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INTRODUCTION 

Elasmobranchs (sharks, rays, and skates) are common residents of estuaries in the 

southeastern U.S.  Ecologically, most large sharks are top predators while rays and 

smaller sharks are mesopredators that connect upper and lower trophic levels (Baum and 

Worm 2009, Vaudo 2011, Vaudo and Heithaus 2011). Despite the importance of sharks 

and rays in estuaries and other marine ecosystems, the variables important to how they 

select habitats remain largely unknown except for a few species. Studies of habitat 

selection in elasmobranchs have focused on pelagic sharks in shallow systems, whose 

habitat preference is based on factors that include predator avoidance (e.g. Morrissey and 

Gruber 1993), prey abundance (e.g. Heithaus et al. 2002), depth (e.g. Rechisky and 

Wetherbee 2003), and tidal currents (e.g. Steiner 2007).  Heupel et al. (2006) included 

bottom type in a comprehensive study of habitat selection on bonnethead sharks, Sphyrna 

tiburo; however, they examined only grassy and non-grassy bottom types and did not 

include sediment.  In general, no study on habitat selection in elasmobranchs has 

included sediment preference.   For sharks, sediment preference may contribute to habitat 

selection in estuarine systems because the shallow depths of these systems result in more 

frequent interactions with the benthic environment (e.g. for feeding or movement 

between habitats).  Sediment characteristics may be more important to rays, many of 

which bury and/or forage in sediment. 

Studies on the ecology of elasmobranch fishes in northeastern South Carolina 

estuarine and near-shore waters have included habitat factors.  These shark studies 

researched: habitat partitioning and the effect of creek size and tidal phases on shark 

distribution during the nursery season in North Inlet (Yednock 2005); distribution and 
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site fidelity of Rhizoprionodon terraenovae in North Inlet (Maxwell 2008); elasmobranch 

populations in human-impacted and pristine estuaries (Murrells Inlet and North Inlet, 

respectively; McDonough 2008); distribution of sharks in Winyah Bay based on 

temperature, salinity, depth, and month (Abel et al. 2007, Gary 2009); and residence time 

of Carcharhinus limbatus in North Santee estuary (Schreer 2010).  A single study 

focused on batoid rays, specifically the distribution of Dasyatis americana and Dasyatis 

sabina, in Winyah Bay (Klein-Majors 2006).   

 In the summer of 2011, I undertook a study of the relative abundance, 

distribution, and sediment preference of elasmobranchs in North Inlet estuary, South 

Carolina using tangle nets, a method previously unused in this area. Further, I assessed 

sediment preference in the two most numerous elasmobranchs captured, bluntnose rays, 

Dasyatis sayi, and bonnethead sharks, Sphyrna tiburo.  In addition, the ray was employed 

in ex situ sediment choice experiments. 

The presence of substantial and relatively unstudied populations of both D. sayi 

and S. tiburo in North Inlet where a variety of bottom and sediment types exist, offered 

an opportunity to test if sediment types are important to these species.  We set tangle nets 

over two sediment types (mud and sand) and an ex situ choice experiment was conducted 

on captured rays to aid in determining the role of sediment in habitat selection of this 

group.   

Questions and Hypotheses 

 My main question during this study was: do elasmobranchs exhibit a sediment 

preference between mud and sand habitats?  I hypothesized that both S. tiburo and  D. 
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sayi had a sediment preference, since both of these species forage in the sediment, and 

since D. sayi rests on or buries in the sediment.  I also questioned whether or not salinity, 

temperature, turbidity, or dissolved oxygen play a role in elasmobranch habitat 

preference; however,  I hypothesized that these environmental factors would not affect 

habitat preference for either D. sayi or S. tiburo since North Inlet is a well-mixed estuary 

and the range of water variables would be expected to overlap on a macro scale between 

mud and sand habitats.  I also conducted choice tank trials asking the question: do D. sayi 

show a sediment preference in a contained environment with a choice of sand or mud 

sediment, and do individual D. sayi select the same sediment in the tank as the sediment 

it was captured over?  I hypothesized that rays would show a sediment preference in the 

tank trials and that their choice tank preference would correspond with the sediment they 

were captured over. 
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METHODS 

Study Sites 

North Inlet, (Figure 1) South Carolina is a relatively unimpacted estuary north of 

Winyah Bay with limited freshwater input from several small creeks (Dame et al. 1986).  

North Inlet is a well-mixed estuary with salinities that typically range between 31 and 34 

psu.  Up to 55% of the water is exchanged with the ocean on each tidal cycle. The 

average tidal range is 1.4 m, and tidal current velocities in the mouth of the inlet are on 

the order of 1.4 m sec
-1

.  Two shallow subtidal channels at the southern edge of North 

Inlet estuary connect to the Mud Bay region of Winyah Bay; during periods of major 

freshwater inflow into Winyah Bay, brackish water can penetrate the southern and central 

portion of North Inlet for short periods.
 
 Summer water temperatures in the main channels 

can reach 31°C (Dame et al. 1986).   

 Areas of mud and sand were mapped in North Inlet with the objective of finding 

large areas of sediment classified as either sand or mud.  Surface grabs were taken with a 

minimum of 40 mL of sediment for analysis.  Large oyster reefs are present in North 

Inlet, but mud and sand make up a much larger percentage of the bottom coverage 

(Potthoff and Allen 2003).  Sampling sites were chosen in areas where sharks and rays 

would likely be able to bury or forage in the sediment, which excluded oyster reef habitat 

where the sediment is not exposed.  Moreover, fishing on or near oyster reefs could 

damage the nets.  The depth of North Inlet is 15 m at its deepest point, but mean depth in 

the main waterways is closer to 3 m at high tide.  Fishing sites were restricted to a 

maximum depth of 2 m because of the net height.  Sample sites were divided into 4 width 
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categories, < 20 m, 20 – 30 m, 30 – 50 m, and > 50 m to determine if creek width had an 

effect on CPUE. 

Sediment Classification and Site Selection 

Sediment and site classification was based on > 50% of the sample containing 

either mud (Φ> 4, < 63 μm) or sand (Φ -1 to 4, 63-500 μm) particle sizes (Blott and Pye 

2001).  During a preliminary study, surface grab samples were taken with an Ekman 

bottom grabber from the bottom at approximately the center and each side of the creek.  

These 3 samples per site were compared to ensure that the cross section of the creek was 

all either sand or mud.  I then sampled the sediment as far up the creek as possible to 

ensure that the area upstream from the site was the same sediment classification as the 

site itself.   

From each sediment sample, 40 mL of sediment was placed in a beaker, dried at 

60° C, weighed, sieved through a 2 mm sieve and a 63 μm sieve, dried again at 60° C, 

and reweighed.  Salt and mud were washed out of the sample during sieving and the 

percentage of mud, sand, and shell gravel in the sample was determined by weight.  In 

the case that a sample did not contain at least 50% sand or mud, that site was not used in 

the study.   

 Thirty-six sites were chosen based on creek size and lack of visible oyster reefs 

and were not randomized.  These sites were tested for sand or mud bottom and 24 sites 

were chosen based on sediment composition, depth, and proximity to large oyster reefs.  

Two of the 36 sites were not at least 50% mud or sand, 3 sites were only >50% sand or 

mud by 1%, 2 sites were deeper than 2.1 m, and 5 sites were too close to oyster reefs to 
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be able to set the nets without snagging on the reefs;  these sites were not used.  Of the 24 

suitable sites, 5 had a mud bottom and 19 had a sandy bottom, which is representative of 

the availability of each habitat in North Inlet (Potthoff and Allen 2003).  Each sampling 

location is described in Table 1. 

Net fishing 

All sampling took place May 26, 2011 through September 18, 2011.  Mud and 

sand sites were fished on alternating but sequential days (47 sampling days) to ensure 

consistency between the two treatments with the time of day each treatment was fished.  

Five or six days at a time were skipped when slack high tide occurred too late in the day 

for daylight fishing.  Since only mud or sand sites were sampled on a given day, tidal 

stage was consistent between these two treatments.  Because more sandy bottom habitat 

was available than muddy bottom habitat within the inlet, proportionately more samples 

were collected over sand than mud bottoms. 

 A braided nylon (Millner 1985, Snelson et al. 1989) tangle net with a 203 mm 

square mesh size (Millner1985) was used to collect elasmobranchs.  Similar nets have 

been used in other ray and shark studies where bait would not be appropriate as an 

attracting factor (Millner 1985, Snelson et al. 1989).  The net had a weighted bottom line 

and a floating top line to keep it vertical in the water column.  The net was 30.48 m long 

and rose no more than 1.82 m from the substrate with the bottom line on the substrate.  

Most fishing sites were close to a 1.82 m depth, allowing the entire water column to be 

fished.   
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Each end of the top line was marked with a buoy, and each end of the bottom line 

was held in place by an anchor.  In wide channels (> 30 m), one end of the net was placed 

1 m on shore, and the other end of the net was set upcurrent and away from shore, 

creating a funnel shape.  In narrow channels or at the mouth of a small tidal creek (< 30 

m), both ends of the net were placed on opposite shores (1 m onshore) to completely span 

the creek.  Both of these fishing methods are illustrated in Figure 2. 

When a stingray encountered the net and turned away from it, the barb of the ray 

snagged on the netting, causing the ray to struggle and to become entangled in the net 

(Millner 1985).  Rays that did not have barbs could still be caught when the net wrapped 

around them as they hit it.  Compared to other fishing methods such as longlining and 

trawling, tangle nets seem to lessen if not eliminate capture mortality of rays; Millner 

(1985) had zero mortality in his study and Snelson et al. (1989) reported that the rays 

were always alive and in good condition when recovered from the net even after an 

overnight set.  When a shark encountered the net, its head appeared to penetrate the mesh, 

and as it struggled it became entangled.  Nets were continuously monitored and sharks 

were removed from the nets immediately to reduce capture mortality. 

  During a preliminary study, 10 nets were fished from slack high to slack low tide 

and 10 from slack low to slack high tide.  Elasmobranchs were captured only during the 

first 4 hours of ebb tide, as they moved in the direction of the tide.  Therefore, each net 

was set during ebb tide and was allowed to soak for 30 minutes.  The 30 minute soak 

time was determined by previous longline studies conducted in this system and nearby in 

which this amount of time was shown to minimize shark mortality (Abel et al. 2007, 

Belcher and Jennings 2010).  Elasmobranchs are known to move with the tidal current 
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(Medved and Marshall 1983, Ackerman et al. 2000).  S. tiburo swims continuously and 

were caught as they left small tidal creeks and moved out with the tide, allowing us to 

determine which habitat they were over during slack tide (shortly before capture).  

During ebb tide, small tidal creeks were completely blocked by the nets and 

elasmobranchs following the tide out of the creek were caught (Figure 2).   

Site environmental factors 

 A YSI multimeter was used to measure water temperature, salinity, and dissolved 

oxygen at each sampling site in the bottom half of the water column. Turbidity readings 

were taken from one of three water quality monitoring stations in North Inlet 

(http://cdmo.baruch.sc.edu) nearest to the site being fished.   

Animal processing 

Species, sex, total length, fork length, and precaudal length were determined for 

each shark (Abel et al. 2007).  Relative age was categorized as neonate (umbilical scar 

open), young-of-the-year (umbilical scar healed but visible) or mature or immature 

(based on clasper calcification in males and by size in females) (Steiner 2007).  Sharks 

were tagged through the first dorsal fin using a curved stainless steel #2 needle.  

Spiderwire™  monofilament fishing line (thin line at high test strength) was sutured 

through the dorsal fin and a Floy™ vinyl laminated disc identification tag with a contact 

phone number was tied onto the dorsal fin.   Any shark that died during processing was 

dissected to analyze stomach contents and to determine if female sharks were pregnant. 

All rays were processed by determining species and sex, measuring disk width, 

and determining relative age both by the presence or absence of an umbilical scar and by 

http://cdmo.baruch.sc.edu/
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disk size (Snelson et al. 1989).  All rays were tagged using a suturing method at the base 

of the tail modified from the procedure described by LePort et al. (2008).  First, the barb 

was cut with tinsnips to release the ray from the net.  Then the tail was secured by 

wrapping a towel around it to protect both the ray and handlers from injury.  A curved 

stainless steel #2 needle was used to thread 30 lb. Spiderwire™ monofilament fishing 

line dorso-laterally through one side of the tail, through muscle, and exiting ventrally.  

The Spiderwire™ was looped through a Floy™ vinyl laminated disc identification tag 

with a contact phone number and the Spiderwire™ was tied to hold the tag in place.  

Tagging was conducted to allow monitoring of animal movements within a system and to 

allow the determination of site fidelity.  Any ray that died during this study was dissected 

to analyze stomach contents and to determine if female rays were pregnant. 

Net Statistics 

Catch-per-unit-effort (CPUE) was defined as number of animals captured per net 

(e.g. 3 sharks / 1 net = 3 CPUE).  Mean CPUE was also used for certain categories and 

was defined as the number of animals captured per number of nets fished for that 

category (e.g. 49 rays caught / 187 nets fished = 0.262 CPUE).  Mean CPUE was 

compared between sand and mud habitats for 3 categories: each species, each sex within 

a species, and stages of maturity within a species.  To determine if rays or sharks 

exhibited a sediment preference, the CPUE of each net over sand and mud sites 

(independent samples or sites) were compared using the Mann-Whitney U non-

parametric test.  The data were transformed to eliminate the zero CPUE numbers by 

adding 0.5 to all data points.  The same procedure was used to compare the CPUE 

between small and large creeks.  A linear regression analysis was conducted for D. sayi 
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and S. tiburo over the range of mud and sand percent composition and over the range of 

dissolved oxygen, salinity, temperature, and turbidity.  To further examine sediment 

preference for both D. sayi and S. tiburo, the results were analyzed by Χ² to determine if 

the observed catch significantly differed from the expected catch based on the fishing 

effort over each sediment category. 

Choice experiment 

Choice tank experiments were conducted on D. sayi to examine sediment 

preference in a controlled environment and to determine if the ray would choose the same 

sediment that it was captured over.  Sharks could not be used in the tank trials because a 

large enough transport tank and a large enough choice tank were not available for the 

sharks to survive in captivity.  If rays preferred the same sediment in the tank, then the 

hypothesis that elasmobranchs in this system exhibit a sediment preference would be 

supported.  The tank conditions were similar to slack tide conditions, since there was 

little water movement in the tank.   

  Two circular flow-through tanks 2.43 m in diameter were divided in half, with 

either sand or mud at least 15 cm deep covering the bottom.  A standpipe in the center of 

the tank maintained the water depth at 0.6 m and a wooden 2x4 section was placed 

vertically along the bottom to divide the tank in half and to help keep each sediment on 

the appropriate side of the tank.  Mud for the tanks was obtained from Sixty Bass Creek 

in North Inlet where the sediment was 83.05 % mud and 16.94 % sand.  Sand for the 

tanks was obtained from a sandbar in Debidue Creek in North Inlet where the sediment 
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was 88.72 % sand and 11.27 % mud.  The tank volume was 2810 L with a flow rate of 25 

L per minute and a complete turnover in 113 minutes.   

Water was pumped directly from North Inlet into the tanks and environmental 

factors (salinity, temperature, and dissolved oxygen) were monitored each time a ray was 

introduced to the tank.  A fine mesh nylon filter was used to keep additional sediment 

from flowing into the tanks to maintain the sand and mud compositions on each side of 

the tank.  Activated carbon was used to help remove organic material from the water.  

When rays were removed from the tanks for release, the sediment was redistributed on 

each side to cover pits created by each ray.   

Rays used in the tank trials were less than 52 cm disk width to be a suitable size 

for the transport tank.  Rays captured in the field were placed in an acclimation pool one 

at a time.  The acclimation pool was a 1.06 m diameter tub submerged in the larger 

choice tank.  The rays were acclimated in the tub for 24 hours and then released freely in 

the larger choice tank and the acclimation pool was removed from the choice tank. Each 

ray was observed continuously for 4 hours.  The first 15 minutes were not included in 

statistical analysis to account for any startle response when the ray was released from the 

holding tank.  The total time a ray spent over each sediment was noted and the percent 

time that the ray spent over sand and over mud was calculated.  If the ray was swimming, 

the tank position could not be recorded; therefore, the time spent over sand and mud may 

not equal 100%.  After each ray was observed in one tank, it was transferred to the 

holding tank in the other choice tank, acclimated for 24 hours and observed again as 

stated above to determine whether or not there was a tank effect.  Each ray was observed 

once in each of the two tanks for a total of two trials per ray and the percent time over 
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each sediment was averaged between the two trials for statistical analysis.  After 

observations were complete, all rays were released into North Inlet.  The Wilcoxon 

signed ranks test was used to determine if there was a significant difference between the 

two choice tanks and to determine if the rays exhibited a sediment preference between 

sand and mud in the tanks, which were not independent samples.   
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RESULTS 

Relative Abundance and Sediment Preference 

 During this study, 118 nets were fished over sand and 69 nets were fished over 

mud, approximately proportional to the availability of these bottom types in North Inlet 

estuary. Forty sharks were captured (Table 2), including 31 bonnethead sharks, Sphyrna 

tiburo;  4 blacktip sharks, Carcharhinus limbatus; 2 sandbar sharks, Carcharhinus 

plumbeus; 2 bull sharks, Carcharhinus leucas; and 1 lemon shark, Negaprion 

brevirostris.  All C. plumbeus, C. leucas, N. brevirostris, and C. limbatus were caught 

over sand; however, these are insufficient data to conclude whether these species 

exhibited any sediment preference.  The mean CPUE over mud was 0.081 and over sand 

was 0.208.  There was no significant difference between mud and sand mean CPUE (p = 

0.180) when compared by the Mann-Whitney U non-parametric test (Figure 3). Tags 

were attached to 14 of the bonnethead sharks. 

Forty-nine rays were captured during this study (Table 3), including 41 bluntnose 

rays, Dasyatis sayi; 4 southern rays, Dasyatis americana; 2 smooth butterfly rays, 

Gymnura micrura; 1 Atlantic ray, Dasyatis sabina; and 1 spotted eagle ray, Aetobatus 

narinari.  The mean CPUE for D. sayi over mud was 0.29 and over sand was 0.184.  The 

CPUE for D. sayi between sand and mud sites did not differ significantly (p = 0.089; 

Mann-Whitney U nonparametric test) (Figure 4).  The CPUE for male and female rays 

over mud and sand did not differ significantly (p = 0.104 for females and p = 0.244 for 

males).  Eleven of the 41 D. sayi caught were juveniles, and they did not show a 

preference between sand and mud (p = 0.885).  Tags were attached to 37 D. sayi.   
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Sediment samples were divided into classes to further analyze a correlation 

between CPUE and sediment composition using linear regression.  No correlation was 

found between CPUE and sediment composition for S. tiburo over sand (p = 0.502) or 

mud (p = 0.421) or for D. sayi over sand (p = 0.495) or mud (p = 0.355).  These 

categories of sediment were further analyzed by Χ².  Based on the percent fishing effort 

over each category of sand and mud, the expected number of S. tiburo and D. sayi were 

captured in most categories and there was no significant difference between observed and 

expected catches (Figure 5 for D. sayi and Figure 6 for S. tiburo).   

We also tested for a creek size effect and there was no significant difference 

between small and large creeks when CPUE within each treatment was compared 

(p=0.415; Mann-Whitney U nonparametric test) and the number of individuals captured 

in each creek size is shown in Figure 7. The environmental factors measured over sand 

and mud were very similar throughout this experiment and were examined by linear 

regression (Table 5).  No linear relationship was found between the number of D. sayi 

captured and dissolved oxygen (p = 0.116), salinity (p = 0.795), temperature (p = 0.174), 

or turbidity (p = 0.559)  (Figures 8-11).  No linear relationship was found between the 

number of S. tiburo and dissolved oxygen (p = .063), salinity (p = 0.081), temperature (p 

= 0.326), or turbidity (p = 0.474) (Figures 12-15). 

Distribution 

 All S. tiburo were adult females and all but two of the sharks were captured in 

small creeks directly connected to Town Creek.  Town Creek is one of the main channels 

in North Inlet and is the most centrally located channel in the inlet.  S. tiburo was found 
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throughout Town Creek with 21 sharks found within 2 km of the inlet mouth and 8 sharks 

found more than 2 km from the inlet mouth.  Of the 31 S. tiburo captured, 6 died in the 

net. Total length ranged from 87 to 124 cm (Table 3) (Figure 16).  All S. tiburo were 

captured within the following water quality parameters: 3.4 – 6.9 mg/L dissolved oxygen, 

26.5 – 31.9°C, 5-47 NTU and 32.7 – 37.6 psu (Table 6) and no correlation was found 

between CPUE and any of these parameters (Figure 8). 

All C. plumbeus, N. brevirostris, and 3 of the C. limbatus were caught on the 

Debidue Creek sandbar (site #6) in close proximity to the inlet mouth.  Both C. leucas 

were caught at site #4 and one of the C. limbatus was caught at site #17.  Both of these 

sites are more than 2 km from the mouth of the inlet but still in the larger, main channels 

of the inlet.  This was the first validated catch of C. leucas in North Inlet. 

   All 49 rays captured were found alive and well in the net, and all rays were caught 

in or in close proximity to Town Creek.  The D. sayi disk width size ranged from 26 to 68 

cm (Figure 9).  All D. sayi were captured within the following water quality parameters: 

3.92 – 7.7 mg/L dissolved oxygen, 25.9 – 31.9°C, 30.3 – 37.4 psu, and 5 – 35 NTU 

turbidity (Table 7), and no correlation was found between CPUE and any of these 

parameters; however, the number of D. sayi captured for classes of each environmental 

factor measured can be found in Figure 10. No D. sayi were captured from July 6, 2011 

to August 15, 2011.   

Choice Tank Trials 

One male D. sabina, 10 male D. sayi, and 4 female D. sayi were tested in the 

choice tanks (Table 4).  The data for D. sabina was excluded in all statistical tests to 
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focus the results on a single species.  Using the Wilcoxon signed ranks test, the 

percentage of time spent over sand for each ray was compared between the two tanks to 

determine if there was a significant difference between the two tanks.  No significant 

difference was found between the tanks (p = 0.682), therefore, the average time spent 

over sand and mud was taken from the combined two trials. 

The average percentage of time spent over sand and mud was compared for all D. 

sayi and also was compared by sex.  No significant difference was found between time 

spent over mud and sand for all rays (p = 0.552) or for male D. sayi (p = 0.405) 

(Bonferonni).  Since only 4 females were observed, we could not test for a sediment 

preference of females alone. 
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DISCUSSION 

The purpose of this study was to examine the relative abundance and distribution 

of elasmobranchs in North Inlet, SC, while determining if sediment was an important 

factor in the habitat preference of local elasmobranch species.  Neither of the 

elasmobranch species that made up the majority of the catch (D. sayi and S. tiburo) 

showed a sediment preference.  Additionally, neither D. sayi nor S. tiburo showed a 

preference for a specific range of dissolved oxygen, temperature, turbidity, or salinity as 

habitat preference factors. 

 When mean CPUE was compared between mud and sand habitats for D. sayi 

using the Mann-Whitney U nonparametric test, there was no significant difference in 

catch between these two habitats.  When mud and sand were divided into narrower 

categories, and observed versus expected catch were compared with Χ², no significant 

difference was found between observed and expected catches, further showing a lack in 

sediment preference.  No sediment preference was shown in the controlled choice tank 

experiment further supporting that this species does not choose habitat based on sediment 

composition.  The lack of a linear relationship between CPUE and dissolved oxygen, 

salinity, temperature, or turbidity also supports that this species does not choose habitat 

based on environmental factors. 

 In field sampling, sharks and rays were being captured during an active period of 

the day.  These animals could only be captured in the tangle nets while swimming from 

one area to another, and no patterns or habitat preferences were found during this active 

period.  During the choice tank experiment, each individual D. sayi was mostly in a 
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resting period during observation.  Each individual ray went back and forth over the sand 

and mud in the tank, and the lack of a preference in the tank trials shows that this species 

of ray does not have a sediment preference during resting periods.  The combination of 

these results further supports that the species of sharks and rays studied do not exhibit a 

habitat preference at any point during the day. 

 The lack of recaptures during this study further supports the theory that these are 

motile predators with wide tolerances for environmental factors.  In a strong tidal system 

such as North Inlet estuary, these animals most likely cover many different bottom types 

during an active period.  Since these animals daily cover many different bottom types, 

this may explain why they do not show a preference for a particular bottom type. 

D. sayi are not freshwater tolerant, typically prefer warmer water, and were 

shown by Snelson et al. (1989)to be a migratory species. Supportive of the migratory 

findings of Snelson et al. (1989), D. sayi are found in North and South Carolina only 

during the warm summer months .  We had an unexpected cold period in September 

2011, which reduced the water temperature much earlier than was expected (from 27°C 

to less than 25°C).  No D. sayi were captured after that cold period (sampling continued 

for 3 weeks), suggesting that they may begin their seasonal migration with the first major 

temperature drop in the fall season.  This was similar to the migration of D. sayi into 

deeper water in Florida during the cooler months (Snelson et al. 1989). 

D. sayi dominated the catch of rays found in North Inlet, a surprising result in 

light of a four-year seine and trawl survey of aquatic species in North Inlet that yielded 

only 3 D. sayi (Ogburn et al. 1988).  Similarly, neither Yednock (2005) nor Maxwell 
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(2008) caught any D. sayi in their hook and line studies in North Inlet on habitat 

utilization of various shark species and the distribution of R. terraenovae respectively, 

and both studies yielded a heavy bycatch of D. americana.  North Carolina and South 

Carolina were previously thought to be at the northern limit for D. sayi (Snelson et al. 

1989).  The abundant range of this species may have shifted northward, due to increasing 

water temperatures along the east coast (Allen et al. 2008).  A study conducted in 

Australia found that the range of 45 species of fishes (including some shark and ray 

species) had extended poleward over the last few decades, which is thought to be due to 

climate change (Last et al. 2010). 

The Atlantic D. sayi population, as well as other ray populations, seems to be 

increasing.  Pearse Webster (personal communication, March 13, 2012) documented a 

population increase in D. sayi, D. americana, and D. sabina in an offshore trawl survey 

from Cape Hatteras, NC to Cape Canaveral, FL between his 2010 and 2011 catches 

(equal fishing efforts each year).  In a single year D. sayi increased from 562 to 1003, D. 

americana increased from 77 to 139, and D. sabina increased from 94 to 428 (Pearse 

Webster, personal communication, March 13, 2012).  We do not know yet how this 

putative population increase, if it represents a long-term trend, will affect the North Inlet 

ecosystem.  The structure of the North Inlet ecosystem should continue to be monitored 

for changes in species distribution. 

Although we did not catch many D. americana or D. sabina, this does not mean 

that these two species are not abundant in North Inlet.  D. sabina is known to feed near 

oyster reefs, and oyster reefs were avoided during this study.  D. americana may frequent 

deeper parts of the inlet, which we were unable to sample due to depth restrictions of the 
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nets.  A more comprehensive study using multiple capture methods is required to 

determine the relative abundance of all three Dasyatis species found in North Inlet and to 

determine if D. sabina and D. americana show the above habitat preferences. 

S. tiburo did not show a preference for either mud or sand habitat when the mean 

CPUE was compared using the Mann-Whitney U nonparametric test.  When mud and 

sand were divided into narrower categories and observed versus expected catch were 

compared with Χ², no significant difference was found between observed and expected 

catches, further showing a lack in sediment preference.  There was no linear relationship 

between CPUE and salinity, temperature, or turbidity; however, there was a significant 

decrease in CPUE with increasing dissolved oxygen.  This preference for lower dissolved 

oxygen is supported by Belcher and Jennings (2010). 

S. tiburo was our second most abundant catch.  Prior to this study S. tiburo and R. 

terraenovae were known to be an abundant shark species in North Inlet estuary during 

the summer months (Abel et al. 2007), however, the net mesh size in this experiment was 

too large to catch neonate R. terraenovae, therefore limiting our catch to larger 

individuals.   

Female S. tiburo on average mature at 94 cm (Lombardi-Carlson et al. 2003).  

Only 3 S. tiburo that we caught were below the average length at maturity (87 cm, 91 cm, 

and 91 cm), but these three sharks still may have been mature.  Of the 6 S. tiburo (106 to 

118 cm TL) that died during this study, all were pregnant.  Fetuses were in various stages 

of development appropriate to the month in which the female was captured. Each female 

had either 12 or 14 fetuses and the two females that died in August had fully developed 
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fetuses whose umbilical cords had detached and were very close to birth.  This timeline 

was consistent with the findings of Manire et al. (1995), who found in the eastern Gulf of 

Mexico, S. tiburo mate in November, store sperm for fertilization in March or April, and 

typically give birth in August.   The other S. tiburo individuals caught in August had 

enlarged and firm abdomens, suggesting that all of these individuals were pregnant.  

Based on the individuals that were confirmed pregnant by dissection and the individuals 

that externally appeared pregnant in our August samples, it is probable that most, if not 

all, female S. tiburo captured during this study were pregnant. 

There is no record of a neonate S. tiburo from North Inlet, and based on this 

evidence, North Inlet was not thought to be used as a primary nursery ground by S. tiburo 

(Abel et al. 2007).  However, two sharks were caught in the present study which were 

very close to giving birth (umbilical cords had detached), suggesting that parturition 

occurs in or near North Inlet, and that this inlet may serve as a primary nursery ground 

for S. tiburo.  There are several possible reasons why a neonate S. tiburo has never been 

captured in North Inlet.  It is possible that the neonates move offshore immediately after 

birth, the neonates may get flushed out of the inlet by the ebbing tide, the neonates may 

be consumed by predators soon after birth, or they remain in the inlet for a period of time 

immediately after birth, but are too small during that time to be caught in a net or that 

they are uninterested in the kinds of bait used by most fishermen (Cortés et al. 1996 and 

Bethea et al. 2007). 

Absence of males suggests a segregation of the sexes in Atlantic S. tiburo 

populations.  There does not seem to be a segregation of sexes in Gulf of Mexico S. 

tiburo populations as shown by Heupel et al. (2006), who found both males and females 
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in a 1:1 ratio in the same eastern Gulf of Mexico estuary.  However, the sex segregation 

results of the present study were supported by the results of a nursery grounds study 

conducted in North Inlet by Abel et al. (2007) in 2002 and 2003.  Thus far there is no 

explanation for the sex segregation in this population of S. tiburo. 

At least eight other species of sharks have shown sex segregation including: 

Carcharodon carcharias, Carcharhinus plumbeus, Galeus area, Galeorhinus zygopterus, 

Galeorhinus australis, Negaprion brevirostris, Prionace glauca, and Sphyrna lewini 

(Klimley 1987).  Scalloped hammerheads, Sphyrna lewini, are thought to segregate 

because the females eat different foods than males, allowing for faster growth to reach 

sexual maturity (Klimley 1987).  Most likely this is not the case for this population of S. 

tiburo, since both male and female S. tiburo are known to feed primarily on C. sapidus 

(Cortés et al. 1996).   

Tangle nets were very effective in capturing both sharks and rays while causing 

little to no injury to the animals, and there was zero net related mortality of rays, which 

was expected.  While we experienced shark mortality, it was at a low rate of 15% of our 

total shark catch. It was important to use a sampling method without bait since part of 

this study was sediment preference and we did not want to attract sharks or rays from 

neighboring habitats.  The mesh size was also large enough that bycatch was minimal and 

in most nets completely absent.  Two loggerhead sea turtles, Caretta caretta; one green 

sea turtle, Chelonia mydas; one ladyfish, Elops saurus; and one red drum, Sciaenops 

ocellatus, were the only large bycatch aside from various species of crabs and jellies 

caught on the net.  All bycatch was returned to the water unharmed.  This minimal 

bycatch is important because sharks may have been attracted to struggling fish in the net.  
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A few S. tiburo were observed to have small recent bite marks upon retrieval from the 

net, but we cannot state if those bites occurred before or during net capture. 

Several species of rays and sharks are known to move with tidal cycles to follow 

prey, avoid predators, and/or to save energy (Steiner 2007).  For example Dasyatis sabina 

(Ackerman et al. 2000), Carcharhinus plumbeus (Medved and Marshall 1983), and 

Rhinoptera bonasus (Smith and Merriner 1985) have all been observed moving with tidal 

currents.  In this study elasmobranchs were captured during slack tide as they migrated 

out of the creeks with the outgoing tide.  To ensure sediment homogeneity upstream from 

our nets, each sampled creek was tested for sediment composition in several areas of the 

creek to ensure that the creek was composed of entirely sand or mud.  It is possible that in 

sand creeks there may have been very narrow areas that we could not access for sampling 

that may have been classified as muddy areas.  In these cases, the narrow, muddy areas 

were most likely either too narrow or too shallow during slack high tide for the size of 

elasmobranchs we caught to have been over these areas. 

The lack of recaptures in our nets suggests that neither D. sayi nor S. tiburo had a 

high site fidelity.  Heupel et al. (2006) supports the lack of site fidelity found in S. tiburo.  

In the eastern Gulf of Mexico, S. tiburo did not show site fidelity, although they did show 

fidelity to that particular estuary, or an obvious tidal migration (Heupel et al. 2006).   

D. sayi did not show any statistical abiotic habitat preference factors in field or 

tank trials and S. tiburo did not show any statistical habitat preference factors other than a 

decreasing CPUE with increasing dissolved oxygen.  In North Inlet this lack of habitat 
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preference may be a result of the well-mixed environment.  The lack of habitat preference 

in this inlet is not necessarily representative of all populations of these species. 

Summary 

 D. sayi and S. tiburo did not exhibit a sediment preference, site fidelity, creek size 

preference, or habitat preferences based on environmental factors in North Inlet, SC.  D. 

sayi also did not show a sediment preference in choice tank trials.  This lack of sediment 

or environmental factor preference suggests that both D. sayi and S. tiburo are able to 

survive in a wide range of habitats.  As climate change continues, the range of these and 

other elasmobranch species may extend poleward, which could cause many changes in 

coastal ecosystems. 
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Table 1. Name and description of 24 sampling sites. 

Site Name and Number Avr. % 

Sand 

Avr. % 

Mud 

Max. 

Depth, m 

# Times Fished 

1.) Town Creek sandbar 87.4 12.5 1.8 6 

2.) Town Creek across from Old 

Man Creek 

79.8 20.0 1.5 4 

3.) Town Creek S. of Bread and 

Butter Creek 

78.5 21.0 2.1 3 

4.) Town Creek N. of Bread and 

Butter Creek 

76.9 15.7 1.8 3 

5.) Town Creek N. of Sixty Bass 

Creek 

74.6 19.8 1.8 3 

6.) Debidue Creek sandbar 84.6 15.5 1.2 26 

7.) Debidue Creek alcove 88.8 11.2 1.8 3 

8.) Debidue Creek upper 72.4 14.3 1.8 3 

9.) Debidue Creek dune side 82.3 17.5 1.5 7 

10.) Sixty Bass Creek upper 16.94 83.0 1.5 7 

11.) Sixty Bass Creek mouth 81.5 12.8 2.1 6 

12.) Sixty Bass Creek 1
st
 right 70.6 24.3 1.5 6 

13.) Sixty Bass 2
nd

 right 21.6 76.2 1.2 7 

14.) Bread and Butter Creek upper 20.0 76.1 2.1 25 

15.) Bread and Butter Creek 

mouth 

68.2 30.0 2.1 4 

16.) Jones Creek 1
st
 left 95.7 3.9 1.2 3 

17.) Jones Creek S. of sandbar 93.3 6.7 1.5 3 

18.) Mud Creek 74.5 13.0 1.8 3 

19.) Bly Creek lake mouth 74.5 12.8 1.8 3 

20.) Cutoff Creek upper 23.9 76.0 2.1 7 

21.) Shark Spot 69.1 11.3 1.5 24 

22.) Across from Shark Spot 90.9 9.0 1.2 5 

23.) Old Man Creek across from 

Bly Creek 

83.3 16.7 1.8 3 

24.) Clambank Creek mouth 34.9 64.9 1.8 23 
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Table 2. List of all sharks captured during this study.  Site numbers correspond with 

numbers shown on Figure 1.  

Site 

# 

Species M/F Total 

length, 

cm 

Tag # D. O., 

mg/L 

Temp., 

°C 

Salinity, 

psu 

Turbidity, 

NTU 

4 C. leucas M 137 No 

tag 

5.52 31.3 35.4 13 

4 C. leucas N/A 137 No 

tag 

5.52 31.3 35.4 13 

17 C. limbatus F 174 78 5.6 30.4 36.7 13 

17 C. limbatus F 174 78 5.46 31.1 35.6 17 

6 C. limbatus M 160 No 

tag 

5.5 29.4 36.1 17 

6 C. limbatus F 183 98 6.65 27.4 35.2 14 

6 C. plumbeus F 140 99 6.65 27.4 35.2 14 

6 C. plumbeus F 122 24 6.5 27.7 34.4 9 

6 N. 

brevirostris 

F 124 No 

tag 

5.5 26.5 35.7 5 

6 S. tiburo F 99 21 5.7 27.2 34.4 7 

6 S. tiburo F 98 No 

tag 

5.7 27.2 34.4 7 

12 S. tiburo F 107 12 3.67 28.4 35.4 17 

12 S. tiburo F 118 Died 3.67 28.4 35.4 17 

15 S. tiburo F 106 23 3.36 28.8 35.1 17 

21 S. tiburo F 99 No 

tag 

3.6 28.2 35.1 17 

21 S. tiburo F 108 No 

tag 

3.6 28.2 35.1 17 

21 S. tiburo F 119 No 

tag 

3.6 28.2 35.1 17 

2 S. tiburo F 107 No 

tag 

4.9 30.7 37.6 N/A 

6 S. tiburo F 115 No 

tag 

4.8 28.2 35.3 8 

6 S. tiburo F 115 No 

tag 

5.74 29.5 34.5 9 

22 S. tiburo F 115 27 6.6 28.5 35.9 15 

12 S. tiburo F 114 Died 4.34 29.5 34.4 15 

13 S. tiburo F 107 Died 4.34 29.5 34.4 13 

13 S. tiburo F 113 85 4 28.9 35 12 

16 S. tiburo F 124 69 6.38 29.5 34.9 10 

6 S. tiburo F 113 0 6.9 28.2 34.1 8 

19 S. tiburo F 87 16 4.79 28 34.7 15 

6 S. tiburo F 119 68 4.45 27.7 34.6 N/A 
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21 S. tiburo F 116 72 4.73 28.7 33.9 18 

21 S. tiburo F 107 93 6.2 31.2 32.7 47 

11 S. tiburo F 106 Died 5.8 31.7 32.7 16 

5 S. tiburo F 110 Died 5.5 31.6 32.7 16 

24 S. tiburo F 118 No 

tag 

5.52 31.9 35.5 18 

21 S. tiburo F 91 No 

tag 

5.9 31.4 37.3 19 

14 S. tiburo F 111 No 

tag 

5.7 31.1 37.3 20 

3 S. tiburo F 91 No 

tag 

5.6 31.1 37.4 18 

21 S. tiburo F 118 40 5.8 31.1 37.2 21 

11 S. tiburo F 113 No 

tag 

5.4 30.2 36.6 16 

24 S. tiburo F 121 126 6 30.3 36.6 17 

14 S. tiburo F 107 159 4.9 26.6 34.8 11 
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Table 3. List of all rays captured during this study.  Site numbers correspond with 

numbers shown on Figure 1.  

Site 

# 

Species M/F Disk 

width, 

cm 

Tag 

# 

D. O., 

mg/L 

Temp., 

°C 

Salinity, 

psu 

Turbidity, 

NTU 

6 A. narinari F 152.4 No 

Tag 

5.4 28.5 34.6 6 

1 D. americana M 31 41 6.2 27.8 36.7 14 

15 D. americana M 65 79 4.4 27.7 35.3 14 

14 D. americana M 63 10 5.9 30.5 35.1 21 

1 D. americana F 107 3 6.49 28.1 34.3 21 

6 D. sabina M 28 11 6.3 28.4 36.9 21 

15 D. sayi F 64 47 4.4 27.7 35.3 14 

15 D. sayi F 64 56 4.4 27.7 35.3 14 

6 D. sayi M 48 8 6.5 27.7 34.3 9 

6 D. sayi M 34 5 6.9 28.2 34.1 8 

14 D. sayi M 38 29 7.7 29.4 34.9 25 

14 D. sayi F 34 7 7.7 29.4 34.9 25 

6 D. sayi M 43 14 5.4 28.5 34.6 6 

6 D. sayi M 43 20 5.4 28.5 34.6 6 

6 D. sayi F 32 25 5.4 28.5 34.6 6 

18 D. sayi M 45 13 4.62 28.5 34.7 16 

6 D. sayi F 27 1 6.01 27.5 34.4 6 

6 D. sayi F 26 18 5.5 26.5 35.7 5 

20 D. sayi F 52 15 5.9 30.8 36 14 

6 D. sayi F 41 17 6.9 30 36 8 

13 D. sayi M 50 No 

Tag 

3.92 28.4 35.4 16 

21 D. sayi M 43 9 5.3 29.9 36.2 20 

21 D. sayi M 39 2 5.6 29.9 36.3 18 

21 D. sayi M 44 19 6.3 29.1 36.1 16 

22 D. sayi F 62 57 6.6 28.5 35.9 15 

9 D. sayi M 37 80 5.5 29.7 30.3 N/A 

23 D. sayi F 65 65 5.02 31.8 31.8 35 

21 D. sayi F 61 No 

Tag 

6.2 30.9 32.7 27 

24 D. sayi F 51 39 5.52 31.9 35.5 18 

24 D. sayi M 44 87 5.52 31.9 35.5 18 

3 D. sayi M 32 74 5.6 31.1 37.4 18 

24 D. sayi F 45 2 6 30.8 37.1 21 

24 D. sayi F 58 70 6 30.8 37.1 21 

9 D. sayi M 45 114 6.24 29.7 35.4 12 

9 D. sayi M 38 157 6.24 29.7 35.4 12 

24 D. sayi M 41 38 6.3 29.7 36.5 11 
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24 D. sayi M 37 48 6.3 29.7 36.5 11 

24 D. sayi M 42 6 6.3 29.7 36.5 11 

24 D. sayi F 40 123 5.7 29.8 36.6 16 

24 D. sayi F 68 127 5.7 29.8 36.6 16 

24 D. sayi M 43 139 5.7 29.8 36.6 16 

24 D. sayi M 43 124 5.8 29.6 36.2 18 

24 D. sayi F 57 128 5.5 29.6 36.3 19 

24 D. sayi F 52 118 4.8 29.6 36.4 21 

14 D. sayi F 62 108 4 25.9 34.8 15 

24 D. sayi M 42 152 4.5 26.9 34.9 13 

24 D. sayi M 45 113 4.4 27.4 35 15 

1 G. micrura F 52 58 5.1 29.6 38.6 21 

1 G. micrura M 36 28 5.1 29.6 38.6 21 
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Table 4. Percentage of time spent over sand and mud for each tank trial. 

Tag #  M/F Sed. caught 

over 

% time over 

sand 

% time over 

mud 

9  M Sand 90.625 9.375 

19  M Sand 41.875 58.125 

80  M Sand 56.25 43.75 

87  M Mud 53.125 46.875 

74  M Sand 43.75 53.125 

157  M Sand 43.75 56.25 

114  M Sand 31.25 59.37 

124  M Mud 50 50 

152  M Mud 34.37 46.87 

113  M Mud 46.87 53.12 

39  F Mud 43.75 50 

2  F Mud 81.25 18.75 

45  F Sand 93.75 6.25 

118  F Mud 81.25 12.5 
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Table 5. Water quality comparison over sand and mud for all nets over all sampling 

dates. 

 D. O., mg/L Temperature, °C Salinity, psu Turbidity, NTU 

Sand Mud Sand Mud Sand Mud Sand Mud 

Min. 2.7 3.5 24.2 23.7 26.1 32.8 5 6 

Mean 5.4 5.5 29.0 28.4 35.2 35.7 14.5 15.7 

Max. 7.4 7.7 31.8 31.9 38.6 37.5 47 26 
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Table 6. Measured environmental factors throughout the study compared to 

environmental factors at the time sharks were captured. 

 D. O., mg/L Temperature, °C Salinity, psu Turbidity, NTU 

Study S. tiburo Study S. tiburo Study S. tiburo Study S. tiburo 

Min. 2.7 3.4 23.7 26.5 26.1 32.7 5 5 

Mean 5.5 5.2 28.8 29.2 35.4 35.2 14.9 14.8 

Max. 7.7 6.9 31.9 31.9 38.6 37.6 47 47 
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Table 7. Measured environmental factors throughout the study compared to water quality 

at the time rays were captured. 

 D. O., mg/L Temperature, °C Salinity, psu Turbidity, NTU 

Study D. sayi Study D. sayi Study D. sayi Study D. sayi 

Min. 2.7 3.9 23.7 25.9 26.1 30.3 5 5 

Mean 5.5 5.6 28.8 29.2 35.4 35.2 14.9 15 

Max. 7.7 7.7 31.9 31.9 38.6 37.4 47 35 
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Figure 1. Sampling sites in North Inlet estuary from a 1999 aerial image 

(http://www.northinlet.sc.edu/about/map_jpgs/ADAR1999.jpg.)  Numbers correspond 

with locations listed in Table 1. 
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  A      B 

 

 

Figure 2. A.) A depiction of the tangle net in a small tidal creek showing the buoys and 

anchors on shore and the net along the bottom all the way across the creek.  B.) A 

depiction of the net in a large inlet channel showing one end of the net on shore and the 

other end set up-current creating a funnel shape.   
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Figure 3.  Mean CPUE for S. tiburo over mud and sand.  There was no linear relationship 

between mud and sand composition and CPUE for this species.  The equation for the 

trend line is found on each graph. 
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Figure 4.  Mean CPUE for D. sayi over mud and sand.  There was no linear relationship 

between mud and sand composition and CPUE for this species.  The equation for the 

trend line is found on each graph. 
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Figure 5. Number of observed vs. expected D. sayi captured for each class by percent 

composition of mud and sand.  There was no significant difference between observed and 

expected catches for any category. 
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Figure 6. Number of observed vs. expected S. tiburo captured for each class by percent 

composition of mud and sand.  There was no significant difference between observed and 

expected catches for any category. 
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Figure 7. Number of D. sayi and S. tiburo captured in small (< 30 m) and large (> 30 m) 

creeks. 
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Figure 8.  Number of D. sayi captured at each dissolved oxygen level.  No linear 

relationship was found between dissolved oxygen and D. sayi captures.  The regression 

equation for the trend line is found on this graph. 
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Figure 9.  Number of D. sayi captured at each salinity level.  No linear relationship was 

found between salinity and D. sayi captures.  The regression equation for the trend line is 

found on this graph. 
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Figure 10.  Number of D. sayi captured at each temperature level.  No linear relationship 

was found between temperature and D. sayi captures.  The regression equation for the 

trend line is found on this graph. 
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Figure 11.  Number of D. sayi captured at each turbidity level.  No linear relationship was 

found between turbidity and D. sayi captures.  The regression equation for the trend line 

is found on this graph. 
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Figure 12.  Number of S. tiburo captured at each dissolved oxygen level.  No linear 

relationship was found between dissolved oxygen and S. tiburo captures.  The regression 

equation for the trend line is found on this graph. 
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Figure 13.  Number of S. tiburo captured at each salinity level.  No linear relationship 

was found between salinity and S. tiburo captures. The regression equation for the trend 

line is found on this graph. 
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Figure 14.  Number of S. tiburo captured at each temperature level.  No linear 

relationship was found between temperature and S. tiburo captures.  The regression 

equation for the trend line is found on this graph. 
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Figure 15.  Number of S. tiburo captured at each turbidity level.  No linear relationship 

was found between turbidity and S. tiburo captures.  The regression equation for the trend 

line is found on this graph. 
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Figure 16. Number of female S. tiburo captured in each size class.  The average size at 

maturity is 94 cm (Lombardi-Carlson et al. 2003). 
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Figure 17. Number of male and female D. sayi captured in each size class.  All D. sayi < 

38 cm were immature, all males > 38 cm were mature, and all females > 50 cm were 

mature (Snelson et al. 1989). 
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