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Abstract

A many–particle system imitating the motion of the vehicular ensemble on a one
lane road without crossroads is under study. Taking into account the properties
of real traffic, both deterministic and stochastic approaches are applied in order
to describe the system dynamics. Despite of the car interaction being local in
nature, it gives rise to cooperative phenomena that manifests the formation,
dissolution and joining of large car clusters. Such processes correspond to the
different states of traffic flow which can be treated in terms of phase transitions.

In this connection, the theory of the three traffic states proposed by Kerner is
taken as a hypothesis for present investigations. Starting from the microscopic
level based on the optimal velocity ansatz, the detailed analysis of the possible
traffic states is developed. In view of the fact that such an approach can describe
either free flow or congestions, the problem of understanding and description of
the intermediate states has been addressed within the framework of this thesis.
The new approach is based on study of dynamical states controlled by kinetic
coefficients taking into account their anomalous properties and their dependence
on position in phase space. The interaction between the noise and the dynamical
trap can cause certain anomalies in the system dynamics.

One of the main manifestations of the traffic congestion is the traffic breakdown
phenomenon regarded as a random process developing via the cluster formation
mechanism. In this manner, the probabilistic description based on the concept
of first passage time is developed and the breakdown probability is calculated
in terms of the solution of the corresponding Fokker–Planck equation given as
a initial–boundary–value–problem. In order to interpret the obtained analytical
result, its comparison with the empirical data is performed.
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1 Introduction

Nowadays the concepts and techniques of theoretical physics are applied to study
complex systems [28,76,99] coming from chemical, biological and social sciences.
Not a long time ago, investigations in this field have been determined as inter-
disciplinary research. Traffic flow [29] and granular matter [69], ant colony be-
haviour [85] and transactions in financial markets [1] provide examples of complex
systems. These systems are interesting not only as objects of natural sciences but
also from the physical points of view for fundamental understanding and detailed
analysis of such exotic phenomena.

Our work is devoted to the description of traffic flow. Recently, this topic is
actively discussed in different fields of our society and has found a great interest
in physical community. As a result of the growth of vehicle traffic in many cities
of the world, the traffic volume runs up to such high values, that car congestions
become usual and almost the only possible state of the car motion (see Fig. 1.1).
For this reason, the still open and often discussed questions are the optimal
control of the congested traffic and the methods of the jam prevention.

The empirical analysis shows that traffic has complex and nonlinear structure.
Physicists all over the world try to explain such a complicated behaviour and to
describe it using theoretical approaches [25,33,80]. The main goal of such inves-
tigations is to invent a theoretical model which can describe the general features
of the typical vehicular traffic. The theoretical analysis and computer simulation
of these models help in better understanding of the complex phenomena observed
in real traffic.

There are two different approaches for traffic modeling. One of them is called
the fluid–dynamical description [14, 29] where the individual properties of a ve-
hicle are not taking into account explicitly. Another way of looking at it is to
investigate the dynamics of each car on the microscopic level. Within the context
of such a model, the both deterministic and stochastic approaches are possible.
The deterministic models based on classical Newtonian description are provided
by the so–called car following theory [78,87]. The model assumes that the accel-
eration of the car is specified by the leading neighboring vehicle. In this sense, the
velocity changing in time is controlled by some function, which depends, in gen-
eral, on the velocity difference and the headway distance. This function is called
the optimal velocity function and its different approximations have been consid-
ered [3, 27, 30, 31, 50, 51, 74]. In contrast, the cellular automata model, which
belongs to the class of particle hopping models, describes the traffic from the
stochastic point of view [14,100]. In this case, it has been proposed to divide the

1



Chapter 1. Introduction

Fig. 1.1: The example of the complex structure of traffic congestion.
This photo shows the Smolenskaya square on Sadovoe ring in Moscow:
http://www.englishrussia.com/?p=429.

length of street into cells and the time into intervals [72]. The update of the car
position is performed in parallel and takes place according to some predetermined
rules. The stochasticity endows the model as a parameter which describes the
velocity fluctuations due to delayed acceleration. To sum up this short overview,
it should be mentioned, that the microscopic models are not accident free and it
is still not found such a model which would be able to imitate the real traffic.

One of the most interesting property of traffic is the jam formation. There are
different reasons of its appearance. For example, lane reductions or dense traffic
can surely cause car congestion. Nevertheless, the jams have been observed in the
situation when there was no reason for their formation [96]. This spontaneous
congestion is called phantom jams. In this manner, the process of the cluster
formation can be considered as a stochastic one and, as its characteristic, the
cluster size can be analyzed in time. Obviously, the cluster size is a discrete
value and, by drawing analogy to cellular automata model [29], the probabilistic

approach should be applied for the investigation of this problem. In this sense,
the master equation [34] and, as its continuous analog, the Fokker–Planck equa-

tion [24,66,81] should be used. This problem description brings up the question
about the traffic breakdown [52, 53, 58].

2 PhD Thesis



1.1. Aim of the Work

1.1 Aim of the Work

In the last few decades the investigations in the field of physics of traffic flow
have been addressed to the correct physical interpretation of the properties of the
vehicular traffic. For this purpose, a lot of theoretical models based on principles
of statistical physics have been proposed for the fundamental understanding of
the complex nature of traffic. Within the framework of such a research, both
microscopic and macroscopic approaches have been involved.

It has been assumed that a car (or vehicle) can be represented as a particle. In
this manner, the ensemble of particles has been taken for a car set and the particle
interaction has been considered. However, it is quite difficult to understand
the dynamics of the system completely without the thorough analysis of the
behaviour of its individual elements. In this regard, the microscopic description
allows an detailed understanding of the dynamic properties. The microscopic
approach is based on concepts of the Newtonian mechanics where the governing
equation is given by Newton’s second law. As it has been already mentioned in
the Introduction, the extensively used microscopical description of traffic is the
car following model which imitates the particle motion on a one lane road. This
approach is based on so–called response–stimulus relation. The updating of the
velocity and coordinate occurs depending on a stimulus function composed on
many factors.

Generally, it is assumed that for car following model two main factors for the
adequate motion of the car should be included:

• to move at speed of leading car;

• to avoid collisions.

However, the car motion is controlled by the driver. It means that the human
factor should be also taken into account. The driver acts according to his personal
physical and mental properties. In this sense, the system of traffic flow can
be regarded as the system with motivations. The fundamental property of the
system with motivations is its cooperative behaviour. The cooperative behaviour
in traffic has been also observed empirically. In spite of the fact that some
attempts have been already made in order to explain the cooperative motion for
traffic systems, a generally accepted theory describing such a phenomenon is still
missing. For example, in the framework of such discussion, it has been proposed
to take into the model description the time delay term which allows a car to
reach the velocity of the leader with a time lag. It should be mentioned that this
approach is beyond the scope of Newtonian description.

The cooperative motion plays the important role for the description of the
traffic phases. As a result of prolonged discussions, the hypothesis about the
three traffic states has been proposed by Kerner [41–47], contrary to popular
opinion about the existence of only two phases in traffic. He discerns:

Julia Hinkel 3



Chapter 1. Introduction

• free flow;

• synchronized flow;

• wide moving jams.

The main objective of this work is to provide the detailed analysis of the
possible states of traffic flow dynamics. The analytical investigations in this
field present a challenging problem. Therefore the numerical integration of the
many–particle system has been applied for both deterministic and stochastic
descriptions.

In framework of the present thesis, the microscopic description of vehicular
ensemble governed by optimal velocity ansatz [3,4,66] for motion on a circle one
lane road has been examined in detail. The following analysis has been performed:

• the model has been thoroughly tested on car collisions in order to determine
the safe domain of system control parameters. The analysis has been done
by a numerical integration of the many–particle system given by multidi-
mensional system of nonlinear differential equations;

• the temporal dependence for the car positions, velocities and headways have
been obtained under the influence of control parameters. The cooperative
motions characterized by the formation of large numbers of car clusters has
been observed;

• the phase portrait in terms of headway distances and velocities has been
analysed for different time moments in order to determine the possible states
of traffic;

• the stochastic force in terms of multiplicative white noise has been included
in car dynamics and the system of stochastic differential equations has been
integrated in order to get the probability distribution functions of headways
and velocities under the influence of control parameters;

• the energy balance equation has been considered and the total energy of the
car system together with the energy flux function have been constructed.

In view of the fact that these is a hypothesis about three phases of traffic
flow, the problem of understanding and description of the intermediate states
has been addressed within the framework of this thesis. The new approach is
based on study of dynamical states controlled by kinetic coefficients taking into
account their anomalous properties and their dependence on position in phase
space. For this purpose, the motion of two cars has been analysed. The leading
car has been assumed to move at constant speed. The following car is specified
by the system of stochastic differential equations in phase space of the headway
and velocity difference with additive white noise. The following analysis has been
performed:

4 PhD Thesis



1.2. Structure of the PhD Thesis

• the dynamical trap concept has been introduced for the follow the leader
model;

• by way of numerical integration, it has been shown that dynamical traps
induce the formation of the macroscopic states which do not characterize by
stationary points of the deterministic force but by complex and cooperative
motion of particles. These dynamical states can be interpreted as a new
type of phase transition.

One of the main effects of the car congestion is the traffic breakdown. This
phenomenon has a probabilistic nature. In order to calculate the traffic break-
down, its stochastic description is defined as a car cluster formation process. For
this reason the model of traffic flow on a freeway section has been considered
and the spontaneous formation of a jam regarded as a large car cluster arising
on the road has been studied. For this purpose, the following analysis has been
performed:

• on mathematical language of stochastic differential equation the term of
traffic breakdown has been formulated;

• the corresponding Fokker–Planck equation in terms of probability density
distribution has been solved analytically;

• the cumulative probability for traffic breakdowns has been obtained and
compared with empirical traffic data.

1.2 Structure of the PhD Thesis

The general review of the theory of stochastic differential equations is given in
Chapter 2. This subject is very extensive and, mainly, the different ways of the
description of stochastic processes are discussed here. In view of the difficulties
of finding the analytical solution, the central question is to develop the numerical
methods of the stochastic equations.

Chapter 3 presents the microscopic description of the car following model based
on the optimal velocity function. The detailed analysis of the nonlinear dynamics
described by deterministic and stochastic approaches has been performed. The
results have been obtained numerically. The noiseless system has been integrated
by usage of the Runge–Kutta method of 4–th order. The stochastic case with
diagonal multiplicative noise has been solved by explicit strong schemes of the
1.5 order. Due to the fact, that traffic flow system is a not conservative one, the
energy balance equation has been derived.

The anomalies in the kinetic coefficient are discussed in Chapter 4. By way
of example, the rather simple model of the motion of two cars is studied and its
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Chapter 1. Introduction

dynamics is analyzed numerically. The lead car has a constant speed. The fol-
lowing car is specified by the system of stochastic differential equations including
additive white noise. The equation for acceleration includes the term which de-
scribes the delay in the driver reaction with perception depending on the velocity
difference. The perception determines the dynamical trap region near the head-
way axis where the velocity difference becomes sufficiently low. The anomalies
of the system behaviour have been investigated.

The physical interpretation and explanation of the traffic breakdown are given
in Chapter 5. The calculations are based on Fokker-Planck equation including
balance equation where the main quantity is the probability density distribution
which has to satisfy the reflecting boundary condition at zero cluster size and
absorbing one at escape cluster size. The drift – diffusion process was considered
in detail as special case of Fokker-Planck equation with linear potential. The
obtained result has been compared with empirical data.

6 PhD Thesis



2 Stochastic Description of

Physical Processes

2.1 Introduction to Stochastic Differential

Equations

In framework of this Chapter, a brief introduction to the theory of stochastic
differential equations will be given [24, 34, 38, 81]. As an example, rather simple
and almost historical processes such as Brownian motion will be analyzed [6,97].
Starting from the microscopical description of stochastic differential equations,
the main properties of the Wiener process given in terms of the Ito description
will be discussed together with the numerical methods of its representation [15,
94]. In order to generalize the features of the stochastic processes described on
microscopic level, the mesoscopic approach in terms of the corresponding Fokker-
Planck or master equations will be considered [23, 24, 81]. The different special
cases will be presented and analyzed by using certain analytical technique as well
as numerical approximations [48, 79, 94].

The Brownian motion which observed originally by Robert Brown in 1827
has initiated the development of a new branch in physics [73]. By modelling
of the nature phenomena, it has been concluded, that the well–investigated de-
terministic approach based on the Newton theory could not give the correct
description of such processes. It has been found that the systems under study do
not have the deterministic behaviour. The detailed experimental investigations
of the Brownian motion have shown that the observed motion is irregular and
unpredictable. First explanations of the Brownian motion have been given by
Einstein and Smoluchowski [16,18,24] and were provided in terms of probability
density distribution. Langevin has used another approach based on Newton’s
law [16, 24]. He assumed that there are two forces having the influence on the
particle dynamics: deterministic force given by friction and stochastic force which
fluctuates rapidly. In next Section, the main properties of the stochastic force
will be discussed using as an example the one–dimensional case.
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Chapter 2. Stochastic Description of Physical Processes

2.1.1 Wiener Process

The one–dimensional stochastic differential equation in terms of the Langevin
notation has the form [24]

dx

dt
= ξ(t) . (2.1)

with the rapidly fluctuating random term ξ(t). The stochastic force ξ(t) presented
by Gaussian white noise, can be explained more strongly from the mathematical
point of view. Mathematically speaking, there is the problem that the Langevin
equation is impossible to integrate [24]. The integral of the random term is not
differentiable. As result, another approach has to be used. Such a technique is
the stochastic integration [15]. The stochastic integral is defined as a limit of the
partial sums which include the increment of the Wiener process. The stochas-
tic differential equation in terms of the Wiener increment is the mathematical
analogue of the Langevin equation (2.1). The Wiener process is the simplest con-
tinuous in time one–dimensional stochastic process [24] and its dynamics obeys
the equation

dx(t) = dW (t) (2.2)

together with the initial condition

x(t = 0) = 0 . (2.3)

The process (2.2) – (2.3) is characterized by the following properties:

• The Wiener process W (t) is normally distributed with mean value

〈W (t)〉 = 0 and variance 〈(W (t))2〉 − 〈W (t)〉2 = t . (2.4)

• All increments
∆W (t) = W (t+ ∆t) −W (t) (2.5)

are independent, therefore

〈∆W (t)〉 = 0 and 〈(∆W (t))2〉 = ∆t . (2.6)

These analytical properties help us to calculate the increment ∆W (t) (stochastic
space step ∆x = ∆W ) numerically from standard normally distributed random
numbers Z ∼ N (0, 1) via

∆W (t) = Z
√

∆t . (2.7)

We have studied three different algorithms to get normally distributed random
numbers Z. All of them produce the transformation to generate from uniform dis-
tributed random numbers Ui ∈ (0, 1) numbers Z ∼ N (0, 1). The transformation
by Polar method has three steps [94]:

8 PhD Thesis



2.1. Introduction to Stochastic Differential Equations

0 1 2 3
t

-2

0

2

x(t)

<dW(t)>=0

<(dW(t))
2
>=dt

Fig. 2.1: Ten stochastic trajectories resulting from Wiener process (2.2) – (2.3)
and obtained by using Polar method.

1. Generate two uniform distributed random numbers U1 and U2;

2. Define Vi = 2Ui − 1;

3. Check the condition that W = V 2
1 + V 2

2 < 1;

4. If ’yes’ create Z = V1

√

−2 log(W )/W ;

5. If ’no’ generate new random numbers (go to 1) and check this condition
again;

For the same realization the Box-Müller method [94] proposes the necessary trans-
formation after the generation U1, U2 ∈ (0, 1) only by one step

Z =
√

−2 lnU1 cos (2 π U2) . (2.8)

It seems, that the difference between both described methods is insignificant and
connected only with the simulation time. Fig. 2.1 shows ten different realizations
of the time evolution given by Wiener process (2.2) – (2.3). The third used
strategy to calculate variable Z is based on theoretical explanations [20, 86]. It
is well-known that the uniform distribution at the interval [0, 1]

puniform(x) =







0 : x < 0
1 : 0 < x < 1
0 : x > 1






(2.9)

has the mean value µ = 1/2, because of

µ =

∫ +∞

−∞

x puniform(x) dx =

∫ 1

0

x dx =
1

2
(2.10)

Julia Hinkel 9



Chapter 2. Stochastic Description of Physical Processes

and the variance σ2 which equals to

σ2 =

∫ +∞

−∞

(x− µ)2 puniform(x) dx =

∫ 1

0

(

x− 1

2

)2

dx =
1

12
. (2.11)

Therefore, the new variable

Z =
12∑

i=1

(

Ui −
1

2

)

(2.12)

has to be approximately the normal distributed one with parameters

〈Z〉 = 0 and 〈Z2〉 − 〈Z〉2 = 1 . (2.13)

It is necessary to generate twelve uniform distributed random numbers for cal-
culation Z for one time step [t, t+ ∆t] following this procedure. Box-Müller and
Polar methods need for it only two random numbers.

2.1.2 Vector Description of Stochastic Differential Equations

In general, the stochastic differential equations in n–dimensional case can be
defined by

dr = A(r) dt+B(r) dW (t) (2.14)

with any initial condition
r(t = t0) = r0 , (2.15)

where r = r(t) ∈ R
n is the phase vector, A(r) is a drift vector (deterministic

part) with the same dimension as phase vector r(t), B(r) ∈ R
n×n is the positive-

defined matrix and dW (t) is n–dimensional increment of the Wiener process [24].
The matrix B(r) is called diffusion matrix and together with the dW (t) form the
stochastic part of the equation (2.14).

The theoretical model which describes the motion of a free Brownian parti-
cle is known as Ornstein–Uhlenbeck process [97]. The model definition can be
schematically presented as the following system of differential equations according
to coordinate x and velocity v

dx

dt
= v , (2.16)

m
dv

dt
= F (x, v, t) . (2.17)

The right part of the equation (2.17) contains the resulting force F (x, v, t) of all
forces acting on a particle. In this case, following the Langevin approach, the
force F (x, v, t) = Fdet(x, v, t) + Fstoch(x, v, t) is the sum of the two contributions,
i. e, the deterministic term Fdet(v) = −mγ v is given as dissipation force with

10 PhD Thesis



2.2. Probabilistic Description of Physical Processes

friction constant γ and, due to the randomness, the stochastic force Fstoch(t) =
m

√
2B dWv(t) with noise intensity parameter B. Finally, the two–dimensional

process is described by the system of stochastic differential equations including
additive white noise

dx = v dt , (2.18)

dv = −γ v dt+
√

2B dWv(t) (2.19)

with initial conditions x(t = t0) = x0 and v(t = t0) = v0. The system (2.18) –
(2.19) can be written in general form in notations of (2.14) as

r(t) =

(
x(t)
v(t)

)

, A(r) =

(
v(t)

− γ v(t)

)

, (2.20)

B(r) =

(
0 0

0
√

2B

)

, dW (t) =

(
dWx(t)
dWv(t)

)

. (2.21)

2.2 Probabilistic Description of Physical Processes

Up to now we have spoken about the process on microscopic level, i. e. we have
looked for the different realizations of the stochastic variable. Nevertheless, it
is not enough to have the authentic view of the concrete dynamics. In order to
obtain the detailed information about the general properties of the given stochas-
tic process, the probabilistic description has to be introduced. In this case, the
ensemble of trajectories is under consideration and the probability density distri-
bution plays the role of the common characteristic.

2.2.1 Fokker–Planck Equation

The equation which gives the time evolution of the probability density for the
system governed by the multidimensional stochastic differential equation (2.14)
is the Fokker–Planck equation [23, 24, 81] and reads as

∂p(r, t)

∂t
= −

n∑

i

∂

∂ri
Ai(r) p(r, t) +

1

2

n∑

i

n∑

j

∂2

∂ri∂rj
Bi j(r) p(r, t) . (2.22)

The initial condition (2.15) is included by the conditional probability

p(r, t|r0, t0) = δ(r − r0) (2.23)

and the normalization condition has to be fulfiled
∫

Rn

p(r, t) dr = 1 . (2.24)

Julia Hinkel 11



Chapter 2. Stochastic Description of Physical Processes

The equation (2.22) can be written in the form of continuity equation [24, 81]

∂p(r, t)

∂t
= −

n∑

i

∂Ji(r, t)

∂ri

(2.25)

in terms of flux Ji(r, t)

Ji(r, t) = Ai(r) p(r, t) −
1

2

n∑

j

∂

∂rj
Bi j(r) p(r, t) . (2.26)

Hence, the stationary solution pst(r) can be found from the identity

n∑

i

∂Ji(r, t)

∂ri
= 0 . (2.27)

For example, the one–dimensional pure diffusion process

dx =
√

2DdW , (2.28)

x(t = t0) = x0 (2.29)

with constant diffusion D > 0 is considered [24, 34]. In this case, the Fokker–
Planck equation takes the simplest form

∂p(x, t)

∂t
= D

∂2p(x, t)

∂x2
(2.30)

with the initial distribution

p(x, t|x0, t0) = δ(x− x0) (2.31)

and the normalization condition
∫ +∞

−∞

p(x, t) dx = 1 . (2.32)

The above–mentioned equation (2.30) is known as diffusion equation and has
been derived and explained by A. Einstein in 1905 [18]. The Gauss or normal
distribution is the solution of the problem (2.30) – (2.31)

p(x, t) =
1√

4 πD t
exp

(

− (x− x0)
2

4D t

)

. (2.33)

The diffusion equation (2.30) is a striking example when the analytical solution
can be found. In order to check our future numerical results we have made the
simulation test and have compared it with the theoretical expression (2.33).
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2.2. Probabilistic Description of Physical Processes

It should be mentioned that, in general, the Fokker–Planck equation (2.22) is
referred to the class of partial differential equations of the parabolic type [89,92].
In principle, there are computation schemes for the direct integration of equations
of this class [88]. Here, we would like to present the numerical algorithm for the
integration of the diffusion equation (2.30) by way of the statistical analysis [35].
The next procedure presents the method to get the probability density p(x, t) for
fixed (observation) time tobs in the interval x ∈ [x, x+∆x] numerically. The idea
consists in the following:

1. Generate the ensemble of N stochastic trajectories from stochastic differ-
ential equations which correspond to the given Fokker-Planck equation;

2. Calculate the number of trajectories n[x,x+∆x] which belong to the interval
[x, x+ ∆x];

3. Calculate the probability density p[x,x+∆x] that at the time moment tobs the
system is in the interval [x, x+ ∆x]

p[x,x+∆x] =
n[x,x+∆x]

N · ∆x . (2.34)

Following the explained procedure and Box-Müller method, the numerical cal-
culation of the probability density distribution have been performed for the en-
semble of 2 million trajectories specified by the stochastic differential equation
(2.28). The observation time have been chosen as tobs = 1 s. The result is shown
in Fig. 2.2. Fig. 2.3 presents the influence of the observation time tobs on the
probability density distribution p(x, t). Expectedly, there is the tendency that
probability density decreases with the growth of time and the solution tends to
zero for a large enough time tobs → ∞.

For completeness of the numerical analysis, the statistical error χ2

χ2 =
1

Nx

Nx∑

i=1

(ptheory(xi) − psimulate(xi))
2 (2.35)

together with the global error ε

ε = max
i=1,···Nx

|ptheory(xi) − psimulate(xi)| (2.36)

have been calculated for different numbers N of the generated trajectories [11].
The parameter Nx means the size of the numerical discretisation for coordinate
x and can be obtained by

Nx = int

[
xmax − xmin

∆x

]

, (2.37)
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Fig. 2.2: Numerical results (circles) obtained by the procedure (2.34) for the
solution p(x, t) of the one–dimensional diffusion equation (2.30) with diffusion
constant D = 1 m2/s for an ensemble of 2 millions trajectories generated by
Box–Müller method with the initial condition x(t = 0) = x0 = 0 m and for the
observation time t = tobs = 1 s. The simulation has been done for ∆t = 10−2 s
and ∆x = 10−1 m. The theoretical normal distribution given by the equation
(2.33) is shown by the smooth curve. The right plot presents the same results
but in logarithmic scale.
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Fig. 2.3: Numerical results obtained by the procedure (2.34) for the solution
p(x, t) of the diffusion equation (2.30) with diffusion constant D = 1 m2/s for an
ensemble of 1 millions trajectories with the initial condition x0 = 0 m for t = 0 s
for the different observation times tobs, i. e. from the bottom to the top tobs = 1 s,
tobs = 0.5 s, tobs = 0.1 s, tobs = 0.05 s, respectively.
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2.2. Probabilistic Description of Physical Processes

Tab. 2.1: The statistical χ and global ε errors calculated by formulae (2.35)
and (2.36) respectively for different ensemble sizes N . The computing time T is
measured in seconds.

N χ2 ε T, s

101 0.6004 1.7469 0.004

102 3.0246 · 10−2 0.5204 0.012

103 1.5530 · 10−3 0.1353 0.080

104 1.4036 · 10−4 4.7264 · 10−2 0.340

105 5.7380 · 10−5 2.0790 · 10−2 2.896

106 3.9776 · 10−5 1.5627 · 10−2 28.262

-4 -2 0 2 4
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0

0.2

0.4

p(
x,

t ob
s=

1)

N=10
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N=10
3

N=10
4

N=10
5

Fig. 2.4: Numerical results (symbols) obtained by the procedure (2.34) for the
solution p(x, t) of the one–dimensional diffusion equation (2.30) with diffusion
constant D = 1 m2/s for the different ensemble size N trajectories generated by
Box–Müller method with the initial condition x(t = 0) = x0 = 0 m and for the
observation time t = tobs = 1 s. The simulation has been done for ∆t = 10−2 s
and ∆x = 10−1 m. The theoretical normal distribution given by the equation
(2.33) is shown by the smooth curve.
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Fig. 2.5: The numerical error analysis is shown. The left plot is the statistical χ2

and global ε errors as functions of ensemble size N (see Tab. 2.1 and Fig. 2.4). The
right figure is the N–dependence of the computing time T measured in seconds.

where xmax and xmin are the maximum and minimum value of simulated points
xi. The problem of the optimal ensemble size N is discussed and results are
explained by Tab. 2.1 and in Figs. 2.4 and 2.5.

The obvious example of the multidimensional Fokker–Planck equation is the
Brownian motion described by the stochastic differential equations (2.18) – (2.19)
[6, 24]. In this case of Ornstein–Uhlenbeck, the dynamics is given by

∂p(x, v, t)

∂t
= − ∂

∂x
(v p(x, v, t)) + γ

∂

∂v
(v p(x, v, t)) +B

∂2

∂v2
p(x, v, t) (2.38)

taking into account the initial condition

p(x, v, t = 0) = δ(x− x0) δ(v − v0) . (2.39)

The equation (2.38) can be considered as the one-dimensional Fokker–Planck
equation for the velocity distribution pv(v, t) after the transformation

pv(v, t) =

∫ +∞

−∞

p(x, v, t) dx (2.40)

and the probability density function pv(v, t) is the solution of the problem

∂pv(v, t)

∂t
= γ

∂

∂v
(v pv(v, t)) +B

∂2

∂v2
pv(v, t) (2.41)

with pv(v, t = 0) = δ(v−v0). Due to the relation (2.27), the stationary probability
density pst(v) satisfies the equality

d

dv

[

γ v pst(v) +B
d

dv
pst(v)

]

= 0 . (2.42)
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2.2. Probabilistic Description of Physical Processes

Taking into account that pst(v → ∞) = 0, the following identity holds

γ pst(v) +B
d

dv
pst(v) = 0 . (2.43)

The transformation u(v) = ln(pst(v)) simplifies the integration and the equation
for u(v) reads as

du

dv
= − γ

B
v (2.44)

and allows to get the solution for u(v)

u(v) = −N γ

2B
v2 (2.45)

with an accuracy of the integration constant N . Taking into account the inverse
transformation pst = exp(u(v)) together with the initial condition pv(v, t = 0) =
δ(v − v0) and the normalization (2.24), the stationary solution for the velocity
distribution function pst(v) has the form

pst(v) =

√
γ

2 π B
. exp

(

− γ

2B
v2
)

. (2.46)

Fig. 2.6 illustrates the function (2.46) together with an example of the motion of
a Brownian particle obtained numerically by using the algorithm called explicit

1.5 order strong scheme [48].
On the other hand, these are no interactions between Brownian particles.

Hence, the previous result (2.46) has to coincide with the Maxwell distribution

pst(v) =

√
m

2 π kB T
. exp

(

− mv2

2 kB T

)

(2.47)

with the temperature T , Boltzmann constant kB and the particle mass m. Then,
the following correspondence holds

B =
γ kB T

m
. (2.48)

The relation (2.48) is known as fluctuation–dissipation theorem. Its first expla-
nation has been given by Einstein in 1905 [18] and based on the fact that the
viscous friction γ of a Brownian particle has to be connected to the diffusion
constant B, i. e. the deterministic force Fdet (friction force) should be related to
the stochastic force Fstoch (see Sec. 2.1.2).

2.2.2 Master Equation

The differential form of the Chapman–Kolmogorov equation [24, 66] for Markov
processes is called the master equation [38] and reads as

∂p(x, t)

∂t
=

∫

[w(x, x′)p(x′, t) − w(x′, x)p(x, t)] dx′ , (2.49)
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Fig. 2.6: The left diagram shows the realization of the Brownian motion de-
scribed by the set of equations (2.18)–(2.19) on the phase space of the coor-
dinate x and velocity v for the first 10 s of the motion. The initial position
x(t = 0) = x0 = 0 m and v(t = 0) = v0 = 0 m/s is marked by the circle.
The right plot presents the stationary velocity distribution calculated numeri-
cally (circles) and is compaired with the analytical solution (2.46). The following
parameters have been used: γ = 0.5 s−1, B = 0.1 m2/s3.

where w(x, x′) are transition probabilities per time unit and have to be defined
according to the problem under consideration. The analytical solution p(x, t)
should be found by means of the direct integration of the integro–differential
equation (2.49) with respect to time t. Unfortunately, there are only some special
cases when it is possible. It is significant that the master equation (2.49) can be
approximated by Fokker–Planck equation (2.22) [24,38]. Hence, in the case when
it is impossible to get the exact solution of (2.49), its expansion to the Fokker–
Planck equation (2.22) has to be done. The explained transformation is known
as Kramers–Moyal equation or expansion [24] and given by

∂p(x, t)

∂t
=

+∞∑

i=1

(−1)i

i!

∂i

∂xi
(αi(x, t) p(x, t)) , (2.50)

where function αi(x, t) is the i–th moment of the transition probability w(x, x′)

αi(x, t) =

∫ +∞

−∞

(x− x′)w(x, x′) dx′ . (2.51)

The truncation of the expression (2.50) for i = 1, 2 produces the Fokker–Planck
equation.

If the stochastic variable x takes the discrete states n, then the dintegro–
differential equation 2.49) reduces to

∂p(n, t)

∂t
=
∑

n′ 6=n

[w(n, n′) p(n′, t) − w(n′, n) p(n, t)] . (2.52)
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2.2. Probabilistic Description of Physical Processes

Fig. 2.7: Possible variation of the stochastic variable n for the one–step process
described by the master equation (2.53).

The well–known and extensively used example of such a problem is a birth–death

process. In this case, the discrete stochastic variable n ≥ 0 is interpreted as the
current size of a population (n = 0, 1, 2, . . .N) and can change only by ±1 per
event. The increasing (n → n + 1) or decreasing (n → n − 1) of the population
size happend due to the beforehand defined transition rules w+(n) and w−(n)
respectively. The birth-death or generation–recombination process belongs to the
one–step process and its dynamics is described by the one–step master equation

∂p(n, t)

∂t
= w+(n− 1)p(n− 1, t) +w−(n+ 1)p(n+ 1, t)− [w+(n) + w−(n)] p(n, t) ,

(2.53)
where w+(n) and w−(n) can be interpreted as the growth and the dissolution

transition rates respectively to increase or decrease the stochastic variable n by
one per time unit. The schematic illustration of a such a procedure is shown on
Fig. 2.7.

By analogy with the diffusion equation (2.30) the numerical solution of prob-
ability density p(n, t) can be found. As before, an ensemble of N stochastic
trajectories n(t) has to be generated. The simulation algorithm of the one–step
process is under consideration. The method with stochastic time step ∆t has
been used according to the following procedure:

1. Calculate transition probabilities w+(nold) and w−(nold);

2. Calculate conditional probability y1 that a jump takes place and n decrease

y1 =
w−(nold)

w+(nold) + w−(nold)
(2.54)

3. Generate uniform distributed random numbers ξ1 from the interval [0, 1];

4. Calculate stochastic step size ∆t

∆t = − ln ξ1
w+(nold) + w−(nold)

; (2.55)
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Fig. 2.8: Three stochastic trajectories for the one–step process governed by
the master equation (2.53) with constant transition rates w−(n) = w1 and
w+(n) = w2 obtained by the numeric method for the random time step have
been generated. Three different cases are shown, i.e. the circles illustrate the
time evolution for w1 = w2 = 0.2 s−1, the diamond points describe the pure
growth process with w1 = 0 s−1 and w2 = 0.2 s−1 and the stars reflect the
dissolution process with w1 = 0.2 s−1 and w2 = 0 s−1.

5. Increase the time by tnew = told + ∆t;

6. Generate a uniform distributed random numbers ξ2 from the interval [0, 1];

7. Check whether ξ2 < y1;

8. If ”yes” then nnew = nold − 1, otherwise nnew = nold + 1 for tnew.

The realization of the explained algorithm and the influence of the transition
rates w−(n) and w+(n) are shown on Fig. 2.8. Finally, the probability density
p(n, t) is calculated by the same way as explained in Section 2.2.1.

2.3 Active Brownian Particles

We have already mentioned in Introduction that the object of our current in-
vestigations is the understanding of the nature of complex systems taking as an
example the vehicular traffic. One main distinctive property of such a system is
the fact that the system consists of so–called driven particles [29]. In this case,
the system under consideration is open and dissipative. As a result, due to the
influence of driving and friction contributions into the car dynamics, the energy
of the system is not conserved.
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2.3. Active Brownian Particles

For example, let us introduce here the active Brownian particle dynamics [91].
The motion of usual Brownian particles is given by the system of stochastic
differential equations (2.18) – (2.19) with the friction constant γ and the diffusion
term B. Taking into account the energy exchange with the environment, the
influence of the energy depot function e(t) should be added to the system of
stochastic differential equations (2.18)–(2.19). The additional equation has the
form

d

dt
e(t) = q(x) − c e(t) − d(v) e(t) (2.56)

with the following contributions:

• q(x) is the energy flux into depot;

• c e(t) is stored energy which is proportional to energy depot e(t) with coef-
ficient c;

• d(v) e(t) is conversion of internal energy into motion and d(v) is the rate of
conversion of internal energy into kinetic energy.

Furtheron the simplest ansatz for d(v) = d2 v
2 with d2 > 0 will be used.

The main idea of presented explanations is to introduce a nonlinear friction
function Γ(v) having in mind the energy depot effect. For this fact, let us remind
the balance equation for the total energy E(t) of the system. In our case the total
energy E(t) consists on two contributions, i. e. kinetic energy T (t) and energy
depot e(t). Then,

d

dt
E(t) =

d

dt
(T (t) + e(t)) =

d

dt

(
1

2
mv2 + e(t)

)

. (2.57)

The temporal change of the kinetic energy T (t) happens due to two facts. One
of them is the influence of the friction term included in the equation (2.19).
Another reason is the conversion of depot energy e(t) into the kinetic energy
d2 v

2 e(t) (2.56). Hence,

d

dt
T (t) = (d2 e(t) − γ) v2 . (2.58)

Using (2.57) and (2.58), the resulting balance equation reads as

d

dt
E(t) = q(x) − c e(t) − γ v2 . (2.59)

The extension of the equation (2.58)

d

dt

(
1

2
mv2

)

= mv
dv

dt
= (d2 e(t) − γ) v2 , (2.60)

m
dv

dt
= − (γ − d2 e(t)) v (2.61)

Julia Hinkel 21



Chapter 2. Stochastic Description of Physical Processes

provides the connection between equations (2.18) – (2.19) and (2.56). Finally,
the system will be described by the following set of the stochastic differential
equations

dx = v dt , (2.62)

dv = −Γ(v) v dt+
√

2B dW (t) , (2.63)

d

dt
e(t) = q(x) − c e(t) − d2 v

2 e(t) , (2.64)

where Γ(v) = γ − d2 e(t) is the velocity–depended friction function.
The corresponding Fokker–Planck equation to the system of equations (2.62)

– (2.64) has the form

∂p(x, v, t)

∂t
= − ∂

∂x
(v p(x, v, t)) − ∂

∂v
(F (v) p(x, v, t)) +B

∂2

∂v2
p(x, v, t) , (2.65)

where F (v) = −Γ(v) v. We would like to find the stationary solution of the
reduced probability density pst(v) given by the expression (2.40). Due to these
assumptions, the following equation should be solved

− d

dv

(
F (v) pst(v)

)
+B

d2

dv2
pst(v) = 0 (2.66)

or in the equivalent form

d

dv

[

−F (v) pst(v) + B
d

dv
pst(v)

]

= 0 (2.67)

from which follows that

−F (v) pst(v) +B
d

dv
pst(v) = 0 . (2.68)

The transformation u(v) = ln(pst(v)) simplifies the integration. The transformed
equation reads

du

dv
=

1

B
F (v) (2.69)

and allows us to get the solution for u(v) in the form

u(v) =
1

B

∫ v

0

F (v) dv . (2.70)

The stationary solution for the velocity distribution function pst(v) reads as

pst(v) = exp

(
1

B

∫ v

0

F (v) dv

)

. (2.71)
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Fig. 2.9: The velocity–depended friction function (2.72). The curve is shown
for the following set of parameters: γ = 20 s−1, q0 = 10 m2/s3, d2 = 10 s/m2,
c = 1 s−1.

As an example, we consider the following ansatz for the friction function
Γ(v) [91]

Γ(v) = γ − d2 est = γ − q0 d2

c+ d2 v2
(2.72)

using the stationary solution est of (2.64) with positive constants γ, q0, c and
d2. The behaviour of the friction function (2.72) is presented is Fig. 2.9. The
dotted line shows the zero axis. This line divides the plot domain on two regions,
Γ(v) < 0 and Γ(v) > 0. The first case corresponds to the situation of the energy
pumping to the system dynamics or, what the same, the acceleration of particle
for v < v0 where v0 is defined by Γ(v0) = 0. The second case is the opposite one
and can be interpreted as the energy dissipation or the deceleration process for
v > v0.

The stationary solution pst(v) of the Fokker–Planck equation with the friction
function (2.72) is calculated from (2.71) by using

∫ v

0

F (v) dv = −
∫ v

0

v Γ(v) dv = − 1

2
γ v2 +

1

2
q0 ln

(
c+ d2 v

2
)

+ F0 , (2.73)

where the integration constant F0 is equal to 1
2
q0 ln(c). Finally, the stationary

solution of Fokker–Planck equation for the velocity distribution (2.66) with the
friction function Γ(v) given by the expression (2.72) has the form

pst(v) = p0

(
c + d2 v

2
)
q0
2B exp

(

− 1

2B
γ v2

)

(2.74)
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Fig. 2.10: The stationary solution (2.74) of the reduced Fokker–Planck equation
(2.66) with velocity depended friction Γ(v) according to (2.72). The results are
shown for different value of the diffusion constant B. Other parameter are the
same as in Fig. 2.9.

with normalisation constant p0

p0 =

(
∫ ∞

0

(
c+ d2 v

2
)
q0
2B exp

(

− 1

2D
γ v2

)

dv

)−1

. (2.75)

Fig. 2.10 illustrates the behaviour of the stationary solution given by (2.74).
In the context of this Chapter, the brief introduction to the theory of stochastic

processes has been performed. The main topic of our subsequent explanations
is the description of traffic flow. As it has been already mentioned before, the
traffic flow has complex structure. The different approaches are proposed in
order to analyze such a nontrivial behaviour in details. Therefore, the dynamics
including nonlinearity is under consideration. In order to understand the cluster
formation, the spatial temporary diagrams together with the velocity changing
in time are derived from the corresponding governed equation. In this case, the
analysis leads on microscopic level, and equations of motion can be given in the
form of (2.14) with or without noise, i.e. stochastic or deterministic description
respectively. To represent the general situation on the road, the probabilistic
approach based on Fokker–Planck equation (2.22) or on master equation (2.52)
should be applied. Such a common characteristic having the probabilistic nature
is the traffic breakdown. It has been fixed from the empirical data [52], that when
the jam reaches its critical size, the motion breaks. The cluster size is defined
as a number of cars in jam. According to this fact, the growth or dissolution of
cluster size can be investigated, see Fig. 2.7. Such processes are described by the
one–step master equation (2.53).
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3 Dynamics of Traffic Flow

3.1 Following the Leader Model

This Section is devoted to the description of the models used below. The car
following model imitates real traffic on a one–lane road without crossroads. This
model takes into account mainly the interaction of the neighboring cars governing
their dynamics and ignores car overtakings. Despite this interaction being local
in nature, it gives rise to cooperative phenomena that manifests the formation,
dissolution and joining of large car clusters. The cooperative phenomena are
rather intricate depending on specific values of the control parameters.

The basic element of this approach is the description of a car pair where the
lead car moves at the given velocity (e. g. changing with time). The governing
equation is written for the following car. Within the standard approximation,
the motion of the following car is specified by its coordinate xn(t) and its velocity
vn(t). Referring to analogy with Brownian motion given by the system of stochas-
tic differential equations (2.16) – (2.17) discussed in Chapter 2, the equation for
the acceleration including the deterministic force and Langevin source has the
form

dxn

dt
= vn , (3.1)

m
dvn

dt
= Fdet(xn, xn+1, vn, vn+1) + Fstoch(xn, vn, t) , (3.2)

where m is the mass of each car. The right hand side of the equation for the
acceleration (3.2) contains the total force which represents the sum of all forces
acting on the n-th vehicle. The driver collects information about the motion
mainly through the visual perception. The information consists of car velocities,
accelerations, vehicle spacings and relative velocities. It should be mentioned
that the driver is sensitive only to some of these characteristics. According to
the obtained information, the driver should make a decision about his driving
strategy. In this manner, the equation for the acceleration (3.2) can be interpreted
as a response–stimulus relationship. In other words, the driver responds according
to a given stimulus derived from the current driving characteristics.

Usually, the deterministic force Fdet is responsible for the optimal safe motion.
Moreover, there are two stimuli affecting the driver’s behaviour. One of them is
the wish to move as fast as possible, i.e. with the speed vn+1 of the leading car. In
this manner, the driver should control the velocity difference vn+1−vn . The other
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Fig. 3.1: The optimal velocity function vopt(∆x) vs headway ∆x given by the
expression (3.3).

is the necessity to maintain the headway distance ∆xn = xn+1 − xn between two
neighboring cars with position xn and xn+1 respectively. The headway depends,
of course, on the velocity vn+1 of the leading car. In particular, the earliest
follow–the–leader models [78,87] take into account the former stimulus only and
leave out the headway ∆xn completely. In contrast to that, the optimal velocity

model [3,4] directly relates the acceleration to the difference between the current
velocity vn and a certain optimal value vopt(∆xn) at the current headway ∆xn.
The dependence of the optimal motion of the headway can be written applying
a rather general speculations:

• when the headway decreases ∆xn → 0 the optimal velocity is a decreasing
function of the headway and becomes zero: vopt(∆xn → 0) → 0;

• on the empty road, corresponding to the infinitely large headway, the car
velocity reaches its maximum allowed velocity: vopt(∆xn → ∞) → vmax.

3.1.1 Bando’s Optimal Velocity Model

The idea proposed by Bando et. al. [3,4] consists of the introduction of the smooth
and sigmoid function vopt(∆x) satisfying the conditions described in the previous
Section 3.1. The example of such a function extensively used by Mahnke et.
al. [64–67] is given by the following ansatz

vopt(∆x) = vmax
(∆x)2

D2 + (∆x)2
(3.3)

and shown in Fig. 3.1. The optimal velocity relationship (3.3) contains two
parameters, i. e. the maximum velocity vmax and the interaction distance D.

In order to explain the structure of the right–hand side of the equation (3.2),
let us, at first, consider the pure deterministic model where Fstoch(x, v, t) = 0.
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Fig. 3.2: The acceleration Facc(v) (left hand side) and deceleration Fdec(∆x)
(right hand side) forces described by expressions (3.5) and (3.6) respectively.

Under these conditions, the deterministic force Fdet(x, v, t) can be interpreted
as the sum of the acceleration force Facc(v) depending on velocity v and the
deceleration force Fdec(∆x) as a function of headway distance ∆x

Fdet(v,∆x) = Facc(v) + Fdec(∆x) . (3.4)

The acceleration force Facc(v) is introduced as a linear function with the domain
v ∈ [0, vmax]. When the velocity reaches its maximum value v = vmax further
acceleration is not possible and Facc(v = vmax) = 0. That is why, the following
expression has been proposed

Facc(v) = m
vmax − v

τ1
≥ 0 , (3.5)

where the time scale τ1 characterizes the driver’s response. Following similar
arguments, the headway dependence of the deceleration is written as

Fdec(∆x) = m
vopt(∆x) − vmax

τ2
≤ 0 . (3.6)

Here, τ2 is the breaking time. For simplicity, the case of τ = τ1 = τ2 will be
discussed further on. The functions (3.5) and (3.6) are shown in Fig. 3.2. Then,
in the general case, the governing equations (3.1) – (3.2) become

dxn

dt
= vn , (3.7)

dvn

dt
=

1

τ
(vopt(∆xn) − vn) , n = 1, . . . , N , (3.8)

where N is the total number of cars. The sign of the term vopt(∆xn) − vn deter-
mines whether the driver will accelerate when vopt(∆xn) > vn or decelerate when
vopt(∆xn) < vn.

Julia Hinkel 27



Chapter 3. Dynamics of Traffic Flow

To complete the description of car dynamics (3.7) – (3.8), we consider a circle
road of length L or, which is equivalent, the periodic boundary conditions will
be used such as

N∑

i=1

∆xn = 0 . (3.9)

In order to analyse the system of equations (3.7) – (3.8) in the dimensionless
form, the new variables

un =
vn

vmax

, yn =
xn

D
, T =

t

τ
(3.10)

are introduced and the governing equations becomes

dyn

dT
=

1

b
un , (3.11)

dun

dT
= uopt(∆yn) − un , (3.12)

where the dimensionless optimal velocity function has the form

uopt(∆y) =
(∆y)2

1 + (∆y)2
(3.13)

and the new control parameter b is defined as

b =
D

τ vmax
. (3.14)

3.1.2 Stability analysis

Let us rewrite the system of 2N differential equations of first order (3.11) – (3.12)
as

d2yn

dT 2
=

1

b
uopt(∆yn) − dyn

dT
, n = 1, . . . , N . (3.15)

The stationary solution of (3.15) is a system of uniformly distributed vehicles
with constant speed

∆yst
n = ∆yst =

L
N
, (3.16)

ust
n = ust = uopt(∆y

st) . (3.17)

The stationary headway ∆yst can be discussed introducing the new parameter c
given as

c =
N

L (3.18)

28 PhD Thesis



3.1. Following the Leader Model

representing the concentration on the road of length L = L/D. In this case, the
stationary headway (3.16) is

∆yst =
1

c
. (3.19)

In order to analyze the stability of the stationary solution (3.15), we consider
small perturbations in the car dynamics in its vicinity [4, 29]

yn =
1

b
ust T + ∆yst n+ δyn (3.20)

and
dyn

dT
=

1

b
uopt

(
∆yst

)
+
dδyn

dT
. (3.21)

The equation related to small perturbations δyn has the form

d2δyn

dT 2
=

1

b

duopt

d∆y

∣
∣
∣
∣
∣
∆y=∆yst

+
dδyn

dT
. (3.22)

By virtue of the periodic boundary conditions, the solution of the wave equation
(3.22) can be taken as

δyn ∝ exp
(
i k n∆yst + γ T

)
, (3.23)

where k is the wave vector and γ is the frequency. After substituting of (3.23)
into (3.22), the eigenvalue equation for γ gets the form

γ2 + γ =
1

b

duopt

d∆y

∣
∣
∣
∣
∣
∆y=∆yst

[
exp

(
i∆yst k

)
− 1
]
. (3.24)

The following situation will be discussed:

• the instability for ℜ(γ) > 0;

• stability threshold for ℜ(γ) = 0;

• stability for ℜ(γ) < 0.

Let us calculate the stability threshold. Due to the vanishing real part, only the
pure imaginary roots

ℜ(γ) = 0 or γ = i z (3.25)

have to be found. According to this assumption, from (3.24) we get

− z2 + i z =
1

b

duopt

d∆y

∣
∣
∣
∣
∣
∆y=∆yst

[

i sin
(
∆yst k

)
− 2 sin2

(
1

2
∆yst k

)]

. (3.26)
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The roots of equation (3.26) are given by

z2 = 2
1

b

duopt

d∆y

∣
∣
∣
∣
∣
∆y=∆yst

sin2

(
1

2
k∆yst

)

(3.27)

and

z = 2
1

b

duopt

d∆y

∣
∣
∣
∣
∣
∆y=∆yst

sin

(
1

2
k∆yst

)

cos

(
1

2
k∆yst

)

. (3.28)

Finally, the stability threshold reads as

b = 2
duopt

d∆y

∣
∣
∣
∣
∣
∆y=∆yst

cos2

(
1

2
k∆yst

)

(3.29)

and the instability condition for perturbation (3.23) is

b < b(c) , (3.30)

where the function b(c) is given as a function of the car concentration c

b(c) =
duopt

d∆y

∣
∣
∣
∣
∣
∆y=1/c

(

1 + cos

(
2π

N

))

=
2 c3

(c2 + 1)2

(

1 + cos

(
2π

N

))

. (3.31)

The maximum of b(c) corresponds to the situation when

d2uopt

d∆y2

∣
∣
∣
∣
∣
∆y=1/c

= 0 . (3.32)

The finite–size effect on the phase diagram, where the regions of stable and un-
stable homogeneous flow are separated by the curve b(c), is illustrated in Fig. 3.3.
The homogeneous stationary solution (3.16)–(3.17) transforms into a heteroge-
neous limit–cycle solution when entering the region below the b(c) curve. The
stability of the limit–cycle solution for N = 60 cars has been studied numerically,
and we have found that it becomes unstable when exiting the region below the
dashed curve shown in Fig. 3.3. In other words, like in many physical systems
(e. g. supersaturated vapour), we observe a hysteresis effect which is a property
of the first–order phase transition.

3.2 Phases of Traffic Flow

The system of equations (3.11) – (3.12) has been integrated numerically by using
the Runge–Kutta method of 4–th order [79] with the fixed time step ∆T = 10−2.
The ensemble of 150 cars has been considered. Due to the stability analysis
presented in Section 3.1.2 and shown in Fig. 3.3, three regimes are under consid-
eration. The following control parameters have been used: b = 1.1 and different
values of the concentration c
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Fig. 3.3: Phase diagram as b-c-plane for a system with fixed different number of
cars N . From the bottom to the top solid curves b(c) show the stability border
of the homogeneous traffic flow at N = 6, N = 10, and N = 60, respectively.
The dotted curve is the function b(c) when N tends to infinity. Each b(c) plot
has a maximum at the critical density ccr =

√
3 ≈ 1.732. The maximum value

at N → ∞ is bcr = 3
√

3/4 ≈ 1.299.

1. c = 0.5 – stable case;

2. c = 2 – unstable case;

3. c = 3.5 – stable case.

Initial conditions were specified in the following way: the vehicles are assumed
to stand and their positions are randomly determined. This situation is marked
in Fig.3.5 by star points. In order to visualize different stages of the car dynamics
(3.11) – (3.12), the vehicle distributions is shown for different time intervals. The
short–time behaviour is represented in Figs. 3.4 and 3.5 where cars accelerate
very fast. Fig. 3.4 visualises the car motion within a time interval required for
the one fixed car to run over the whole circle. During this phase typically several
clusters form. Their number can be different for various implementations. It is
found that the number of clusters is random due to the randomness in initializa-
tion of the coordinates. Fig. 3.5 represents this process for different numerical
realizations in phase space of velocity u(T ) and headway distance ∆y(T ). It
should be emphasized, that in spite of different number of clusters forming dur-
ing this stage, the velocity of cars in the clusters is the same and rather low. The
latter feature allows us to view these clusters as a phase state of traffic flow with
specific parameters, in particular with characteristic velocity. Furtheron, the
transient time is illustrated in Figs. 3.6 and 3.7. According to the value of the
concentration c, two different kinds of the system behaviour have been observed.
For small and significantly large concentrations, i. e. c = 0.5 and c = 3.5 respec-
tively, dynamics starts to reach its stable mode. In this case, for c = 0.5 cars
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Fig. 3.4: The space time plot y(T ) described by the nonlinear dimensionless dif-
ferential equations (3.11) – (3.12) for the different values of the car concentration
c. From bottom to the top c = 3.5, c = 2, c = 0.5. The bold line represents the
movement of one particular car.
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Fig. 3.5: The phase portrait (∆y, u) (circles) of the car following model described
by the system of equations (3.11) – (3.12) for the fixed time moment T = 180
and car concentration c = 2. The initial distribution is marked by star points.
The bold line shows the dimensionless optimal velocity function (3.13).
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Fig. 3.6: The space time plot y(T ) described by the differential equations (3.11)
– (3.12) for the car concentration c = 2. The bold line presents the moving of
one particular car.
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move relative fast with the velocity un(T ) ≈ ust = 0.8 and the headway distances
∆yn(T ) ≈ ∆yst = 2. Whereas, the traffic is so occupied for c = 3.5, that the ve-
hicles are almost staying un(T ) ≈ ust = 0.07 close to each other with the distance
∆yn(T ) ≈ ∆yst = 0.286. These two regimes are stable and can be interpreted
as free flow and heavy traffic. Fig. 3.6 describes the contrary regime for c = 2
which is completely unstable. The system continues its development further on.
In this case, the process is characterized by the motion of large numbers of small
clusters. Some of them join other clusters and form larger congestions. The com-
petition between clusters takes place. In order to show this effect, velocity u75(T )
together with headway ∆y75(t) have been plotted at T = 600 for one particular
car. The results are illustrated in Fig. 3.8. The joining of a particle to the cluster
can be observed by its velocity drop. The motion in a cluster is determined by
low velocities and small headways. In the case of the stable motion, when the
traffic is either free (c = 0.5) or very dense (c = 3.5), the system comes to its
stable behaviour relative fast. The tendency of the dynamics has been already
visible for the time interval T ∈ [0, 600] (see Fig. 3.7). The system reaches its
stationary point and stays there. Another situation has been observed for the
unstable regime (c = 2). It takes infinitely long time until the motion can be
stabilized and converged to the stable limit cycle. Then, all clusters should be
reduced to a fixed number of moving cluster. Figs. 3.9, 3.10 and 3.11 show the
long time behaviour. At this stationary regime, two phases of traffic flow occur.
The movement of the particles is concentrated in two regions. The region in
Fig. 3.12 where the velocity and headway values are close to zero represents the
motion in the jam. When a particle leaves the cluster and starts to accelerate,
it enters the free flow. After some time, the particle decelerates, the distance
to the neighbour car decreases and it joins the jam once again. Such a periodic
behaviour is known as stop–and–go waves. Both velocities in jam and in free
flow have been calculated numerically. A car moves in a cluster with the speed
ucluster = 3.677 · 10−2. Whereas, the the motion in free flow takes place with the
velocity ufree = 0.545.

3.3 Langevin Approach

Up to now the deterministic car following model has been discussed. In order
to consider the stochastic description of traffic flow, the multiplicative Gaussian
white noise has been added to the dynamics described by the set of equations
(3.11) – (3.12) to the equation for acceleration (3.12)

dyn =
1

b
un dT , (3.33)

dun = (uopt(∆yi) − ui) dT + σui dWi(T ) n = 1, . . . , N. (3.34)
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Fig. 3.7: The phase portrait (∆y, u) obtained from the car following model
described by the system of stochastic differential equations (3.11) – (3.12) for the
fixed time moment T = 600 for different car concentrations. From bottom to top
c = 3.5, c = 2, c = 0.5. The bold line shows the dimensionless optimal velocity
function (3.13).
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Fig. 3.8: The temporal variation of the velocity u75(T ) (left side) and headway
∆y75(T ) (right side) for one particular car n = 75 and given concentration c = 2.

Here, the new parameter σ is the dimensionless noise amplitude. Such a descrip-
tion is similar to the description of the stochastic differential equations introduced
in Chapter 2. For our case, the system (3.33) – (3.34) can be also written in the
vector form, compare with (2.14), as

dr(T ) = A(r, T ) dT +B(r, T ) dW (T ) , (3.35)

where r(T ) ∈ R
2N and A(r, T ) ∈ R

2N dimensional vectors

r(T ) =











y1(T )
. . .

yN(T )
u1(T )
. . .

uN(T )











, A(r, T ) =











u1(T )
. . .

uN(T )
uopt(∆y1) − u1

. . .
uopt(∆yN) − uN











. (3.36)

The diffusion 2N × 2N matrix B(r, T ) ∈ R
2N×2N has the block structure

B(r) =

[
O O
O U(r)

]

, (3.37)

where each block is a N × N matrix. The matrix O ∈ R
N×N consits of zero

elements due to the fact that the stochasticity term accounts for acceleration
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Fig. 3.9: Velocities un(T ) (left side) and headway distances ∆yn(T ) (right side)
for all particles n = 1, . . . , N for the concentration c = 2 for different time
moments.
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Fig. 3.10: The space time plot y(T ) described by the differential equations (3.11)
– (3.12) for the car concentration c = 2. The bold line presents the moving of
one particular car..
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Fig. 3.11: The long time behaviour of the velocity u75(T ) (left side) and headway
∆y75(T ) (right side) for one particular car and for the concentration c = 2.
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Fig. 3.12: The limit cycle regime for c = 2. The circles show the calculated
velocities vs headway distances. The solid line presents the theoretical ansatz for
the optimal velocity uopt(∆y) given by expression (3.13).
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only. Hence, the block U ∈ R
N×N is the diagonal matrix and has the form

U(r) =









σ u1(T ) 0 . . . 0
0 σ u2(T ) . . . 0
. . . . . . . . . . . .
. . . . . . . . . . . .
0 0 . . . σ uN(T )









. (3.38)

The multiplicative noise has been included to the equation for the acceleration
and has been considered in order to control the velocity and to neglect its negative
value.

It has been already introduced in Chapter 2 that there is an equivalent proba-
bilistic form of the microscopic stochastic description (3.33) – (3.34) in terms of
the probability density P (u,∆y, T ). In order to obtain the stationary distribu-
tion function P (u,∆y), the system (3.33) – (3.34) has been simulated by usage
of the explicit strong schemes of the 1.5 order [48] for the three values of the car
concentration c. We have fixed the control parameter b = 1.1 and noise ampli-
tude σ = 0.1. The integration has been done with the time step ∆T = 5 · 10−3

for the time interval T ∈ [0, 104]. Fig. 3.13 shows the stationary probability den-
sities in terms of velocity P (u) and headway distance P (∆y) distributions. The
unimodal distributions have been obtained for the case of c = 0.5 and c = 3.5.
The maximum of the functions P (u) and P (∆y) locates near the stationary point
ust = uopt(y

st) and ∆yst = 1/c respectively. The one–maximum distributions rep-
resent the existence of one phase in traffic flow which can be either free (c = 0.5)
or dense (c = 3.5) traffic. The probability density function for the velocity as
well as for the headway becomes a bimodal distributions for the concentration
c = 2. Each maximum is responsible for the specific scenarios. Thus, one peak
corresponds to low velocity and small headway describing the motion in the jam.
The second maximum is related to the free flow and defined by high velocity and
large headway distance.

Both deterministic and stochastic approaches of the car following model have
been carried out. The analysis shows the existence of two phases of traffic flow,
i. e. either free or congested. The free flow is characterized by high velocities
which are approximately equal to the maximal allowed speed. The congested
traffic occurs with the increase of the car concentration. Such a movement is
represented by the different numbers of moving clusters with the same velocity
close to zero. In this sense, the probability densities of velocities and headway
distances have been calculated for the different values of the concentration. The
distribution function can become bimodal according to the occupation on the
road.
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Fig. 3.13: The distribution functions P (u) (left) and P (∆y) (right) for the
stochastic car following model described by equations (3.33) – (3.34) for different
values of the concentration c. From bottom to the top c = 3.5, c = 2, c = 0.5.
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3.4 Energy Balance Equation

It has been shown in Section 3.1.1 that on a microscopic level traffic flow can be
described by the optimal velocity model (3.7) – (3.8) with the sigmoid optimal
velocity function (3.3). In this case the equations of motion have been written as
Newton’s law with accelerating and decelerating forces which can be interpreted
as the dissipative and interacting contributions to the car dynamics

m
dvn

dt
= Facc (vn)

︸ ︷︷ ︸

dissipativeforce

+ Fdec (∆xn)
︸ ︷︷ ︸

interactingforce

, n = 1, . . . , N . (3.39)

The total energy E of the system is defined as a sum of the kinetic energy T and
the potential energy U .

E = T + U . (3.40)

We focus on the fact, that since traffic flow is a dissipative system of driven or
active particles the total energy E is not conserved

dE

dt
6= 0 . (3.41)

As a result, the energy balance equation should be held

dE

dt
+ Φ = 0 , (3.42)

where the new quantity Φ is the energy flux following from the equations of
motion (3.39) and consisting of dissipation (due to friction) and energy input
(due to burning of petrol). We would like to constract the total energy E of the
car system together with the energy flux function Φ.

The kinetic energy of the many particle system is equal to the sum of kinetic
energies of all particles

T =

N∑

n=1

T (vn) where T (vn) =
1

2
mv2

n . (3.43)

The potential energy U of the system under consideration is defined as

U =
N∑

n=1

U(∆xn) with U(∆xn) = −
∫ ∆xn

Fdec (∆xn) dxn + C , (3.44)

where C is an integration constant and should be found from the normalization
condition. The potential U(∆xn) is the interaction potential of the n-th car with
the car ahead n + 1, which is given by

Fdec(∆xn) = −∂U(xn+1 − xn)

∂xn

=
dU(∆xn)

d∆xn

. (3.45)
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By integrating this equation we get

U(∆x) = vmax
Dm

τ

[
π

2
− arctan

(
∆x

D

)]

, (3.46)

where the integration constant is chosen in such a way that U(∆x → ∞) = 0.
For comparison, the interaction potential of the form U(∆x) ∝ (∆x)−α has been
considered in [49]. Note that Fdec(∆xn) is not given by −∂U/∂xn, since the latter
quantity includes an additional term −∂U(xn − xn−1)/∂xn. This term is absent
in our definition of the force because the car behind does not influence the motion
of the actual n–th vehicle. It reflects the fact that, unlike in physical systems,
the third Newton’s law does not hold.

By multiplying both parts of the equation of motion (3.39) with vn we get

d

dt

(
mv2

n

2

)

= Facc (vn) vn + Fdec (∆xn) vn , n = 1 , . . . , N. (3.47)

Taking into account the definition of the kinetic energy (3.43) and the connection
between the potential U (∆xn) with the conservative force Fdec (∆xn) (3.45) the
following equality should be held

d

dt
T (vn) = Facc (vn) vn +

dU (∆xn)

d∆xn

dxn

dt
, n = 1 , . . . , N. (3.48)

Furthermore, the following mathematical treatment should be performed

dU (∆xn)

d∆xn

dxn

dt
=

dU (∆xn)

d∆xn

dxn+1

dt
− dU (∆xn)

d∆xn

d∆xn

dt

= Fdec (∆xn) vn+1 −
dU (∆xn)

dt
, n = 1 , . . . , N . (3.49)

Substituting the derived result (3.49) to the equality (3.48), we obtain

d

dt
[T (vn) + U (∆xn)] = Facc (vn) vn +Fdec (∆xn) vn+1 , n = 1 , · · · , N . (3.50)

Summing the latter equality over n and taking into account relationships (3.40),
(3.43) and (3.44) the following energy balance equation is obtained

d

dt
E + Φ = 0 , (3.51)

where the energy flux Φ has the form

Φ = −
N∑

n=1

[Facc (vn) vn + Fdec (∆xn) vn+1] . (3.52)
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The energy flux function (3.52) includes both energy dissipation due to friction
and energy input from the engine.

Equation (3.51) shows that, in distinction to closed mechanical systems, the
total energy is not conserved in traffic flow. Nevertheless, as it has been shown
in Section 3.2, it approaches a constant value in the long–time limit. In this
case the system converges to one of two possible stationary states: either to the
fixed point ∆xn = ∆xst, vn = vopt (∆xst) (where ∆xst = L/N is the distance
between homogeneously distributed N cars over the road of length L), or to the
limit cycle in the phase space of headways and velocities. Both situations are
illustrated in Fig. 3.14. The presented results have been obtained numerically
for an ensemble of N = 60 vehicles by using the same simulation method as in
Section 3.2. Here, we have solved the equation of motion (3.7) – (3.8) in the
original phase space (∆xn, vn). Drawing the analogy to the dimensionless case
(3.11) – (3.12) discussed in Section 3.2, the simulation parameters for the case of
original variables correspond to the dimensionless values in the following way

b =
D

vmax τ
= 1.1 , (3.53)

c = D ρ where ρ =
N

L
,

=⇒ c1 = D ρ1 = 1 , c2 = Dρ2 = 2 . (3.54)

At a small enough concentration (ρ1 or c1) of cars there is a stable fixed point
(solid circle), which lies on the optimal velocity curve (dotted line). An unstable
fixed point (empty circle) exists at a larger concentration (ρ2 or c2). In the latter
case any small perturbation of the initially homogeneous fixed point situation
leads to the limit cycle (solid line) in the long–time limit.

The total energy has a certain value in any one of the stationary states. The
temporal behaviour of E for the same sets of parameters as in Fig. 3.14 is shown
in Fig. 3.15. In the case of the convergence to the limit cycle (solid line) for
ρ2 = 0.0606 m−1, one can distinguish 6 plateau in the energy curve. The first one
represents the short–time behaviour when starting from an almost homogeneous
initial condition with zero velocities, and the second plateau is the unstable fixed
point situation. Further on, 4 car clusters have been formed in the actual sim-
ulation, and this temporal situation is represented by the third relatively small
plateau. The next three plateaus with 3, 2, and finally 1 car clusters reflect the
coarse graining or Ostwald ripening process. The dashed line shows the conver-
gence to the stable fixed point value at ρ1 = 0.0303 m−1.

To summarize this Chapter, the following comments should be done: in the
long–time limit the many car system tends to certain stationary state. In the
microscopic description it is either the fixed–point or the limit cycle in the phase
space of velocities and headways depending on the overall car concentration and
control parameters. The stationary state is characterised by the specific internal
energy.
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Fig. 3.14: Fixed points (circles) and limit cycle (solid line) in the space of
headways ∆x and velocities v of cars. The solid circle represents the stable
fixed point at the car concentration ρ1 = 0.0303 m−1. The empty circle is the
unstable fixed point at a larger concentration ρ2 = 0.0606 m−1, where the long–
time trajectory for any car is the limit cycle shown. The fixed points lie on the
optimal velocity curve (dotted line) given by (3.3). The parameters are chosen
as N = 60, D = 33 m, vmax = 20 m/s, τ = 1.5 s, and m = 1000 kg.
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Fig. 3.15: The total energy E of the car system, measured in units of mv2
max/2,

depending on time t given in seconds. The same sets of parameters have been
used as in Fig. 3.14. The upper solid line corresponds to a larger concentration
ρ2 = 0.0606 m−1 where the limit cycle forms, whereas the lower dashed line — to
a smaller concentration ρ1 = 0.0303 m−1 where the convergence to stable fixed
point is observed.
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4 Phase Transitions Caused by

Anomalies in Kinetic Coefficient

4.1 Fundamental Diagram

The Bando model (3.7) – (3.8) based on the optimal velocity ansatz (3.3) has
been examined in Chapter 3. During the model analyzing, the different states
of traffic flow have been observed. By way of the numerical integration of both
deterministic (3.7) – (3.8) and stochastic (3.33) – (3.34) approaches, it was found
that traffic can be either free or congested. Each traffic phase is characterized
by the car concentration c and the average velocity V which can be defined for
some fixed observation time as

V =
1

N

N∑

i=1

vi . (4.1)

By this means, the states of traffic flow can be specified in term of the functional
dependence V (c). Applying to the general notion about the driver behaviour, we
can suppose that the average velocity V attains its maximum at small concen-
trations

V (c→ 0) = vmax , (4.2)

whereas the motion of cars for large concentrations on the road characterizes by
very low velocity

V (c = cmax) = 0 . (4.3)

As a result, we can also represent the traffic flow rate q as a function of the
contration c

q(c) = c V (c) . (4.4)

as the product of the average velocity V and vehicle concentration c. The visual-
isation of this function (4.4) is called the fundamental diagram and characterizes
the possible phases of traffic flow. Fig. 4.1 represents schematically the behaviour
of the fundamental diagram (4.4) in terms of V = V (c) and q = q(c) dependen-
cies.
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Fig. 4.1: Schematic view of mean velocity V (left) and flux q (right) as functions
of vehicular density c.

4.2 Motivations

Turning back to the optimal velocity model discussed in Chapter 3, the following
comments should be done. Such a model gives precise separation into two phases
of the motion. The traffic can be

• free (small concentration);

• congested (large concentration).

Fig. 4.2 presents the empirical data collected at the German highway A 1 and
analyzed by Lubashevsky et. al. [60]. The data shows very complex and hetero-
geneous structure.

Kerner et. al. [43–47] have explaned such a complexity. The hypothesis pro-
posed by them implies the existence of the three traffic states:

• free flow;

• synchronized flow;

• wide moving jams.

In contrast to the free and congested flow, the synchronized regime is character-
ized by a not unique correspondence on c–q plane. This effect is shown in Fig. 4.2.
According to this fact, the synchronized mode is also referred to as widely scat-
tered states. Following the classification proposed by Kerner and Rehborn there
are three distinctive kinds of synchronized flow

1. stationary and homogeneous states where both the average speed V and
flow rate q are approximately constant during a fairly long time interval;

2. states where only the average vehicle speed V is stationary;
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Fig. 4.2: The fundamental diagram showing the possible states of traffic
flow [60].
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3. nonstationary and nonhomogeneous states.

Kerner has formulated his hypothesis about the synchronized mode to explain
the properties of the widely scattered states [40–42]. In particular, regarding
the synchronized traffic of first and second type he has assumed it to contain
a whole multitude continuum of possible congested traffic states. This leads to
continuous spatial–temporal transitions between these states. However, theoret-
ical description and further empirical evidence for this hypothesis are still to be
found. In order to understand such a phenomenon, the following questions have
to be asked:

• What is the macroscopic mechanism of this phase?

• Whence these states appear?

The physical properties of drivers play the fundamental role. The driver can
not control the relative velocity (velocity difference) and headway equally. Since
the relative velocity is the more important factor for the safe motion, the driver
response to its variation is much faster than its reaction to the headway change.
In this case, after getting the region of small relative velocities the system stays
for long time. Such a fragment of the motion can be regarded as a long–lived
state.

4.3 The Concept of Dynamical Traps

The notion of dynamical traps is currently worked out in physics of nonlinear
Hamiltonian systems by Zaslavsky [101] in 2002. The dynamical trap can be
defined as a relatively small domain in phase space where a particle can spend
a long time. In Hamiltonian systems it is due to the particle performs almost
deterministic motion located in the region of dynamical trap and cannot leave
it practically just after having come into it. Up to know the formation of such
regions and their properties is a challenging problem of nonlinear physics.

The classical theory of phase transitions [77] is based on the properties of the
energy functional and, in particular, on the analysis of its local minimum. Nev-
ertheless, the calculation of potential energy poses many problems in the systems
with the complex energy exchange. Making the qualitative description requires
the developing of new methods. The new approach is based on study of dynam-
ical states controlled by kinetic coefficients of the system under consideration
taking into account their anomalous properties and their dependence on position
in phase space. For this purpose, the dynamical trap concept is introduced.

The essential characteristics of the dynamical trap effect is the fact that the
deterministic force Fdet does not change the sign in its passage through the dy-
namical trap region. The influence of the dynamical trap just depressed the
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action the deterministic force. When the effect of dynamical traps is substantial,
the system motion in this region is determinded mostly by stochastic forces.

Dynamical traps induce the formation of the macroscopic states. Their char-
acteristics are not determined by stationary points of the deterministic force Fdet

but by complex and continuous movement of particles. In this connection, it is
natural to call such structures dynamical states which can be also interpreted
as phase transions of a new type. Therewith, the phase transions between the
states take place at a nonzero deterministic force Fdet. That is the reason why
the present description is different from the classical theory of phase transitions.

4.4 Description of the Dynamical Trap

It is suggested that as result of the cooperative interaction of particles, the deter-
ministic force Fdet becomes the complex dependence. As a consequence, several
stationary states appear. Therewith, the homogeneous state becomes to be an
unstable one and the transition of the system to one of stable states takes place.
In this case, the effect of the stochastic forces is reduced to random motion in
the vicinity of stable stationary states or in stochastic transitions between stable
states if they locate sufficient close to each other.

Within the framework of such a schematic view, noise induced phase transi-
tions can be treated also within this approach. The theoretical approximation
of such phenomena following the classical approach meets certain problems. The
deterministic force Fdet must have very complex structure. There is an alterna-
tive approach proposed by Klimontovich for the description of the system with
a continuum of long–lived states. He has assumed that nonequilibrium phase
transitions can be caused not only by change of the forces but also via anomalies
in kinetic coefficients as well. In this case, the force can have a simple structure
with one stationary state which corresponds to the stable state.

It is suggested that there is some unrestricted domain in phase space where
all states characterize by special behaviour. This domain is called the domain of
dynamical trap. In this region the motion of the system slows down essentially
and the system stays in some small vicinity of the entrance point to the domain
for some long time. This fragment of the motion can be considered as a long–lived
state. When the system leaves the domain of the dynamical traps, its dynamics
is again controlled by deterministic force Fdet until the system gets the domain
of dynamical traps once again but in another point. By virtue of the influence
of stochastic forces, the dynamics of the system develops an appearance of the
consequence of stochastic transitions between long–lived states. Since, any small
fragment of the domain of dynamical trap can induce the appearance of long–lived
state, all such states has to form a continuum.

In mathematical terms, dynamical traps can be introduced in terms of anoma-
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lies of kinetic coefficients and, for example, for one particular particle as

dx = v dt , (4.5)

dv = Ω(x, v)Fdet(x, v) dt+ ε dW (t) , (4.6)

where x and v are coordinate and velocity of the particle respectively, Fdet(x, v)
is deterministic force. The equation for acceleration (4.6) contains the additive
white noise represented by the increment of the Wiener process dW (t) (see Chap-
ter 2) with noise intensity ε. The factor Ω(x, v) is the function of dynamical trap.
In the domain of dynamical traps this factor is small and the process evolution
is determined by stochastic properties.

The theory of nonequilibrium systems with dynamical traps is still in its in-
fancy. It is necessary to perform the detailed analysis of the properties of phase
transitions. In framework of such an analysis, the formation mechanism of long–
lived macroscopic states for the elucidation of the fundamental properties of the
cooperative motion in systems with dynamical traps should be done.

4.5 The Model Description

The notion of dynamical traps has been applied to the follow the leader model.
The main argument for the present investigation is the fact that a driver cannot
control all motion parameters to the same degree. Since the relative velocity is
of high importance in preventing collisions the driver response to its variations
is very fast. By contrast, when the relative velocity is below its threshold in the
driver perception, the driver control over the headway is delayed essentially. In
this way we get a new model for dynamical traps. Here the region of dynamical
traps is a rather narrow layer containing the headway excise. Its thickness is
about the relative velocity threshold in the driver perception. When the car
velocity comes into this region the driver response is delayed substantially and,
as a result, the car dynamics is stagnated.

A pair of cars is under consideration. The car ahead is assumed to move at
a fixed constant speed vl. Dynamics of the following car, i.e. time variations in
its velocity v and position x are described practically within the optimal velocity
model (3.7) – (3.8)

dx = v dt , (4.7)

dv =
1

τ

[

vopt(∆x) − v
]

dt+ ε dW (t) , (4.8)

where the optimal velocity function vopt(∆x) is represented by the headway de-
pendence (3.3) introduced in Chapter 3. The relaxation time τ evaluates the
characteristic delay in the driver response. The proposed system of equations
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(4.7) – (4.8) can be rewritten in terms of the headway ∆x = xl − x and the
velocity difference ∆v = vl − v as

d∆x = ∆v dt , (4.9)

d∆v = − 1

τ

[

vopt(∆x) − vl + ∆v
]

dt+ ε dW (t) . (4.10)

Without noise ε = 0 this system has only one stationary point

∆xst = D

√
vl

vmax − vl
, (4.11)

∆v = 0 . (4.12)

which is always stable. As already noted in Section 3.2, the system, starting from
any initial condition, comes to its stable mode and stays there for long time. By
including of a noise to the car dynamics, the motion does not differs essentially
from the noiseless situation.

The physical properties of a driver have a dominant role in the traffic dynamics.
The driver can not equally control the relative velocity ∆v and the headway
distance ∆x. Since the relative velocity of the car is the most important criterion
for the safe driving, the reaction time of the driver on its changing vastly more
than the reaction time for controlling of dinstance between two cars. Therefore,
the domain of small relative velocity ∆v ≪ 0 plays the role of the dynamical
trap. On this basic, the modified equations of motion have the form

d∆x = ∆v dt , (4.13)

d∆v = − Ω(∆v)

τ

[

vopt(∆x) − vl + ∆v
]

dt+ ε dW (t) . (4.14)

The factor Ω(∆v) allows for difference in the driver control over the relative
velocity ∆v and the headway ∆x. Based upon properties discussed in previous
Section 4.4, the following ansatz for the dynamical trap function

Ω(∆v) =
(∆v)2 + θ2v2

t

(∆v)2 + v2
t

(4.15)

is used, where vt denotes the driver threshold for recognizing small relative speeds.
Besides, the velocity threshold vt will be estimated as vt ∼ 1–2 m/s taking into
account the empirical data on driver action points [7]. The parameter θ ≤ 1 eval-
uates the increase in the delay τ of the driver response when the relative velocity
∆v is rather small, |∆v| . vt, and calm driving is possible in comparison with
that of driving in tension caused by the remarkable relative velocity, |∆v| ≫ vt.
In other words, the parameter θ measures the effect of dynamical traps due to the
bounded rationality of drivers. The influence of trap to dynamics is neglected
for θ = 1. For θ = 0, the effect of dynamical trap is most strong. The main
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Fig. 4.3: The dynamical trap function Ω(∆v) described by equation (4.15).

properties of dynamical trap function Ω(∆v) are shown in Fig. 4.3. When the
relative velocity ∆v tends to zero, the deterministic force Fdet(∆x,∆v) is sup-
pressed. In this case, the dynamical trap function Ω(∆v = 0) = θ2 ≪ 1 and
the car dynamics is determined only by stochastic force. Beyond the domain
of dynamicall trap ∆v > vt the motion of the system takes place in usual way
without the perceptible influence of factor Ω(∆v).

The given system (4.13) – (4.14) has been analyzed numerically. For this
purpose it was converted into the dimensionless form using the same scaling
relations as in Section 3.1.1

∆y =
∆x

D
, (4.16)

∆u =
∆v

vmax

, (4.17)

T =
t

τ
. (4.18)

In these terms the system of equations (4.13) – (4.14) reads

d∆y =
1

b
∆u dT , (4.19)

d∆u = −Ω(∆u) [uopt(∆y) − ul + ∆u] dT + ζ dW (T ) (4.20)
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with the new set of dimensionless control parameters:

ul = vl/vmax , (4.21)

ut = vt/vmax , (4.22)

b =
D

τ vmax

, (4.23)

ζ = ε

√
τ

vmax
. (4.24)

Due to the variable transformation (4.16) – (4.17), dimensionless trap and optimal
velocity functions are specified as

Ω (∆u) =
(∆u)2 + θ2 u2

t

(∆u)2 + u2
t

, (4.25)

uopt (∆y) =
(∆y)2

1 + (∆y)2
. (4.26)

The latter is due to system (4.19) – (4.20) being absolutely stable without noise.
This conclusion follows directly from the existence of the Lyapunov function
L(∆y,∆u). The Lyapunov function L(∆y,∆u) will be constructed in the form

L(∆y,∆u) = G(∆y) + V(∆u) . (4.27)

Let us assume, that there are no dissipations. Then,

∂L(∆y,∆u)

∂T
= 0 (4.28)

and the following identity is valid

dG(∆y)

d∆y
d∆y +

dV(∆u)

d∆u
d∆u = 0 . (4.29)

Hence, using the set of equations (4.19) – (4.20) we obtain

dG(∆y)

d∆y

[
1

b
∆u

]

+
dV(∆u)

d∆u
[−Ω (∆u) (uopt (∆y) − ul)] = 0 (4.30)

or, what is the same,

dG(∆y)

d∆y

[
1

uopt (∆y) − ul

]

=
dV(∆u)

d∆u

[

b
Ω (∆u)

∆u

]

= 1 . (4.31)

By integration of both contributions in (4.31)

dG(∆y)

d∆y
= uopt (∆y) − ul , (4.32)

dV(∆u)

d∆u
=

1

b

∆u

Ω (∆u)
(4.33)
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we derive the expression for functions G(∆y) and V(∆u)

G(∆y) = ∆y (1 − ul) − arctan (∆y) , (4.34)

V(∆u) =
1

2

1

b

[

(∆u)2 + u2
t

(
1 − θ2

)
ln

(

1 +
(∆u)2

θ2 u2
t

)]

(4.35)

respectively. Finally, the Lyapunov function L(∆y,∆u) = G(∆y) + V(∆u) gets

the unique mininum at

{

∆yst =

√
ul

1 − ul

,∆ust = 0

}

and obeys the inequality

∂L(∆y,∆u)

∂T
= − 1

b
(∆u)2 < 0 for ∆u 6= 0 . (4.36)

4.6 Numerical results

The effect of dynamical traps on car dynamics has been considered for various
values of the dimensionless parameters θ, b, and ζ . Beforehand it is possible to
declare that the less the parameter θ, the more pronounced the dynamical trap
effect. The analysis has been performed numerically with explicit strong schemes
of the 1.5 order for the integration of stochastic differential equations [48]. The
simulation results have been calculated with the computer time step ∆T = 2·10−2

for the relative long time interval T ∈ [0, Tmax] with Tmax = 5 ·105. The following
dimensionless parameters have been fixed

• ul = 0.5;

• ut = 0.03;

• ζ = 10−1.

and the behaviour of the system (4.19) – (4.20) has been analysied with respect
to the influence of the dynamical trap value θ and the parameter b. The initial
situation for all simulations has been chosen by the same way

∆y = ∆yst = 1 , (4.37)

∆u = ∆ust = 0 . (4.38)

The phase portrait in terms of headway and velocity difference (∆y,∆u) is
shown in Fig. 4.4. Two situations are presented: the dynamics with strong dy-
namical trap effect θ = 0.1 (main figure) and without it θ = 1 (internal plot).
Without dynamical trap, due to stochaticity, the system fluctuates in small vicin-
ity of its stationary point (4.37) – (4.38). The opposite effect is illustrated for the
case of strong influence of the dynamical trap with trap intensity θ = 0.1. The
phase portrait becomes asymmetrical and complex. It is shown precise phase
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Fig. 4.4: The phase portrait (∆y,∆u) for the car following model described
by the system of stochastic differential equations (4.19) –(4.20) with dynamical
trap effect (θ = 0.1) and without (θ = 1, internal plot). The results have been
obtained for the control parameter b = 0.05.

separation into two regions in the phase space of headway and velocity difference
(∆y,∆u). Each region is located in some small vicinity of zero values of velocity
difference ∆u ∈ [−ut,+ut]. One of the congested area corresponds to headway
distance ∆y ≈ 0.5, another one to ∆y ≈ 1.5. To show the influence of the dy-
namical trap in more detail, the fragment of the time evolution for the headway
distance ∆y(T ) and velocity difference ∆u(T ) has been plotted in Fig. 4.5.

Figs. 4.4 and 4.5 show that the relizations ∆y(T ) and ∆u(t) of the process
described by set of stochastic differential equations (4.19) –(4.20) has very com-
plex structure. In order to understand the nature of such a complexity and to
analyse the memory of the process, the autocorrelation functions for the headway
distance ∆y(T )

〈∆y(T ) ∆y(T + T ′)〉 =
1

∫∞

0
∆y(T )2 dT

∫ ∞

0

∆y(T ) ∆y(T + T ′) dT (4.39)

as well as for velocity difference ∆u(t)

〈∆u(T ) ∆u(T + T ′)〉 =
1

∫∞

0
∆u(T )2 dT

∫ ∞

0

∆u(T ) ∆u(T + T ′) dT (4.40)

have been calculated. The prefactors in formulae (4.39) and (4.40) are chosen in
a way to normalize the autocorrelation function. The normalization conditions

Julia Hinkel 55



Chapter 4. Phase Transitions Caused by Anomalies in Kinetic

Coefficient

1200 1220 1240 1260 1280 1300
time T

0

0.5

1

1.5

2

he
ad

w
ay

 ∆
y

θ=0.1
θ=1

1200 1220 1240 1260 1280 1300
time T

-0.1

-0.05

0

0.05

0.1

ve
lo

ci
ty

 d
if

fe
re

nc
e 

∆u θ=0.1
θ=1

Fig. 4.5: The fragment of the time evolution T ∈ [1200, 1300] of headway ∆y(T )
and velocity difference ∆u(t) with (solid curve) dynamical trap effect (θ = 0.1)
and without (dashed curve) dynamical trap effect (θ = 1). The results have been
obtained for the control parameter b = 0.05.

are

〈∆y(T ) ∆y(T + T ′ = 0)〉 = 1 , (4.41)

〈∆u(T ) ∆u(T + T ′ = 0)〉 = 1 . (4.42)

The autocorrelation functions (4.39) and (4.40) have been calculated numerically
by using the certain discrete approximation [19]. Fig. 4.6 shows the behaviour of
the autocorrelation functions (4.39) and (4.40) under influence of the dynamical
trap effect and without it. Unlike deterministic processes, where each value of
their realizations is well defined from the given equation of motion and the initial
condition, the information about the memory of stochastic process is hidden and
distorted after some time. In terms of the autocorrelation functions (4.39) and
(4.40), such an effect means, that

〈∆y(T ) ∆y(T + T ′)〉 → 0 , (4.43)

〈∆u(T ) ∆u(T + T ′)〉 → 0 (4.44)

with time increasing T ′ → ∞. Exactly this situation is visualized by the dashed
curve in Fig. 4.6 and gives the autocorrelation functions (4.39) and (4.40) in
the case, when the dynamical trap effect is absent. The functions (4.39) and
(4.40) have their maximum in T ′ = 0 and decay very fast for T ′ > 0. The quite
opposite situation has been seen under the influence of the dynamical trap effect.
The dynamical traps induce very long correlations in the car dynamics.

As it has been shown in Fig. 4.4 the dynamical traps induce the phase separa-
tion which can be explaines as the phase transition. In this sense, the probability
distribution function P (∆y,∆u) becomes bimodal. In order to show this effect,
the probability distribution P (∆y,∆u) has been calculated as the average dis-
tribution according to the time T , i. e. how oft the system is located in some

56 PhD Thesis



4.6. Numerical results

0 10 20 30 40 50
T’

-0.5

0

0.5

1

<
∆y

(T
)∆

y(
T

+
T

’)
> θ=0.1

θ=1

0 10 20 30 40 50
T’

-0.5

0

0.5

1

<
∆u

(T
)∆

u(
T

+
T

’)
> θ=0.1

θ=1

Fig. 4.6: Autocorrelation functions for headway ∆y and velocity ∆u difference
for the car following model with dynamical traps described by equations (4.19)
– (4.20) with (solid curve) dynamical trap effect (θ = 0.1) and without (dashed
curve) dynamical trap effect (θ = 1). The results have been obtained for the
control parameter b = 0.05.

cell of space phase of headway distance ∆y(T ) and velocity difference ∆u(t) for a
sufficiently long time T ∈ [0, Tmax]. The results are presented as one–dimensional
plots. Fig. 4.7 illustrates the headway P (∆y) and velocity difference P (∆u) dis-
tributions. The dashed curve corresponds to the situation when the effect of
dynamical trap is absent, i. e. θ = 1. In this case the distribution functions are
unimodal and have the Gaussian form. The influence of the dynamical trap is
represented in Fig. 4.7. The headway distribution P (∆y) becomes bimodal. The
maximum of the distribution P (∆y) corresponds to headway values ∆y = 0.5 and
∆y = 1.5 (see Fig. 4.4). Under the influence of dynamical traps, the probability
distribution of the velocity difference P (∆u) becomes the Laplacian form.

Figs. 4.8 and 4.9 show the role of the dynamical trap effect on car dynamics
in response to control parameter b. This parameter can be interpreted as a dis-
sipation factor. The probability density distributions of the headway P (∆y) and
the velocity difference P (∆u) are demonstrated in Fig. 4.8. It is shown that with
decreasing of the parameter b, the effect of the trap is more pronounced. In this
case the phase separation in terms of headway distribution P (∆y) becomes more
evident. The probability distribution for the velocity difference P (∆u) changes
under influence of parameter b as well. The distribution P (∆u) is character-
ized by long tails. Fig. 4.9 gives the dependence of the autocorrelation functions
(4.39) and (4.40) on the control parameter b. As it has been already mentioned
in Fig. 4.6 the dynamical traps induce very long correlations in the car dynamics.
With decreasing of the parameter b the correlation scales increase. Such an effect
can be explained by the fact, that the dynamical traps produce the dynamical
states in car dynamics which can be specified as the long–lived states.

In order to answer questions asked in Section 4.2, follow the leader model
based on optimal velocity ansatz and including the dynamical trap effect has
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Fig. 4.7: The distribution functions P (∆y) and P (∆u) for the car following
model with dynamical traps described by equations (4.19) – (4.20) with (solid
curve) dynamical trap effect (θ = 0.1) and without (dashed curve) dynamical
trap effect (θ = 1). The results have been obtained for the control parameter
b = 0.05.
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Fig. 4.8: The distribution functions P (∆y) and P (∆u) for the car following
model with dynamical traps described by equations (4.19) – (4.20) for different
values of the control parameter b with the dynamical trap efficacy θ = 0.1.
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Fig. 4.9: Autocorrelation functions for headway ∆y(t) and velocity difference
∆u(t) for the dynamical trap efficacy θ = 0.1 (solid curve) and different values
of the parameter b, i. e. from bottom to the top b = 1, b = 0.5, b = 0.25. Dashed
curve visualizes the autocorrelation function for headway ∆y(t) and velocity dif-
ference ∆u(t) for the case when the dynamical trap effect is absent.
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been proposed and developed. The dynamical states of one particular car which
equation of motion contains the dynamical trap function have been examined by
way of the numerical modeling of corresponding stochastic differential equations
including additive white noise. The detailed analysis of the car dynamics reveals
the following anomalies caused by the interaction between the noise and the
dynamical trap:

• the headway distribution P (∆y) becomes bimodal;

• the probability distribution of the velocity difference P (∆u) has a Laplace
form which is characterized by fat tails;

• the long correlations appear in the system with strong dissipation. This
fact manifests the long–lived states in the car dynamics;

• the phase portrait (∆y,∆u) becomes asymmetrical and complex. Such an
unusual structure gives a possibility to describe widely scattered states.
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5 Understanding of Traffic

Breakdown

5.1 What is a Breakdown?

Observations from different freeways around the world analysed by Daganzo et
al. [17], Elefteriadou et al. [54,58], by Brilon and Zurlinden [10,104] indicate that
traffic breakdowns do not necessary occur at maximum flow. It has been shown,
that breakdown can occur at flows lower or higher than those traditionally ac-
cepted as capacity value. The traffic breakdown can be specified as a transition
from an uncongested traffic state to a congested state. Such a definition is com-
parable with a phase transition in nature between different states of matter. Due
to the fact that the traffic breakdown has been observed at very different flows,
this phenomena has a probabilistic nature. Therefore, the traffic breakdown is
specified as a stochastic event and, in order to analyze this quantity, the prob-
ability W (q) of traffic breakdown as a function of vehicular flows q should be
calculated. For this purpose, it is necessary to introduce the stochastic approach
for the description of the traffic breakdown W (q). It has been shown in Chap-
ter 2, that the dynamical equations in terms of Fokker–Planck (2.22) and master
equations (2.52) give the probabilistic description of such a stochastic process.

The congested state of traffic is characterized by the jam formation or, by
drawing the analogy to the nucleation [90], by the cluster formation. It is possible
to analyse the process of cluster formation in terms of its size n. The schematic
definition of the cluster formation is illustrated in Fig. 5.1. Similarly to the
nucleation process, the cluster formation is specified by two contributions called
inflow or attachment rate and discharge or detachment rate. Furthermore, the
case of constant attachment and detachment rates will be analysed in detail.

In order to describe the traffic breakdown, let us underline the main properties
of the cluster size. The cluster size n is a discrete stochastic variable

n = 0, 1, 2 , . . . or n ≥ 0 . (5.1)

We define the traffic breakdown appearance with the help of a critical or escape
value of cluster size nesc. If the cluster size n is less than nesc then no breakdown
is detected. If the cluster size reaches the escape value n = nesc then the motion
slows down and the traffic breakdown occurs. In other word, the domain of the
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free flow car clusterq

{n

1/τ

Fig. 5.1: The schematic definition of cluster formation: q [veh/h] = traffic flow
or traffic volume; n = cluster size or queue length (number of congested vehicles)
as stochastic variable; τ [τ ≈ 1.5 . . . 2.0 s] = characteristic time needed for the
first car leaving the cluster to become free.

cluster size is restricted by the interval 0 ≤ n < nesc and the parameter nesc

controls and defines the traffic breakdown.
It has been shown in Chapter 2 that the dynamics of the stochastic variable

n which takes the discrete states and can change only by ±1 per time unit is
governed by the one–step master equation (2.53) which has been introduced in
Chapter 2 [24, 34, 52, 66]

∂p(n, t)

∂t
= w+(n− 1) p(n− 1, t) + w−(n+ 1) p(n+ 1, t)

− [w+(n) + w−(n)] p(n, t) (5.2)

including the initial condition

p(n, t = 0) = δn,n0 , (5.3)

where n0 = n(t = 0), w+(n) and w−(n) attachment and detachment rates respec-
tively (see Fig. 2.7). As it has been already mentioned above and illustrated in
Fig. 5.1, the present investigations are carried out for the case of

w+(n) = q (5.4)

w−(n) =
1

τ
, (5.5)

where q and τ are constant. These parameters refer to the inflow rate and to the
characteristic time needed for the first car in the cluster to leave it respectively.
According to the above–mentioned properties of the cluster size n, it is necessary
to specify the boundary conditions at n = 0 and n = nesc for the probability
density p(n, t) given by master equation (5.2). Due to (5.1), n = 0 is specified as
the reflecting boundary [24, 34]. It means that

w−(0) = 0 . (5.6)

The boundary at n = nesc is absorbing [24, 34] and
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Fig. 5.2: Example of the stochastic trajectory n(t) which imitates the time
evolution of the cluster size n. with the initial condition n(t = 0) = 0, reflecting
boundary at n = 0 veh and absorbing boundary at nesc = 35 veh.

w−(nesc + 1) = 0 . (5.7)

Fig. 5.2 shows an example of cluster evolution n(t) taking into account boundary
conditions (5.6) – (5.7). Under these conditions, the master equation (5.2) takes
the special form at n = 0 and n = nesc [24]. Namely,

w−(0) p(0, t) − w+(−1) p(−1, t) = 0 (5.8)

p(nesc + 1) = 0 . (5.9)

The probability p(n, t) of finding that the cluster size equals to value n at fixed
time t is the solution of the master equation (5.2) taking into account the initial
(5.3) and boundary conditions (5.8) – (5.9). It has been discussed in Chapter 2
that it is rather difficult to integrate directly the equation (5.2). Therefore,
taking into account the equivalence between the master equation and Fokker–
Planck equation, our future investigations will be carried out with the help of the
corresponding to the initial–boundary–value–problem (5.2), (5.8) – (5.9) Fokker–
Planck equation [24, 38]. For this purpose, the diffusion approximation of the
master equation (5.2) has been used. Using the deterministic approach [66], the
potential can be introduced by

− dU(n)

dn
= w+(n) − w−(n) (5.10)

and, due to the fact, that w+(n) = q and w−(n) = 1/τ are assumed to be
constant, the following relationship takes place

U(n) = − v n . (5.11)
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Fig. 5.3: The linear potential U(n) for three different scenarios [52].

The quantity v = q − 1/τ is constant and interpreted as a drift velocity term.
The drift v ∈ R can take various values. Fig. 5.3 illustrates the linear dependence
of the potential U(n) for three different situations:

• negative drift v < 0: q < 1/τ =⇒ cluster dissolves;

• zero drift v = 0: q = 1/τ =⇒ no tendency;

• positive drift v > 0: q > 1/τ =⇒ cluster grows.

Then, the initial–boundary–value–problem (shown schematically in Fig. 5.4)
with constant diffusion coefficient D and constant drift coefficient v is under
consideration. Our task is to calculate the probability density p(x, t) to find the
system in state x (exact in interval [x; x+ dx]) at time moment t. The dynamics
of p(x, t) is given by the forward drift–diffusion–equation as well as initial and
boundary conditions [24] by following dynamics

∂p(x, t)

∂t
= −v ∂p(x, t)

∂x
+D

∂2p(x, t)

∂x2
, (5.12)

or
∂p(x, t)

∂t
+
∂j(x, t)

∂x
= 0 (5.13)

with flux j(x, t) = v p(x, t) −D
∂p(x, t)

∂x
(5.14)

with the initial condition

p(x, t = 0) = δ(x− x0) , (5.15)

and two boundary conditions [24], i. e. reflecting boundary at x = a

j(x = a, t) = v p(x = a, t) −D
∂p(x, t)

∂x

∣
∣
∣
∣
x=a

= 0 , (5.16)

and absorbing boundary at x = b

p(x = b, t) = 0 . (5.17)

64 PhD Thesis



5.1. What is a Breakdown?

0        a                     x
0                          

b   x

p(x, t)
re

fl
ec

tin
g 

bo
un

da
ry

in
iti

al
 c

on
di

tio
n

ab
so

rb
in

g 
bo

un
da

ry

Fig. 5.4: Schematic picture of the boundary–value problem showing the proba-
bility density p(x , t) in the interval a ≤ x ≤ b.

It is convenient to formulate the drift–diffusion problem in dimensionless vari-
ables. For this purpose we define new variables y and T by

y =
x− a

b− a
and T =

D

(b− a)2
t . (5.18)

As a result, the system of partial differential equations (5.12) – (5.17) can be
rewritten as

∂P (y, T )

∂T
= −Ω

∂P (y, T )

∂y
+
∂2P (y, T )

∂y2
, (5.19)

with initial condition

P (y, T = 0) = δ(y − y0) , (5.20)

reflecting boundary at y = 0

J(y = 0, T ) = ΩP (y = 0, T ) − ∂P (y, T )

∂y

∣
∣
∣
∣
y=0

= 0 , (5.21)

and absorbing boundary at y = 1

P (y = 1, T ) = 0 . (5.22)

Hence, our problem has only one dimensionless control parameter Ω =
v

D
(b− a)

(scaled drift v which may have positive, zero, or negative values). The parameter
Ω has the same meaning as Péclet number which has been used in [82].
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The system of equations (5.19) – (5.22) will be solved exactly by applying
the forward technique [24]. The main idea is to obtain the solution of Fokker–
Planck equation and after that the first passage time distribution in terms of
probability density. Both quantities will be presented as eigenfunction expansion.
The survival probability and moments of first passage time can be calculated
differently by using backward drift–diffusion equation. These results shown in [13,
22,82] do not give the complete solution of the problem under consideration. Our
presented analysis of the reference system (5.19) – (5.22) is the key result in order
to study more complicated situations with nonlinear drift function Ω(y).

5.2 Solution in Terms of Orthogonal Eigenfunctions

To find the solution of the well–defined drift–diffusion problem, first we take the
dimensionless form (5.19) – (5.22) and use a transformation to a new function Q
by

Q(y, T ) = e−
Ω
2

y P (y, T ) . (5.23)

This results in a dynamics without first derivative called reduced Fokker–Planck–
equation

∂Q(y, T )

∂T
= −Ω2

4
Q(y, T ) +

∂2Q(y, T )

∂y2
. (5.24)

According to (5.23) the initial condition is transformed to

Q(y, T = 0) = e−
Ω
2

y0 P (y, T = 0) , (5.25)

whereas the reflecting boundary condition at y = 0 becomes

Ω

2
Q(y = 0, T ) − ∂Q(y, T )

∂y

∣
∣
∣
∣
y=0

= 0 , (5.26)

and the absorbing boundary condition at y = 1 now reads

Q(y = 1, T ) = 0 . (5.27)

The solution of reduced equation (5.24) can be found by the method of sep-
aration of variables [92]. Making a separation ansatz Q(y, T ) = χ(T )ψ(y), we
obtain

1

χ(T )

dχ(T )

dT
= −Ω2

4
+

1

ψ(y)

d2ψ(y)

dy2
. (5.28)

Both sides should be equal to a constant. This constant is denoted by −λ,
where λ has the meaning of an eigenvalue. The eigenvalue λ should be real and
nonnegative.

Integration of the left hand side gives exponential decay

χ(T ) = χ0 exp{−λT} (5.29)
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with χ(T = 0) = χ0 and setting χ0 = 1.
Let us now define the dimensionless wave number k as k2 = λ. The right–hand

side of equation (5.28) then transforms into the following wave equation

d2ψ(y)

dy2
+

(

k2 − Ω2

4

)

ψ(y) = 0 . (5.30)

Further on, we introduce a modified wave number k̃2 = k2 − Ω2/4. Note that
k̃ = +

√

k2 − Ω2/4 may be complex (either pure real or pure imaginary).

First we consider the case where k̃ is real. A suitable complex ansatz for the
solution of the wave equation (5.30) reads

ψ(y) = C∗ exp{+ik̃y} + C exp{−ik̃y} (5.31)

with complex coefficients C = A/2 + i B/2 and C∗ = A/2− i B/2 chosen in such
a way to ensure a real solution

ψ(y) = A cos(k̃y) +B sin(k̃y) . (5.32)

The two boundary conditions (5.26) and (5.27) can be used to determine the
modified wave number k̃ and the ratio A/B. The particular solutions are eigen-
functions ψm(y), which form a complete set of orthogonal functions. As the third
condition, we require that these eigenfunctions are normalised

1∫

0

ψ2
m(y)dy = 1 . (5.33)

In this case all three parameters k̃, A and B are defined.
The condition for the left boundary (5.26) reads

Ω

2
ψ(y = 0) − dψ(y)

dy

∣
∣
∣
∣
y=0

= 0 . (5.34)

After a substitution by (5.31) it reduces to

Ω

2
(C∗ + C) = ik̃ (C∗ − C) (5.35)

or
Ω

2
A = k̃B . (5.36)

The condition for the right boundary (5.27)

ψ(y = 1) = 0 (5.37)
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gives us
C∗ exp{+ik̃} + C exp{−ik̃} = 0 (5.38)

or
A cos

(

k̃
)

+B sin
(

k̃
)

= 0 . (5.39)

By putting both equalities (5.36) and (5.39) together and looking for a non-
trivial solution, we arrive at a transcendental equation

i
Ω

2

(

exp{+ik̃} − exp{−ik̃}
)

= k̃
(

exp{+ik̃} + exp{−ik̃}
)

(5.40)

or
Ω

2
sin
(

k̃
)

+ k̃ cos
(

k̃
)

= 0 , (5.41)

respectively

tan
(

k̃
)

= − 2

Ω
k̃ , (5.42)

which gives the spectrum of values k̃m with m = 0, 1, 2, . . . (numbered in such a
way that 0 < k̃0 < k̃1 < k̃2 < . . .) and the discrete eigenvalues λm > 0 .

Due to (5.32) and (5.39), the eigenfunctions can be written as

ψm(y) = Rm

[

cos
(

k̃my
)

sin
(

k̃m

)

− cos
(

k̃m

)

sin
(

k̃my
)]

, (5.43)

where Rm = Am/ sin
(

k̃m

)

= −Bm/ cos
(

k̃m

)

. Taking into account the identity

sin(α− β) = sinα cosβ − cosα sin β, equation (5.43) reduces to

ψm(y) = Rm sin
[

k̃m(1 − y)
]

. (5.44)

The normalisation constant Rm is found by inserting (5.44) into (5.33). Calcu-
lation of the normalisation integral by using the transcendental equation (5.41)
gives us

R2
m

∫ 1

0

sin2
[

k̃m (1 − y)
]

dy = R2
m

[
1

2
− 1

4k̃m

sin
(

2k̃m

)]

=
R2

m

2

(

1 +
Ω

2

1

k̃2
m + Ω2/4

)

= 1 , (5.45)

and hence (5.44) becomes

ψm(y) =

√

2

1 + Ω
2

1
k̃2

m+Ω2/4

sin
[

k̃m(1 − y)
]

(5.46)

or

ψm(y) =

√

2

1 + Ω
2

1
k2

m

sin
[√

k2
m − Ω2/4 (1 − y)

]

. (5.47)
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Fig. 5.5: The wave number k̃0 (Ω ≥ − 2) respectively κ0 (Ω ≤ − 2) and eigen-
value λ0 for ground state m = 0. The thin straight line shows the approximation
κ0 ≈ −Ω/2 valid for large negative Ω < − 5.

This calculation refers to the case Ω > −2 where all wave numbers km or k̃m =
√

k2
m − Ω2/4 are real and positive.

However the smallest or ground–state wave vector k̃0 vanishes when Ω tends
to −2 from above, and no continuation of this solution exists on the real axis for
Ω < −2. A purely imaginary solution k̃0 = iκ0 appears instead, where κ0 is real,
see Fig. 5.5. In this case (for Ω < −2) a real ground–state eigenfunction ψ0(y)
can be found in the form (5.31) where C = A/2 + B/2 and C∗ = A/2 − B/2,
i. e.,

ψ0(y) = A cosh(κ0y) +B sinh(κ0y) . (5.48)

The transcendental equation for the wave number k̃0 = iκ0 can be written as the
following equation for κ0

Ω

2
sinh (κ0) + κ0 cosh (κ0) = 0 . (5.49)

As compared to the previous case Ω > −2, trigonometric functions are replaced
by the corresponding hyperbolic ones. Similar calculations as before yield

ψ0(y) =

√

− 2

1 + Ω
2

1
−κ2

0+Ω2/4

sinh [κ0(1 − y)] . (5.50)

Note that κ0 = −ik̃0 is the imaginary part of k̃0 and κ2
0 = −k̃2

0. As regards
other solutions of (5.41) called excited states, i. e., those for k̃m with m > 0,
nothing special happens at Ω = −2, so that these wave numbers are always
real. The situation for ground state m = 0 at different values of dimensionless
drift parameter Ω is summarized in Table 5.1 which presents the solutions κ0
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Tab. 5.1: The ground–state wave number κ0 (for Ω ≤ −2) and k̃0 (for Ω ≥ −2)
and eigenvalue λ0 depending on the dimensionless drift parameter Ω.

Ω κ0 λ0

−9.00 4.499 0.010
−8.50 4.248 0.015
−8.00 3.997 0.021
−7.50 3.745 0.031
−7.00 3.493 0.045
−6.50 3.240 0.064
−6.00 2.984 0.091
−5.50 2.726 0.128
−5.00 2.464 0.178
−4.50 2.195 0.245
−4.00 1.915 0.333
−3.50 1.617 0.446
−3.00 1.288 0.591
−2.50 0.888 0.774
−2.00 0.000 1.000

Ω k̃0 λ0

−2.00 0.000 1.000
−1.50 0.845 1.276
−1.00 1.165 1.608
−0.50 1.393 2.004

0.00 1.571 2.468
0.50 1.715 3.005
1.00 1.836 3.623
1.50 1.939 4.325
2.00 2.028 5.116
2.50 2.106 5.999
3.00 2.174 6.979
3.50 2.235 8.058
4.00 2.288 9.239
4.50 2.337 10.525
5.00 2.381 11.917

from transcendental equation (5.49) together with λ0 = −κ2
0 + Ω2/4 and k̃0

from transcendental equation (5.41) together with eigenvalues λ0 = k̃2
0 + Ω2/4.

Table 5.2 shows the behaviour of lowest wave numbers k̃m with m = 0, 1, . . . , 5.
The results are plotted in Fig. 5.6.

In general (for arbitrary Ω), the eigenfunctions are orthogonal and normalised,
i. e.,

∫ 1

0

ψl(y)ψm(y)dy = δml . (5.51)

Fig. 5.7 shows the ground eigenstate (m = 0) for different parameter values Ω,
whereas Fig. 5.8 gives a collection of eigenstate functions (m = 0, 1, . . . , 5) for
Ω = −5.0 and Ω = 3.0.

In the following, explicit formulae (where ψm(y) is specified) are written for
the case Ω > −2.

In order to construct the time–dependent solution for Q(y, t), which fulfils the
initial condition, we consider the superposition of all particular solutions with
different eigenvalues λm

Q(y, T ) =
∞∑

m=0

Cme
−λmTψm(y) . (5.52)
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Tab. 5.2: The wave numbers k̃m (m = 0, 1, . . . , 5) depending on the dimension-
less drift parameter Ω.

Ω −10.0 −5.0 −2.0 −1.0 0.0 1.0 2.0 5.0 10.0

m = 0 4.999 2.464 0.000 1.165 1.571 1.836 2.028 2.381 2.653

m = 1 3.790 4.172 4.493 4.604 4.712 4.816 4.913 5.163 5.454

m = 2 7.250 7.533 7.725 7.789 7.854 7.917 7.979 8.151 8.391

m = 3 10.553 10.767 10.904 10.949 10.995 11.040 11.085 11.214 11.408

m = 4 13.789 13.959 14.066 14.101 14.137 14.172 14.207 14.310 14.469

m = 5 16.992 17.133 17.220 17.249 17.279 17.308 17.336 17.421 17.556
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Fig. 5.6: The parameter dependence of wave numbers k̃m(Ω) and eigenvalues
λm(Ω) for ground state m = 0 and excited states m = 1, 2, 3.
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Fig. 5.7: The eigenfunction ψ0(y) for different values of control parameter Ω.
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Fig. 5.8: The eigenfunctions ψm(y) for m = 0, 1, 2, 3 and for Ω = −5.0 (left) and
Ω = 3.0 (right).

By inserting the initial condition

P (y, T = 0) = e
Ω
2

yQ(y, T = 0) = δ(y − y0) (5.53)

into (5.52) we obtain

∞∑

m=0

Cmψm(y) = e−
Ω
2

yδ(y − y0) . (5.54)

Now we expand the right hand side of this equation by using the basis of orthonor-
malised eigenfunctions (5.46) and identify Cm with the corresponding coefficient
at ψm, i. e.,

Cm =

∫

e
Ω
2

yδ(y − y0)ψmdy = e−
Ω
2

y0ψm(y0) . (5.55)

This allows us to write the solution for P (y, T ) as

P (y, T ) = e
Ω
2

(y−y0)
∞∑

m=0

e−λmTψm(y0)ψm(y) , (5.56)

with eigenfunctions (5.46) and (5.50) of ground state (m = 0)

ψ0(y) =







√

2

1 + Ω
2

1
k̃2
0+Ω2/4

sin
[

k̃0(1 − y)
]

, Ω > − 2

√
3 (1 − y) , Ω = − 2

√

− 2

1 + Ω
2

1
−κ2

0+Ω2/4

sinh [κ0(1 − y)] , Ω < − 2

(5.57)
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and all other eigenfunctions (5.46)

ψm(y) =

√

2

1 + Ω
2

1
k̃2

m+Ω2/4

sin
[

k̃m(1 − y)
]

m = 1, 2, . . . . (5.58)

The eigenvalue of ground state (m = 0) is given by

λ0 =







k̃2
0 + Ω2/4 , Ω > − 2

1 , Ω = − 2

−κ2
0 + Ω2/4 , Ω < − 2

(5.59)

and all others are
λm = k̃2

m + Ω2/4 m = 1, 2, . . . , (5.60)

where the wave numbers are calculated from transcendental equation (5.42)

k̃0 : tan k̃0 = − 2

Ω
k̃0 Ω > − 2 (5.61)

κ0 : tanhκ0 = − 2

Ω
κ0 Ω < − 2 (5.62)

k̃m : tan k̃m = − 2

Ω
k̃m m = 1, 2, . . . . (5.63)

The set of Figs. 5.9 illustrates the time evolution of probability density (5.56)
choosing different parameter values Ω.

5.3 First Passage Time Probability Density

It has been shown in previous Sections that the probability density P (y, T ) is
not normalized under given restrictions, i. e. reflected at y = 0 and absorbed
at y = 1. Due to that fact, let us apply here the balance equation in the open
system given in dimensionless variables by

P(T, y = 1) = − ∂

∂T

1∫

0

P (y, T ) dy (5.64)

which relates the probability P (y, T ) that the system is still in a state y ∈ [0, 1]
with the probability flux P(T, y = 1) out of this interval at the right absorbing
boundary y = 1 at time moment T . Hence, P(T, y = 1) is the first passage time
probability density [13, 22, 82]. It can be calculated by using obtained results
of previous Section. The first passage time probability density distribution P
(breakdown probability density) depending on Ω reads as follows
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Fig. 5.9: The solution of drift–diffusion Fokker–Planck equation with initial
condition y0 = 0.5 for different values of the control parameter Ω, i. e. Ω = −5.0
(top left), Ω = − 2.5 (top right), Ω = 0.1 (bottom left), Ω = 3.0 (bottom right).
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Fig. 5.10: The first passage time probability density distribution P(T, y = 1)
for Ω < −2 (left) and Ω > −2 (right) obtained for the fixed initial condition
y0 = 0.5.

1. Ω > − 2

P(T, y = 1) = 2e
Ω
2
(1−y0)

∞∑

m=0

e−(k̃2
m+Ω2/4)T

1 + Ω
2

1
k̃2

m+Ω2/4

k̃m sin
[

k̃m(1 − y0)
]

(5.65)

2. Ω = − 2

P(T, y = 1) = e− (1−y0)

[

3 (1 − y0) e
−T

+ 2
∞∑

m=1

e−(k̃2
m+1)T

1 − 1
k̃2

m+1

k̃m sin
[

k̃m(1 − y0)
]
]

(5.66)

3. Ω < − 2

P(T, y = 1) = 2e
Ω
2
(1−y0)

×
[

− e−(−κ2
0+Ω2/4)T

1 + Ω
2

1
−κ2

0+Ω2/4

κ0 sinh [κ0(1 − y0)]

+
∞∑

m=1

e−(k̃2
m+Ω2/4)T

1 + Ω
2

1
k̃2

m+Ω2/4

k̃m sin
[

k̃m(1 − y0)
]
]

(5.67)

The outflow distribution P(T, y = 1) is shown in Fig. 5.10 (with different values
of dimensionless drift Ω) as well as in Fig. 5.11 (with different values of initial
condition y0).
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Fig. 5.11: Short time behaviour of first passage time probability density dis-

tribution P(T, y = 1) for Ω = −2 and different initial conditions 0 ≤ y0 ≤ 1
showing time lag.

5.4 Cumulative Breakdown Probability

The probability that the absorbing boundary y = 1 is reached within certain
observation time interval 0 ≤ T ≤ Tobs is given by the cumulative (breakdown)
probability

W (Ω, T = Tobs) =

Tobs∫

0

P(T, y = 1) dT (5.68)

with P(T, y = 1) from (5.64). For Tobs → ∞ we have W → 1. Generally, we
obtain

1. Ω > − 2

W (Ω, Tobs) = 2e
Ω
2
(1−y0)

∞∑

m=0

1 − e−(k̃2
m+Ω2/4)Tobs

k̃2
m + Ω2/4 + Ω/2

k̃m sin
[

k̃m(1 − y0)
]

(5.69)

2. Ω = − 2

W (Ω, Tobs) = e− (1−y0)

[

3
(
1 − e−Tobs

)
(1 − y0)

+ 2
∞∑

m=1

1 − e−(k̃2
m+1)Tobs

k̃m

sin
[

k̃m(1 − y0)
]
]

. (5.70)
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Fig. 5.12: The probability W (Ω, Tobs) (5.68) as function of observation time Tobs

with fixed Ω (left) and vice versa (right).

3. Ω < − 2

W (Ω, Tobs) = 2 e
Ω
2
(1−y0)

×
[

− 1 − e−(−κ2
0+Ω2/4)Tobs

−κ2
0 + Ω2/4 + Ω/2

κ0 sinh [κ0(1 − y0)]

+
∞∑

m=1

1 − e−(k̃2
m+Ω2/4)Tobs

k̃2
m + Ω2/4 + Ω/2

k̃m sin
[

k̃m(1 − y0)
]
]

(5.71)

Fig. 5.12 shows W (Ω, Tobs) as a function of observation time Tobs (left) as well as
parameter dependence Ω (right).

5.5 Limit Case for Large Positive Values of the

Control Parameter

Consider parameter limit Ω → +∞ which corresponds either to large positive
drift v and/or large interval b − a, or to a small diffusion coefficient D. In this
case, for a given m, the solution of the transcendental equation can be found
in the form k̃m = π(m + 1) − εm, where εm is small and positive. From the
periodicity property we obtain

cos k̃m = cos(π(m+ 1) − εm) = −(−1)m cos(εm) = −(−1)m + O
(
ε2

m

)

sin k̃m = sin(π(m+ 1) − εm) = (−1)m sin(εm) = (−1)mεm + O
(
ε3

m

)
.

By inserting this into the transcendental equation (5.41), we obtain

εm =
2

Ω
π(m+ 1) + O

(
Ω−2

)
, (5.72)

sin(k̃m) =
2

Ω
(−1)mπ(m+ 1) + O

(
Ω−2

)
. (5.73)
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In this approximation the normalisation integral for large Ω and with the initial
condition y0 → 0 can be written as

I =

∞∫

0

P(T, y = 1) dT = 2eΩ/2
∞∑

m=0

k̃m sin
(

k̃m

)

λm + Ω/2
(5.74)

≃ eΩ/2
∞∑

m=1

−4

Ω

(−1)m(πm)2

π2m2 + Ω2/4
= eΩ/2

∞∑

m=−∞

−2

Ω

(−1)m(πm)2

π2m2 + Ω2/4
.

Further on we set (−1)m = eiπm and, in a continuum approximation, replace the
sum by the integral

I ≃ eΩ/2

∞∫

−∞

−2

Ω

eiπm(πm)2

π2m2 + Ω2/4
dm . (5.75)

Now we make an integration contour in the complex plane, closing it in the upper
plane (ℑ(m) > 0) at infinity where |eiπm| is exponentially small. According to
the residue theorem, it yields

I = 2 π i
∑

i

Res(mi) = 2 π i Res(m0) , (5.76)

where m0 = iΩ
2π

is the location of the pole in the upper plane, found as a root of
the equation π2m2 + Ω2/4 = 0. According to the well–known rule, the residue
is calculated by setting m = m0 in the enumerator of (5.75) and replacing the
denominator with its derivative at m = m0. It gives the desired result I = 1, i. e.,
the considered approximation gives correct normalisation of outflow probability
density P(T, y = 1) at the right boundary.

The probability distribution function P (y, T ) given by (5.56) can also be cal-
culated in such a continuum approximation. In this case the increment of wave
numbers is

∆k̃m = k̃m+1 − k̃m = π + εm − εm+1 ≃ π

(

1 − 2

Ω

)

≃ π

1 + 2/Ω
. (5.77)

Note that in this approximation for Ω → ∞ the normalisation constant Rm

in (5.45) is related to the increment ∆k̃ via

R2
m =

2

1 + Ω
2

1
k̃2

m+Ω2/4

≃ 2

1 + 2/Ω
≃ 2

π
∆k̃m . (5.78)

Hence, the equation (5.56) for the probability density can be written as

P (y, T ) = 2e
Ω
2
(y−y0)

∞∑

m=0

R2
me

−λmT sin
[

k̃m (1 − y0)
]

sin
[

k̃m (1 − y)
]

(5.79)

≃ 2

π
e

Ω
2
(y−y0)

∞∑

m=0

e−(k̃2
m+Ω2/4)T sin

[

k̃m (1 − y0)
]

sin
[

k̃m (1 − y)
]

∆k̃m .
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Fig. 5.13: Comparison of probability density P (y, T ) in drift–diffusion–dynamics
with finite boundaries for two time moments. Parameter value is Ω = 3.0; initial
condition is y0 = 0.5. The solid lines represent the exact result (5.56); dotted
lines display the approximation (5.81).

In the continuum approximation we replace the sum by the integral

P (y, T ) ≃ 2

π
e

Ω
2
(y−y0)

∞∫

0

e−(k̃2+Ω2/4)T sin
[

k̃ (1 − y0)
]

sin
[

k̃ (1 − y)
]

dk̃ (5.80)

=
1

π
e

Ω
2
(y−y0)

∞∫

0

e−(k̃2+Ω2/4)T
(

cos
[

k̃ (y − y0)
]

− cos
[

k̃ (2 − y − y0)
])

dk̃ .

In the latter transformation we have used the identity
sinα sin β = 1

2
(cos(α− β) − cos(α + β)). The resulting known integrals yield

P (y, T ) ≃ 1√
4πT

e
Ω
2 (y−y0−

Ω
2

T)
[

e−
(y−y0)2

4T − e−
(2−y−y0)2

4T

]

. (5.81)

The approximation (5.81) is shown in Fig. 5.13. For short enough times 4T ≪
(2− y− y0)

2 the second term is very small. Neglecting this term, equation (5.81)
reduces to the known exact solution for natural boundary conditions.

Based on (5.81), it is easy to calculate the probability flux

J(y, T ) = ΩP (y, T )− ∂

∂y
P (y, T ) (5.82)
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and the first passage time distribution P(T ) = J(y = 1, T ) which takes a partic-
ularly simple form

P(T ) =
1 − y0√
4πT 3

e−
(1−y0−ΩT )2

4T . (5.83)

The cumulative breakdown probability (5.68) is then

W (Ω, T = Tobs) =

Tobs∫

0

1 − y0√
4πT 3

e−
(1−y0−ΩT )2

4T dT . (5.84)

The given explanations show the analytical method how to solve drift–diffusion
initial–boundary–value problem for the case of reflecting and absorbing bound-
aries [13, 22, 55, 56, 82]. On the basis of Sturm–Liouville theory, the set of eigen-
values with corresponding eigenfunctions has been found. Here we have paid our
attention to wave number calculations from transcendental equations. The equa-
tions have been solved numerically by Newton method [79]. The main problem
which has been solved was the dependence of obtained results on drift value, i. e.
different cases of control parameter Ω < −2, Ω = −2 and Ω > −2. First case of
Ω < −2 corresponds to the situation when it is difficult and probably impossible,
with significant small probability and for long times only, to leave the interval
due to the large negative value of drift. The case of Ω = −2 has been considered
as limit case and the corresponding solution has been found. The opposite case
of Ω > −2 shows the usual situation when the system reaches the right border
relatively fast. As application, the first passage time distribution as well as the
cumulative probability have been calculated. The case of large positive values of
Ω has been investigated in detail and has been obtained as approximation.

5.6 Relationship to Sturm–Liouville Theory

The particular drift–diffusion–problem over a finite interval with reflecting (left)
and absorbing (right) boundaries belongs to the following general mathematical
theory named after Jacques Charles Francois Sturm (1803–1855) and Joseph
Liouville (1809–1882).

The classical Sturm–Liouville theory considers a real second–order linear dif-
ferential equation of the form [103]

− d

dx

[

p(x)
dψ

dx

]

+ q(x)ψ = λw(x)ψ (5.85)

together with boundary conditions at the ends of interval [a, b] given by

α1ψ(x = a) + α2
dψ

dx

∣
∣
∣
∣
x=a

= 0 , (5.86)

β1ψ(x = b) + β2
dψ

dx

∣
∣
∣
∣
x=b

= 0 . (5.87)
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The particular functions p(x), q(x), w(x) are real and continuous on the finite
interval [a, b] together with specified values at the boundaries. The aim of the
Sturm–Liouville problem is to find the values of λ (called eigenvalues λn) for which
there exist non–trivial solutions of the differential equation (5.85) satisfying the
boundary conditions (5.86) and (5.87). The corresponding solutions (for such λn)
are called eigenfunctions ψn(x) of the problem.

Defining the Sturm–Liouville differential operator over the unit interval [0, 1]
by

Lψ = − d

dx

[

p(x)
dψ

dx

]

+ q(x)ψ (5.88)

and putting the weight w(x) to unity (w = 1) the general equation (5.85) can
precisely be written as eigenvalue problem

Lψ = λψ (5.89)

with boundary conditions (5.86)(a = 0) and (5.87) (b = 1) written as

B0ψ = 0 B1ψ = 0 . (5.90)

Assuming a differentiable positive function p(x) > 0 the Sturm–Liouville op-
erator is called regular and it is self–adjoint to fulfil

∫ 1

0

Lψ1 · ψ2 =

∫ 1

0

ψ1 · Lψ2 . (5.91)

Any self–adjoint operator has real nonnegative eigenvalues λ0 < λ1 < . . . < λn <
. . . → ∞. The corresponding eigenfunctions ψn(x) have exact n zeros in (0, 1)
and form an orthogonal set

∫ 1

0

ψn(x)ψm(x)dx = δmn . (5.92)

The eigenvalues λn of the classical Sturm–Liouville problem (5.85) with pos-
itive function p(x) > 0 as well as positive weight function w(x) > 0 together
with separated boundary conditions (5.86) and (5.87) can be calculated by the
following expression

λn

∫ b

a

ψn(x)2w(x)dx =

∫ b

a

[
p(x) (dψn(x)/dx)2 + q(x)ψn(x)2

]
dx

−
∣
∣
∣p(x)ψn(x) (dψn(x)/dx)

∣
∣
∣

b

a
. (5.93)

The eigenfunctions are mutually orthogonal (m 6= n) and usually normalized
(m = n)

∫ b

a

ψn(x)ψm(x)w(x)dx = δmn (5.94)
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known as orthogonality relation (similar to (5.92)).
Comming back to the original drift–diffusion problem written in dimensionless

variables over unit interval 0 ≤ y ≤ 1 and recalling (5.28) the separation constant
λ appears in the following differential equation

−d
2ψ(y)

dy2
+

Ω2

4
ψ(y) = λψ(y) (5.95)

which can be related to the regular Sturm–Liouville eigenvalue problem via p(y) =
1 > 0; w(y) = 1 > 0 and q(y) = Ω2/4.

The boundary conditions given by (5.34) and (5.37) can be expressed as

Ω

2
· ψ(y = 0) + (−1) · dψ

dy

∣
∣
∣
∣
y=0

= 0 , (5.96)

1 · ψ(y = 1) + 0 · dψ
dy

∣
∣
∣
∣
y=1

= 0 (5.97)

in agreement with (5.86) and (5.87).
The up–to–now unknown separation constant λ has a spectrum of real positive

eigenvalues which can be calculated using (5.93) from

λn =

∫ 1

0

[(
dψn(y)

dy

)2

+
Ω2

4
ψn(y)2

]

dx −
∣
∣
∣
∣
ψn(y)

dψn(y)

dy

∣
∣
∣
∣

1

0

(5.98)

taking into account normalized orthogonal eigenfunction (5.94)

∫ 1

0

ψn(y)ψm(y)dy = δmn . (5.99)

5.7 Comparison with Empirical Data

This Section presents the comparison of empirical data with the analytical so-
lution obtained for the cumulative breakdown probability (5.69) – (5.71). The
empirical data taken from German autobahn A2 and A3 have been obtained for
the three–lane road and have been processed by Brilon and Regler [9, 83]. The
data have been carried out by the application of the Product Limit Method based
on the statistics of lifetime data analysis [39]. The measurements have been col-
lected for the observation time interval tobs = 5 min. As result, the cumulative
breakdown probability W (q) as a function of flow rate q have been calculated.
Intuitively, the following asymptotic behaviour of the probability W (q) can be
expected

W (q) =

{
0 : q → 0
1 : q → ∞ . (5.100)
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In order to compare the empirical data with the analytical calculations pre-
sented in Section 5.12, the following transformations relating the parameters in
our equations to the physical observables have been used

x = leff n (5.101)

v =

(

q − 1

τ

)

leff (5.102)

D =
1

2

(

q +
1

τ

)

l2eff , (5.103)

where n is the cluster size, q is the inflow rate being identical to the attachment
rate w+(n). The parameter τ is specified as the relaxation time. The quantity
1/τ is related to the detachment rate. These quantities have been introduced in
Section 5.1. The value leff is the effective length of car. Then, some other control
parameters are calculated from

initial value: x0 = leff n0 (5.104)

reflecting boundary: a = leff n0 (5.105)

absorbing boundary: b = leff nesc . (5.106)

Due to the given definition of traffic breakdown as a car cluster formation, the
only parameter which allows fitting the empirical data is the escape cluster size
nesc. All other parameters like inverse discharge rate τ are fixed within a narrow
range due to elementary definitions. The escape size nesc defines the number of
vehicles within a cluster to discriminate congested (n > nesc) from non-congested
(n < nesc) traffic and summarize therefore the thresholds for a breakdown in
comparison with statistical undulations. The value of nesc is about 40% higher
in case of a traffic control system switched on along the regarded road section
and shows the effects of traffic control systems by stabilizing traffic flow. It leads
to an onset of the breakdown at higher critical traffic volumes in comparison to
situation without a traffic control system. The range nesc is limited to realistic
cluster sizes. Very small values like nesc = 2 veh make no sense as well as too
large values nesc = 1000. Such extremes can be omitted.

The shape of cumulative breakdown probability (5.69) – (5.71) shown in
Fig. 5.12 reminds to the stochastic distributions used in reliability assessment [83].
This function is called Weibull distributions and has been used as a fitting func-
tion of the empirical data analyzed by Regler et. al. [83]. The Weibull function
is defined as [11, 71]

Fweibull(q) = 1 − exp

[

−
(
q

β

)α]

. (5.107)

The distribution Fweibull(q) given by (5.107) has two control parameters. The
shape of the function (5.107) is controlled by the parameter α. The parameter β
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Fig. 5.14: Cumulative breakdown probability W (q) obtained analytically and
given by formulae (5.69) – (5.71) for the time interval tobs = 5 min taking into
account the transformation (5.101) – (5.103) (left plot). Black circles represent
the empirical data from German autobahn A2 [83]. Other points are analytical
results (5.69) – (5.71) for the different values of absorbing barrier b = nesc leff .
The parameters have been chosen as leff = 7 m, τ = 2 s, x0 = 10−2 m (n0 ≈ 0).
Cumulative breakdown probability W (q) represented in the logarithmic scale is
shown in right plot.

is responsible for the scaling of the distribution Fweibull(q) towads the q–axis. The
analytical solutions (5.69) – (5.71) derived by the technique of the first passage
time are given by infinite series. This fact makes the application of the obtained
analytical results to empirical data analysis difficult. For this reason, we have
examined the applied method not only by the comparison with the real data
but with the theoretical curve given in terms of the Weibull distribution and
presented by finite formula (5.107) as well.

Keeping in mind the transformations (5.101) – (5.103), the cumulative break-
down probability has been calculated as a function W (q) of the inflow rate q.
The empirical data have been provided for the three-lane road. In order to com-
pare these data with analytical solution, we have divided each empirical value
of q by factor of 3. Fig. 5.14 presents the analytical curves for the cumulative
breakdown probability W (q) which have been calculated for the observation time
tobs = 5 min and for different values of the escape cluster size nesc. The influence
of escape value nesc on the behaviour of the function W (q) manifests itself in the
displacement of W (q) towards the q–axis. Fig. 5.14 shows, that the empirical
curve represented by black circles grows more smoothly and not so rapidly than
the functions obtained analytically. This effect is illustrated in the left plot of
Fig. 5.14 which presents the behaviour of both analytical and empirical curves in
the logarithmic scale. Moreover, it seems to be, that the nature of the empirical
curve is rather different from the analytical solution (5.69) – (5.71). In order to
understand such a behaviour in details, Fig. 5.14 has been zoomed for the range
space of the function W (q) ≥ 0.3. The zoomed version is presented in Fig. 5.15.
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Fig. 5.15: Detailed picture of Fig. 5.14 for cumulative breakdown probability
W (q) given by formulae (5.69) – (5.71) for the value range W (q) ≥ 0.3.

The theoretical curve calculated for nesc = 20 veh shows the best agreement
with the empirical breakdown function. Therefore, the analytical solution for
nesc = 20 veh has been plotted separately and compared with the both empirical
curve and Weibull distribution given by the expression (5.107). The result is illus-
trated in Fig. 5.16 in original (right hand side) and logarithmic scales (left hand
side). The analysis shows that for the inflow domain q : q ≤ 1650 veh the agree-
ment between analytical (5.69) – (5.71), empirical [83] and fitting curves [9,71,83]
is rather week. Whereas, the functions are comparable favourably for larger in-
flow values q : q ≤ 1650 veh (see Fig. 5.17). Fig. 5.18 shows the comparison
of the cumulative breakdown probability W (q) given by formulae (5.69) – (5.71)
with the measurements taken from the German autobahn A3 [83]. In this case,
the empirical data represent the behaviour of the cumulative breakdown prob-
ability in the region W (q) . 0.5. In order to verify the given measurements,
the analytical solution (5.69) – (5.71) has been calculated for the different values
of the control parameters nesc and τ . The performed analysis shows that the
analytical solution (5.69) – (5.71) of the drift–diffusion equation (5.19) including
initial (5.20) and boundary conditions (5.21) – (5.22) does not completely agree
with the empirical data. The empirical data shows rather different behaviour.
The obtained discrepancy between the derived analytical solution and real data
can be explained by the fact, that the technique of the first passage time has been
applied for the case of constant inflow and outflow rates and, therefore, for the
constant drift and diffusion terms. It seems, that there is rather sophisticated
dependence for these functions. However, in this case, it is almost impossible to
get the strong analytical result.

We have considered the traffic breakdown phenomenon regarded as a random
process developing via the nucleation mechanism. The origin of critical jam
nuclei proceeds in a metastable phase of traffic flow and seems to be located
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Fig. 5.16: Cumulative breakdown probabilityW (q) and given by formulae (5.69)
– (5.71) (diamond points) calculated for nesc = 20 veh and tobs = 5 min taking
into account the transformation (5.101) – (5.103). Empirical data are marked
by circles. Weibull distribution Fweibull given by (5.107) presented by smooth
curve (left plot). Parameters of the Weibull distribution have been chosen as
α = 7.84 and β = 1943. The plot on the right represents the obtained results in
logarithmic scale.
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Fig. 5.17: Detailed picture of Fig. 5.16 for cumulative breakdown probability
W (q) given by formulae (5.69) – (5.71) for the value range W (q) ≥ 0.3.
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Fig. 5.18: Cumulative breakdown probability W (q) given by formulae (5.69)
– (5.71) obtained for the observation time interval tobs = 5 min. Black circles
are empirical data taken from German autobahn A3 [83]. Another points are
analytical result (5.69) – (5.71) for the different values of the escape value nesc

and relaxation time τ . The parameters have been chosen as leff = 7 m, τ = 2 s,
x0 = 10−2 m (n0 ≈ 0).

inside a not too large region on a highway, for example, in the close proximity of a
highway bottleneck. The induced complex structure of the congested traffic phase
is located upstream of the bottleneck. Keeping these properties in mind, we have
applied the probabilistic model regarding the jam emergence as the development
of a large car cluster on highway. In these terms the traffic breakdown proceeds
through the formation of a certain car cluster of overcritical size in the metastable
vehicular flow, which enables us to confine ourselves to the single cluster model.
A method how to calculate the traffic breakdown in this simple physical model
has been discussed and developed. The results have been compared with real
empirical data [83].
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6 Summary and Outlook

The application of physics of stochastic processes to vehicular traffic problems
has been done within the framework of this thesis. The main objective of this
work was to provide the detailed analysis of the possible states of traffic flow
dynamics by way of the thorough study of the cooperative motion phenomenon.
For this purpose, both analytical and numerical approaches have been performed.
The following directions of investigation and results should be underlined:

1. The microscopic description of vehicular ensemble governed by Bando’s opti-
mal velocity model for the motion on a circle one lane road has been examined in
detail. The both approaches of the car following model deterministic and stochas-
tic have been carried out. The detailed analysis has shown the Bando’s model
admits the existence of two phases of traffic flow only, i. e. either free or con-
gested. The free flow is characterized by high velocities which are approximately
equal to the maximal allowed speed. The congested traffic occurs with the in-
crease of the car concentration. Such a movement is represented by the different
numbers of moving clusters with the same velocity close to zero. In this sense, the
probability densities of velocities and headway distances have been calculated for
the different values of the car concentration. The headway distribution function
can become bimodal according to the occupation on the road. In the long–time
limit the many car system tends to certain stationary state. In the microscopic
description it is either the fixed–point or the limit cycle in the phase space of
velocities and headways depending on the overall car concentration and control
parameters. The stationary state is characterised by certain internal energy. The
analysis has shown that during the cluster formation process the internal energy
increases as a step–like function.

2. In view of the fact that there is a hypothesis about three phases of traffic
flow, the problem of understanding and description of the intermediate states
has been addressed within the framework of this thesis. The new approach is
based on study of dynamical states controlled by kinetic coefficients taking into
account their anomalous properties and their dependence on position in phase
space. The physical properties of a driver have a dominant role in the traffic dy-
namics. The driver can not equally control the relative velocity and the headway
distance. Since the relative velocity of the car is the most important criterion for
the safe driving, the reaction time of the driver on its changing vastly more than
the reaction time for controlling of dinstance between two cars. Therefore, the
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domain of small relative velocity plays the role of the dynamical trap. For this
purpose, follow the leader model based on optimal velocity ansatz and including
the dynamical trap effect has been proposed and developed. It has been shown
that mutual effect of stochastic and deterministic forces governing the motion
of the following car can give rise to the nonequilibrium phase transition of new
type. It manifests itself that the headway distribution becomes bimodal and the
distribution of the velocity difference has a Laplace form which is characterized
by fat tails. In addition it has been demonstrated that the dynamical traps in-
duce long time correlations in the car dynamics.

3. The traffic breakdown phenomenon regarded as a random process develop-
ing via the nucleation mechanism has been analyzed in detail. The origin of
critical jam nuclei proceeds in a metastable phase of traffic flow and has been
assumed to be located inside a not too large region on a highway, for example, in
the close proximity of a highway bottleneck. The induced complex structure of
the congested traffic phase is located upstream of the bottleneck. Keeping these
properties in mind, the probabilistic model regarding the jam emergence as the
development of a large car cluster on highway has been applied. In these terms
the traffic breakdown proceeds through the formation of a certain car cluster
of overcritical size in the metastable vehicular flow, which enable us to confine
ourselves to the single cluster model. A method how to calculate the traffic
breakdown in this simple physical model has been discussed and developed. The
results have been compared with real empirical data. The empirical data shows
rather different behaviour. The obtained discrepancy between the derived ana-
lytical solution and real data can be explained by the fact, that the technique of
the first passage time has been applied for the case of constant inflow and outflow
rates and, therefore, for the constant drift and diffusion terms. It seems, that
there is rather sophisticated dependence for these functions. However, in this
case, it is almost impossible to get the strong analytical result.

In view of the above mentioned results obtained within the framework of this
thesis, the following outlooks for the future investigations can be underlined:

1. The concept of the dynamical trap can be applied to the vehicular ensemble
governed by car following model. It is possible to expect that the dynamical traps
caused by human bounded rationality can endow the system with a number of
anomalous properties.

2. The empirical data presented the probability of traffic breakdown show rather
different behaviour according to the obtained analytical results. In this sense,
the theoretical approach should be improved. For this purpose, it is necessary
to consider the multi lane model with a lane changing effect. Such a process can
not be described by the one–step master equation meaning that more complex
description should be introduced.
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2. R. Mahnke, J. Kaupužs, I. Lubashevsky, J. Tolmacheva:
Stochastic Approach to Highway Traffic,
In: Noise in Complex Systems and Stochastic Dynamics II (Eds.: Z. Gingl,
J. M. Sancho, L. Schimansky–Geier, J. Kertesz), Proceedings of SPIE,
5471, pp. 298–310, 2004

2005

3. R. Mahnke, J. Kaupužs, J. Tolmacheva:
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