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ABSTRACT 
 

Harmful algae blooms (HABs) and toxins associated with HAB species are a 

significant threat to the health of marine species and coastal environments. In the South 

Carolina coastal zone, HABs have proliferated with intensified anthropogenic 

eutrophication in coastal waters.  The raphidophyte species Chattonella subsalsa is a 

prominent cause of algal blooms resulting in fish kills in South Carolina. Though C. 

subsalsa is a known ichthyotoxic alga, the fish kill mechanism of this species remains 

unidentified.  C. subsalsa is likely to elicit fish mortality via one of two mechanisms: (1) 

gill damage induced by cell contact irritation or (2) the production of a bioactive 

compound or toxin. We hypothesized physical damage and subsequent mortality was 

caused by direct contact with C. subsalsa cells and that the lethality of C. subsalsa is 

related to the algal growth phase, with the maximum harmful effect occurring during the 

exponential growth phase. Larvae of Fundulus heteroclitus were exposed to cultures of 

C. subsalsa at various phases of growth both directly and indirectly (through a 0.2 µm 

mesh) for 48 hours. Fish mortality and gill tissue damage were used to measure the 

effects of C. subsalsa exposures.  The greatest mortalities and gill damage were observed 

via indirect exposure to C. subsalsa cultures in the exponential growth phase.  These 

results suggest C. subsalsa produces a bioactive compound that induces gill damage and 

subsequent mortalities without the necessity of contact with algal cells and that C. 

subsalsa is most lethal during the exponential growth phase.  
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Introduction 
 

Coastal wetlands and marshes act as a buffer zone between the terrestrial and 

marine environments.  One of the most important ecosystem services provided by these 

habitats is the removal of nonpoint source (NPS) pollutants from stormwater runoff. As 

these habitats are altered or lost through coastal development, anthropogenic nutrient 

inputs increase (Lewitus et al. 2008). One of the consequences of eutrophication 

occurring in coastal wetlands is harmful algal blooms (Lewitus & Holland 2003, Lewitus 

et al. 2003). 

 Harmful algal blooms, HABs, are a growing concern in South Carolina’s estuary 

systems.  The South Carolina (SC) coastal zone is undergoing some of the most rapid 

urbanization in the country, including the development of thousands of stormwater 

detention ponds as catchments for runoff (Allen & Lu 2003, Greenfield et al. 2014a, 

Kleppel et al. 2006, Smith 2012).  

The construction of detention ponds associated with coastal development is a best 

management practice that can sometimes lead to a worst-case scenario.  Water input to 

these ponds is often from direct runoff or drainage pipes. Increased impervious surfaces, 

which decrease filtration through vegetation or sediments along with fertilizer use, can 

lead to highly eutrophic runoff.  As this water collects in brackish detention ponds it 

creates an ideal environment for harmful algae species to accumulate (Drescher et al. 

2007, Greenfield et al. 2014b, Kempton et al. 2002, Lewitus et al. 2003, Lewitus et al. 

2008). With HABs on the rise, efforts are needed to better understand harmful species 

and their effects on marine organisms. 
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Phytoplankton biomass and diversity can be used as an indication of water quality 

in the marine environment. With the exception of Pfiesteria (Burkholder et al. 1995), the 

only published record of a HAB in South Carolina estuarine or coastal waters was a 

Karenia brevis bloom in 1988 (Tester et al. 1991). A historical lack of HABs in SC may 

be related to the relatively low impact of anthropogenic nutrient loading in the coastal 

region (Lewitus et al. 2002, Lewitus & Holland 2003). An initial investigation of HAB 

species in brackish detention ponds found various harmful genera including four 

raphidophyte species, Heterosigma akashiwo, Fibrocapsa japonica, Chattonella cf. 

verruculosa and Chattonella subsalsa (Lewitus & Holland 2003).  In Kiawah Island, SC 

these raphidophyte species were found to be nearly ubiquitous in brackish detention 

ponds (Lewitus et al. 2003).  However, prior to development, (beginning in 1974-75), 

such taxa had not been identified (Lewitus et al. 2003, Lewitus et al. 2008).  

These ponds, often found adjacent to and/or linked to tidal creeks and marsh 

ecosystem, have the salinity range, stagnant water quality, and high nutrient levels 

necessary for blooms to occur.  Nutrients are a pivotal part of the formation and success 

of phytoplankton blooms (Burkholder 2006, Evardsen & Imai 2006, Imai et al. 2004).  

Eutrophication has been linked to the increase and prevalence of harmful algae blooms 

worldwide and an increase in nutrients in natural systems is often the driving factor 

influencing raphidophyte blooms (Anderson et al. 2002, Heisler et al. 2008, Imai & 

Yamaguchi 2012, Lewitus et al. 2008, Zhang et al. 2006).   

The presence of harmful raphidophytes in ponds was commonly associated with 

heightened nutrient concentrations, specifically high levels of phosphate (PO4
3-), 

dissolved organic carbon (DOC), and dissolved organic nitrogen (DON) (Lewitus et al. 
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2003).  Raphidophyte species have been observed in neighboring tidal creeks when high 

cell densities occurred in brackish ponds, suggesting transport could take place during 

tidal exchange (Lewitus et al. 2003, Greenfield et al. 2014b, Greenfield et al. 2014c).  

Vicinity to wetlands has allowed harmful taxa within these ponds to proliferate into tidal 

creeks exposing estuary waters to harmful algal species and algal toxins (Drescher et al. 

2007, Greenfield et al. 2014a, Lewitus et al. 2003).  

In 2003 a bloom of the globally-distributed icthyotoxic raphidophyte H. akashiwo 

marked the second HAB to be recorded in offshore waters in SC.  This bloom originated 

in Bull’s Bay and spread 8 km offshore, encompassing an area 200 km2.  Atypical 

salinity conditions, (21.3 ppt), associated with this bloom were caused by the diversion of 

freshwater into the marine system. This massive bloom was responsible for a fish kill 

estimated at 10,000 deaths (Kempton et al. 2008).  

A range of environmental and socio-economic consequences can accompany algal 

blooms.  Blooms can cause disruption of ecosystems, alterations of nutrient levels, 

depletion of dissolved oxygen, production of toxins, and mass mortalities of marine 

organisms.  Socio-economic impacts include closure of commercial fisheries and/or 

recreation areas and human illnesses. The effects of a bloom can be both immediate and 

fleeting, and long term and compounding (Anderson et al. 2002, Hallegraeff 1993, 

Heisler et al. 2008, Landsberg 2002). 

Fish kills pose severe threats to the health of marine and estuarine environments. 

Although the leading cause of fish kills in South Carolina is hypoxia (Greenfield et al. 

Pers. Commun.), approximately 27% of fish kill events are the result of harmful algal 

blooms (Greenfield et al. 2015). Fish kills resulting from harmful blooms immediately 
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effect fish by decimating populations and have the potential to disrupt spawning 

aggregations as well as reduce larval recruitment (Colman & Ramsdell 2003, Walters et 

al. 2013). Likewise in blooms of toxin producing algae, toxins may cause immediate 

death, secondary mortality through health degradation, or transferal of toxins to offspring 

or predators (Colman & Ramsdell 2003, Kiryu et al. 2002, Samson et al. 2008, Tester et 

al. 2000).  

One of the most common algal species associated with bloom events (defined as 

cell densities ≥ 103 cells ml-1) in South Carolina is Chattonella subsalsa (Lewitus et al. 

2008). This estuarine algal species is a naked raphidophyte ranging 25 to 50 𝜇m in size 

(Imai & Yamaguchi 2012).  Blooms of C. subsalsa frequently result in fish kills and pose 

great threats to the health of natural resources and the environment. For example, from 

2001 to 2005, a total of 203 harmful blooms, and of the 17 bloom-causing species, C. 

subsalsa was responsible for the greatest number of recorded blooms (Lewitus et al. 

2008).   

Chattonella is a genus of harmful algae in the class Raphidophyceae of the 

phylum Heterokontophyta.  Chattonella species inhabit tropic, sub-tropic, and temperate 

waters globally.  Currently five species of Chattonella have been described, C. antiqua, 

C. marina, C. ovata, C. minima, and C. subsalsa. This genus is one of many associated 

with red tides, a pseudonym of harmful algae blooms named for the appearance of 

discolored water caused by high algal cell densities.  Of the five species of Chattonella 

all but C. minima have been reported to cause fish killing red tides. Major blooms have 

been reported in India, Japan, Korea, China, Australia, the southeast USA and California 

(Imai & Yamaguchi 2012).  
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Chattonella has the ability to encyst in sediments of coastal waters in cold 

temperatures or unfavorable conditions.  Chattonella maintains low density background 

populations of encysted and vegetative cells that act as a seed population.  Warming 

waters and eutrophication spur germination.  Cells become active and dominate the water 

column with blooms generally occurring in summer months. Encysting is a key part of 

the Chattonella life cycle as cysts can survive in dormancy for several years without 

germinating.  This makes management practices associated with blooms difficult as a 

bloom does not need to occur in subsequent years for a Chattonella population to be 

maintained (Imai & Yamaguchi 2012).  

Irradiance, water temperature, salinity, and nutrients are the most important 

factors affecting the growth of Chattonella.  The genus prefers mid brackish conditions 

but C.subsalsa can grow in waters from 6 to 36 ppt with blooms commonly occurring 

from 11 to 28 ppt (Imai & Yamaguchi 2012). Bloom range temperatures for C. subsalsa 

are from 24 to 310C however various strains of the genus have shown adaptability to 

lower temperatures.  Likewise strains have been observed to adapt to various light 

regimes and may grow successfully outside of their preferred range.  C. subsalsa does not 

require intense irradiance and reaches half saturation for light at 69 𝜇mol m-2s-1 (Table 1).  

Such half saturation constants are similar among other species of the genus (Imai & 

Yamaguchi 2012).   

These conditions are common in the estuary system of South Carolina allowing 

active C. subsalsa cells to spread from detention ponds into tidal creeks and open estuary 

waters.  In SC, C. subsalsa blooms commonly occur in spring through summer months 

but are rare in winter (Lewitus et al. 2008).  
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Harmful effects associated with various HAB species commonly occur at cell 

densities ≥ 1 x 104 cells ml-1 (Bordelais et al. 2002).  However, fish kills caused by the 

genus Chattonella can occur at much lower cell densities.  As a genus, Chattonella is 

known to cause fish deaths at cell densities of 4 x 103 cells ml-1 (Imai & Yamaguchi 

2012).  The species C. antiqua, C. marina, and C. ovata may even kill fish at 1 x 102 cells 

ml-1 (Evardsen & Imai 2006, Imai & Yamaguchi 2012). In a bloom of C. subsalsa on 

Kiawah Island, South Carolina, abundance was estimated at 4.5 x 103 cells ml-1 (Keppler 

et al. 2006).  In laboratory studies of Chattonella marina, fish mortalities resulted at cell 

densities from 3.06 x 103 to 1.03 x 104 cells ml-1 (Khan et al. 1996).  In many Chattonella 

species such low densities can be reached quickly without copious nutrient uptake.  As 

Chattonella can kill at such low densities it is regarded an extremely dangerous HAB 

genus (Imai & Yamaguchi 2012).  

Although the genus Chattonella is known to cause red tides associated with 

massive fish kills, the fish kill mechanism remains unclear (Imai & Yamaguchi 2012, 

Landsberg 2002). There are many hypotheses though it has been suggested that the 

ultimate cause of death is suffocation (Imai & Yamaguchi 2012). Several bioactive 

compounds have been found in cultures of raphidophytes including: (i) reactive oxygen 

species (ROS), (Oda et al. 1997, Woo et al. 2006), (ii) brevetoxin/brevetoxin-like 

compounds (Bourdelais et al. 2002, Khan et al. 1996, Khan et al. 1997), (iii) free fatty 

acids (FFAs) (Marshall et al. 2003), and (iv) hemagglutinins and hemolysins (Onoue & 

Nozawa 1989). These bioactive compounds may be driving forces in fish deaths 

associated with C. subsalsa but they have not been identified as the primary cause of 

mortality.  
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Chattonella is likely to impact fish via one of two mechanisms:  (1) copious 

production of mucus on fish gills causing physical blockage or clogging leading to 

reduced respiration and osmoregulation, or (2) synthesis and exudation of a bioactive 

compound(s) (Bourdelais et al. 2002, Keppler et al. 2006). The lysis or consumption-

related breakage of algal cells may be necessary for such compounds to be released, but it 

is also possible C. subsalsa actively releases a toxic substance(s).  In this case two broad 

possibilities exist; (1) mortality is dependent on physical contact with algal cells or (2) C. 

subsalsa has the ability to produce a water-borne agent(s) capable of inducing fish 

mortality without the necessity of contact.  Investigating these possibilities will aid in 

determining the mechanism driving C. subsalsa fish kills.  Identification and 

understanding of this method is needed to evaluate C. subsalsa’s potential effects on the 

environment and natural resources.  

Algal growth follows a predictable pattern both in nature and in vitro. This growth 

trend has four distinct stages; the lag phase, exponential growth (log) phase, stationary 

phase, and decline phase. Cultures of harmful algae are thought to be at the highest 

degree of toxicity when in exponential growth (Khan et al. 1996). This time period 

represents a point in the life cycle of heightened growth rate and high cell densities.   

Exposure and resulting fish kills commonly occur in the exponential or stationary 

phase during a period of algal maximum (Pettersson & Pozdnyakov 2013). Fish kills 

occur after acute exposure to toxins or other harmful algal agents.  As most deaths occur 

within short exposure periods, tissue degradation may only be present in primarily 

infected organs such as the epidermis and gills (Deeds et al. 2006, Marshall et al. 2003, 

Shen et al. 2011a, Shen et al. 2011b, Skjelbred et al. 2011).  
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This study was conducted to identify if physical contact with C. subsalsa cells is 

required to induce fish mortality by simulating a bloom scenario in a controlled 

laboratory setting using a common estuarine fish, Fundulus heteroclitus.  F. heteroclitus, 

often referred to as mummichog, is part of the family Cyprinodontidae, commonly known 

as killifishes. F. heteroclitus is ubiquitous among the salt marshes of the western Atlantic 

ranging from Canada to Northeastern Florida (Abraham 1985).  

F. heteroclitus is found in great abundance in the western Atlantic, living in 

temperatures from 6 to 34 0C and commonly found in brackish tidal creeks.  These fish 

tolerate a wide range of salinities, living in fresh or highly saline waters (Abraham 1985).   

Adult F. heteroclitus are opportunistic feeders with a diet composed primarily of small 

crustaceans and annelids (Kneib 1984).  Adult F. heteroclitus range 50 to 100 mm and 

display sexual dimorphism upon reaching maturity (≥ 40 mm) (Abraham 1985).  Its 

relatively small size and abundance in the salt marsh makes F. heteroclitus an ideal food 

source for a variety of predators. Both an influential predator and prey, this fish is 

considered important in the transition of energy within the salt marsh ecosystem (Kneib 

1984).  

Though F. heteroclitus is not one of the primary species associated with C. 

subsalsa fish kills, it is known to live in habitats similar to those where C. subsalsa 

blooms have occurred in South Carolina (Abraham 1985, Kneib 1984, Lewitus et al. 

2002, Lewitus et al. 2003).  Both adult and larval F. heteroclitus are likely to interact 

with C. subsalsa during a bloom, however larvae may be more likely to encounter C. 

subsalsa in a natural system as they feed on zooplankton in surface waters where algal 

cells would be concentrated.  The presence of F. heteroclitus larvae in the ecosystem also 
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coincides with bloom range conditions of C. subsalsa (Kneib 1984, Imai & Yamaguchi 

2012). Adult F. heteroclitus spawn in waters from 16.5 to 25 0C.  In South Carolina these 

temperatures commonly occur in estuary waters from March to October (NEERS, Oyster 

Landing).  

F. heteroclitus has been used extensively in studies concerning toxicology (Bass 

et al. 2007, Bello et al. 2001, Prince & Cooper 1995, VanDolah et al. 1997). As gill 

impairment is a common result of exposures to irritants and toxic chemicals, the severity 

of gill damage incurred by F. heteroclitus can be utilized as a measure of C. subsalsa 

lethality (Deeds et al. 2006, Shen et al. 2011b, Skjelbred et al. 2011).  

The objectives of this study were to examine the mechanism by which C. subsalsa 

induces fish mortality and determine if a relationship exists between the growth phase of 

C. subsalsa and its effects on F. heteroclitus. I examined the fish killing mechanism of C. 

subsalsa by investigating whether mortality was dependent on physical contact with algal 

cells or independent of physical contact.   I hypothesized that (1) C. subsalsa cells must 

be in direct contact with fish to elicit physical damage and subsequent mortality and (2) 

that the maximum harmful effects occur in the mid to late exponential growth phases of 

C. subsalsa. 

 

Methods 

Algal Culturing  

A culture of C. subsalsa was obtained from Dr. Dianne Greenfield’s laboratory 

located in Charleston, SC (USC/SCDNR).  Cultures were raised in a Percival Intellus 

Environmental Controller (incubator), at 250 C under 12:12 light: dark regime, with an 
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irradiance value of 85-140 𝜇mol m-2 s-1 in an f/2 (– Si) nutrient replete medium (Guillard 

& Ryther 1962).  F/2 medium was produced in the lab using a 25 ppt artificial seawater 

base and an f/2 chemical kit acquired through the Bigelow Laboratory for Ocean 

Sciences.  The seawater base was made in laboratory facilities using Instant Ocean Sea 

Salt and deionized (DI) water.  Artificial seawater and f/2 chemical additions of nitrogen 

and trace metals were filtered through a 0.22 𝜇m general filtration membrane filter into a 

clean 1L glass container.  Seawater mix was autoclaved on a Liquid Cycle and allowed to 

cool to room temperature.  Upon reaching room temperature the chemical components of 

vitamins and phosphorus were added and completed f/2 medium was stored in the 

incubator.   

The initial aliquot of C. subsalsa was allowed 24-48 hours to adjust to conditions 

present in the incubator prior to culturing. Culturing was conducted on a clean bench 

under a laminar flow hood following the standard operating procedure (SOP) used by Dr. 

Greenfield’s lab.  A small volume of aliquot culture (2-5 ml) was transferred into f/2 

medium in 50 ml glass or polypropylene test tubes. Prior to use all glassware was 

sterilized via a cycle of DI rinses, acid washing, and autoclaving.  

Regular cell counts were conducted on active cultures of C. subsalsa to monitor 

growth.  Growth curves were developed for multiple generations of C.subsalsa by 

analyzing cell density counts as the culture progressed through lag, log, stationary, and 

decline phases.  On counting days a sample of approximately 1 ml of culture was 

removed at 10:00 am from each test tube containing active cultures.  Removed culture 

was preserved using Lugol’s iodine solution.  The ratio of Lugol’s to culture was 

recorded and applied to determine a dilution factor. Preserved cultures were counted 
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using a Sedgwick rafter counting chamber. Cell density was calculated using Equation 

1(a,b), where C is the number of cells counted, A is the area of each field within the 

counting chamber, D is the depth of the counting chamber, and F is the number of fields 

counted.  

(1) 
(a)     𝐶𝑒𝑙𝑙  𝑑𝑒𝑛𝑠𝑖𝑡𝑦  𝑚𝐿!!   = (!  ×  !"""  !!!)

(!×!×!)
 

(b)  Cell density ml-1
total = Cell density ml-1 + (Cell density ml-1 x dilution factor) 

 

A growth curve was calculated based on cell densities using Equation 2, where 𝜇 is 

growth rate and N2 and N1 are number of cells at times t2 and t1. 

(2)          𝜇 = !"(!!  /!!)
!!!!!

 
 

C. subsalsa was cultured regularly to maintain a stock of actively growing 

cultures.  Using the formulated growth curve, the near-end of the log phase was targeted 

to inoculate new cultures. A volume of 2-5 ml of stock culture in exponential (log) 

growth phase was used to inoculate new generations of C. subsalsa every 10-12 days in 

accordance with the calculated growth curve (See Appendix I).  

To determine if bloom densities are harmful to fish only when achieved by known 

HAB species, fish were also exposed to bloom levels of the non-harmful species 

Isochrysis galbana.  I. galbana is a flagellated marine microalgae ranging 5-6 𝜇m in 

length. I. galbana is a member of the class Prymnesiophyceae of the phylum Haptophyta 

and naturally inhabits the marine waters of the coastal Atlantic.  This species is 

commonly cultivated for use as feed in aquaculture facilities because of its easy 

maintenance and high fat content (Tomas 1997). As this species has no known negative 
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effects on marine organisms it was an ideal control species for experimental trials.  I. 

galbana treatments also served as control for starvation as fish were not actively fed 

during experiments. 

An initial aliquot of Isochrysis galbana (Strain ID: UTEX987) was obtained from 

Carolina Biological Supply and was cultured and maintained under the same conditions 

as C. subsalsa.  Growth rates for I. galbana were calculated via regular cell counts with a 

hemocytometer. Cell densities of I. galbana were determined using Equation 3, where 

DF is dilution factor. 

(3)   𝐶𝑒𝑙𝑙  𝑑𝑒𝑛𝑠𝑖𝑡𝑦  𝑚𝐿!!   =
!"#$%&'  !"##$
#  !"  !"#$%&! ×  !"!  

!"
 

 Growth curves were developed from cell densities and used to determine ideal culturing 

periods. In most cases, I. galbana was cultured every 8-10 days (See Appendix I). 

Due to the vast difference in I. galbana and C. subsalsa cell size, cultures were 

normalized based on carbon content.  Carbon content was determined using a loss on 

ignition method to measure dry weight (DW) and ash free dry weight (AFDW) of I. 

galbana and C. subsalsa (See Appendix I).  The carbon content ratio of C. subsalsa to I. 

galbana was found to be 214.88:1.  This ratio was used to determine the cell density of I. 

galbana culture used in I. galbana treatment controls. 

 As morphology and activity are indicative of health, live examinations of active 

cultures were regularly performed. Cultures were observed to change morphology 

slightly over the course of growth.  In lag and early exponential phases cells were 

observed to be circular in shape and moderately active.  As cultures progressed to 

exponential growth cell shape was ellipsoid and cells were highly active. The 
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morphology and activity of live cells was within a healthy range (Marshall & Hallegraeff 

1999). 

 Cell density, growth rate, and divisions per day were calculated for C. subsalsa 

and I. galbana (See Appendix I). Growth dynamics may vary considerably in individual 

clones of the same algae culture even when grown under identical conditions (Turner 

2014).  Cultures of C.subsalsa were variable but overall predictable. High cell densities 

and division day-1 values in the 1.0 and above range were regularly achieved.  Overall 

stock cultures grown throughout the experimental period were healthy.   

Fish Husbandry 

 Though F. heteroclitus is not an important human food source or recreational 

species, it has been the subject of aquaculture. Both large scale and small scale aquarium 

breeding have been successfully accomplished in past studies (Bosker et al. 2009, Bosker 

et al. 2013, Hsiao et al. 1996, Janiak & McIntosh 2014, Redway 1980).  The small size of 

adult F. heteroclitus removes the necessity for large aquaculture facilities and equipment 

and enables fairly low-tech breeding (Bosker et al. 2009, Bosker et al. 2013, Hsiao et al. 

1996)  

Larvae of F. heteroclitus bred in Coastal Carolina University’s laboratory 

facilities were utilized for this study.  The use of larvae provided several advantages 

including a constant supply of fish without continued field collection, a captive 

population potentially free of parasites or outside environmental health consequences, 

and the ability to work on a small scale and run all experimental trials within an 

incubator.  Conducting all experiments in the incubator allowed for consistence of 

temperature and lighting conditions throughout all trials.   
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 Adult F. heteroclitus were collected from Garden City, SC from an easily 

accessible marsh location.  Sampling dates were set to fall on or around spring tides 

corresponding with the new and full moon at the fish’s natural reproductive peak (Bosker 

et al. 2009, Bosker et al. 2013, Hsiao et al. 1996, Redway 1980, Shimizu 1997, Taylor et 

al. 1979).  

Fish were captured using killie traps baited with grass shrimp (Palaemonetes) or 

dry dog food.  Traps were set at the edge of Spartina alterniflora beds during a falling 

tide when water partially inundated the high marsh.  Traps were allowed to soak for a 

minimum of forty-five minutes before removal.  At the time of removal the largest males 

and females were collected from each trap and the remaining fish were released.  Only 

sexually mature fish, lengths of 40 mm or greater, were retained.  

  Fish were brought back to laboratory facilities at Coastal Carolina University and 

acclimated to water conditions in pre-established ten gallon aquaria via a drip system. 

Prior to acclimation the fish were sorted based on sex.  Sex ratios were either even, 1:1, 

or in female majority.  Breeding ratios were female biased to minimize aggressive 

competition among males (Bosker et al. 2009, Bosker et al. 2013, Hsiao et al. 1996, 

Redway 1980, Shimizu 1997).   

Aquaria were maintained at consistent temperatures and salinities, 31±2 0C and 

34±2 ppt respectively.  Routine water changes and tests of water chemistry were 

performed to maintain water quality.  Shell fragments collected at the field site were 

placed in the aquaria to mimic the natural environment and promote breeding.   Adult F. 

heteroclitus were maintained on a diet of frozen grass shrimp (Palaemonetes) collected 

from the field site. Regular feedings, high temperature, and lighting conditions on an 
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approximate 14:10 light: dark cycle mimicked summer conditions and encouraged fish to 

spawn in captivity throughout the winter months well beyond the natural spawning 

season.   

Eggs were collected using the Janiak style egg collector (Figure 1) designed for 

the aquaculture of F. heteroclitus. This collector mimics the natural crevices of mussel 

shells and marsh grasses used by F. heteroclitus when spawning in the wild (Janiak & 

McIntosh 2014). A collector was placed in each of the breeding tanks and left unaltered 

until egg removal.  

Egg collectors were checked regularly by visual examination and eggs were 

removed approximately once a week.  When eggs were harvested the collectors were 

removed and placed in artificial seawater.  Collector disks were loosed and gently shaken 

to detach eggs.  Seawater containing eggs was strained over a nylon mesh screen.  The 

number of isolated eggs was recorded and the eggs were placed in air incubation trays. 

Incubation trays containing eggs were maintained for a minimum of fourteen days 

(Coulon et al. 2012).     

After incubation fully developed eggs were inundated in 25 ppt artificial seawater 

to induce hatching.  Hatched larvae were held in 4 L plastic containers containing 1.5 L 

of 25 ppt artificial seawater.  Larvae were fed Artemia salina nauplii once daily and 

maintained in aquaria for at least 7 days post hatch (dph) prior to use in experiments.  

Fish were bred continuously over one year.  Measurements of hatching success and larval 

survival post hatch were determined to ensure the described conditions produced healthy 

larvae (See Appendix II).  All larvae used in experiments were of adequate fitness. 
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Preliminary Experiments 

Prior to beginning formal experiments several preliminary exposures were 

conducted to determine anticipatory results as well as the exact parameters to be used for 

formal experiments including, container size and type, mesh separation design, and 

duration of exposures (See Appendix III).  

All preliminary experiments resulted in C. subsalsa exposed fish mortalities 

greater than control fish mortalities (See Appendix III).  Preliminary experiments aided in 

the development of gill analysis protocol and confirmed gill damage was an applicable 

analysis tool. These experiments provided mortality predictions and supported the results 

observed in formal experiments.   

Exposure Experiments 

Due to the variability observed in stock cultures grown under identical conditions 

over the course of approximately 18 months, it was decided to perform formal 

experimentation using cultures representing five distinct growth phases. Using cultures of 

various ages and growth phases allowed room for differences in growth while still 

minimizing potential bias introduced by variable growth patterns.  Cultures were 

harvested for experiments at lag, early exponential, mid-exponential, late exponential, 

and stationary growth phases.  Culture growth rates were variable, so growth phases were 

determined by growth rate day-1 rather than age in days of culture.  A new generation of 

algae, comprised of 12 individual test tubes, was used for each experiment.  The growth 

phase experiments consisted of six treatments each replicated six times. 
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Experimental Treatments 

1. EXPD; Exposure Direct: Direct contact of fish and C.subsalsa cells; fish held 

in active algal culture 

2. EXPM; Exposure Mesh: Indirect contact of fish and C. subsalsa cells; fish 

separated from active culture by a 1 micron mesh 

3. IC; Isochrysis Control: Direct contact of fish with control algae I. galbana 

cells; fish held in active algal culture 

4. ASWE; Artificial Seawater Exposure: Artificial seawater experimental 

control; fish held in artificial seawater and sacrificed as deaths occurred in 

EXPD 

5. ASWC; Artificial Seawater Control: Artificial seawater control; fish held in 

artificial seawater 

6. MC; Mesh Control: Artificial seawater and 1 micron mesh; fish held in 

artificial seawater separated by 1 micron mesh 

 

Based on pilot studies formal experiments were performed in 50 ml test tubes for 

48 h. All treatments were conducted in 50 ml polypropylene plastic test tubes in the 

incubator set to 25 0 C, 12: 12 light: dark cycle, at an irradiance of 85-140 𝜇mol m-2 s-1.  A 

total of 30 fish were used for each treatment with each test tube containing 5 fish.  A total 

of 36 test tubes in a 6 x 6 wire rack were utilized in each experiment.  

The control treatment (artificial seawater control) was duplicated, consisting of a 

total of 60 fish divided among 12 test tubes. One of these two controls, ASWC, spanned 

the entire exposure time uninterrupted minus the removal of any moribund fish. The 
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other, ASWE, artificial seawater control was used for gill comparison purposes. For each 

fish mortality in the direct exposure treatment (EXPD), a fish was removed and sacrificed 

from the corresponding ASWE control treatment.  The gill integrity of moribund exposed 

fish was compared to control fish removed at the same hour of experimental trial. In total 

five individual experiments were conducted.   

Artificial seawater (25ppt) used in control treatments (ASWE, ASWC, and MC) 

was made in the lab using Instant Ocean Sea Salt and deionized water.  Seawater was 

filtered through a 0.22 𝜇m general filtration membrane filter and stored in the incubator 

in clean, capped glassware prior to experimental use.  Filtration to 0.22 𝜇m removes 

contaminants including particulate matter and bacteria reducing potential error in 

controls.  ASWC and ASWE treatment tubes were filled with 20 ml of filtered artificial 

seawater using a graduated pipette.   

One generation of algal culture was used for each experiment.  Each generation of 

culture was comprised of twelve 50 ml test tubes of C. subsalsa.  At 10:00 am algal 

culture from each tube was pulled, preserved, and counted.  A random number generator 

was used to determine which culture tube (1-12) would be used for each of the 

experimental exposures, EXPD (1-6) and EXPM (1-6).  Each test tube of the treatment 

EXPD was filled with 20 ml of C. subsalsa algae culture.  

The final mesh design for treatment EXPM was one utilizing a secondary 15 ml 

test tube (Figure 2).  Six small holes were cut into the middle third of 15 ml test tube and 

then covered with a layer of 1 𝜇m mesh affixed to the tube with aquarium safe epoxy.  

The outer 50 ml test tubes of treatment EXPM were filled with 10 ml of f/2 medium.  The 

inner 15 ml test tubes were slowly filled with 15 ml of algal culture until inner and outer 
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volumes reached equilibrium. The same was done for treatments of MC, however 

artificial seawater was used for filling both interior and exterior test tubes. 

After calculating the cell density of cultures of C. subsalsa to be used in EXPD 

treatments, cell ml-1 values were multiplied by the carbon ratio (214.88:1) to determine 

the cell density of I. galbana needed in IC treatments.  Cell densities in IC treatments 

corresponded with the density of EXPD treatments.  Stock of various growth phases of I. 

galbana was kept on hand to accommodate for a range of required cell densities.  After 

determining the necessary densities I. galbana cultures were diluted accordingly with f/2 

medium and added to IC treatment test tubes. 

Larvae were maintained for a minimum of 7 dph prior to use in experiments.  This 

time frame was chosen to allow any remaining yolk sac to be absorbed and ensure larvae 

were actively feeding.  Allowing a minimum of 7 dph also confirmed larvae were in good 

health and acclimated to conditions preceding use in experimental exposures.   

Larvae were removed from 4 L aquaria using a 1 ml Pasteur pipette with a cut tip.  

The cut created a larger opening allowing larvae to be pulled into the bulb.  Care was 

taken to remove larvae without excessive roughing.  Five larvae were added to each 

treatment test tube with as little seawater as possible.  Once all tubes had fish the 

experimental time officially began.   

All experimental treatments were conducted simultaneously for a period of 48 h. 

Fish were monitored at 4 h increments throughout the exposure period and removed upon 

reaching a moribund state. Fish were monitored at 2 h increments during the mid-

exponential growth phase experiment.  Sacrificed and moribund fish were anesthetized in 
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tricaine mesylate (MS-222) and length was measured.  Moribund and sacrificed fish were 

preserved in a 10% formalin buffer.  

Gill Surface Area Analysis 

 After all trials had been completed fish gills were extracted for analysis.  Fish 

were prepared for gill analysis through a series of steps resulting in permanently 

mounting stained gill tissue on slides.  Fish were removed from formalin with clean 

forceps and submerged in a DI water bath.  Fish gills were removed from preserved fish 

and soaked in a 10% Trichrome stain for 8-10 minutes.  Stained gills were dehydrated 

using 95% ethyl alcohol, cleared with xylene, and rehydrated with glycerin.  Processed 

gills were affixed to slides with Permount mounting medium and cover slip.  Completed 

slides were laid flat for at least 24 hours prior to assessment to ensure tissues had settled 

and medium was dry.  

 Images of gill tissue were captured using an Olympus BX60 microscope and 

Image Pro Plus software.  All images were screened and only those meeting standards for 

analysis were utilized. The standards designated for image analysis were, 1.) Edges of 

tissue must be clearly defined, 2.) Individual lamellae must have a clear shape and be 

distinguishable from adjacent lamellae, 3.) The end or attachment point of primary 

lamellae to the gill arch must be discernable.   

Images that met the standards for analysis were measured using ImageJ 1.49 software for 

Mac OS X.  For each individual fish at least five individual gills were measured. When 

possible ten individual gills were measured.  As some slides contained multiple 

individual gill arches, methods were taken to avoid bias in analysis. When more than one 
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individual gill arch image was available for analysis the number of gill lamellae 

measured was spread evenly across the separate images.   

Two surface area (SA) measurements were taken for each individual gill.  The 

first measurement (Total SA) encompassed the perimeter of the total surface area of the 

gill determined by tracing the outermost points of the secondary lamellae.  The second 

measurement (Lamellae SA) traced the exact perimeter of each secondary lamellae 

(Figure 3).  The two measurements were compared using Equation 4, where SA is surface 

area, to determine the percentage of gill surface area.  

(4)       𝑃𝑒𝑟𝑐𝑒𝑛𝑡  𝐺𝑖𝑙𝑙  𝑆𝐴 =    !"#$%%"$  !"
!"#$%  !"

  ×  100 
 
 

 By this design a healthy gill tissue would have a percent gill surface area near 100%.  As 

damaged gills were observed to have disheveled or shriveled secondary lamellae, lower 

percent gill surface areas were indicative of greater levels of gill degradation.  Gill 

surface areas per treatment were analyzed for individual experiments and as total values 

per treatment across all experiments.  In the analysis of gill surface area the artificial 

seawater treatments ASWC and ASWE were grouped together and identified as ASW.  

The mesh control treatment (MC) did not yield enough gill images meeting the standards 

for analysis and therefore the treatment MC was not included in the statistical analysis of 

gill surface area coverage.  

 

Statistical Analysis 

Five total experiments were conducted targeting the algal growth phases lag, early 

exponential, mid exponential, late exponential, and stationary.  Individual experiments 
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were identified and referenced by growth phase.  The age, average cell density, and 

average growth rate of C. subsalsa cultures used in each experiment can be found in 

Table 2.   A new generation of culture was used for each of the five experiments.  As 

cultures raised under identical conditions may vary in their growth dynamics, growth 

phase was defined by growth rate rather than day of growth or cell density. 

Data from each growth phase experiment were analyzed individually for percent 

mortality per treatment and percent gill surface area per treatment.  There were not 

enough satisfactory gill images to analyze gill surface area per treatment in the early 

exponential growth phase experiment.  All growth phase experiment data was combined 

to analyze the total percent mortalities and total percent gill surface areas per treatment.  

Statistical analyses were conducted using R-3.2.2 package for Mac OS X 10.9.  

All percent mortality and percent gill surface area data were tested for normality and 

homogeneity using Shapiro-Wilk and Fligner-Killeen tests respectively. When analyzing 

percent mortalities per treatment and percent gill surface area, parametric data were 

evaluated using an ANOVA followed by the post hoc Tukey’s test.  Non-parametric data 

were analyzed using a Kruskal-Wallis rank sum test and the post hoc Dunn’s test.  

The relationship between percent mortality and C. subsalsa growth rate was 

determined using a general linear model.  Percent mortalities observed in mesh exposure 

and direct exposure treatments were compared to the average growth rate of C. subsalsa 

culture used in each of five growth phase experiments.   
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Results  

Mortality Analysis 
 

The results of Shapiro-Wilk tests for normality and Fligner-Killeen tests for 

homogeneity for percent mortality and percent gill surface area can be found in Table 3.  

With all growth phase experiments combined, percent mortality was found to be 

significantly different among treatments (Figure 4, Kruskal-Wallis p = 0.007).  The mesh 

exposure to C. subsalsa, EXPM, yielded the highest percent mortality over all (26 %) and 

was significantly greater than the control treatments IC, MC, and ASWE (Dunn’s test, p 

values reported in Table 4).  Percent mortality for the direct exposure, EXPD, was 

significantly higher than the control MC treatment (Table 4, Dunn’s test p= 0.05).  

Percent mortality for most of the control treatments did not significantly differ, except 

ASWC was greater than MC (Dunn’s test p= 0.011). 

Although results were not unanimous, a trend was apparent in percent mortalities 

when broken out by treatment and growth phase (Figure 5).  In four out of five growth 

phase experiments the exposure treatments, (EXPM or EXPD) yielded the highest 

percent mortalities, and one of the control treatments yielded the lowest percent 

mortalities.   

Direct exposure to C. subsalsa (EXPD) yielded lower than anticipated percent 

mortalities but was found to have significantly higher mortalities than several control 

treatments (Table 4).  The highest percent mortality (30 %) of the direct exposure 

treatment EXPD was observed in the mid exponential growth phase experiment (Figure 

5).  The mid exponential growth phase experiment also yielded the highest percent 

mortality (36.67%) of the mesh exposure treatment EXPM. A 36.67 % mortality was 
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observed in this treatment in the late exponential growth phase as well. Although total 

percent mortalities in the mid exponential growth phase were not significantly different, 

post hoc tests found EXPM to have significantly higher percent mortalities than the 

control treatments IC (Table 4, Dunn’s Test p = 0.05), MC (Table 4, Dunn’s Test p= 

0.036), and ASWE (Table 4, Dunn’s Test p = 0.014).  Similarly treatment EXPD was 

found to be significantly greater than both the control MC (Table 4, Dunn’s Test p = 

0.049) and ASWE (Table 4, Dunn’s Test p = 0.022) in the mid exponential phase 

experiment.  

The mesh exposure, EXPM, regularly yielded the highest treatment mortalities 

among the various growth phase experiments (Figure 5) and frequently exhibited 

mortalities significantly higher than controls (Table 4).  In the late exponential growth 

phase experiment the treatment EXPM was found to have significantly higher mortalities 

than the controls IC (Table 4, Dunn’s Test p = 0.014), MC (Table 4, Dunn’s Test p= 

0.014), and ASWE (Table 4, Dunn’s Test p = 0.014).  In the stationary growth phase the 

treatments EXPM and EXPD were found to be significantly greater than the control 

treatment MC (Table 4, Dunn’s Test p = 0.0058 and p = 0.019 respectively). 

Experimental mortalities visibly followed the predicted growth phase trend. Algal 

growth rate was not found to be a statistically significant predictor of percent mortality in 

treatment EXPD however a significant correlation between growth rate and percent 

mortality was found in treatment EXPM (R2=0.7732, p=0.0494) (Figure 6).    

 

Gill Surface Area Analysis 
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 In total, fish from the mesh exposure to C. subsalsa, EXPM, had the lowest 

percent gill surface areas (highest degree of gill damage) (Figure 7). Fish from the direct 

exposure, EXPD, also had reduced gill surface areas.  When combining all growth phase 

experiments treatments EXPM and EXPD were found to be significantly different than 

the IC control (Table 5, Dunn’s Test, p = 0.002 and p = 0.023 respectively).   

The greatest amount of gill damage in exposure treatments (EXPD and EXPM) 

was observed in the mid exponential growth phase (Figure 8).  Gill damage in exposure 

treatment in the mid exponential growth phase experiment were not significantly 

different than controls, however among individual growth phase experiments, exposure 

treatments were found to be significantly different from controls in the lag and stationary 

phases.  In the lag phase experiments, EXPM was found to be significantly greater than 

both control treatments ASW (Table 5, Dunn’s Test p = 0.031) and IC (Table 5, Dunn’s 

Test, p = 0.005).  In the stationary growth phase experiment, EXPM and EXPD had 

significantly greater gill damage than the control IC (Table 5, Dunn’s Test p = 0.036 and 

p = 0.046 respectively).  

 

Discussion 

My primary hypothesis stating C. subsalsa cells must be in direct contact with 

fish to elicit physical damage and subsequent mortality, can be rejected.  The 

experimental exposure through 1 micron mesh (EXPM) was anticipated to produce 

results similar to those of control treatments but yielded both the highest percent 

mortalities and the greatest gill degradation.  These results were unexpected but they 

were consistent in both the analyses used to determine the effects of C. subsalsa on F. 
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heteroclitus.  Though it was not hypothesized that EXPM treatments would have high 

mortalities, other studies have found cell free C. subsalsa culture to cause significant fish 

mortality (Bridgers et al. 2002, Perez-Morales et al. 2014).  

Raphidophytes are suspected to be associated with the production and potential 

exudation of several bioactive compounds (Bourdelais et al. 2002, Dorantes-Aranda et al. 

2013, Imai & Yamaguchi 2012, Keppler et al. 2006, Khan et al. 1996, Woo et al. 2006).  

It is hypothesized that some of these compounds may affect marine organisms when algal 

cells come in contact with gill filaments (Hiroishi et al. 2005, Shen et al. 2010).  Other 

compounds such as reactive oxygen species, are thought to be exotoxic and actively 

released by algal cells (de Boer et al. 2012, Marshall et al. 2003).  Our results support the 

theory that a toxicant is produced by C. subsalsa and has the ability to cause gill 

degradation and subsequent fish mortality without the necessity of physical contact or 

consumption related lysis.   

The results suggest contact related lysis is not necessary for C. subsalsa to 

produce an ichthyotoxicant.  Though cells may not require lysis to be lethal, cell 

morphology may be a factor.  As Chattonella progress through lag, log, stationary, and 

decline growth phases cell morphology and motility changes.  Log phase cells are 

ellipsoid or spindle shaped with visible flagella. These cells are highly active and spiral 

as they move.  In lag phase as well as late stationary phase cells become spherical in 

shape and less active.  These morphotypes are indicative of algal growth phase and 

culture health (Khan et al. 1996, Marshall et al. 1999). In our formal experiments 

morphotype was not documented, however throughout the culturing period these 

morphological changes were observed and coincided with growth phase. 
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This study found the percent mortality in EXPM treatments to be correlated to 

algal growth phase.  This correlation matched the secondary hypothesis stating, a 

correlation exists between the phase of growth and lethality of C. subsalsa with 

maximum harmful effect occurring in the mid to late exponential growth phases.  In 

treatment EXPM percent mortality was found to be equal in both mid and late 

exponential phases.  This percent mortality was also the highest observed in all 

experiments and treatments.  These results were anticipated and have been confirmed by 

several other studies which link exponential growth to increased lethality in harmful 

raphidophytes (de Boer et al. 2012, Khan et al. 1996, Marshall et al. 2003, Shen et al. 

2010).   The results of this and past studies suggest the fish kill mechanism of 

Chattonella is a function of growth phase.    

The results of these experiments produced two anomalies.  One was the percent of 

mortalities observed in the artificial seawater ASWC treatment.  Mortalities were high in 

the ASWC treatment in many of the experiments and in some cases significantly greater 

than the percent mortalities observed in the EXPD treatment.  I attribute this to high 

stress of fish used in this treatment. Care was taken to reduce stress as much as possible 

when transferring fish to treatment test tubes.  Fish were added to treatment test tubes in 

the same order for each of the five experiments, (EXPD, EXPM, IC, MC, ASWE, 

ASWC).  Fish added to ASWC treatment test tubes were consistently added last.  These 

fish had been the only individuals remaining after several attempts to remove larvae with 

a 1 ml Pasteur pipette.  Fish of treatment ASWC had successfully avoided capture for a 

period of 30 minutes or more.  As these fish had been actively swimming and agitated for 

a considerable time their fitness may have been significantly lowered resulting in deaths 
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from exhaustion or shock.  Although mortalities in artificial seawater treatments were 

greater than expected overall percent mortality and gill degradation in artificial seawater 

control treatments was not significantly greater than either experimental treatment.   

As direct contact (EXPD) percent mortalities were found to be significantly 

greater than deaths in the control MC and gill damage of EXPD treatments was found to 

be significantly greater than control IC we can rule out EXPD deaths as arbitrary.  The 

significance found in formal experiments as well as the significantly greater gill damages 

in exposed versus control fish of preliminary experiments, supports deaths of treatment 

EXPD were the product of exposure to C.subsalsa.   

  The other abnormality in the results is the significance of percent mortality and 

gill damage in EXPM treatments and lack thereof in EXPD treatments.  If C. subsalsa is 

producing water borne exudates that are lethal to fish, the gill damage and subsequent 

mortalities in both the direct and indirect exposure treatments should have been similar.  

However the experimental exposure though 1 micron mesh (EXPM) had significantly 

higher percent mortalities and gill degradation than direct exposure to C. subsalsa cells 

(EXPD).  Although the same generation of culture was used for the EXPM and EXPD 

experimental treatments, treatments of EXPM may have had an environmental advantage. 

The design of EXPM treatments incorporated a 15 ml test tube containing a mesh 

screen, housed inside a 50 ml test tube.  The outer tube was filled with 10 ml of f/2 

medium preceding the inner 15 ml tube being filled with active culture.  This was 

necessary to have a suitable volume of water for fish, which were confined to the outer 

test tube. Without the addition of medium, fish in treatment EXPM would be limited to 

10 ml where fish in all other single test tube design treatments (EXPD, IC, ASWE, 
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ASWC) were provided 20 ml.  The addition of medium to EXPM treatments created a 

comparable vertical distribution of water in both exposure treatments.  This addition may 

have also provided a spike of nutrients to the active culture potentially increasing C. 

subsalsa’s activity and successive production of toxicant.   

A study of nutrient effects on C. subsalsa conducted by Zhang et al. (2006) found 

increased nitrate and phosphate concentrations to positively affect cell growth rates. The 

nutrient uptake rates of C. subsalsa cultures grown under the experimental conditions 

was not examined by this study, however f/2 replete medium is known to have a molar 

concentration of 8.82 x 10-4 M of NaNO3 (Sodium Nitrate) and 3.62 x 10-5 M of 

NaH2PO4H2O (Sodium Dihydrogen Phosphate)(Guillard & Ryther 1962).  As our results 

and several others point towards increased growth rates (exponential growth phase) 

increasing algal lethality, the addition of fresh nutrients was likely a contributing factor to 

deaths in EXPM treatments.   

 Based on preliminary trials we did not expect the percent of deaths of exposure 

fish to be outstanding.  However percent mortalities were low compared to other studies 

of Chattonella species (Hiroishi et al. 2005, Marshall et al. 2003, Shen et al. 2010, Shen 

et al. 2011, Khan et al. 1996).  Hiroishi et al. (2005) showed that the sensitivity of 

different fish species may vary considerably when exposed to identical algal cultures.  As 

F. heteroclitus is well known as an extremely hardy fish, resulting deaths in exposure 

treatments may have been more dramatic if a less robust species was used.  

 Forty-eight hours was a substantial exposure time, however natural blooms may 

occur over a much longer duration depending on environmental conditions (Anderson et 

al. 2002, Smayda 1997, Turner 2014).  The proliferation and bloom densities of harmful 
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taxa may succeed one another in nature.  In brackish systems in South Carolina harmful 

raphidophyte species were found to bloom in succession suggesting that as cell densities 

of one species decline species with similar environmental needs may increase (Lewitus & 

Holland 2003, Lewitus et al. 2003).   

 Significant exposure mortalities were observed at cell densities ranging 6,804 

cells ml-1 to 13,981 cells ml-1.  Such densities are not uncommon in natural blooms of C. 

subsalsa.  In South Carolina fish killing blooms of C. subsalsa have been observed from 

4,500 cells ml-1 to 4 x 104 cells ml-1 (Greenfield et al. 2015, Keppler et al. 2006). Fish 

kills within the genus Chattonella have been observed both well below and well above 

the range employed in this study (Evardsen & Imai 2006, Imai & Yamaguchi 2012, Khan 

et al. 1996). 

 Finding significant C. subsalsa induced mortalities in F. heteroclitus larvae 

suggests that other resident and seasonally transient estuarine fish species could be 

severely affected by a natural bloom.  Larvae of numerous ecologically and commercially 

valuable fishes are abundant in salt marsh tidal creeks in the spring to early summer, 

coinciding with bloom range water temperatures of 24 to 31 0C (Bozeman & Dean 1980, 

Imai & Yamaguchi 2012).   These include residents such as Leiostomus xanthurus (Spot), 

Lagodon rhomboids (Pinfish), Brevoortia tyrannus (Menhaden), Micropogon undulatus 

(Croaker), and Mugil cephalus (Mullet) (Bozeman & Dean 1980) and transient fish such 

as Sciaenops ocellatus (Red drum) and Cynoscion nebulosus (Spotted seatrout) (Reagan 

1986, Roumillat & Brouwer 2004).  Mass mortalities resulting from a bloom could result 

in significant population loss, decreased recruitment, and may upset energy flow and 

nutrient cycling in the marsh.    
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In contrast to juvenile and adult fish who use their gills to perform a variety of 

physiological functions including respiratory gas exchange, ion and water balance, 

excretion of nitrogenous wastes and the maintenance of acid-base balance, developing 

larvae perform gas exchange through their skin and cutaneous areas (Rombough 2002).   

Significant damage was observed in gill tissue of larval F. heteroclitus but this damage 

may have been more severe in fully developed adults.   

Conclusion 

This study supports the hypothesis that growth phase and growth rate are 

contributing factors in the lethality of C. subsalsa.  It is likely biochemical alterations 

occurring in the exponential growth phases result in the production or release of bioactive 

compounds or ichthyotoxins.   

Our results suggest that C. subsalsa cells do produce a water borne bioactive 

compound that causes gill damage and subsequent death in larvae of the highly resilient 

estuary fish F. heteroclitus.   This study demonstrated that C. subsalsa cells are lethal to 

fish without the necessity of direct contact opposing the theory that physical irritation via 

cell contact is the cause of death in C. subsalsa fish kills.  Cell contact may cause 

irritation, however this study supports fish mortality extraneous of cell contact.  This 

evidence strongly complements theories suggesting the fish kill mechanism of C. 

subsalsa is a bioactive compound or group of compounds.  More research is needed to 

identify what toxins or toxicants are released by C. subsalsa and are instrumental in fish 

kills. 
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TABLES 
 
Table 1 
Kinetic constants for growth of Chattonella subsalsa. Data from Ichiro & Yamaguchi 
(2012) µmax, maximum growth rate; Ks , half saturation constant. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Chattonella subsalsa PO4
-3 NO3

- NH4
+  Irradiance 

µmax (divisions day -1) 0.81 0.87 0.84 µmax (divisions day -1) 1.26 
Ks (µM) 0.84 8.98 1.46 Ks (µmol m-2 s-1) 69 
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Table 2 
Age (days), average density (cells ml-1), and average growth rate day-1 of cultures used 
for individual growth phase experiments. 
 

 
  

 
Lag 

Early 
Exponential 

Mid 
Exponential 

Late 
Exponential Stationary 

Age (days) 6 4 10 8 26 
Density (cells ml-1) 3115 730 13,981 6804 13,726 
Growth rate day-1 -0.153 0.138 0.477 0.717 0.052 
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Table 3 
Results of Shapiro-Wilk test for normality and Fligner-Killeen test for homogeneity for 
percent mortality and percent gill surface area data of individual growth phase 
experiments.  Shapiro-Wilk normality defined by p – value ≥ 0.05 * and Fligner-Killeen 
homogeneity defined by p – value ≤ 0.05 *.  
 
 
 
 % Mortality % Gill Surface Area 
 Shapiro-Wilk Fligner-Killeen Shapiro-Wilk Fligner-Killeen 
Lag 1.97 e-6 0.14 6.84 e-5 0.084 
Early Exponential 1.75 e-6 0.18 --- --- 
Mid Exponential 1.08 e-3 0.29 1.87 e-6 0.258 
Late Exponential 1.35 e-8 0.011 *   
Stationary 1.45 e-6 0.014 * 1.09 e-5 0.044 * 
All Experiments 9.42 e-16 0.10 9.23 e-14 3.98 e-3 * 
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Table 4 
Results of Dunn’s Test where experimental treatment percent mortalities were found 
significantly greater than controls for total experiments and select individual growth 
phase experiments.  Only significant p values are reported, (p ≤ 0.05 *). 
 
 
  IC MC ASWE ASWC 
All experiments     

 

EXPD --- p = 0.05 *  ---  --- 
EXPM p = 0.0028 * p = 0.0003 * p = 0.0028 * 

 
 --- 

Mid Exponential     

 

EXPD --- p = 0.049 * p = 0.022 *  --- 
EXPM p = 0.05 * p = 0.036 * p = 0.014 *  --- 

 
Late Exponential     

 

EXPD --- ---  ---  --- 
EXPM p = 0.014 * p = 0.014 * p = 0.014 * 

 
 --- 

Stationary     

 
EXPD --- p = 0.019 *  ---  --- 
EXPM --- p = 0.0058 *  ---  --- 
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Table 5 
Results of Dunn’s Test where experimental treatment percent gill surface areas were 
found to be significantly different than controls for total experiments and select 
individual growth phase experiments.  Only significant p values are reported, (p ≤ 0.05 
*). 
 
 

  IC ASW 
All Experiments 
 EXPD p = 0.023 * --- 

 
EXPM p = 0.002 * 

 
--- 

Lag  
 EXPD --- --- 

 
EXPM p = 0.005 * 

 
p = 0.031 * 

Stationary 
 EXPD p = 0.046 * --- 

 
EXPM p = 0.036 * 

 
--- 
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FIGURES 
 
 
 
 
 
  

Figure 1: Janiak style egg collector used for harvesting eggs of F. heteroclitus.  
Composed of a series of large disks 5 inch diameter and 1/8 inch thick separated by 
small disks 2 inch diameter and 1/16 inch thick threaded on a stainless steel thread 
closed by wing nuts (Janiak & McIntosh 2014). 
	  



	  
	  

45	  

  

Figure 2: Mesh exposure treatment 
(EXPM) test tube. 15 ml test tube 
with 1 micron mesh screen housed 
within 50 mL test tube. 

1 µm mesh 

15 ml tube 

50 ml tube 
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(a.) (b.) 

Figure 3: Surface area (SA) measurements, (a.) Lamellae Surface Area and (b.) 
Total Surface Area used to determine Percent Gill Surface Area in gill analysis.  
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Figure 4: Total percent mortalities of fish larvae per treatment in all growth 
phase experiments (n = 5) (Kruskal-Wallis rank sum test, p = 0.007).  Means 
with different letters are significantly different (Dunn’s Test, p < 0.05 (Table 4)).  
Error bars are equal to standard error. 
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Figure 5: Percent mortalities of larvae fish observed in individual growth phase 
experiments.  Error bars are equal to standard error. 
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Figure 6: Comparison of average growth rates of C. subsalsa cultures per 
growth phase experiment and percent mortality of larvae fish in treatments 
EXPM. (General Linear Model, Multiple R2= 0.7732, Adjusted R2= 0.6977, p 
= 0.0494). 
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Figure 7: Average percent gill surface areas of all fish per treatment for all 
experimental growth phases, (Kruskal-Wallis rank sum test, p = 2.921 e-8). 
Means with different letters are significantly different from one another 
(Dunn’s Test p < 0.023) (See Table 5)). Error bars are equal to standard error. 
(n of EXPD =14, n of EXPM = 31, n of ASW = 58, and n of IC =11). 
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Figure 8: Average percent gill surface areas of exposure treatments EXPD 
and EXPM observed in Mid Exponential (n = 10), Late Exponential (n = 
10), and Stationary (n = 8) growth phase experiments.  Error bars are equal 
to standard error. 
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APPENDICES 
 
Appendix I: Algal Culturing 

Abstract 

Two algae species were used in this study, the harmful raphidophyte Chattonella 

subsalsa and a benign haptophyte Isochrysis galbana.  In order to account for starvation 

and potential physical irritants caused by algal bloom cell densities, a control algae 

treatment was necessary.  The two species were raised under identical conditions and 

monitored throughout their growth to develop growth curves.  After establishing growth 

dynamics both species were analyzed for carbon content using a loss on ignition method.  

The carbon content ratio of I. galbana to C. subsalsa (1: 214.88) was used to calculate 

comparable cell densities for use in experimental treatments.  

Introduction 

 To properly examine the fish kill mechanism employed by the HAB species C. 

subsalsa the experimental design included a treatment with a control algae species.  

Physical irritation due to bloom level cell densities, (4 x 103 cells mL-1 for the genus 

Chattonella (Imai & Yamaguchi 2012)), is one of the hypothesized fish kill methods 

examined by this study.  To determine if such densities are harmful to fish only when 

achieved by known HAB species, fish were also exposed to bloom levels of the non-

harmful species Isochrysis galbana.  I. galbana treatments also served as control for 

starvation as fish were not actively fed during experiments. 

I. galbana is a flagellated marine microalgae ranging 5-6 𝜇m in length. I. galbana 

is a member of the class Prymnesiophyceae of the phylum Haptophyta and naturally 

inhabits the marine waters of the coastal Atlantic.  This species is commonly cultivated 
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for use as feed in aquaculture facilities because of its ease to maintain and its high fat 

content (Tomas 1997). As this species has no known negative effects on marine 

organisms it was an ideal control species for experimental trials.   

 

Methods 

A culture of C. subsalsa was obtained from Dr. Dianne Greenfield’s laboratory 

located in Charleston, SC (USC/SCDNR).  The aliquot was kept in a small styrofoam 

cooler with an ice pack to prevent over heating of algal culture while being transferred 

from Charleston to Coastal Carolina University’s laboratory facilities.  

Cultures were raised in a Percival Intellus Environmental Controller (incubator), 

at 250 C under 12:12 light: dark regime, with an irradiance value of 85-140 𝜇mol/m2/sec 

in an f/2 nutrient replete medium (-Si) (Guillard & Rhyther 1962).   

F/2 medium was produced in the lab using a 25 ppt artificial seawater base and an 

f/2 chemical kit acquired through the Bigelow Laboratory for Ocean Sciences.  The 

seawater base was made in laboratory facilities using Instant Ocean Sea Salt and 

deionized (DI) water.  Artificial seawater and f/2 chemical additions of nitrogen and trace 

metals were filtered through a 0.22 𝜇m general filtration membrane filter into a clean 1L 

glass container.  Seawater mix was autoclaved on a Liquid Cycle and allowed to cool to 

room temperature.  Upon reaching room temperature the final chemical components of 

phosphorus and vitamins were added and completed f/2 medium was stored in the 

incubator.   

The initial aliquot of C. subsalsa was allowed 24-48 hours to adjust to conditions 

present in the incubator prior to culturing. Culturing was conducted on a clean bench 
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under a laminar flow hood following the standard operating procedure (SOP) used by Dr. 

Greenfield’s lab.  A small volume of aliquot culture (2-5 ml) was transferred into f/2 

nutrient replete medium in 50 ml glass or polypropylene test tubes. Prior to use all 

glassware was sterilized via a cycle of DI rinses, acid washing, and autoclaving.  

Regular cell counts were conducted on active cultures of C. subsalsa to monitor 

growth.  Growth curves were developed for multiple generations of C.subsalsa by 

analyzing cell density counts as the culture progressed through lag, log, stationary, and 

decline phases.  On counting days a sample of approximately 1 ml of culture was 

removed at 10:00 am from each test tube containing active cultures.  Removed culture 

was preserved using Lugol’s iodine solution.  The ratio of Lugol’s to culture was 

recorded and applied to determine a dilution factor. Preserved cultures were counted 

using a Sedgwick rafter counting chamber.  If culture density was approximately 3000 

cells ml-1or less, all fields of the counting chamber were counted.  If cell densities were 

above 3000 cells ml-1 a set of random numbers was obtained from Random Number 

Generator (random.org).  The list of randomized numbers was used to determine which 

fields of the chamber to count. Fields were counted until a total of 250 cells had been 

counted.  Cell density was calculated using Equation 1, where C is the number of cells 

counted, A is the area of each field within the counting chamber, D is the depth of the 

counting chamber, and F is the number of fields counted  

(1) 
(a)     𝐶𝑒𝑙𝑙  𝑑𝑒𝑛𝑠𝑖𝑡𝑦  𝑚𝑙!!   = (!  ×  !"""  !!!)

(!×!×!)
 

(b)  Cell density ml-1
total = Cell density ml-1 + (Cell density ml-1 x dilution factor) 
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A growth curve was calculated based on cell densities using Equation 2, where 𝜇 

is growth rate and N2 and N1 are number of cells at times t2 and t1. 

(2)          𝜇 = !"!!  /!!
!!!!!

 
 

Cell density and growth rate calculations were used to create growth curves which were 

averaged to determine the target time frame for culturing and harvesting stock cultures 

for use in experiments.  

The genus Chattonella reproduces asexually, doubling cell populations at an 

average rate of 1 division day-1. Under favorable conditions C. subsalsa has been found 

to grow at a rate of approximately 1.26 divisions day-1 (Imai & Yamaguchi 2012).  

Equation 3 was used to determine the divisions day-1 at which a given culture of C. 

subsalsa reproduced.  

(3)    𝐷𝑖𝑣𝑖𝑠𝑖𝑜𝑛𝑠  𝑑𝑎𝑦!!   =    !
!" ! 

 

Cultures of harmful algae are thought to be at the highest degree of toxicity when 

in exponential growth (Khan et al 1996). Using the formulated growth curve, the near-

end of the log phase was targeted to inoculate new cultures. This time period represents a 

point in the life cycle of active exponential growth and high cell densities allowing 

continued growth in replicate cultures. C. subsalsa was cultured regularly to maintain a 

stock of actively growing cultures.  A volume of 2-5 ml of stock culture in exponential 

(log) growth phase was used to inoculate new generations of C. subsalsa every 10-12 

days in accordance with the calculated growth curve (Figure 1).  

An initial aliquot of I. galbana (Strain ID: UTEX987) was obtained from Carolina 

Biological Supply, and was cultured and maintained under the same conditions as C. 



	  
	  

56	  

subsalsa.  Growth rates for I. galbana were calculated via regular cell counts with a 

hemocytometer.  A sample of 100 𝜇m was drawn and preserved in Lugol’s iodine.   

When counting with the hemocytometer cells from each of the four corner squares were 

counted.  Cell counts were applied to Equation 4, where DF is dilution factor to 

determine cell density.  

(4)    𝐶𝑒𝑙𝑙  𝑑𝑒𝑛𝑠𝑖𝑡𝑦  𝑚𝐿!!   =
!"#$%&'  !"##$
#  !"  !"#$%&! ×  !"!  

!"
   

 

Growth curves were developed from cell densities and used to determine ideal culturing 

periods. In most cases, I. galbana was cultured every 8-10 days. 

Due to the vast difference in I. galbana and C. subsalsa cell size, cultures were 

normalized based on carbon content.  Carbon content was determined using a loss on 

ignition method to measure dry weight (DW) and ash free dry weight (AFDW) of I. 

galbana and C. subsalsa.   

Three 20 ml samples of each species were filtered through pre-combusted glass 

fiber filters using vacuum pressure measuring -2.5 inHg or lower.  Filters, frits and other 

glassware were acid washed, autoclaved and pre-combusted prior to use in DW/AFDW 

analysis.   After filtration glass fiber filters were placed in pre-combusted weigh tins in a 

drying oven at 60 0C for four hours.  After four hours, filters were removed from the 

drying oven, weighed, and set back in the drying oven until a consistent weight was 

reached by all samples, approximately 24 hours.  Filters were kept in a desiccator while 

being transferred from oven to analytical balance.  After taking final weight 

measurements, filters were wrapped in pre-combusted aluminum foil envelopes and 

placed in a muffle furnace at 450 0C for one hour.  Following combustion filters were 
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weighed a final time to obtain AFDW values.  Carbon content per cell of algae was 

determined using Equation 5, where DW is dry weight and AFDW is ash free dry weight. 

 (5)  𝐶𝑎𝑟𝑏𝑜𝑛  𝑐𝑜𝑛𝑡𝑒𝑛𝑡
𝑐𝑒𝑙𝑙 =

!"!!"#$
!"#$%  !"##  !"#$%&'  !"  !"#$%&

 
 

Results 

Cell density, growth rate, and divisions per day were calculated for C. subsalsa 

and I. galbana.  The growth rate of C. subsalsa was found to be variable across 

individual culture generations.  When averaging all growth rates a distinct trend was 

observed. The observed trend had a peak in growth rate in the early days of the culture, 

usually occurring around day 4-6, followed by a secondary peak, usually occurring 

between days 10-12 (Figure 2). This trend was apparent among individual generations as 

well (Table 2). 

Average daily growth data only reached a maximum value of 0.845 divisions day-

1 (Figure 3). However, in nine of the twelve individual culture generations used to 

calculate data set averages, values of 1.0 division day-1 or above were achieved.  

As morphology and activity are indicative of health, live examinations of active 

cultures were regularly performed. Cultures were observed to change morphology 

slightly over the course of growth.  In lag and early exponential phases cells were 

observed to be circular in shape and moderately active.  As cultures progressed to 

exponential growth. cell shape was ellipsoid and cells were highly active. 

I. galbana grew similarly to C. subsalsa. I. galbana displayed less variability 

among individual generations and in most cases grew exponentially for 8 days in culture 

(Figure 4, Figure 5). In some cases the lag stage of growth was extended in I. galbana 

cultures.  This was the case in cultures used for carbon content analysis.  Cultures of I. 
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galbana used for carbon content analysis were 19 days old but within late exponential or 

stationary phase at the time of analysis.  

Carbon values per species were averaged and used to determine the ratio of I. 

galbana carbon content to C. subsalsa carbon content (*1:214.88) (Table 1).  This ratio 

was used to determine the cell density of I. galbana culture to be used in I. galbana 

treatment controls.  

Conclusion 

 Growth dynamics may vary considerably in individual clones of the same algae 

culture even when grown under identical conditions (Turner 2014).  Cultures of 

C.subsalsa were variable but overall predictable.  Stock cultures grown throughout the 

preliminary period were healthy.  High cell densities and division day-1 values in the 1.0 

and above range were regularly achieved.   

Morphotype and movement were also used as indicators of algal health. The 

morphology and activity of live cells was within a healthy range. During exponential life 

phase live cells were observed to be a spindle shaped and spiraling as they moved 

(Marshall & Hallegraeff 1999). 

Due to the variability observed in stock cultures grown under identical conditions 

over the course of approximately 18 months, it was decided to perform formal 

experimentation using cultures representing five distinct life phases. Using cultures of 

various ages and life phases allowed room for differences in growth while still 

minimizing potential bias introduced by variable growth patterns.  Cultures were 

harvested for experiments at lag, early exponential, mid-exponential, late exponential, 

and stationary life phases.  
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TABLES 
 
Table 1: 
Culture information and results from loss on ignition analysis, where DW is dry weight 
and AFDW is ash free dry weight. 
 

  

Species 
Age 
(days) 

Density 
cells ml-1 

Growth 
Rate 
day-1 

DW 
(g) 

AFDW 
(g) 

∆ 
Carbon 

Carbon 
content 
cell-1 

Avg. 
Carbon 
cell-1 

I:C 
Carbon 
content 

C. subsalsa 11 1.35x104 0.29 0.045 0.043 2.00E-3 1.48E-7 

1.82E-7 

1:214.88 

C. subsalsa 11 4.55x103 0.07 0.043 0.042 1.30E-3 2.86E-7 
C. subsalsa 11 1.45x104 0.39 0.044 0.042 1.60E-3 1.10E-7 
I. galbana 19 1.55x106 0.07 0.044 0.042 1.20E-3 7.75E-10 

8.43E-10 
I. galbana 19 1.34x106 0.12 0.044 0.043 1.35E-3 1.01E-9 
I. galbana 19 2.01x106 0.09 0.044 0.042 1.50E-3 7.45E-10 
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Table 2: 
Comparison of multiple generations of C. subsalsa, average growth rates (µ) day-1over 
the course of sixteen days of growth in culture. Asterisks indicate highest observed 
growth rate day-1 per generation.  
  

Average growth rate day-1 (µ) 
Culture ID Day 4 Day 6 Day 8 Day 10 Day 12 Day 14 Day 16 
Gen a_1_a 0.373 0.503 * 0.181 0.229 0.291 -0.129  0.172 
Gen a_1_b 0.658 * 0.053 -0.269 0.486  0.208 0.489  -0.179 
Gen a_2 0.277 0.299 * 0.296 0.106 -0.235 --- --- 
Gen a_3_1 0.118 0.039 0.270 * -0.069 -0.079 0.195 -0.049 
Gen 12 0.141 0.439 0.439 * 0.003 0.272 0.257 --- 
Gen 21 0.636 * -0.214 0.361 0.477  0.410 0.339 -0.026 
Gen Y 0.034 0.779 * -0.473 0.107 -0.165 --- --- 
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Figure 1: Average cell densities day-1 calculated from various generations (n = 
260) of C. subsalsa over 20 days of growth. Error bars are equal to standard 
error. 
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Figure 2: Average growth rates (µ) day-1 calculated from various generations (n = 
525) of C. subsalsa over 20 days of growth. Error bars are equal to standard error.  
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Figure 3: Average divisions day-1 calculated from various generations (n = 
525) of C. subsalsa over 20 days of growth. Error bars are equal to 
standard error.  
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Figure 4: Average cell densities day-1 calculated from various generations (n = 
156) of I. galbana over 20 days of growth.  Error bars equal standard error.  
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Figure 5: Average growth rates (µ) day-1 calculated from various generations (n = 
66) of I. galbana over 20 days of growth.  Error bars equal standard error. 
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Appendix II: Fish Husbandry 

Abstract 

 This study was conducted using larvae of the common estuarine fish Fundulus 

heteroclitus. Adult F. heteroclitus were collected from field sites during the fish’s natural 

reproductive peak.  Summer light and water conditions were mimicked in lab facilities to 

promote breeding activity.  This environment proved effective for egg production, 

yielding an average value of 289.0 eggs per collection.  A 92.0% hatch rate was observed 

in eggs air incubated for 14 days and submerged in 25 ppt and 25 0C artificial seawater.  

Larvae were maintained on Artemia salina nauplii for a minimum of 7 days post hatch 

(dph).  Conditions and feed were satisfactory yielding a 95.8% survival 7dph. 

Introduction 

The common mummichog, Fundulus heteroclitus, is found in ubiquity within the 

salt marshes of the Western Atlantic.  Though this fish is not one of the primary species 

associated with C. subsalsa fish kills it is known to live in habitats similar to those where 

C. subsalsa blooms have occurred in South Carolina (Lewitus et al 2002, Lewitus et al 

2003, Abraham 1985).  Adult fish may be less likely to encounter C. subsalsa cells 

directly as they are primarily benthic, commonly known as mud minnows. However, 

larval F. heteroclitus feed on zooplankton in surface waters where algal cells would be 

concentrated (Kneib 1984, Imai & Yamaguchi 2012).  It is very likely that F. heteroclitus 

larvae would directly interact with C. subsalsa during a bloom event.     

Though F. heteroclitus is not an important food or recreational species, it has 

been the subject of aquaculture. Both large scale and small scale aquarium breeding have 

been successfully accomplished in past studies (Bosker et al 2009, Bosker et al 2013, 
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Hsiao et al. 1996, Janiak & McIntosh 2014, Redway 1980).  The small size of adult F. 

heteroclitus, max length 100 mm, removes the necessity for large aquaculture facilities 

and equipment and enables fairly low-tech breeding (Bosker et al 2009, Bosker et al 

2013, Hsiao et al. 1996)  

Larvae of F. heteroclitus bred in Coastal Carolina University’s laboratory 

facilities were utilized for this study.  The use of larvae provided several advantages 

including a constant supply of fish without continued field collection, a captive 

population potentially free of parasites or outside environmental health consequences, 

and the ability to work on a small scale and run all experimental trials within an 

environmental chamber.  Conducting all experiments in the environmental chamber 

allowed for consistence of temperature and lighting conditions throughout all trials.   

Methods 

 Adult F. heteroclitus were collected from Garden City, SC from an easily 

accessible marsh location.  Sampling dates were set to fall on or around spring tides 

corresponding with the new and full moon at the fish’s natural reproductive peak (Taylor 

et al. 1979, Redway 1980, Hsiao et al 1996, Shimizu 1997, Bosker et al. 2009, Bosker et 

al. 2013).  

Fish were captured using killie traps baited with grass shrimp (Palaemonetes sp.) 

or dry dog food.  Traps were set at the edge of Spartina alternaflora beds during a falling 

tide when water partially inundated the high marsh.  Traps were allowed to soak for a 

minimum of forty-five minutes before removal.  At the time of removal the largest males 

and females were collected from each trap and the remaining fish were released.  Only 

sexually mature fish, lengths of 40 mm or greater, were collected.  
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  Fish were transferred from the field in five gallon buckets of aerated seawater 

collected on site.  Fish were brought back to laboratory facilities at Coastal Carolina 

University and acclimated to water conditions in pre-established ten gallon aquaria via a 

drip system.  After drip acclimation for at least one hour fish were removed from 

acclimation containers with dip nets and placed in ten gallon aquaria.     

Prior to acclimation the fish were sorted based on sex.  Sex ratios were either 

even, 1:1, or in female majority (Table 1). Breeding ratios were female biased to 

minimize aggressive competition among males (Bosker et al. 2009, Bosker et al. 2013, 

Hsiao et al 1996, Redway 1980, Shimizu 1997).   

Aquaria were maintained at consistent temperatures and salinities, 31±2 0C and 

34±2 ppt respectively.  Routine water changes and tests of water chemistry were 

performed to maintain water quality.  Shell fragments collected at the field site were 

placed in the aquaria to mimic the natural environment and promote breeding.   Adult F. 

heteroclitus were maintained on a diet of grass shrimp (Palaemonetes) collected from the 

field site.  Grass shrimp were collected using a dip net near the end of ebb tide when 

water was no longer inundating the marsh grasses.  Collected shrimp were stored frozen 

until being used as feed for F. heteroclitus. Regular feedings, high temperature, and 

lighting conditions on an approximate 14:10 light: dark cycle mimicked summer 

conditions and encouraged fish to spawn in captivity throughout the winter months well 

beyond the natural spawning season.   

Eggs were collected using the Janiak style egg collector (Figure 1) designed for 

the aquaculture of F. heteroclitus.  The collector is composed of thin plastic disks tightly 

spaced on a stainless steel thread closed by wing nuts. This collector mimics the natural 
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crevices of mussel shells and marsh grasses used by F. heteroclitus when spawning in the 

wild (Janiak & McIntosh 2014).  Egg collectors were constructed by cutting disks of 2 

and 5 inch diameter from marine grade plastic sheets.  The large disks were cut from 1/8 

inch plastic and the small disks were cut from 1/16 inch plastic.  Once cut disks were 

sanded smooth and thread onto a steel bolt.  

A total of ten large disks separated by nine small disks made up each of six 

constructed collectors.  The threaded disks were tied to plastic floats suspending them in 

the water column (Figure 2).  A collector was placed in each of the breeding tanks and 

left unaltered until collection.  

Egg collectors were checked regularly by visual examination and eggs were 

removed approximately once a week.  When eggs were harvested the collectors were 

removed and placed in artificial seawater.  Collector disks were loosed and gently shaken 

to detach eggs.  Seawater containing eggs was strained over a nylon mesh screen. The 

number of isolated eggs was estimated and recorded and the eggs were placed in air 

incubation trays.  The incubation trays contained a ½ inch layer of poly foam matting.  

Eggs were laid on matting and spread out to allow oxygen exchange, which is inhibited 

by clustering.  This was repeated with the collectors from each breeding tank.  After all 

eggs were distributed on the mat the clutch was misted with a spray bottle containing 25 

ppt artificial seawater.  The incubation tray remained closed while in the incubator and 

was removed to spray eggs as needed to maintain a damp but not saturated environment 

(Coulon et al. 2012).     

Eggs were air incubated for a minimum of fourteen days using poly foam mats.  

After incubation fully developed eggs were inundated in 25 ppt artificial seawater to 
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induce hatching.  Hatched larvae were held in 4 L plastic containers containing 1.5 L of 

25 ppt artificial seawater.  Each container held no more than 150 fish at any given time.  

 In the lab newly hatched F. heteroclitus require 5.5 days at 20 0C to absorb the 

yolk sac however yolk may be absorbed prior to hatching if immersion of developed eggs 

is delayed (Abraham 1985).  Eggs were incubated at a temperature of 25 0C, which may 

have accelerated development.  At the point of hatching all observed larvae had absorbed 

the yolk sac and were actively feeding.   

Larvae were maintained for a minimum of 7 days post hatch (dph) prior to use in 

experiments.  This time frame was chosen to allow any remaining yolk sac to be absorbed 

and ensure larvae were actively feeding.  Allowing a minimum of 7 dph also confirmed 

larvae were in good health and acclimated to conditions preceding use in experimental 

exposures.   

Larvae were maintained on a diet of Artemia salina nauplii, cultivated in lab.  

Artemia are commonly used for feeding small fish in aquaculture or aquarium facilities 

(Dhont et al. 2013). Dried Artemia eggs were acquired from Carolina Biological Supply 

and Artemia hatcheries were constructed from 1L plastic soda bottles (Figure 3).  

Hatcheries were filled with approximately 500 ml of aerated 25 ppt artificial seawater 

and housed in the incubator.  A desk lamp providing 18 𝜇mol/m2/s-1 irradiance was 

positioned over the hatchery to induce hatching.  Hatcheries were started on an every 

other day basis by adding 2.3 grams of dried eggs to aerated seawater.  Eggs hatched after 

24 hours of immersion in seawater.  At time of harvest aeration was removed and nauplii 

settled.  Nauplii were collected using a 1 ml Pasteur pipette and fed to larvae.  Containers 

of 150 larvae were fed 1 ml of nauplii per day.  Partial water changes were conducted 2-3 
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times a week to maintain water quality and accommodate for evaporation.  At this time 

dead fish and debris were removed.  

Results/Conclusions 

The egg collection period took place from February 2014 to April 2015. A total of 

twenty-six documented collections were made during this time. Spawning in brood tanks 

took place on a continuous basis.  Collections were made when eggs were visible on one 

or more collector. The majority of collection times occurred during new or full moon 

periods and coincided with the highest overall egg productions.  Though collections 

occurring during lunar transitions (on or around first and third quarter phases) were not as 

common, all collections at this time fell below 50% of the highest total egg fish-1 values 

(Figure 4). These results were anticipated as a semilunar pattern of egg production has 

been observed in the southern sub species F. heteroclitus heteroclitus (Hsiao et al 1996).  

A clear trend is visible between moon phase and the number of eggs produced fish-1 

(Figure 5).  

Aquarium containing a total of five fish in a 3:2 female to male ratio, were the 

most efficient for breeding (Table 2). Of twenty-six total collections aquarium with 3:2 

ratio consistently provided a significantly greater number of eggs fish-1 (ANOVA p = 

0.0126) (Figure 6). The average number of total eggs collected week-1 was 288.96 with 

an eggs fish-1 average of 26.1.  Collected eggs had an average hatch percentage of 92.0% 

and an average mortality rate of 4.2% seven days post hatch (Table 2).   

These results suggest breeding conditions were optimal and breeding fish were 

healthy.  Eggs were properly fertilized and reached full embryonic development over the 

incubation period under the environmental conditions provided.  Artificial seawater 
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salinity (25 ppt) and temperature (25 0C) were suitable for hatching success.  Water 

conditions and feed (Artemia nauplii) were adequate for larval fishes’ survival and 

growth.  The results indicate a healthy stock of larvae could be bred and maintained for 

use in experimental trials.  
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TABLES 
 
 
 
Table 1: Breeding tank ratios and the number of egg collections made in 2014 and 2015. 
 

 
 
 
 
 
 
 
 
 
 
 
  

  
 
Tank # 

 
 
Females 

 
 
Males 

 
 
Number of Egg Collections 

20
14

 

2 2 2 6 

3 3 2 9 

10 3 2 9 

4 3 2 11 

20
15

 

4 4 3 2 

5 4 3 4 

1 3 2 7 

2 2 2 7 

3 2 3 7 
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Table 2: Parameters associated with egg collections, hatching success, and survival rates 
of larvae, where dph is days post hatch.  
 

 
 
  

 

 
Viable eggs 
produced 

 
 
Eggs female-1 

 
 
 
Eggs fish-1 

 
 
 
% Hatched 

 
 
% Survived 7 dph 

Average 288.961 44.910 26.121 92.004 95.834 
Standard 
Deviation 

169.144 23.828 13.9748 10.582 6.880 
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FIGURES 
 
 
  

Figure 1: Janiak style egg collector composed of large disks 5 inch diameter and 1/8 
inch thick and small disks 2 inch diameter and 1/16 inch thick threaded on a stainless 
steel thread closed with wing nuts. 
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Figure 2: Assembled egg collectors a.) disks of collector, b.) collector float, c.) 
collector in aquarium. 
	  

  (a)   (b)   (c) 
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Figure 3: Artemia hatchery constructed 
from 1L soda bottle, containing rigid 
tubing and air hose. 
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Figure 4: Number of eggs collected per fish at moon phases, new, half, and full 
(left to right). 
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Figure 5: Eggs produced per number of fish and moon phase at time of collection 
(percent of 100) where 100% is a full moon throughout the egg collection period.  
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Figure 6: Number of egg collections yielded from various female: male tank 
ratios, (*p=0.0126). 
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Appendix III: Preliminary Experiments 

Introduction 

Prior to beginning formal experiments several preliminary exposures were 

conducted to determine anticipatory results as well as the exact parameters to be used for 

formal experiments including, container size and type, mesh separation design, and 

duration of exposures. 

 Container type and size was determined by experiments with petri dish and 50 ml 

test tube.  Circular containers with large diameters are preferred for maintaining fish in 

captivity.  Such aquaria provide a greater surface area for swimming and schooling as 

well as better flow dynamics (Oca & Masalo 2013).  The petri dish, though suitable to the 

fish, was not comparable to the vertical volume C. subsalsa cells were accustomed to 

inhabiting.  Extensive difficulty was encountered in successfully keeping C. subsalsa 

cultures growing at a healthy rate.  To prevent any further stress on algae preliminary 

exposures were conducted in 50 ml test tubes.  Likely due to the fishes’ small size (5-7 

mm), the diameter constraints of the test tube did not pose any issues.   

 Another difficulty arose when designing a method to affix mesh to separate test 

tubes.  A vertical design was initially used in which a mesh sheet separated the test tube 

evenly (Figure 1).  This design was not sealed completely on the tubes interior and C. 

subsalsa cells were able to penetrate to either side of the mesh.  The final design was one 

utilizing a secondary 15 ml test tube.  Six small holes were cut into the middle third of 15 

ml test tube and then covered with a layer of mesh affixed to the tube with aquarium safe 

epoxy.  During experiments the 15 ml test tube was filled with culture and placed inside a 

50 ml test tube containing 10 ml of algal medium.  This design was cell tight while 
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allowing the exchange of seawater between the inner and outer tubes.  Though a design 

was perfected prior to formal experiments, no preliminary trials were carried out to test 

the effects C. subsalsa on fish when separated by mesh.   

  To avoid introducing another experimental variable, F. heteroclitus larvae were 

not fed during experimental trials.  This meant that trials could not exceed a certain 

length of time without starvation becoming a major factor.  Little variation in mortality of 

control fish was present from preliminary trials lasting between 8 to 69 hours, (0 – 

26.67%).  At 99 hours 100% of control fish had died (Table 1) Based on this information 

as well as the behavior of natural blooms a 48-hour exposure time was chosen.   

 

Results/Conclusions 

Mortality Analysis 

The experimental parameters and outcomes of preliminary trials are listed in 

Table 2 and suggested promising results for formal experiments. Statistical analysis was 

conducted using R-3.2.2 package for Mac OS X 10.9 and higher.  

Percent mortality data was tested for normality and homogeneity.  Data was found 

to be non-normally distributed (Shapiro-Wilk p=0.0277) and not homogeneous (Fligner-

Killeen p=0.7636).  As data did not meet the assumptions for an ANOVA, Kruskal-

Wallis rank sum test was used to analyze percent mortality of exposed and control fish.  

No significance was found in percent mortality (Kruskal-Wallis, p=0.1262).   Test results 

for I. galbana exposure were not included in the statistical analysis. However, in all 

preliminary trials the percent mortality of fish exposed to C. subsalsa was greater than 

that of the control group.   
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 No visible trend or statistical correlation was found between mortality and cell 

density or mortality and growth rate.  As the time of exposure and environmental 

conditions were variable across individual preliminary trials such numerical information 

could not be grouped together for analysis.  

Gill Surface Area Analysis 

 After all trials had been completed fish gills were extracted for analysis.  Fish 

were prepared for gill analysis through a series of steps resulting in permanently 

mounting stained gill tissue on slides.  Fish were removed from formalin with clean 

forceps and submerged in a DI water bath.  Fish gills were removed from preserved fish 

and soaked in a 10% Trichrome stain for 8-10 minutes.  Stained gills were dehydrated 

using 95% ethyl alcohol, cleared with xylene, and rehydrated with glycerin.  Processed 

gills were affixed to slides with Permount mounting medium and cover slip.  Completed 

slides were laid flat for at least 24 hours prior to assessment to ensure tissues had settled 

and medium was dry.  

 Images of gill tissue were captured using an Olympus BX60 microscope and 

Image Pro Plus software.  All images were screened and only those meeting standards for 

analysis were utilized. The standards designated for image analysis were, 1.) Edges of 

tissue must be clearly defined, 2.) Individual lamellae must have a clear shape and be 

distinguishable from adjacent lamellae, 3.) The end or attachment point of primary 

lamellae to the gill arch must be discernable.   

Images that met the standards for analysis were measured using ImageJ software.  

For each individual fish at least five individual gills were measured. When possible ten 

individual gills were measured.  As some slides contained multiple individual gill arches, 
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methods were taken to avoid bias in analysis. When more than one individual gill arch 

image was available for analysis the number of gill lamellae measured was spread evenly 

across the separate images.   

Two surface area (SA) measurements were taken for each individual gill.  The 

first measurement (Total SA) encompassed the perimeter of the total surface area of the 

gill determined by tracing the outermost points of the secondary lamellae.  The second 

measurement (Lamellae SA) traced the exact perimeter of the secondary lamellae (Figure 

2).  The two measurements were compared to determine the percentage of gill surface 

area using Equation 1, where SA is surface area. 

(1)      𝑃𝑒𝑟𝑐𝑒𝑛𝑡  𝐺𝑖𝑙𝑙  𝑆𝐴 = !"#$%%"$  !"
!"#$%  !"

  ×  100 
 

Gill analysis was conducted to determine if gill damage could be a viable tool for 

analysis. A visible difference was present in the gill tissue of control (healthy) versus 

exposed (degraded) fish.  Gill surface area measurements were statistically tested for 

normality and homogeneity.  Gill surface area was found to be non-normally distributed 

(Shapiro-Wilk, p = 6.43 e-3) and homogeneous (Fligner-Killeen, p = 6.65 e-2).  As data 

did not meet assumptions for ANOVA, a Kruskal-Wallis rank sum test was used to 

determine significance.  In preliminary trials the percent gill surface area of fish exposed 

to C. subsalsa was found to be significantly less than the percent gill surface area of 

control fish (Kruskal-Wallis, p = 0.02) (Figure 3). 
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TABLES 
 
 
Table 1: Parameters and results of preliminary experiments. 
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FIGURES  

Figure 1: Mesh treatment test tubes, a.) 50 ml test tube separated by 1 micron mesh 
sheet and b.) 15 ml test tube with 1 micron mesh screen housed within 50 ml test tube. 

  (a) 	  	  (b)	  
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Figure 2: Surface area (SA) measurements, (a.) Lamellae Surface Area and (b.) Total 
Surface Area used to determine Percent Gill Surface Area in gill analysis.  
 
	  

	  

(a)	   (b)	  
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Figure 3: Average percent gill surface area analysis from preliminary trials, 
control (n = 11) versus exposed gill tissue (n = 13), (p = 0.02).  Error bars are 
equal to standard error. 
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