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Abstract 
 

It is well understood that urbanization results in changes to the hydrologic cycle, namely 
increasing surface runoff production rates. Precipitation falling on impervious areas is 
typically directed via a network of drainage pipes to detention reservoirs, a process 
shown to negatively impact aquifer recharge rates. Historically, urban hydrologists have 
focused primarily on surface processes with little consideration to subsurface 
implications of the urban water cycle. Here, we present an approach to construct long-
term, high-resolution water budgets for a coastal stormwater catchment resolving surface 
runoff and groundwater fractions within the water body and associated source-specific 
fluid exports to the coastal ocean. We use the radiotracer 222Rn to delineate groundwater 
fraction within the reservoir, calculate direct precipitation inputs, and by difference, 
determine surface runoff contributions to the total water budget. By determining total 
output rates from Dogwood Swash, we also examine relative source outputs at both high- 
and low-resolution temporal scales from 2012 through 2013. While surface runoff 
constituted the majority of the water budget, both groundwater and surface runoff 
fractions varied by 36.5% suggesting the subsurface source to contribute significantly to 
the stormwater catchment fluid budget. However, long-term records indicate a decline in 
groundwater fraction (by 35%) and export (14%) from the system as aquifer residence 
times increased. Constructing water budgets for sub-basin tributaries within the larger 
Dogwood Swash drainage complex suggest reduced source water variability, lower 
groundwater fractions, and longer aquifer residence times with greater impervious 
surface area. Our approach to water budget construction may be applied to other 
environments providing the framework for source-specific material budgets. Such 
assessments could then be used by stormwater managers to best maintain desired 
ecosystem health in both urban streams and the coastal ocean.  
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Introduction 

 Anthropogenic landscape alterations due to urbanization can significantly alter the fate of 

precipitation by preventing those waters from infiltrating into shallow aquifers, instead being 

redirected through overland flowpaths. In urban areas, stormwater conveyance systems are 

engineered to rapidly transport water away from roads, parking lots, and buildings such that the 

rate of fluid delivery to receiving waters is increased (Booth and Jackson, 1997). Waters of either 

surface or subsurface origin deliver material loads to neighboring water bodies based on their 

unique transit pathways and transport times (Loucaides et al., 2007; Hildebrandt et al., 2008). 

Changes in material load (quality and quantity) as well as delivery rate (e.g., dosage) in turn may 

yield biological shifts with potentially whole-scale ecological ramifications (Booth et al., 2002; 

Hancock et al., 2005). 

 Historically, impervious surfaces have been believed to convert 100% of precipitation to 

overland flow thus completely negating infiltration processes in urban areas (e.g., Johnson and 

Sayre 1973). For this reason, much of the urban hydrology literature is surface runoff centric, 

focusing primarily on hydrographic concepts (Meriano et al., 2011), urban channel 

geomorphology (Vietz et al., 2014), and ecological responses (Grimm et al., 2008). A review by 

Brabec et al. (2002) reveals most urban watershed work has focused on physical, chemical, and 

biological stream health parameters with little regard to fluid origin as the cause of degraded 

urban water quality. Since the review by Brabec et al. (2002), researchers have begun to 

investigate fluid sources to urban streams and examine associated water balances (Haase 2009). 

With advancements in hydrologic simulations, researches have incorporated complex surface 

and subsurface interactions (Arnold and Allen 1996; Arnold et al., 2000)  able to hindcast pre-

developed hydraulic conditions and compare them to current or forecasted urbanized hydraulic 
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regimes to assess the role of development in urban fluid dynamics (Barron et al., 2013). Such 

modeling efforts require field measurements for calibration/validation to generate realistic 

results. 

 To date, however, measurements of groundwater fluxes to urban systems have primarily 

relied upon indirect approaches (e.g., water balance differences and hydrograph separation) to 

constrain this often difficult to measure water source component (e.g., Hasse 2009; Meriano et 

al., 2011). Recently, more direct methods have been developed to quantify groundwater fluxes to 

water bodies including seepage meters and natural geochemical tracers (e.g., Ra isotopes, 222Rn, 

CH4, U isotopes, and C isotopes). Many of the studies exercising these newer techniques have 

focused attention on inputs to the coastal ocean (Burnett et al., 2006), rivers (Mullinger et al., 

2007), estuaries (Santos et al., 2010), and lakes (Dimova and Burnett 2011) in rural and suburban 

settings rather than confined urban water bodies. In coastal urbanized settings, source delineation 

is essential as waters are transported offshore influencing not only the urban stream, but also the 

coastal ocean with unique biological implications to each environment (Hutchins et al., 2014). 

 To understand how hydrologic changes impact receiving waters, we must understand 

relative fluid contributions from both surface and subsurface sources to discern source-specific 

material loads to urban water bodies and the coastal ocean. In this study, we construct long-term, 

high-resolution water budgets for a coastal stormwater catchment to examine fluid contributions 

within the catchment and quantify source-specific system outputs. In constraining temporal 

surface runoff and groundwater source dynamics, we hypothesize surface runoff will constitute 

the majority of the water budget in this urban setting with unique fluctuations in groundwater 

contributions on seasonal and event-driven scales related to rainfall patterns. The objectives of 

this study are to: 1) construct long-term quantitative total discharge rate records for an urban 
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stream; 2) assemble time-series water budgets for the system by resolving groundwater fractions, 

computing direct precipitation fractions, and determining surface runoff fractions by difference; 

and 3) calculate source-specific outputs from the coastal drainage canal to quantify that which 

enters the neighboring coastal ocean. These water budgets and associated source-specific flux 

records will be used in a follow-up study to assess the role of surface and subsurface flowpaths 

on nutrient biogeochemical cycling within the urban stream and resulting fluxes to the coastal 

ocean. 
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Methods 

Geographic Setting and Site Descriptions 

The Grand Strand is a stretch of semi-contiguous shoreline from Winyah Bay to Little 

River along the northern coastline of South Carolina. This region includes approximately 100 km 

of beaches and supports over fourteen million seasonal tourists each year. Extensive 

development in the Grand Strand and surrounding coastal towns has led to the need to transmit 

stormwater runoff offshore, effectively resulting in intense engineered water conveyance 

systems. One technique employed in this region is to collect stormwater runoff from pipes, 

ditches, and detention ponds into conveyance creeks (locally known as ‘swashes’), which 

traverse the beach and discharge into neighboring marine waters, Long Bay. A total of fifteen of 

these swashes exist throughout the Grand Strand, and range from non-tidal (e.g., weired near the 

outlet) to fully tidally flushed. Swash waters are open to the atmosphere (accumulating direct 

precipitation along the flowpath) and flow across permeable sediments (allowing exchange of 

groundwater through transport) providing an environment for internal transformations of 

nutrients, metals, bacteria, and pollutants in transit through developed lands.  

Results from Hutchins et al. (2014) demonstrate the relation between urban development, 

surface and subsurface water quality, and resulting microbial activity in shallow aquifers.  More 

specifically, the pristine and developed environments investigated by Hutchins et al. (2014) can 

be most notably characterized by extreme differences in the area of impervious cover and land 

use between sites, two variables intimately influencing hydrologic processes (e.g., infiltration of 

rainwater, magnitude of surface runoff, and subsequent discharge rates of both surface and 

subsurface sources). To further develop the concepts outlined by Hutchins et al. (2014), we 

collected long-term, high-resolution hydrologic records from Dogwood Swash, a non-tidal 
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conveyance creek of the Grand Strand, specifically investigating source water dynamics over 

annual, seasonal, and weekly (e.g., storm/drought periods) temporal scales. We supplement our 

interpretations regarding the relationship between source water ratios (e.g., surface: subsurface 

water fraction ratios) and total discharge from the swash by examining three upstream tributaries 

within the drainage basin, each sub-basin comprised of unique combinations of impervious cover 

and land use practices, to assess local heterogeneity of land use to surface and subsurface 

hydrology. To examine the potential influence of land use on source water ratios to Dogwood 

Swash and its tributaries, we developed a classification scheme considering predominant 

activities, ultimately categorizing impervious vs. pervious area. Using aerial imagery, GIS tools, 

and our classification guidelines, we digitized each basin to quantify total area of each activity 

and that of impervious cover. 

Dogwood Swash 

 Dogwood Swash discharges into Long Bay through the town of Surfside Beach, draining 

~4.7 km2 of forested uplands and developed regions of variable functions and densities. The 

Dogwood Swash drainage basin is characterized by low relief topography and includes mostly 

residential, recreational, and municipal development categories, as well as undeveloped forested 

regions. Developed lands account for 65% of the total basin area, with vegetation (23%), open 

water (6%), golf courses (5%), and cropland, bare land, and beach (combined  1%) comprising 

the rest of the basin. Although the most seaward stretch of Dogwood Swash experiences tidal 

exchange through a concrete-lined channel, a 40 m broad-crested weir situated 200 m inland of 

the beach permits only offshore flow from a detention basin at the lower reaches of Dogwood 

Swash. Inland, the swash incises the land creating a natural bank made of soils and sediments 

held in place by overlying vegetation. Some parts of the lower swash basin are lined with steel 
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bulkheads to prevent erosion of the detention basin shoreline. This lower basin was engineered 

with a function similar to that of a detention pond (Schueler 2000; Drescher et al., 2007), acting 

as a stormwater runoff catchment and settling tank for water and materials before entering the 

ocean.  

Inland Tributaries 

Selected tributaries include T1, T2, and T3 (north to south) respectively located 1.3, 2.1, 

and 2.5 km inland of the time-series deployment near the mouth of Dogwood Swash (see Fig. 1). 

The T1 basin encompasses an area of ~1 km2 influenced primarily by developed lands (60%) and 

golf courses (20%). T2 drains 0.09 km2 influenced entirely by development (95%) and upland 

forest (5%). Lastly, the T3 drainage basin (~1.5 km2) is uniquely influenced by nearly the same 

degree of developed and undeveloped land (48% and 42%, respectively).  

Research Approach 

Our approach to constructing water budgets for Dogwood Swash defines discharge over 

the weir as the only system output, and accounts for surface runoff, groundwater, and direct 

precipitation as the input sources. While we define a single output term, our approach allows 

additional fluid losses (e.g., evapotranspiration) from the system without compromising our 

estimated source water fractions. That is, the rate and magnitude of combined source inputs is 

not forced equal to the output rate (discharge), as we compute total discharge from Dogwood 

Swash and then independently resolve each source component. So, source water fractions are 

determined independent of extraneous factors (e.g., swash discharge and volume). Source-

specific discharge rates are then calculated using temporally overlapping fraction and total 

discharge values. Time-series water budgets are determined for fluid fractions as well as 
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discharge rates, comprised of many individual water budgets, each representing the relative 

magnitude of fluid sources over a discrete time. 

Total Discharge 

The volume of water flowing over a flow control structure at any instance may be 

mathematically expressed as: 

 𝑄 = (
8

27
𝑔)

1

2
∗ ℎ𝑤𝑒𝑖𝑟  

3

2  ∗ 𝑤𝑐      (1) 

 (Hornberger et al., 1998) where volumetric discharge (𝑄) is given by the gravitational constant 

(𝑔), the difference in elevation between the water surface and weir crest (ℎ𝑤𝑒𝑖𝑟), and the length 

of weir over which water is flowing (𝑤𝑐). This equation is first used to determine total discharge 

from the swash and then to generate water budget exports. To constrain the parameters driving 

these calculations, we deployed a submersible CTD data logger (Solinst, LTC Levelogger 

Junior) 20 cm above the swash bottom to monitor swash water level (5 min. intervals) near the 

weir. Data were barometrically compensated using a similar probe (Solinst Barologger Gold) 

that remained subaerial throughout sampling. Corrected level data were converted to water 

surface elevations by adding each measured water level to the constant elevation of the probe 

determined using RTK GPS. To ensure our surface water elevations were all determined using 

the same datum, we deployed the CTD in a vented PVC pipe, fixed to our time-series sampling 

platform. The CTD was suspended from a locking cap (to prevent infiltration of direct 

precipitation) and rested on the bottom of the capped PVC housing. RTK GPS methods were 

used to determine position and elevation of the CTD and points along the weir crest. We then 

determined  ℎ𝑤𝑒𝑖𝑟 for all water level measurements by calculating the difference in elevation 

between flooded weir sections and that of the water surface on 5 minute intervals. Here, a 

flooded weir section is considered to be a section of weir at lower elevation than that of the water 
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surface in the lower swash basin. Because a 16 cm range in elevation exists along this weir crest 

(in discrete segments of uneven lengths), we determined the length of each flooded weir section 

and summed those of equal elevation to give a single 𝑤𝑐  value for a given swash surface 

elevation. Equation 1 was solved for each possible value of wc (1 cm increments of ℎ𝑤𝑒𝑖𝑟) to 

derive an empirical discharge value for each possible value of hweir and total discharge is given 

by the summation along the length (𝑤𝑐) of flooded weir crest. To verify these discharge 

estimates, we measured discharge rates ~10 m downstream of the weir at low tide using a 

handheld Acoustic Doppler Velocimeter (ADV) FlowTracker (Sontek/YSI Inc.).  

Groundwater Fraction 

Relative to surface and meteoric waters, groundwaters are enriched in 222Rn through 

interaction with uranium rich sediments, making radon an ideal tracer of groundwater inputs to 

surface waters (Burnett et al., 2006; Swarzenski, 2007; Charette et al., 2008). Well established 

methods and instrumentation exist for converting measured radon activities to quantitative 

groundwater estimates after a few corrections are applied (Cable et al., 1996; Corbett et al., 

1999; Burnett et al., 2001). To estimate the role of groundwater in the Dogwood Swash water 

budget, we used a mass balance approach based upon Burnett and Dulaiova (2003) to correct the 

measured 222Rn concentration for losses (decay and atmospheric degassing) and additional inputs 

(ingrowth from dissolved 226Ra parent) for each measurement interval. Each corrected radon 

concentration can then be used to calculate a fraction of groundwater in a water body and per 

unit volume of discharging water following methods by Peterson et al. (2010), thus resolving the 

groundwater fraction and corresponding discharge value for each measurement interval.  A 

conceptual schematic as well as a detailed description of groundwater fraction and discharge 

derivations used here is offered in the seminal work by Peterson et al. (2010), from which this 
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work is based. While some of the equations and assumptions used to generate groundwater 

estimates are stated throughout the coming sections, a more detailed description (including a 

sensitivity analysis) can be found in Peterson et al. (2010). Further concepts related to data 

presented here are discussed on pages 27 through 29 in this work in the section titled 

Groundwater Model Sensitivities. 

Our ability to detect elevated radon concentrations in swash surface water suggests 

groundwater has discharged into the swash, but does not reveal the input location (and therefore 

residence time of any particular radon atom, which is an important factor to constrain the degree 

of decay and degassing). To address this potential complication, we used an approach by 

Peterson et al. (2010) that brackets the likely range of groundwater concentrations and discharge 

fluxes from a surface water body. Minimum calculations assume all 222Rn was input proximal to 

the monitoring location and therefore the measured concentration equals the initial concentration 

as no losses would occur during the short transit. Maximum calculations assume all 222Rn was 

input at the upstream extent of our sampling domain and is therefore subject to decay and 

degassing losses during the entire downstream transit, so the measured concentration is less than 

the initial concentration and must be corrected. Minimum groundwater discharge estimates were 

generated using the following equation: 

𝑄𝐺𝑊 (
𝑚3

𝑠
) = [

𝑅𝑛 𝐶𝑜𝑛𝑐.(
𝑑𝑝𝑚

𝑚3 )−𝐵𝑘𝑔𝑑.(
𝑑𝑝𝑚

𝑚3 )

𝐸𝑛𝑑−𝑚𝑒𝑚𝑏𝑒𝑟(
𝑑𝑝𝑚

𝑚3 )
] 𝑄𝑇𝑂𝑇𝐴𝐿 (

𝑚3

𝑠
)             (2) 

(Peterson et al., 2010) where 𝑄𝐺𝑊 is the calculated groundwater discharge, 𝑅𝑛 𝐶𝑜𝑛𝑐. is the 

measured 222Rn activity for a given interval, 𝐵𝑘𝑔𝑑. is supported 222Rn via decay of 226Ra, 𝐸𝑛𝑑 −

𝑚𝑒𝑚𝑏𝑒𝑟 is the corresponding 222Rn groundwater concentration (as measured from the aquifer), 

and 𝑄𝑇𝑂𝑇𝐴𝐿 is total swash discharge. This equation essentially calculates the fraction of swash 

water that is derived from groundwater (as excess surface activity divided by groundwater 
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activity) and multiplies the fraction by total discharge to derive the groundwater-borne discharge 

rate from the swash. 

Maximum groundwater discharge estimates were then determined by: 

𝑄𝐺𝑊 (
𝑚3

𝑠
) =

[
 
 
 
 [𝑅𝑛 𝐶𝑜𝑛𝑐.(

𝑑𝑝𝑚

𝑚3 )+[
𝐴𝑡𝑚.𝐸𝑣𝑎𝑠.(

𝑑𝑝𝑚

𝑚2𝑠𝑒𝑐.
)𝑅(𝑠𝑒𝑐.)

𝐷𝑒𝑝𝑡ℎ (𝑚)
]−𝐵𝑘𝑔𝑑.(

𝑑𝑝𝑚

𝑚3 )]𝑒𝜆𝑅

𝐸𝑛𝑑−𝑚𝑒𝑚𝑏𝑒𝑟(
𝑑𝑝𝑚

𝑚3 )

]
 
 
 
 

𝑄𝑇𝑂𝑇𝐴𝐿 (
𝑚3

𝑠
)        (3) 

(Peterson et al., 2010). Here, each measured radon concentration (𝑅𝑛 𝐶𝑜𝑛𝑐. ) is assumed 

to be that which remains of the initial concentration after loss to atmospheric evasion 

(𝐴𝑡𝑚. 𝐸𝑣𝑎𝑠. ) and decay (𝑒𝜆𝑅) in transit to our monitoring site. Where the magnitude of loss to 

the atmosphere is dependent upon the concentration gradient and turbulence associated with the 

air/water interface (Burnett and Dulaiova, 2003) and influenced by water depth (𝐷𝑒𝑝𝑡ℎ). Data 

used to assess turbulence at the interface including air temperature and wind speed were 

downloaded from a public meteorological database representative of local conditions 

(www.ysieconet.com) and evasional losses were calculated according to MacIntyre et al. (1995). 

Radon lost to decay (𝑒𝜆𝑅) was determined using the decay constant of 222Rn (𝜆) (1.56*104 sec.-

1) and transit time (𝑅) of a given concentration (see Peterson et al., 2010 for a detailed 

description of Eq.’s (2) and (3)). Our maximum calculations determined total loss (atmospheric 

evasion and decay) using the mean life of 222Rn (4.79 x 105 sec.) as a constant residence time 

given the half-life of the isotope and the probability of detection (see Groundwater Model 

sensitivities, page 28). After correcting each measured activity for losses, we account for 

supported 222Rn (𝐵𝑘𝑔𝑑. ) and divide the resultant by the 222Rn concentration in the 

groundwater (𝐸𝑛𝑑 − 𝑚𝑒𝑚𝑏𝑒𝑟). Because our maximum estimates assume all radon was input 

upstream, we used the mean 𝐵𝑘𝑔𝑑. and 𝐸𝑛𝑑 − 𝑚𝑒𝑚𝑏𝑒𝑟 values representative of the three 
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upstream tributaries rather than those values measured at the downstream site (see Groundwater 

Model Sensitivities, page 28 for a detailed discussion regarding end-member constrainment). As 

this approach constrains the range of possible groundwater discharge fluxes (Peterson et al., 

2010), groundwater discharge estimates are presented here as a mean of our minimum and 

maximum estimates. 

To construct a long-term record of 222Rn concentrations, we deployed an automated 

radon system as described by Burnett and Dulaiova (2003) fixed to a stationary platform situated 

~5 m from the northern swash bank. In short, a submersible pump (secured ~20 cm above the 

swash bottom) delivered surface water to a degassing chamber (RAD-Aqua; Durridge Co.) 

where air-water equilibration of radon-222 was achieved. Air from the chamber was then 

pumped through desiccant to a radon-in-air monitor (RAD7; Durridge Co.) where gaseous radon 

activities were measured via alpha counting. To correct each measurement for additional 222Rn 

sources, we subtracted the 222Rn produced from decay of the suspended parent isotope (226Ra) 

from the total activity to yield excess 222Rn. Ra-226 activities were measured by collecting and 

filtering large volumes (~62 L) of swash water through MnO2-impregnated acrylic fibers that 

quantitatively adsorb radium (Moore and Reid, 1973), and measured the fibers for 226Ra using 

methods outlined by Peterson et al. (2009).  

To constrain groundwater end-member 222Rn activities, we sampled groundwater directly 

from piezometers constructed using 1 in diameter PVC pipe with 10 cm screened sections 

installed 1.5 m, 1.25 m, 1.0 m, and 0.5 m below ground surface in the adjacent aquifer. 

Groundwater was collected in 250 mL glass bottles (WAT-250 system; Durridge Co.) using a 

peristaltic pump and measured using standard RAD7 protocols. In addition to direct groundwater 

sampling, we used a laboratory incubation method to constrain end-member activities using 
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aquifer materials from depths consistent with each piezometer. By this method, 100 g of dry 

sediment was sealed in a 300 mL Erlenmeyer flask with radium-free water for 21 days to achieve 

secular equilibrium between 222Rn and sedimentary 226Ra (Corbett et al., 1998). After 3 weeks, 

samples were measured using similar instrumentation and procedures as for groundwater field 

samples. Because groundwater becomes enriched in 222Rn through decay of the parent isotope, 

the 222Rn concentration in the overlying water represents that which would be generated in 

groundwater with at least a three week residence time within the aquifer, a maximum estimate of 

groundwater 222Rn activities. 

While our 222Rn time-series deployment was active, we collected surface water in 7 L 

Nalgene bottles (Stringer and Burnett, 2004) each week.  Samples were analyzed for 222Rn 

according to Lee and Kim (2006) while supported and end-member 222Rn activities were 

determined for each tributary following identical sampling techniques and analyses as previously 

described. Water budgets for each tributary are used to primarily assess the relatedness between 

source water dynamics and budget stability through time to impervious cover in an effort to 

place downstream results in larger context.  

Direct Precipitation Fraction 

To resolve the contribution of direct precipitation (falling onto the open water portions of 

Dogwood Swash) to the total water budget, we compared the volume of precipitation (average 

over a given interval) to that of the swash over the same period. Local precipitation accumulation 

was measured using an automated ISCO sampler and accompanying rain gauge located ~50 m 

east of the 222Rn time-series deployment. We then digitized an aerial image of the basin to 

determine the surface area of the swash subject to direct precipitation and multiplied the 

accumulated rainfall by the surface area of the swash to generate volumetric precipitation inputs. 
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To determine the volume of the swash at a given instance, we conducted a bathymetric survey 

using single-beam sonar methods and RTK GPS where position and depth data were digitally 

recorded and processed using hydrographic survey software (Hypack Inc.). Briefly, survey data 

were collected using a canoe outfitted with a GPS antenna and single beam sonar transducer 

fixed just below the water surface. For depths too shallow to be surveyed by this method, we 

traversed the area of interest with a GPS antenna mounted pack. Discrete elevations of the swash 

bottom were imported to GIS where a bathymetric surface was created and bound by the area of 

open water determined using aerial imagery. Swash volume estimates were generated using GIS 

(3D Analyst: Functional Surface) as the three dimensional volume between the bathymetric 

surface and the water surface. To apply this approach through time, we used our time-series 

elevation-corrected depth record to generate a representative range of surface water elevations 

that would serve as the vertical bounding surface for which our calculations considered. After 

several computations (n=16) using surface water elevations ranging from 1.78 m to 2 m, we used 

liner regression to generate empirically derived predictions of total volume as a function of water 

depth. To determine the fraction of precipitation within the swash, we simply divide the average 

volume of direct precipitation by that of the swash. Direct precipitation discharge is then 

determined by multiplying the fraction of direct precipitation by total swash discharge. Tributary 

water budgets are comprised only of groundwater and surface runoff (overland flow + direct 

precipitation) as the open water area for each tributary is negligible in comparison to that of 

Dogwood Swash. 

Surface Runoff Fraction 

 Surface runoff is defined here as, the precipitation that falls on the terrestrial drainage 

basin and is subsequently conveyed to Dogwood Swash through engineered drainage networks 
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(pipes and ditches) as well as sheetflow runoff. Combined surface runoff, groundwater, and 

direct precipitation inputs comprise the total budget at any instant. To resolve surface runoff 

contributions, we subtract groundwater and direct precipitation fractions from the total budget 

(100%) to yield the swash surface runoff component. Resulting fractions of surface runoff are 

then multiplied by total swash discharge rates to determine surface runoff export rates. 
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Results and Discussion 

Dogwood Swash water budgets are presented for both fractions of swash fluid (%; 

surface runoff, groundwater inputs, and direct precipitation) and discharge rates (m3/s; total, 

surface runoff, groundwater, and direct precipitation) from September 1, 2011 through October 

8, 2013. We present these water budgets as both high-resolution (at 30 minute intervals) and 

monthly mean values for a more comprehensive assessment of temporal variability. By our 

convention, direct precipitation fractions are negligible (0, except during times of rainfall) in our 

high-resolution records and therefore these results are not shown on this time scale. However, 

over much longer time scales (e.g., months to years), direct precipitation to the swash water 

surface represents a measurable fraction of the budget, and is therefore included in the monthly 

mean results. So, our high-resolution water budgets include two terms: surface runoff and 

groundwater, while our long-term budgets are comprised of three terms: surface runoff, 

groundwater, and direct precipitation. 

The absolute volume of Dogwood Swash, at any instant, is a combination of source 

waters, where total volume equals the summation of fluid contributions from each source. In 

constructing these water budgets, we examine the role of each source within the swash and how 

each relates to the relative magnitudes of export from the system. Field observations of 222Rn 

activities varied considerably (from 0.13 dpm/L ± 0.09 dpm/L to 22.75 dpm/L ± 1.24 dpm/L) 

with an average activity of 6.19 dpm/L (± 0.65 dpm/L) (Fig. 2A). Measured activities were then 

converted to minimum and maximum groundwater percent fractions (Eq. 2 and Eq. 3, 

respectively) where average minimum groundwater fractions were 4.22% (ranging from 0.02% 

to 15.98%) and average maximum groundwater fractions were 6.38% (ranging from 0.23% to 

65.26%) (Fig. 2B). As applying Eq. 2 and Eq. 3 generates similar groundwater fraction 



16 
 

estimates, we apply an average of the two results to our water budgets yielding a single 

groundwater fraction estimate for each 30 min. interval. From this, we determined surface runoff 

generally constitutes a substantial component of the total budget while groundwater fractions are 

much less (Fig. 3A). On average, Dogwood Swash is comprised of 94.4% (ranging from 63.52% 

to 99.97%) surface runoff, 5.6% (ranging from 0.03% to 36.48%) groundwater, and 3.2 x 10-3% 

(ranging from 0.0% to 7.7 x 10-3%) direct precipitation. Because the swash was engineered 

primarily to act as a stormwater-runoff catchment, it is logical that surface runoff constitutes 16.8 

times more volume than groundwater, and nearly 30,000 times that of direct precipitation. While 

these values represent a broad evaluation of the swash water budget, we will examine temporal 

variability of the system in the following sections.  

Our water budgets represent the nature of the fluids within the swash and discharging 

real-time from the swash at the outlet, so do not necessarily reflect when these waters entered the 

swash body. Interpretations of Dogwood Swash water budgets consider two perspectives: the 

first focused strictly on the swash as an isolated system primarily using fluid fractions and their 

relative contribution to the total budget (as above); the second perspective emphasizes the 

intimacy between the swash and the nearshore water it drains into, highlighting the importance 

of the swash as a point-source for water and associated constituents (e.g., nutrients, metals, and 

bacteria) to a larger coastal ecosystem. Discharge rates from the swash thus represent the 

influence of Dogwood Swash as a contributor of fluid and materials to Long Bay. In general, 

discharge from the swash was quite variable from 2011 through 2013 (Fig. 2C). The average rate 

of discharge from the swash was 0.030 m3/s with a standard deviation of 0.027 m3/s, ranging 

from 0.00 m3/s to 0.553 m3/s. For comparison, Little River, located ~46 km NE of Dogwood 

Swash, discharged at an average rate of 16.12 m3/s into Long Bay over the same interval 
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(www.dnr.sc.gov). While the average discharge rate from Dogwood Swash represents a small 

fraction of that from Little River, applying this rate to each of the fifteen swashes in the Grand 

Strand totals 35.5% of the average discharge rate from Little River, a major inlet along the Grand 

Strand. 

Temporal Trends 

Long-term 

Understanding how the Dogwood Swash water budget functioned during our study is an 

important first step, but an examination of how the budget behaves over various time scales 

allows a more comprehensive assessment of how this swash (and similar water bodies in urban 

drainage basins) respond to external driving forces (e.g., weather, climate, and development 

intensity). To analyze yearly change, we compute monthly average source-specific fraction and 

discharge rates (Table 1) for months containing sufficient data to calculate water budgets for at 

least 70% of the month. This equates to roughly three weeks of water budget results each month, 

which we consider adequate to represent the monthly conditions. To compare 2012 to 2013, only 

those months that meet these criteria in both years of the study are averaged (Table 2). Thus, we 

consider January through June in our yearly interpretations as these were the only overlapping 

records between 2012 and 2013. While the yearly average values presented in Table 2 are useful 

for annual comparisons, they do not represent the entire annual conditions of the Dogwood 

Swash water budget.  

Our two year time-series water budgets indicate an overall change in Dogwood Swash 

fraction dynamics between 2012 and 2013 (Fig. 3A). We observed an increase of 2.7% in surface 

runoff fraction from 2012 (92.3%) to 2013 (95.1%; Table 2). Likewise, groundwater fraction 

decreased by 2.7% over this same time frame (from 7.7% in 2012 to 4.9% in 2013; Table 2). To 
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examine change in swash fraction, we computed source water ratios (SWR) by dividing the 

percentage of surface water within the swash at any instant by that of groundwater. 

Theoretically, the SWR ranges from zero approaching infinity, where a value of zero represents a 

system comprised entirely of groundwater and approaches infinity as surface water fraction 

increases toward 100%. It is worth mentioning that the same SWR value can be derived using 

either fraction or discharge values, however each has an operational threshold. Computations 

using fraction or discharge can result in errors when groundwater fractions equal zero, while 

similar errors result when using discharge values during times of no flow. For this reason, 

calculations are based on fraction results as some fraction of groundwater always existed in the 

swash during our study period. In doing so, we see average annual SWR increases by 63% (from 

24.2 to 47.5) indicating a substantial change in source waters to Dogwood Swash (Figure 3A).  

Over this same interval, average precipitation rates increased (Figure 3B) as well as the 

fraction of direct precipitation within the swash (Table 2). Although the precipitation component 

of the total budget is inherently dependent upon total swash volume (by the nature of our 

calculations), average precipitation rates increased in 2013 (from 0.086 mm/hr to 0.116 mm/hr; 

January through June) while the volume of the lake remained nearly constant (a change of 

0.02%), suggesting the increase in direct precipitation fraction (from 2.7 x 10-3 % in 2012 to 3.6 

x 10-3 % in 2013) largely reflects the increase in rainfall, rather than a change in volume of the 

swash. 

Total discharge rates increased by 26% from 0.029 m3/s to 0.036 m3/s from 2012 to 2013 

(Table 2). Although total discharge was lower in 2012, more intense discharge pulses were 

observed during this year (reaching 0.56 m3/s) compared to 2013 (up to 0.32 m3/s) (Figure 3C). 

While direct precipitation to the swash surface comprises a negligible component of the water 
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budget (always less than 0.008% of the budget), the increase in total discharge from Dogwood 

Swash in 2013 is likely attributed to the increased rainfall and subsequent runoff from the 

drainage basin as additional factors (e.g., elevation of the weir) remained constant. 

Consequently, long-term trends in total discharge rates and source waters observed at 

Dogwood Swash result in source-specific discharge rate changes. Considering the increased 

discharge rate, and the increased surface runoff fraction, a 30% increase in surface runoff 

discharge was observed from 2.7 x 10-2 m3/s to 3.4 x 10-2 m3/s although swash surface runoff 

fractions within the swash only increased by 3%. Despite increases in total discharge rates, 

decreases in groundwater fraction (by 35%) lead to an accompanying 14% decrease in 

groundwater flux out of the swash (from 2.4 x 10-3 m3/s to 2.0 x 10-3 m3/s; Table 2). These 

results suggest an increase in surface drainage efficiency (i.e., less infiltration to groundwater) 

under increased precipitation rates.   

To further understand the fractional decline of groundwater in Dogwood Swash, we 

examine 222Rn activities in the adjacent aquifer to estimate groundwater residence times (Fig. 4). 

To calculate residence times, we use our laboratory incubation 222Rn end-member (414.2 dpm/L) 

and those measured in the field (minimum 73.7 dpm/L; maximum 253.5 dpm/L). Incubation 

results represent equilibrium between parent (226Ra, enriched in sediments) and daughter (222Rn) 

isotopes, a process that takes approximately three weeks. Radon activity in groundwater samples 

increases as a function of residence time in the aquifer, generating a reproducible in-growth 

curve where we then solve for residence time at a given activity. In doing so, we see a significant 

increase in groundwater residence times within the aquifer, from 1.8 to 3.2 days (r2=0.259, n=16, 

α=0.05) through our study, indicating a decrease in groundwater velocity and subsequent rate of 

discharge to the swash. 
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Seasonal 

To examine seasonal variability in fluid fractions and discharge rates from Dogwood 

Swash, we averaged monthly water budget parameters to generate seasonal groups considering 

both 2012 and 2013 (Fig. 5). We define winter as December through February, spring as March 

through May, summer as June through August, and fall as September through November. In 

total, we sampled seven seasons including two winters, springs, and summers while capturing 

only fall of 2012. In general, seasonal trends were evident in Dogwood Swash fractions with 

inverse correlations between surface runoff and groundwater fractions. On average, surface 

runoff fractions were lowest during spring months when groundwater fractions were highest 

(92.7% and 7.3%, respectively; Fig. 5A). Conversely in fall, surface runoff fractions were 

highest (96.3%) when groundwater fractions were lowest (3.8%). Direct precipitation fractions 

follow average seasonal rainfall rate trends with summer being the highest for both (4.5 x 10-3%; 

0.142 mm/hr) and lowest in fall (2.0 x 10-3%; 0.064 mm/hr). With the exception of summer 

months, precipitation fractions negatively correlate with surface runoff and positively correlate 

with groundwater fractions within the swash (Fig. 5A). 

Considering precipitation to be the primary recharge mechanism for the shallow aquifer, 

it seems reasonable that groundwater fractions in the swash generally trend with precipitation 

rates. However, in summer, average precipitation rates were 30% higher than spring, yet 

groundwater fractions were generally quite low. Data from long-term water table monitoring 

efforts in Briarcliffe Acres (approximately 28 km NE of the swash outlet) show prominent 

seasonal trends in water table height with maximum elevations in summer (Libes and Peterson, 

2014). Researchers (e.g., Xue and Gavin, 2008; Cerda, 1997) have shown rainwater infiltration 

efficiencies (and groundwater production rates) decrease with higher soil moisture content (here, 
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a likely result of increased precipitation and water table height) as porous aquifer material 

becomes saturated. In this case, high regional water tables in summer inhibit infiltration of the 

abundant precipitation, converting a greater portion to surface runoff. Subsequently, summer 

surface runoff fractions rivaled the highest measured, while the fraction of groundwater in the 

swash was 25% lower than the long-term average, despite high rainfall rates. Likewise, in spring 

and winter months, when infiltration efficiencies are higher (and precipitation rates are lower), 

surface runoff fractions decrease while groundwater fractions increase. We exclude fall months 

in these interpretations as we only sampled through fall of 2012 and long-term trends suggest 

significant change in 2013.  

Much like seasonal changes in Dogwood Swash fractions, we observed changes in 

discharge rates from the swash on seasonal scales (Fig. 5B). Average total discharge from the 

swash was highest in the spring (0.0384 m3/s) followed by winter, summer, and fall (0.0211 

m3/s). We suspect evaporative losses from the swash to be highest in summer as discharge rates 

are decreased during this time despite high rainfall rates. Work by Grimmond and Oke (1986) 

and Hanrahan et al. (2010) emphasize the importance of seasonality in evaporation losses 

representing a significant removal mechanism from surface water bodies during summer months. 

Governed by increased total discharge, spring months generated the highest average source-

specific output rates from the swash for all parameters (surface runoff 0.0355 m3/s; groundwater 

2.9 x 10-3 m3/s; direct precipitation 1.4 x 10-6 m3/s) (Fig. 5B). Although surface runoff fractions 

within the swash are lowest during the spring, increases in the total system output deliver more 

surface runoff in spring than any other season (23% more than winter; 46% more than summer; 

74% more than fall). Groundwater fractions in the swash positively correlate with the magnitude 
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of groundwater discharged from the swash throughout all seasons (spring 2.9 x 10-3 m3/s; winter 

1.8 x 10-3 m3/s; summer 1.2 x 10-3 m3/s; fall 7.8 x 10-4 m3/s) (Fig. 5). 

 Not only did we observe seasonal trends in Dogwood Swash water budgets, but also in 

the timing of the seasons. In general, the highest rainfall rates occur during spring and summer 

seasons in eastern South Carolina when we see direct precipitation fraction maxima in Dogwood 

Swash (Fig. 6A). However, monthly mean precipitation rates and direct precipitation fractions 

peak earlier in 2013 than in 2012 (Fig. 3B; Table 1). In 2012, average spring precipitation rates 

peak in May (0.202 mm/hr) and the summer peak occurs in August (0.194 mm/hr), whereas the 

average 2013 peaks appear in April (0.244 mm/hr) and June (0.202 mm/hr). Subsequently, we 

see spring surface runoff fraction minima occur earlier in 2013 than 2012 (May 91.6%; April 

92.5%) and similar shifts in groundwater fraction maxima (May 2012 8.4%; April 7.5%) (Table 

1). Furthermore, total and source-specific outputs from the swash peak earlier in 2013 than 2012 

altering the schedule of maximum fluid and material delivery to the nearshore (Fig. 6B). These 

timing shifts are not unique to the Dogwood Swash system;  peak water table elevations at 

Briarcliffe Acres occur on August 31 in 2012 and shift to July 31 in 2013 (Libes and Peterson, 

2014), providing regional scale evidence of temporal seasonal shifts. 

Short-term Events 

The long-term water budget dynamics represent the interplay between runoff inputs from 

surficial and subsurface pathways and discharge patterns integrated over many rain events. Here, 

we examine specific, short-term events following both dry and rainy periods to put the long-term 

trends into context. During a six day period of rain-free conditions (September 28-October 3, 

2013) following a relatively dry period, swash system dynamics reflect a stable system (Fig. 7). 

On average, swash levels fluctuate 1.5 cm/day (ranging from 0.688 m to 0.710 m), while 
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groundwater levels fluctuate 2.7 cm/day (1.05 m to 1.08 m) (Fig. 7A). Both swash and 

groundwater levels peak in early morning (02:00-07:00) with lows in the evening (15:00-18:00), 

a likely result of evapotranspiration following diel photosynthetic patterns (Lautz, 2007; Winter, 

1999). Evapotranspiration-driven changes in water levels (swash and groundwater) alter swash 

fractions (water level is inversely related to the SWR) and discharge rates from the swash 

(positive relationship with discharge rates) (Fig. 7). As a result, discharge pulses negatively 

correlate with the SWR, exporting lower fractional ratios of surface runoff to groundwater in 

high discharge pulses during dry periods (Fig. 7B). 

For comparison, we examine eight days (June 2-June 9, 2013) of water level, fraction, 

and discharge data during several days of rainfall (Fig. 8). During this time, rainfall amounts 

totaled 90.7 mm and primarily occurred during three days (June 3rd, 6th, and 7th) following dry 

antecedent conditions (date of last rainfall: May 23rd). Those depicted in Fig. 8A are examined as 

three separate events; the first totaled 25.7 mm, the second totaled 10.9 mm, and the third totaled 

54.1 mm. Swash water levels and water table heights both respond within an hour of rainfall 

onset, however, groundwater levels require substantially more time to stabilize after the 

conclusion of the rain event due to the nature of flow through a porous matrix in the aquifer (Fig. 

8A). Following each event, the SWR increases indicating fractional shifts toward higher surface-

runoff dominance (Fig. 8B). Since surface runoff pathways convey water to the swash much 

more quickly than subsurface pathways, the post-event SWR decreases through time (indicating 

less surface runoff and more groundwater) as the aquifer drains and elevated groundwater levels 

stabilize. With the exception of the second event, swash levels stabilize approximately 1.5 hours 

post-event (albeit at a higher level) after the first flush of rainfall pulses swash water out of the 

system. The decrease in swash level and total discharge rates following the second rain event are 
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a result of a shift in wind direction from SW to SE (www.ysi.econet.com). Because the long-axis 

of Dogwood Swash is oriented NW to SE, a SE wind forces water away from our monitoring 

station and the weir resulting in discharge decreases. At the onset of the third precipitation event, 

the prevailing SW wind returns, dramatically increasing discharge rates (from 3.7 x 10-4 m3/s to 

0.190 m3/s) and swash levels (from 0.67 m to 0.74 m). 

While the response time of the swash and aquifer remained fairly constant throughout the 

three events, the magnitude and timing of these fractional shifts are unique to each event. 

Following the first event, the SWR increased to 287.5 (the average pre-event SWR was 57.6) 13 

hours after the event, indicative of increased surface runoff fractions within the swash (Fig. 8B). 

This result is somewhat expected: a pulse of surface runoff immediately following the rainfall 

increases the SWR, is then quickly conveyed out of the system after which time diffuse 

groundwater inputs begin to dominate, reducing the SWR below normal levels. Despite a lower 

rainfall total than the third event, we observed the highest surface runoff fractions (as per the 

SWR) in the swash following the first event (Fig. 8B). The maximum SWR following the second 

event was much lower than the first (52.4) and occurred 3.5 hours earlier. The low value of this 

peak suggests the swash contained a greater fraction of groundwater (a result of continued 

aquifer discharge from the first event) than before this rain event began (Fig. 8B). The earlier 

occurrence of the maximum SWR is likely a result of the timing of the third event (beginning 

only 13 hours later). Nearly two days after the third event, the SWR peaks at 260.5. Prior to this, 

maximum water table height exceeds those of the other events (10 cm and 14 cm greater than 

water table levels associated with the first and second event, respectively) in response to 

increases in precipitation amounts. The increase in water table height subsequently increases the 

amount of time necessary to stabilize levels. As a result, the SWR remains relatively low 
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following the event, as groundwater continues to seep into the swash from the saturated aquifer. 

When groundwater levels stabilize approximately 40 hours post-event, the SWR reaches its 

maximum indicating a decrease in groundwater inputs to the system. These results suggest 

complex interactions between surface runoff conveyance efficiency and drivers of groundwater 

to the swash, related to the conditions during and preceding rain events.  

 We assess drainage basin conveyance efficiency for each precipitation event by 

comparing the volume of water output from the swash to the volume of rain that fell on the 

impervious portions of the basin over the same interval. During the June 2013 events, an average 

of 24.1% of the equivalent rainwater volume delivered to the impervious areas of the basin was 

discharged within 12 hours after the event (event 1: 19.1%, event 2: 31.0%; event 3: 22.3%), and 

more than half (58.3%) was discharged from the swash within two days. Fitting this percentage 

over various periods of time, a linear equation suggests that a volume of water equal to that 

which fell on the area of impervious cover within the Dogwood Swash basin will be discharged 

from the swash in 3.5 days (y=1.2068x; where percent volume discharged (y) is a function of 

time (x); r2=0.85, n=5, α=0.05). Though we assess isolated rainfall periods here, these results are 

indicative of perturbations to the relatively stable swash system when no rainfall occurs, and 

extrapolate to the longer-term periods described above. 

Basin Development  

 We evaluate the relationship between the degree of impervious cover within the 

urbanized Dogwood Swash basin and contributing sources to the water budget by examining 

three upstream tributaries and their respective watersheds, each a sub-basin within the larger 

Dogwood Swash drainage complex. In total, 85 weeks (from September 2011 to September 

2013) of fraction data were recorded for each site (T1, T2, and T3; Fig. 9). On average, T1 was 
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comprised of 85.0% surface runoff and 15.0% groundwater, T2 was comprised of 95.3% surface 

runoff and 4.7% groundwater, and T3 was comprised of 84.1% surface runoff and 15.9% 

groundwater. The fraction of surface runoff within each tributary is positively correlated with the 

degree of impervious cover within the basin, and inversely related to groundwater fraction and 

temporal fraction variability (Fig. 9). The T3 water body drains the least urbanized basin (48% 

impervious) and was comprised of relatively low surface runoff fractions and high temporal 

source water variability (standard deviation= 19.2) (Fig. 9A). The T1 basin is characterized by 

medium development (60% impervious) with higher average surface runoff fractions and less 

temporal change in source water records (standard deviation=9.2) (Fig. 9B). T2, the most 

developed basin (95% impervious) had the highest average surface runoff fraction and the least 

variability through time (standard deviation=2.3) (Fig. 9C).  

 Despite sampling through numerous rain events, drought periods, and seasonal 

fluctuations, a robust relationship exists between impervious drainage area and fluid fractions for 

these tributaries. It is well documented that urbanization alters hydrologic processes (e.g., Grimm 

et al., 2008; Hasse 2009) by increasing surface runoff and decreasing groundwater recharge 

associated with rainfall (Corbett, C.W. et al., 1997; Loucaides et al., 2007; Raffernsperger and 

Cochrane, 2010). We calculate aquifer residence times for the sub-basins to examine how 

development-driven decreases in aquifer recharge relate to decreased groundwater fractions in 

the urban streams of the Dogwood Swash basin. The average residence time of groundwater 

entering the T3 tributary, transiting through the least impervious basin, was less than half that of 

T1 groundwater, influenced by more impervious surface area (2.7 days and 6.5 days, 

respectively). Analyses of aquifer material porosity and grain-size between each tributary 

indicate subsurface homogeneity between study sites in the Dogwood Swash drainage basin 
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suggesting the residence time differences are related to impervious surface area. While a fraction 

of rainwater may percolate through impervious surfaces to recharge the urban aquifer (Ragab et 

al., 2003), these results suggest groundwater transport rates in highly urbanized areas are less 

than those associated with lower degrees of impervious cover. Our data indicate that altering 

rainwater infiltration areas and rerouting subsurface flowpaths in highly urban areas increases 

groundwater residence times, thus reducing inputs to receiving waters.  

 Urbanization-related changes in timing and magnitude of source-water delivery to coastal 

streams and nearshore waters can significantly impact the physiology of these systems. A review 

by Paul and Meyer (2001) shows the majority of urban streams receive high nutrient loads and 

exhibit greatly reduced nutrient removal efficiencies, increasing nutrient loads to downstream 

waters. Locally, Hutchins et al. (2014) documented DOC and organic nutrient enrichments in 

urban surface runoff relative to urban and pristine groundwaters. Furthermore, additions of urban 

surface runoff to coastal ocean waters stimulated the largest phytoplankton and bacterioplankton 

production responses than nearby groundwaters (Hutchins et al., 2014). These results suggest 

further increasing surface runoff inputs to Dogwood Swash and other similar catchments could 

result in higher nutrient loading to the system and subsequently the nearshore receiving waters.  

Groundwater Model Sensitivities 

 Our water budget approach delineates groundwater fraction from the total swash budget 

using a geochemical tracer approach (222Rn; Peterson et al., 2010) and direct precipitation 

fraction via volume ratios, whereas surface runoff is resolved by difference. As direct 

precipitation constitutes a small fraction of the budget, groundwater fraction estimates direct our 

surface runoff fraction and discharge estimates. Uncertainties inherent to these calculations 

include 222Rn end-member constrainment (Eq. 2, Eq. 3) and transit times (Eq. 3) of upstream 
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waters to our downstream monitoring location. While additional 222Rn may be contributed to the 

system via diffusive fluxes from bottom sediments (e.g., Corbett, R.C. et al., 1998), previous 

studies indicate that these contributions are often minimal in advective systems (Lambert and 

Burnett, 2003; Gleeson et al., 2013). In fact, calculations suggest average diffusive 222Rn fluxes 

(5.91 dpm/m2/0.5 hr) contribute negligible concentrations (4.34 dpm/m3) to the average of those 

observed in the swash (6192.4 dpm/m3) and are not considered in our water budget calculations. 

 The most common source of uncertainty in 222Rn tracer studies lies in end-member 

selection (Corbett et al., 1997; McCoy et al., 2007; Santos et al., 2009; Dimova and Burnett, 

2011) as groundwater 222Rn activities can vary significantly in space and time (Mullinger at al., 

2009; Dulaiova et al., 2008). To best estimate representative end-members in our system, we 

conducted sixteen end-member sampling campaigns at our downstream monitoring site and 

inland tributaries (T1, T2, and T3) from September 2011 through September 2013, sampling 

through wet and dry conditions throughout all seasons of both years. Dulaiova et al. (2008) 

suggest end-member selection considers porewater chemistry heterogeneity with depth and 

variable sediment surface chemistry as well as seasonal fraction variations in discharged 

groundwaters. In an effort to best constrain representative end-members for our water budget 

calculations, we collected vertical end-member profiles (n=4) at most sites and use an average to 

represent our groundwater end-member. The nearest sampled end-member in space and time was 

then applied for each 30-minute interval of our groundwater model (Eq. 2 and Eq. 3). Peterson et 

al. (2010 discuss quantitative impacts of end-member variability in this groundwater model. 

 The transit time of upstream waters to the downstream monitoring site governs the length 

of time over which corrections are made for atmospheric evasion and decay losses in our 

maximum groundwater fraction estimates (Eq. 3). As a conservative estimate of Dogwood 
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Swash basin fluid transit times, we select the mean life of 222Rn (5.5 days), representing the 

average time a batch of radon atoms is likely to survive in the system for detection at our 

downstream monitoring site. In using a constant residence time, we do not assume a fixed input 

location of groundwaters input upstream, but rather guide our maximum estimates using a 

statistical measure of high detection probability after injection into the system without 

constraining a discrete location. It is important to then mention the residence time applied in 

these calculations in not one of the swash reservoir, but that of our radiotracer. To minimize the 

emphasis placed on this parameter, we present our groundwater estimates as an average of 

minimum and maximum groundwater contributions. Because our minimum estimates require no 

time-sensitive corrections, presenting these values as an average stands as a conservative 

approach, with close agreement between average model results (± 2.16%). 

 

 

 

 

 

 

 

 

 

 

 

 

 



30 
 

Conclusions 

 We demonstrate the utility of natural radiotracers to effectively compile long-term, high-

resolution water budgets incorporating groundwater contributions to an urban stormwater 

catchment in the Grand Strand area of South Carolina. We consider not only fluid fractions 

within the stream but also source-specific outputs from the system to the coastal ocean. By 

constructing time-series water budgets for Dogwood Swash, we determined surface runoff 

fractions averaged 94.4% of the swash budget from 2012 through 2013, with groundwater 

fractions averaging 5.6% and direct precipitation comprising an average 3.2 x 10-3% of the total 

water budget. Although data suggest surface runoff constitutes the majority of the water budget, 

relative surface runoff and groundwater fractions varied considerably from 2012 through 2013 (± 

36.45%). By constructing long-term budgets, we were able to resolve long-term (e.g., year to 

year and seasonal) and short-term (e.g., precipitation events) temporal trends for a more 

comprehensive assessment of fluid fractions and source-specific outputs. 

 From 2012 to 2013, surface runoff fractions increased by 2.7% with corresponding 

declines in groundwater fraction due to increased aquifer residence times, in spite of greater 

precipitation rates. Increased total swash discharge rates in 2013 then contributed to a 30% 

increase in surface runoff exports from the swash, while groundwater export rates declined by 

14%. Seasonal trends were also evident in swash fractions and source-specific export magnitudes 

with minimum surface runoff fractions in spring and maximum fractions in fall. Although 

seasonal groundwater fractions were inversely related to surface runoff, highest source-specific 

outputs of all parameters (surface runoff, groundwater, and direct precipitation) were observed in 

spring.  

 High-resolution records indicate evapotranspiration-driven changes drive short-term 

source fractions and exports contributing to lower fractional ratios of surface runoff to 
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groundwater during high discharge pulses under relatively dry periods. Although complex 

factors (e.g., wind speed and direction, time since last rainfall, and water-table height prior to the 

event) influence the timing and magnitude of fractional shifts to a more surface runoff dominated 

system following rain event, we determine a volume of water equal to that which fell on the area 

of impervious cover in the entire basin will be discharged from the swash within 3.5 days of 

rainfall. Data suggest increased impervious cover within a basin dampen both long-term and 

short-term dynamics by reducing source water variability and decreasing groundwater 

contributions to urban streams by increasing aquifer residence times. 

 Work here illustrates the utility of 222Rn as a water budget construction tool to delineate 

groundwater sources to urban streams, a source which is demonstrated to contribute up to 36.5% 

of the total fluid budget for Dogwood Swash. As shown by other researchers, this approach has 

applications to other aquatic environments worldwide (Cable et al., 1996; Burnett and Dulaiova 

2003; Lambert and Burnett 2003; Santos et al., 2009; Peterson et al., 2010).  From the 

construction of fluid budgets, source-specific material fluxes may be determined which may be 

used to guide and influence management decisions. As demonstrated by the budget complexity 

presented here, we recommend long-term monitoring to understand system dynamics and best 

design sampling efforts to monitor the effectiveness of practices implemented. 
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Tables 

Table 1. Dogwood Swash monthly average values for water budget parameters. Months 

containing less than 70% of the record have been excluded.  

 

 

 

 

 

 

 

 

 

 

Mean Total 

Discharge 

(m
3
/s)

Mean 

Groundwater 

Discharge  

(m
3
/s)

Mean Surface 

Runoff 

Discharge  

(m
3
/s)

Mean Direct 

Precipitation 

Discharge  

(m
3
/s)

Mean  

Groundwater 

Fraction (%)

Mean Surface 

Runoff Fraction 

(%)

Mean Direct 

Precipitation 

Fraction (%)

2012 January 2.15 * 10
-2

1.34 * 10
-3

2.01 * 10
-2

2.50 * 10
-7 6.46 93.54 1.16 * 10

-3

February 2.02 * 10
-2

1.53 * 10
-3

1.86 * 10
-2

6.57 * 10
-7 6.98 93.02 3.26 * 10

-3

March 3.55 * 10
-2

2.96 * 10
-3

3.26 * 10
-2

2.14 * 10
-7 7.67 92.33 6.02 * 10

-4

April 3.06 * 10
-2

2.54 * 10
-3

2.80 * 10
-2

6.99 * 10
-7 8.17 91.82 2.29 * 10

-3

May 3.79 * 10
-2

3.37 * 10
-3

3.45 * 10
-2

2.43 * 10
-6 8.41 91.58 6.42 * 10

-3

June 2.80 * 10
-2

2.34 * 10
-3

2.56 * 10
-2

7.34 * 10
-7 8.28 91.72 2.62 * 10

-3

August 2.60 * 10
-2

1.50 * 10
-3

2.45 * 10
-2

1.77 * 10
-6 3.85 96.15 6.23 * 10

-3

September 2.22 * 10
-2

6.53 * 10
-4

2.16 * 10
-2

3.66 * 10
-7 2.94 97.06 1.65 * 10

-3

October 1.55 * 10
-2

6.46 * 10
-4

1.48 * 10
-2

2.71 * 10
-7 4.27 95.73 1.75 * 10

-3

November 2.57 * 10
-2

1.05 * 10
-3

2.46 * 10
-2

6.87 * 10
-7 4.04 95.96 2.67 * 10

-3

2013 January 3.53 * 10
-2

1.71 * 10
-3

3.35 * 10
-2

2.22 * 10
-7 4.86 95.14 6.29 * 10

-4

February 4.51 * 10
-2

2.45 * 10
-3

4.27 * 10
-2

1.78 * 10
-6 5.18 94.82 3.94 * 10

-3

March 5.44 * 10
-2

3.21 * 10
-3

5.12 * 10
-2

1.10 * 10
-6 5.80 94.20 2.02 * 10

-3

April 4.79 * 10
-2

3.70 * 10
-3

4.42 * 10
-2

3.69 * 10
-6 7.51 92.48 7.70 * 10

-3

May 2.41 * 10
-2

1.84 * 10
-3

2.23 * 10
-2

3.57 * 10
-7 6.40 93.60 1.48 * 10

-3

June 2.24 * 10
-2

5.58 * 10
-4

2.19 * 10
-2

1.44 * 10
-6 2.56 97.44 6.44 * 10

-3

July 2.55 * 10
-2

5.91 * 10
-4

2.49 * 10
-2

7.10 * 10
-7 2.24 97.75 2.78 * 10

-3
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Table 2. Yearly mean values for all measured parameters. Percent change and differences were 

all calculated chronologically where positive values indicate an increase in the parameter of 

interest from 2012 to 2013 and negatives indicate a decrease. Reported yearly values represent 

data collected in January through June of each respective year. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

Mean Total 

Discharge 

(m
3
/s)

Mean 

Groundwater 

Discharge (m
3
/s)

Mean Surface 

Runoff Discharge  

(m
3
/s)

Mean Direct 

Precipitation 

Discharge (m
3
/s)

Mean 

Groundwater 

Fraction (%)

Mean Surface 

Runoff 

Fraction (%)

Mean Direct 

Precipitation 

Fraction (%)

2012 2.89 * 10
-2

2.35 * 10
-3

2.66 * 10
-2

8.31 * 10
-7 7.66 92.34 2.72 * 10

-3

2013 3.64 * 10
-2

2.01 * 10
-3

3.44 * 10
-2

1.33 * 10
-6 4.93 95.06 3.57 * 10

-3

% Change 25.81 -14.32 29.35 59.99 -35.60 2.95 31.07

Difference 7.47 * 10
-3

3.36 * 10
-4

7.80 * 10
-3

4.98 * 10
-7 -2.73 2.73 8.47 * 10

-4
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Figures 

 

Figure 1. Dogwood Swash drainage basin (solid black line) and nested tributary sub-basins 

(dashed pink lines) with sampling locations (yellow dots). Dogwood Swash and upstream 

tributaries (T1, T2, and T3) represented by blue polygons. Tributary dimensions have been 

emphasized for illustrative purposes. 
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Figure 2. Observed high-resolution 222Rn activities (A) and corresponding minimum and 

maximum percent groundwater fraction estimates (B) for Dogwood Swash. 
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Figure 3. Monthly mean surface runoff and groundwater fractions with corresponding high-

resolution source water ratios (surface runoff fraction/groundwater fraction) (A). Local high-

resolution precipitation record with monthly mean precipitation rates (B). High-resolution total 

discharge rates from Dogwood Swash and monthly mean values (C). Semi-transparent orange 

and blue vertical bars represent data illustrated in Figures 7 and 8, respectively. 
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Figure 4. Mean groundwater end-member 222Rn activities and corresponding groundwater 

residence times within the shallow aquifer. Averages represent data collected using piezometers 

installed at 0.5m, 1.0m, 1.25m, and 1.5m depths. Error bars represent 1- standard deviations. 
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Figure 5. Seasonal averages of surface runoff, groundwater, and precipitation fractions in 

Dogwood Swash (A) and corresponding total, surface runoff, groundwater, and precipitation 

discharge rates (B). 
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Figure 6. Monthly mean Dogwood Swash surface runoff, groundwater, and direct precipitation 

fractions (A) as well as total, surface runoff, groundwater, and precipitation discharge rates (B) 

from January 2012 through July 2013. 
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Figure 7. Dogwood Swash and local water table levels (A) with corresponding source water 

ratios and high-resolution total discharge rates (B) during six days of dry conditions in 2013. 

 

 

 



46 
 

 
 

Figure 8. Dogwood Swash and local water table levels with high-resolution precipitation (A). 

Source water ratios and high-resolution total discharge rates (B) during three rainfall events 

(indicated by gray semi-transparent vertical bars) in June 2013. 
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Figure 9. Surface runoff and groundwater fractions for T3 (A), T1 (B), and T2 (C) from 

September 2011 through September 2013. Panels (A through C) are arranged by increasing 

impervious cover where 48% of the T3 basin is impervious surface, 60% of the T1 basin is 

impervious surface, and 95% of the T3 basin is impervious surface. 
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