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1. Introduction 

Coastal hydrology has grown rapidly in recent years in response to resource 

demands and recognition of the broad influence of submarine groundwater discharge in 

the coastal system (e.g. Capone and Bautista, 1985; Simmons, 1992; Moore, 1996; Shaw 

et al., 1998; Wilson, 2005; Burnett et al., 2006; Swarzenski et al., 2006; Santos et al., 

2009; Peterson et al., 2010). Salt marshes offer a host of ecosystem services such as 

natural storm buffers, a natural filtration system, habitat and nurseries for many different 

organisms (Boesch and Turner, 1984; Cullinan et al., 2004; Gedman et al., 2009). Salt 

marsh ecosystems also play a substantial role in climate change studies cycling carbon, 

nitrogen, and sulfur (Cai and Wang, 1998; Cullinan et al., 2004; Wang and Cai, 2004; 

Cai, 2011), and are a source of a greenhouse gas, methane (Bartlett et al., 1987).  

Examination of salt marsh hydrology leads to a robust understanding of the 

complex interconnected processes (e.g. nutrient cycling) and redox and salinity gradients 

that occur. Tidally driven groundwater flow drives significant solute exchange between 

marsh sediments and tidal creek channels in coastal environments (King et al., 1982; 

Moore, 1999; Moore et al., 2002; Taniguchi, 2002). This solute exchange can influence 

salinity gradients, nutrient concentrations, and redox conditions within the marsh 

sediments and surface waters, playing a vital role in marsh ecology (Wilson and Gardner, 

2006). Near surface pore waters are highly enriched in nutrients compared to surface 

waters in the coastal salt marsh environment and may, therefore, have a 

disproportionately (in terms of volume) large effect on biogeochemical processes 

(Whiting and Childers, 1989; Gleeson et al., 2013). Creek channel seepage alone could 

provide enough sulfate and oxygen for decomposition of below-ground Spartina 
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production and the removal of dissolved sulfide and remineralized nitrogen and 

phosphorous in near creek bank sediment (Gardner, 2005). To accurately estimate 

material and nutrient fluxes within wetlands, a comprehensive understanding of 

hydrological transport processes is needed (Harvey et al., 1987). 

Salt marsh hydrology has many understudied details that can lead to a better 

understanding of biogeochemical interactions. Aspects of groundwater-surface water 

exchange, hyporheic zone processes, large scale groundwater movement (from upland to 

ocean), and localized groundwater movement are poorly constrained and make 

generalizations difficult due to localized and complex interactions (Figure 1). 

Fortunately, coastal hydrology can be studied through various methodologies including 

numerical modeling, direct observation (geochemical, piezometers, monitoring wells, 

water quality stations), and indirect observation (geophysical imaging).  

Recent modeling studies have focused on near-channel marsh platform and creek 

bank interaction with tidally-driven groundwater flow and the resulting solute exchange 

between pore water and surface water (Harvey et al., 1987; Gardner, 2005; Wilson and 

Gardner, 2006; Moffett et al., 2012; Wilson and Morris, 2012; Xin et al., 2013). A 

simulation by Harvey et al., (1987) demonstrated that the main driver for replacing water 

discharged at the creek bank was vertical infiltration from tidal flooding (66%) while the 

remainder came from groundwater located within the marsh interior (31%) and horizontal 

recharge at the creek bank (3%). They concluded that change in marsh elevation was the 

primary driver of pore water discharge at the creek bank, and a higher elevation would 

lead to a more rapid turnover of pore water (Harvey et al., 1987). Gardner (2005) 

confirmed that two-thirds of total seepage over a tidal cycle came from the creek bank, 
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while the other one-third came from the channel bottom. Numerical modeling studies 

have further demonstrated that without large-scale permeable groundwater pathways and 

inundation of the marsh platform, significant pore water exchange is limited to the creek 

bank (Wilson and Gardner, 2006).  

The use of naturally occurring geochemical tracers also has helped place 

constraints on determining volumetric discharge of nutrient rich submarine groundwater 

to coastal environments (e.g. Schwartz, 2001; Santos et al., 2009; Peterson et al., 2010).  

Peterson et al. (2010) used radon-222 to assess tidally-influenced rivers that discharged 

into Indian River Lagoon, Florida and determine the amount of groundwater discharging 

from each river. Focusing on the Sebastian River system, a box model determined that 

there is an increase of 1 - 2 orders of magnitude from a dry period to a wet period in the 

amount of groundwater discharging into the rivers (Peterson et al., 2010). In addition, 

geochemical tracers have been proven effective in determining spatial variability of 

groundwater discharge in various water bodies. For example, a study along the Delaware 

River and estuary shows a spike in radon activity or submarine groundwater discharge 

where known aquifers outcrop (Schwartz, 2001).    

Piezometers and water monitoring stations help constrain flow rates by providing 

direct measurements of hydraulic head differences (e.g. Osgood, 2000; Wilson, 2015). 

Such studies provide highly dependable information at specific point locations, though 

heterogeneity in marsh systems makes up-scaling and extrapolation challenging. Using 

multiple well nests located along transects throughout two marshes, Wilson et al. (2015) 

determined that flow direction of groundwater is a control on ecological zonation within 

the marsh. In general, this and other studies (e.g. Moffett et al., 2012) show that 
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ecohydrological zones form where the groundwater hydrology of a specific area creates 

an environment that is ideal for the growth of a specific marsh species. Areas within the 

high marsh, where there is a mixture of saline and freshwater, will be conducive to marsh 

plants that can survive large variations in salinity, while areas in the mid-marsh where 

salts concentrate favor plants that are adapted to hypersaline environments. Such studies 

demonstrate that direct observations of flow phenomena are necessary to provide 

modeling constraints and to guide interpretations of spatially and temporally variable 

pore water characteristics within the marsh system.  

 The addition of geophysical imaging techniques (Electrical Resistivity 

Tomography (ERT)) can potentially provide spatially continuous information on 

variability in pore water salinity as a result of ocean water mixing with marsh platform 

groundwater and fresh water from upland sources. In addition, complex pore water flow 

pathways resulting from geological controls may be imaged, thus informing the spatial 

extent to which results from other approaches (e.g. piezometers) may be extrapolated. 

Repeated electrical resistivity measurements at a fixed location can provide insight into a 

variety of time transient groundwater processes. Tidally induced groundwater flow has 

been imaged in a variety of settings including beachfaces (Swarzenski et al., 2006; 

Swarzenski and Izbivki, 2009), and salt marshes (Carter et al., 2008; Carter, 2014). In 

addition to tidally induced groundwater flow imaged utilizing electrical resistivity, 

seasonal (monthly) variability in the subterranean mixing zone was identified in North 

Inlet, SC (Carter et al., 2008).  

Electrical resistivity surveys have evolved from traditional vertical borehole 

soundings to horizontal techniques that allow for two-dimensional, and even three-
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dimensional, subsurface analysis (Colella et al., 2004). ERT measures the ability of a 

subsurface material to pass an electrical current by recording the resistivity value in Ω-m. 

The subsurface material and pore water are the dominant controls on resistivity values. A 

lower resistivity value will be recorded from a substrate with a high percentage of clay, 

while bedrock will have a very high resistivity value. The saturation of the sediment will 

also control the resistivity values of the subsurface. If the sediment is fully saturated there 

will be lower resistivity values compared to unsaturated sediment, which will have a very 

high resistivity value. The chemical makeup of the pore water determines the resistivity 

of the measured medium. Saline waters will have a lower resistivity value compared to 

fresh water (Figure 2). 

 ERT can be used to visually assess the changes and composition in pore water 

fluids, making it an ideal technique to examine coastal groundwater interaction and 

dynamics (Dimova et al., 2012). In coastal areas, where hydraulic head in the surficial 

aquifer may be reversed during the daily rise and fall of the tide, the interface between 

intrusion from ocean water and pore water moves laterally and vertically within the 

aquifer throughout the tidal cycle. Since the aquifer matrix sediments remain consistent 

in terms of geologic composition over such short time scales, observed changes in 

subsurface electrical resistivity are a result of changes in pore water composition. 

A combination of Wenner and Dipole-Dipole arrays was chosen for this study 

because they provide the highest resolution and are most sensitive to horizontal layers 

(Griffiths and Barker, 1993). The Wenner array focuses electrical sensitivity in a vertical 

gradient, facilitating detection of horizontally layered structures (Loke, 2000). The 

opposite is true for the Dipole-Dipole array that has an electrical potential contour pattern 
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geometrically favorable for detecting vertical structures (Loke, 2000). The combination 

of Wenner and Dipole-Dipole arrays provide the highest spatial resolution and the best 

opportunity to detect small-scale changes in tidal variability of the tidal creek zone. 

  For electrical resistivity surveys in general, the electric current (I) is transmitted 

into the ground via a pair of current injection electrodes, and the potential drop (change in 

voltage, ΔV) is measured between other pairs of electrodes. Increasing separation 

between electrode pairs results in the increasing depth measurement of the change in 

voltage, ΔV. Coastal Carolina University’s AGI Supersting R8 multichannel resistivity 

meter and accompanying 56-electrode array were used to perform the ERT 

measurements. The apparent resistivity, ρa (Ω-m) from a homogenous subsurface is 

calculated by solving Ohm’s Law using these equations (1 and 2): 

   �� = � ∆�
�    (1) 

where  

   � =  	

� � 	


 �
��� �

����
 �
��� �

���� (2) 

The geometric factor, K, is dependent upon electrode spacing (rn), and r1, r2, r3, 

and r4 are the distances between the two current electrodes and the two potential 

electrodes. For a known current (I) and a measured voltage drop (ΔV), apparent resistivity 

can be determined for known survey geometries. 

  While there is a substantial number of studies (e.g. Bollinger and Moore, 1993; 

Moore, 1999; Osgood, 2000; Moore et al., 2002; Taniguchi, 2002; Wilson and Gardner, 

2006; Carter et al., 2008; Peterson et al., 2010; Henderson et al., 2010; Carter, 2014; 

Wilson, 2015) that examine marsh platform hydrology through a variety of methods, 
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there is a lack in information on the hyporheic zone within tidal creeks in coastal salt 

marsh environments. The hyporheic zone can be defined theoretically by the saturated 

pore water beneath the channel and into the banks that is influenced by advection of 

channel water (Figure 3) (White, 1993). The definition of the hyporheic zone seems 

simple, but characterizing and sampling this zone is challenging in a tidal setting. With 

potentially large areas of influence in well-developed salt marshes with extensive creek 

networks, tidal creek hyporheic exchange is an underexplored process. 

Biogeochemical and physical characteristics of the hyporheic zone in freshwater 

river systems have been much more thoroughly explored than in salt marshes. Studies by 

Wondzell and Swanson, 1996a; Wondzell and Swanson 1996b; Battin 1999; Battin 2000; 

Haggerty et al. 2002; Anderson et al. 2005; Gooseff et al. 2006; Boulton et al. 2010; 

Gooseff, 2010; Krause et al. 2011 address the complex interaction of the subsurface 

aquifer and channel waters in non-tidal settings. Recent studies have applied electrical 

resistivity tomography to image the hyporheic zone in a cross-sectional view by injecting 

a saline tracer into freshwater settings (Ward et al., 2010; Ward et al., 2012; Ward et al., 

2014). The use of ERT as a technique for hyporheic zone analysis provides spatial and 

temporal assessment of solute transport, while identifying mobile and immobile areas of 

hyporheic zone flow (Ward et al., 2010).  This study has laid a foundation for 

understanding hyporheic exchange processes and for attempting to quantify the extent 

and exchange dynamics of the hyporheic zone.   

Ward et al. (2012) build upon this foundation to further characterize the hyporheic 

zone in a mountain stream. The authors were able to successfully image a saline tracer 

with ERT at different flows within a mountain stream. In unconstrained flat sections of 
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the stream, the tracer appears quickly in hyporheic pathways and persists for days 

following first arrival within the sediment (Ward et al., 2012).  Further work concluded 

that stream channel discharge is a primary control on hyporheic transport (Ward et al., 

2014). They also noted that different geological units impact rates and variability of 

hyporheic flow paths (Ward et al., 2014). These studies have been able to continually 

reproduce temporal and spatial images of the hyporheic zone during multiple stream 

flows and seasons and have begun to characterize how the hyporheic zone functions and 

behaves in a mountain stream setting.  

The work that Ward et al. (2012, 2014) completed in a freshwater setting provides 

a basis for studying the hyporheic zone in a complex salt marsh environment using ERT. 

The mixing of fresher and more saline waters, and tidally driven flow conditions are ideal 

circumstances for the application of ERT to image hyporheic transport as surface water 

pumps in and out of shallow sediments surrounding the creek channels. At present, the 

extent of hyporheic transport is unknown in salt marsh tidal creek environments except 

for a study by Acworth and Dasey (2003) who concluded that there is infiltration of 

seawater into the bottom and banks of the creek channel and extensive mixing of 

groundwater and channel water within the near creek sediment. 

Successful imaging of the hyporheic zone throughout a tidal cycle provides a 

basis for developing the maximum and minimum extent of the hyporheic zone interface 

in the shallow subsurface. This study uses ERT to observe and examine hyporheic flow 

over semidiurnal, fortnightly, and seasonal time scales in a typical salt marsh tidal creek 

located landward of an undeveloped barrier island in northeastern South Carolina (Figure 

4). Discrete pore water samples were collected in conjunction with resistivity 
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experiments in an attempt to develop an empirical relationship between electrical 

resistivity measured in the field and actual pore fluid salinity for shallow marsh 

sediments. Vibracores and auger samples were collected and logged to determine the 

geological characteristics of the marsh creek setting. The processed resistivity data 

reveals a low resistivity anomaly in the sediments surrounding the creek channel that is 

defined as the hyporheic zone. Given the works done by Ward et al. 2010, 2012, and 

2014 in a freshwater setting with a saline tracer, the hyporheic zone boundary was 

expected to be captured using electrical resistivity tomography in a tidal creek setting.  
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Study Site 

The Anne Tilghman Boyce Coastal Reserve, Waties Island, South Carolina, is an 

undeveloped barrier island (Figure 4). The island is located on the northeastern coast of 

South Carolina, bounded by Little River Inlet to the north and Hog Inlet to the south. The 

island is roughly 0.5 km wide and 4.0 km long with an extensive back barrier marsh and 

tidal creek system. There is a semidiurnal mesotidal regime with a maximum range of 2.6 

m. Separating the mainland and the island is an ocean-dominated lagoonal marsh 

comprised of Eden Saltworks Creek and Dunn Sound Creek that are fed and drained by 

the two inlets. In the back barrier setting of the southern spit of Waties Island are two 

distinct wooded barrier island remnants known as hammocks. These hammocks contain 

tall pine trees, surrounded by salt marsh on all sides, and are likely remnants of a relict 

beach dune system. The unnamed hammock nearest the marsh creek system examined in 

this study is 0.10 km wide by 0.25 km and is located at 33̊ 50’43” N and 78̊ 35’49” W 

(Figure 4). 

The tidal creek examined in this study connects directly into Hog Inlet ~120 m 

downstream of the study site (Figure 4). The surrounding creek sediments are generally 

characterized by fine to silty sands. The marsh platform closest to the sand dunes toward 

the ocean contains generally muddier sediment and is lower in elevation than the 

hammock/upland side marsh platform (Figure 5). The site selected for the ERT time 

series is near a bend in the creek channel that contains a cut bank side with surficial 

sediments comprised of sandy mud and oyster shells, opposite a point bar side made of 

fine sand. The larger more extensive hammock/upland adjacent marsh platform is 

comprised of fine sand with some silty muddy areas (Figure 6). On both banks of the 
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creek there are fine sand levees, likely from over wash processes during high-energy 

storm events.  

The levees contain the tallest Spartina alterniflora vegetation nearest the creek 

channel, and progress to shorter Spartina 3 – 5 meters into the adjacent marsh platforms. 

Interspersed with Spartina alterniflora is Borrichia frutescens. This vegetation zone is 

affected by the sand levees and transitions away from tall Spartina to short Spartina from 

the creek channel to the marsh platform lower in elevation. The main vegetation located 

on the marsh interior is Salicornia virginica, a halophytic succulent common in 

southeastern marshes.  

Between the marsh platform and Hog Inlet is a large sand deposit that is 

constantly being shaped by the tides. Ocean water is introduced into the marsh system 

through the creek channel that cuts through this sand body. Ocean water entering the 

creek channel will spill over the banks and inundate the marsh platform when the tidal 

height reaches above 1.5 meters above mean water level. Throughout the fortnightly 

oscillation there are multiple tidal cycles that do not overtop the creek banks and inundate 

the marsh platform allowing for a build up in salinity in the marsh platform through 

evapotranspiration. 

2. Methods 

2.1 Data Acquisition 

Electrical Resistivity  

During field surveys with the multichannel resistivity meter and 56-electrode 

array, a matrix of voltage drops can be constructed as K values are changed by a series of 

commands programmed into the eight-channel controller/receiver unit. The electrodes 
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were placed at 0.5 meter intervals in a creek channel perpendicular transect. Time-series 

measurements were collected during spring and neap tides from September 2015 through 

January 2016 (Table1). Each date corresponds with 14 to 19 individual tomograms that 

span the course of a tidal cycle capturing two low tides and one high tide. Data collection 

days were selected around the peak spring and neap tides, depending on weather. All data 

from each sampling date has been processed and the complete time series images can be 

viewed in Appendix A. A typical field day required the installation of the electrode cable 

and ancillary equipment during low tide, allowing access to the creek bottom when the 

water level was at its lowest. The rest of the equipment was placed on a table at the 

highest elevation on the creek bank (Figure 7). During data collection, a matrix of voltage 

change measurements was completed every 35 – 45 minutes. Each 35-45 minute 

measurement cycle produced data that could be inverted and represented as a tomogram 

of the resistivity conditions beneath the creek channel-marsh platform system. 

Continuous logging occurred throughout complete tidal cycles from low tide to low tide, 

resulting in up to 19 resistivity tomograms. 

Water and Sediment Samples 

In order to groundtruth electrical data, we collected sediment cores, discrete water 

samples, and auger samples along the measured transect (Figure 8). Two permanent 

sampling wells were placed adjacent to the channel on the landward (north) side marsh 

platform (electrode 38, Figure 9) at depths of 1 m and 2 m. Water samples were collected 

with a peristaltic pump from the wells and the surface water in the creek channel 

throughout the entire tidal cycle. During each measurement, wells were purged until dry 

during the midpoint of each resistivity data set. The water collected after the recharge of 
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the well was then collected until the sample was large enough to fully submerge the YSI 

probe. The YSI handheld meter was borrowed from Coastal Carolina University 

Environmental Quality Lab (EQL), and was initially calibrated by the EQL, and then 

with YSI 3168 Conductivity calibrator fluid before each field date, as well as in the field 

if instrument drift was occurring. 

 Soil samples were collected with a hand auger in 0.5 meter depth increments and 

sealed in a watertight bag for laboratory analysis. These samples were collected down to 

depths of -2.75 m at 5 locations along the ERT transect (Figure 8). In an effort to gain 

additional geological data at a greater depth, vibracores were also collected along the 

transect. Vibracores were logged (Appendix B) and correlated to reveal stratigraphic 

layering within the near creek marsh platform (Figure 8). The stratigraphic cross section 

was derived from 5 vibracores in a creek perpendicular transect line adjacent to the 

electrical resistivity transect.  The cores were used to determine the stratigraphy of the 

subsurface and identify laterally consistent horizontal facies changes.  

2.2 Sediment Analysis 

Hand auger samples were analyzed to calculate bulk density, grain size, and 

porosity of various sediments across the creek channel (Figure 9 and Appendix C). 

Laboratory analysis of the sediment samples was carried out with a Beckman Coulter LS 

13 320 Laser Diffraction Particle Size Analyzer. The accompanying software was used to 

determine grain size, sorting, kurtosis, and skewness. Analysis of bulk density, water 

content, and porosity were done as follows.   

The fully saturated sediment samples were weighed, dried, and reweighed to 

measure the amount water content as shown: 
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����� ������� % = ��   !" #$% &$'()$*% +,-���   !" ./0 &$'()$*% +,-
��   !" #$% &$'()$*% +,-  ×  100 

 (3) 

 

 To calculate the bulk density of the sediment, a graduated cylinder was filled to a 

specific volume, while a known amount of dry sediment was placed in the cylinder. The 

mass of the dry sediment added to the graduated cylinder divided by the amount of water 

displaced yields the bulk density of the sediment sample. 

 

4567 8��9:�; + ,
)<- = ��   !" ./0 &$'()$*% �''$' %! %=$ >0<(*'$/ +,-

�!<?)$ !" #�%$/ '( @<�A$' B0 ./0 &$'()$*% +)<-  (4) 

 

 The density of fresh and salt water was used in the calculation to give a range of 

porosity. The amount of water lost in the initial drying process divided by the density of 

salt water or fresh water gave a range in the volume of the void space in the sediment. 

 

C�65D� �E C�:F9 = G!%�< #�%$/ H! % !* �*(%(�< ./0(*, ��   +,-
.$* (%0 !" I/$ = !/ &�<% #�%$/ + J

KL-   (5) 

 

 The volume of the sediment was calculated by using the mass of the dry sediment 

divided by the density of each sediment sample. 
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The total volume of sediment and porosity were then calculated as follows.   

 

P���6 C�65D� = C�65D� �E C�:F9 + C�65D� �E M�F:D���  (7) 

 

R���9:�; = �!<?)$ !" �!(' 
G!%�< �!<?)$   (8) 

  

2.3 Electrical Resistivity Processing 

Assumptions made in ERT processing 

AGI EarthImager 2D software was used to create inverted resistivity sections and 

interpret groundwater features in the context of the geological cross-section developed 

from cores and auger samples. Loke et al. (2003) and Loke and Lane (2004) suggest there 

is significant impact on resistivity results when water is overlying the resistivity cable, 

dampening or smoothing the resistivity values. In this study, the entire system was 

saturated with salt water during high tides. The assumption of adding a layer of saltwater 

over the terrain correction resulted in statistically unrealistic modeling results (Table 2). 

Tomograms with the water layer recorded high resistivity values, while resistivity of 

insitu sediments in a test box analysis revealed a narrow range of resistivity values (0 – 4 

Ω-m). Therefore the surface water layer was excluded from the model. The model 

calculated highly localized features of high resistivity in order to try to resolve the very 

narrow range of resistivity values measured (Figure 10). Groundtruth data were collected 

to help produce more realistic inversions of the electrical data.  
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Soil sample resistivity was measured directly with a soil resistivity test box. The 

range of resistivities measured on discrete samples in the lab fell well within a 0 – 4 Ω-m 

range (Table 3). Figure 2 was created utilizing hand auger sample 1A to view the 

electrical resistivity over a range of pore water salinities. The sediment was flushed and 

dried multiple times between each test to make sure that there was no cross 

contamination from each sample. Hand auger sample 1A was mixed with 100ml of 0 ppt, 

5ppt, 10ppt, 15ppt, 25ppt, 35ppt, and 45ppt waters. The test box was then hooked up to 

the resistivity equipment and the resistivities were recorded for each sample. Figure 2 

shows that a 0ppt water and sediment combination has a resistivity of 109.9 Ω-m, while 

5ppt water and sediment combination has a resistivity of 5.865 Ω-m. The range from 

25ppt to 45ppt is between 1.371 Ω-m and 0.8176 Ω-m. For a large change in salinity of 

the pore water, there is in response a relatively low change in measured resistivity. 

Differentiating the typical changes in salt marsh salinities (25 – 45ppt) with electrical 

resistivity is pushing the limits of the technique due to the small change in resistivity over 

the values. Imaging the interface between two similar salinity bodies with electrical 

resistivity on a larger scale is opening up the data to processing errors in the inversion 

model. 

Figure 11 shows the temperature effects on creek water at 32ppt, as well as 

temperature effects on hand auger sample 1A. From both of these graphs, the relationship 

between resistivity and temperature can be concluded that with increasing temperature 

there is a decrease in resistivity values. This effect is more pronounced with water only, 

with a smaller change in resistivity of pore water and sediment combination. When 

interpreting the data with the water layer this relationship needs to be considered.  
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To further test the validity of excluding the water layer, synthetic models were 

constructed in an effort to simulate measured resistivity data by using a priori geological 

knowledge. The a priori models included a mesh with resistivity values assigned from the 

soil test box measurements (Figure 12). The a priori model was then inverted and visually 

compared to field transect electrical measurements. It was determined that the most 

realistic model results were achieved by excluding the surface water layer in order to 

avoid generating spurious anomalies (Figure 10).  The processing methodology of the 

resistivity images and interpretation from this point on make the assumption to excluded 

the water layer from the processing to analyze the simpler more uniform layer of mixing 

in the near creek sediments.  

Data Inversion 

The inversion output includes the measured apparent resistivity psuedosection, 

which is the raw stg data, and the calculated apparent resistivity psuedosection, which is 

the simulation of raw data that is modeled from the inverted resistivity section (Figure 

13). The inverted resistivity section is the geologic cross-section view of the subsurface 

that can be interpreted. Once the inverted section is created and the apparent resistivity 

pseudo section is calculated, root mean square (RMS) and least square (L2) statistics are 

calculated to determine how similar the calculated apparent resistivity psuedosection is to 

the measured apparent resistivity psuedosection.  The model will add or remove 

complexity to the inverted resistivity section, which will change the calculated apparent 

resistivity psuedosection through multiple iterations (around 5) until convergence upon 

acceptable statistical boundaries of RMS less than 10 and L2 less than 1.0.  
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Once statistical convergence is achieved, the image properties (min/max contour 

level, number of colors, and color pallet) are adjusted to a specific and consistent color 

palette for direct comparison between subsequent images. Changing the properties allows 

the user to highlight specific resistivity values of interest, and makes visual inspection of 

the data more obvious. For visual inspection, changing the color contours to 256 intervals 

allowed for easy identification of ambient background resistivity and hyporheic zone 

processes (Figure 13). Exporting the processed stg files in XYZ format allowed the data 

to be used for quantitative analysis.  
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Hyporheic Zone Analysis 

In order to examine the hyporheic zone, the processed ERT data was inspected for 

visual evidence of pore water changes within the near channel area. The QPS Fledermaus 

DMagic software program was used to convert XYZ files into scalar grid files in the 

WGS 1984 UTM Zone 17 North coordinate system to correspond with the RTK-GPS 

data. Mesh parameters were selected as weighted moving average, weight diameter was 

set at 4, mesh cell size was 0.14 units creating 47 rows and 193 columns, and the vertical 

datum was selected to be unspecified meters. These parameters were selected to give the 

highest resolution mesh size without creating unnecessary data gaps (Figure 14). The 

grids were exported as ASCII output files that could be easily manipulated in ArcGIS.  

ArcToolbox has a suite of data measurement tools that can quantify specific 

geometries of the cross-sectional view of the interpreted hyporheic zone. ArcGIS projects 

were created for each data set. Terrain files used in EarthImager were also brought into 

ArcGIS to give an accurate representation of the land surface in areas where the gridding 

process smeared the elevations (Figure 15).  

Calculating the cross sectional area of the hyporheic zone allowed us to quantify 

the area of subsurface that was affected by pore water advection throughout a tidal cycle. 

The 10 m-wide creek channel is located between electrodes 17 and 37 (Figure 16). 

Defining the creek channel by electrode can differentiate what was influenced by 

advection from the creek channel and percolation of water through the marsh platform. 

This separation was necessary to create a boundary zone for the area calculation in 

ArcGIS. Selecting each individual ASCII file and applying the raster calculator tool 

within the spatial analyst toolbox prompted the raster calculator screen to create a raster 
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image defining the hyporheic zone area to the ambient background resistivity (0.604 Ω-

m).  

 The output of this tool created a two-color raster image of any resistivity values 

less than 0.604 Ω-m (hyporheic zone) and any resistivity value greater than 0.604 Ω-m 

(ambient background) (Figure 16). The 0.604 Ω-m contour was selected as the outer most 

boundary between what visually appeared to be the ambient background resistivity and 

hyporheic zone water infiltrating the sediment. This boundary was a major assumption in 

the processing methodology. This could be an overestimate of the change in salinity 

boundary line thus overestimating the extent of the area of influence. Limitations in the 

processing methodology of electrical resistivity create a smoothing effect on the 

subsurface layers. The edge of the hyporheic zone was defined by the 0.604 Ω-m contour 

no matter what the tidal cycle stage. 

 Converting the newly made raster image into a polygon was accomplished by 

using the conversion toolbox, from raster, raster to polygon. The polygon defining the 

hyporheic zone was manually adjusted to exclude excessive background areas in the 

tomograms that fell within the 0.604 Ω-m contour, but were related to other phenomena 

not associated with hyporheic exchange such as percolation of water on the marsh 

platform. While much of the data appears to fall within this range, it is important to note 

the low data density limitations of the resistivity method in the deepest areas on either 

end of the transect. This is due to the lack a data points from the apparent resistivity 

psuedosection and extrapolation of the model in the creation of the inverted resistivity 

section (Figure 13).   
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 Calculating the thickness and width of the hyporheic zone enabled a better 

understanding of how pore fluid propagates into the creek bed and surrounding marsh 

sediment over a tidal cycle. To better resolve the differences between horizontal and 

vertical changes in salinity through the sediments, changes in the thickness and width of 

the hyporheic zone were measured for each time step in each resistivity survey. A new 

polyline shapefile was created in Arc Catalog. The midpoint of the channel was defined 

to be at electrode 27, while the edges of the creek remained at electrode 17 and 37. 

Electrode 27 was selected using the snapping feature and the bottom of the hyporheic 

zone to create the vertical line measurement of the hyporheic zone, which is the thickness 

of the hyporheic zone at the midpoint of the creek channel. Selecting the midpoint of the 

newly created vertical thickness line and constructing a horizontal line extending to the 

0.604 Ω-m contour defined the width of the hyporheic zone. This was repeated on the 

opposite side to complete the measurement for the width (Figure 17). 

3. Results 

Two major controls on electrical resistivity are subsurface mineralogy and pore 

water composition. In order to determine the signal contribution from mineralogy, 

sediment cores were collected along the transect line and used to create a stratigraphic 

cross section. Pore water samples were collected from wells adjacent to the creek bank in 

order to determine any variability in salinity with depth in the sediment. These data sets 

provide a basis to support the assumption that spatial and temporal changes in resistivity 

within the sediments surrounding the creek bank are due to changes in the pore water 

composition in the hyporheic zone. The hyporheic zone can then be further analyzed for 

seasonal, fortnightly, and hourly changes observed within the data sets. 
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3.1 Marsh Platform Geology 

Hand auger samples and vibracores were collected to groundtruth the electrical 

resistivity transect and to develop a detailed view of horizontal layering and varying 

depositional environments within the near creek marsh platform. The geology of the 

marsh adjacent to Waties Island is typical for the southeastern US. Similar marshes 

usually contain fine sand or mud deposits overtopping older sand layers from relict 

beach-ridges as observed in North Inlet estuary in South Carolina (Carter et al., 2008), 

and between Cabretta Island and Sapelo Island, Georgia (Wilson et al., 2015).  

Core lengths varied from 3.23 m to 3.78 m. Detailed visual analysis of the 

vibracores exposed a topmost marsh layer, overlying a muddier paleomarsh layer 

overtopping a sandy beach system (Appendix B).  The topmost layer is a 0.5 to 0.75 m 

thick modern marsh that contains brown to dark brown fine sand to muddy fine sand with 

root remnants and other organic material (Figure 18). The modern marsh layer overlies an 

old marsh platform that is a 0.5 m thick unit of black, silty mud containing plant remnants 

and oyster shells (Figure 19).  The next unit is a 2.5 m thick dark grey-to-grey, fine sand 

unit that contains whole coquina shells and crushed shell fragments, increasing in 

abundance with depth (Figure 20). This unit could be part of an old beach system 

containing the littoral zone at the bottom of the unit, progressing to the dune system 

toward the top. This sequence is indicative of a littoral zone progressing to the modern 

marsh during falling sea level.  

Grain size, porosity, water content, bulk density, and relevant grain size statistics 

of the hand auger samples offer more detailed characterization of sediments along the 

resistivity transect (Appendix C). Sediment analysis indicates that very fine-grained sand 
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is the most abundant, with a substantial percentage of silty, clay (Table 4). The average 

porosity of the sediment is between 0.44 – 0.45 which falls well within the expected 

bounds for unconsolidated fine sand outlined by Morris and Johnson (1967).  

3.2 Marsh Creek and Pore water Salinity Variablility 

Water samples collected at the midpoint of each tomogram where recorded and 

plotted in an attempt to differentiate the resistivity boundary movement during a 

fortnightly tidal cycle (Figure 21).  Separating the spring and neap tides, based on tidal 

amplitude, was an attempt to capture the movement of this boundary past the water 

sampling wells. During the neap tide, it was hypothesized that the boundary would not 

pass through the well pore space due to the tide or surface waters never influencing the 

well location. In contrast, the spring tides inundate the entire marsh platform moving this 

boundary past the well location and into the marsh platform  

3.3 ERT time series  

 Time series analysis of ERT data, from low tide to low tide, provides a visual 

method for interpreting processes that control pore water exchange during a tidal cycle. A 

consistent change in the resistivity signal, between tomograms, within the sediment 

surrounding the creek channel provides visual evidence of hyporheic exchange. Under 

the assumptions laid out in the methodology, the extent of the resistivity boundary of 

what is believed to be the hyporheic zone can be visualized in the tomogram images. The 

ERT data reveal a tidally variable hyporheic zone with a maximum area of 23.32 m2 from 

the ArcGIS calculations (Table 5).  

Examination of hyporheic zone area, thickness, and width reveal characteristics of 

the process of surface water infiltration into tidal marsh creek channel sediments. There is 
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a linear relationship between the hyporheic zone area and tidal level, with the cross 

sectional area ranging from 23.24 m2 to the smallest at 0.08 m2 (Figure 22). This suggests 

that hyporheic zone area develops in direct and immediate response to tidal infiltration. 

The difference in spring and neap tidal ranges is reflected in the variability of hyporheic 

zone areas. The larger range in water level during spring tide results in development of 

the largest and smallest hyporheic zone areas.  

The midpoint thickness of the hyporheic zone ranged anywhere from 0.3 m at low 

tide to 2.7 m at high tide. This formed a strong linear relationship with the tidal height 

with a resultant R2 value of 0.97 (Figure 23). The cross sectional width of the hyporheic 

zone ranged from 2.4 m at low tide to 8.1 m at high tide. The relationship between the 

width and area was logarithmic in nature, indicating that the change in width was largest 

when the tidal height was below the 1 m level, once it was above that level; the change in 

width was smaller than the thickness (Figure 24).  

4. Discussion 

4.1 Salinity of the Near Creek Marsh 

In order to better understand the impact of salinity on the resistivity tomogram 

time series, surface and pore water samples were collected.  The combination of pore 

water and geologic characteristics has the largest influence on an electrical resistivity 

signal. Since the the geology is not changing, the change from one resistivity image to the 

next is due to changing pore water composition.  

Sampling the pore water salinity of the shallow subsurface reveals a two layer 

hydrogeologic system coupled for exchange with each other under certain tidal 

conditions (Figure 21). Evapotranspiration likely contributes substantially to the 
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variability, concentrating salts in the shallow marsh sediments. The lower bound of 32 

ppt likely represents complete flushing of the sediments with surface water (blue dots, 

Figure 21). The deeper layer is less affected by the root zone or precipitation on a short 

time frame, and is therefore more consistent in salinity.  

Throughout the fortnightly tidal cycle, the salinity drops and is clearly influenced 

by the infiltration of surface water into the shallow layer (yellow dots) during spring tide 

(Figure 25). Less complete flushing during neap tides is indicated by constant salinity 

throughout the tidal cycle (yellow dots) (Figure 26). Salinity values from all neap tide 

measurement periods show no obvious response to changing water levels throughout the 

tidal cycle (Figure 21). Trend lines for both shallow and deep creek bank wells show no 

correlation with tidal amplitude, unlike the spring tide plot where shallow well salinity 

consistently approaches surface water salinity at the highest tides (Figure 21 and 25). 

During neap tide, the water level is never high enough to overtop the creek channel banks 

and inundate the marsh platform. The channel water never mixes far enough into the 

marsh sediment to fully inundate the creek bank and flush the sediments sampled by the 

shallow well.  

This meant that the observed change in tomogram images from one image to 

another is a change in the pore water composition (salinity). Figure 27 shows a cartoon 

figure that at T1 the boundary between two different salinity masses to be at a specific 

location. From T1 to T2, this boundary has changed to the left side of the block diagram. 

From this image the only observable differences in the two images is that the boundary 

has changed. There can be no assumptions made about the direction of groundwater 

movement or velocity of fluid moving through the subsurface. This cartoon model is 
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comparable to what is captured in the resistivity tomograms. From image to image this 

salinity boundary beneath the creek channel is changing as the tides are changing but 

there can be no assumptions to the velocity or direction of fluid flow.  

 The frequency of inundation of the salt marsh controls the flushing of the near-

creek sediment, potentially creating larger nutrient flux into and out of the system. Marsh 

vegetation such as Spartina alterniflora is dependent upon the tidal flushing of near-creek 

sediments (Osgood, 2000; Gardner, 2005). This can be observed at Waties Island, where 

elevation of the marsh also contributes to flushing frequency. The lower elevation side 

(Figure 5) of the creek channel in the study area contains tall Spartina alterniflora, while 

the higher elevation side (Figure 6) contains the shorter variety. In some areas, zonation 

of marsh vegetation may be affected by the frequency and extent of the hyporheic zone 

expanding into the near creek sediment. The lower marsh side is inundated by the tides 

more often, flushing the sediment more regularly allowing for the removal and addition 

of oxygen and nutrients to the subsurface.  

4.2 Hyporheic Zone Morphology 

The range of observed variability in width of the hyporheic zone is much larger 

than the variability in thickness, suggesting lateral transport is the dominating process 

(Figure 28). The large amount of pore water – surface water exchange assumed to occur 

based on results in this study is consistent with the findings of Gardner (2005). He 

suggested that two-thirds of total seepage over a tidal cycle comes from the creek bank 

(width), while the other one-third comes from the channel bottom (thickness).   

Figure 28 plots thickness verses width to reveal the channel and hyporheic zone 

morphology. From the figure, the hyporheic zone thickness-width curve reveals a 



 

 

 

 

27

logarithmic relationship with a R2 value of 0.73. There is a sharp increase in width then 

followed by a dominant increase in thickness. This indicates that the salinity boundary 

beneath the creek channel first increases in width then in thickness as the tide or channel 

water increases and decreases. These results suggest the possibility that surface water 

infiltrates the creek channel sediments moving the boundary more rapidly in the 

horizontal direction than the vertical. As the tide continues to rise, a limit is reached 

where the horizontal boundary direction does not increase. This is possibly due to 

frictional effects as suggested by Schultz and Ruppel (2002).   

The channel morphology appears to follow a similar trend with a logarithmic 

pattern with a R2 value of 0.95. The width of the channel increases at lower tides, 

followed by a transition to consistent lateral spreading while the thickness increases. The 

lateral spreading of the creek channel will eventually break from the banks and spill onto 

the marsh platform. Electrode 17 and 37 is the separation between platform and creek 

channel at 9.81m wide. There are similarities of the channel morphology width and 

thickness and the hyporheic zone width and thickness following same type of trend. This 

would be expected that the hyporheic zone morphology would be similar to the channel 

morphology. The difference between the two is that the hyporheic zone thickness at its 

largest is almost two times larger that the thickness of the creek channel. This similarity 

could be due to the smearing of the data set suggested by Loke and Lane (2004). It can be 

concluded that the data set is not yet refined enough to differentiate between the 

overtopping waters and the subsurface processes due to the similarities of the trends. Due 

to the slight difference, there needs to be more refinement in the processing of the 
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resistivity images to include the water layer to differentiate what is the surface and 

subsurface signal contribution to the resistivity images.  

4.3 Addition of a Water Layer 

There are two discrepancies in the processing of electrical resistivity images. The 

first scenario is using just the terrain file, which makes the assumption that the overlying 

water layer does not influence the subsurface resistivity processing. This simplifies the 

mixing boundary as seen in Figure 29 B and D. Reversing the hydraulic gradient with the 

rising tide with porous sediments that are laterally uniform, it is reasonable to assume that 

the water will saturate the formation uniformly (B and D). Gardner (2005), Wilson et al. 

(2006) and Wilson and Morris (2012) have modeled this reversal in flow with discharge 

into the creek during low tide and recharge during rising tides. This simplified mixing 

boundary was assumed in the processing of the tomograms.  

The more complex scenario is to include the water layer that creates spurious high 

resistivity anomalies (Table 2), and further complicates interpretation of the subsurface 

interaction of surface water with subsurface waters (A and C).  One explanation of the 

complex mixing observed by including water layer can be from temperature changes. 

Figure 30 shows the channel and pore water temperatures of September and January field 

days. In September, there is warmer channel water moving into a cooler subsurface. 

Understanding the relationship between temperature and resistivity (Figure 11) reveals 

that a warmer mass of the same composition has a lower resistivity value. This could lead 

to the interpretation that the changing resistivity values could be attributed to this 

temperature difference between the surface and subsurface masses. During the January 

field date, the subsurface reveals higher resistivity values indicating that the cooler 
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channel water is moving into the warmer subsurface causing a rise in resistivity. The 

complicated resistivity results with the water layer could reveal the complexity of 

subsurface mixing while imaging a blend of salinity and temperature changes, making 

interpretations of the tomograms difficult. Work is still needed to resolve the high 

resistivity anomalies of the tomograms including the water layer. Utilizing either method, 

ERT is recording a subsurface change in resistivity attributed to two different water 

masses mixing and interacting within the near creek subsurface.  

 

5. Conclusion 

Electrical resistivity as a viable tool to measure changes in pore water 

composition in a salt marsh environment needs more refinement in differentiating 

different saline and/or temperature boundaries. There are multiple issues that arise to 

successfully image a change in subsurface pore space composition beneath a tidal marsh 

creek channel. The major assumption to exclude a water layer from the processing 

simplified the interpretation and created a uniform mixing boundary in the subsurface 

that was easily identifiable and replicable. 

While the exclusion of the water layer created statistically more accurate results 

(Table 2) and was more representative of the hand auger sample analysis (Table 3). There 

was too much of a similarity in the channel morphology and the defined hyporheic zone 

morphology to determine if this uniform boundary was an artifact of the overtopping 

water layer. The issue of including the water layer gave rise to spurious resistivity bodies 

that did not align with ground truthing experiments. This method gave rise to a 

complicated subsurface mixing interface that could be temperature and/or salinity 
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dependent. There needs to be further refinement of this method to address the issues of 

the high resistivity anomalies produced.  

 While electrical resistivity has been proven to be a viable technique in a 

identifying a salt-freshwater interface, the limitations of the instrument may have been 

reached when identifying pore water boundaries in the shallow subsurface of a salt 

marsh. The technique needs further development to accurately image a salinity and/or 

temperature boundary by the creation and implementing a water layer file that is within 

the ground truthed parameters observed. Once these developments have been 

implemented in the processing technique, analysis of the hyporheic zone can continue in 

the detailed analysis that has been described in this paper.  

Understanding the limitations of electrical resistivity is needed to determine what 

the instrument can and cannot measure, but with further refinement, electrical resistivity 

could be a viable tool and technique to gather spatial and temporal analysis of the 

hyporheic zone and shallow subsurface salt marsh salinity/temperature boundaries. The 

application of the technique from a fresh water saline tracer experiment (Ward et al. 

2010) at this time does not readily transfer into the coastal salt marsh tidal creek channel 

environment due to the complexity of marsh hydrology and the processing limitations. 
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7. Tables 

Table 1: Specific dates when ERT surveys were conducted for the spring and neap tides 

from September 2015 – January 2016. 

 

Spring Tides Neap Tides 

September 29, 2015 September 18, 2015 

October 30, 3015 October 20, 2015 

December 12, 2015 December 4, 2015 

January 25, 2016 January 31, 2016 
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Table 2: Results from field dates suggest that the most statistically accurate and realistic 

resistivity measurements come from the terrain file (.trn) while there is significant issues 

that occur when using the water layer file (.uwt). This is the basis for the assumption to 

use the terrain file only during the processing and interpretation of data revealing a 

simplified mixing boundary in the subsurface.   

 

  . trn file . uwt file 

Data File Largest Ω-m RMS L2 Largest Ω-m RMS L2 

150918D_neap 2.20 6.46 0.79 211.00 9.85 0.85 

150918J_neap 2.10 6.49 0.69 47.20 9.66 0.81 

150929E_spring 3.00 7.07 0.85 83.00 13.47 0.97 

151020H_neap 4.50 9.11 0.94 241.00 8.89 0.97 

151020I_neap 4.70 9.20 0.69 227.00 8.22 0.85 

151020J_neap 4.00 9.30 0.88 184.00 8.91 0.94 

151030E_spring 3.60 8.43 0.68 96.00 11.23 0.81 

151030F_spring 2.90 8.31 0.73 62.00 8.75 0.75 

151030G_spring 4.20 8.31 0.76 56.30 8.65 0.72 

151030H_spring 4.30 8.44 0.74 44.30 8.86 0.85 

151030I_spring 4.80 8.73 0.63 1208.00 12.20 0.97 

151030J_spring 4.90 8.74 0.97 2849.00 15.13 1.05 

151204H_neap 3.70 12.88 0.82 28.70 13.56 0.83 

151204K_neap 3.60 25.27 0.74 510.00 27.60 0.82 

151215F_spring 3.70 5.66 0.66 22.90 10.94 0.79 

151215J_spring 4.20 6.65 0.75 17.10 8.98 0.69 

160125F_spring 3.00 5.52 0.71 17.80 6.10 0.74 

160125H_spring 3.50 5.80 0.67 41.40 10.08 0.96 

160125I_spring 3.00 5.73 0.61 25.40 6.84 0.96 

160125J_spring 3.50 5.66 0.62 76.00 6.76 0.92 

160125L_spring 2.80 5.66 0.67 49.80 11.08 1.02 

160131C_neap 2.60 4.69 0.75 3290.00 22.17 2.65 

160131D_neap 1.70 6.88 0.97 2968.00 20.82 3.20 

160131E_neap 1.90 5.21 0.55 385.00 16.44 1.64 

160131F_neap 2.10 5.36 0.55 2232.00 16.88 2.22 

160131G_neap 2.40 6.14 0.76 587.00 14.52 1.56 

160131H_neap 2.70 5.77 0.78 39.40 13.08 0.92 

160131I_neap 3.10 6.29 0.99 200.00 11.37 0.88 

Averages 3.31 7.78 0.75 564.26 12.18 1.12 
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Table 3: Average resistivity values of all hand auger samples collected. 

Sample Average 

Resistivity (ΩΩΩΩ-m) 

Standard 

Deviation (ΩΩΩΩ-m) 

Applied 
Current (mA) 

1A 3.843 0.022 +5.744 

1B 1.048 0.001 +22.03 

1C 0.875 0.003 +26.88 

1D 1.209 0.002 +18.20 

1E 0.463 0.001 +44.09 

1F 0.504 0.001 +40.58 

1G 0.561 0.000 +35.70 

1H 0.598 0.005 +39.15 

1I 0.538 0.002 +37.93 

1J 0.463 0.003 +45.31 

1K 0.550 0.001 +42.60 

1L 0.584 0.001 +41.01 

1M 0.638 0.001 +38.98 

2A 0.601 0.002 +38.68 

2B 0.529 0.000 +42.62 

2C 0.488 0.001 +43.01 

2D 0.483 0.009 +44.83 

2E 0.566 0.002 +40.30 

2F 0.601 0.001 +39.53 

3A 0.774 0.003 +33.37 

3B 0.661 0.008 +36.75 

3C 0.659 0.003 +37.81 

3D 0.688 0.003 +37.78 

3E 0.960 0.013 +27.59 

3F 0.696 0.002 +37.48 

4A 0.557 0.001 +39.09 

4B 0.582 0.001 +38.52 

4C 0.650 0.001 +36.31 

4D 0.670 0.000 +34.42 

4E 0.611 0.001 +38.43 

5A 0.544 0.001 +38.87 

5B 0.555 0.000 +39.33 

5C 0.584 0.000 +37.51 

5D 0.570 0.002 +40.27 

5E 0.628 0.001 +37.26 

5F 0.542 0.001 +41.92 

5G 0.553 0.001 +42.11 
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5H 0.525 0.001 +43.24 
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Table 4: Results of the hand auger sediment analysis averages for the five wells, and the 

total average of all sediment samples.  

 
Sediment 
Analysis 

HA 
Well 1 

HA 
Well 2 

HA 
Well 3 

HA 
Well 4 

HA 
Well 5 

Total 
Averages 

Porosity 
0.44 – 

0.45 

0.44 – 

0.45 

0.41 – 

0.42 

0.45 – 

0.46 

0.46 – 

0.47 
0.44 – 0.45 

Bulk Density 

(g/ml) 
2.56 2.02 2.53 3.14 2.28 2.49 

Water Content 

(%) 
24.52 29.19 22.43 23.77 28.18 25.60 

Grain Size (φ) 3.12 3.45 2.79 2.69 2.99 3.03 

Sorting 1.99 1.85 1.13 1.00 1.46 1.59 

Skewness 0.48 0.55 0.47 0.44 0.49 0.49 

Kurtosis 1.69 1.28 2.29 2.42 2.04 1.89 
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Table 5: The largest hyporheic zone area, with the corresponding highest tide, reveals 

that the largest tides and areas occurred during the late summer and fell gradually through 

the fall and winter months.  

Dates High Tide (m) Hyporheic Zone Area (m2) 

150918_neap 1.59 13.87 

150929_spring 2.04 23.24 

151020_neap 1.68 14.53 

152030_spring 2.01 23.19 

151204_neap 1.39 12.83 

151215_spring 1.63 16.29 

160125_spring 1.67 15.11 

160131_neap 1.19 8.24 
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8. Figures 

 

Figure 1: Cartoon illustration of the complex saltmarsh groundwater hydrology 

processes. There is large-scale movement of fresh groundwater flowing from the uplands 

through the marsh platform and/or deeper under the coastal system discharging into the 

open ocean. Small local processes such as the hyporheic zone that function within 2 

meters of the creek bank recirculating localized channel and groundwater. There is also 

overtopping, infiltration of the marsh platform and percolation of water through the 

marsh platform. 
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Figure 2: Resistivity test box experiment to show the effect of pore water salinity on 

resistivity. The sediment sample was flushed and filled with 100 ml of 0ppt, 5ppt, 10ppt, 

15ppt, 25ppt, 35ppt, and 45ppt waters.  
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Figure 3: Cross-sectional images of channel relationship between channel, hyporheic 

zone, and groundwater as characterized by White, 1993
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Figure 4: Regional study site overview of Waties Island, South Carolina, location of the tidal creek channel of interest with the 

highlighted resistivity transect.  
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Figure 5: Image of the study site looking toward the ocean and Hog Inlet. Note the tall 

Spartina alterniflora, muddy sediment, sand levee next to the creek channel, and the sand 

lens that is the natural break between Hog Inlet and the marsh. The 56 electrode cable is 

also visible in 0.5 m increments. 
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Figure 6: Image of the study site looking landward, with the Hammock in the 

background. Note that this is the cut bank side of the channel, with a large sand levee, 

and shorter Spartina plants, the lack of vegetation is due to the continual setup of 

equipment on the same area. Also note the two white pipes, these are the deep and 

shallow wells that are located at electrode 38 in all of the resistivity surveys. Vibracore 3 

is being extracted from the center of the creek channel. The small point bar is clearly 

visible, with the deepest part of the channel only containing water.   
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Figure 7: Image of the AGI SuperSting and operating equipment set up on the table, at 

the highest point in the marsh. The shallow and deep wells are barely above the highest 

spring tide.  
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Figure 8: Stratigraphic cross section developed from the five vibracores, as well as the hand auger sampling locations and 

water wells.  
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Figure 9: ArcGIS satellite view of the creek channel and marsh. The RTK GPS points are 

shown in 2-meter increments to show what electrode number is correspondent with that 

measuring point. The hand auger and vibracore locations are also located adjacent to the 

resistivity transect. Also note the white line indicates the channel boundaries while the 

red lines indicate the extent of the Spartina alterniflora vegetation.  
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Figure 10: Image A is the processed data for 151030I_spring utilizing the .trn file. The 

maximum resistivity value is 4.8 Ω-m, which is well similar to the laboratory observed 

resistivities. Image B is the processed data for151030I_spring utilizing the .uwt file. Its 

maximum resistivity value is 1208.0 Ω-m, which falls well outside the range that has 

been physically observed in laboratory experiments. Also note the statistical difference in 

the processed figures, resulting in the use of only the terrain and not the water layer to 

give the most statistically accurate representation of field conditions. 
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Figure 11: Temperatures inverse effect on resistivity. As temperature increases the 

resistivity of a material decreases.  
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Figure 12: Synthetic Models that where developed using AGI EarthImager software to 

determine what type of artifacts would be developed having a 1 Ω-m background 

resistivity and 0.3 Ω-m hyporheic zone. The processed data reveals similarities in 

artifacts located in the subsurface near the creek banks, high and low resistivity bodies. 
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Figure 13: Typical processed Electrical Resistivity data including the Measured Apparent Resistivity Psuedosection at the top 

followed by the Calculated Apparent Resistivity Psuedosection in the middle, with the interpreted geological cross section, 

Inverted Resistivity Section at the bottom.   
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Figure 14: The numerical mesh generation by QPS Fledermaus DMagic. 
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Figure 15: Screenshot of the numerically generated mesh imported from Fledermaus, with the accompanying electrode surface 

position from the RTK-GPS data. 
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Figure 16: ArcGIS 2-color contour surround the 0.604 Ω-m line that separates the maximum extent of the hyporheic zone and 

ambient background noise.  
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Figure 17:  ArcGIS polygon with the drawn area, width and thickness lines, which have been quantitatively recorded.   
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Figure 18: Sediment core of the modern marsh from Vibracore 5. Note the brownish tint 

to the sand, plenty of root fragments and vegetation. 
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Figure 19: Sediment core of the paleomarsh from Vibracore 4. Note the black color, 

oyster shell, and root fragments.  
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Figure 20: Sediment core of the large sand unit from Vibracore 2. There is a presence of 

large shell fragments, and a massive sandstone unit.  
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Figure 21: Fortnightly differences in salinity at the study site during ERT measurement 

days.  
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Figure 22: The linear relationship between hyporheic zone area and tidal height.  
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Figure 23: The linear relationship between hyporheic zone thickness and area.  
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Figure 24: The logarithmic relationship between hyporheic zone width and area 
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Figure 25: 150929_Spring. The effect of hyporheic zone processes on the shallow water 

well. As the tide rises and expands the hyporheic zone, the salinity in the shallow well 

goes from hypersaline to channel water salinity. 
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Figure 26: 150918_Neap. The small extent of the hyporheic zone expanding into and out 

of the creek bank, does not affect the salinity of the wells. 
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Figure 27: The only assumption that can be made about a boundary imaged in the 

resistivity tomograms from one image to another is that the boundary has moved. There 

can be no assumption to the flow direction or velocity of water moving through the area.  
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Figure 28: Comparison of the channel morphology and the subsurface hyporheic zone 

morphology.  

  



 

 

 

 

70

 
Figure 29: September and January tomogram images with and without water layers to 

analyze a simplified uniform mixing zone (B and D) and a more complex mixing zone 

with the possibility of temperature effects as the changing unit.  
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Figure 30: Late summer pore water and channel water temperatures to suggest warm 

channel waters entering a cooler mass causing a lowering in resistivity values. The 

opposite occurs during the winter with cooler channel waters mixing with warmer 

subsurface waters causing higher resistivity readings.   
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9. Appendices 

Appendix A 

Electrical Resistivity Time-series Tomograms: 

 

 The following data set contains the eight data collection days. They appear in 

chronological order, starting with September 18, 2015 and finishing with January 31, 

2016. There is a total of eight field days containing four spring tides and four neap tides. 

Each image contains a data set that took between 35 – 45 minutes to collect. 

Measurements for each field day started around low tide and finished around low tide. 

Each image has been processed using AGI EarthImager 2D and has had the scale set 

between 0.1 – 10 Ω-m, with 256 colors between the resistivity range. This made for 

visually appealing images, and the hyporheic zone can easily be identified as the 

maximum extent of blue, with the ambient background color of green. Accompanying the 

time series tomogram images is a scale bar, as well as a graph showing the tidal range for 

the data set with coinciding data points representing the midpoint of each tomogram 

image.  
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Appendix B 

Vibracore Logs 

 The following appendix is a copy of the five-sediment core logs that were 

analyzed for the shallow subsurface stratigraphy. The cores were collected after the 

electrical resistivity surveys. Vibracore 1 was placed on the hammock upland marsh 

platform; Vibracore 2 was placed on the cut bank side of the creek channel in a muddy 

sandy upper-layer containing oyster shells. Vibracore 3 was placed in the middle of the 

creek channel. Vibracore 4 was placed on the point bar side of the channel in a fine sand 

upper layer. Vibracore 5 was placed on the levee on the other side of the creek, in muddy 

sandy sediment.  This created a high-resolution data set displaying what the underlying 

stratigraphy looked like, concentrating on the area that is affected by hyporheic zone 

processes. 
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Appendix C 

Hand Auger sediment samples: 

 

 The following table and formulas provide a comprehensive list of sediment 

analysis. Hand Auger samples were collected for the ERT transect along the creek 

channel. Laboratory analysis of the sediment samples was carried out in Coastal Carolina 

University’s Sediment Laboratory. Coastal Carolina University’s Laser Particle Size 

Analyzer and the supplementary software were used to calculate Grain Size, Sorting, 

Kurtosis, and Skewness. Analysis of bulk density, water content, and porosity where 

done with simple lab experiments.  

The fully saturated sediment samples were massed, and then dried, to measure the 

amount of water lost. To calculate the bulk density of the sediment, a graduated cylinder 

was filled to a specific volume, while a known amount of dry sediment was placed in the 

cylinder. The mass of the dry sediment added to the graduated cylinder, divided by the 

amount of water displaced, gave the bulk density of the sediment sample. The density of 

fresh or salt water was used to give a range of porosity. The amount of water lost in the 

initial drying process, divided by the density of salt water or fresh water, gave the volume 

of the void space in the sediment. The volume of the sediment was calculated by using 

the mass of the dry sediment divided by the density of each sediment sample. From there, 

the calculation is the volume of the voids divided by the total volume to give the porosity 

of each sediment sample.  The porosity can be used to calculate a realistic volume of 

water entering or leaving the creek sediment along the transect site. Gaining a robust 
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understanding of the sediment surrounding the creek channel can validate the 

interpretation of the ERT data. 
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Hand Auger Sediment Analysis 

 Water Density (1.0 or 1.035 g/ml)     
Sediment Sample Water Content (%) Bulk Density (g/ml) Porosity (%) Porosity (%) Average Grain Size (Φ) Skewness Kurtosis Sorting 

1A 15.11 3.88 0.41 0.40 2.87 0.27 2.07 2.27 

1B 21.83 2.72 0.43 0.42 2.53 0.25 1.17 2.40 

1C 22.26 2.44 0.41 0.40 2.37 0.32 2.70 0.98 

1D 18.25 2.62 0.37 0.36 2.30 0.30 2.65 0.93 

1E 27.81 2.62 0.50 0.49 2.91 0.40 1.55 2.19 

1F 29.48 2.13 0.47 0.46 3.61 0.53 0.86 2.40 

1G 26.35 2.51 0.47 0.46 3.40 0.60 1.35 2.14 

1H 25.77 1.82 0.47 0.46 2.94 0.47 2.41 1.91 

1I 28.50 2.91 0.54 0.53 3.33 0.57 1.23 2.20 

1J 26.81 2.61 0.49 0.48 3.56 0.52 1.00 2.41 

1K 25.41 2.31 0.44 0.43 3.83 0.66 0.93 2.19 

1L 24.89 2.39 0.44 0.43 3.20 0.64 2.65 1.68 

1M 26.29 2.26 0.45 0.44 3.67 0.66 1.42 2.13 

         
2A 26.94 2.10 0.44 0.43 3.18 0.56 1.45 1.51 

2B 30.20 2.33 0.50 0.49 3.28 0.55 1.39 1.57 

2C 33.79 1.94 0.50 0.49 3.62 0.52 1.14 1.97 

2D 29.93 1.48 0.39 0.38 3.74 0.54 1.04 2.09 

2E 28.68 1.88 0.43 0.42 3.54 0.57 1.17 2.03 

2F 25.60 2.42 0.45 0.45 3.33 0.56 1.47 1.90 

         
3A 23.24 2.63 0.44 0.43 2.71 0.46 2.36 0.94 

3B 22.55 2.39 0.41 0.40 2.59 0.38 2.35 0.81 

3C 22.18 2.69 0.41 0.40 2.90 0.54 2.14 1.36 

3D 24.02 2.02 0.39 0.38 3.14 0.60 2.65 1.77 

3E 20.28 2.87 0.42 0.41 2.82 0.51 2.28 1.16 

3F 22.34 2.61 0.43 0.42 2.55 0.31 1.95 0.73 

         
4A 24.26 2.46 0.44 0.43 2.68 0.38 2.42 0.90 

4B 26.31 4.50 0.47 0.46 2.63 0.39 2.48 0.91 

4C 23.10 3.14 0.49 0.48 2.80 0.51 2.35 1.13 

4D 22.40 2.97 0.46 0.45 2.64 0.44 2.42 1.01 

4E 22.77 2.64 0.44 0.43 2.71 0.47 2.45 1.07 

         
5A 26.81 2.55 0.48 0.47 2.85 0.51 2.38 1.09 

5B 28.71 2.07 0.45 0.45 2.89 0.56 2.24 1.19 

5C 25.44 2.27 0.44 0.43 2.75 0.52 2.31 1.14 

5D 25.97 2.26 0.44 0.43 3.49 0.69 1.32 1.76 

5E 44.02 2.23 0.64 0.63 3.22 0.63 1.83 1.42 
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5F 26.47 2.29 0.45 0.44 2.93 0.57 2.46 1.17 

5G 25.30 2.25 0.43 0.42 3.23 0.60 1.83 1.56 

5H 22.74 2.30 0.40 0.40 2.57 0.12 1.93 2.38 

Averages 25.60 2.49 0.45 0.44 3.03 0.49 1.89 1.59 

 Very Fine Grained Strongly Fine Skewed Very Leptokurtic Poorly Sorted 
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