hydrogenations. Studies of the
mechanism with 1 were performed by B�ckvall and co-
workers[19] and Casey et al.[20] It was demonstrated that 1
dissociates into two species. The 18-electron complex 1a is
active in the hydrogenation, and the 16-electron complex 1b
is active in the dehydrogenation reaction (Scheme 3). All
other tested catalysts showed low or no reactivity.

Next, we investigated the influence of the temperature
and the solvent in more detail (Table 2). Below 140 8C the
reaction rate and yield dropped dramatically (Table 2,
entries 1–4), and diamines were observed as by-products.
Surprisingly, variation of the solvent had no significant effect
on the amination reaction. In nonpolar solvents (heptane,

Scheme 1. Synthesis of aromatic amines.

Scheme 2. Catalytic hydrogen transfer in N alkylation of anilines with
aliphatic amines.
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cyclohexane, and toluene, Table 2, entries 5–7) as well as
polar solvents (acetonitril and DMSO, Table 2 entries 8 and
10) and polar protic solvents (2-methylbutan-2-ol, Table 2
entry 11), complete conversion and excellent yield (over
99%) is observed. Considering the different solubilities and
melting points of the aryl or aliphatic amine substrates, this
finding seems important.

To demonstrate the general applicability of the Shvo
catalyst for this reaction and the scope of the process, various
aryl and alkyl amines were investigated (Table 3). In general,

catalytic experiments were performed with 1 mol% of 1 in the
presence of two equivalents of aryl amine in 2-methylbutan-2-
ol at 150 8C.[21] Various aryl amines react with n-hexylamine to
give the desired products in excellent yields. High yields over
93% were observed with activated and electron-rich anilines
such as o/p-toluidine and o/p-anisidine (Table 3, entries 1, 2, 4
and 5). The amination of sterically hindered 2,6-dimethyl-
substituted aniline was more problematic and gave only a low
yield of 34% (Table 3, entry 3). However, reactions with
pharmaceutically important aniline derivatives such as 3,4,5-
trimethoxyaniline and 3,4-(methylenedioxy)-aniline occurred
in high yields of 97 and 86% (Table 3, entries 6 and 7).

Furthermore, halogenated anilines can be employed as
selective arylation reagents. 4-Fluoro-, 4-chloro-, and 4-
bromoaniline gave excellent yields of the corresponding
alkylated aniline (Table 3, entries 8–10). In general, such
products cannot be easily prepared by the palladium-cata-
lyzed Buchwald–Hartwig reaction. The catalyst also tolerates
nitro, nitrile, and amide groups (Table 3, entries 11–14).
However, the reaction of 4-nitroaniline with n-hexylamine
gave a poor yield of 20%, as a number of decomposition
products formed (Table 3, entry 11). In addition to aniline
derivatives, heterocyclic aminopyridines such as 2-amino-
pyridine and 3-aminopyridine also react smoothly with n-
hexylamine (Table 3, entries 15 and 16).

In general, we did not observe a strong dependence of the
product yield on donor or acceptor substitution of the aryl
amine. Merely the amination of very sterically hindered 2,6-
dimethyl-substituted aniline and the decomposition of nitro-
anilines seem to be challenges for the future (Table 3,
entries 3 and 11).

Finally, our protocol was applied to different alkyl amines
(Table 4). n-Octyl-, phenethyl- and benzylamine are con-
verted in excellent yields to the corresponding aniline
derivatives (Table 4, entries 1–3). Branched amines such as

Table 1: Arylation of n-hexylamine with aniline in the presence of
different ruthenium catalysts.[a]

Entry Catalyst Yield [%][b]

1 – –
2 [{Ru[(+)-binap](Cl)}2] –
3 [Ru(Cl)2(bipy2]·2H2O –
4 [RuCO(H)2(PPh3)3] 2
5 [Ru(Cl)2(PPh3)3] 5
6 [{Ru(Cl)(cod)}2] –
7 [RuCp2] –
8 [{RuCp*Cl2}x] –
9 [RuCp*(cod)Cl] –
10 [{Ru(p-cymene)(Cl)2}2]

[c] 14
11 [{Ru(p-cymene)(Cl)2}2]/TsDPEN

[d] –
12 [{Ru(p-cymene)(Cl)2}2]/dppf

[d] 9
13 [Ru3(CO)12] –
14 [Ru3(CO)12]/cataCXium PCy –
15 Shvo (1) 94
16 Shvo�H2 (2) 70

[a] Reaction conditions: 1 mol% catalyst relative to n-hexylamine,
2 mmol n-hexylamine, 4 mmol aniline, 150 8C, 24 h. [b] Conversion and
yield were determined by GC with hexadecane as internal standard.
Conversions and yields are based on the conversion of n-hexylamine and
N-hexylaniline. [c] 4 mol% K2CO3. [d] 2 mol% ligand, 4 mol% K2CO3, 4-�
M.S. Binap=2,2’-bis(diphenylphosphanyl)-1,1’-binaphthyl, bipy=bipyr-
idine, cod=cycloocta-1,5-diene, Cp= cyclopentadienyl, Cp*=pentame-
thylcyclopentadienyl, TsDPEN=N-(4-toluenesulfonyl)-1,2-diphenylethy-
lenediamine, dppf=1,1’-bis(diphenylphosphanyl)ferrocene, cata-
CXium PCy=N-phenyl-2-(dicyclohexylphosphino)pyrrole.

Scheme 3. Shvo complex (1), dissociated species 1a, 1b, and the
analogous Shvo�H2 complex 2.

Table 2: Arylation of n-hexylamine with aniline under different condi-
tions.[a]

Entry T Solvent Yield [%][b]

1 150 – 95
2 140 – 95
3 130 – 60
4 120 – 12
5 140 heptane >99
6 140 cyclohexane >99
7 140 toluene >99
8 140 acetonitrile 96
9 140 DMF 90[c]

10 140 DMSO >99
11 140 2-methylbutan-2-ol >99

[a] Reaction conditions: 1 mol% Shvo catalyst 1 relative to n-hexylamine,
2 mmol n-hexylamine, 4 mmol aniline, 24 h. [b] Conversion and yield
were determined by GC with hexadecane as internal standard. Con-
versions and yields are based on the conversion of n-hexylamine and N-
hexylaniline. [c] Formylaniline was formed as by-product.
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2-octylamine, cyclohexylamine, and cyclooctylamine gave
yields of isolated product of 99% (Table 4, entries 4–6).
Moreover, furane-, thiophene-, and indole-substituted amines
gave yields up to 97% (Table 4, entries 7–9).

In summary, we described the first arylation of aliphatic
amines with anilines that proceeds under transfer hydro-
genation conditions. In the presence of the Shvo catalyst 1, a
variety of functionalized anilines and aliphatic amines react
smoothly to give the corresponding aryl amines in excellent
yields. It is important to emphasize that halogenated anilines
and heterocyclic aminopyridine derivates can be easily
synthesized. This base- and salt-free method can be a useful
alternative to the known methods for the synthesis of aniline
derivatives.

Experimental Section
General amination procedure: In an ACE-pressure tube under an
argon atmosphere, Shvo catalyst (1; 0.02 mmol) and 2-(thiophen-2-
yl)ethanamine (2 mmol) were dissolved in 2-methylbutan-2-ol
(0.5 mL) and aniline (4 mmol). The pressure tube was fitted with a
teflon cap and heated at 150 8C for 24 h in an oil bath. The solvent was
removed in vacuo, and the crude product was easily purified by

Table 3: Amination of aryl and heteroaryl amines.[a]

Entry Aniline Product Yield [%][b]

1 98

2 93

3 34

4 98

5 97

6 97

7 86

8 99

9 97

10 94

11 20

12 76

13 95

14 83

15 96

16 77

[a] Reaction conditions: 1 mol% Shvo catalyst 1 relative to n-hexylamine,
2 mmol n-hexylamine, 4 mmol aryl amine, 2-methylbutan-2-ol, 24 h,
150 8C. [b] Yields of isolated product are based on n-hexylamine.

Table 4: Arylation of alkyl amines.[a]

Entry Amine Product Yield [%][b]

1 99

2 99

3 94

4 99

5 99

6 99

7 89

8 97

9 93

[a] Reaction conditions: 1 mol% 1 relative to alkyl amine, 2 mmol alkyl
amine, 4 mmol aniline, 24 h, 2-methylbutan-2-ol, 150 8C. [b] Yields of
isolated product are based on alkyl amine.
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column chromatography with pentane/ethyl acetate (20:1) to afford
N-(2-(thiophen-2-yl)ethyl)aniline (393.5 mg, 97%) as a pale red oil.
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Highly selective alkyl transfer processes of mono-, di- and

trialkyl amines in the presence of the Shvo catalyst have been

realized; in addition, a general method for N-alkylation of

aniline with di- and trialkyl amines is presented.

Metabolic N-dealkylation is an important biotransformation

in nature. Such processes are catalyzed by monooxygenases

such as Cytochrome P 450,1 although these enzymes are

mainly known for oxidation reactions such as hydrocarbon

hydroxylation and alkene epoxidation.2 Ever since the identi-

fication of the first dealkylation catalyst,3 the understanding

and the development of new systems is of significant interest,

albeit only a few methods are known.4

In recent years, the synthesis of aniline derivatives has

received high attention. Aromatic amines play an outstanding

role as biologically active compounds.5 In addition, for in-

dustry the development of improved syntheses is of enormous

interest. Among the various methods, the widely used

palladium- and copper-catalyzed aminations of aryl halides

(Buchwald–Hartwig aminations) became the most general

method to form C–N bonds of aromatic amines.6,7 Apart

from well established aryl halides, tosylates and triflates,

simple anilines constitute available and cheap substrates.

Recently, we have described the first arylation of aliphatic

amines with anilines leaving ammonia as the only side-product

(Scheme 1).8 In the presence of the so-called Shvo catalyst 19,10

a variety of functionalized anilines and primary amines react

smoothly to give the corresponding aryl amines in excellent

yields.11

In this communication we present our new studies of the

dealkylation of aliphatic amines combined with the selective

synthesis of monoalkylated aniline derivates. For the first time

it is shown that starting from primary, secondary and tertiary

amines, a complete and selective transfer of all alkyl groups

takes place highly selectively.

As a starting point of our investigations we compared the

amination of aniline with n-hexylamine, di-n-hexylamine and

tri-n-hexylamine. To our surprise, all the different hexylamines

are converted in high yields (75–87%) to the same N-hexylani-

line (Scheme 2)! Especially remarkable is the activation and

alkyl transfer of the tertiary amine.

Upon optimization we found that two equivalents of aniline

per hexyl group in the presence of 1 mol% of the Shvo catalyst

in tert-amyl alcohol gave the best results. Notably, a mixture

of mono-, di- and tri-n-hexylamine is also converted highly

selectively to give N-hexylaniline (Scheme 3).

We believe that the reaction proceeds through a hydrogen

borrowing mechanism as proposed by Williams,12 which

involves dehydrogenation of the amine, imine formation,

nucleophilic attack by the aniline, elimination of ammonia,

and final hydrogenation. To confirm this mechanism, a reac-

tion was carried out with labeled aniline-15N and dibenzyl-

amine. The resulting N-benzylaniline was obtained in 96%

isolated yield and showed 499% of 15N-labelling (Table 1,

entry 5).13

Of note, in this alkyl transfer reactions the hydrogen donors

for the final hydrogenation step are the primary, secondary

and tertiary amines. Hence, no additional hydrogen or hydro-

gen transfer reagent is required in the process. Advantageously

there is no need for high-pressure equipment which is used

often in hydrogenation reactions such as reductive amination.

As shown in Scheme 4 under the reaction conditions,

equilibrium between the mono-, di- and trialkyl amines is

observed. All alkyl amines are converted into each other and

can be monitored until the reaction is finished (reversible

steps).14,15 However, by reaction of the respective imines or

iminium species with aniline, the correspondingN-hexylaniline

is formed in an irreversible step. Thus, reaction of

tri-n-hexylamine with aniline yields exclusively N-hexylaniline

and di-n-hexylamine. Then, the next alkyl group is transferred.

Finally, the reaction of n-hexylamine with aniline, results in

the formation of ammonia (irreversible step).

Next, we were interested in the generality of the dealkylation

process and their application in the N-alkylation of aniline

with various di- and trialkyl amines. Using polyalkylated

short-chain amines, this method provides a convenient access

Scheme 1 Arylation of aliphatic amines using the Shvo catalyst 1.

Scheme 2 Amination of aniline with different alkyl amines (isolated
yields are based on hexyl groups).
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to monoalkylated anilines with short-chain alkyl groups. For

comparison, in the Buchwald–Hartwig reaction, these com-

pounds have to be synthesized from the corresponding volatile

amines using a sealed tube technique,16 benzylmethylamine or

methylammonium chloride.17

Instead of ethylamine (bp, 16.6 1C), propylamine (bp,

48 1C), isopropylamine (bp, 33.5 1C), we are able to use the

convenient non-volatile triethylamine, dipropylamine and

diisopropylamine (Table 1, entries 1–3). Excellent yields of

92–98% are observed. In addition, different alkyl amines and

aminoalkoxyethers are converted in excellent selectivity and

high yields (Table 1, entries 4, 5, 7–10). So far, only the full

conversion of tertiary benzylic amine poses a challenge

(Table 1, entry 6).

In summary, we have presented the first selective N-alkyla-

tion with mono-, di- and trialkyl amines. This tool provides a

general access to the synthesis of monoalkylated aryl amines

via alkyl transfer and acts as a model for metabolic N-deal-

kylations. This novel reaction is highly atom efficient leaving

only ammonia as side-product and can be conveniently carried

out. Further applications with functionalized anilines as well

as other alkyl amines can be easily envisioned.

This work has been supported by the BMBF (Bundesminis-

terium für Bildung und Forschung), the Deutsche Forschungs-
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Abstract: The chemoselective N-alkylation of tert-
alkylamines applying aliphatic amines is described
for the first time. In the presence of the Shvo cata-
lyst 1, tert-octylamine 4 and 1-adamantylamine 5
are alkylated using primary, secondary, and even
tertiary amines to give the corresponding monoal-
kylated tert-alkylamine in moderate to very good
yields and excellent selectivity. This novel reaction
proceeds without an additional hydrogen source
and ammonia is formed as the only by-product.

Keywords: alkylation; amines; homogeneous cataly-
sis; hydrogen transfer; ruthenium

Amines are of significant importance for the bulk and
fine chemical industry. Due to their numerous appli-
cations in polymers, dyes, agrochemicals, and pharma-
ceuticals,[1] there is an ongoing interest for improved
and new synthetic preparations.[2] Besides the well
known N-alkylations of amines with alkyl halides,[2,3]

catalytic methodologies such as reductive amina-
tion,[2,4] hydroaminations,[5] and hydroaminomethyla-
tions[6] of olefins or alkynes have been developed for
the synthesis of aliphatic amines within the last
decade. In addition, the environmentally friendly N-
alkylation of amines using primary[7] and secondary
alcohols[8,9] has attracted considerable interest.

Recently, we demonstrated that aliphatic amines
can be used as alkylating agents instead of the corre-
sponding alcohol. Although this transformation – al-
kylation of amines with amines – seems to be unusual
at first sight, there is significant industrial interest in
analogous transalkylations.[10] More specifically, we
discovered that anilines are converted in high yield to
N-alkylanilines.[11] This atom-efficient alkyl transfer
proceeds with primary as well as secondary and terti-
ary aliphatic amines leaving ammonia as the only by-

product.[12] Based on these reactions, we also became
interested in the selective alkylation of aliphatic
amines (Scheme 1). The resulting tert-alkylamines are
of interest as intermediates; for example, this structur-
al element is found in pharmaceuticals[13] like vilda-
gliptin.[14]

From a mechanistic viewpoint the alkylation of
amines proceeds via a so-called borrowing hydrogen
sequence which is shown in Scheme 2.[15] Initially, the
ruthenium-catalyzed dehydrogenation of the alkyl-
ACHTUNGTRENNUNGamine should occur via coordination and ß-hydride
elimination. Then, nucleophilic attack of the tert-al-
kylamine on the resulting imine and elimination of
ammonia yields the corresponding secondary imine.
Subsequent catalytic hydrogenation leads to the alky-
lated tert-alkylamine. Notably, applying secondary or
even tertiary amines, in the first reaction cycle a pri-
mary or secondary amine is eliminated instead of am-
monia.

In the case of tertiary amines, we assume that ini-
tially an iminium ion is generated by ß-hydride elimi-
nation. Another possible reaction mechanism involv-
ing hydrolysis of the amines to form ketones[16] could
be excluded. For this purpose, reactions under strict
water-free conditions and in the presence of small
amount of water (5 mol%) were performed, however
the results do not indicate any influence of water.

Scheme 1. Selective N-alkylation of tert-alkylamines.
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The formed alkylamine reacts further until all alkyl
chains are transferred to the tert-alkylamine. Clearly,
dehydrogenation of the tert-alkyl group is not feasible
because ß-hydride elimination is not possible. Hence,
a selective alkyl transfer takes place.

As model system the alkylation of tert-octylamine 4
(1,1,3,3-tetramethylbutlamine) was performed with
phenethylamine. Different ruthenium complexes were
tested by applying 1 mol% ruthenium catalyst and 2
equivalents of tert-octylamine 4 at 160 8C in a pressure
tube without additional solvent (Table 1). The differ-
ent pre-catalysts investigated included the ruthenium/
TsDPEN system 3 reported by Noyori and co-work-
ers[17] (Table 1, entry 7), the ruthenium/dppf system of
Hamid and Williams[7c] (Table 1, entry 8), and our
ruthenium carbonyl/phosphine system (Table 1,
entry 9).[9a] However, similar to the alkylation of ani-
lines[11] the Shvo catalyst {[2,3,4,5-Ph4ACHTUNGTRENNUNG(h

5-
C4CO)]2H}Ru2(CO)4ACHTUNGTRENNUNG(m-H) 1, shown in Scheme 3, pro-
vided the best result (Table 1, entry 1). Surprisingly,
catalyst 2 was less reactive. So far, we cannot explain
this observation.

Next, we investigated the influence of different re-
action conditions (Table 2). Without solvent, the opti-

Scheme 2. Catalytic hydrogen transfer in N-alkylation of tert-alkylamines with aliphatic amines.

Table 1. Influence of the catalyst on the reaction of tert-oc-
tylamine 4 and phenethylamine.[a]

Entry Catalyst Yield [%][b]

1 Shvo 1 49
2 Shvo-H2 2 19
3 Shvo PPh3 14
4 Shvo cataCXium�PCy[e] 12
5 [Ru[(+)-BINAP](Cl)2]

[e] <1
6 [{Ru ACHTUNGTRENNUNG(p-cymene)(Cl)2}2]

[c] –
7 [{Ru ACHTUNGTRENNUNG(p-cymene)(Cl)2}2]/TsDPEN[e] 3[d] –
8 [{Ru ACHTUNGTRENNUNG(p-cymene)(Cl)2}2]/dppf

[d,e] –
9 ACHTUNGTRENNUNG[Ru3(CO)12]/cataCXium�PCy[e] <1

[a] Reaction conditions : 1 mmol phenethylamine, 2 mmol
tert-octylamine 4, 1 mol% ruthenium catalyst relative to
phenethylamine, 24 h, 160 8C.

[b] Yields were determined by GC with hexadecane as inter-
nal standard and are based on phenethyl-(1,1,3,3-tetra-
methylbutyl)-amine 6.

[c] 4 mol% K2CO3.
[d] 2 mol% ligand, 4 mol%K2CO3.
[e] BINAP=2,2’-bis(diphenylphosphanyl)-1,1’-binaphthyl,

TsDPEN=N-(4-toluenesulfonyl)-1,2-diphenylethylenedi-
ACHTUNGTRENNUNGamine, dppf=1,1’-bis(diphenyl-phosphanyl)ferrocene,
cataCXium�PCy=N-phenyl-2-(dicyclohexylphosphino)-
pyrrole.

Scheme 3. Different ruthenium catalysts for the alkylation
of tert-alkylamines.
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mal yield is obtained at 160 8C (Table 2, entry 3). At
lower temperature more diphenethylamine is formed,
while a higher temperature gave triphenethylamine as
by-product. Applying 1-methyl-pyrrolidin-2-one
(NMP) as solvent decreased the chemoselectivity and
significantly more triphenethylamine is obtained
(Table 2, entries 7 and 10). In heptane as non-polar
solvent the catalyst is less reactive but more selective
and a moderate yield of 60% at 170 8C is achieved
(Table 2, entry 8). An improved yield of 69% is ob-
served in dimethoxyethane (DME) (Table 2, entry 9)
and the best yield (75%) is achieved using an excess
of 3 equiv. tert-octylamine 4 in DME (Table 2,
entry 19).

Reactions in DMSO, 2-methylbutan-2-ol, dioxane,
and toluene are comparable. Variation of the catalyst
loading (Table 2, entries 13 and 14), reaction time
(Table 2, entries 15 and 16), and solvent concentration
(Table 2, entries 17 and 18) did not lead to any further
improvement.

In order to demonstrate the generality of the alkyl
transfer, different amines were investigated in the re-

action with tert-octylamine 4. The results are summar-
ized in Table 3. Primary amines as well as secondary
ones gave the desired products in good to excellent
yield. Remarkably, even tertiary amines such as trioc-
tylamine can be used as alkylating agents, although
activation of these substrates is known to be difficult.
However, tribenzylamine is less reactive and no reac-
tion with tert-octylamine 4 or 1-adamantylamine 5 is
observed (Table 3, entries 6 and 17). The more elec-
tron-rich 4-methoxybenzylamine showed increased re-
activity compared to benzylamine (Table 3, entries 4
and 11). Moreover, aliphatic amino ethers are con-
verted selectively to the secondary amines (Table 3,
entry 10). We were pleased to find that 1-adamantyla-
mine reacted with primary, secondary, and tertiary
amines providing excellent yields of the correspond-
ing N-alkyl-1-adamantylamines (Table 2, entries 12–
14). In all cases, the reaction was highly selective to-
wards monoalkylation. Neither the formation of dia-
lkylated tert-alkylamines nor of the alkyl-di-tert-alkyl-
amines was observed.

In conclusion, we present the first selective alkyla-
tion of aliphatic amines using amines. Proceeding
under transfer hydrogenation conditions, no addition-
al hydrogen is needed for the alkylation. In the pres-
ence of the Shvo catalyst 1, selective alkyl transfer,
using primary as well as secondary and tertiary ali-
phatic amines to tert-alkylamines proceeds selectively
in high yield.

Experimental Section

General Procedure for the Selective Monoalkylation
of tert-Alkylamines

In an ACE-pressure tube under an argon atmosphere alkyl-
amine (2 mmol mono-, 1 mmol di-, or 0.67 mmol trialkyl-
ACHTUNGTRENNUNGamine) and Shvo catalyst (21.7 mg, 0.02 mmol, 1 mol% per
alkyl group) were dissolved in DME (0.5 mL) and tert-alkyl-
amine (6 mmol, 3 equiv. per alkyl group). The pressure tube
was fitted with a Teflon cap and stirred at 170 8C for 24 h.
The solvent was removed under vacuum, and the crude
product was purified by column chromatography.

Supporting Information

Experimental details and characterization data for com-
pounds 6–12 are given in the Supporting Information.
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Table 2. Optimization of the reaction conditions.[a]

Entry T
[8C]

Solvent Shvo 1
[mol%]

tert-Octylamine
4 [equiv.]

Yield
[%][b]

1 140 – 1 2 16
2 150 – 1 2 35
3 160 – 1 2 49
4 170 – 1 2 34
5 160 Heptane 1 2 38
6 160 DME 1 2 48
7 160 NMP 1 2 44
8 170 Heptane 1 2 60
9 170 DME 1 2 69
10 170 NMP 1 2 35
11 160 – 1 1 23
12 160 – 1 3 55
13 160 – 0.5 2 41
14 160 – 2 2 48
15[c] 170 DME 1 2 44
16[d] 170 DME 1 2 70
17[e] 170 DME 1 2 60
18[f] 170 DME 1 2 51
19 170 DME 1 3 75

[a] Reaction conditions : 2 mmol phenethylamine, 24 h,
0.5 mL solvent.

[b] Yields were determined by GC with hexadecane as inter-
nal standard and are based on phenethyl-(1,1,3,3-tetra-
methylbutyl)-amine 6.

[c] 12 h.
[d] 48 h.
[e] 0.25 mL solvent.
[f] 1 mL solvent.
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Table 3. Catalytic N-alkylation of tert-alkylamines.[a]

[a] Reaction conditions : 2 mmol mono-, 1 mmol di-, or 0.67 mmol trialkylamine, 6 mmol tert-
alkylamine, 1 mol% Shvo catalyst 1 per alkyl group, 24 h, 0.5 mL DME.

[b] Yields were determined by GC with hexadecane as internal standard and are based on
alkyl groups. Isolated yields in brackets.

[c] 1 mL DME.
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a b s t r a c t

The alkylation of aryl amines using cyclic amines such as pyrrolidine proceeds via borrowing hydrogen
methodology in the presence of 1 mol % Shvo catalyst. During the reaction multiple carbon–nitrogen
cleavage and formation occurred. This novel reaction sequence leads to N-aryl-pyrrolidines and
-piperidines.

� 2008 Elsevier Ltd. All rights reserved.

Aromatic amines are important intermediates in the bulk and
fine chemical industry.1 In addition, the presence of carbon–nitro-
gen bonds is essential for the function of most biologically active
molecules.2 Apart from amino acids, DNA and RNA bases, espe-
cially alkaloids constitute privileged naturally occurring amines.
One of the simplest alkaloid structures represents the pyrrolidine
skeleton. Based on this structure many important natural products,
for example, proline, as well as pharmaceuticals like retronecine
and opiod receptor agonists (CJ-15,161) are known (Fig. 1).3

Clearly, a number of practical methods have been developed for
the synthesis of amines in the past decades. Besides the well-
known non-catalytic N-alkylations of amines with alkyl halides
and reductive alkylations, various catalytic reactions, like reductive
amination,4 palladium-5 and copper-catalyzed6 aminations of aryl
halides,7 hydroaminations,8 and hydroaminomethylations9 of ole-
fins or alkynes have been developed within the last decade. Never-
theless, the diversity of amines as well as their biological and
pharmaceutical relevance is still motivating academic and indus-
trial researchers to look for new and improved syntheses for all
kinds of amine derivatives. In this respect, the N-alkylation of
amines using primary10 and secondary alcohols11,12 is an environ-
mentally attractive method, which is not fully exploited yet.

Based on our interest in new synthetic methods for salt-free
alkylation of amines via borrowing hydrogen methodology,13 we
recently discovered that aryl amines react with alkyl amines to
furnish the corresponding N-alkyl-aryl amines in high yields
(Scheme 1).14 Although this transformation—alkylation of amines

with amines—seems to be unusual at first sight, there is significant
industrial interest in analogous transalkylations.15 Clearly, this
atom efficient alkyl transfer proceeds with primary as well as sec-
ondary and tertiary aliphatic amines leaving ammonia as the only
side product.16

Here, we report for the first time the selective N-alkylation of
aryl amines using cyclic alkyl amines such as pyrrolidine (Scheme
1; right arrow). Remarkably, in this novel catalytic transformation
three C–N bond cleaving and forming steps take place.

As a starting point of our investigations we examined the reac-
tion of aniline with pyrrolidine in the presence of catalytic
amounts of the so-called Shvo catalyst I17 (Table 1). After the reac-
tion N-phenylpyrrolidine 1, 1,4-diphenyl-aminobutane 2 and N-(4-
phenylaminobutyl)-pyrrolidine 3 were isolated and identified.
Upon variation of the concentrations of aniline and pyrrolidine
the ring opening products were observed in diverse amounts.
Applying an excess of pyrrolidine, mainly 1 and self-condensation
products of pyrrolidine as by-products were obtained (Table 1,
entry 1). In the presence of excess or stoichiometric amounts of

0040-4039/$ - see front matter � 2008 Elsevier Ltd. All rights reserved.
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Figure 1. Selected examples of alkaloids and pharmaceuticals with pyrrolidine
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aniline, N-phenylpyrrolidine 1 was observed as the major product
in up to 53% yield (Table 1, entries 2 and 3). Here, no self-conden-
sation products of pyrrolidine have been detected. The arylated
1,4-diamine derivates 2 and 3 were determined as minor products.
Lowering of the reaction temperature provided a higher selectivity
towards 1 but decreased the reactivity. Interestingly, in the pres-
ence of a solvent, for example, toluene, no reaction with aniline
was observed (Table 1, entry 7).

In analogy to the monoalkylation of aryl amines,16 the supposed
reaction mechanism is illustrated in Scheme 2. Initially, ruthe-
nium-catalyzed dehydrogenation of pyrrolidine should occur via
coordination and b-hydride elimination. Then, nucleophilic attack
of the aryl amine on the resulting imine to give the aminal, ring
opening and hydrogenation yields the corresponding 1,4-diamine.
Here, dehydrogenation of the primary amino group is fast
compared to that of the secondary amine. Subsequent nucleophilic

-NH3

1 mol% I

NH2

-NH3

1 mol% I

N
H

R-NH2

NH
R

N

Ru
H

Ru
OC CO

OC CO
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Ph

Ph
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I

Scheme 1. Amination of aniline using non-cyclic and cyclic alkylamines.

Table 1
N-Alkylation of aniline with pyrrolidine in the presence of the Shvo catalyst I under different conditionsa

N

H
N

3

N
H

NH2

PhN
H

H
N

2

Ph
Ph

N

1
Ph

Entry Solvent T (�C) Ratio py:an 1 (%) 2 (%) 3 (%)

1 — 150 2:1 22 (21) 4 (2) 8 (7)
2 — 150 1:1 47 (32) <1 3
3 — 150 1:2 53 (32) 5 2
4 — 140 1:2 22 — —
5 — 130 1:2 3 — —
6 — 110 1:2 — — —
7 Toluene 130 1:2 — — —

a Reaction conditions: 1 mol % Shvo catalyst, 24 h. Yields were determined by GC analysis with hexadecane as internal standard. Isolated yields in brackets.
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Scheme 2. Proposed mechanism for the reaction of pyrrolidine with aniline.
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attack on the imine, elimination of ammonia and catalytic hydro-
genation lead to the arylated pyrrolidine. Notably, N-phenyl-
butan-1,4-diamine 4 might react intermolecular with a second
molecule of aniline to give 2. Moreover, the primary amine group
of 4 reacts with dehydrogenated pyrrolidine to yield 3 after a
similar sequence of reaction steps (Scheme 3).

In order to demonstrate the general applicability of the Shvo
catalyst and the scope of the process, the reaction of various aryl
amines and three cyclic alkyl amines were investigated. These
results are summarized in Table 2.

In general, catalytic experiments were run with 1 mol % of Shvo
I in the presence of 2 equiv of aryl amine (Table 2). Noteworthy, the
product yield depends on the electron density of the aromatic ring
and thus the nucleophilicity of the amino group. Apparently, the
nucleophilic attack of the aryl amine is involved in the rate-deter-
mined step. We were pleased to find that electron-rich aryl amines

Table 2
N-Alkylation of aryl amines with cyclic secondary alkylamines in the presence of Shvo Ia,18

R

-NH3

1 mol% Shvo
NH H2N N

R

n

n = 1,2R R

n

Entry Arylamine Product Yieldb (%)

1 H2N OMe N OMe 67

2
H2N

OMe

N

OMe
48

3 H2N Me N Me 31

4
H2N

Me

N

Me
51

5
H2N

O

O N

O

O 58

6 H2N F N F 31

7 H2N Cl N Cl 25

8 H2N Br N Br 28

9 H2N OMe
N OMe

58

10 H2N OMe N OMe 68

a Reaction conditions: 1 mol % Shvo catalyst, 24 h, 150 �C.
b Isolated yields, Yields in brackets were determined by GC analysis with hexadecane as internal standard.
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Scheme 3. Synthesis of the side products 2 and 3.
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such as m/p-toluidine and m/p-anisidine gave the N-arylpyrroli-
dines in 39–67% yield (Table 2, entries 1–4). The pharmaceutically
important 3,4-(methylenedioxy)-aniline gave 58% of the corre-
sponding product (Table 2, entry 5). More problematic is the alkyl-
ation of halogenated anilines. Hence, 4-fluoro-, 4-chloro-, and 4-
bromoaniline yielded the alkylated anilines in low to moderate
yield (Table 2, entries 6–8). In accordance with this observation
4-trifluoromethylaniline showed no reaction even at higher tem-
perature (Table 2, entry 9). Finally, other cyclic amines like piper-
idine and 2-methylpyrrolidine do also react with electron-rich
anilines in good yield (Table 2, entry 11).

In conclusion, we have discovered a novel catalytic reaction of
anilines and cyclic amines. In the presence of the Shvo catalyst
selective activation of the secondary amine takes place and the ali-
phatic nitrogen atom is replaced by the aromatic one. Thus, elec-
tron-rich anilines furnish the corresponding N-aryl heterocycles
in moderate to good yields. Notably, these reactions do not require
any special handling, and do not need exclusion of air or water.
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Abstract:  

The ruthenium ligand metal bifunctional Shvo catalyst (1) is highly active for the dehydrogenation of 

cyclic aliphatic amines and for the hydrogenation of the corresponding imines or enamines under 

comparably mild conditions (100-150 °C). Pyrrolidine was completely converted at 150 °C to the 

thermodynamic stable N,N’-dipyrrolidyldiaminobutane. At lower temperature, the formation of kinetic 

stable dimeric intermediates results was observed. During the borrowing hydrogen transformation, 

carbon-nitrogen cleavage and formation occur. During these studies we were able to isolate new 

ammonium Shvo complexes with pyrrolidine, benzylamine and hexylamine. Crystals suitable for X-ray 

structure analysis were obtained for [Ru2(CO)4(�4-Ph4C4CO)2(H)]–[C4H8NH2]+ (IIIa) and the 
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corresponding benzylamine complex (IIIb). In addition, IIIa was computed at the level of B3LYP 

density functional theory for comparison. Reasonable agreements between values obtained by X-ray 

crystallography and computation were found. These stable complexes indicate a different activation to 

the known thermic cleavage of the Shvo catalyst to generate both active species A and B. With these 

complexes, we were able to study the activation of the Shvo complex by kinetic NMR measurements in 

DMSO-d6. Indeed a new activation pathway (Pathway II) was determined, which involves formation of 

B and an ammonium ruthenium hydride complex C.  

 

Introduction 

In organic molecules, fundamental structural components are functional groups containing hetero-

atoms, such as nitrogen, oxygen or sulfur. Especially the presence of carbon-nitrogen (C–N) bonds is 

found to be essential for the function of many biologically active molecules.1 Due to the basic character 

of the nitrogen lone pair and the hydrogen donating capacity of the NH group, alkaloid skeletons 

constitute privileged structures. One of the highest ranked alkaloids is found in DNA. In comparison, 

the pyrrolidine skeleton represents one of the simplest alkaloid structures. Based on this structure many 

important natural and pharmaceutical products like proline, retronecine2 and CJ-15,161 (opiod receptor 

agonist) are known (Figure 1). 
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Figure 1. Examples of natural and pharmaceutical alkaloids containing a pyrrolidine moiety 
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For the metabolism of humans and animals, the formation of C–N bonds is of high interest. However, 

the cleavage of C–N bonds is also of paramount interest, and N-dealkylation is a commonly observed 

biotransformation. For example, monooxygenases such as Cytochrome P4503 metabolize a wide range 

of endogenous compounds and xenobiotics, such as pollutants, environmental compounds, and drug 

molecules. P450 catalyzes a multitude of reactions, such as hydrocarbon hydroxylation and alkene 

epoxidation, as well as N-, O-, and S-dealkylation.4 Despite the identification of these enzymes in 1964,5 

the development of new dealkylation methods is of great interest, but only few reactions are known.6  

Further important transformations are oxidation and reduction of organic compounds. In nature the 

nicotinamide adenine dinucleotide NAD+ and NADH are responsible for hydrogen and electron trans-

fer.7 In chemical synthesis, biomimetic catalysts, such as the Shvo catalyst I8,9 or Noyori TsDPEN 

catalyst II10 were used in a multitude of reductions, transfer hydrogenation or dynamic kinetic 

resolution sequences11 (Figure 2).  
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Figure 2. Shvo I and Noyori II catalysts for transfer hydrogenation 

On the basis of our ongoing interest in the synthesis of aliphatic and aryl amines,12 our group has re-

cently developed a very efficient method of transfer hydrogenation and dealkylation using the Shvo 

catalyst.13,14 During these studies we were able to synthesize monoalkylated anilines using mono-, di-, 

and trialkyl amines selectively.13 

Additionally, we are interested in the conversion of cyclic alkyl amines with aryl amines.15 Due to the 

high basicity of the nitrogen in cyclic amines and thus the high reactivity of the nitrogen in these 

substrates, these rings bear a great challenge. If cyclic secondary amines are used, trimerisation can 
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occur.16 However, previous catalysts included only heterogeneous palladium or silicates catalysts. In 

order to stimulate further applications of this chemistry, the development of more active catalysts for 

amines is highly desired. A strategy to overcome this problem might be the switch from heterogeneous 

to molecularly-defined organometallic catalysts. However, no homogeneous catalysts are known for the 

ring opening of cyclic amines yet. 

Results and Discussion 

On the basis of our interest in the synthesis of aryl amines with aliphatic amines13,14 we started a 

comprehensive study on the ring opening of secondary cyclic aliphatic amines, especially pyrrolidine. 

In the following we report our results of a ruthenium catalyst, which is highly active for the 

dehydrogenation of cyclic aliphatic amines and the hydrogenation of the corresponding imines or 

enamines under comparably mild conditions (100-150 °C). During the hydrogen borrowing 

transformation,17 carbon-nitrogen cleavage and formation occur. 

(a) Catalyst screening and Optimization: At the beginning of our investigation we focused our 

attention on the influence of different ruthenium and rhodium catalysts (see Table 1, Supporting 

Information). The reaction with pyrrolidine was run without solvent at 150 °C for 24 h in the presence 

of 1 mol% ruthenium or rhodium catalysts.  

N
H

N
N

N N N

1 43

N
NH2

2

1 mol% catalyst
150 °C

Shvo I

7 % 5 % 3 % 4 %

82 %- - -

[RhCp*Cl2]2

 

Scheme 1. Reaction of pyrrolidine with Shvo I and [RhCp*Cl2]2 

Among all catalysts tested, only Shvo I and [RhCp*Cl2]2 were active (Scheme 1), and Shvo I showed 

reactivity to a significant extent. For example, Shvo I has the highest yield of 4 (82 %), and 

[RhCp*Cl2]2 resulted in the formation of products 1, 2, 3, and 4 in rather small amounts. 1 and 4 were 
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purified by aluminium oxide column chromatography and characterized by 1H-, 13C-, Dept, COSY, 

HMQC-NMR, IR, and GC-MS, while 2 and 3 were identified by GC-MS and could not be isolated. 

As a next step we paid our attention to the optimization of the reaction conditions by using Shvo I. 

First, the temperature and solvent influences were investigated (Table 1). With undiluted pyrrolidine 

high yields of 4 (82 %) were observed (Table 1, entries 1 and 2), while toluene as solvent lowered the 

reactivity and the yield (up to 60 %, Table 1, entries 3 and 4). On the one hand the reactivity dropped 

significantly at 110 °C and on the other hand products 2 and 4 were determined (Table 1, entry 5). At 

90 °C the conversion was poor but the ratio switched in favour of 2.  

 

Table 1: Temperature and solvent influence on the selectivity of 2 and 4[a] 

Entry Solvent Temperature 1[c] [%] 2[c] [%] 3[c] [%] 4[d] [%] 

1 - 150 °C - - - 82 

2 - 130 °C - - - 77 

3 toluene 150 °C - - - 60 

4 toluene 130 °C 3 - - 59 

5 toluene 110 °C - 13 - 17 

6 toluene 90 °C - 5 - 2 

7[b] - 110 °C - 22 - 28 

8[b] heptane  110 °C - 2 - <1 

9[b] toluene 110 °C - 8 - 12 

10[b] nitromethane 110 °C - - - - 

11[b] acetonitril 110 °C - - - - 

12[b] dimethoxyethane (DME) 110 °C - 8 - 3 

13[b] N-methylpyrrolidinone (NMP) 110 °C 2 - 10 51 

14[b] dimethylformamid (DMF) 110 °C - 4 - 20[e] 

15[b] dimethylsulfoxide (DMSO) 110 °C - 2 - 53 

16[b] tamylalcohol 110 °C - 8 - 10 
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[a] Reaction condition: 1 mol% Shvo I, 24 h, solvent/pyrrolidine = 1/1, pressure tube. [b] Zinsser 
carousel. [c] Yields are estimated by GC analysis with hexadecane as internal standard. [d]Yields are 
determined by GC analysis with hexadecane as internal standard. [e] Side product: formylpyrrolidine. 

 

Surprisingly, significant solvent effect was observed in the amination reaction  in contrast to the 

alkylation of aryl amines,13. For example, only toluene showed a moderate reactivity compared to other 

nonpolar solvents (heptane and toluene, Table 1, entries 8 and 9), while no clear trend was noticed in 

polar solvents (acetonitril, DME, NMP, DMF and DMSO, Table 1, entries 12-15) and polar protic 

solvents (tamylalcohol, Table 1, entry 16). Highest reactivity was achieved with DMSO and NMP, 

followed by toluene and tamylalcohol.  

Finally, we investigated different additives (Table 2). First we thought about an inhibition of the 

catalyst by chelatization of product 4 (Table 2, entries 2 and 3). Surprisingly after addition of 2 mol% of 

4, the yields and thus the reactivity slightly increased, but more than 80 mol% of 4 (meaning a second 

addition of pyrrolidine after full conversion) inhibited the reaction and the yields dropped dramatically. 

Moreover, the effect of hydrogen excess was examined. By adding one equivalent formic acid, which 

forms carbon dioxide and hydrogen at elevated temperatures, no effect was observed. The addition of 

water to the reaction mixture inhibited the reactivity (Table 2, entries 5 and 6) and consequently low or 

no yields of 2 and 4 were achieved. The addition of tetrafluoroboric acid as Lewis acid decreased the 

reactivity (Table 2, entry 8). On the basis of these tests the best reaction conditions should be 1 mol% 

Shvo I at 150 to 140 °C in DMSO (or without solvent) and without additives.  

 

Table 2: Screening of the conditions and effects on the selectivity of 2 and 4[a] 

Entry Solvent Additives  
2[b] [%] 

(8 h) 

4[c] [%] 

(8 h) 

2[b] [%] 

(24 h) 

4[c] [%] 

(24 h) 

1 - -  3 2 21 23 

2 - 2 mol% 4  8[f] 5[f] 23[f] 30[f] 

3[e] - 1. 100 % conv. 
2. 1 equiv Pyrrolidine 

-[f] 1.5[f] 13[f] 5[f] 
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4 - 1 eq H2 (HCOOH) 7 3 21 21 

5 - 3 mol% H2O - 1 13 5 

6 - 1 equiv H2O - - 1 1 

7 DMSO - <1 <1 2 46 

8 DMSO 5 mol% HBF4 <1 <1 9 27 

[a] Reaction condition: 1 mol% Shvo I, 24 h, solvent/pyrrolidine = 1/1, Zinsser carousel. [b] Yields are 

estimated by GC analysis with hexadecane as internal standard. [c]Yields are determined by GC 

analysis with hexadecane as internal standard. [e] First: 150 °C, 48 h, then determination of the GC-

yields, next addition of one equivalent of pyrrolidine. [f] Yields are corrected by deduction of 4. 

 

(b) Mechanistic Aspect: By applying a Zinsser 12-fold carousel, we were able to record the kinetics of 

the reaction (online sampling and offline analysis). Figure 3 shows the comparison of the reactivity of 

Shvo I with and without toluene. In undiluted reaction solution, both 2 and 4 were found at the 

beginning of the reaction (up to 15 h), while 4 was the only product at the end of the reaction. In 

toluene, however, the solvent effects were dramatical. At the beginning of the reaction, the formation of 

2 was faster than that of 4, and 2 reached the maximum yield (30 %) after 20 hours. At the end of the 

reaction, 4 reached the maximum yield, while the yield of 2 decreased to 15 %. These observations 

support a mechanism involving 2 as an intermediate and 4 as the thermodynamically stable final 

product.  
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Figure 3: Kinetics of 2 and 4 at different toluene concentrations with 1 mol% Shvo I at 100 °C 

As illustrated in Scheme 2, the first step is the dehydrogenation of pyrrolidine to 1-pyrroline followed 

by a nucleophilic attack of a second pyrrolidine molecule. The second step is the ring opening (C–N 

cleavage) along with hydrogen shift resulting in the formation of enamine, which is hydrogenated to 2. 

Due to the higher reactivity of primary amines in dehydrogenation compared to secondary amines, the 

primary amine group of 2 will preferably be dehydrogenated. After an intermolecular attack of a third 

pyrrolidine molecule, loss of ammonia and hydrogenation of the corresponding enamine, 4 could be 

formed. This mechanism is also the basis for the understanding of the reactivity and formation of the 

observed side products 1 and 3. For example, 1 can be generated by dehydrogenating 1,2'-bipyrrolidine, 

while 3 could be formed by ammonia elimination. 
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Scheme 2: Proposed mechanism for the reaction of pyrrolidine 

 

(c) Mechanism with Shvo I: Shvo I has been the subject of detailed mechanistic investigations by 

Bäckvall,18 Casey19, and others.20 Shvo I can dissociate into two active species A and B (Scheme 3), 

which are able to hydrogenate unsaturated compounds, such as alcohols or amines and dehydrogenate 

the corresponding saturated compounds, respectively. The reaction takes places by transferring a 

hydride (bonded to a metal center) and a proton (bonded to a ligand). However, the reaction mechanism 

for the hydrogen transfer process, whether concerted without substrate coordination or concerted with 

substrate coordination and ring slippage of the aromatic ring, is a matter of controversy. 
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Scheme 3: Equilibrium between I and the active species A and B 

Compared to this, only a few studies were performed on the formation of A and B starting from Shvo 

I and this is very important for the initial activation and production of the active species. So far, it has 

been estimated that Shvo I can be cleaved by rising temperature in order to generate A and B. In the 

reaction of Shvo I with 1-(4-methoxyphenyl)-N-methylethanamine Bäckvall et al.9 observed a new 

amine Shvo complex using NMR measurements, but no other analysis was performed. In our study we 

found that Shvo I can protonate secondary and primary amines and forms new ammonium complexes 

(Table 3).  

One example is the complex of Shvo I with pyrrolidine [Ru2(CO)4(�4-Ph4C4CO)2(H)]–[C4H8NH2]+ 

(IIIa). Treatment of I in dichloromethane with pyrrolidine at room temperature for five minutes gave 

IIIa in 92 % yield as yellow powder. Crystals suitable for X-ray structure analysis (Figure 4) were 

obtained by recrystallization from pentane-diethylether. In addition, we were able to isolate the 

corresponding benzylamine complex (IIIb), which crystallizes as a dimeric complex, whereas one unit 

is stabilized by a diethyl ether molecule and another one by a further benzylamine molecule (see 

Supporting Information). One unit of IIIb is shown in Figure 5. The crystallographic data of IIIa and 

IIIb are summarized in Table 4. Selected bond lengths and angles are given in Tables 5 and 6, and 

general agreements in structural parameters were found between the two complexes. In addition, IIIa 

was computed at the level of B3LYP density functional theory for comparison. As shown in Table 5, 

reasonable agreements between values obtained by X-ray crystallography and computation were found.  

The characteristics of these new complexes III are the formation of the ammonium ion, which bridges 

the two carbonyl oxygen atoms of the cyclopentadienone (CPD) rings by hydrogen bonds. This 

confirms the observation that the second bridged hydrogen has a strong acidic character. In IIIa strong 
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hydrogen bonds between the ammonium ion and the carbonyl groups of the cyclopentadienone ring (N-

H···O: N1-H1 0.89(4), H1-O1 1.72(4) Å) were observed.  

In complex IIIa the long distance Ru1-C1 (2.514(3) Å) compared to the distances of the other four 

carbon atoms to Ru1 (2.193(3)-2.283(3) Å) and the short C-O bond length of 1.246(3) Å give evidence 

for �4 coordination of the CPD ligand to the ruthenium centre. Additionally, the cyclopentadienone 

rings have an envelope conformation with an angle between the plane defined by C2, C3, C4, C5 and 

the plane defined by C1, C2, C5 of 16.9(4)°. The same bonding situation (Ru-CCPD: 2.471(3)/2.503(3) 

versus 2.179(3)-2.264(3), C1-O1/C63-O7 1.261(3)/1.246(3) Å) and an analogous envelope angle of the 

CPD (15.1(3)-17.9(4)°) were found for IIIb. As in IIIa two strong hydrogen bonds between the 

ammonium ion and the carbonyl groups of the cyclopentadienone rings (N-H···O: N1-H3 0.97(4), H3-

O1 1.69(4); N1-H4 1.05(4), H4-O4 1.80(4) / N2-H6 0.93(4), H6-O7 1.82(4); N2-H7 0.89(3), H7-O10 

1.93(4) Å) were observed. A further hydrogen bond exists between the third hydrogen atom of the 

ammonium ion and a diethyl ether (N-H···O: N1-H5 0.98(4), H5-O13 1.87(4) Å) and a benzyl amine 

molecule (N-H···N: N2-H8 0.90(3), H8-N3 2.05(3) Å), respectively. 

 

Table 3: Spectral data of Shvo ammonium complexes[a]  

compound amine �(H) Hydride, ppm  �(CO), cm-1 

I - -9.73  1959, 1972, 2004, 2029 

IIIa pyrrolidine -13.71 1934, 1953, 1982, 2015 

IIIb benzylamine -13.69 1947, 1993, 2019 

IIIc hexylamine -13.69 1942, 1990, 2017 

Va pyrrolidine - 1944, 2003 

Vb benzylamine - 1955, 2011 

Vc hexylamine - 1947, 2006 

[a]1H NMR spectra were measured in DMSO-d6, FTIR spectra were measured using ATR technique. 
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Figure 4. Molecular structure of IIIa. Thermal ellipsoids are set at the 30 % probability level. H atoms 

(except H1, H1A, and H2) are omitted and the phenyl rings are simplified. 

 

 

Figure 5. Molecular structure of one part of the asymmetric unit of IIIb. Thermal ellipsoids are set at 

the 30 % probability level. For clarity H Atoms (except H1, H3 - H5) are omitted and the phenyl rings 

and ether molecule are simplified.  
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Table 4. Crystallographic Data of IIIa, IIIb and Vc 

 IIIa IIIb Vc 
chemical formula C66H51NO6Ru2 C76.5H65.5N1.5O7Ru2 C37H35NO3Ru 
formula weight 1156.22 1319.94 642.73 
cryst syst monoclinic triclinic monoclinic 
space group C2/c P-1 P21/c 
a [Å] 20.891(4) 15.597(3) 10.6912(3) 
b [Å] 12.983(3) 17.173(3) 11.5346(3) 
c [Å] 19.940(4) 25.181(5) 25.2807(7) 
� [deg]�
� [deg] 

90 
102.89(3) 

106.71(3) 
92.11(3) 

90 
102.180(2) 

� [deg] 
V [Å3] 

90 
5272(2) 

100.49(3) 
6324(2) 

90 
3047.4(1) 

Z 4 4 4 
density [g·cm-3] 1.457 1.386 1.401 
	(Mo K�) [mm-1] 0.629 0.535 0.552 
T [K] 293(2) 200(2) 200(2) 
no. of rflns (measd) 9406 85379 44534 
no. of rflns (indep) 4858 23565 6451 
no. of rflns (obsd) 3144 13483 4735 
no of params 316 1595 385 
R1 (I>2
(I)) 0.0364 0.0296 0.0278 
wR2 (all data) 0.0621 0.0471 0.0613 

 

Table 5. Selected bond distances [Å] and angles [°] for compound IIIa  

parameters X-ray analysis Theory 
Ru1-C1 2.514(3) 2.569 
Ru1-C2 2.283(3) 2.280 
Ru1-C3 2.195(3) 2.230 
Ru1-C4 2.193(3) 2.244 
Ru1-C5 2.234(3) 2.331 
C1-O1 1.246(3) 1.256 
O1-H1 1.72(4) 1.631 
Ru1-C30 1.888(4) 1.902 
C30-O2 1.161(4) 1.159 
Ru1-C31 1.876(4) 1.908 
C31-O3 1.152(5) 1.159 
Ru1-H2 1.84(2) 1.800 
Ru1-H2-Ru1A 126(2) 142.18 

Hydrogen bonds [Å] 
O1���H1 1.72(4) 1.631 
N1-H1 0.89(4) 1.055 
N1���O1 2.607(4) 2.672 

 

Table 6. Selected bond distances [Å] and angles [°] or compound IIIb 
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IIIb ( unit 1)  IIIb ( unit 2)  
C1-O1  1.261(3) C63-O7  1.246(3) 
C32-O4  1.249(4) C94-O10  1.249(3) 
Ru1-C30  1.872(3) Ru3-C92  1.884(4) 
C30-O2  1.164(3) C92-O8 1.155(4) 
Ru1-C31 1.880(4) Ru3-C93  1.875(4) 
C31-O3  1.156(4) C93-O9  1.153(4) 
Ru1-H1  1.83(4) Ru3-H2  1.91(3) 
Ru2-H1  1.60(4) Ru4-H2  1.55(3) 
Ru1-H1-Ru2 138(2) Ru3-H1-Ru4 140(2) 

Hydrogen bonds [Å] 
O1���H3  1.69(4) O7���H6  1.82(4) 
N1-H3  0.97(4) N2-H6  0.93(4) 
N1���O1  2.604(4) N2���O7 2.680(4) 
O4���H4  1.80(4) O10���H7  1.93(4) 
N1-H4  1.05(4) N2-H7 0.89(3) 
N1���O4  2.710(4) N2���O10 2.727(4) 
O13���H5  1.87(4) N3���H8  2.05(3) 
N1-H5  0.98(4) N2-H8  0.90(3) 
N1���O13 2.844(4) N2���N3 2.904(5) 

 

 
 
Figure 6. Molecular structure of Vc. Thermal ellipsoids are set at the 30 % probability level. H atoms 

are omitted and phenyl rings are simplified for clarity. Selected bond lengths [Å]: Ru1-C1 2.429(2); 

Ru1-C2 2.225(2); Ru1-C3 2.1922; Ru1-C4 2.200(2); Ru1-C5 2.245(2); C1-O1 1.251(3); Ru1-N1 

2.169(2); Ru1-C6 1.887(3); Ru1-C7 1.894(3).  
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With these complexes we were able to study the activation of the Shvo complex to form the active 

species A and B.  

The formation of the two active species is possible via two different pathways (Scheme 4). On the one 

hand (Pathway I) it is possible that complex III is dissociated to the intermediate A and B. The free 

coordination site of B could be stabilized by the corresponding amines to form stable ruthenium-amine 

complexes Va-c. Some analogous kinetic stable amine complexes were isolated and characterized by 

other groups.19g,21,22 On the other hand (Pathway II) the ammonium complexes III are dissociated to 

form intermediate B and ammonium hydride compound C. Due to missing amine compounds, the 

intermediate B is stabilized through a dimerisation to form compound D. At elevated temperature 

compound C is decomposed to B and the corresponding amine and hydrogen.  
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Scheme 4: Proposed activation of the Shvo catalyst 
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In order to study this activation starting from the ammonium ruthenium complexes, we monitored 

dynamic 1H NMR in DMSO-d6 of IIIa and IIIb. Starting from 24 °C, the temperature was increased to 

140 °C in steps of 10 °C. At 24 °C the hydride signal for complex IIIa appeared at –13.70 ppm. During 

heating to 65 °C, this hydride signal shifted to lower ppm (–13.95 ppm), and the broad NH signal (8.48 

ppm) disappeared. At this temperature, the intensity of the hydride signal of IIIa decreased and a new 

hydride signal at –9.95 ppm was observed. At 75 °C complete conversion of IIIa was determined, and 

only the new hydride signal was found. Changes were also found for the aromatic signals of IIIa (6.90-

7.03 and 7.39-7.44 at 24 °C vs. 6.93-7.37, 7.50-7.53, and 7.55-7.58 ppm at 75 °C) and the two 

pyrrolidine CH2-groups (1.81-1.85 and 3.07-3.10 at 24 °C vs. 1.68-1.75 and 2.88-2.94 ppm at 75 °C). 

Starting from IIIa two new complexes (minor complex: –9.95 ppm and 7.50-7.53 ppm, major complex: 

7.55-7.58) were formed in a ratio of 1:3.5. Finally, by increasing the temperature from 75 °C to 110 °C 

the hydride and the aromatic signals of the minor complex decreased and disappeared at 110 °C. The 

minor complex was completely converted into the major complex. Cooling down the reaction mixtures 

at 75 °C and 130 °C to room temperature, comparison with known complexes was possible. For 

comparison of the two pathways we prepared the complexes Va-c and A. Instead of complex B, the 

dimeric complex [Ru(CO)2(�4-Ph4C4CO)]2 (D) was synthesized.23 Crystals suitable for X-ray crystal 

structure analysis were obtained for Vc but not for Va and Vb (Figure 6). 

First the major complex formed at 140 °C was investigated (Comparison and overview of the spectra 

see supporting information). The major complex corresponded exactly with complex D. Next the minor 

compound was examined. The NMR spectra of the minor compound did not correspond with any 

prepared complexes. Due to the absence of a hydroxyl signal and the presence of a hydride signal, 

which is in the same range as compound A, we assume that under these conditions complex C was 

formed. This assumption is confirmed by the isolation of the analogues potassium and 

tetraethylammonium complexes (Scheme 5).23g The hydride signal was observed at -9.68 ppm for the 

tetraethylammonium complex. 
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Scheme 5: Synthesis of cationic Shvo analogues by Casey et al. 

Similar observations were also found for the benzyl amine complex (IIIb). For example, the 

transformation temperature from IIIb to C was 65 °C and a new hydride signal of C appeared at –9.93 

ppm. At 75 °C, these hydride signals appeared at the same shift and thus the same intermediate C is 

formed. Finally, only compound D was observed. 

With these results in hand we were able to confirm but also to modify the mechanism of Bäckvall et 

al. (Scheme 4).9a Instead of thermal dissociation of I, the cycle starts with the protonation of the amine 

and the formation of the ammonium complex IIIa-c. In the next step the ruthenium-hydride-ruthenium 

bond is cleaved. Passing through the intermediates C, compound B is formed which exists as dimeric 

complex D. This complex could now dehydrogenate amines to imines in order to start the catalytic 

circle.  

 

In addition to our experimental studies, we also have computed the thermodynamic properties of the 

formation of IIIa. As shown in Scheme 4, the formation of Shvo I is kinetically favored by A and B and 

the computed reaction enthalpy (�H1) is –24.30 kcal/mol and the reaction free energy (�G1) is –9.47 

kcal/mol, indicating that this reaction is both exothermic and exogonic. Most importantly, these data 

reveal that this reaction is not reversible and the dissociation is thermodynamically not possible.  
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The reaction of Shvo I with pyrrolidine with the formation of IIIa is thermodynamically favored, as 

indicated by its exothermic reaction enthalpy (�H2 = –16.32 kcal/mol) and exogonic reaction free 

energy (�G2= –4.2 kcal/mol). This corresponds with the experimental observations that the reaction 

takes place at room temperature and IIIa is found as stable intermediate. 

Summary  

The Shvo catalyst (1) was shown to be highly active in the dehydrogenation of pyrrolidine and for the 

hydrogenation of the corresponding imines or enamines under comparably mild conditions (100-150 

°C). At 150 °C, trimerisation of pyrrolidine was observed. Kinetic measurements revealed that trimer 4 

is the thermodynamic stable product and dimer 2 is a kinetically stable intermediate. During the 

borrowing hydrogen transformation, carbon-nitrogen cleavage and formation occur. Additionally the 

activation of the Shvo catalyst in the reaction of pyrrolidine does not proceed by thermal cleavage. 

During our studies we were able to isolate new ammonium Shvo complexes with pyrrolidine, 

benzylamine and hexylamine. Crystals suitable for X-ray structure analysis were obtained for 

[Ru2(CO)4(�4-Ph4C4CO)2(H)]–[C4H8NH2]+ (IIIa) and the corresponding benzylamine complex (IIIb). 

The crystal structure was supported by B3LYP density functional theory calculations. Kinetic NMR 

measurements in DMSO-d6 of these complexes indicate a new activation pathway (Pathway II), which 

involves formation of B and an ammonium ruthenium hydride complex C. These results were supported 

by previous reported complexes of Casey.  

Experimental section 

Computational details: All structures were optimized at the B3LYP24 level of density functional 

theory along with the LANL2DZ basis set by adding a set of polarization functions (LANL2DZ(d)).25 

All optimized structures were characterized by frequency calculation as energy minima without ima-

ginary frequencies (NImag = 0) or transition states with only one imaginary frequency (NImag = 1) at 

the same level of theory (B3LYP/LANL2DZ(d)).26 The thermal corrections to enthalpy and Gibbs free 

energies at 298 K from the frequency calculations were added to the total electronic energies for 
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analyzing the relative reaction energies. All calculations were carried out by using the Gaussian 03 

program package.27 

General Remarks: All reactions were carried out under an inert atmosphere of argon gas by standard 

Schlenk technique. Chemicals were purchased from Aldrich, Fluka, Acros, and Strem and unless 

otherwise noted were used without further purification. Amines were distilled and stored under argon. 

All compounds were characterized by 1H NMR, 13C NMR, MS, HRMS, and FTIR spectroscopy. 1H and 

13C NMR spectra were recorded on a Bruker AV 300 and AV 400 spectrometer. The 1H and 13C NMR 

chemical shifts were reported relative to the center of solvent resonance (CDCl3: 7.25 (1H), 77.0 (13C)). 

For complexes I-IV 1H and 13C NMR chemical shifts were recorded in DMSO-d6 and the chemical 

shifts � were relative to SiMe4. EI mass spectra were recorded on an MAT 95XP spectrometer (70 eV, 

Thermo ELECTRON CORPORATION). ESI high resolution mass spectra were recorded on an Agilent 

Technologies 6210 TOF LC/MS. For complexes IIIa-IIIc, the measurement of EI, CI, FAB and ESI 

mass spectra were not possible. FTIR spectra were recorded on a Nicolet 6700 spectrometer and a ATR 

SMART ENDURANCE (Thermo ELECTRON CORPORATION) equipment. Elemental analyses were 

determined by C/H/N/S-Analysator 932 (Leco). GC was performed on a Hewlett Packard HP 6890 

chromatograph with an Optima 5 - amine column (Company: Machery-Nagel, 30m x 0.25μm, 0.5μm 

film thickness, 50-8-200/5-8-260/5-8-280/5-8-300/20). All yields reported in Tables 1-4 refer to GC 

yields using hexadecane as an internal standard. In order to verify the reproducibility, all reactions were 

carried out at least twice. 

 

Synthesis of [Ru2(CO)4(�4- Ph4C4CO)2(H)][C4H8NH2] (IIIa). Shvo catalyst I (100 mg, 0.092 mmol) 
was dissolved in CH2Cl2 (1 ml). To this solution pyrrolidine (0.25 mL) was added and the mixture was 
stirred at room temperature for 5 min. During this time a yellow substance dropped out of the solution. 
To complete the precipitation pentane (1 mL) was added. The yellow precipitate was filtered and 
washed with pentane (1 mL) to yield 99.2 mg (92 %) of IIIa (yellow powder). Crystals suitable for X-
ray crystal structure analysis were obtained by recrystallisation from pentane-diethylether. 1H NMR 
(DMSO-d6, 400 MHz): � = -13.70 (s, 1H, Ru-H-Ru), 1.81-1.85 (m, 4H, NCH2CH2), 3.07-3.10 (m, 4H, 
NCH2CH2), 6.90-7.03 (m, 32H, ArShvo), 7.41-7.43 (m, 8H, ArShvo), 8.49 (s, 2H, NH2). 13C NMR 
(DMSO-d6, 100 MHz)): � = 23.6 (CH2 of Pyrr), 44.9 (CH2 of Pyrr), 78.1(q, C3,4 of Cp), 100.8 (q, C2,5 of 
Cp), 124.7(CH, Ph), 126.5 (CH, Ph), 126.7 (CH, Ph), 127.1 (CH, Ph), 130.5 (CH, Ph), 131.9 (CH, Ph), 
133.1(q, Ph), 135.0 (q, Ph), 172.1 (q, C1 of Cp), 202.0 (q, CO). FTIR (ATR): � (cm-1) = 3057m, 3035w, 
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2982w, 2015s, 1982s, 1953s, 1934s, 1601m, 1577m, 1499m, 1442m, 1072m, 1027m, 844m, 807m, 
748s, 725m, 714m, 694s. 
 
Synthesis of [Ru2(CO)4(�4- Ph4C4CO)2(H)][C7H7NH3]4 (IIIb). Shvo catalyst I (100 mg, 0.092 mmol) 
was dissolved in CH2Cl2 (1 ml). To this solution benzylamine (0.25 mL) was added and the mixture 
was stirred at room temperature for 5 min. During this time a yellow substance dropped out of the 
solution. To complete the precipitation pentane (1 mL) was added. The yellow precipitate was filtered 
and washed with pentane (1 mL) to yield 135.9 mg (98 %) of IIIb (yellow powder). Crystals suitable 
for X-ray crystal structure analysis were obtained by recrystallisation from pentane-diethylether. 1H 
NMR (DMSO-d6, 400 MHz): � = -13.70 (s, 1H, Ru-H-Ru), 3.82 (s, 6H, 3xCH2), 4.69 (s, br, 6H), 6.90-
7.04 (m, 32H, ArShvo), 7.23-7.28 (m, 3H, ArBenzyl), 7.32-7.38 (m, 12 H, ArBenzyl), 7.40-7.44 (m, 8H, 
ArShvo). 13C NMR (DMSO-d6, 100 MHz): � = 44.5 (CH2 of Benzylamine), 78.2(q, C3,4 of Cp), 100.9 (q, 
C2,5 of Cp), 124.8 (CH, Ph), 126.6 (CH, Ph), 126.8 (CH, Ph), 126.9 (CH, PhBenzyl), 127.2 (CH, Ph), 
127.6(CH, PhBenzyl), 128.2(CH, PhBenzyl), 130.6 (CH, Ph), 132.0 (CH, Ph), 133.2(q, Ph), 135.1 (q, Ph), 
140.8 (q, PhBenzyl), 172.2 (q, C1 of Cp), 202.1 (q, CO). FTIR (ATR): � (cm-1) = 3372w, 3057m, 3025m, 
2925w, 2019s, 1993s, 1947s, 1599m, 1557m, 1498m, 1444m, 1382m, 916m, 844m, 748m, 693s. 
 
Synthesis of [Ru2(CO)4(�4- Ph4C4CO)2(H)][C6H13NH3]2 (IIIc). Shvo catalyst I (100 mg, 0.092 mmol) 
was dissolved in CH2Cl2 (1 mL). To this solution hexylamine (0.25 mL) was added and the mixture was 
stirred at room temperature for 5 min. During this time a yellow substance dropped out of the solution. 
To complete the precipitation pentane (1 mL) was added. The yellow precipitate was filtered and 
washed with pentane (1 mL) to yield 101.1 mg (93 %) of IIIc (yellow powder). Crystals were obtained 
by recrystallisation from pentane-diethylether but due to high flexibility of the long hexyl chain, these 
crystals were not suitable for X-ray crystal structure analysis.1H NMR (DMSO-d6, 400 MHz): � = -
13.69 (s, 1H, Ru-H-Ru), 0.84-0.89 (m, 6H, CH3), 1.21-1.32 (m, 12H), 1.36-1.48 (m, 4H), 2.61 (t, 4H. J 
= 7.3 Hz), 5.40 (s, 3H, NH), 6.90-7.05 (m, 32H, ArShvo), 7.39-7.45 (m, 8H, ArShvo). 13C NMR (DMSO-
d6, 100 MHz): � = 13.9 (CH3), 22.0, 25.7, 29.9, 30.9, 40.1 (5xCH2), 78.2 (q, C3,4 of Cp), 100.9 (q, C2,5 
of Cp), 124.8 (CH, Ph), 126.6 (CH, Ph), 126.8 (CH, Ph), 127.2 (CH, Ph), 130.6 (CH, Ph), 132.0 (CH, 
Ph), 133.2 (q, Ph), 135.0 (q, Ph), 172.2 (q, C1 of Cp), 202.0 (q, CO). FTIR (ATR): � (cm-1) = 3369w, 
3057w, 2955m, 2929m, 2856m, 2017s, 1990s, 1942s, 1600m, 1563m, 1498m, 1442m, 1388m, 843m, 
747m, 728m, 696s. 
 
1H NMR Temperature experiments in DMSO-d6. A solution of IIIa was heated in an Bruker AV 400 
spectrometer. Starting from 297 K (24 °C), the temperature was increased to 413 K (140 °C) in steps of 
10 K. At 75 °C the spectra showed the following resonances: 1H NMR (DMSO-d6, 400 MHz, 75 °C): � 
= -9.94 (s, 1H, Ru-H, complex C), 1.68-1.75 (m, 4H, CH2, C), 2.88-2.94 (m, 4H, CH2, C), 3.74-3.75 (d, 
0.5H), 4.78-4.79 (d, 0.5H), 6.93-7.37 (m, ~42H, complex D/C), 7.50-7.53 (m, 1H, C), 7.55-7.58 (m, 
3H, D). At 130 °C the spectra showed the following resonances: 1H NMR (DMSO-d6, 400 MHz, 130 
°C): � = 1.74-1.79 (m, 4H, CH2), 2.96-3.00 (m, 4H, CH2), 3.73-3.75 (d, 1H), 4.70-4.71 (d, 1H), 6.93-
7.37 (m, ~120H, D), 7.55-7.62 (m, 16H, D). Cooling to rt showed the following resonances: 1H NMR 
(DMSO-d6, 400 MHz, 24 °C): � = 1.67-1.70 (m, 8H, 4), 1.75-1.79 (m, 4H, 4), 2.86-2.89 (m, 8H, 4), 
3.19-3.22 (m, 4H, 4), 3.76 (d, 2H), 4.91 (d, 2H), 7.11-7.39 (m, Ar, D), 7.52-7.52 (m, Ar, D). 
 
Va: 1H NMR (DMSO-d6, 400 MHz): � = 1.37-1.50 (4H, m), 2.27-2.37 (2H, m), 2.48-2.57 (2H, m), 
4.27-4.36 (1H, m), 7.06-7.18 (16H, m), 7.52-7.55 (4H, m). 13C NMR (DMSO-d6, 100 MHz)): � = 24.5 
(CH2), 53.9 (CH2), 80.9 (q, C3,4 of Cp), 102.4 (q, C2,5 of Cp), 125.7 (CH, Ph), 127.2 (CH, Ph), 127.4 
(CH, Ph), 127.5 (CH, Ph), 129.5 (CH, Ph), 131.6 (CH, Ph), 131.7 (q, Ph), 133.6 (q, Ph), 165.4 (q, C1 of 
Cp), 201.4 (q, CO). FT IR (neat, cm�1): 3144w, 3060w, 2946w, 2870w, 2033s, 1944s, 1600m, 1543m, 
1498m, 1443m, 1072m, 1028m, 907m, 842m, 803m, 746m, 734m, 695s. HRMS (ESI) Calcd. for 
C35H29NO3Ru [M+H]+: 614.12637. Found: 614.12560. 
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Vb:1H NMR (DMSO-d6, 400 MHz): � = 3.78-3.85 (2H, m, CH2), 7.00-7.04 (2H, m), 7.09-7.28 (19H, 
m), 7.45-7.50 (4H, m). 13C NMR (DMSO-d6, 100 MHz)): � = 54.3 (CH2, Benzyl), 81.9 (q, C3,4 of Cp), 
102.7 (q, C2,5 of Cp), 126.0 (CH, Ph), 127.4 (CH, Ph), 127.6 (CH, Ph), 127.9 (CH, Ph), 128.4 (CH, Ph), 
129.7 (CH, Ph), 131.7 (CH, Ph), 132.9 (q, Ph), 140.2 (q, C1 of Cp), 200.7 (q, CO), 210.7 (q, Ph). FT IR 
(neat, cm�1): 3288w, 3052w, 2950w, 2851w, 2011s, 1955s, 1599m, 1577m, 1530m, 1498m, 1443m, 
1208m, 1072m, 1027m, 1002m, 842m, 802m, 749m, 711m, 696s. HRMS (ESI) Calcd. for 
C38H29NO3Ru [M+H]+: 650.12637. Found: 650.12693. 
 
Vc:1H NMR (DMSO-d6, 400 MHz): � = 0.77 (3H, t, J = 7.3 Hz), 0.87-0.95 (2H, m), 1.05-1.18 (6H, m), 
2.24-2.31 (2H, m), 2.36-3.40 (2H, m), 7.07-7.17 (16H, m), 7.42-7.45 (4H, m). 13C NMR (DMSO-d6, 
100 MHz)): � = 13.6, 21.7, 25.2, 30.2, 31.7, 50.6 (6xCH2, Hexyl), 81.6 (q, C3,4 of Cp), 102.6 (q, C2,5 of 
Cp), 125.8 (CH, Ph), 127.2 (CH, Ph), 127.4 (CH, Ph), 127.5 (CH, Ph), 129.6 (CH, Ph), 131.5 (CH, Ph), 
131.7 (q, Ph), 132.9 (q, Ph), 163.3 (q, C1 of Cp), 200.9 (q, CO). FT IR (neat, cm�1): 3087w, 3052w, 
2950w, 2916w, 2847w, 2006s, 1947s, 1598m, 1576m, 1556m, 1524m, 1497m, 1443m, 1177m, 1071m, 
1028m, 841m, 801m, 749m, 729m, 709m, 694s. HRMS (ESI) Calcd. for C37H35NO3Ru [M+H]+: 
644.17332 Found: 644.17366. 
 
General procedure for the amination reaction with pyrrolidine: In an carousel tube under an argon 
atmosphere the Shvo catalyst (0.12 mmol, 130 mg, 1 mol%) was dissolved in pyrrolidine (12 mmol, 
1ml), hexadecane (250 μL), and additional substances. The reaction mixture was heated at 110 °C for 
24 h under reflux. The allocation of samples was done via septum. The yield and conversion was 
determined by GC. The products 1 and 4 were purified by aluminium oxide column chromatography 
and characterized by 1H, 13C, Dept, COSY, HMQC-NMR, FTIR, and GC-MS. Products 2 and 3 were 
identified by GC-MS. 

5-(pyrrolidine-1yl)-3,4-dihydro-2H-pyrrole (1): 1H NMR (400 MHz, CDCl3): � = 1.98-2.07 (m, 4H), 
2.20 (dt, 2H, 3J = 7.9 Hz, 3J = 7.3 Hz), 2.85 (t, 2H, 3J = 7.9 Hz), 3.55 (t, 2H, 3J = 6.3 Hz), 3.76 (t, 2H, 3J 
= 7.3 Hz), 3.80-3.84 (m, 2H). 13C NMR (100 MHz, CDCl3) � = 20.9 (CH2), 25.3, 25.4 (2xCH2), 31.5 
(CH2), 47.9 (CH2), 50.6 (CH2), 50.8 (CH2), 165.2 (Cq). FT IR (neat, cm�1): 3394br, 3115br, 2957s, 
2887s, 2810m, 2741m, 1678s, 1456m, 1299m, 927s, 728s. MS (EI, 70 eV) m/z (rel. intensity): 138 (66) 
[M+], 110 (100) [M+-C2H4], 95 (12), 82 (25), 69 (24), 55 (25), 41 (30). HR-MS could not be measured.  

N’-1-(pyrrolidin-1-yl)butandiamine (2): MS (EI, 70 eV) m/z (rel. intensity): 142 (3) [M+], 84 (100) 
[CH2=N+C4H8], 70 (15), 42 (11) [CH2=N+=CH2].  

1-Butylpyrrolidine (3): MS (EI, 70 eV) m/z (rel. intensity): 127 (8) [M+], 98 (3) [M+-C2H5], 84 (100) 
[CH2=N+C4H8], 42 (24) [CH2=N+=CH2].  

1,4-di(pyrrolidine-1-yl)butane (4): 1H NMR (400 MHz, CDCl3): � = 1.57-1.64 (m, 4H), 1.78-1.97 (m, 
8H), 2.52-2.57 (m, 4H), 2.60-2.64 (m, 8H). 13C NMR (100 MHz, CDCl3) � = 23.4 (CH2), 27.3 (CH2), 
54.2 (CH2), 56.6 (CH2). FT IR (ATR, cm�1): 3383br, 2938m, 2878m, 2783m, 1675m, 1458m, 1349m, 
1145m, 875m, 696s. MS (EI, 70 eV) m/z (rel. intensity): 196 (1) [M+], 97 (15), 84 (100) [CH2=N+C4H8], 
72 (21), 42 (20). HRMS Calcd. for C12H24N2: 196.19340. Found: 196.19341.  
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Abstract.  

The novel stable ruthenium ammonia complex [2,3,4,5-Ph4(�4-C4CO)]Ru(CO)2(NH3) (6) has been 

isolated in high yield in the catalytic alkylation of aniline with hexylamine. It has been characterized by 

X-ray analysis and density functional theory computation. The thermodynamic stability of Shvo-like 

ruthenium complexes with primary, secondary and tertiary amines has been computed and compared. 

Calculations confirmed the high stability of this ruthenium ammonia complex.  
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Introduction  

Shvo complex {[2,3,4,5-Ph4(�5-C4CO)]2H}Ru2(CO)4(�-H) (1) constitutes an efficient catalyst for 

numerous hydrogen transfer processes.1 More specifically, it has been applied successfully in the hydro-

genation reactions of alkynes2, carbonyl compounds, and imines,3,4 and in the oxidation reactions of al-

cohols5,6 and amines,7,8 as well as in the dynamic kinetic resolution of secondary alcohols and primary 

amines in combination with lipases.9–15 In addition, tandem catalysis processes are known.16 On the 

basis of our ongoing interests in the development of amination methodologies17,18 and the synthesis of 

aliphatic and aromatic amines,19  recently we have developed novel alkylation reactions of amines 

applying Shvo catalyst (1) with mono-, di-, and trialkylamines as selective alkylation reagents.20 

Due to its significant catalytic potential, 1 has been the subject of detailed mechanistic investigations 

by Bäckvall,21–26 Casey,27–33 and others.34 It is well known that the Shvo complex dissociates into two 

active species 2 and 3 (Scheme 1) by transferring a hydride (bonded to a metal center) and a proton 

(bonded to a ligand). Despite the known studies on the mechanism of hydrogen transfer process, it is 

still speculated whether the respective reaction proceeds concerted without substrate coordination in a 

solvent cage (Casey) or concerted with substrate coordination and ring slippage of the aromatic ring 

(Bäckvall). Until to date few investigations were performed on the deactivation of the Shvo catalyst 1. 
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Scheme 1: Equilibrium between 1 and active species 2 and 3 

Previous amine Shvo complexes: In 1988, Shvo et al. isolated the crystals of [2,3,4,5-Ph4(�4-

C4CO)]Ru(CO)2(NHEt2) (4) during transalkylation of amines.35 Later, in a joint cooperation Casey, 

Bäckvall and Park reinvestigated the structure of the isopropyl alcohol complex [2,3,4,5-Ph4(�4-C4CO)]-

Ru(CO)2(HOCHMe2)36 which turned out to be the stable [2,3,4,5-Ph4(�4-C4CO)]Ru(CO)2(H2NCHMe2) 

complex (5). 37  During their mechanistic investigations on the reduction of imines, Casey27-32 and 
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Bäckvall4,7,8,23 identified and characterised different ruthenium amine complexes [2,3,4,5-Ph4(�4-

C4CO)]Ru(CO)2(R2CHNHR).  

Herein, we report for the first time the deactivation of the active species 3 by ammonia. The resulting 

Shvo-ammonia complex 6 is structurally characterized by X-ray analysis. Calculations on the thermody-

namic stability of amine-substituted cyclopentadienone ruthenium complexes and on the exchange of 

amines demonstrate that complex 6 is one of the most stable amine complexes known.38,39 

Results and Discussion  

During our studies on the selective synthesis of monoalkylated arylamines we performed the reaction 

of alkylamines with arylamines in t-amylalcohol in the presence of 1 mol% of 1 (Scheme 2). The 

observed alkyl transfer proceeds by a coupled reaction of hydrogenation and dehydrogenation of the 

alkylamine (Scheme 3).  

 

Scheme 2: Alkylation of aniline with alkylamines 

 

Scheme 3: Coupled catalytic system for hydrogenation of imines and dehydrogenation of amines 

After complete conversion, we were able to isolate the desired product along with an unknown white 

powder. Due to the insolubility of the side-product in methanol, ether, acetone, and water identification 
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and characterization was initially difficult. However, it was soluble in boiling DMSO. After cooling to 

room temperature crystals suitable for X-ray analysis were obtained. Surprisingly, the side-product was 

identified by single-crystal X-ray diffraction analysis as the Shvo ammonia complex [2,3,4,5-Ph4(�4-

C4CO)]Ru(CO)2(NH3) (6) (Figure 1). The detailed crystallographic data and selected bond lengths of 6 

are given in Tables 1 and 2, respectively. Apparently, ammonia is stabilized by a weak intramolecular 

hydrogen bond between H(1) and O(1) of the cyclopentadienone ring (2.28(2) Å) and by a strong 

intermolecular hydrogen bond between H(2A) and O(1B) of the second cyclopentadienone ring (1.97(2) 

Å), which is shown in Figure 2 and in the Supporting information. Such an intermolecular hydrogen 

bond is not known for any ruthenium Shvo-like complexes with primary or secondary amines. In 

comparison to 1 with an �5-coordination mode, 6 exhibits a C(1)-O(1) bond length of 1.250(2) Å and a 

Ru(1)-C(1) distance of 2.425(1) Å, which is distinctly elongated compared to the other four ruthenium 

ring carbon atom distances (2.196(1) – 2.236(1) Å). This suggests that the cyclopentadienone ring is 

bonded to the Ru in an �4-coordination mode. 

 

Figure 1. ORTEP diagram of 6. Thermal ellipsoids are set at the 30% probability level. For clarity H 

atoms are omitted except H(1), H(2) and H(3). 
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Figure 2. ORTEP diagram of 6 showing intra- and intermolecular hydrogen bond interactions. Thermal 

ellipsoids are set at the 30% probability level. For clarity H atoms are omitted except hydrogen atoms 

attached to nitrogen.  

 

Table 1. Crystallographic data of 6  

 [2,3,4,5-Ph4(�4-C4CO)]Ru(CO)2(NH3) (6) 

chemical formula C31H23NO3Ru 

formula weight 558.57 

cryst syst monoclinic 

space group P21/c 

a [Å] 12.656(3) 

b [Å] 8.767(2) 

c [Å] 22.359(5) 

� [deg] 101.79(3) 

V [Å3] 2428.6(8) 

Z 4 
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calc [g·cm-3] 1.528 

	(Mo K�) [mm-1] 0.680 

T [K] 200(2) 

no. of rflns (measd) 38827 

no. of rflns (indep) 5572 

no. of rflns (obsd) 4907 

no of params 337 

R1 (I>2
(I)) 0.0182 

wR2 (all data) 0.0479 

 

Table 2. Selected bond distances [Å] for compound [2,3,4,5-Ph4(�4-C4CO)]Ru(CO)2(NH3) 6. 

 X-ray (6) Theory (6) Theory (6') 

Ru1-C1 2.425(1) 2.4668  2.4825 

Ru(1)-C(2) 2.236(1) 2.2892  2.2951 

Ru(1)-C(3) 2.197(1) 2.2645 2.2435 

Ru(1)-C(4) 2.196(1) 2.2485  2.2435 

Ru(1)-C(5) 2.214(1) 2.2907  2.2951 

Ru(1)-C(30) 1.891(2) 1.9090  1.9077 

Ru(1)-C(31) 1.895(2) 1.9052  1.9077 

C(1)-O(1) 1.250(2) 1.2483  1.2506 

C(30)-O(2) 1.139(2) 1.1600  1.1600 

C(31)-O(3) 1.135(2) 1.1604  1.1600 

Ru(1)-N(1) 2.155(1) 2.2443  2.2387 

intramolecular hydrogen bonds N(1)-H(1)···O(1) (Figure 1)  

N(1)-H(1) 0.85(2) 1.0345  1.0345 

O(1)-H(1) 2.28(2) 1.9944  1.9868 
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N(1)-O(1) 2.960(2) 2.8884  2.8883 

intermolecular hydrogen bonds N(1A)-H(2A)···O(1B)  

N(1)-H(2) 0.86(2) 1.0210 1.0206 

H(2)-O(1b) 1.97(2)   

N(1)-O(1b) 2.828(2)   

 

The formation of 6 is explained by the reaction of ammonia (produced from dealkylation of alkyl-

amines, Scheme 4) with the unsaturated 16-electron compound 3 (Scheme 5).  

 

R1 NH R1 NH2

HN
Ph

Ph-NH2

R1

N
Ph

NH3

 

Scheme 4: Formation of ammonia during the dealkylation of alkylamines 

We assume that under the reaction conditions, complex 3 is in equilibrium with the 

cyclopentadienone dimer 7.40 Indeed, 6 is generated in 93% yield by treating a dichloromethane solution 

of 7 with an ammonium hydroxide solution (28% NH3) under reflux conditions (Scheme 6). Upon 

heating, a grey precipitate dropped out of the solution. The ATR FTIR spectra of this grey powder 

exactly correspond with the ATR FTIR spectra of 6. As stated above, this complex is insoluble in any 

solvent with the exception of boiling DMSO. 

 

Scheme 5: Proposed formation of 6 during the amination reaction with alkylamines 
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Scheme 6: Synthesis of 6 from 7 

Next, we were interested in the stability of the Ru-N bond and the potential exchange of amines on 

the ruthenium centre. Hence, the thermodynamic properties of the reactions of complex 7 with different 

amines were calculated at the B3LYP level of density functional theory (Table 3).  

As shown in Figure 3, we have computed two ammonia complexes; one has the propelled orientation 

of the four phenyl groups as found in 6 (Figure 1) and one has Cs symmetry with the phenyl groups in 

symmetrical orientations (6'). The computed structural parameters are compared with the X-ray data in 

Table 2; and reasonable agreement has been found between two methods. In 6 (or 6'), one N–H bond 

directs to the ketone group and the other two N–H bonds are eclipsed to the two CO groups, the N–

H���O=C distance is 1.9944 Å (or 1.9868 Å), which is in the range of hydrogen bonding. As discussed 

below, this hydrogen bonding is responsible for the enhanced stability of the ammonia complex and 

complexes with primary and secondary ammines. We have also calculated the conformation with NH3 

staggered to the metal fragment, but free optimization resulted in 6 (or 6') in eclipsed conformation. 

Figure 3 shows that the symmetrical one (6') is computed to be more stable than the propelled one (6) 

by 2.07 kcal/mol. This small energy difference indicates equilibrium of two conformations in gas phase 

or solution. The observed propelled conformation of 6 in solid state is attributed to packing effects.  
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Figure 3. Conformations of the ruthenium ammonia complex 

 

In addition, we have also computed the complexes of primary, secondary amines and tertiary amines. 

As shown in Figure 4, the complexes 8, 9, 10, 13 and 14 of primary and secondary amines have the 

eclipsed conformation of the amine groups with one N-H bond towards to the C=O group as found in 6. 

They also contain comparable N–H���O=C distances. However, the complexes 11 and 12 with tertiary 

amines have staggered conformation of the amine group to the metal fragment, and most importantly 

complexes 11 and 12 do not show hydrogen bonding between the amine and carbonyl group.  
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Figure 4. Ruthenium complexes with different amines and the respective Ru–N and N–H���O=C 

distances 

 

Figure 4 demonstrates also clearly the change of the Ru-N distance upon amines. From NH3 and 

methylamine to trimethylamine, the Ru-N distance increases gradually from 2.229 and 2.244 Å to 2.341 

Å, indicating the increased steric effects between amine and metal fragment. Stronger steric effects have 

been found for the complex with triethylamine (12) with Ru-N distance of 2.408 Å. The changes are 

associated directly with the relative stability of the respective complex as discussed below. 
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Table 3: Free energy for the formation of Shvo ruthenium - amine complexes  

 
 

Entry Amine formed 
complex 

�G [kcal/mol] 

1 - 3 +10.55 

2 NH3 6 –22.66 

3 NH2Me 8 –22.82 

4 NHMe2 9 –19.28 

5 c-HN(C4H8) 10 –22.78 

6 NMe3 11 –4.98 

7 NEt3 12 +9.56 

8 PhNH2 13 –11.72 

9 PhNHMe 14 –7.46 

 

As shown in Table 3, the direct dissociation of 7 into 3 is computed to be endogonic by 10.55 kcal/mol 

and disfavoured thermodynamically (Table 3, entry 1). However, the formation of most ruthenium 

amine complexes is exogonic, and the theoretical data correspond well with the experimental observa-

tions of Casey and Bäckvall. For example, the reaction of 7 with ammonia to form 6 is thermodynami-

cally favoured (�G2= –22.66 kcal/mol, Table 3, entry 2). In addition, reactions of primary, secondary as 

well as secondary cyclic aliphatic amines with 7 are also strongly exogonic (Table 3, entries 3-5), 

revealing the high thermodynamic stability of these compounds, and the driving force of such stability 

is the formation of the intramolecular hydrogen bonding between NH3 and the C=O group.  
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The small difference between the free energy of primary and secondary amine complexes is in agree-

ment with a competition experiment of benzylamine with N-methylbenzylamine reported by Casey 

(Scheme 7).30 During equilibrium a 1:1 ratio of 17 and 18 was observed.   

7

OPh

Ph

Ph

Ph Ru
CO

CO

O Ph

Ph

Ph

PhRu
OC

CO

Ph

HN
Me

Ph

NH2

15

Ph

Ph
Ph

Ph

O
Ru

OC
CO

N
H

H
Ph

Ph
Ph

Ph

O
Ru

OC
CO

Ph

N
Me

H

1817
Ph

25 °C: 50:50 ratio 17:18

ratio 1:1
16

1eq

1eq 1eq

 

Scheme 7: Competition experiments of alkylamines  

In contrast to ammonia and primary as well as secondary aliphatic amines, tertiary aliphatic amines 

showed only a low exogonic free energy of -4.98 kcal/mol (trimethylamine, Table 3, entry 6) or even 

energonic free energy of +9.56 kcal/mol (triethylamine, Table 3, entry 7). Clearly, tertiary amines can’t 

form stabilizing intramolecular hydrogen bonding between the amine hydrogen and the carbonyl 

oxygen of the cyclopentadienone ring on one hand, and on the other hand they have increased steric 

interaction with the metal fragment.  

Next, the formation of ruthenium amine complexes with primary as well as secondary arylamines was 

calculated. Again reactions are exogonic, but less pronounced with respect to aliphatic amines. The en-

ergy difference between primary and secondary arylamines is larger compared with aliphatic amines. 

Thus, primary arylamine complexes are more stable (��G= +4.26 (arylamines) vs. +3.54 kcal/mol 

(alkylamines)). The general stability order of Shvo ruthenium amine complexes is shown in Scheme 8. 

  

 

Scheme 8: Stability order of Shvo ruthenium amine complexes 
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Our computed thermodynamic data explains nicely known experimental findings. For example, the 

rapid displacement of N-phenylbenzylamine (21) by aniline (20), observed by Casey et al.30 as well as 

competition experiments during equilibrium of aniline (20) and N-methylaniline (19) shown in Scheme 

9 are in good agreement with the calculated free energies. The higher stability of ruthenium alkylamine 

complexes corresponds also with the trapping experiments of Bäckvall (Scheme 10).30 Under 

equilibrium conditions the kinetic product 23 is converted to the thermodynamically more stable 

secondary alkylamine 24. 
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Scheme 9: Exchange and competition experiments of arylamines 
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The relatively small difference of the free energy between the ammonia complex 6 and primary and se-

condary alkylamine complexes 8-10 seemed surprising. Thus, we calculated the exchange reaction of 

ammonia by other amines. In Table 4 the free energies41 and the ratios of 3 in % during equilibrium at 

25 °C with different amines are displayed.  

Table 4: Free energy of the exchange of ammonia with different amines  

 
Entry Amine formed  

complex 

�G  

[kcal/mol] 

ratio of 3 
[%] 

1 NH2Me 8 +0.42 67 

2 NHMe2 9 +2.20 97 

3 c-HN(C4H8) 10 +0.44 68 

4 NMe3 11 +9.34 100 

5 NEt3 12 +16.61 100 

6 PhNH2 13 +5.97 100 

7 PhNHMe 14 +8.10 100 

 

These results point out that the reaction of 6 with all amines is thermodynamically disfavoured, as in-

dicated by positive reaction free energies. Only sterically non-hindered aliphatic amines are in 

equilibrium with 6. Clearly, if ammonia is present or formed in the reaction of amines, then arylamines 

and tertiary alkylamines will be completely replaced at the metal centre. Notably, in reactions of 

primary or secondary cyclic amines, a significant amount of the Shvo catalyst will be blocked by 

ammonia, which is important to understand the catalytic behaviour of the Shvo catalysts in amination 

reactions. 
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Finally, we were interested in the reactivity of the Shvo ammonia complex 6 in the alkylation of aniline 

with n-hexylamine.18 To compare complex 6 with the Shvo catalyst 1, the reactions were performed in 

the presence of 2 mol% 6 or 1 mol% 1, t-amylalcohol as solvent, and two equivalents of aniline 

(Scheme 11). Interestingly, with both catalysts N-hexylaniline is obtained in excellent yield of 99 %! 

 

t-amylalkohol, 150 °C, 24 h

NH2

20

NH2 HN25

26
3 (2 mol%) 99 %
1 (1 mol%) 99 %

- NH3

 
 

Scheme 11: Reactivity of the Shvo ammonia complex 3  

 
Apparently, under the reaction conditions complex 6 is in equilibrium with the corresponding 

alkylamine complex. However, in agreement with the theoretical calculations complex 6 precipitated 

after the reaction in 85 % yield and can be re-used for catalysis. Hence, the addition of ammonia offers 

a convenient way to recycle the Shvo catalyst for catalytic aminations and probably other reactions, too.    

 

Summary  

In summary, we have synthesized and isolated a new neutral ammonia ruthenium complex 6. The 

stabilities of different Shvo amine complexes were calculated and compared. The high stability of the 

ammonia complex 6 is to be noted. The driving forces of the enhanced stability of 6 are inter- and 

intramolecular hydrogen bonding interactions between the N-H of the amine and the carbonyl group of 

the cyclopentadienone ring. Calculation on the exchange of ammonia with other amines demonstrates 

that 6 is in equilibrium with primary and secondary cyclic amines but not tertriary amines. The novel 

complex 6 is shown to be active in the alkylation reaction of aniline with hexylamine. The final 

precipitation of 6 allows for convenient recycling of Shvo-like ruthenium complexes.  

 

Experimental section 
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Computational details: All structures have been optimized at the B3LYP 42  level of density 

functional theory along with the LANL2DZ basis set by adding a set of polarization functions 

(LANL2DZ(d)).43 Optimized structures were characterized by frequency calculation as energy minima 

without imaginary frequencies (NImag = 0) or transition states with only one imaginary frequency 

(NImag = 1) at the same level of theory (B3LYP/LANL2DZ(d)).44 The thermal corrections to enthalpy 

and Gibbs free energies at 298 K from the frequency calculations were added to the total electronic 

energies for analyzing the relative reaction free energies. All calculations were carried out by using the 

Gaussian 03 program package.45 

General Remarks: All reactions were carried out under an inert atmosphere of argon gas by 

standard Schlenk technique. Chemicals were purchased from Aldrich, Fluka, Acros and Strem and 

unless otherwise noted were used without further purification. Amines were distilled and stored under 

argon. All compounds were characterized by 1H NMR, 13C NMR, MS, HRMS and IR spectroscopy. 1H 

and 13C NMR spectra were recorded on a Bruker AV 400 spectrometer. The 1H and 13C NMR chemical 

shifts � reported are relative to SiMe4. . EI mass spectra were recorded on an MAT 95XP spectrometer 

(70 eV, Thermo ELECTRON CORPORATION). ESI high resolution mass spectra were recorded on an 

Agilent Technologies 6210 TOF LC/MS. FTIR spectra were recorded on a Nicolet 6700 spectrometer 

and a ATR SMART ENDURANCE (Thermo ELECTRON CORPORATION) equipment. Elemental 

analyses were determined by C/H/N/S-Analysator 932 (Leco). X-ray Crystallographic Study of 

Complex 6: Data were collected with a STOE-IPDS diffractometer using graphite-monochromated Mo-

K� radiation. The structure was solved by direct methods [SHELXS-97: Sheldrick, G. M., SHELXS-97, 

University of Göttingen, Germany, 1997.] and refined by full-matrix least-squares techniques against F2 

[SHELXL-97: Sheldrick, G. M., SHELXL-97, University of Göttingen, Germany, 1997.] XP 

(BRUKER AXS) was used for structural representations. 

 

Synthesis of [Ru(CO)2(�4- Ph4C4CO)(NH3)] (6). Shvo-H2 complex 7 (520 mg, 0.481 mmol) was 

suspended in dichloromethane (5 mL) and ammonia-water solution (25 % NH3, 5 mL). The reaction 
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mixture was heated for 10 min under reflux. The color of the precipitate changed from brown to grey. 

After filtration and washing with acetone (2x 5 mL), the grey precipitate was filtered and washed with 

acetone (2x 5 mL) and dichloromethane (5 mL) to yield 499.2 mg (93 %) of 6 (grey powder). Crystals 

were obtained by recrystallisation of 6 from dimethylsulfoxide. 

 

1H NMR (DMSO-d6, 400 MHz): � = 3.06 (s, 3H, NH3), 7.06-7.16 (m, 16H, Ar), 7.37-7.40 (m, 4H, 

Ar). 13C NMR (DMSO-d6, 100 MHz): � = 82.0 (q, C3,4 of Cp), 102.9 (q, C2,5 of Cp), 126.0 (CH, Ph), 

127.4 (CH, Ph), 127.5 (CH, Ph), 127.6 (CH, Ph), 129.7 (CH, Ph), 130.2 (CH, Ph), 131.8 (CH, Ph), 

131.9 (q, Ph), 133.2 (q, Ph), 163.7 (q, C1 of Cp), 201.2 (q, CO). FTIR (ATR): � (cm-1) = 3349m (N-H), 

3229w, 3053m, 1996s, 1942s, 1598m, 1541s, 1498m, 1442m, 1264m (C-N), 1071m, 1029m, 837, 767, 

760m, 745m, 730m, 708s, 696s. HRMS(ESI) Calcd. for C31H23O3NRu: 560.07942. Found: 560.08012. 

Anal. Calcd for C31H23NO3Ru (%)*1/2 DCM: C, 62.95; H, 4.02; Cl 5.90; Found: C, 62.75; H, 4.45; Cl, 

6.00. 

 

 

General amination procedure. In an ACE-pressure tube under an argon atmosphere Shvo ammonia 

catalyst (6, 0.04 mmol) and hexylamine (25, 2 mmol) were dissolved in tamylalcohol (0.5 ml) and 

aniline (20, 4 mmol). The pressure tube was fitted with a Teflon cap and heated at 150 °C for 24 h in an 

oil bath. The solvent was removed in vacuo, and the crude product was easily purified by column 

chromatography with pentane/ethyl acetate (20:1). To recycle the catalyst, the reaction mixture was 

filtered. The precipitate was washed with ethyl acetate, transferred with ethyl acetate and dried in vacuo 

to give 38.5 mg (85 %) catalyst 6 (for two reactions). 
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