
s
o
u
r
c
e
:

h
t
t
p
s
:
/
/
d
o
i
.
o
r
g
/
1
0
.
2
4
4
4
2
/
b
o
r
i
s
t
h
e
s
e
s
.
1
0
1
2

|

d
o
w
n
l
o
a
d
e
d
:

2
7
.
9
.
2
0
2
1

Reverse Engineering
Heterogeneous Applications

Inauguraldissertation
der Philosophisch-naturwissenschaftlichen Fakultät

der Universität Bern

vorgelegt von
Fabrizio Perin

von Italien

Leiter der Arbeit:
Prof. Dr. O. Nierstrasz

Institut für Informatik und angewandte Mathematik

Reverse Engineering
Heterogeneous Applications

Inauguraldissertation
der Philosophisch-naturwissenschaftlichen Fakultät

der Universität Bern

vorgelegt von
Fabrizio Perin

von Italien

Leiter der Arbeit:
Prof. Dr. O. Nierstrasz

Institut für Informatik und angewandte Mathematik

Von der Philosophisch-naturwissenschaftlichen Fakultät angenommen.

Bern, 22. November, 2012 Der Dekan:

Prof. Dr. Silvio Decurtins

This dissertation is available as a free download from scg.unibe.ch.

The contents of this dissertation are protected under Creative Commons
Attribution-ShareAlike 3.0 Unported license. For any reuse or distribution,
you must make clear to others the license terms of this work. The best way
to do this is with a link to creativecommons.org/licenses/by-sa/3.0/.

November, 2012.

http://scg.unibe.ch/
http://creativecommons.org/licenses/by-sa/3.0/

Acknowledgements

First of all, I would like to thank Prof. Dr. Oscar Niestrasz for giving me the oppor-
tunity to work at the Software Composition Group and for his support throughout
the years.

I would like to thank Dr. Leon Moonen for accepting to be on the PhD committee. I
enjoyed the good discussions we had when we met at various reverse engineering
conferences.

I thank Prof. Dr. Paolo Favaro for accepting to chair the examination.

I would like to thank all the former and current members of the Software Compo-
sition Group. It was a pleasure to work with you: Lukas Renggli, Jorge Ressia, Tu-
dor Gîrba, Adrian Lienhard, Erwann Wernli, Mircea Lungu, Marcus Denker, David
Röthlisberger, Niko Schwarz and Toon Verwaest. Thanks to Iris Keller who made
the administrative work almost a pleasure and for the funny discussions we had.

I would like to express my gratitude to Tudor Gîrba for the inspiring discussions
and for providing many of the ideas that have influenced this work.

Many thanks to my colleagues and friends Jorge Ressia and Lukas Renggli for their
moral support and all the funny moment spent together.

Special thanks to my oldest and closest friend Stefano who knows me better than I
know myself and who still stand me after over 20 years of friendship.

Thanks to Lea, Simone, Matteo, Giulia, Leo and Atsuko for being there all the times
I needed some nice words and a beer.

Thanks a lot to the little Livia who is in this world since not much time but who
already did a lot for me only with her presence.

Thanks to all my friends back in Italy and all the people I know that have supported
me in this adventure. I cannot list you all here but you all know how valuable you
are for me.

Above all, I would like to thank Emilia Fusi who changed everything ever since she
entered my life.

i

If you don’t mind, I will switch to Italian to thanks the persons who do not speak
english but deserve to be mentioned more than others. Mille grazie alla mia famiglia
che mi è sempre stata vicina e che si è sempre occupata di me anche dopo essermi
trasferito in un’altro paese.

I almost forgot to thanks ImmigrationStopper and ByfrostTwister for the nice time
spent gaming and talking about research.

Fabrizio Perin
November 22, 2012

Abstract

Nowadays a large majority of software systems are built using various technologies
that in turn rely on different languages (e.g. Java, XML, SQL etc.). We call such
systems heterogeneous applications (HAs). By contrast, we call software systems
that are written in one language homogeneous applications. In HAs the informa-
tion regarding the structure and the behaviour of the system is spread across vari-
ous components and languages and the interactions between different application
elements could be hidden. In this context applying existing reverse engineering
and quality assurance techniques developed for homogeneous applications is not
enough. These techniques have been created to measure quality or provide infor-
mation about one aspect of the system and they cannot grasp the complexity of
HAs.

In this dissertation we present our approach to support the analysis and evolution
of HAs based on: (1) a unified first-class description of HAs and, (2) a meta-model
that reifies the concept of horizontal and vertical dependencies between application
elements at different levels of abstraction.

We implemented our approach in two tools, MooseEE and Carrack. The first is an
extension of the Moose platform for software and data analysis and contains our uni-
fied meta-model for HAs. The latter is an engine to infer derived dependencies that
can support the analysis of associations among the heterogeneous elements com-
posing HA. We validate our approach and tools by case studies on industrial and
open-source JEAs which demonstrate how we can handle the complexity of such
applications and how we can solve problems deriving from their heterogeneous na-
ture.

iii

Contents

1 Introduction 1

2 Heterogeneous Application Analysis 9
2.1 Multi-Language Source Code Analysis 9
2.2 Data-Intensive Systems Analysis . 11
2.3 Software Architecture Reconstruction and Validation 12
2.4 Dependency Analysis . 13
2.5 Heterogeneous Application Analyses 15

3 Enabling Heterogeneous Application Analysis 19
3.1 Representing Architectural Elements 19
3.2 Relational Database Description . 21
3.3 Java Enterprise Applications Technologies 22
3.4 Conclusions . 23

4 Architectural Understanding and Validation 25
4.1 Overview on Architectural Validation Techniques 26
4.2 Case study . 27
4.3 Architectural Understanding and Validation 29

4.3.1 Architectural Understanding 29
4.3.2 Architectural Validation . 32

4.4 Conclusions . 34

5 Database Analysis 37
5.1 Related Work . 38
5.2 Case Study . 39
5.3 Software and data Reverse Engineering: a Unified Approach 40

5.3.1 Concepts Detection . 42
5.3.2 Mapping the domain model to the conceptual schema 43
5.3.3 Connecting concepts . 47

5.4 Conclusions . 47

6 Transaction Flow 49
6.1 Transaction Flow Identification . 51

v

6.2 Visualizations . 53
6.2.1 Transaction flow . 54
6.2.2 Server Layers . 56
6.2.3 Unsafe Queries . 58

6.3 Comparison of Case studies and Validation 59
6.4 Related work . 63
6.5 Conclusion . 64

7 Supporting dependency analysis in HAs 67
7.1 The Carrack Meta-Model . 68
7.2 Derived Dependency Inference . 69
7.3 Analysis of Architectural Dependencies with Carrack 71
7.4 Conclusions . 75

8 Conclusions 77
8.1 Future Work . 78

8.1.1 Research Directions . 78
8.1.2 Practical Steps . 79

A Getting Started 81

B Moose platform 83

C Bibliography 87

List of Figures

1.1 Points of view considered in the analysis of heterogeneous applications 6

3.1 Meta-model of architectural elements in MooseEE 20
3.2 First-class description of relational databases 21
3.3 Connections between FAMIX meta-model entities for software sys-

tems and relational databases . 22
3.4 Enriched FAMIX Meta-Model (extensions are shown using bold) . . 23

4.1 Architectural perspective on HAs 25
4.2 One of the possible architectural configuration that the system used

in our case study can have. These figure includes meta-model level
architectural components and connections. 28

4.3 Meta-model of the architecture of the banking system 30
4.4 Components per function view of the industrial case study 31
4.5 Components per layer view of the industrial case study 32
4.6 Arki reporting tool open on the connections between global compo-

nents rule . 35

5.1 Point of view of data and code analyses 38
5.2 Conceptual schema meta-model . 42

6.1 Technological perspective on HAs 49
6.2 Unsafe path identification . 53
6.3 An excerpt from a Transaction Flow Visualization 55
6.4 An excerpt from a Server Layers Visualization 57
6.5 An excerpt from an Unsafe Queries Visualization 59
6.6 Transaction Flow visualization of two versions of the same case study 61
6.7 Server Layer visualization of two versions of the same case study . . 62
6.8 Unsafe Queries visualization of two versions of the same case study 63

7.1 Carrack meta-model . 69
7.2 Sample graph . 69

B.1 General workflow working with Moose 83

vii

B.2 The FAMIX 3.0 meta-model Core to represent software languages . 85

List of Tables

4.1 Metrics describing the size of the banking system analyzed 29

5.1 Metrics about the size of the case study 39
5.2 First 10 concepts ordered by name length 44
5.3 Last 10 concepts ordered by name length 46

6.1 Selected case study metrics . 60

7.1 Metrics on the output of Listing 7.2 73
7.2 Metrics on the output of Listing 7.3 74

ix

Chapter 1

Introduction

Most modern industrial strength software systems are built using various technolo-
gies and frameworks often relying on multiple languages (e.g., Java, XML, SQL etc.).
Due to this composition of elements the information regarding the structure and the
behaviour of modern applications can be spread across various components. We call
such systems “heterogeneous” and we define them as follows:

Heterogeneous Application
A heterogeneous application (HA) is an application whose structural and be-
havioural information is encoded in several distinct languages or technological
aspects.

Enterprise applications (EAs) are a typical example of heterogeneous applications.
The specific technological stack used to implement an EA depends on its constraints
and functionalities. It is possible to identify, however, several common features
shared by most EAs [Fowler, 2005a]:

• The need of persistent data. For this purpose EAs generally rely on databases.

• The use of complex, often web based, user interfaces to access the application
functions and data.

• A complex business logic potentially developed in more than one language.

Several problems that occur in the development and in the analysis of HAs can in-
volve more than one of these features, as well as other elements of the application,
at a time.

A clarifying example problem, often encountered in the development of Java En-
terprise applications (JEAs), is the identification of application transaction scopes.
Application transactions have been defined in JEA to guarantee atomicity of opera-
tions and to provide isolation to services accessed by different clients. It is important
to ensure that critical services are properly contained within their own transaction

1

Chapter 1 Introduction

scopes, while starting unnecessary transactions should be avoided for performance
reasons. In JEAs a method can be defined as part of a transaction by setting certain
attributes in a XML configuration file called deployment descriptor. To analyze the
application transaction scope in JEAs we need to combine knowledge contained in
the Java source code with the one contained in the application descriptor files.

Another example comes from the analysis of data-intensive systems [Cleve et al.,
2010b]. Such systems generally comprise a database and a collection of application
programs in strong interaction with the former. The evolution of data-intensive
systems implies the co-evolution of the application and its database together with
their interconnections. Due to the elevated costs of data reengineering, however,
the focus of the evolution process shifts on the improvement of an application, while
leaving its database untouched. Data reengineering would benefit from instruments
that can perform analyses on both the application database and source code.

These examples demonstrate how several problems concerning heterogeneous ap-
plications can only be solved by taking into account more than one part of the ap-
plication at a time.

We list below the aspects that need to be considered when dealing with heteroge-
neous systems and that represent the main challenges encountered in HAs analy-
sis:

Languages. The application source code used to implement the application logic is
central to a number of analyses [Binkley, 2007]. It is not always straightfor-
ward, however, to apply these analyses in many real case scenarios. As soft-
ware systems become more interoperable, in fact, the application logic can be
implemented with multiple languages simultaneously. Linos et al. reported
that in 1998 one third of the software developed in the US was written using
two languages and approximately 10% with three or more [Linos et al., 2003].
To understand structure and behaviour of HAs we need to be able to deal with
more than one language at a time.

Architecture. Software architecture is important to understand large applications
and to support their evolution [Ducasse and Pollet, 2009]. The major chal-
lenges of software architecture reconstruction (SAR) are abstracting, identifying
and presenting higher level views [IEEE, 2000] from lower level and heteroge-
neous information [Ducasse and Pollet, 2009]. By unifying a representation of
application concrete architectures and a description of source code languages
we can serve the purposes for which SAR techniques are used [Garlan, 2000].
Moreover, we can enable multiple views and validations on HAs’ software
and architecture [Perin et al., 2010].

2

Persistency. Data reverse engineering is as important as reverse engineering the
source code [Chikofsky, 1996]. A widespread technology to ensure data per-
sistence is that of relational databases Enabling the combination of software
and database analysis is crucial if we want to support the evolution of hetero-
geneous applications [Cleve et al., 2010b].

Technologies. The specific technologies and frameworks used to implement an ap-
plication are an invaluable source of information (e.g., the build systems used
to transform the source code into deployable components [Spinellis, 2008]).
Understanding the impact these technologies have on the application could
lead to a deeper understanding of the application structure and behaviour.

Dependencies. The connections between software elements are important to under-
stand the behaviour of an application and to consequently perform tasks like
impact analyses [Bohner and Arnold, 1996] and change propagation [Rajlich,
1997]. Connections among software components are often not directly en-
coded in the software but can be derived by other connections [Zhifeng Yu,
2001; Vanciu and Rajlich, 2010]. In EAs some connections can be derived
from relationships between elements in a different domain. For example
connections at source code level can be used to link user interface compo-
nents [Aryani et al., 2011]. To understand the nature of derived connections
between HAs elements, we need to make them explicit. In addition, we also
need to expose the information used to derive these connections and make it
accessible at multiple levels of abstraction.

Software analysis techniques and tools must take these aspects into account to sup-
port the maintenance and the evolution of HAs.

Few generic approaches and techniques capable of dealing with the complexity and
heterogeneity of modern software systems have been proposed in the literature.

Among those, GUPRO (Generic Understanding of PROgrams) is “an integrated work-
bench to support program understanding of heterogeneous software systems on arbitrary lev-
els of granularity” [Ebert et al., 2002] which implements the EER/GRAL approach
proposed by Kullbach et al. [Kullbach et al., 1998]. This tool is designed to handle
the multi-language nature of heterogeneous applications. Its focus, however, is on
analyzing application source codes and not on the modelling of HAs in all their
parts.

Marinescu et al. recognized the need to model heterogeneous applications as a
whole even though their meta-model [Marinescu and Jurca, 2006] focuses only on re-
lational databases and so do their analyses [Marinescu, 2007b; Marinescu, 2007a].

3

Chapter 1 Introduction

MoDISCO1 is an Eclipse plug-in meant to support the modernization of legacy HAs.
The modernization process implemented in MoDISCO comprises an initial under-
standing phase based on a model of the legacy system under analysis. This model
can also be exploited for purposes other than software modernization, as, for exam-
ple, software re-documentation or software visualizations. MoDISCO also provides
the user with the possibility to define new models. The meta modeling facility of
MoDISCO is based on two OMG standards: the Knowledge Discovery Metamodel2

(KDM) and the Software Metrics Metamodel3 (SMM).

KDM specifies a comprehensive set of meta-models that describe existing software
systems in preparation for software assurance and modernization. The KDM speci-
fication contains twelve packages that describe different aspects of modern software
systems. KDM would be a perfect candidate to perform the same implementations
and analyses described in this dissertation, however, we argue that a simpler model
which is easier to extend is still required to support analyses of HAs.

On the side of software dependency analyses several approaches have been pro-
posed to trace dependencies between software elements using information from
different domains.

Structural coupling metrics have received increasing attention in the past years re-
sulting in many different approaches ranging from dynamic coupling [Arisholm et
al., 2004; Hassoun et al., 2004] to evolutionary and logical coupling [Zimmermann
et al., 2004; Gall et al., 2003]. Other coupling metrics have been proposed based on
the concepts specific to software systems [Poshyvanyk et al., 2006; Poshyvanyk and
Marcus, 2006; Poshyvanyk et al., 2009; Gethers and Poshyvanyk, 2010]. These ap-
proaches measure the relations among software entities by considering latent topics
from the source code. Gall et al. have shown that semantic metrics computed from
design documents correlate well with semantic metrics computed from the source
code and could be used as proxies for them [Gall et al., 2008].

An alternative approach to source code analysis is mining dependencies from soft-
ware repositories [Ying et al., 2004; Hindle and Jordan, 2004; Walker et al., 2006;
Kagdi et al., 2007; D’Ambros et al., 2009]. Although the information is gathered from
different domains the presented approaches focus on analysis of dependencies at
source code level.

None of the previously mentioned approaches provide a generic and extensible so-
lution to support the analysis of dependencies between heterogeneous elements at
multiple levels of abstraction. KDM provides some support for heterogeneous de-
pendency analysis, however, does not provide a generic solution.

1 http://www.eclipse.org/MoDisco/

2 http://www.omg.org/spec/KDM/1.3/

3 http://www.omg.org/spec/SMM/

4

http://www.eclipse.org/MoDisco/
http://www.omg.org/spec/KDM/1.3/
http://www.omg.org/spec/SMM/

We state our thesis as follows:

Thesis
To support the analysis and the evolution of heterogeneous applications: (1)
we need a homogeneous first-class representation of the heterogeneous applica-
tion components and, (2) we need to expose the direct and indirect relationships
among the application elements belonging to different domains at multiple lev-
els of abstraction.

We argue that a homogeneous representation of the elements composing heteroge-
neous applications at different levels of abstraction would enable different kinds of
analyses based on software metrics, software visualizations and queries. We also
argue that the implicit dependencies between the semantically different elements
composing HAs need to be reified to support tasks like impact change propagation
and software understanding in modern software systems.

In this dissertation we present our first-class representation to deal with three as-
pects of HAs:

Architecture. Architecture is usually represented as a set of components and connec-
tors among these components [Shaw and Garlan, 1996]. Such a representation
is hardly detailed enough to describe the concrete architecture of HAs. Our
meta-model for software architectures mixes a representation of components
and connectors with a description of architectural layers [Fowler, 2005a].

Persistency. Database management systems (DBMSs) often have a separate life cy-
cle from the applications accessing them due to the complexity and the ele-
vated costs of data reverse engineering. Our approach comprises a first class
description of relational databases to enable analyses that can support the co-
evolution of HAs source code and persistent data models.

Technologies. Since its introduction in 1999, Java 2 Platform Enterprise Edition
(J2EE) became one of the standard technologies for enterprise application de-
velopment. Because JEAs are so extensively used we reify the elements of a
JEA specific technology such as Enterprise Java Beans (EJBs). This description
can enable various analyses which aim to understand the impact this technol-
ogy has on the system.

Each of these descriptions is explicitly connected to a meta-model for object-oriented
and procedural languages capable of describing most of the languages used in the
development of HAs. These descriptions can be used independently to deal with
specific aspects of HAs or can be combined to deal with orthogonal problems which
cover more than one aspect at a time. We implemented our approach in a tool

5

Chapter 1 Introduction

called MooseEE as an extension of the Moose platform for data and software anal-
ysis [Nierstrasz et al., 2005]. Moose includes the FAMIX meta-model for object-
oriented and procedural languages [Tichelaar et al., 2000] which we use to model
HAs source code.

Figure 1.1 depicts the three first-class representations we discuss in this dissertation
and indicates the chapters in which the respective parts are validated.

Chapter 4

Chapter 5

Chapter 6
Chapter 6

CodeArchitecture

Data

Technologies
HA

Figure 1.1: Points of view considered in the analysis of heterogeneous applications

In this dissertation we also present our approach to support dependency analyses in
HAs. Some of the connections between HA elements are implicit and can be derived
from relationships between elements in different domains [Aryani et al., 2011]. To
support the analysis of derived dependencies in HAs we reify the concept of vertical
and horizontal relationship applied to graph nodes. Vertical relationships are used
to move from a lower to a higher level of abstraction, while horizontal relationships
are use to move between elements at a similar level of abstraction. The semantic of
these relationships is not strict and can be adapted to follow the user needs. The
resulting first-class description can then be used to infer dependencies between the
semantically different elements of our homogeneous description of HAs as well as
in any other graph-based structure. We implemented this approach in the Carrack
derived dependencies inference engine. Carrack allows the user to script the defi-
nition of the desired derived dependencies on top of a given model.

The following list details the contributions with some extended case studies, which
serve as the validation of our approach:

6

Architectural Validation. We validate our architectural representation of HAs by val-
idating architectural constraints and recovering architecture of an industrial
JEA. The recovery of the system’s concrete architecture is achieved by merg-
ing information from the source code with the expertise of the application
developers following a bottom-up approach [Ducasse and Pollet, 2009].

Conceptual Schema Recovery. We applied our meta-model for relational databases
to support the understanding and the evolution of a data-intensive open-
source content management system [Cleve et al., 2010b]. By merging informa-
tion from the source code and the database structure to detect object-relational
persistence patterns we built a conceptual schema of the software under anal-
ysis. The conceptual schema provides an overview on the system that can
support the co-evolution of the database and the application source code.

Transaction Flow. Application transactions have been defined in JEAs to guaran-
tee atomicity of operations and to provide a certain level of isolation of ser-
vices accessed by different clients. By merging information about EJBs and
the source code, we were able to recover and visualize the transaction’s scope
in the JEA source code. By exploiting the architectural model and the rela-
tional databases analysis implementation included in our approach we could
also identify: architectural violations of the elements involved in a transaction
as well as unsafe accesses to the database from methods outside a transaction
scope.

Dependency analysis in HAs. Our approach for the identification and exploitation of
derived dependencies in HAs as been validated on the same case study used
to validate our architectural model. Architectural level associations are typi-
cally, but not strictly, derived from source code level associations. By exploit-
ing our approach we demonstrate how we could generalize the process to
infer dependencies at the architectural level from the dependencies between
source code entities. We also demonstrate that our approach to derive de-
pendencies is general enough that it can be applied on generic graph-based
structures.

Outline

This dissertation is structured as follows:

Chapter 2 discusses the related work of this thesis. We present a review summary of
various solutions in the literature to address the analysis of different aspects
of heterogeneous applications and we identify the difference with our work.

7

Chapter 1 Introduction

Chapter 3 presents our approach to deal with HA analysis based on a first-class de-
scription of HA architectural elements, relational databases and JEA technol-
ogy such as EJBs.

Chapter 4 demonstrates the use of our architectural description to perform archi-
tectural understanding and validation tasks.

Chapter 5 evaluates our relational database model to enable the co-evolution of the
source code and the database.

Chapter 6 describes how a homogeneous representation of HAs can lead to solving
an orthogonal problem such as the application transaction scope identifica-
tion in JEAs in all its facets.

Chapter 7 describes our approach to identifying and exploiting derived dependen-
cies between HA elements and graph-based models. The case study we used
in this chapter is the same used for the validation of our architectural model.

Chapter 8 concludes the dissertation and outlines future work.

8

Chapter 2

Heterogeneous Application Analysis

In the literature few approaches have been proposed to deal with HAs as a whole.
On the other hand, a number of techniques and tools have been proposed to analyze
specific aspects of heterogeneous applications. In this chapter we focused our atten-
tion on those approaches that support the analysis of multi-language systems (Sec-
tion 2.1), persistent data structures (Section 2.2) and architectures (Section 2.3).

Software dependency analysis is the process of finding the connection between
software components. Knowledge of software dependencies is vital to many
change impact analysis methods and other maintenance activities [Rajlich, 1997;
Zhifeng Yu, 2001; Hassan and Holt, 2004; Vanciu and Rajlich, 2010]. HAs are im-
plemented using multiple languages and various technologies and frameworks. In-
struments that take into account this composition of elements are needed to support
dependency analysis in HAs. In this chapter we also summarize the state of the art
in dependency analysis approaches and tools.

2.1 Multi-Language Source Code Analysis

As software systems become more interoperable, it is common to see hybrid systems
composed of multiple programming languages (e.g., C++ and Python). Already in
1998 it is reported that one third of the software developed in the US was written
using two languages and around 10% with three or more languages [Linos et al.,
2003]. Heterogeneous applications are a good example of such multi-language sys-
tems. Several approaches have been proposed to support program understanding
of multi-language applications.

Kullbach et al. presented a graph-based conceptual modeling approach [Kullbach
et al., 1998] enabled by an extended entity-relationship dialect (EER) and the GRAL
constraint language [Ebert et al., 1996]. In this approach each source code language
to analyze has a conceptual model describing the language in term of entities and

9

Chapter 2 Heterogeneous Application Analysis

relationships between these entities. The various conceptual models are then inte-
grated within a unified conceptual model which defines the relationships between
the entities of the multiple languages implemented. Based on the EER/GRAL ap-
proach Ebert et al. presented GUPRO (Generic Understanding of PROgrams) which
is “an integrated workbench to support program understanding of heterogeneous software
systems on arbitrary levels of granularity” [Ebert et al., 2002]. GUPRO is able to handle
the multi-language nature of heterogeneous applications, however, its application
is limited to the analysis of application source code. For each new language we want
to analyze with GUPRO we need to define both the language description and the re-
lationships with the other language descriptions. This workflow leads to the defini-
tion of all the required connections, thus making the multi-language representation
in GUPRO complicated to understand and modify. The technology used to repre-
sent program information implies the analysis mechanism [Kullbach et al., 1998].
GUPRO uses GReQL (Graph Repository Query Language) to query its graph-based
program descriptions [Ebert et al., 2002]. Even though GReQL queries are reusable
because they can be applied to any graph structure, they can also became quite big
and difficult to implement for some validations.

Instead of creating their own representation for multi-language applications, Linos
et al. proposed a set of multi-language software metrics based on the analysis of the
Microsoft Intermediate Language (MSIL) [Linos et al., 2007]. Linos et al. demonstrates
that the analysis of the MSIL is as effective as when the same analysis is conducted
on the original language. This approach has the same advantages of all the ap-
proaches based on an intermediate representation, however, the drawback is that it
is not extensible and it works on the languages supported by the .NET environment
only.

All the approaches presented until now are based on models of specific languages or
groups of languages. Strein et al. tried to take a step further proposing an approach
for multi-language source code refactoring and analysis based on a language in-
dependent meta-model [Strein et al., 2006]. For language independence the authors
designed an abstract representation able to represent any language in any paradigm.
The aim of Strein et al. is to provide a generic language description to support multi-
language refactoring. These properties are fulfilled using a three level abstract rep-
resentation composed of a model, a meta-model and a meta-meta-model [Strein et
al., 2006]. Strain et al. implemented their approach in a tool called X-Develop. Each
language supported by this tool is represented by a so called front-end which is trans-
formed to fit a multi-language model. The information loss caused by the high level
common representation does not affect the refactoring abilities of X-Develop, how-
ever, we believe such abstract representation restricts the possible software analysis
that could be done on the source code.

10

2.2 Data-Intensive Systems Analysis

2.2 Data-Intensive Systems Analysis

Data Reverse Engineering is a specific information system engineering domain aim-
ing at rebuilding the documentation of legacy databases [Hainaut et al., 2000]. Data
reverse engineering aims to address specific problems like: (i) the weakness of the
DBMS technical models that cannot express all the constructs and constraints repre-
sented in conceptual schemas, (ii) the weakness of databases designed by not skilled
enough software designers, (iii) the obsolescence of data structures and, (iv) the lack
of design documentation [Hainaut et al., 2000].

Interest for data reverse engineering is increasing for businesses and organizations
currently facing the critical issues of managing large amounts of data [Tallon, 2010],
e.g., related on one hand to the internal diffusion of data warehouses and analyt-
ics for strategic decision support systems [Chikofsky, 1996], on the other hand to
the growth of data coming from external sources like social networks and data ser-
vices [Garcia-Molina et al., 2011; Carey et al., 2012].

The understanding of data structures and of programs that manipulate them are
strictly tied to provide the full functional specifications of an information sys-
tem [Hainaut et al., 2000]. Various strategies and methodologies for data reverse
engineering have been proposed and discussed in literature [Hainaut et al., 2000;
Mian and Hussain, 2008]. As for the available tools Davis et al. [Davis and Aiken,
2000] shows the relevance of well known data modelers like CA ERwin Data Mod-
eler or Embarcadero ER/Studio, challenged more by suite products from other ma-
jor vendors such as IBM or Microsoft [Hammond et al., 2008] with respect to open
source solutions or ontology based techniques.

Methodologies or approaches providing a unified perspective have been poorly in-
vestigated in the literature. Early attempts tried to define strategies at schema, data,
and program level to migrate data-intensive applications from legacy data manage-
ment systems [Henrard et al., 2002].

Cleve et al. [Cleve et al., 2010a] proposed a comprehensive approach for the rapid
development and evolution of data-intensive applications. This approach com-
bines the automated creation of a relational database from a conceptual schema
and the automated generation of a data manipulation API on the created relational
database.

Henrard et al. [Henrard et al., 2007] proposed methodologies, techniques and tools
to analyze and to adapt legacy data-intensive programs in support to database re-
verse engineering with particular attention to the problem of database platform mi-
gration.

11

Chapter 2 Heterogeneous Application Analysis

Marinescu et al. proposed a meta-model for enterprise applications which was
only focused on object-oriented software systems and relational databases [Mari-
nescu and Jurca, 2006]. This description has been used to address various prob-
lems: With the purpose of improving the quality of the data structure Marinescu
proposed an approach to identify the relational discrepancies between database
schemas and source code in EAs [Marinescu, 2007b]. To support the evolution of
database schemas Marinescu described how to enrich the semantic of the foreign
key constraints defined between database tables looking at the relationships be-
tween source code elements [Marinescu, 2007a]. Marinescu proposed also a set of
rules for the identification of the Fowler’s enterprise patterns defined for data man-
agement [Fowler, 2005a] by leveraging her description of EAs [Marinescu, 2006].

Design flaws in EAs sometime depend on the bad design of the interaction between
the source code and the database. Keller investigated the object to tables mapping
problem and he described patterns to support the design of applications’ access
layer [Keller, 1997; Keller, 1998].

2.3 Software Architecture Reconstruction and Validation

Software architecture has been defined by several people with little agreement.
Shaw and Garlan [Shaw and Garlan, 1996] defined software architecture in terms
of components and connectors that mediate the interaction between the components.
This definition resemble the one proposed by IEEE [IEEE, 2000]. Components can
represent clients and servers, databases and computational elements in general.
Connectors can be procedure calls, shared variable accesses or more complex ele-
ments like client-server protocols. This representation is generic and so can be used
to describe a variety of software architectures. One drawback is that this represen-
tation is focused on technological aspects only. The point of view of the technology,
however, is not the only one. Aspects related to the system domain or the business
context of an application must be taken into account to provide all the stakeholders
with a complete picture of a software system architecture [Medvidovic et al., 2007].
Another drawback of such architectural description is that components and con-
nectors have a polymorphic semantic which must be specified in an unambiguous
manner to achieve precision in architectural analyses and architectural understand-
ing.

Software architectures can be derived from software documentation or human
knowledge or they can be reconstructed from the source code. In the first case
we talk about conceptual architecture, in the latter we talk about concrete archi-
tecture. Software architecture reconstruction (SAR) can be achieved by following

12

2.4 Dependency Analysis

top-down or bottom-up approaches [Ducasse and Pollet, 2009] and it is done for
several purposes: Understanding, reuse, construction, evolution, analysis and man-
agement [Garlan, 2000].

Several approaches have been proposed over the years to support SAR. Ducasse et
al. summarize them from the point of view of the goal and the process they use to
reconstruct the architecture of a system [Ducasse and Pollet, 2009]. Approaches not
included in the surveys of Ducasse et al. have been discussed by Knodel et al. which
organized the state of the art considering the method used by the tools to perform
architectural compliance checking [Knodel and Popescu, 2007].

Independently from the purpose for which SAR is done all the approaches we en-
countered describe architectures only in terms of components and connectors. We
argue that this definition is too simplistic to express the complexity of heterogeneous
application architectures. On the one hand, we need to identify and reify more con-
crete elements to represent the structure of HA architectures. On the other hand,
we need to identify those elements that can represent the application domain and
its business context to describe an architecture from the points of view of the various
system stakeholders.

In this dissertation, however, we focus our attention on identifying and reifying
those architectural elements that are part of the structure of HAs . We reified more
specific architectural elements like, for example, architectural layers [Fowler, 2005a]
to support effective architectural understanding and validation on HA.

2.4 Dependency Analysis

When software maintainers change a software entity, they have to search for other
related entities and update them accordingly. This is not a trivial task, and many
bugs are introduced by programmers who fail to properly propagate changes
[Hassan and Holt, 2006]. Knowledge of software dependencies is vital to many
change impact analysis methods and other maintenance activities [Zhifeng Yu, 2001;
Vanciu and Rajlich, 2010; Rajlich, 1997; Hassan and Holt, 2004]. Source code anal-
ysis can be used to trace dependencies [Binkley, 2007]; however, it is not an easy
approach to apply to EAs due to their heterogeneous composition of languages and
frameworks.

In the literature, several formal models of change propagation have been in-
troduced. Luqi [Luqi, 1990] presented a graph model for software evolution
based on indirect relationships between components. Rajlich [Rajlich, 1997] intro-
duced a model for change propagation based on graph rewriting which requires

13

Chapter 2 Heterogeneous Application Analysis

an understanding of the dependencies between software elements. Arnold and
Bohner [Bohner and Arnold, 1996] model change impact analysis as a cycle of re-
visions derived from relationships between software elements. Mirarab et al. [Mi-
rarab et al., 2007] introduced a hybrid impact analysis method based on depen-
dency information and co-change history. The knowledge of software dependen-
cies is the prerequisite for these impact analysis models. The other key applications
of dependency analysis are program comprehension, concept location and reverse
engineering [Cleary and Exton, 2007; Tzerpos and Holt, 2000; Walker et al., 2006;
Marinescu, 2007a].

Source code analysis [Binkley, 2007] is an established approach for tracing software
dependencies [Harman et al., 2009; Cleve et al., 2006] or evaluating the evolution of
code and design [Hammad et al., 2009]. One of the best-known code analysis meth-
ods is program slicing, which has been exhaustively explored by many researchers
and extended to many programming paradigms [Binkley and Harman, 2004; Will-
mor et al., 2004; Xu et al., 2005; Silva, 2011]. Source code analysis is further enhanced
using dynamic analysis [Xiao and Tzerpos, 2005; Cornelissen et al., 2009] to capture
dependencies which might not be traceable from static relationships between soft-
ware elements.

Structural coupling metrics have received a lot of attention in the past years resulting
in many different approaches ranging from dynamic coupling [Arisholm et al., 2004;
Hassoun et al., 2004] to evolutionary and logical coupling [Zimmermann et al., 2004;
Gall et al., 2003]. Metrics like Coupling Between Objects (CBO) or CBO′ [Chi-
damber and Kemerer, 1994] consider the inheritance between classes to measure
the coupling among software elements. Other metrics like Response For Class
(RFC) [Chidamber and Kemerer, 1991] and RFC∞ [Chidamber and Kemerer,
1994] consider indirect relations among classes based on a level of indirection in
the invocation chain of the class methods.

More recent research effort has concentrated on defining coupling metrics based
on the concepts specific to software systems [Poshyvanyk et al., 2006; Poshyvanyk
and Marcus, 2006; Poshyvanyk et al., 2009; Gethers and Poshyvanyk, 2010]. These
approaches attempt to identify and measure the relation among software entities in
object-oriented software by considering latent topics from the source code.

An alternative approach to source code analysis is mining dependencies from soft-
ware repositories [Ying et al., 2004; Hindle and Jordan, 2004; D’Ambros et al., 2009;
Kagdi et al., 2007; Walker et al., 2006]. It can be argued that these approaches are
less expensive, and require less technical expertise. On the other hand, they are not
applicable where maintenance history is not accessible.

14

2.5 Heterogeneous Application Analyses

2.5 Heterogeneous Application Analyses

Few generic approaches and techniques capable of dealing with the complexity and
heterogeneity of modern software systems have been proposed. The EER/GRAL
approach [Kullbach et al., 1998] implemented in GUPRO [Ebert et al., 2002] can ac-
tually be used to perform architectural constraint validation although its focus is
the analysis of multi-language systems. Marinescu et al. recognized the need for
an approach to deal with heterogeneous applications as a whole even though their
meta-model [Marinescu and Jurca, 2006] focuses only on relational databases and
so do their analyses [Marinescu, 2007b; Marinescu, 2007a].

A well known tool capable to support the analysis of HAs is an Eclipse plug-in
called MoDISCO1. The main purpose of this tool is to support the modernization of
legacy heterogeneous software systems. The modernization process implemented
in MoDISCO comprises an initial understanding phase based on a model of the
legacy system under analysis. The process we use to support the analysis of hetero-
geneous applications is similar to the one implemented in MoDisco but its purpose
is to support the understanding of heterogeneous applications. The meta modeling
facility of MoDISCO is based on two OMG standards: the Knowledge Discovery
Metamodel2 (KDM) and the Software Metrics Metamodel3 (SMM).

KDM specifies a comprehensive set of meta-models that describe existing software
systems in preparation for software assurance and modernization. The KDM speci-
fication contains twelve packages that describe different aspects of modern software
systems. Each of these packages is defined by one or more class diagrams. The core
package of KDM is a specification of the basic abstractions of KDM which serves as
a base for the other KDM packages and that defines elements like entities, relation-
ships, container hierarchies, etc.

Similarly to KDM also the Moose platform, which we extended to implement our
approach, has a self-described core model that has been inspired by the Essential
Meta Object Facility (EMOF) [Group, 2004]. This meta-meta-model is called FAME
and can be used to ensure interoperability between tools. On top of this meta-meta-
model has been created a family of meta-models to describe different aspects of
modern software systems. These meta-models are typically geared towards en-
abling analysis and providing a rich API that can be used for querying and navi-
gation. In addition, around the Moose platform several tools for scripting software
visualizations, reports, browsers etc. have been developed.

1 http://www.eclipse.org/MoDisco/

2 http://www.omg.org/spec/KDM/1.3/

3 http://www.omg.org/spec/SMM/

15

http://www.eclipse.org/MoDisco/
http://www.omg.org/spec/KDM/1.3/
http://www.omg.org/spec/SMM/

Chapter 2 Heterogeneous Application Analysis

KDM would be a perfect candidate to perform the same implementations and anal-
yses described in this dissertation, however, we decided to base our work on Moose
and to extend this platform rather than KDM. This choice is justified by the previ-
ous experience we have with Moose. Another aspect we considered is that Moose
is implemented in Smalltalk. Because we can use Smalltalk as a scripting language,
the APIs defined by the meta-models can be used as query languages.

With the intent to support the modernization of legacy enterprise systems the OMG
Architecture-Driven Modernization (ADM) Task Force based on the KDM model
a modernization process described in detail by Ulrich and Newcomb [Ulrich and
Newcomb, 2010] in their book. The modernization process consists in an initial as-
cendent phase of analysis and modeling and a descendent transformation phase.
Both these phases touch the physical, the logical and the business level of the appli-
cation to modernize. The authors used this process on several industrial strength
case studies to prove its applicability. The process we use in Moose focuses on the
analysis and understanding of heterogeneous systems, however, the process de-
fined by the ADM Task Force could be fully implemented in Moose.

All the approaches presented in Section 2.4 focus on the analysis of the dependencies
at source code level. Few approaches attempt to trace dependencies between source
code elements by taking into account information from different domains other than
the source code [Cleve et al., 2006; Kagdi et al., 2007; Gethers and Poshyvanyk, 2010;
Vanciu and Rajlich, 2010; Aryani et al., 2011]. Still, the purpose of these approaches
is to understand the connections between source code elements.

Yazdanshenas and Moonen [Yazdanshenas and Moonen, 2011] proposed an ap-
proach to analyze the behavior of heterogeneous systems by analyzing their configu-
ration files. This approach comprises a model of the heterogeneous system based on
the KDM model which is populated with Component Dependence Graphs (CDGs)
and Inter-Component Dependence Graphs (ICDGs) information extracted by using
program slicing techniques [Horwitz et al., 1990]. Configuration files are indeed a
vital information source if we want to understand the behavior of HAs, also, the
approach proposed by Yazdanshenas and Moonen is software independent since it
is based on an extension of the KDM model.

On top of this approach Yazdanshenas and Moonen built an impact change propa-
gation technique to estimate the ripple effects of changes within component-based
product families [Yazdanshenas and Moonen, 2012a]. One interesting outcome of
this approach is the possibility to move from fine-grained to coarse-grained depen-
dencies and vice versa. This is an important requirement in the analysis of depen-
dencies between the heterogeneous elements composing modern software systems.
Still based on the same KDM model extension [Yazdanshenas and Moonen, 2011],

16

2.5 Heterogeneous Application Analyses

Yazdanshenas and Moonen proposed also a set of views that represent system-
wide information flows at various levels of abstraction [Yazdanshenas and Moonen,
2012b]. These works from Yazdanshenas and Moonen offer a further demonstration
that the KDM meta-model is a good candidate to be extended to perform structural
and behavioral analyses on heterogeneous applications.

We argue that prebuilt analyses most of the time fail in addressing the real problems
encountered in the analyses of existing applications. Therefore our intent is to pro-
pose a compact, easy to understand and use meta-model to describe the elements
composing heterogeneous applications together with their connections.

All the approaches mentioned in this section are system independent, however, they
do not support generically the analysis of dependencies derived by other kind of
dependencies. Yazdanshenas and Moonen actually inject the elements of interest
from their KDM model into a generic graph representation which is then queried
to implement their information flow analysis. However, they do not classify edges
as horizontal and vertical, so they do not have an automatic inference of derived
relations as the one we propose in this dissertation.

Therefore, we argue that techniques and tools that can generically support depen-
dency analysis involving all the elements composing HAs are still needed.

17

Chapter 3

Enabling Heterogeneous Application
Analysis

In this chapter we present our approach to support the analysis and evolution of
HAs based on a unified meta-model describing several elements that comprise these
applications. In particular, we deal with three aspects of HAs: architecture, persis-
tency and technologies.

To serve the purposes for which SAR techniques are used [Garlan, 2000] we pro-
vide a first-class description of software architectures which combines a representa-
tion of components and connectors with one describing architectural layers [Fowler,
2005a]. To support the co-evolution of a HA’s source code and its persistent data
model we define a meta-model for relational databases and we specify the relation-
ships between the relational elements and the source code elements. To enable the
analysis of JEA specific technologies we provide a first-class description of Enter-
prise Java Beans (EJBs).

These descriptions can be used independently to deal with specific aspects of HAs
or can be combined to deal with orthogonal problems which cover more than one
aspect at a time. We implemented our first-class description for HAs in a tool called
MooseEE which is an extension of the Moose platform for data and software analy-
sis [Nierstrasz et al., 2005]. A brief description of the Moose platform is provided in
Appendix B.

3.1 Representing Architectural Elements

Architecture is usually described in terms of a set of components and connectors
among these components [Shaw and Garlan, 1996]. This model is too abstract and
needs to be specialized all the time we need to represent a specific architecture.

19

Chapter 3 Enabling Heterogeneous Application Analysis

The polymorphic semantic of components and connectors could also lead to con-
fusions and misunderstandings if not properly defined. Finally, components and
connectors might be an excellent common ground for structural definitions of ar-
chitectures, however, they fail in describing other aspects like the domain or the
business context of applications. We argue that reasoning in term of components
and connectors it is not enough to have a complete picture on HAs. In this disser-
tation we focus on defining a more detailed structural model of HA architectures.
Fowler [Fowler, 2005a] argues that layering is one of the most common techniques
used by software designers to decompose a software system into parts. By merg-
ing the architectural description of Shaw and Garland [Shaw and Garlan, 1996] and
Fowler [Fowler, 2005a] we define a generic first-class representation of architectural
components and layers to support HAs architecture analyses. Our meta-model is
shown in Figure 3.1.

Component

Association
* from*

to

Architectural
Entity

Layer

Business LayerPresentation Layer Data Layer

Service Layer Logic Layer

Entity
contain *

Figure 3.1: Meta-model of architectural elements in MooseEE

The most abstract element describing software architecture entities is Architec-

turalEntity. Its direct subclass, Component, is used to describe generic elements com-
posing a software system. Components can be connected to one or more other com-
ponents through the entity Association. The semantics of Association are not defined
and they are specified by the user. This component-association architectural de-
scription is generic enough to provide a good extension point to add more specific
architectural components.

20

3.2 Relational Database Description

Our overview of HA architectures includes also a description of software layers
as shown in Figure 3.1. The DataLayer contains those software elements which ac-
cess or represent data, usually persistent, within the software system. The Presenta-

tionLayer contains all the elements which define the application user interface (e.g.,
HTML pages or Java classes implementing a rich-client UI). The BusinessLayer in-
cludes the application logic and it is organized into two sublayers namely Service-

Layer and LogicLayer. The first contains the software elements used as entry points
by the application UI, while the latter contains the software elements actually im-
plementing the application logic. Since several layering definitions have been pro-
posed [Fowler, 2005b] the semantics of the different layers can vary accordingly to
the layering strategy in place. For example, accordingly to the definition of Alur et
al. [Alur et al., 2001], the presentation layer contains the UI elements that run on the
server side. Alur et al. define a new layer for J2EE applications called Client that
contains the UI elements running on the client side.

Since architectural views are used to describe application elements that are not nec-
essarily source code entities, an ArchitecturalEntity can contain zero or more in-
stances of entity. This means that architectural elements can contain other archi-
tectural entities.

3.2 Relational Database Description

Relational databases are extensively used in the development of EAs due to their
need of persistent data. Figure 3.2 shows our first-class description for relational
databases.

columns

Table

tables

Database

isPK
isFK

Column

1 reference

Relational
Entity

Entity

Constraint
 * restrictedBy

Figure 3.2: First-class description of relational databases

21

Chapter 3 Enabling Heterogeneous Application Analysis

The entities modelling relational databases are self explanatory and they all sub-
class the generic element RelationalEntity. Database tables cannot exist outside the
database containing them, similarly, table columns cannot exist outside the scope of
the table they belong to. The relation reference represents connections among table
columns established using foreign keys. Any relational entity can also have one or
more constraints.

In Figure 3.3 we show the existing connections between relational elements and
software entities. The elements BehaviouralEntity and SourceEntity are part of the
FAMIX meta-model core. BehaviouralEntity is an abstract superclass for any soft-
ware entity with a behaviour (e.g., functions and methods). SourceEntity models
FAMIX entities related to source code elements. The full FAMIX meta-model is
shown in Figure B.2. The relationship map connects software entities describing re-
lational entities at the source code level. Class-to-table or class attribute-to-column
mappings are in our experience the most common ones in systems that use relational
databases. The rationals of the map association can of course change to suit differ-
ent kinds of mappings, such as, e.g., the ones introduced by Keller or Fowler [Keller,
1997; Keller, 1998; Fowler, 2005a]. A representative example is a class implementing
an active record pattern [Fowler, 2005a] that maps to the database entry it describes.
The relation access represents read or write accesses from behavioural entities (e.g.,
methods or functions) to relational entities. For example, a class method that reads
the fields of a table.

map
Relational
Entity

Entity

Source
Entity

0..*
access

0..*Behavioural
Entity

Figure 3.3: Connections between FAMIX meta-model entities for software systems
and relational databases

3.3 Java Enterprise Applications Technologies

Technologies and frameworks can support developers in dealing with complexity.
On the other hand, if not well managed they may turn into a burden, inflating de-
velopment time and preventing the evolution of an application [Spinellis, 2008]. By
reifying specific technological elements we can enable analyses to understand these
technologies and how they affect a software system.

22

3.4 Conclusions

We considered in our work JEAs as instances of heterogeneous applications.
Amongst the several technologies available for the development of JEAs, we fo-
cused on Enterprise Java Beans (EJBs) in both version 2.1 [DeMichiel, 2003] and
3.0 [Linda DeMichiel, 2006]. There are three types of Java beans: Session Beans are
used to manage client connections in the server; Entity Beans are used to hold per-
sistent data at the source code level while Message-Driven Beans are used to process
messages asynchronously.

In Figure 3.4 we show our first-class representation of EJBs. The three classes mod-
elling the three bean types extend the generic entity JavaBean. Each Java bean is
connected with its Java class implementing its behaviour. The entity Class is part of
the FAMIX meta-model depicted in Figure B.2.

Java Bean

Message-Driven
Bean

Entity BeanSession Bean

Class
0..1
implements

Figure 3.4: Enriched FAMIX Meta-Model (extensions are shown using bold)

3.4 Conclusions

In this chapter we presented our model for HAs which reifies: architectural ele-
ments, relational databases and JEAs’ specific technologies. This unified description
can be employed to analyze problems which involve various elements of an HA.

In the rest of this dissertation we will demonstrate the various parts of our homoge-
neous description of HAs independently on several case studies. In Chapter 4 we
will describe how our description of architectural elements can be used to perform
architectural understanding and validation on an industrial case study. In Chap-
ter 5 we show how to support the evolution of a data-intensive system leveraging
our meta-model of relational databases together with an ad hoc extension to describe
conceptual schemas. Finally in Chapter 6 we use all the elements composing our
meta-model for HAs to analyze application transaction scopes inside a JEA.

We implemented our model for HAs in a tool called MooseEE which is an extension
of the Moose platform for software and data analysis. The Moose platform is briefly
introduced in Appendix B.

23

Chapter 4

Architectural Understanding and
Validation

In this chapter we present our approach to perform architectural understanding and
validation tasks by exploiting our perspective on software architecture and source
code (Figure 4.1).

CodeArchitecture

Data

Technologies
HA

Figure 4.1: Architectural perspective on HAs

The application of choice for the validation of our approach is an industrial JEA that
handles e-banking and online transactions. The architects of the banking system had
two main requests for the analysis:

• an architectural overview of the distribution of the system components;

• a validation of the constraints on the connections between architectural ele-
ments.

25

Chapter 4 Architectural Understanding and Validation

The first step taken to address these requests was to adapt the architectural meta-
model described in Section 3.1 to take into account the different component types
that compose the banking system architecture. The second step was to design two
polymetric visualizations to provide the architects with an overview on the system
architecture from different points of view. Finally, we formalized several queries
to validate architectural constraints on the associations between the architecture el-
ements composing the system. The results of our analyses have been validated by
the system architects who discovered problematic architectural elements they were
not able to identify before.

4.1 Overview on Architectural Validation Techniques

Static approaches to architectural conformance checking can be categorized into
three main groups: reflection models, relation conformance rules, and component
access rules [Knodel and Popescu, 2007].

The reflexion model approach, introduced by Murphy [Murphy et al., 2001] and
extended by Koschke [Koschke and Simon, 2003], requires the user to define an
abstract software architecture model. This model consists of architectural compo-
nents mapped to concrete code entities and interconnect by semantically meaning-
ful relationships. Source code dependencies are used to infer architectural level de-
pendencies on the basis of suitable mappings provided by the user. The resulting
dependencies are matched against the architectural relations defined by the user
and the discrepancies are reported. Almost all the tools implementing this ap-
proach (Bauhaus [Raza et al., 2006], Dependometer1, SAVE [Stratton et al., 2007;
Knodel et al., 2006], Sonargraph2, Sotograph3, Structure1014) provide support for a
fixed set of programming languages and dependency types. ConQA [Deissenboeck
et al., 2005] is one of the few exceptions, as it supports the definition of new de-
pendency types by allowing the user to customize the rules used to detect model
discrepancies. We are not aware of any tool that relies on an easily extensible meta-
model to express both architectural and source code elements. Moreover, all the
cited tools rely on a predefined verification process and offer limited flexibility in
modifying their analysis steps. Our goal is to provide an extensible architectural
description suitable for representing the main elements of complex HAs, while also
supporting software architecture reconstruction and validation tasks.

1 http://source.valtech.com/display/dpm/Dependometer

2 http://www.hello2morrow.com/products/sonargraph

3 http://www.hello2morrow.com/products/sotograph

4 http://www.headwaysoftware.com/products/index.php

26

http://source.valtech.com/display/dpm/Dependometer
http://www.hello2morrow.com/products/sonargraph
http://www.hello2morrow.com/products/sotograph
http://www.headwaysoftware.com/products/index.php

4.2 Case study

The approaches based on relation conformance rules do not require one to specify an
abstract architectural model. These approaches verify architectural constraints by
using regular expressions directly on the source code elements. Most of the avail-
able tools that implement this approach (i.e., IntensiVE [Mens and Kellens, 2006],
dclcheck [Terra and Valente, 2009], Lattix LDM5, .QL6, tool by Eichberg et al. [Eich-
berg et al., 2008]) are text-based and fully-declarative. IntensiVE and the tool devel-
oped by Eichberg et al. are both based on a logic programming language and are
sufficiently expressive to support the definition of new checking rules. A special
class of techniques based on relation conformance rules approach embeds depen-
dency constraints directly into the source code (e.g., ArchJava and ArchFace). The
two main drawbacks of such techniques lie in their limited programming language
support, and in their inherent unsuitability to deal with abstract entities.

Techniques based on component access rules define ports for each component and
specify usage constraints for each port. This approach can be considered as a
simplification of the previously described approach and was inspired by ports in
ADL [Medvidovic and Taylor, 2000; Knodel and Popescu, 2007].

4.2 Case study

The software we analyzed is an industrial JEA responsible for managing e-banking
and online transactions. This application has been online for several years and
serves customers located around the world. The system has an HTML front end,
a Java back-end and it uses an Oracle database to make data persist. The front-end
is built using JavaServer Faces (JSF), the Java back-end is implemented using EJBs
and the database is accessed directly via JDBC.

Figure 4.2 shows a meta-model level representation of the banking system architec-
ture. All the architectural elements in the system are shown in this figure, however,
the architectural configuration depicted is only one of the possible configurations
these elements can have.

Conceptually the application is divided into components. A component can im-
plement a function with a global or local scope. We will refer to them as “global”
and “local” components, respectively. Local components with a regional scope (e.g.,
EMEA) are called “global extensions”. Each local component extends a global com-
ponent to modify its behaviour. The system architects who commissioned this anal-
ysis need to monitor the size of these modifications in order to achieve automatic
propagation of the changes made in the global components. Therefore, one of our

5 http://www.lattix.com/products/ldm-ldv

6 http://semmle.com/

27

http://www.lattix.com/products/ldm-ldv
http://semmle.com/

Chapter 4 Architectural Understanding and Validation

analyses was focused on the identification of local components which customize big
portions of the behaviour of the global components that they extend.

Each component can be part of an application layer. One or more components im-
plement a function exposed to the end user. The architects refer to a function ex-
posed by the banking system with the name of “functional component”. Connec-
tions between functional components and between layers have been constrained by
the architects in order to ensure isolation among the system functions and to have
the correct flow of execution between layers.

Functional Component

Java
Packages

Java
Packages

Map to

Extend/UsePresentation Layer

Business Layer

Local
Component

Global
Component

Global
Extension

Local
Component

Global
Component

Global
Extension

Figure 4.2: One of the possible architectural configuration that the system used in
our case study can have. These figure includes meta-model level architectural com-
ponents and connections.

Each component in our case study maps to a separate Java jar file that contains mul-
tiple Java packages. Relevant information is encoded in the jar file names: the name
of the function implemented, the layer the jar file belongs to and the deployment
localization (i.e., global or local). We exploit this naming convention to recover the
concrete architecture of the banking system following a bottom-up approach.

Table 4.1 shows some structural metrics of the industrial application under anal-
ysis. The size of the application chunk we analyzed was approximately 600, 000

lines of code. From this code we extracted 50 functional components and 101 local
and global components and global extensions. In particular, we found 66 global

28

4.3 Architectural Understanding and Validation

components and 28 local components. This means that approximately 40% of the
global components have been extended and their behavior customized. This per-
centage is in general too high for the system architects, however, we will show in the
following sections that most of these local components customize a small portion of
the global components’ behavior. The number of functional components and global
extensions fulfilled the expectations of the architects.

Model Classes 3805
Lines of code 583182
Functional Components 50
Global Components 66
Local Components 28
Global Extensions 8

Table 4.1: Metrics describing the size of the banking system analyzed

4.3 Architectural Understanding and Validation

The architects managing the banking system had two main requests: (i) an overview
of the distribution of the architectural components from the perspective of the appli-
cation layers and the functional components; (ii) the identification of architectural
constraint violations.

Figure 4.3 shows our extended architectural meta-model where the newly added
architectural elements are depicted in bold. SourceComponent represents architec-
tural components which are connected with source code elements and it is special-
ized by GlobalComponent and LocalComponent. The LocalComponent entity contains
an attribute to distinguish between normal local components and global extensions.
FunctionalComponent entities can contain one or more SourceComponent.

4.3.1 Architectural Understanding

The first issue we addressed was to provide the application architects with an effec-
tive way to understand how the components of the banking system were distributed
from the point of view of the functional components and the application layers.

To address this issue we designed and developed two architectural polymetric visu-
alizations, namely Components per Function view and Components per Layer view. Both
these visualizations provide an overview of the application’s architectural compo-
nents highlighting their size and interactions and they show how the components

29

Chapter 4 Architectural Understanding and Validation

Component

Association
*

from *
to

Architectural
Entity

Entity

Global
Component

Local
Component

isGlobalExtension

Functional
Componentcontain

1..*Source
Component

Source
Entity
contain*

Figure 4.3: Meta-model of the architecture of the banking system

are distributed in the functional components and the application layers respectively.
These visualizations, as any other visualization described in this dissertation, were
developed using the Mondrian visualization engine [Meyer et al., 2006].

Components per Function

The Components per function view makes it easy to identify complex components con-
taining most of the function code. Complex local components should be avoided to
reduce the application maintenance costs by achieving automatic propagation of the
changes made in global components. Components that appear outside layers do not
fully respect the naming convention defined on the component names. Functional
components containing source components which belong to a single layer most cer-
tainly rely on external functions, therefore, they cannot be deployed on their own.

Figure 4.4 shows all the extracted architectural components split into functional
components and layers. External rectangles represent functional components, while
dashed rectangles represents the application layers. The source components are rep-
resented by squares. In Figure 4.4 the area of each square is proportional to the
number of classes mapped by the corresponding component. The color gradient of
the squares depends on the number of lines of code. The darker a component is the
more lines of code it contains inside the scope of its functional component. Compo-
nents with a blue border are local, those with a cyan border are global extensions
while the others are global components. Components are represented as hierarchies

30

4.3 Architectural Understanding and Validation

that highlight association order. This means that source entities contained in the
components on top have a direct association (e.g., derived by method invocations)
to the elements below. Associations between components are represented by gray
edges.

Presentation Layer

Business Layer

Component
outside layers

Local Component

Global Extension

Functional Component

of
LOC

of
classes

Complex
Component

Global Component

Figure 4.4: Components per function view of the industrial case study

Case Study. In the case under study, of the 50 functional components identified, 20
contain source components belonging to a single layer each, while 8 contain
source components outside layers. From the components per function visu-
alization we were able to identify at least 3 large source components which
attracted the attention of the system architects.

Components per Layer view

The components per layer view shows how the components are distributed across the
application layers and provides an overview of the connections between the com-
ponents. The presentation layer is at the top of the figure, while the business layer
is at the bottom. Figure 4.5 simplify the identification of broadly used source com-
ponents that implement complex functions with a significant number of lines of
code. These components may require further investigation to verify if the logic they
implement needs refactoring. Another interesting pattern is represented by wide
hierarchies which have on the top a local component. In this case the local compo-
nent is using and centralizing the logic from several global components. Developers
might want to verify if the local extension needs to be split or the global components
need to be merged.

31

Chapter 4 Architectural Understanding and Validation

Figure 4.5 shows the same source components of Figure 4.4 reorganized into layers.
The only visualization difference lies in how the color gradients were computed,
this time including all the components within the same layer.

Presentation Layer

Wide
hierarchy

Business Layer

Broadly used
components

Figure 4.5: Components per layer view of the industrial case study

Case Study. In our case study we identified at least 6 components which contained a
lot of lines of code and that were broadly used by other components. We also
identified 3 hierarchies with 3 or more elements each that required further
inspections.

4.3.2 Architectural Validation

The components per layer view and the Components per function view provide the user
with an overview of the system from the architectural point of view. In this section
we describe how we can exploit the same model used for architectural understand-
ing to validate constraints on connections between architectural elements.

One of the main goal of our industrial partner was the identification of undesired
associations amongst architectural components. We have been given the task to
investigate the presence of four different types of undesired architectural associa-
tions:

32

4.3 Architectural Understanding and Validation

1. Associations from the business layer to the presentation layer. Components
belonging to the presentation layer are the entry points of the system func-
tions, while components belonging to the business layer implement their busi-
ness logic. Execution flows should always start from a function entry point
and end with the code implementing the logic, not vice versa.

2. Associations from global components to local components. Global compo-
nents must not be aware of the local components extending them.

3. Associations between global components. Global components should be de-
ployed by their own so they need to be as independent as possible from other
global components.

4. Associations between the business layers of different functions. The business
logic of functional components must be all contained within their business
layer.

The associations between architectural components are derived from source code
dependencies. In particular, the architects of the banking system asked us to derive
the architectural associations from method invocations and attribute accesses. These
associations have been chosen because our architectural model is used to describe
mainly elements of the Java source code. As a consequence, method invocations and
attribute accesses are among the types of connections that best describe the nature
of the associations we have been requested to identify.

After the deriving of component associations from the source code elements, we
defined several queries on top of our architectural model to identify the undesired
component dependencies. These queries validate the constraints on the dependen-
cies between the components of our architectural model. We did not rely on any
pre-existing framework or technique to query our model. Instead, the model queries
have been defined using the model API. An example of a query performed on the
model is shown in Listing 4.1. All the connections in the model are queried for as-
sociations between global components (lines 3–9 Listing 4.1). The purpose of this
query is to verify the isolation between global components as requested by the archi-
tects of the banking system. The associations allowed by the removeFalsePositives:

method in line 10 of Listing 4.1 are only: (1) associations from a newer version to
an older version of the same component and, (2) associations from the presentation
layer to the business layer of the same component.

1 | componentAssociations result |

2

3 componentAssociations := self model allComponentAssociations.

4

5 result := componentAssociations

33

Chapter 4 Architectural Understanding and Validation

6 select: [:association |

7 association source isGlobal

8 and: [association target isGlobal

9 and: [association source ~= association target]]].

10 result := self removeFalsePositives: result.

11

12 ^ result

Listing 4.1: Query to detect connections among global components.

Case Study. In the case study under analysis we found no associations from the
business layer to the presentation layer and no associations from global com-
ponents to local components. On the other hand we found 72 invalid connec-
tions among global components. 13 of them were identified by the architects
as false positives. Also we found 12 connections between the business layers
of different functions.

We implemented the undesired associations constraint required by the banking sys-
tem architects in the reporting tool called Arki7. This tool makes it easy to inspect
the constraint validation results and to apply the same constraint validation on dif-
ferent models. In Figure 4.6 we show how a typical Arki report looks like. The list
of all the rules implemented is shown on the left panel, while the resulting model
elements returned by a selected rule are shown in the interactive browser on the
right side.

4.4 Conclusions

In this chapter we presented our approach to address two architectural problems
in an industrial banking system. The first problem concerns the need of the system
architects of an architectural overview to understand how the system components
were distributed. To address this problem we designed and developed two poly-
metric views that provide an overview of the system from the points of view of the
architectural layers and the functional components respectively. These visualiza-
tions can help the architects to identify problematical components in the system ar-
chitecture. In particular, these visualizations help to identify: (i) complex local com-
ponents that customize big portions of the application logic, (ii) local components
that centralize the logic of several global components, (iii) components with several
incoming or outgoing connections that cannot be deploy independently from other
components.

7 http://www.themoosebook.org/book/internals/arki

34

http://www.themoosebook.org/book/internals/arki

4.4 Conclusions

Figure 4.6: Arki reporting tool open on the connections between global components
rule

The second problem concerns the validation of architectural constraints that the ar-
chitects defined on the connections between the architectural elements of the bank-
ing system. To address this problem we formalized: (i) several queries to identify
these constraint violations and, (ii) we provide the architects with a reporting system
that integrates these queries.

The results of our analyses have been validated by the system architects who dis-
covered problematic architectural elements they were not able to identify before.

The use cases presented in this chapter exploit our description of architectural el-
ements and source code that are part of our approach to support the analysis of
HAs. Because the architectural model and the model for source code languages are
part of the same first-class description, it was straightforward to map architectural
elements to source code ones. This homogenous model also was used to support
the process of deriving architectural level dependencies from source code associ-
ations. The logic to derive dependencies, however, had to be implemented for all
the elements of the architectural model which had implicit dependencies with other
elements. This logic had to be replicated for each of the sources we considered (i.e.,
method invocations and attribute access).

35

Chapter 4 Architectural Understanding and Validation

An architectural model should be capable of describing an architecture from the
points of view of different stakeholders. Therefore, an architectural model should
be able to represent the structure of an application as well as its domain and its
business context. An architectural model should also contain elements at the right
level of abstraction to support the analysis and the understanding of a system ar-
chitecture. The component-connector representation which is largely used to define
the structure of software architectures is too abstract to represent concrete architec-
tural elements. In this dissertation we focused on the identification and reification
of elements such as system layers which are the most common techniques used by
software designers to decompose an application into parts. Other structural ele-
ments composing software architectures have to be identified and integrated into
our description to make it more resilient to real architectures. Elements describing
the business and the domain of an application should be identified and integrated
in our model as well.

36

Chapter 5

Database Analysis

Relational databases are extensively used in the development of EAs because they
provide an effective solution to the need of data persistence. A number of tech-
niques and tools for software reverse engineering have been proposed in the last
decade to support program comprehension, software maintenance and software
evolution [Canfora et al., 2011; Mens and Demeyer, 2008; Binkley, 2007; Tonella and
Potrich, 2005]. Additional approaches and tools have been proposed as well for
data reverse engineering with the aim of providing complete, up-to-date documen-
tation of legacy data structures [Hainaut et al., 2000; Mian and Hussain, 2008]. Few
approaches, however, addressed the task of combined reverse engineering of both
data and software. The combined analysis of databases and source codes of an ap-
plication can lead to solving the challenges we face in the analysis of data-intensive
systems [Cleve et al., 2010b].

In this chapter we describe and validate a unified approach for the reverse engi-
neering of both the databases and the source codes of EAs. The main goal of our
approach is:

• To improve the understanding of the domain model of the application.

• To ease the integration of database systems with a more abstract representa-
tion of the data model.

Our approach uses the detection of object-relational persistence patterns to build a
conceptual schema of an application. This conceptual schema is then used to map
the domain model of the application thus providing the user with an overview of the
overall system. We evaluate our approach on a large-scale open source enterprise
system and discuss the obtained results.

This unified approach has been integrated in MooseEE and exploits our perspective
on relational databases and source code (Figure 5.1).

37

Chapter 5 Database Analysis

CodeArchitecture

Data

Technologies
HA

Figure 5.1: Point of view of data and code analyses

5.1 Related Work

Interest for data reverse engineering is increasing for businesses and organizations
currently facing the critical issues of managing large amounts of data [Tallon, 2010].
The combined analysis of the database and the source code of an application can
provide new ways to deal with the challenges we face to address so called data-
intensive systems [Cleve et al., 2010b]. Few approaches, however, have been pro-
posed to address the reverse engineering of both data and software.

One of the most relevant techniques to deal with data intensive systems is the one
proposed by Cleve et al. [Cleve et al., 2006]. The authors defined a unified approach
based on program slicing techniques applied to a system dependency graph in the
presence of database statements. Another approach proposed by Cleve et al. [Cleve
et al., 2010a] exploits the automatic derivation of a relational database from a concep-
tual schema to support fast development of data-intensive systems. From the same
schema is also generated a data manipulation API of the relational database.

Arcelli et al. [Arcelli Fontana et al., 2010] proposed a data reverse engineering ap-
proach to generate a unified perspective on software and data by using design pat-
tern detection. The approach comprises the creation of a conceptual schema using
a unified perspective on an application software and data model.

In this work we leveraged the approach defined by Arcelli et al. and we provided full
tool support for it. The implementation of this approach was made possible by our
first-class description of the structure of relational databases and source code. Our

38

5.2 Case Study

extensible meta-model for HAs was also extended to add a first-class description of
the elements composing conceptual schemas.

5.2 Case Study

The case study used to validate our approach is ADempiere1, an open source En-
terprise Resource Planning (ERP) software. We can summarize the reasons why we
identified ADempiere as an ideal candidate as follows:

Tiered architecture: The system manifests a clear separation between the different ar-
chitectural tiers. To make data persistent the system uses relational database man-
agement systems (i.e., PostgreSQL and Oracle).

Evolving and active system: The ADempiere project traces its evolution back more
than a decade. Created in September 2006 as a fork of the Compiere open-source
ERP, itself created in 1999, ADempiere soon reached the top ten of the SourceForge.net
enterprise software rankings.

Large-scale and complex design: ADempiere is a multi-language system with a core
written in Java that contains more than 3, 805 classes with more than half a million
lines of code.

Model Classes 3,805
Methods 33,667
Lines of code 583,182
Tables 723
Table columns 13,892
Classes mapped on tables 1,402

Table 5.1: Metrics about the size of the case study

Table 5.1 lists six metrics related to the Java core and the database of ADempiere.
The first three refer to the dimension of its source code. The last three refer to the
size of the database and of the one to one connections between source code classes
and database tables.

ADempiere has been designed in such a way that a developer can extend the sys-
tem by modifying as little code as possible. Whenever a new table is added to the
database, the Java code that represents that table at the source code level is automati-
cally generated. Such a strict and well defined connection between the database and

1 http://www.adempiere.com

39

http://www.adempiere.com

Chapter 5 Database Analysis

the application makes ADempiere a perfect workbench for the validation of our re-
verse engineering approach.

5.3 Software and data Reverse Engineering: a Unified
Approach

Applications using relational databases to make data persist often exploit known
architectural patterns, like, for example, the Domain Model and the Data Map-
per [Fowler, 2005a], to represent persistent data at the source code level. The identi-
fication of these patterns can help in finding the links between the object model and
other entities within an application. On the other hand, the conceptual schemas of
a database have been proven to be an important resource in the reverse engineering
process of large applications, in both the public and the private sectors [Batini et al.,
2011; Viscusi et al., 2010; Batini et al., 2006; Henrard et al., 2007]. Our approach merges
knowledge from pattern detection with the available information on the structure of
relational databases to build the conceptual schema of an application. The elements
composing the recovered conceptual schema are then mapped to the application
software entities to provide a unified representation of the domain model of both
the database and the application.

Our unified approach for data and software analysis follows several steps:

A1 Extraction of software and data information.

S1.1 Extraction of software structure to retrieve data on, e.g., software classes,
methods, generalizations and references.

S1.2 Extraction of data entities from logical/physical schemas.

A2 Pattern detection to identify uses of data entities (e.g., DAO, persistence layer,
etc.).

A3 Concept reverse engineering to identify and reify the concepts in the application.

S3.1 Concept schema creation by combining software and data analysis.

S3.2 Mapping the concepts to the domain to fill the gap between the data and the
application.

40

5.3 Software and data Reverse Engineering: a Unified Approach

Step A1 is addressed by using the tools offered by the Moose ecosystem. In par-
ticular, to extract the software structure of ADempiere we used the Java parser in-
Famix2. To extract the database entities we used an SQL parser developed with Petit-
Parser [Renggli et al., 2010]. An importer implemented in MooseEE uses the SQL
parser to populate our model for relational databases.

Step A2 of our approach is addressed by the MARPLE design pattern detector [Ar-
celli Fontana and Zanoni, 2011]. The patterns we need to detect are the ones that
can help identify the application connections to the database. For this reason we
focused on the detection of the Active Record pattern [Fowler, 2005a]. MARPLE uses
a rule based approach to detect the classes involved in a pattern implementation.
The roles identified are:

• Abstract Active Record: a class representing the base implementation of a
generic Active Record;

• Concrete Active Record: a class modeling a particular table;

• Client: every class using an active record which is not an Active Record or in
the same hierarchy as an Active Record; the typical client is a business object
composing the data provided by Active Records.

Active records in ADempiere are automatically generated during initialization by
a procedure that accesses the information stored in the Application Dictionary (AD)
section of the database of ADempiere. For each domain-related table specified in
the Application Dictionary, a Java class named with the prefix “X_” and a Java In-
terface named with the prefix “I_” are generated by ADempiere. Each of these
classes extends the org.compiere.model.PO class. MARPLE detected in ADempiere
1, 324 classes as implementors of an Active Record pattern. 995 classes, all extending
the org.compiere.model.PO class, were identified as concrete active records. 91 classes,
specializations of the org.compiere.process.SvrProcess class which provides server side
processes with operations directly reading and writing on the database, were also
identified as concrete active records. 13 classes were identified as client classes of
some of the active records extending the org.compiere.model.PO class. The remain-
ing 235 classes could not be related to database elements at source code level, nor
as elements accessing the database. Therefore, they were tagged as false positives.
Further research is needed to improve the accuracy of the MARPLE rule set, thus
reducing the fraction of false positives.

2 http://www.intooitus.com/products/infamix/

41

http://www.intooitus.com/products/infamix/

Chapter 5 Database Analysis

5.3.1 Concepts Detection

Step A3 of our approach (Section 5.3) involves the recovery of a conceptual schema of
the system under analysis. To address this issue we provide a first-class description
of the conceptual models that we included in our meta-model for HAs.

Figure 5.2 shows the subset of the extended meta-model for HAs where the new
elements that model the conceptual schema are indicated in bold.

Concept

Association *
from

*to

Entity

RelationalEntity SourceCodeEntity

map *

Figure 5.2: Conceptual schema meta-model

The meta-model for conceptual schemas includes the entities Concept and Associa-
tion. The latter is used to put a concept in a relationship with other concepts. The
entity Concept can map to other entities representing source code or relational ele-
ments.

We populate our model for conceptual schemas by using the information obtained
in the steps A1 and A2 of our unified approach. In particular, the algorithm we use
to identify concepts (step S3.1) takes as input the collection of classes identified in
the step A2 and can be described as follows:

1. The names of the input classes are analyzed and a list of all the possible pairs
is generated.

2. The longest common substring algorithm is applied to each pair.

3. For each common substring identified, a set containing all the classes that
include that substring in their name is created.

4. The relational elements connected to each set of classes are added to the set
itself.

42

5.3 Software and data Reverse Engineering: a Unified Approach

5. Finally, for each set a concept is instantiated that maps to the entities within
that set.

The output of the algorithm is a collection of concepts. Each of these concepts is
named as the longest common substring computed amongst the elements it maps
to. From the results we filtered out all the concepts with names at least 55% shorter
than the length of the class names they mapped to. This avoided the creation of
concepts with meaningless names and that map to classes sharing no rationals. The
empirical threshold of 55% was determined by trial-and-error and it is likely to be
highly system-dependent.

The application of our algorithm to ADempiere resulted in a total of 277 identified
concepts. In Tables 5.2 and 5.3 we list the top 10 and the last 10 identified concepts,
respectively, ordered by name length. All the concepts identified have meaning-
ful names or have a name that is a concatenation of meaningful words with few
exceptions, e.g., in line 2 Table 5.2 the concept name is contaminated by the prefix
“P_”. Only 2 of the 277 concepts identified have a name with no meaning: eference
and ocation. The concept eference mapped to the classes X_AD_Reference, MPrefer-
ence, WPreference and the table ad_reference. These classes should have been mapped
by the concepts Reference and Preference respectively and not by the concept eference.
The concept ocation mapped to the classes WAllocation, X_C_Location, MLocation and
the table c_location. Also in this case these elements should have been mapped by
the concepts Allocation and Location respectively. Preference, Allocation and Location
are existing concepts while Reference is not. The reason lies in that the name “Ref-
erence” matches only the active record X_AD_Reference. 637 classes identified as
active records have not been included in the concept list by our algorithm for the
same reason. This observation suggests that the active records that have not been
added in any concept can become a concept on their own if they are at least related
to a database table.

The concept identification procedure described in this section has to be understood
as a semi-automatic way to infer the concepts implemented by an application and
to detect the elements contained in the identified concepts. The result of the concept
inference should be manually checked by the user to verify its accuracy.

5.3.2 Mapping the domain model to the conceptual schema

The concepts identified in step A3 of our approach represent an initial schema to
support the understanding of an application and its data structures. With step S3.2,
however, we want to enrich the concepts identified with the elements composing
the domain model of the application to provide a complete picture of the system.

43

Chapter 5 Database Analysis

Concept Contained Entities
1 DistributionRunDetail model::MDistributionRunDetail,

model::X_T_DistributionRunDetail, t_distributionrundetail

2 P_ProcessorParameter model::X_EXP_ProcessorParameter,
model::X_IMP_ProcessorParameter,
exp_processorparameter, imp_processorparameter

3 AttributeSetInstance model::X_M_AttributeSetInstance, m_attributesetinstance,
model::MAttributeSetInstance

4 BankStatementMatcher model::X_C_BankStatementMatcher,
c_bankstatementmatcher, process::BankStatementMatcher

5 LandedCostAllocation c_landedcostallocation, model::MLandedCostAllocation,
model::X_C_LandedCostAllocation

6 WorkflowProcessorLog model::X_AD_WorkflowProcessorLog,
wf::MWorkflowProcessorLog, ad_workflowprocessorlog

7 NetworkDistribution dd_networkdistribution, dd_networkdistributionline,
org::eevolution::model::X_DD_NetworkDistributionLine,
org::eevolution::model::X_DD_NetworkDistribution

8 BankStatementLoader model::X_C_BankStatementLoader, c_bankstatementloader,
model::MBankStatementLoader

9 RequestProcessorLog r_requestprocessorlog, model::MRequestProcessorLog,
model::X_R_RequestProcessorLog

10 DistributionRunLine model::MDistributionRunLine,
model::X_M_DistributionRunLine, m_distributionrunline

Table 5.2: First 10 concepts ordered by name length

The domain was defined by Fowler [Fowler, 2005a] as: An object model of the domain
that incorporates both behavior and data.

According to this definition, to reconstruct the domain model of an application, we
need to identify both the elements mapping the data and the elements implementing
the application logic. The concepts identified in step A3 of our approach already
map to the elements of the application and the database that represent the data. Now
we need to identify the elements that implement the behavior of the application and
include them in the our conceptual model as well.

The following formula defines how we identify the domain model elements con-
tained in a concept:

β∗(ω(α∗(Mc))) ∀c ∈ C (5.1)

44

5.3 Software and data Reverse Engineering: a Unified Approach

where:

C = all concepts (5.2)
CLS = all classes (5.3)

M = all methods (5.4)
I ⊆ M ×M are invocations (5.5)

INH ⊆ CLS × CLS are inheritances (5.6)
Meth ⊆ M × CLS (5.7)

γ : CLS → 2C (5.8)
α(y) = {x|(x, y) ∈ I} (5.9)

β(cls) = {cls′|(cls, cls′) ∈ INH} (5.10)
ω(m) = {cls|(m, cls) ∈ Meth} (5.11)
Mc = {m|m ∈ M ∧ c ⊂ γ(ω(m))} (5.12)

C is the set containing all concepts in the conceptual schema. I represents the in-
vocation relation between methods. (x, y) ∈ I means x calls y. INH represents
the inheritance relation between classes. (cls, cls′) ∈ INH means cls subclasses
cls′. Meth represents the relation between methods and the classes defining them.
(m, cls) ∈ Meth means m is defined in cls. γ(cls) returns the concept c ∈ C

which contains the class cls ∈ CLS. α(y)∗ returns all methods x preceding y in
some invocation chain. β(cls) returns the set of subclasses cls′ of cls. ω(m) returns
the class cls ∈ CLS which defines the method m ∈ M . Finally, Mc is the set of
methods belong to the concept c ∈ C .

We defined an algorithm to compute Definition 5.1 that follows 3 steps: (1) we eval-
uateα(Mc) to retrieve the static invocation chain for each class method contained in
a concept, (2) we apply the ω function (Definition 5.11) to retrieve the set of classes
calling the methods in Mc (Definition 5.12), (3) we compute the transitive closure
of β (Definition 5.10) applied on the classes retrieved in the previous step to find all
their subclasses.

This algorithm returns for each concept all the classes that implement the appli-
cation logic of the concept. The results obtained by applying this algorithm on
ADempiere were included in our conceptual model. Consequently, the concepts
in our model map also to the elements implementing the application logic. After
the integration we observed that the number of elements mapped by some con-
cepts increased conspicuously. Some concepts included in excess of 400 elements.
Such large numbers are due to the depth of the inheritance hierarchies of the classes
mapped by the relevant concepts. Concepts that map to several elements of the

45

Chapter 5 Database Analysis

Concept Contained Entities
268 Report model::X_T_Report, www::WReport, print::AReport, t_report, re-

port::FinReport

269 Order org::eevolution::model::MDDOrder, model::MOrder, c_order, pro-
cess::OrderOpen, model::X_C_Order, acct::Doc_Order, i_order,
model::X_I_Order, model::MOrderTax, wstore::WebOrder, pro-
cess::CopyOrder

270 Index k_index, model::MIndex, model::X_K_Index

271 Store w_store, model::X_W_Store, model::MStore

272 InOut model::X_M_InOut, acct::Doc_InOut, model::MInOut, m_inout

273 Topic model::X_K_Topic, b_topic, model::X_B_Topic, model::MRfQTopic,
k_topic

274 Asset i_asset, a_asset, model::MAssetUse, model::X_I_Asset, model::MAsset,
model::X_A_Asset

275 Click wstore::Click, model::X_W_Click, w_click

276 Group model::X_R_Group, model::MBPGroup, r_group

277 Aging model::X_T_Aging, model::MAging, process::Aging, t_aging

Table 5.3: Last 10 concepts ordered by name length

domain model should be considered more important than others since their imple-
mentation covers a larger portion of the application.

Our algorithm to implement Definition 5.1 is based on source code information.
The accuracy of this algorithm could be increased by using dynamic information
to compute Function 5.11. This will reduce the number of elements mapped by the
concepts, therefore providing a more specific conceptual model of the application
under analysis. Another option to improve the quality of the results would be to
avoid the computation of Function 5.10. This option could be considered as a good
approximation if we would keep using static information to compute Function 5.11.
We should also consider that the unified conceptual schema we propose is meant to
provide an overview of an application together with its data model. Therefore, more
complete or specific information about the elements composing a concept could then
be computed lazily during a manual inspection.

46

5.4 Conclusions

5.3.3 Connecting concepts

After creating a conceptual model that includes elements from the data layer, the
database and the domain model, we need to define the rationales of the connections
between the concepts of our model.

We decided to connect the concepts by considering their shared elements. Two con-
cepts are defined as connected if they map to one or more shared element. For ex-
ample the concept “BankAccount” and the concept “Invoice” are connected because
they both map on several common elements like e.g., the class “PaymentServlet”.
This class has been evidently added because part of the invocation chain of both the
concepts “BankAccount” and “Invoice”. This kind of association between concepts
takes into account both database tables and source code entities. Other kinds of con-
nections are of course possible: for example, connections derived from the foreign
keys between tables or connections derived by source code elements like method
invocations.

By connecting the 277 concepts of the conceptual model of ADempiere we identified
21, 162 connections derived by shared elements. 81 of the these connections have
been derived by shared database tables. This means we have an average of 76.4
connections per concept. Such a large number of connections is due to the consistent
number of classes mapped by some concepts after we added the classes belonging
the domain model of ADempiere.

5.4 Conclusions

In this chapter we presented an approach to support reverse engineering and evo-
lution of data-intensive systems. This approach tries to answer to the challenges
pointed out in the literature [Cleve et al., 2010b] by providing reverse engineers
with a unified representation of data-intensive systems for the understanding of
both software and data semantics.

Threats to external validity are concerned with generalization of our findings. Al-
though we performed our evaluation on a large-scale enterprise system, which is
representative of the state of the art of enterprise systems developed in Java, we
are aware that more studies are required to be able to generalize our findings. On
the other hand the instruments used to implement the approach in Section 5.3 are
generic and can be used without modifications on other JEAs. Threats to construct
validity are concerned with the quality of the data we have analyzed, and the de-
gree of manual analysis that was involved. Our approach is meant to be a semi-
automatic support tool to reverse engineer heterogeneous systems that rely on re-

47

Chapter 5 Database Analysis

lational databases. Therefore, a manual validation and refinement of the results is
required. The workload of the manual inspection, however, can vary from system
to system accordingly the complexity of the application analyzed and the accuracy
required by the user.

The approach presented in this chapter is based on our first-class description of re-
lational databases and source code languages. Our homogenous model for HAs
enables the creation of a conceptual schema of the application in the first place. By
integrating the conceptual schema of the application in our model for HAs we were
able to analyze the dependencies between the concepts of our application elements.
Our conceptual recovery approach requires further development to improve its ac-
curacy, however, we demonstrate the effectiveness of our unified model to support
the analysis of HAs.

In this dissertation we focused on describing the structure of relational databases.
To extend our analysis on the actual data stored within a database we would likely
need a different first-class representation from the one we propose.

Relational databases are one way to make data persistent. First-class descriptions
of other persistent data storages would be required to analyze a broader spectrum
of HAs.

48

Chapter 6

Transaction Flow

In this chapter we address the problem of the identification of transaction scopes in
JEAs by exploiting our first-class description of JEA specific technologies and source
code (Figure 6.1). We show how we can address the different facets of this problem
by exploiting also the other perspective on architectures and relational databases
included in our approach to analyze HASs.

CodeArchitecture

Data

Technologies
HA

Figure 6.1: Technological perspective on HAs

Application transactions have been defined in JEAs to guarantee atomicity of op-
erations and to provide a certain level of isolation of services accessed by different
clients. Transactions aid the application developers in achieving the desired level of
reliability and consistency. On the one hand, it is important to ensure that critical
services are properly contained within a transaction scope, while, on the other hand,
starting unnecessary transactions should be avoided for performance reasons. We
define a transaction as unnecessary if its scope is nested within another transaction
scope.

In Java 2 Enterprise Edition (J2EE), a method can be defined as part of a transaction
by setting certain attributes in the XML deployment descriptor file of the applica-

49

Chapter 6 Transaction Flow

tion. This file specifies which are the system classes implementing an Enterprise
Java Bean (EJB) [DeMichiel, 2003] and which is the transaction attribute associated
with the class methods. The EJB container takes these attributes into account to
manage application’s transactions. J2EE specifications defines various transaction
propagation semantics. The most common attribute is required which creates a new
transaction if none is active, or reuses the existing one. A method without an ex-
plicit transaction attribute can still be part of a transaction if it is has been invoked
by another transactional method.

The advantage of this declarative definition is that it is not necessary to touch the
Java source code to manipulate them. Nevertheless, the decoupling between the ac-
tual method and its transaction attribute makes it difficult to identify the transaction
scope the method lies in. Consequently, developers cannot easily verify if a method
is transactional or not if they need to encapsulate operations within a transaction
scope. An example of an operation that needs to be contained within a transaction
scope is the lazy loading with ORM (Object-Relational Mapping). This kind of oper-
ations cannot be executed if a transaction has been already committed. Furthermore,
a transaction can either be started manually using the Java Transaction API or it can
be started automatically in applications by Container-Managed Transactions. As a
consequence, the usage of transactions is not uniform, further complicating their
understanding.

Our analysis of the application transaction scope looks for an answer to four specific
questions:

1. Which methods are involved in a transaction scope?

2. Which methods start unnecessary transactions?

3. How are the methods involved in a transaction scope distributed in the ap-
plication architecture?

4. Which methods access the database from outside a transaction?

The first two questions can be addressed using our first-class description of EJBs by
merging information from the application source code and the XML deployment
descriptors. To address the third and fourth questions we need to look at the prob-
lem of identifying application transactions from the point of view of the architecture
and data persistency respectively.

In this chapter we present a technique to identify methods and classes involved in
application transactions and we propose three visualizations that aim to highlight
anomalies in their definitions.

50

6.1 Transaction Flow Identification

We applied our approach to two different versions of an industrial case study con-
sisting of over 1500 Java classes. The technique to identify the transaction scope
has been validated by manual inspection mainly using Eclipse. The manual in-
spection confirmed a good of precision in the identification of all EJBs and of all
other elements shown in the visualizations. These results have been presented to
the company that provided us with the case study, and their feedback was highly
positive.

6.1 Transaction Flow Identification

Leveraging our meta-model for EJBs described in Section 3.3 we can tackle the prob-
lem of identifying transaction scope in JEAs. Application transactions in Java guar-
antee isolation among services and group multiple operations in a unique unit of
work. It is not trivial to identify methods involved in a transaction because this is
a property with both dynamic and static aspects. A method may be transactional
either because it is specified in the deployment descriptor or because it overrides
or is invoked by a method that is part of a transaction. We consider the following
methods to be part of a transaction [Armstrong et al., 2005]:

1. Methods that start a transaction (i.e., their transaction attribute is ‘Required’
or ‘RequiresNew’).

2. Methods that override methods that start a transaction.

3. Methods with a transaction attribute ‘Mandatory’, ‘Required’ or ‘Supports’
that are invoked by methods already being part of a transaction.

4. Methods without a transaction attribute that are invoked by methods already
part of a transaction.

To expose the transaction scope of methods we proceed in the following way: We
define a set of all methods that have a transaction attribute defined. So the initial set
includes methods that start a transaction, those that override a method that starts a
transaction, and methods that support transactions (a method supports a transaction
if its transaction attribute is not defined or it is different from ‘never’ and ‘notSup-
port’ [Armstrong et al., 2005]). Then we traverse breadth-first the invocation tree
of methods invoked by this set. Using this technique we are able to identify all
methods that belong to a transaction scope or that support transactions triggered
from outside the application, i.e., from the UI. Before explaining how we identify
the invocation paths that are encapsulated in a transaction scope we need some def-
initions:

51

Chapter 6 Transaction Flow

Entry point method: is a method that is not invoked by other methods.

Safe path: is an invocation chain that starts from an entry point method involved in
a transaction.

Unsafe path: is an invocation chain that starts from an entry point that does not start
a transaction.

The following formula describes how we identify an unsafe path:

α(Q) ∩ ω(α(Q) ∩ E) (6.1)

where:

M = all methods (6.2)
I ⊆ M ×M are invocations (6.3)
E ⊆ M are entry points (6.4)
T ⊆ M start a transaction (6.5)
Q ⊆ M perform a query (6.6)

ω(x) = {y|(x, y) ∈ I∗} (6.7)
α(y) = {x|(x, y) ∈ I∗ and x /∈ T} (6.8)

M is the set containing all methods of the system. I represents the invocation re-
lation between methods. (x, y) ∈ I means x calls y. E, T and Q are respectively
the subset of methods that are entry points, the subset of methods that start a trans-
action and the subset of methods that perform a query. I∗ is the transitive closure.
Finally, α(y) returns all methods x preceding y in some invocation chain, and ω(x)

returns all methods y following x in some invocation chain.

Figure 6.2 illustrates the steps of an algorithm to compute Equation 6.1 and compute
unsafe paths. Step 1 consists in the evaluation of α(Q). In accordance with its defi-
nition, the result of α(Q) is the set of methods that are part of the invocation chain
ending with a method that executes a query and starting with a method that does
not start a transaction. Moreover, none of the methods returned by this function
start a transaction. Step 2 is to apply ω to the intersection α(Q) ∩ E. The result of
ω(α(Q) ∩ E) is the subset of methods contained in α(Q) ∩ E that are part of the
invocation chain starting from an entry point that does not start a transaction. Step
3 consists in the evaluation of the intersection of α(Q) and ω(α(Q)∩E) in order to
clean up the set from methods not strictly related with the unsafe path.

The result is a set containing the methods of all unsafe paths, namely invocation
paths starting from an entry point that do not start a transaction and ending with
a method accessing the database. In the diagram, the black path is unsafe since it
ultimately performs a query without ever starting a transaction.

52

6.2 Visualizations

QEP T

EP

QEP T

EP

QEP T

EP

STEP 1

STEP 2

STEP 3

Figure 6.2: Unsafe path identification

6.2 Visualizations

To inspect a JEA from the point of view of application transactions, we devise three
interactive visualizations:

• Transaction flow provides an overview of the methods involved in transactions
(Figure 6.3),

• Server Layers offers an overview of the typical layers in a JEA and helps to
identify the misplaced transaction specifications (Figure 6.4), and

• Unsafe queries reveals the methods that query the database without being cov-
ered by a transaction (Figure 6.5).

These visualizations have been developed using the Mondrian visualization en-
gine [Meyer et al., 2006].

In this section we explain in detail each of the three visualizations. We furthermore
evaluate the effectiveness of each visualization to analyze an industrial content man-
agement system (CMS) to manage customer data. We have analyzed two versions
of the same case study released a year apart. The older version is composed of 1938
classes and 55 EJBs, while the newer version is composed of 1527 classes and 43 EJBs.
Figures 6.3, 6.4 and 6.5 show elements of the newer version of the case study.

53

Chapter 6 Transaction Flow

6.2.1 Transaction flow

Figure 6.3 shows all classes and their methods involved in a transaction according
to the criteria explained in Section 6.1. Classes and methods are presented as hier-
archies that express invocation order. This means that methods of classes on top
invoke methods of classes below them. Invocations among classes are represented
by grey edges. Internal invocations among methods of the same class instead are
organized as a hierarchy going from left to right. The colors of the elements in Fig-
ure 6.3 have the following meaning:

1. Blue methods start a transaction. (1) and (7) in Figure 6.3.

2. Cyan methods have a transaction attribute equal to ‘Mandatory’, ‘Required’
or ‘Supports’ and are invoked by methods involved in a transaction. (2) in
Figure 6.3.

3. Magenta methods have a transaction attribute equal to ‘RequiresNew’ and are
invoked by methods that start a transaction. (5) in Figure 6.3.

4. Grey methods have no transaction attribute and are invoked by methods al-
ready part of a transaction. (3) and (4) in Figure 6.3.

5. Orange methods are entry point methods that have a transaction attribute equal
to ‘Supports’. (6) in Figure 6.3.

The Transaction Flow visualization makes it easy to identify all methods that start
an unnecessary transaction (magenta methods, (5) in Figure 6.3). These methods in
fact start a transaction when they could simply use the transaction scope of their
invoker method. We say that they start an unnecessary transaction. Such methods
have to be manually checked to verify whether the nested transaction is useless or
not. For example a new transaction can be explicitly required to log a message in a
database independently of whether the main transaction commits or rolls back.

All hierarchies having no methods starting a transaction at the beginning (blue
methods) can lead to problems. These methods support transactions but they do
not start one by themselves. This means that either they are within the scope of a
transaction started from the application front-end (generally a web interface built
using JS Pages but also possibly a GUI written in Java), or the service it uses lies
outside a transaction scope. We call such hierarchies weak paths. The Transaction
Flow visualization is also useful to identify isolated parts of the code that are inde-
pendent of the rest of the application. In Figure 6.3 we see two isolated hierarchies
at the top left. Hierarchies like these are interesting to identify because they repre-
sent services that are “self-contained” in the sense that their entry point and their

54

6.2 Visualizations

implementation is not related to other elements of the application. Such hierarchies
may also be a sign that opportunities for sharing logic between services have not
yet been exploited. On the other hand it is also possible to identify more complex
hierarchies with multiple entry points sharing various classes. The identification
of these structures may be useful to guide refactoring to make application services
more independent. We now evaluate the effectiveness of these visualization on the
latest version of an industrial case study.

Case Study. In the case study under analysis all Session beans have methods with
a transaction attribute defined and almost all methods start a transaction. We
can count 489 methods starting a transaction and 1537 methods involved in a
transaction scope. All Session beans appear in the top of the invocation chain,
which means that they are actually used as access points for the application
services. Using the visualization from Figure 6.3 we can identify methods that
unnecessarily start a transaction. In our case we detected 5 cases.

At the right and in the middle of Figure 6.3 there are two classes containing
methods that support transactions but do not start one. The invocation chains
starting from those methods are the only weak paths in the case study. In this
case it is necessary to check if the transaction is started in the front-end. If
this is the case the EJB container will propagate the transaction scope from
the front-end, otherwise these methods are actually operating on the system

Start a Transactions (1)

Support Transactions (6)Inherit Transactions (2)
No attributes defined (3)
Data base accessor (4)

Data base accessor
starting a transaction (7)

Blue Square
Orange Square
Red Square
Cyan Square
Gray Square
Gray Dot

Start an unnecessary
Transactions (5)

(1)

(7)

(2)

(4)

(5)

(3)

(6)

Figure 6.3: An excerpt from a Transaction Flow Visualization

55

Chapter 6 Transaction Flow

outside a transaction scope. By showing the entry points that are a potential
issue, we ease the investigation of the front-end.

At the left part of Figure 6.3 there are two small hierarchies starting from a Ses-
sion Bean without external incoming or outgoing edges. This suggests either
that the services that they implement are logically independent from other ser-
vices, or that the potential for sharing logical functionality with other services
has not been exploited. We say that such hierarchies have a “service-oriented”
design. In Figure 6.3 there are also some more complex hierarchies with mul-
tiple entry points sharing various classes. In contrast to the “service-oriented”
hierarchies at the far left, these more complex hierarchies have multiple entry
points that share behavior. We say that such hierarchies have a “use case-
oriented” design, since the implementation classes support multiple services.

A final point is the method at the top-left of Figure 6.3. This method is blue, so
it starts a transaction, and it is round, so it accesses the database. This means
that the Session Bean it belongs to contains behaviour that is not supposed to
be implemented at this level. Ideally the database access should be contained
in dedicated classes and not directly in Session Beans. This discovery moti-
vates another visualization, explained in Section 6.2.2, which is related to the
Transaction Flow but has the purpose of identifying architectural violations.

6.2.2 Server Layers

Session Beans that start a transaction are used as entry points for services. It is con-
sidered good practice to split EA components into presentation, domain and data
layers [Fowler, 2005a]. The domain layer can be further split into a service layer and
a domain model. Figure 6.4 shows the same classes of Figure 6.3 reorganized into
layers. The layer on top is the service layer, in the middle there is the logic layer,
and on the bottom there is the data layer. The criteria to arrange classes into layers
are as follows:

1. In the Service layer are visualized all classes implementing a Session bean.

2. In the Data layer we show all classes that (1) are part of the invocation chain
starting from the classes belonging to the service layer, and that (2) execute
a query, implement the Java interface Serializable, or throw an exception from
the java.sql package. In the case the class implements the interface Serializable it
can be useful, in order to ensure that the class is actually used to communicate
data, to check if the class is also a data class [Lanza and Marinescu, 2006].

56

6.2 Visualizations

Session Bean in the wrong
layer

Service Layer contains
Session Beans which are

the entry point for the
application services

Logic Layer contains the
classes implementing the

business logic

Data Layer contains the
classes accessing the
database and the data

classes

Figure 6.4: An excerpt from a Server Layers Visualization

3. In the Logic layer we show all classes that are part of the invocation chain that
started from classes belonging to the service layer, but that are not part of the
data layer.

Colors and shapes of objects in Figure 6.4 have the same meaning as in the Transac-
tion Flow visualization. Edges however have a different meaning: the grey edges
are invocations that jump a layer by going from the Service layer directly to the
Data layer. The purpose of this visualization is to expose structural violations of
the elements involved in a transaction. In particular we highlight all Session beans
that are in the wrong layer and all invocations that jump a layer. Such violations
of architectural constraints not only impact program comprehension, but they may
be signs of more serious defects in the application code. The layering strategy we
used in our approach can of course fail to match a custom layering structure. Our
approach, however, is flexible and extensible so to ease the definition of layering
strategies suitable for specific architectures.

Case Study. In Figure 6.4 there are several edges from the session layer directly to
the data layer, suggesting that many services apparently do not have any busi-
ness logic. Either the business logic has been moved into the Session bean or
into the classes belonging to the data layer. In both cases we are dealing with
classes that implement behavior external to their competence. We can count

57

Chapter 6 Transaction Flow

16 Session Beans with grey edges starting from them. Another possibility is
that a particular service has no business logic so there are no classes belong-
ing to that layer. This case is also problematic because a service should nor-
mally touch all layers — a service without business logic is suspect because it
directly exposes the data layer. In any case, software comprehension is com-
promised because knowledge about the purpose and behavior of a service
should appear in the logic layer.

Figure 6.4 also shows a Session Bean positioned in the wrong layer (in the
whole system we identify four of them). These Beans have been classified as
belonging to the data layer because they have at least one method that ac-
cesses the database. There are two possible interpretations why this is so:
either the service is used to send some data back to the front-end without per-
forming any computation, or the business logic has been pushed to the Ses-
sion bean instead of creating a separate class belonging to the logic layer. This
is similar to the problem related to invocations jumping a layer. In this case
we have discovered methods with a behavior outside of their competence.

6.2.3 Unsafe Queries

If on the one hand we are able to identify methods involved in a transaction, on
the other hand we can show which methods perform queries outside of a transac-
tion. Identifying methods that access the database outside a transaction scope is
important to avoid problems of consistency. These methods cannot know if they
are working with consistent data or not. Instead, participating in a transaction en-
sures that isolation is respected even in the presence of multiple concurrent users of
the system. The Unsafe Query visualization shows those hierarchies that end with
classes that execute a query to the database and are outside a transaction scope. In
particular:

• black classes are test classes,

• grey classes are not test classes,

• yellow methods perform a select,

• orange methods perform an update, and

• red methods perform both.

The organization of classes is the same as in the Transaction Flow: classes are shown
considering the invocation order from the top to the bottom. Edges represent the

58

6.3 Comparison of Case studies and Validation

invocations between methods. Considering this organization, in the top part of the
Unsafe Queries visualization are the entry points for unsafe paths. At the bottom,
the visualization shows classes that actually perform queries on the database.

Test classes are identified using a naming convention: A class whose name matches
the regular expression “.*Test.*” or a class contained in a package hierarchy whose
name matches the regular expression “.*test.*” is considered to be a test class.

Case Study. Considering our case study which is partially shown in Figure 6.5, we
can see that almost all hierarchies start with a test class. This means that dur-
ing normal execution these paths have to be considered safe. We can count
562 methods outside a transaction scope. In the left part of Figure 6.5 there is
a hierarchy that starts with a grey class. This is an unsafe path that actually
accesses the database by reading data without being sure that they are con-
sistent. We count 24 methods belonging to this hierarchy. Also interesting
are the two grey classes on the far left of Figure 6.5. These classes contain a
method that performs an update of the database (they might contain other
methods that are omitted in the visualizations) and they are not invoked by
other methods. These methods pose a risk since they may be invoked directly
from the front-end without being part of a transaction scope.

Method performing a select
and an update on the database

Methods performing an
update on the database

Method performing a select
on the database

Test ClassNormal Class

Method performing an
update

Methods performing a select
and an update on the data base

Methods performing an
update on the data base

Methods performing a
select on the data base

Test Class

Normal Class

Method performing a
select

Methods performing a select
and an update on the data base

Methods performing an
update on the data base

Methods performing a
select on the data base

Test Class

Normal Class

Method performing a
select and an update

Methods performing a select
and an update on the data base

Methods performing an
update on the data base

Methods performing a
select on the data base

Test Class

Normal Class

Method not accessing
the database

Figure 6.5: An excerpt from an Unsafe Queries Visualization

6.3 Comparison of Case studies and Validation

In this section we compare the two versions of our case study using the visualiza-
tions presented in the previous section to assess the overall quality of the applica-

59

Chapter 6 Transaction Flow

tion. In Table 6.1 we present some selected metrics related to the systems under
analysis to give an idea of the dimension and complexity of the case studies.

Old New
Classes 1,938 1,527
Session beans 49 39
Message-driven beans 6 4
Entity beans 0 0
Averave number of methods per bean 14.29 13.15
Methods starting unnecessary transaction 13 5
Methods starting a transaction 622 489
Methods involved in a transaction 2,315 1,537
Methods involved in an unsafe path 589 562
Isolated call-hierarchies 10 15

Table 6.1: Selected case study metrics

Transaction Flow: In Figure 6.6 we show the Transaction Flow visualizations of both
versions. The visualization shows that the application has been strongly modified.
The number of single hierarchies without external relations has increased even if
there is still a huge hierarchy with many entry points and a large number of classes
implementing business logic. In the previous version of the code 10 hierarchies
were identifiable, in the new version 15. This difference suggests that in the past
the application has been designed and developed considering the point of view of
use cases. In the refactoring process many classes have been eliminated and the
application adopts a design that is much more service oriented.

Visually, it is also possible to notice that hierarchies are not only cohesive, but also
deeper. More classes and methods were involved in the business logic needed to
fulfill a service requests. The number of methods starting an unnecessary transac-
tion are reduced from 13 to 5 and the number of beans go down from 49 to 39 which
means that the implementation of the services has been modified to eliminate unnec-
essary transactions. To summarize, all modifications that have been performed on
the application improve its structure. The new version of the application is much
closer to what we expect from the structure of a JEA: small call-hierarchies with
Session beans on top, without relations to other hierarchies and without methods
starting unnecessary transactions. Instead all the services are self-contained and
transactions are always started if necessary.

Server Layers: In Figure 6.7 are shown the Service Layers visualizations of both the
system versions. In the new version of the system we identified that the logic layer
is thinner. This means that the invocation hierarchies are less deep and so that either
the logic or the interaction between classes have been simplified in the new system.

60

6.3 Comparison of Case studies and Validation

Strongly related hierarchies

NEW SYSTEM

OLD SYSTEM

Methods starting an
unnecessary transaction

Entry points for
weak paths

More Strongly related hierarchies

Hierarchy with no
outgoing invocations

More methods starting
unnecessary transactions

Figure 6.6: Transaction Flow visualization of two versions of the same case study

61

Chapter 6 Transaction Flow

In the Transaction Flow visualization was visible that some hierarchies have been
refactored, however, only in the Service Layer view we could identify where the
developers focused their attention during the refactoring. The layered organization
of the classes highlights that during the refactoring process many classes involved
in the computation of requests from services have been removed. Also there are
fewer edges so the communications between the system classes have been changed.
This is maybe because of the lower number of Session Beans but also due to a better
organization of the responsibility inside the application.

OLD SYSTEM

NEW SYSTEM

Higher number
of invocations

Thicker
Service
Layer

Thin
Service
Layer

Fewer misplaced
Session Beans

Figure 6.7: Server Layer visualization of two versions of the same case study

Unsafe Queries: Figure 6.8 depicts the Unsafe Queries visualizations of the old and
the new versions of the system. In the old system version we can identify 5 lonely
classes that access the database inserted in a hierarchy. In total 10 unsafe paths were
identified against 3 in the new version. Also in this visualization it can be seen how
the refactoring process not only changes the structure but also makes the applica-
tion’s services safer and more efficient.

The case studies were helpful to validate the tool and verify that our technique
works correctly not only on small sample code. The validation has been performed
manually mainly using Eclipse. First, we verified that all beans contained in the
deployment description have been imported into the model. In both versions we
correctly imported all beans. Second, we also manually verified that the transaction

62

6.4 Related work

OLD SYSTEM

NEW SYSTEM

Higher number of classes
using the database unsafely

Few classes using the database
unsafely

Figure 6.8: Unsafe Queries visualization of two versions of the same case study

attribute is correctly defined for the beans. In this case all methods have been as-
signed the right transaction attributes. Third, using the Call Hierarchy function of
Eclipse we investigated manually a set of random invocation paths in the real case
study confirming their correctness.

Considering the Server Layers visualization, all Beans were present in the service
layer besides the 4 that access the database. In the Data layer we were able to identify
all elements accessing the database using the java.sql package.

Considering the Unsafe Queries visualizations we detected that the methods con-
sidered to be entry points for unsafe paths were actually not invoked by other meth-
ods.

The manual inspection confirmed a high level of precision in the identification of
the elements composing the visualizations. These results have been presented to the
company that provided us with the case study, and their feedback has been highly
positive. They will inspect all the issues or smells identified using the tool to modify
those parts.

6.4 Related work

In software maintenance, system overviews can play an important role in identify-
ing reusable components and assessing modularization [Girard and Koschke, 1997].
With a completely different kind of visualization and context we create some visu-
alizations with the same purpose: to investigate the presence of visual patterns and
to ease the identification of reusable architectural components.

63

Chapter 6 Transaction Flow

Also other teams have worked on architecture recovery and validation using, for
instance, reflexion models [Murphy et al., 1995a; Murphy and Notkin, 1997]. These
models are used to recover architecture by capturing developer knowledge and then
manually mapping this knowledge to the source code [Koschke and Simon, 2003;
Christl et al., 2005]. Through reflexion models it is possible to expose extra infor-
mation implicit in the code. Our work exposes information implicit in the different
technologies used for building Enterprise applications.

Intensional views check conformance of source code to architectural constraints by
means of rules expressed in a dedicated logic programming sublanguage [Mens et
al., 2006]. We are unaware of intensional views being used to analyze heterogeneous
language projects, or to assess the quality of transactional code.

An interesting study of transactions in EJB has been made at the Vrije Universiteit
Brussels [Fabry, 2004]. This work highlights the separation of concerns in the trans-
action management of JEAs. The problem is caused by the scattered definition of
the components involved in a transaction, the operations to perform in case of roll-
back, and the handling of the rollback exception. The work aimed to improve the
separation of concerns by using Aspect-Oriented Programming.

6.5 Conclusion

In this chapter we proposed a solution to the problem of identifying application
transactions in JEAs. Transactions aid the application programmer with issues like
failure recovery and multi-user programming. Because the definitions of methods
and their transaction attributes are decoupled in JEAs, it is difficult for developers
and designers to identify whether a method is in a transactional scope or not.

Information unification is one key point. Another one is to present the result of this
unification with visualizations of the whole system code to expose anomalies.

Our contribution consists of a technique to expose the transaction scope of the ap-
plication’s classes and to identify related issues. We developed three novel visual-
izations to expose structural and behavioral anomalies in the definition and use of
transaction scope.

The visualizations and the results have been presented to the company that pro-
vided us with the case study, and their feedback has been highly positive. The cus-
tomer checked the anomalies that we identified. They discovered that in the last
version of the code all 5 methods starting an unnecessary transaction do so delib-
erately (for example to obtain a separate transaction scope for logging purposes).
The Session Beans accessing the database directly without passing through all the

64

6.5 Conclusion

layers actually perform read operations on the database for visualization purposes
unrelated to the business logic, so they decided not to modify them. They also plan
a further investigation into the hierarchies outside any transaction scope that ac-
tually access the data base to assess eventual problems. They also would like to
periodically check their code with these instruments to monitor the status of their
application.

The call graphs built from the application analyzed do not use any kind of type
approximation. This fact does not affect the techniques and the considerations pre-
sented in the paper. Nevertheless, using a different and more accurate call graph on
the same application could lead to different results. In particular the unsafe query vi-
sualization will have more benefits from a more accurate call graph revealing more
hierarchies of classes not included in a transaction scope.

The work presented in this chapter focuses on application transactions defined
using the deployment descriptor (Container-Managed Transaction Demarcation),
but it is possible to define by hand the transaction scope in the code using the
Java Transaction API (Bean-Managed Transaction Demarcation). These two defi-
nition are implemented in JEAs using EJB version 2.1 [DeMichiel, 2003] and ver-
sion 3.0 [Linda DeMichiel, 2006] respectively. To extend our analysis on the latest
EJB version we would need to identify the transaction scopes using information ex-
tracted from the Java Transaction API.

The approach presented in this chapter exploits our first-class description of HAs to
analyze application transactions from different points of view. To build the Unsafe
Queries visualization we used our approach to map relational database elements
to source code elements. This approach is based on the detection of direct accesses
on the database defined using the java.sql package. This option, however, can be re-
placed by other strategies to connect database tables with source code entities. In the
very specific case of the application transaction problem the database table accessed
by a method it is not relevant, however, it could be useful to perform other kind of
analyses on the database. For example, we could drive data consistency checking
on the database tables that have been accessed outside an application transaction
scope. To build the Server Layers visualization we used our approach to analyze
architectural layers. By using this approach we could slice the system classes into
layers to expose structural violations of the elements involved in a transaction. We
could highlight the EJBs located in the wrong layer and detect all the method invo-
cations that jump a layer. Such violations could affect the program comprehension
other than be signs of more serious defects in the application code.

65

Chapter 7

Supporting dependency analysis in HAs

Identifying the connections between software elements is important to understand
the behaviour of an application and to perform tasks like impact analysis [Hassan
and Holt, 2004] and change propagation [Rajlich, 1997]. Not all the connections
between software entities are explicit: some of them are implicitly defined by other
dependencies [Zhifeng Yu, 2001; Vanciu and Rajlich, 2010]. Implicit dependencies
can be derived from explicit or implicit dependencies. For example, the connection
between two classes can be derived from method invocations or attribute accesses.
In EAs some connections can be derived from relationships between elements in a
different domain [Aryani et al., 2011]. In this scenario the same dependency can be
derived from various Heterogeneous sources. For example, dependencies between
database tables can be derived from method invocations.

In this chapter we present our approach to support the analysis of implicit depen-
dencies between HA elements. Such an approach is based on a model which reifies
the concept of vertical and horizontal relationships applied to graph nodes. Vertical
relationships are used to move from a lower to a higher level of abstraction, while
horizontal relationships are use to move between elements at a similar level of ab-
straction. The semantic of these relationships is not strict and can be adapted to fol-
low the user needs. As a consequence, this model can also describe any graph-based
data structure. Implicit dependencies are inferred on top of this generic model. We
identified three relevant properties that implicit dependencies can have from the
perspective of software analysis: (1) the same dependency can be computed by mul-
tiple explicit dependencies, (2) implicit dependencies can be at different abstraction
levels than the explicit dependencies used to infer them, (3) an implicit dependency
should expose the explicit dependencies used to infer it. In this chapter we also
formalize how the implicit dependencies are inferred starting from a set of given
associations.

The idea of aggregating or mapping lower level relationships to higher level rela-
tionships was formalized by Feijs et al. [Feijs et al., 1998] and takes the name of “lift-

67

Chapter 7 Supporting dependency analysis in HAs

ing” theory. Feijs et al. formalized this theory to support the analysis of software
architectures. The authors applied relational algebra on graphs to validate architec-
tural constrains on existing software systems. A previous approach that inspired the
lifting theory was proposed by Murphy et al. [Murphy et al., 1995b]. The authors at-
tempted to map the entities of a software reflexion model on top of real source code
elements. Considering that more than one source code element can be mapped on
the same reflexion model entity, the approach from Murphy et al. can be intended
as a lifting technique. Our approach is similar to the lifting technique proposed by
Feijs et al., however, our derivation process is based on our own model rather than
on a graph. In addition, our technique is meant to support the analysis of software
dependencies so it is not limited to the validation of architectural constraints.

To validate our approach we developed the Carrack inference engine and we ap-
plied it to the case study presented in Section 4.3.2 to verify constraints between
architectural associations.

Carrack is implemented in Pharo1 Smalltalk. Readers unfamiliar with the syntax
of Smalltalk might want to read the code examples in the remainder of this disser-
tation aloud and interpret them as normal sentences. An invocation to a method
named method:with:, using two arguments looks like: receiver method: arg1 with:

arg2. The semicolon separates messages that are sent to the same receiver. For exam-
ple, receiver method1: arg1; method2: arg2 sends the messages method1: and method2:

to receiver. Other syntactic elements of Smalltalk are: the dot to separate statements:
statement1. statement2; square brackets to denote code blocks or anonymous func-
tions: [statements]; single quotes to delimit strings: 'a string'; and double quotes
to delimit comments: "comment". The caret ^ returns the result of the following ex-
pression.

7.1 The Carrack Meta-Model

Figure 7.1 shows the meta-model we use to support dependency analysis in HAs
as it is implemented in Carrack. A CarrackEntity has a one to one relation with the
model elements we want to infer relations for. A CarrackEntity can contain other
carrack entities and can be associated to one or more carrack entities. A Carrack-

Containment is used to define what we call vertical relations among carrack nodes. A
CarrackAssociation is used to define what we call horizontal relations among carrack
nodes. The semantics of containments and associations depend on how the user
defines them. For example, we can define as an association relationships like class
inheritances, and as a containment relationships like method invocations, or vice

1 http://www.pharo-project.org/home

68

http://www.pharo-project.org/home

7.2 Derived Dependency Inference

versa. Each Carrack model element contains a reference to the original model ele-
ment it represents. Therefore, during the analysis of the Carrack model we can for
example, select the Carrack model nodes that contain elements of a specific type.

outgoing
*

CarrackContainment

CarrackAssociation

CarrackEntity

container

incoming

*

content *
*

Figure 7.1: Carrack meta-model

Carrack can support the analysis of implicit connections between model elements
which can differ in semantic and abstraction level by exploiting its internal meta-
model. For example, we could infer the implicit dependencies between database
tables starting from explicit dependencies between software elements.

7.2 Derived Dependency Inference

In this section we will define how we infer implicit associations within a carrack
model, and we will demonstrate this definition on the example graph shown in
Figure 7.2a.

5

2

3

4

7

8

1

6

(a) Sample graph

5

2

3

4

7

8

1

6
Level 0

Level 1

Level 2

Level 3

(b) Graph described in Carrack

Figure 7.2: Sample graph

69

Chapter 7 Supporting dependency analysis in HAs

The code snippet in Listing 7.1 shows the script that we would execute to create a
carrack model from the graph in Figure 7.2a. In line 4 we inform the model builder
about the elements composing the carrack model by using the method nodes:. We
then define which of the graph edges we consider to be a containment relationships
using the method defineContainmentFrom:to:on: in line 6–9. The containment relation-
ships will conceptually organize the graph into levels as shown in Figure 7.2b. The
third step is to define which of the graph edges we consider to be associations using
the method defineAssociationFrom:to:on: in line 10–13. Finally, in Line 15 we request
the model builder to instantiate the carrack model based on our definition.

1 | builder |

2 builder := CAKModelBuilder new.

3

4 builder nodes: #(1 2 3 4 5 6 7 8).

5

6 builder

7 defineContainmentFrom: #first

8 to: #second

9 on: {#(3 4).#(2 3).#(1 2).#(7 6).#(7 5).#(8 7)}.

10 builder

11 defineAssociationFrom: #first

12 to: #second

13 on: {#(4 5).#(4 6)}.

14

15 ^builder create model

Listing 7.1: Possible carrack model definition on a graph with eight elements
implemented in Smalltalk

The carrack model creation involves 2 main steps: during the first step all the el-
ements and the relations defined by the user with the model builder API will be
created. In the second step the builder will infer all the implicit associations among
the elements that have not been defined by the user.

The following definition describes how we infer associations within a carrack
model:

(α(A))∗ (7.1)

70

7.3 Analysis of Architectural Dependencies with Carrack

where:

N = all Carrack nodes (7.2)
C ⊆ N ×N are containments (7.3)
A ⊆ N ×N are associations (7.4)

α(a, b) = {(c, d)|(a, b) ∈ A ∧ (c, a) ∈ C ∧ (d, b) ∈ C} (7.5)

N is the set containing all the nodes of a carrack model. C represents the contain-
ment relations between nodes. A represents the association relation between two
nodes. Finally, α(a, b) returns a node pair (c, d) so that c contains a, d contains b
and (a, b) ∈ A.

We can better exemplify how the carrack model creation process works by mak-
ing use of our sample graph in Figure 7.2a. When we request the model builder
to instantiate the carrack model (line 15 in Listing 7.1): (1) it will instantiate one
CarrackEntity for each of the graph nodes specified in line 4. (2) it will create a Car-

rackContainment relation among the elements as specified in lines 6–9. (3) it will cre-
ate a CarrackAssociation among the entities as specified in lines 10–13. Each of the
entities created in this steps will have a link to the starting model elements used
in the model definition script. (4) Finally, the builder will iteratively infer all the
implicit dependencies between the model elements starting from the user defined
associations.

7.3 Analysis of Architectural Dependencies with Carrack

In Section 4.3.2 we described how we used our meta-model for software architec-
tures to validate constraints defined on architectural associations. Our goal was to
investigate the presence of four different types of undesired architectural associa-
tions:

1. Associations from the business layer to the presentation layer.

2. Associations from global components to local components.

3. Associations between global components.

4. Associations between the business layers of different functions.

Our industrial partner requested us to derive dependencies between architectural
components based on method invocations and attribute accesses.

71

Chapter 7 Supporting dependency analysis in HAs

In our experience, the derivation process has typically to be implemented in an ad
hoc manner. This approach has two main drawbacks: (1) the same dependency de-
scription must be defined multiple times, and (2) reusing dependency descriptions
is not always possible due to the functional detail of each case.

In this section we describe how we can overcome these two drawbacks by using our
approach to support the analysis of derived dependencies.

Listing 7.2 shows the script we used to infer architectural level dependencies based
on attribute accesses in the industrial system we analyzed.

1 | builder mooseModel |

2

3 mooseModel := MooseModel root first.

4 builder := CAKModelBuilder new.

5

6 builder nodes: mooseModel allCSComponents.

7 builder nodes: mooseModel allModelClasses.

8 builder nodes: mooseModel allModelMethods.

9 builder nodes: mooseModel allAttributes.

10

11 builder

12 defineContainmentsFrom: #containerComponent

13 to: #containedElement

14 on: mooseModel allComponentContainment.

15 builder defineContainmentFrom: #yourself to: #methods on: mooseModel allModelClasses.

16 builder defineContainmentFrom: #yourself to: #attributes on: mooseModel allModelClasses.

17 builder defineAssociationFrom: #accessor to: #variable on: mooseModel allAccesses.

18

19 builder create.

20 ^builder model.

Listing 7.2: carrack script to infer architectural level dependencies base on attribute
accesses

Table 7.1 shows several metrics on the output of the script in Listing 7.2. The com-
putation of the script took ∼ 13s 2 to generate a carrack model of 167, 086 ele-
ments. These elements include: 60, 542 carrack entities, 52, 502 containments and
54, 042 associations, 3, 139 of which were inferred by lower level dependencies.
The dependencies inferred between architectural elements amounted to 136. The
dependencies that were not inferred between architectural elements were inferred
between system classes. The time required to infer the dependencies was ∼ 4.2s,
or approximately 30% of the total computation time.

2 The computation was done on a MacBookPro with 8GB of RAM and a 2.66Ghz Intel CPU with 4 cores

72

7.3 Analysis of Architectural Dependencies with Carrack

Model Size 167, 086

Execution Time ∼ 13s

Nodes 60, 542

Containments 52, 502

Associations 54, 042

Inferred Associations 3, 139

Inferred Associations between architectural elements 136

Inference elapsed time ∼ 4.2s

Table 7.1: Metrics on the output of Listing 7.2

Listing 7.3 shows the script we used to infer the associations between the same archi-
tectural components used in Listing 7.2, based this time on method invocations.

1 | builder mooseModel |

2

3 mooseModel := MooseModel root first.

4 builder := CAKModelBuilder new.

5

6 builder nodes: mooseModel allCSComponents.

7 builder nodes: mooseModel allModelClasses.

8 builder nodes: mooseModel allModelMethods.

9

10 builder

11 defineContainmentsFrom: #containerComponent

12 to: #containedElement

13 on: mooseModel allComponentContainment.

14 builder defineContainmentsFrom: #yourself to: #methods on: mooseModel allModelClasses.

15 builder defineAssociationsFrom: #sender to: #candidates on: mooseModel allInvocations.

16

17 builder create.

18 ^builder model

Listing 7.3: Carrack script to infer architectural level dependencies based on method
invocations

The only differences between Listing 7.3 and Listing 7.2 are: (1) the missing defini-
tion of source code attributes and their connections, as they are not relevant in this
case (lines 9 and 16 in Listing 7.2), and (2) the different definition of node associ-
ations (line 15 in Listing 7.3). The need for such minor modifications between the
two scripts is an example of the flexibility of our approach.

Table 7.2 lists several metrics on the output of the script in Listing 7.3. The computa-
tion of the script took ∼ 9s to generate a carrack model of 144, 251 elements. These

73

Chapter 7 Supporting dependency analysis in HAs

elements include: 38, 755 carrack entities, 37, 474 containments and 68, 022 asso-
ciations, 8, 938 of which were inferred by lower level dependencies. The amount
of dependencies inferred between architectural elements was 292. The time spent
to infer the dependencies was ∼ 3.5s, or approximately 40% of the total computa-
tion time. By comparing Table 7.1 and Table 7.2 it is clear that the total amount of
elements of the model is lower in the second case. This is due to the fact that the
definitions of class attributes and accesses have been removed in Listing 7.3, since
they were not needed anymore. The same argument can be used to explain why
the computation of the script in Listing 7.3 was faster than that of the script in List-
ing 7.2. The number of inferred associations sensibly increases due the presence in
the code of a number of method invocations higher than the number of accesses.

Model Size 144, 251

Execution Time ∼ 9s

Nodes 38, 755

Containments 37, 474

Associations 68, 022

Inferred Associations 8, 938

Inferred Associations between architectural elements 292

Inference elapsed time ∼ 3.5s

Table 7.2: Metrics on the output of Listing 7.3

The output of the scripts in Listing 7.2 and Listing 7.3 are two distinct carrack models
that we used to validate the four architectural constraints listed at the beginning of
this section. Listing 7.4 shows the query used to check global component isolation
(presented in Listing 4.1), adapted to use a carrack model.

1 | componentAssociations res |

2

3 componentAssociations := (self model allEntitiesKindOfType: CSComponent)

allOutgoingAssociations.

4

5 res := componentAssociations

6 select: [:association |

7 association source model isGlobal

8 and: [

9 association target model isGlobal

10 and: [association source model ~= association target model]]].

11 res := self applyFiltersOn: res.

12 ^ res

Listing 7.4: Query to detect connections among global components using carrack

74

7.4 Conclusions

The query in Listing 7.4 is almost identical to the query in Listing 4.1. It has, how-
ever, the significant advantage that it can be reused on any carrack model that con-
tains the architectural components the query is designed for. In fact, we used this
query to validate the same constraint on both the carrack models generated by the
scripts in Listing 7.2 and Listing 7.3 respectively. The results obtained by using
Carrack on the banking system we analyzed, were exactly the same as those we
obtained by hard-coding the inference logic and the queries in our model for HAs
(Section 4.3.2).

7.4 Conclusions

Software dependency analysis has always been important to evaluate the propaga-
tion of changes and, in general, to understand the interaction between application
components. Dependencies between software system elements are not necessarily
explicit as some of them are implicitly defined by other dependencies. We argue that
implicit dependencies have at least three important properties from the perspective
of software analysis: (1) the same dependency can be computed by multiple explicit
dependencies, (2) implicit dependencies can be at a different abstraction level than
the explicit dependencies used to infer them, (3) an implicit dependency should ex-
pose the explicit dependencies used to infer it.

To support the analysis of derived dependencies in HAs, we provided an approach
based on a meta-model that reifies the concepts of horizontal and vertical relation-
ships which fulfill these three properties. Our approach relies on an internal first-
class description of the system to analyze, thus it makes possible to infer associations
between semantically different model elements. We also defined a process to infer
derive dependencies within graph-based structures.

To validate our approach we developed the Carrack inference engine. We used Car-
rack to derive and analyze the dependencies between the architectural components
of an industrial banking system. The architectural reconstruction we performed on
the banking system followed a bottom-up approach. In this scenario the architec-
tural connections were derived starting from source code level dependencies.

By using Carrack we were able to script, and thus to ease, the definition of the
architectural dependencies in our case study. We were also able to decouple and
generalize the definition of architectural constraints from the original architectural
model.

Our approach to support the analysis of derived dependencies needs to be validated
on larger case studies, in spite of the positive results we described in this section. We

75

Chapter 7 Supporting dependency analysis in HAs

still need to identify, and possibly formalize, the exact boundaries of applicability of
our approach. Finally, we need to improve Carrack to make it even more performant
and to exploit completely the potentiality of our approach by enabling, for example,
the analysis of ternary relationships.

76

Chapter 8

Conclusions

Most modern software systems are built using various frameworks, technologies
and languages to address different application requirements. We call such systems
heterogeneous applications because the information regarding their structure and
behaviour can be spread across various components. This composition of elements
increases the complexity of the analysis of heterogeneous applications. In this con-
text, applying existing reverse engineering and quality assurance techniques devel-
oped for homogeneous applications is not enough. We argue that to overcome this
problem and to support various kinds of analyses on HAs we need a unified rep-
resentation of the heterogeneous elements composing such systems. We also need
to support the analysis of explicit and implicit dependencies between elements at
different levels of abstraction.

The key contributions described in this dissertation are the following:

• We presented (Chapter 3) our first-class description of heterogeneous appli-
cations that takes into account: architecture, relational databases and specific
JEA technologies like EJBs. We validated these three descriptions on three
case studies: We performed (Chapter 4) architectural understanding and con-
straint validation on an industrial banking system by exploiting our first-class
description of software architectures. We defined (Chapter 5) a unified ap-
proach to support the co-evolution of applications and their persistent data
structures based on our meta-model for relational databases. We analyzed
(Chapter 6) the scope of application transactions in JEAs exploiting our fist-
class description of EJBs, and we demonstrated how we could handle other
facets of this problem using our meta-models for HAs as a whole.

• We introduced (Chapter 7) our approach to analyze derived dependencies in
HAs. The approach exploits a model that can describe any graph-based data
structure, thus can be used in combination with our model for HAs. The de-
rived dependencies are inferred on top of this generic model. We validated
this approach by inferring the dependencies between architectural elements

77

Chapter 8 Conclusions

of an industrial banking system starting from the associations between its
source code elements.

Our meta-model for HAs is meant to be generic enough to be applied on different
kinds of heterogeneous applications. The only part specific for JEAs is the descrip-
tion of EJBs which can be excluded from the rest of the meta-model if our approach
is applied on a non Java enterprise system. We implemented our approach in a
tool called MooseEE as an extension of the Moose platform for software and data
analysis. Moose has been chosen for two main reasons: (1) to use the FAMIX meta-
model for object-oriented and procedural languages and, (2) to take advantage of
the engines that compose the Moose eco-system which are useful to script software
visualizations, reports, charts etc.

Our approach to analyze derived dependencies between the elements composing
HAs has been implemented in a tool called Carrack. The reification of implicit de-
pendencies can support the user in tasks like impact change analysis and architec-
tural validation and understanding, not only in the context of HAs.

8.1 Future Work

In this section we provide an overview of further research and practical next steps
related to the implementation of our approach.

8.1.1 Research Directions

• Architectural models that describe architectures as a set of components and
connectors between these components are too simplistic. Nowadays applica-
tions are composed of various elements that can be structured in layers and
they can also be distributed. The component-connector model is meant to de-
scribe such elements, however, needs to be specialized to represent a specific
architecture. We need to identify more specific elements to describe archi-
tectures, thus providing analysis tools and techniques with elements char-
acterized by unambiguous semantics. Furthermore, the focus of architec-
tural descriptions based on components and connectors is on structural and
technological elements, however, developers and engineers are not the only
stakeholder of an application. Aspects related to the system domain or the
business context of an application must be identified and reified within ar-
chitectural models. These models can then be used by analysis techniques
to fully support architectural understanding from the points of view of the
different stakeholders involved in an application life cycle. The domain and

78

8.1 Future Work

business aspects we are referring to comprise, for example, functional and
non-functional requirements such as the development costs of a component
or the response time of a function.

• The process we use to create our homogeneous description of heterogeneous
systems consists in importing information from multiple sources and merging
this information within a unified model. Each information source is parsed
and the required information is harvested by a fact extractor applied to the re-
sults of the parsing phase. A number of parsers for several languages and data
formats are already present, however, these parsers usually create an exact
representation of the parsed elements, while a more abstract representation
would be more suitable to collect information for software analysis purposes.
Even though a lot of research effort has been spent in this area we believe that
more effort should be spent in the direction of automatic creation of parsers
and of intermediate representations.

• A standard and largely applied technique to make analyses reusable is to
based them on models that describe the software systems to analyze rather
than on the systems themselves. In our experience, however, analyses that
address generic problems, and that cannot be adapted to work on specific im-
plementations, are not used on real systems or the results of these analyses are
not taken into account by analysts. This happens because software analysis
techniques and tools are often required to address very specific problems that
can hardly be solved using general purpose analyses. We argue that to sup-
port software analyses in general, and HAs in particular, we need to invest
more research effort to provide reverse engineers with techniques and tools
to quickly craft custom analyses and tools.

8.1.2 Practical Steps

Our first-class representation of heterogeneous applications is not complete and
needs to be extended:

• The architecture of heterogeneous applications is not simply composed of
components and connectors. More detailed elements are required to effec-
tively describe the real architecture of heterogeneous systems. Our unified
representation needs to be enriched with these more specific elements. For
example, we need to reify structural elements like the various tiers composing
an application, but also nonstructural elements like “product” or “feature”.

• We proposed a meta-model to represent relational databases since they are
still largely used in industry, however, they are not the only way to make

79

Chapter 8 Conclusions

data persist. A first-class representation of the other persistent data struc-
tures is needed to achieve our goal to have a uniform representation of het-
erogeneous systems. For example, the structure of object-oriented or XML
databases needs to be model to enable analyses on these types of data storage
systems. Another example is represented by data warehouses. Analyses on
these databases might benefit from the reification of logical elements like “di-
mension” or “fact” that are used to arrange the data into hierarchical groups.

• The FAMIX model is able to represent software languages following the
object-oriented or procedural paradigms. A model that can reify also the other
paradigms used by software systems will provide a good base to represent the
multi-language nature of heterogeneous applications.

Our approach to infer derived dependencies between the elements composing het-
erogeneous applications is good enough to serve its purpose, however, our imple-
mentation does not fully exploit its potential. Carrack infers dependencies start-
ing from the direct connections defined by user. Direct connections, however, are
not the only ones that can be interesting for software analyses [Zhifeng Yu, 2001;
Vanciu and Rajlich, 2010; Aryani et al., 2011]. For example, Ternary or N-ary depen-
dencies are also important to achieve impact change propagation or other depen-
dency analyses not only in heterogeneous applications.

80

Appendix A

Getting Started

This appendix gives instructions on how to install MooseEE and Carrack in a Moose
image.

Downloading MooseEE

1. Get a Moose image from http://www.moosetechnology.org/download.

2. Execute the following lines to load MooseEE in the Moose image:

Gofer new

squeaksource: 'MooseJEE';

package: 'ConfigurationOfMooseJEE';

load.

(Smalltalk at: #ConfigurationOfMooseJEE) perform: #loadDefault

MooseEE have been initially developed under the name of MooseJEE this is why
the repository still carry that name.

Downloading Carrack

1. Get a Pharo image from http://www.pharo-project.org/ or use a Moose image
with MooseEE loaded as explained in the previous section.

2. Execute the following lines to load Carrack in the image:

81

http://www.moosetechnology.org/download
http://www.pharo-project.org/

Appendix A Getting Started

Gofer new

squeaksource: 'Carrack';

package: 'ConfigurationOfCarrack';

load.

(Smalltalk at: #ConfigurationOfCarrack) perform: #loadDefault.

82

Appendix B

Moose platform

Our description of HAs presented in Chapter 3 has been implemented in MooseEE
as an extension of the Moose platform for software and data analyses. The gen-
eral Moose workflow shown in Figure B.1 reflects the well-known extract-abstract-
present cycle described by Tilley et al. [Tilley et al., 1996].

Include

Workflow

Data Importers Models Analyses

Figure B.1: General workflow working with Moose

Starting from some data, intended as any structures containing objects, properties
and relations, we extract the information we need using importers. Moose provides
the user with importers for data from various sources and in various formats. The
importers can be internal (e.g., the importers for Smalltalk code, XML and MSE files),
or external (e.g., the importers for Java, C and C++ are implemented in inFamix1) to
the Moose platform.

The imported data is stored in models. At the core of Moose is the language-
independent FAMIX meta-model [Tichelaar et al., 2000] which can describe the static

1 http://www.intooitus.com/products/infamix/

83

http://www.intooitus.com/products/infamix/

Appendix B Moose platform

structure of software systems. Figure B.2 shows the core of the FAMIX meta-model
as is implemented in Smalltalk. FAMIX contains all the elements composing object-
oriented and procedural languages (i.e., classes, methods, attributes, namespaces
etc.) as well as all the associations among them (i.e., inheritances, invocations, ac-
cesses etc.). The most generic class in the hierarchy is Entity, while its direct subclass
SourceEntity is the most generic representation of source code elements. On top of
the abstracted data we can start performing various kinds of analysis by means of
metrics, queries, visualizations etc.

We choose Moose as the platform for our implementation for the very reason that it
is a platform and not a tool. Moose helps the user to build custom tools. In particular,
Moose helps the user to:

• build new importers for new data sets,

• define new models to store the data, and

• create new analysis algorithms and tools such as: graph visualizations, charts,
queries, browsers and reporting tools.

84

Lo
ca
lV
ar
ia
bl
e

So
ur
ce
A
nc
ho
r

A
ss
oc
ia
tio
n

N
am
ed
En
tit
y

So
ur
ce
En
tit
y

U
nk
no
w
nV
ar
ia
bl
e

G
lo
ba
lV
ar
ia
bl
e

Pa
ra
m
et
er

A
ttr
ib
ut
e

Im
pl
ic
itV
ar
ia
bl
e

Ty
pe

Sc
op
in
gE
nt
ity

B
eh
av
io
ur
al
En
tit
y

St
ru
ct
ur
al
En
tit
y

Le
af
En
tit
y

In
he
rit
an
ce

R
ef
er
en
ce

A
cc
es
s

In
vo
ca
tio
n

En
tit
y

C
om
m
en
t

C
on
ta
in
er
En
tit
y

N
am
es
pa
ce

M
et
ho
d

Fu
nc
tio
n

Pa
ck
ag
e

C
la
ss

Pr
im
iti
ve
Ty
pe

Figure B.2: The FAMIX 3.0 meta-model Core to represent software languages

85

Appendix C

Bibliography

[Alur et al., 2001] Deepak Alur, John Crupi, and Dan Malks. Core J2EE Patterns: Best
Practices and Design Strategies. Pearson Education, 2001.

[Arcelli Fontana and Zanoni, 2011] Francesca Arcelli Fontana and Marco Zanoni. A
tool for design pattern detection and software architecture reconstruction. Infor-
mation Sciences, 181(7):1306–1324, April 2011.

[Arcelli Fontana et al., 2010] Francesca Arcelli Fontana, Gianluigi Viscusi, and
Marco Zanoni. Unifying software and data reverse engineering - a pattern based
approach. In Maria Virvou José A. Moinhos Cordeiro and Boris Shishkov, edi-
tors, ICSOFT 2010 - Proceedings of the Fifth International Conference on Software and
Data Technologies, volume 2, pages 208–213, Athens, Greece, July 2010. SciTePress.

[Arisholm et al., 2004] E. Arisholm, L.C. Briand, and A. Foyen. Dynamic coupling
measurement for object-oriented software. Software Engineering, IEEE Transactions
on, 30(8):491–506, August 2004.

[Armstrong et al., 2005] Eric Armstrong, Jennifer Ball, Stephanie Bodoff, Deb-
bie Bode Carson, Ian Evans, Dale Green, Kim Haase, and Eric Jendrock. The
J2EE 1.4 tutorial, December 2005.

[Aryani et al., 2011] Amir Aryani, Fabrizio Perin, Mircea Lungu, Abdun Naser
Mahmood, and Oscar Nierstrasz. Can we predict dependencies using domain
information? In Proceedings of the 18th Working Conference on Reverse Engineering
(WCRE 2011), October 2011.

[Batini et al., 2006] Carlo Batini, Daniele Barone, Manuel F. Garasi, and Gianluigi
Viscusi. Design and use of er repositories: Methodologies and experiences in
egovernment initiatives. In Proceedings of 25th International Conference on Concep-
tual Modeling, ER, volume 4215 of Lecture Notes in Computer Science, pages 399–412.
Springer, November 2006.

87

Appendix C Bibliography

[Batini et al., 2011] Carlo Batini, Marco Comerio, Enrica Pasqua, and Gianluigi Vis-
cusi. Repositories of conceptual schemas: Concepts, constructs, methods and
quality dimensions. In Giansalvatore Mecca and Sergio Greco, editors, Pro-
ceedings of the Nineteenth Italian Symposium on Advanced Database Systems, pages
381–388, June 2011.

[Binkley and Harman, 2004] David Binkley and Mark Harman. A survey of empir-
ical results on program slicing. Advances in Computers, 62:105 – 178, 2004.

[Binkley, 2007] David Binkley. Source code analysis: A road map. In 2007 Future of
Software Engineering, FOSE ’07, pages 104–119, Washington, DC, USA, 2007. IEEE
Computer Society.

[Bohner and Arnold, 1996] S. A Bohner and R.S. Arnold. Software Change Impact
Analysis. IEEE Computer Society Press, 1996.

[Canfora et al., 2011] Gerardo Canfora, Massimiliano Di Penta, and Luigi Cerulo.
Achievements and challenges in software reverse engineering. Commun. ACM,
54(4):142–151, April 2011.

[Carey et al., 2012] Michael J. Carey, Nicola Onose, and Michalis Petropoulos. Data
services. Commun. ACM, 55(6):86–97, June 2012.

[Chidamber and Kemerer, 1991] Shyam R. Chidamber and Chris F. Kemerer. To-
wards a metrics suite for object oriented design. In Conference proceedings
on Object-oriented programming systems, languages, and applications, OOPSLA ’91,
pages 197–211, New York, NY, USA, 1991. ACM.

[Chidamber and Kemerer, 1994] S. R. Chidamber and C. F. Kemerer. A met-
rics suite for object oriented design. IEEE Transactions on Software Engineering,
20(6):476–493, June 1994.

[Chikofsky, 1996] Elliot J. Chikofsky. The necessity of data reverse engineering.
foreword for peter aiken’s data reverse engineering, 1996.

[Christl et al., 2005] Andreas Christl, Rainer Koschke, and Margaret-Anne Storey.
Equipping the reflexion method with automated clustering. In WCRE ’05: Pro-
ceedings of the 12th Working Conference on Reverse Engineering, pages 89–98, 2005.

[Cleary and Exton, 2007] B Cleary and Chris Exton. Assisting concept location in
software comprehension. In Proceedings of 19th Annual Psychology of Programming
Workshop (PPIG 07), Joensuu, Finland, July 2007.

[Cleve et al., 2006] Anthony Cleve, Jean Henrard, and Jean-Luc Hainaut. Data re-
verse engineering using system dependency graphs. In WCRE 06: Proceedings of
the 13th Working Conference on Reverse Engineering, pages 157 –166, October 2006.

88

Appendix C Bibliography

[Cleve et al., 2010a] Anthony Cleve, Anne-France Brogneaux, and Jean-Luc Hain-
aut. A conceptual approach to database applications evolution. In Proceedings
of the 29th international conference on Conceptual modeling, ER’10, pages 132–145,
Berlin, Heidelberg, 2010. Springer-Verlag.

[Cleve et al., 2010b] Anthony Cleve, Tom Mens, and Jean-Luc Hainaut. Data-
intensive system evolution. Computer, 43:110–112, 2010.

[Cornelissen et al., 2009] Bas Cornelissen, Andy Zaidman, Arie van Deursen, Leon
Moonen, and Rainer Koschke. A systematic survey of program compre-
hension through dynamic analysis. IEEE Transactions on Software Engineering,
35(5):684–702, 2009.

[D’Ambros et al., 2009] Marco D’Ambros, Michele Lanza, and Romain Robbes. On
the relationship between change coupling and software defects. In Proceedings of
the 2009 16th Working Conference on Reverse Engineering, WCRE ’09, pages 135–144,
Washington, DC, USA, 2009. IEEE Computer Society.

[Davis and Aiken, 2000] Kathi Hogshead Davis and Peter H. Aiken. Data reverse
engineering: A historical survey. In Proceedings of the Seventh Working Conference
on Reverse Engineering (WCRE’00), WCRE ’00, pages 70–, Washington, DC, USA,
2000. IEEE Computer Society.

[Deissenboeck et al., 2005] F. Deissenboeck, M. Pizka, and T. Seifert. Tool support
for continuous quality assessment. In Software Technology and Engineering Practice,
2005. 13th IEEE International Workshop on, pages 127 –136, September 2005.

[DeMichiel, 2003] Linda G. DeMichiel. Enterprise JavaBeans specification, version
2.1, November 2003.

[Ducasse and Pollet, 2009] Stéphane Ducasse and Damien Pollet. Software archi-
tecture reconstruction: A process-oriented taxonomy. IEEE TSE: Transactions on
Software Engineering, 35(4):573–591, July 2009.

[Ebert et al., 1996] Jürgen Ebert, Andreas Winter, Peter Dahm, Angelika Franzke,
and Roger Süttenbach. Graph based modeling and implementation with eer /
gral. In Proceedings of the 15th International Conference on Conceptual Modeling, ER
’96, pages 163–178, London, UK, UK, 1996. Springer-Verlag.

[Ebert et al., 2002] Jürgen Ebert, Bernt Kullbach, Volker Riediger, and Andreas Win-
ter. GUPRO — generic understanding of programs, an overview. Fachberichte
Informatik 7–2002, Universität Koblenz-Landau, 2002.

[Eichberg et al., 2008] Michael Eichberg, Sven Kloppenburg, Karl Klose, and Mira
Mezini. Defining and continuous checking of structural program dependencies.

89

Appendix C Bibliography

In Proceedings of the 30th international conference on Software engineering, ICSE ’08,
pages 391–400, New York, NY, USA, 2008. ACM.

[Fabry, 2004] Johan Fabry. Transaction management in EJBs: Better separation of
concerns with AOP. In Y. Coady and D. Lorenz, editors, Proc. of the 3rd AOSD
Workshop on Aspects, Components, and Patterns for Infrastructure Software (ACP4IS),
pages 20–25, March 2004.

[Feijs et al., 1998] L. Feijs, R. Krikhaar, and R. Van Ommering. A relational approach
to support software architecture analysis. Softw. Pract. Exper., 28(4):371–400, April
1998.

[Fowler, 2005a] Martin Fowler. Patterns of Enterprise Application Architecture. Addi-
son Wesley, 75 Arlington Street Suite 300, Boston MA, 02116 USA, 2005.

[Fowler, 2005b] Martin Fowler. Patterns of Enterprise Application Architecture, chapter
8.4: Other layering schemes. Addison Wesley, 2005.

[Gall et al., 2003] Harald Gall, Mehdi Jazayeri, and Jacek Krajewski. Cvs release
history data for detecting logical couplings. In Proceedings of the 6th International
Workshop on Principles of Software Evolution, IWPSE ’03, pages 13–, Washington,
DC, USA, 2003. IEEE Computer Society.

[Gall et al., 2008] C.S. Gall, S. Lukins, L. Etzkorn, S. Gholston, P. Farrington, D. Ut-
ley, J. Fortune, and S. Virani. Semantic software metrics computed from natural
language design specifications. Software, IET, 2(1):17–26, February 2008.

[Garcia-Molina et al., 2011] Hector Garcia-Molina, Georgia Koutrika, and Aditya
Parameswaran. Information seeking: convergence of search, recommendations,
and advertising. Commun. ACM, 54(11):121–130, November 2011.

[Garlan, 2000] David Garlan. Software architecture: a roadmap. In Proceedings of
the Conference on The Future of Software Engineering, ICSE ’00, pages 91–101, New
York, NY, USA, 2000. ACM.

[Gethers and Poshyvanyk, 2010] Malcom Gethers and Denys Poshyvanyk. Using
relational topic models to capture coupling among classes in object-oriented soft-
ware systems. In Proceedings of the 2010 IEEE International Conference on Software
Maintenance, ICSM ’10, pages 1–10, Washington, DC, USA, September 2010. IEEE
Computer Society.

[Girard and Koschke, 1997] Jean-Francois Girard and Rainer Koschke. Finding
components in a hierarchy of modules: a step towards architectural understand-
ing. In ICSM. IEEE Press, 1997.

[Group, 2004] Object Management Group. Meta object facility (MOF) 2.0 core final
adopted specification. Technical report, Object Management Group, 2004.

90

Appendix C Bibliography

[Hainaut et al., 2000] Jean L. Hainaut, Jean Henrard, Jean M. Hick, Didier Roland,
and Vincent Englebert. The nature of data reverse engineering. In Proc. of Data
Reverse Engineering Workshop 2000 (DRE’2000). Zurich Univ. Publish., 2000.

[Hammad et al., 2009] M. Hammad, M.L. Collard, and J.I. Maletic. Automatically
identifying changes that impact code-to-design traceability. In Program Compre-
hension, 2009. ICPC ’09. IEEE 17th International Conference on, pages 20 –29, May
2009.

[Hammond et al., 2008] Jeffrey S. Hammond, Noel Yuhanna, M. Gilpin, and
D. D’silva. Market overview: Enterprise data modeling: A steady state market
prepares to enter a transformational new phase, October 2008.

[Harman et al., 2009] Mark Harman, David Binkley, Keith Gallagher, Nicolas Gold,
and Jens Krinke. Dependence clusters in source code. ACM Trans. Program. Lang.
Syst., 32:1:1–1:33, November 2009.

[Hassan and Holt, 2004] Ahmed Hassan and Richard Holt. Predicting change
propagation in software systems. In Proceedings 20th IEEE International Conference
on Software Maintenance (ICSM’04), pages 284–293, Los Alamitos CA, September
2004. IEEE Computer Society Press.

[Hassan and Holt, 2006] Ahmed E. Hassan and Richard C. Holt. Replaying devel-
opment history to assess the effectiveness of change propagation tools. Empirical
Softw. Engg., 11(3):335–367, September 2006.

[Hassoun et al., 2004] Youssef Hassoun, Roger Johnson, and Steve Counsell. A dy-
namic runtime coupling metric for meta-level architectures. Software Maintenance
and Reengineering, European Conference on, 0:339, 2004.

[Henrard et al., 2002] J. Henrard, J.-M. Hick, P. Thiran, and J.-L. Hainaut. Strategies
for data reengineering. In Reverse Engineering, 2002. Proceedings. Ninth Working
Conference on, pages 211 – 220, 2002.

[Henrard et al., 2007] J. Henrard, D. Roland, A. Cleve, and J.-L. Hainaut. An in-
dustrial experience report on legacy data-intensive system migration. In Software
Maintenance, 2007. ICSM 2007. IEEE International Conference on, pages 473 –476,
October 2007.

[Hindle and Jordan, 2004] Daniel Germáin Abram Hindle and Norman Jordan. Vi-
sualizing the evolution of software using softchange. In Proceedings of the 16th In-
ternational Conference on Software Engineering & Knowledge Engineering (SEKE 2004),
pages 336–341, New York NY, 2004. ACM Press.

91

Appendix C Bibliography

[Horwitz et al., 1990] Susan Horwitz, Thomas Reps, and David Binkley. Inter-
procedural slicing using dependence graphs. ACM Trans. Program. Lang. Syst.,
12(1):26–60, January 1990.

[IEEE, 2000] IEEE. Ieee recommended practice for architectural description for
software-intensive systems. Technical report, The Architecture Working Group
of the Software Engineering Committee, October 2000.

[Kagdi et al., 2007] H. Kagdi, J.I. Maletic, and B. Sharif. Mining software reposito-
ries for traceability links. In Program Comprehension, 2007. ICPC ’07. 15th IEEE
International Conference on, pages 145 –154, June 2007.

[Keller, 1997] Wolfgang Keller. Mapping objects to tables - a pattern language. In
Proc. Of European Conference on Pattern Languages of Programming Conference Euro-
PLOP ’97, 1997.

[Keller, 1998] Wolfgang Keller. Object/relational access layers - a roadmap, missing
links and more patterns. In In Proceeding of EuroPlop 1998, Irsee, pages 1–25, 1998.

[Knodel and Popescu, 2007] J. Knodel and D. Popescu. A comparison of static ar-
chitecture compliance checking approaches. In Software Architecture, 2007. WICSA
’07. The Working IEEE/IFIP Conference on, page 12, January 2007.

[Knodel et al., 2006] Jens Knodel, Dirk Muthig, Matthias Naab, and Mikael Lind-
vall. Static evaluation of software architectures. In CSMR’06, pages 279–294, Los
Alamitos, CA, USA, 2006. IEEE Computer Society.

[Koschke and Simon, 2003] Rainer Koschke and Daniel Simon. Hierarchical reflex-
ion models. In Proceedings of the 10th Working Conference on Reverse Engineering
(WCRE 2003), page 36. IEEE Computer Society, 2003.

[Kullbach et al., 1998] B. Kullbach, A. Winter, P. Dahm, and J. Ebert. Program com-
prehension in multi-language systems. In Proceedings of the Working Conference
on Reverse Engineering (WCRE’98), WCRE ’98, pages 135–, Washington, DC, USA,
1998. IEEE Computer Society.

[Lanza and Marinescu, 2006] Michele Lanza and Radu Marinescu. Object-Oriented
Metrics in Practice. Springer-Verlag, 2006.

[Linda DeMichiel, 2006] Michael Keith Linda DeMichiel. JSR 220: Enterprise Jav-
aBeans specification, version 3.0, May 2006.

[Linos et al., 2003] P.K. Linos, Zhi hong Chen, S. Berrier, and B. O’Rourke. A tool
for understanding multi-language program dependencies. In Program Compre-
hension, 2003. 11th IEEE International Workshop on, pages 64 – 72, May 2003.

92

Appendix C Bibliography

[Linos et al., 2007] Panos Linos, Whitney Lucas, Sig Myers, and Ezekiel Maier. A
metrics tool for multi-language software. In Proceedings of the 11th IASTED Interna-
tional Conference on Software Engineering and Applications, SEA ’07, pages 324–329,
Anaheim, CA, USA, 2007. ACTA Press.

[Luqi, 1990] Luqi. A graph model for software evolution. IEEE Trans. Softw. Eng.,
16(8):917–927, August 1990.

[Marinescu and Jurca, 2006] Cristina Marinescu and Ioan Jurca. A meta-model for
enterprise applications. In SYNASC ’06: Proceedings of the Eighth International Sym-
posium on Symbolic and Numeric Algorithms for Scientific Computing, pages 187–194,
Washington, DC, USA, 2006. IEEE Computer Society.

[Marinescu, 2006] Cristina Marinescu. Identification of design roles for the assess-
ment of design quality in enterprise applications. In Proceedings of International
Conference on Program Comprehension (ICPC 2006), pages 169–180, Los Alamitos
CA, 2006. IEEE Computer Society Press.

[Marinescu, 2007a] Cristina Marinescu. Discovering the objectual meaning of for-
eign key constraints in enterprise applications. Reverse Engineering, Working Con-
ference on, 0:100–109, 2007.

[Marinescu, 2007b] Cristina Marinescu. Identification of Relational Discrepancies
between Database Schemas and Source-Code in Enterprise Applications. In Sym-
bolic and Numeric Algorithms for Scientific Computing, 2007. SYNASC. International
Symposium on, pages 93–100, September 2007.

[Medvidovic and Taylor, 2000] Nenad Medvidovic and Richard N. Taylor. A clas-
sification and comparison framework for software architecture description lan-
guages. IEEE Transactions on Software Engineering, 26(1):70–93, 2000.

[Medvidovic et al., 2007] Nenad Medvidovic, Eric M. Dashofy, and Richard N. Tay-
lor. Moving architectural description from under the technology lamppost. In-
formation and Software Technology, 49(1):12–31, 2007.

[Mens and Demeyer, 2008] Tom Mens and Serge Demeyer, editors. Software Evolu-
tion. Springer, 2008.

[Mens and Kellens, 2006] Kim Mens and Andy Kellens. IntensiVE, a toolsuite for
documenting and checking structural source-code regularities. In Software Main-
tenance and Reengineering, 2006. CSMR 2006. Proceedings of the 10th European Con-
ference on, pages 10 pp. –248, mar 2006.

[Mens et al., 2006] Kim Mens, Andy Kellens, Frédéric Pluquet, and Roel Wuyts. Co-
evolving code and design with intensional views — a case study. Journal of Com-
puter Languages, Systems and Structures, 32(2):140–156, 2006.

93

Appendix C Bibliography

[Meyer et al., 2006] Michael Meyer, Tudor Gîrba, and Mircea Lungu. Mondrian: An
agile visualization framework. In ACM Symposium on Software Visualization (Soft-
Vis’06), pages 135–144, New York, NY, USA, 2006. ACM Press.

[Mian and Hussain, 2008] Natash Ali Mian and Tauqeer Hussain. Database re-
verse engineering tools. In Proceedings of the 7th WSEAS International Conference on
Software Engineering, Parallel and Distributed Systems, SEPADS’08, pages 206–211,
Stevens Point, Wisconsin, USA, 2008. World Scientific and Engineering Academy
and Society (WSEAS).

[Mirarab et al., 2007] S. Mirarab, A. Hassouna, and L. Tahvildari. Using bayesian
belief networks to predict change propagation in software systems. In Program
Comprehension, 2007. ICPC ’07. 15th IEEE International Conference on, pages 177
–188, June 2007.

[Murphy and Notkin, 1997] Gail C. Murphy and David Notkin. Reengineering
with reflexion models: A case study. IEEE Computer, 8:29–36, 1997.

[Murphy et al., 1995a] Gail Murphy, David Notkin, and Kevin Sullivan. Software
reflexion models: Bridging the gap between source and high-level models. In
Proceedings of SIGSOFT ’95, Third ACM SIGSOFT Symposium on the Foundations of
Software Engineering, pages 18–28. ACM Press, 1995.

[Murphy et al., 1995b] Gail C. Murphy, David Notkin, and Kevin Sullivan. Soft-
ware reflexion models: bridging the gap between source and high-level models.
In Proceedings of the 3rd ACM SIGSOFT symposium on Foundations of software engi-
neering, SIGSOFT ’95, pages 18–28, New York, NY, USA, 1995. ACM.

[Murphy et al., 2001] Gail C. Murphy, David Notkin, and Kevin J. Sullivan. Soft-
ware reflexion models: Bridging the gap between design and implementation.
IEEE Trans. Softw. Eng., 27(4):364–380, April 2001.

[Nierstrasz et al., 2005] Oscar Nierstrasz, Stéphane Ducasse, and Tudor Gîrba. The
story of Moose: an agile reengineering environment. In Proceedings of the European
Software Engineering Conference (ESEC/FSE’05), pages 1–10, New York, NY, USA,
September 2005. ACM Press. Invited paper.

[Perin et al., 2010] Fabrizio Perin, Tudor Gîrba, and Oscar Nierstrasz. Recovery and
analysis of transaction scope from scattered information in Java enterprise ap-
plications. In Proceedings of International Conference on Software Maintenance 2010,
September 2010.

[Poshyvanyk and Marcus, 2006] Denys Poshyvanyk and Andrian Marcus. The
conceptual coupling metrics for object-oriented systems. In Proceedings of the 22nd

94

Appendix C Bibliography

IEEE International Conference on Software Maintenance, pages 469–478, Washington,
DC, USA, 2006. IEEE Computer Society.

[Poshyvanyk et al., 2006] Denys Poshyvanyk, Andrian Marcus, Vaclav Rajlich,
Yann-Gael Gueheneuc, and Giuliano Antoniol. Combining probabilistic ranking
and latent semantic indexing for feature identification. In Proceedings of the 14th
IEEE International Conference on Program Comprehension, ICPC ’06, pages 137–148,
Washington, DC, USA, 2006. IEEE Computer Society.

[Poshyvanyk et al., 2009] Denys Poshyvanyk, Andrian Marcus, Rudolf Ferenc, and
Tibor Gyimóthy. Using information retrieval based coupling measures for impact
analysis. Empirical Software Engineering, 14(1):5–32, February 2009.

[Rajlich, 1997] Vaclav Rajlich. A model for change propagation based on graph
rewriting. In Proceedings of the International Conference on Software Maintenance,
ICSM ’97, pages 84–91, Washington, DC, USA, 1997. IEEE Computer Society.

[Raza et al., 2006] Aoun Raza, Gunther Vogel, and Erhard Plödereder. Bauhaus -
a tool suite for program analysis and reverse engineering. In Reliable Software
Technologies - Ada-Europe 2006, pages 71–82. LNCS (4006), June 2006.

[Renggli et al., 2010] Lukas Renggli, Stéphane Ducasse, Tudor Gîrba, and Oscar
Nierstrasz. Practical dynamic grammars for dynamic languages. In 4th Workshop
on Dynamic Languages and Applications (DYLA 2010), Malaga, Spain, June 2010.

[Shaw and Garlan, 1996] Mary Shaw and David Garlan. Software Architecture: Per-
spectives on an Emerging Discipline. Prentice-Hall, 1996.

[Silva, 2011] Josep Silva. A vocabulary of program-slicing based techniques. ACM
Computing Surveys, 2011.

[Spinellis, 2008] D. Spinellis. Software builders. Software, IEEE, 25(3):22 –23, May
2008.

[Stratton et al., 2007] W.C. Stratton, D.E. Sibol, M. Lindvall, and P. Costa. The save
tool and process applied to ground software development at jhu/apl: An experi-
ence report on technology infusion. In Software Engineering Workshop, 2007. SEW
2007. 31st IEEE, pages 187 –193, February 2007.

[Strein et al., 2006] Dennis Strein, Hans Kratz, and Welf Lowe. Cross-language pro-
gram analysis and refactoring. In Proceedings of the Sixth IEEE International Work-
shop on Source Code Analysis and Manipulation, SCAM ’06, pages 207–216, Wash-
ington, DC, USA, 2006. IEEE Computer Society.

[Tallon, 2010] Paul P. Tallon. Understanding the dynamics of information manage-
ment costs. Commun. ACM, 53(5):121–125, May 2010.

95

Appendix C Bibliography

[Terra and Valente, 2009] Ricardo Terra and Marco Tulio Valente. A dependency
constraint language to manage object-oriented software architectures. Softw.
Pract. Exper., 39(12):1073–1094, August 2009.

[Tichelaar et al., 2000] Sander Tichelaar, Stéphane Ducasse, Serge Demeyer, and Os-
car Nierstrasz. A meta-model for language-independent refactoring. In Proceed-
ings of International Symposium on Principles of Software Evolution (ISPSE ’00), pages
157–167, Los Alamitos, CA, November 2000. IEEE Computer Society Press.

[Tilley et al., 1996] Scott R. Tilley, Dennis B. Smith, and Santanu Paul. Towards a
framework for program understanding. In WPC ’96: Proceedings of the 4th Inter-
national Workshop on Program Comprehension (WPC ’96), page 19. IEEE Computer
Society, 1996.

[Tonella and Potrich, 2005] Paolo Tonella and Alessandra Potrich, editors. Reverse
Engineering of Object Oriented Code. Springer, 2005.

[Tzerpos and Holt, 2000] V. Tzerpos and R.C. Holt. Accd: an algorithm for
comprehension-driven clustering. In Reverse Engineering, 2000. Proceedings. Sev-
enth Working Conference on, pages 258 –267, 2000.

[Ulrich and Newcomb, 2010] William M. Ulrich and Philip Newcomb. Information
Systems Transformation: Architecture-Driven Modernization Case Studies. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 2010.

[Vanciu and Rajlich, 2010] R. Vanciu and V. Rajlich. Hidden dependencies in soft-
ware systems. In Software Maintenance (ICSM), 2010 IEEE International Conference
on, pages 1 –10, September 2010.

[Viscusi et al., 2010] Gianluigi Viscusi, Carlo Batini, and Massimo Mecella. Informa-
tion Systems for eGovernment - A Quality-of-Service Perspective. Springer, 2010.

[Walker et al., 2006] Robert J. Walker, Reid Holmes, Ian Hedgeland, Puneet Kapur,
and Andrew Smith. A lightweight approach to technical risk estimation via prob-
abilistic impact analysis. In Proceedings of the 2006 international workshop on Mining
software repositories, MSR ’06, pages 98–104, New York, NY, USA, 2006. ACM.

[Willmor et al., 2004] D. Willmor, S.M. Embury, and Jianhua Shao. Program slicing
in the presence of database state. In Software Maintenance, 2004. Proceedings. 20th
IEEE International Conference on, pages 448 – 452, September 2004.

[Xiao and Tzerpos, 2005] Chenchen Xiao and V. Tzerpos. Software clustering based
on dynamic dependencies. In Software Maintenance and Reengineering, 2005. CSMR
2005. Ninth European Conference on, pages 124 – 133, March 2005.

96

Appendix C Bibliography

[Xu et al., 2005] Baowen Xu, Ju Qian, Xiaofang Zhang, Zhongqiang Wu, and Lin
Chen. A brief survey of program slicing. SIGSOFT Softw. Eng. Notes, 30(2):1–36,
March 2005.

[Yazdanshenas and Moonen, 2011] Amir Reza Yazdanshenas and Leon Moonen.
Crossing the boundaries while analyzing heterogeneous component-based soft-
ware systems. In Proceedings of the 2011 27th IEEE International Conference on Soft-
ware Maintenance, ICSM ’11, pages 193–202, Washington, DC, USA, 2011. IEEE
Computer Society.

[Yazdanshenas and Moonen, 2012a] Amir Reza Yazdanshenas and Leon Moonen.
Fine-grained change impact analysis for component-based product families. In
International Conference on Software Maintenance (ICSM). IEEE, September 2012.

[Yazdanshenas and Moonen, 2012b] A.R. Yazdanshenas and L. Moonen. Tracking
and visualizing information flow in component-based systems. In Program Com-
prehension (ICPC), 2012 IEEE 20th International Conference on, pages 143 –152, June
2012.

[Ying et al., 2004] A.T.T. Ying, G.C. Murphy, R. Ng, and M.C. Chu-Carroll. Predict-
ing source code changes by mining change history. Software Engineering, IEEE
Transactions on, 30(9):574 – 586, September 2004.

[Zhifeng Yu, 2001] Václav Rajlich Zhifeng Yu. Hidden dependencies in program
comprehension and change propagation. In Proceedings of the 9th International
Workshop on Program Comprehension, pages 293–299, Washington, DC, USA, 2001.
IEEE Computer Society.

[Zimmermann et al., 2004] Thomas Zimmermann, Peter Weißgerber, Stephan
Diehl, and Andreas Zeller. Mining version histories to guide software changes.
In 26th International Conference on Software Engineering (ICSE 2004), pages 563–572,
Los Alamitos CA, 2004. IEEE Computer Society Press.

97

Erklärung

gemäss Art. 28 Abs. 2 RSL 05

Name Fabrizio Perin
Matrikelnummer 09–133–521
Studiengang Dissertation in Computer Science
Titel der Arbeit Reverse Engineering Heterogeneous Applications
Leiter der Arbeit Prof. Dr. Oscar Nierstrasz

Ich erkläre hiermit, dass ich diese Arbeit selbständig verfasst und keine anderen als
die angegebenen Quellen benutzt habe. Alle Stellen, die wörtlich oder sinngemäss
aus Quellen entnommen wurden, habe ich als solche gekennzeichnet. Mir ist
bekannt, dass andernfalls der Senat gemäss Artikel 36 Absatz 1 Buchstabe o des
Gesetzes vom 5. September 1996 über die Universität zum Entzug des auf Grund
dieser Arbeit verliehenen Titels berechtigt ist.

Fabrizio Perin
Bern, 22. November 2012

99

Curriculum Vitae

Personal Information

Name Fabrizio Perin
Date of Birth April 9, 1981
Place of Birth Sesto S. Giovanni, Italy
Nationality Italian

Education

2008 – 2012 Ph.D. in Computer Science at the Software Composition Group,
University of Bern, Switzerland. Thesis title: Reverse Engineering
Heterogeneous Applications .

2004 – 2007 Master in Computer Science at the Dipartimento di Informatica
DISCo, Università degli Studi di Milano Bicocca, Milan; Italy.
Thesis title: Dynamic analysis for Design Pattern detection in Java:
Information collected using JPDA.

2000 – 2004 Bachelor in Computer Science at the Dipartimento di Informat-
ica DISCo, Università degli Studi di Milano Bicocca, Milan; Italy.

Complete Curriculum Vitae:
http://www.linkedin.com/pub/fabrizio-perin/2a/181/96b

101

http://www.linkedin.com/pub/fabrizio-perin/2a/181/96b

	1
	Acknowledgements
	Abstract
	Contents
	List of Figures
	List of Tables
	Introduction
	Heterogeneous Application Analysis
	Multi-Language Source Code Analysis
	Data-Intensive Systems Analysis
	Software Architecture Reconstruction and Validation
	Dependency Analysis
	Heterogeneous Application Analyses

	Enabling Heterogeneous Application Analysis
	Representing Architectural Elements
	Relational Database Description
	Java Enterprise Applications Technologies
	Conclusions

	Architectural Understanding and Validation
	Overview on Architectural Validation Techniques
	Case study
	Architectural Understanding and Validation
	Architectural Understanding
	Architectural Validation

	Conclusions

	Database Analysis
	Related Work
	Case Study
	Software and data Reverse Engineering: a Unified Approach
	Concepts Detection
	Mapping the domain model to the conceptual schema
	Connecting concepts

	Conclusions

	Transaction Flow
	Transaction Flow Identification
	Visualizations
	Transaction flow
	Server Layers
	Unsafe Queries

	Comparison of Case studies and Validation
	Related work
	Conclusion

	Supporting dependency analysis in HAs
	The Carrack Meta-Model
	Derived Dependency Inference
	Analysis of Architectural Dependencies with Carrack
	Conclusions

	Conclusions
	Future Work
	Research Directions
	Practical Steps

	Getting Started
	Moose platform
	Bibliography

