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Abstract

This thesis studies the combination of two well known formal systems for knowl-
edge representation: probabilistic logic and justification logic. Our aim is to design
a formal framework that allows the analysis of epistemic situations with incomplete
information. In order to achieve this we introduce two probabilistic justification
logics, which are defined by adding probability operators to the minimal justifi-
cation logic J. We prove soundness and completeness theorems for our logics and
establish decidability procedures. Both our logics rely on an infinitary rule so that
strong completeness can be achieved. One of the most interesting mathematical
results for our logics is the fact that adding only one iteration of the probability
operator to the justification logic J does not increase the computational complexity
of the logic.
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Chapter 1

Introduction

In Sections 1.1 and 1.2 we give a short introduction to justification logics and
probabilistic logics. In Section 1.3 we give an example of a problem which can
be modelled neither in the language of justification logic nor in the language of
probabilistic logic. This explains why a framework for uncertain reasoning in justi-
fication logic should be developed. In Section 1.3 we also give a small introduction
to our framework for probabilistic justification logic. In Section 1.4 we compare
our approach for modelling uncertain reasoning in justification logic with other
approaches that were developed at approximately the same time with ours. We
close this chapter by giving a short summary of the thesis in Section 1.5.

1.1 Justification Logic

The description of knowledge as “justified true belief” is usually attributed to
Plato. While traditional modal epistemic logic [BdRV01] uses formulas of the
form �α to express that an agent believes/knows α, the language of justification
logic [AF15, Stu12] ‘unfolds’ the �-modality into a family of so-called justifica-
tion terms, which are used to represent evidence for the agent’s belief/knowledge.
Hence, instead of �α, justification logic includes formulas of the form t : αmeaning

the agent believes α for reason t.

Artemov developed the first justification logic, the Logic of Proofs (usually ab-
breviated to LP), to provide intuitionistic logic with a classical provability seman-
tics [Art95, Art01, KSar]. There, justification evidence terms represent formal
proofs in Peano Arithmetic. However, justification terms can be used to rep-
resent evidence of more informal nature. This more general reading of terms

1



2 CHAPTER 1. INTRODUCTION

lead to the development of justification logics for various purposes and applica-
tions [BKS11a, BKS11b, KS13, KS12, BKS14].
Melvin Fitting [Fit05] introduced the use of Kripke models in justification logic.
However, semantics to justification logics can also be given by the so-called basic
modular models. Artemov [Art12] initially proposed these models to provide an
ontologically transparent semantics for justifications. Kuznets and Studer [KS12]
further developed basic modular models so that they can provide semantics to
many different justification logics. Note that basic modular models are math-
ematically equivalent to appropriate adaptations of Mkrtychev models [Mkr97]
which were introduced earlier.
It is interesting that a famous correspondence between modal logics and justifica-
tion logics has been established. Artemov [Art01] proved that any theorem in LP
can be translated into a theorem in modal logic S4 by replacing any justification
term by the modal operator � and that any theorem in S4 can be translated into
a theorem in LP by replacing any occurrence of a � by an appropriate justifica-
tion term. So, we say that LP realizes S4, or that LP is the explicit counterpart
of S4. In the same way explicit counterparts for many famous modal logics were
found [Bre00]. For example, the minimal modal logic K corresponds to basic the
justification logic J.

1.2 Probabilistic Logic

The idea of probabilistic logics was first proposed by Leibnitz and subsequently
discussed by a number of his successors, such as Jacobus Bernoulli, Lambert,
Boole, etc. The modern development of this topic, however, started only in the
late 1970s and was initiated by H. Jerome Keisler in his seminal paper [Kei77],
where he introduced probability quantifiers of the form Px > r (meaning that the
probability of a set of objects is greater than r), thus providing a model-theoretic
approach to the field. Another important effort came from Nils Nilsson, who tried
to provide a logical framework for uncertain reasoning in [Nil86]. For example, he
was able to formulate a probabilistic generalization of modus ponens as:

if α holds with probability s and β follows from α with probability t, then the
probability of β is r.

Following Nilsson, a number of logical systems appeared (see [ORM09] for refer-
ences) that extended the classical language with different probability operators.
The standard semantics for this kind of probability logic is a special kind of Kripke
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models, where the accessibility relation between worlds is replaced with a finitely
additive probability measure. As usual, the main logical problems in the proof-
theoretical framework concern providing a sound and complete axiomatic system
and decidability.
In fact, there are two kinds of completeness theorems: the simple completeness (ev-
ery consistent formula is satisfiable) and the strong completeness theorem (every
consistent set of formulas is satisfiable). In the first paper [FHM90] along the lines
of Nilsson’s research, Fagin, Halpern and Meggido introduced a logic with arith-
metical operations built into the syntax so that Boolean combinations of linear
inequalities of probabilities of formulas can be expressed. A finite axiomatic sys-
tem is given and proved to be simply complete. However, the corresponding strong
completeness does not follow immediately (as in classical logic) because of the lack
of compactness: there are unsatisfiable sets of formulas that are finitely satisfiable.
An example is the set of probabilistic constraints saying that the probability of a
formula is not zero, but that it is less than any positive rational number. Concern-
ing this issue, the main contribution of [OR99, RO99, OR00, SO14] was the intro-
duction of several infinitary inference rules (rules with countably many premises
and one conclusion) that allowed proofs of strong completeness in the correspond-
ing logics. On the other hand, already in Boole’s “Laws of Thought” a procedure
of reducing sets of probabilistic constraints to systems of linear (in)equalities was
provided. The same idea was used to prove decidability for most of proposi-
tional logics with probabilistic operators. Moreover, it was shown in [FHM90]
that the satisfiability problem for the logic with linear combinations of probabili-
ties is NP-complete, that is no worse than the corresponding problem in classical
propositional logic.

1.3 Probabilistic Justification Logic

In Sections 1.1 and 1.2 we described two famous systems that can be used for rea-
soning about knowledge (justification logic) and uncertainty (probabilistic logic).
In everyday life we often have to deal with incomplete evidence which naturally
lead to vague justifications. So, it seems necessary to combine reasoning about
knowledge and uncertainty. Let us consider the following example.

Motivating Example
Peter receives a phone call from Marc. Marc tells Peter that tax rates will
increase. Peter reads in the New York Times that tax rates will increase.
Peter considers the New York Times to be a much more reliable source
than Marc.
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In order to describe the situation in the Motivating Example, Peter needs a frame-
work that allows reasoning about justifications and uncertainty together. Peter
for example needs to say that “The probability of the fact that tax rates will in-
crease, because Marc said so, is 30%” or that “The probability of the fact that
tax rates will increase, because it is written in the New York times, is 80%”. The
languages of justification logic and probabilistic logic does not suffice for express-
ing such statements. However these kind of statements can be nicely expressed in
probabilistic justification logic, which is a framework that allows reasoning about
the probabilities of justified statements.
In this thesis we describe the probabilistic justification logic PJ [KMOS15], which
is a combination of justification logic and probabilistic logic that makes it possible
to adequately model different degrees of justification. The design of PJ follows that
of LPP2 [ORM09], which is a probablistic logic over classical propositional logic.
The new operators that PJ introduces are the probability operators P≥s where s
is a rational number between 0 and 1. So, in the language of PJ statements of the
form “P≥sα” can be expressed, meaning that

the probability of truthfulness of the justification formula α is at least s.

Hence we can study, for instance, the formula

P≥r(u : (α→ β))→
(
P≥s(v : α)→ P≥r·s(u · v : β)

)
, (1.1)

which states that the probability of the conclusion of an application axiom is
greater than or equal to the product of the probabilities of its premises. We
will see later that this, of course, only holds in models where the premises are
independent.
The semantics of PJ consists of a set of possible worlds, each a model of justification
logic, and a probability measure µ(·) on sets of possible worlds. We assign a
probability to a formula α of justification logic as follows. We first determine the
set [α] of possible worlds that satisfy α. Then we obtain the probability of α
as µ([α]), i.e. by applying the measure function to the set [α]. Hence our logic
relies on the usual model of probability. This makes it possible, e.g., to explore
the role of independence and to investigate formulas like (1.1) in full generality.
As it was mentioned in Section 1.2 there is an unpleasant consequence of a finitary
axiomatization (i.e. an axiomatization where the proofs are always finite) in a
language like the one of PJ: there exist consistent sets that are not satisfiable.
This results from the inherent non-compactness of such systems. Consider for
example the set X =

{
¬P=0α

}
∪
{
P<1/nα | n ∈ N

}
. Although it is obvious that

X cannot be satisfied, in a finitaty axiomatization it would be consistent: it is
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impossible to derive falsity from X since every proof from X would contain only a
finite number of X elements. However, if proofs are allowed to be infinite, we can
define an axiomatization in which X would not be consistent. Hence, in order to
achieve strong completeness, our axiomatization of PJ should have an infinitary
rule, i.e. a rule which has countably infinite premises and one conclusion.
The logic PJ does neither support iterations of the probability operators nor jus-
tification operators over probability operators. In this thesis we also present the
logic PPJ [KOS16] that remedies these shortcomings. The axiomatization, seman-
tics, soundness, completeness and decidability procedures for PPJ are obtained by
combining results from the probabilistic logic LPP1 [ORM09] and the justification
logic J [AF15]. Note that these combinations are highly non-trivial due to the
presence of formulas of the form t : P≥sA. Moreover, using PPJ we are able to
provide a formal analysis of Kyburg’s famous lottery paradox [Kyb61]. Probabilis-
tic justification logics are intended for comparing different sources of information.
Thus the key idea behind the introduction of logics PJ and PPJ is that:

different kinds of evidence for α
lead to different degrees of belief in α. (1.2)

1.4 Related Work

So far, probabilistic justification logics have not been investigated. Closely re-
lated are Milnikel’s proposal [Mil14] for a system with uncertain justifications,
Ghari’s preprint [Gha14] introducing fuzzy justification logics and the possibilistic
justification logic, which is an explicit version of a graded modal logic and was
introduced by Fan and Liau in [FL15].
Milnikel introduces formulas of the form t :q α, which correspond to our P≥q(t : α).
However, there are two important differences with our current work.
First, his semantics is completely different from the one we study. Instead of using
a probability space, Milnikel uses a variation of Kripke-Fitting models. In his
models, each triple (w, t, α) (of world, term and formula) is assigned an interval
E(w, t, α) of the form [0, r) or [0, r] where r is a rational number from [0, 1]. Then
the formula t :q α is true at a world w iff q ∈ E(w, t, α) and also α is true in all
worlds accessible from w. Because of this interval semantics, Milnikel can dispense
with infinitary rules.
Second, Milnikel implicitly assumes that various pieces of evidence are indepen-
dent. Hence the formula corresponding to (1.1) is an axiom in his system whereas
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(1.1) may or may not hold in a model of our probabilistic justification logics de-
pending on the independence of the premises of (1.1) in the given model.
Ghari presents various justification logics where he replaces the classical base with
well-known fuzzy logics. In particular, he studies a justification logic RPLJ that is
defined over Pavelka logic, which includes constants for all rational numbers in the
interval [0, 1]. This allows him to express statements of the form t is a justification
for believing α with certainty degree at least r. Ghari shows that all principles of
Milnikel’s logic of uncertain justifications are valid in RPLJ.
The logic of Fan and Liau includes formulas t :r A to express that according to
evidence t, A is believed with certainty at least r. However, the following principle
holds in their logic:

s :r A ∧ t :q A→ s :max(r,q) A.

Hence all justifications for a belief yield the same (strongest) certainty, which is
not in accordance with our guiding idea (1.2).
The combination of evidenced-based reasoning and reasoning under uncertainty
has also been studied by Artemov in [Art16] and Schechter in [Sch15]. Schechter
combined features from justification logics and logics of plausibility based beliefs
to build a normal modal logic of explicit beliefs, where each agent can explicitly
state which is their justification for believing in a given sentence. Artemov studied
a justification logic to formalize aggregated probabilistic evidence. His approach
can handle conflicting and inconsistent data and positive and negative evidence
for the same proposition as well.

1.5 Overview of the Thesis

The chapters of the thesis are organized as follows:
In Chapter 2 we recall the the minimal justification logic J. We present the syntax,
semantics and some fundamental results about the logic J.
In Chapter 3 we present the syntax and semantics for the probabilistic justifica-
tion logics PJ and PPJ. We also illustrate the expressive power of probabilistic
justification logic by formalizing Kyburg’s lottery paradox in the language of PPJ.
In Chapter 4 we prove soundness and completeness results for the logics PJ and
PPJ. Since PJ and PPJ make use of an infinitary rule we have to employ the
Archimedean property for the real numbers in order to prove soundness. Com-
pleteness is proved by a canonical model construction.
In Chapter 5 we present decidability and complexity results for the satisfiability
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problem in the logics PJ and PPJ. For both logics we reduce the satisfiability
problem to solving a finite system of linear equations, which implies that the satis-
fiability problem is decidable. In the case of PJ we also establish some complexity
bounds.
We close the thesis with some discussion and ideas for further work in Chapter 6.
This thesis is entirely based on results from [Kok16, KOS16, KMOS15].
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Chapter 2

The Justification Logic J

In this section we present the basic justification logic J. We introduce its syntax
and semantics and recall some fundamental properties of J.

2.1 Syntax

The language of justification logic is obtained by extending the language of classical
propositional logic with formulas of the form t : α, which are called justification
assertions. In the formula t : α, t is a justification term, which is usually used
to represent evidence, and α is a justification formula, which is usually used to
represent statements or facts. t : α reads as t is a justification for believing α.
Justification terms are built from countably many constants and countably many
variables according to the following grammar:

t ::= c | x | (t · t) | (t+ t) | !t

where c is a constant and x is a variable. Tm denotes the set of all terms and Con
denotes the set of all constants. For any term t and any non-negative integer n we
define:

!0t := t and !n+1t := ! (!nt) .
We assume that ! has greater precedence than ·, which has greater precedence than
+. The operators · and + are assumed to be left-associative.
As already mentioned terms are used to provide justifications (or proofs) for formu-
las. Term constants are used as justifications for axioms, whereas term variables
are used as justifications for arbitrary formulas. The operator · can be used by
the agent to apply modus ponens (see axiom (J) in Figure 2.1.1), the operator +

9



10 CHAPTER 2. THE JUSTIFICATION LOGIC J

is used for concatenating proofs (see axiom (+) in Figure 2.1.1) and the operator
! is used for verifying evidence (see rule (AN!) in Figure 2.1.2). That is, if the
agent has a justification c for α then he has a justification !c for the fact that c is
a justification for α and so on.
Let Prop denote a countable set of atomic propositions. Formulas of the language
LJ (justification formulas) are built according to the following grammar:

α ::= p | ¬α | α ∧ α | t : α

where t ∈ Tm and p ∈ Prop. In the sequel we will use the Greek letters α, β, γ, . . .
for elements of LJ and the letter p for elements of Prop all of them possibly primed
or with subscripts. We will also use the symbol N to represent the set of all natural
numbers.
We define the following abbreviations in the standard way:

α ∨ β ≡ ¬(¬α ∧ ¬β) ;
α→ β ≡ ¬α ∨ β ;
α↔ β ≡ (α→ β) ∧ (β → α) ;

⊥ ≡ α ∧ ¬α, for some α ∈ LJ ;
> ≡ α ∨ ¬α, for some α ∈ LJ .

We assume that : and ¬ have higher precedence than ∧ and ∨, which have higher
precedence than → and ↔. Sometimes we will write α1, . . . , αn instead of
{α1} ∪ · · · ∪ {αn} as well as T, α instead of T ∪ {α} and X, Y instead of X ∪ Y .

Definition 2.1.1 (Logic). A logic over some language L is a formal system that
consists of a set of axiom schemata and inference rules together with a provability
relation and a satisfiability relation. We will use the symbols L, ` and |= to
describe a logic, a provability relation and a satisfiability relation respectively. All
the logics we are going to consider will be extensions of classical propositional
logic.

In Figure 2.1.1 we present the axiom schemata for the logic J. Axiom (J) is also
called the application axiom and is the justification logic analogue of the rule
modus ponens. It states that we can combine a justification for α → β and a
justification for α to obtain a justification for β. Axiom (+), which is also called
the monotonicity axiom, states that if u or v is a justification for α then the term
u+ v is also a justification for α.
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(P) finite set of axioms schemata axiomatizing classical
propositional logic in the language of LJ

(J) ` u : (α→ β)→ (v : α→ u · v : β)
(+) ` (u : α ∨ v : α)→ u+ v : α

Figure 2.1.1: Axioms Schemata for the Logic J

Let L be a logic. A constant specification for the logic L is any set CS that satisfies
the following condition:

CS ⊆
{

(c, α)
∣∣∣ c ∈ Con and α is an instance of some L-axiom scheme

}
.

As we will see later the constant specification determines some axiom instances
for which the logic provides justifications (without any proof).
A constant specification CS for a logic L will be called:
axiomatically appropriate: if for every instance of an L-axiom scheme, α, there

exists some constant c such that (c, α) ∈ CS, i.e. if every axiom of L is
justified by at least one constant.

schematic: if for every constant c the set{
α
∣∣∣ (c, α) ∈ CS

}
consists of all instances of several (possibly zero) axiom schemata, i.e. if
every constant specifies certain axiom schemata and only them.

decidable: if the set CS is decidable. In the sequel when we refer to a decidable
CS, we will always imply that CS is decidable in polynomial time.

finite: if CS is a finite set.

total: if for every term constant c and every axiom of L, (c, α) ∈ CS.
Let CS be any constant specification for the logic J. The deductive system JCS is
the Hilbert system obtained by adding to the axioms of J the rules modus ponens,
(MP), and axiom necessitation, (AN!), as one can see in Figure 2.1.2. Rule (AN!)
makes the connection between the constant specification and the proofs in JCS: if
(c, α) ∈ CS then we can prove that c is justification for α, that !c is a justification
for c : α and so on.



12 CHAPTER 2. THE JUSTIFICATION LOGIC J

axiom schemata of J
+

(MP) if T ` α and T ` α→ β then T ` β
(AN!) ` !nc : !n−1c : · · · : !c : c : α, where (c, α) ∈ CS and n ∈ N

Figure 2.1.2: System JCS

Let L be a logic. As usual T `L α means that the formula α is deducible (or
derivable) from the set of formulas T using the rules and axioms of L. When L is
clear from the context, it will be omitted. A formula α is a theorem (` A) if it is
deducible from the empty set.
Let L be a logic over the language L. A set T is said to be L-deductively closed for
L iff for every α ∈ L:

T `L α⇐⇒ α ∈ T.

2.2 Semantics

The models for the logic J which we are going to present in this section were in-
troduced by Mkrtychev [Mkr97] for the logic LP. Later Kuznets [Kuz00] adapted
these models for other justification logics (including J) and proved the correspond-
ing soundness and completeness theorems. The key notion about this semantics is
the notion of a CS-evaluation. We use T to represent the truth value “true” and F
to represent the truth value “false”. Let P(W ) denote the powerset of the set W .

Definition 2.2.1 (CS-Evaluation). Let L be a logic over some language L. Let
CS be any constant specification for L. A CS-evaluation, is a function ∗ that maps
atomic propositions to truth values and maps justification terms to subsets of L,
i.e.:

∗ : Prop→ {T,F} and
∗ : Tm→ P(L) ,

such that for u, v ∈ Tm, for a constant c and α ∈ L we have1:

(1)
(
α→ β ∈ u∗ and α ∈ v∗

)
=⇒ β ∈ (u · v)∗ ;

(2) u∗ ∪ v∗ ⊆ (u+ v)∗ ;
1We will usually write t∗ and p∗ instead of ∗(t) and ∗(p) respectively.
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(3) if (c, α) ∈ CS then for all n ∈ N we have2:

!n−1c : !n−2c : · · · :!c : c : α ∈ (!nc)∗ .

So, a model for JCS, or a JCS-model, is a CS-evaluation.
Remark 2.2.2. As we already mentioned, the justification logic J is the minimal
justification logic. Many justification logics can be defined by adding axioms to
the logic J [AF15]. As we can see in Definition 2.2.1 the conditions that a CS-
evaluation should satisfy, correspond only to the axioms of the logic J. Therefore, it
might be more appropriate to use the name JCS-evaluation instead of the name CS-
evaluation. However, this thesis aims to provide a first study of the combination of
probabilistic logic and justification logic. Therefore, we consider it useful to study
the smallest possible framework. As a consequence, our logics will not contain any
further justification axioms3 than the ones from the basic logic J. Thus, for our
purposes, the evaluation depends only on the constant specification CS.

Now we will define the binary relation |=.

Definition 2.2.3 (Truth under a CS-Evaluation). We define what it means for an
LJ-formula to hold under a CS-evaluation ∗ inductively as follows:

∗ |= p⇐⇒ p∗ = T for p ∈ Prop ;
∗ |= ¬α⇐⇒ ∗ 6|= α ;

∗ |= α ∧ β ⇐⇒
(
∗ |= α and ∗ |= β

)
;

∗ |= t : α⇐⇒ α ∈ t∗ .

Definition 2.2.4 (Satisfiability and Semantical Consequence in J). Let T ⊆ LJ,
let α ∈ LJ and let ∗ be a CS-evaluation.

• We say that ∗ satisfies α iff ∗ |= α holds.

• ∗ |= T means that ∗ satisfies all the members of the set T .

• We write T |=CS α (and read that α is a semantical consequence of T ) to
denote that for every CS-evaluation ∗, ∗ |= T implies ∗ |= α.

• α will be called JCS-satisfiable or CS-satisfiable (or even simply satisfiable, if
there is no danger of confusion) if there is a CS-evaluation that satisfies α.

2We agree to the convention that the formula !n−1c : !n−2c : · · · : !c : c : α represents the
formula α for n = 0.

3Of course our logics will contain probabilistic axioms as we will see later.
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We close the section by defining two important decision problems that are related
to the logic J.

Definition 2.2.5 (The JCS-Satisfiability Problem). Let CS be any constant speci-
fication for the logic J. The JCS-satisfiability problem or the satisfiability problem
in the logic JCS is the following decision problem:

for a given α ∈ LJ is α CS-satisfiable?

Definition 2.2.6 (The JCS-Derivability Problem). Let CS be any constant spec-
ification for the logic J. The JCS-derivability problem or the derivability problem
in the logic JCS is the following decision problem:

for a given α ∈ LJ, is there a proof for α in JCS?

2.3 Fundamental Properties

Internalization states that the logic internalizes the notion of its own proof, i.e.
when we have a proof in a logic, then a formula that “encodes” this proof is
provable in the logic. It is well known that internalization holds for the logic J. A
proof of the following theorem can be found in [KS12].

Theorem 2.3.1 (Internalization). Let CS be an axiomatically appropriate constant
specification for the logic J. For any formulas α, β1, . . . , βn ∈ LJ and terms
t1, . . . , tn, if:

β1, . . . , βn `JCS α

then there exists a term t such that:

t1 : β1, . . . , tn : βn `JCS t : α .

Observe that the version without premises is an explicit form of the necessitation
rule of modal logic. Theorem 2.3.1 is sometimes called constructive necessitation.
The deduction theorem is standard for justification logic [Art01]. Therefore, we
omit its proof here.

Theorem 2.3.2 (Deduction Theorem for J). Let T ⊆ LJ and let α, β ∈ LJ. Then
for any JCS we have:

T, α `JCS β ⇐⇒ T `JCS α→ β .

Last but not least, we have soundness and completeness of JCS with respect to
CS-evaluations [Art12, KS12].
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Theorem 2.3.3 (Soundness and Completeness of J). Let CS be any constant
specification for the logic J. Let α ∈ LJ. Then we have:

`JCS α ⇐⇒ |=CS α .

We close this chapter by recalling the procedure that decides the satisfiability
problem in the logic JCS.
The first algorithm for the satisfiability problem in justification logics was pre-
sented by Artemov [Art95] for a finite constant specification in the logic LP. Later
Mkrtychev [Mkr97] extended Artemov’s result for a total constant specification.
Mkrtychev’s result was reproved and generalized for other justification logics (in-
cluding J) by Kuznets [Kuz00]. Note that in [Kuz08] it is pointed out, that the
satisfiability algorithm for the logic J from [Kuz00] also holds for a decidable and
schematic constant specification.
Let CS be a decidable and schematic constant specification for the logic J. Kuznets’
algorithm for the JCS-satisfiability problem is divided in two parts: the saturation
algorithm and the completion algorithm. Let α ∈ LJ be the formula that is tested
for satisfiability.

• The saturation algorithm produces a set of requirements that should be
satisfied by any CS-evaluation that satisfies α. The saturation algorithm
operates in NP-time4.

• The completion algorithm determines whether a CS-evaluation that satisfies
α exists or not. The completion algorithm operates in coNP-time.

If the saturation and the completion algorithm are taken together, then we obtain
a Σp

2-algorithm for the JCS-satisfiability problem.
The most crucial question in the completion algorithm is to decide whether a
given term t ∈ Tm justifies a formula α ∈ LJ. At a first point it might look
that this problem is undecidable, since a given term may justify infinitely many
formulas. For example some constant c from the constant specification may justify
all the instances of an axiom scheme. This problem is solved by the fact that
we restrict the constant specification to be schematic and by the fact that the
logic J is axiomatized by finitely many axiom schemata. So, if we use schematic
variables for formulas and terms we will have that every term justifies finitely

4A reader unfamiliar with notions of computational complexity theory may consult a textbook
on the field, like [Pap94].
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many (schematic) formulas. Of course, in order to answer the question whether a
given term justifies some formula we need to find a set of formulas that belongs to
two different schemata. This question is naturally answered by finding the most
general unifier of the two schemata.
So, we have the following results.

Theorem 2.3.4. Let CS be a decidable and schematic constant specification for
the logic J. The JCS-satisfiabilty problem belongs to the complexity class Σp

2.

By a result from [Mil07] which was later strengthened in [BK12] and [Ach15] we
have the following theorem:

Theorem 2.3.5. Let CS be a decidable, schematic and axiomatically appropriate
constant specification for the logic J. The JCS-satisfiabilty problem belongs to the
complexity class Σp

2-hard.

By Theorems 2.3.4, 2.3.5 and 2.3.3 we get the following corollary:

Corollary 2.3.6. Let CS be a decidable, schematic and axiomatically appropriate
constant specification for the logic J. The JCS-satisfiability problem is Σp

2-complete
and the JCS-derivability problem is Πp

2-complete.



Chapter 3

Probabilistic Justification Logics

In this chapter we present two probabilistic justification logics: the logic PJ that
was introduced in [KMOS15] and the logic PPJ that was introduced in [KOS16].
We present syntax and semantics for these logics and also prove some properties
for them. We also illustrate the expressive power of probabilistic justification logic
by formalizing Kyburg’s famous lottery pardox [Kyb61] in the logic PPJ.

3.1 The Probabilistic Justification Logic PJ

The probabilistic justification logic PJ is a probabilistic logic over the basic jus-
tification logic J. In this section we present the syntax and semantics for this
logic.

Syntax

We will represent the set of all rational numbers with the symbol Q. If X and Y
are sets, we will sometimes write XY instead of X ∩ Y . We define S := Q[0, 1].
Thus, according to our notation S[0, t) denotes the set of all rational numbers
greater than or equal to 0 and strictly less than t.
The formulas of the language LPJ (the so called probabilistic formulas) are built
according to the following grammar:

A ::= P≥sα | ¬A | A ∧ A

where s ∈ S, and α ∈ LJ. The intended meaning of the the formula P≥sα is that
“the probability of truthfulness for the justification formula α” is at least s.

17
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We assume the same abbreviations and the same precedence for the propositional
connectives ¬,∧,∨,→,↔, as for the language LJ. However, we need to define a
bottom and a top element for the language LPJ. Hence, we define:

⊥ := A ∧ ¬A, for some A ∈ LPJ ;
> := A ∨ ¬A, for some A ∈ LPJ .

It will always be clear from the context whether ¬,∧,>,⊥, . . . refer to formulas
of LJ or LPJ. The operator P≥s is assumed to have greater precedence than all the
propositional connectives. We will also use the following syntactical abbreviations:

P<sα ≡ ¬P≥sα ;
P≤sα ≡ P≥1−s¬α ;
P>sα ≡ ¬P≤sα ;
P=sα ≡ P≥sα ∧ P≤sα .

We will use capital Latin letters like A, B, C, . . . for members of LPJ possibly
primed or with subscripts.
The axiom schemata of the logic PJ are presented in Figure 3.1.1. Axiom (PI)
corresponds to the fact that the probability of truthfulness of every justification
formula is at least 0. Observe that by substituting ¬α for α in (PI), we have P≥0¬α,
which by our syntactical abbreviations is P≤1α. Hence axiom (PI) also corresponds
to the fact that the probability of truthfulness of every justification formula is at
most 1. Axioms (WE) and (LE) describe some properties of inequalities. Axioms
(DIS) and (UN) correspond to the additivity of probabilities for disjoint events.

(P) finitely many axiom schemata axiomatizing
classical propositional logic in the language LPJ

(PI) ` P≥0α

(WE) ` P≤rα→ P<sα, where s > r

(LE) ` P<sα→ P≤sα

(DIS) ` P≥rα ∧ P≥sβ ∧ P≥1¬(α ∧ β)→ P≥min(1,r+s)(α ∨ β)
(UN) ` P≤rα ∧ P<sβ → P<r+s(α ∨ β), where r + s ≤ 1

Figure 3.1.1: Axioms Schemata of PJ

It is very important to note the different uses of axiom (P). As an axiom of J, (P)
contains all the propositional tautologies that are members of LJ, e.g. t : α→ t : α.
As an axiom of PJ, (P) contains all the propositional tautologies that are members
of LPJ, e.g. P≥s(t : α)→ P≥s(t : α).
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For any constant specification CS for the logic J the deductive system PJCS is
the deductive system obtained by adding to the axiom schemata of PJ the rules
(MP), (CE) and (ST) (see Figure 3.1.2). Rule (CE) makes the connection between
justification logic and probabilistic logic possible. It states that if a justification
formula is a validity, then it has probability 1. Rule (CE) can also be considered as
the probabilistic analogue of the necessitation rule for modal logics. The rule (ST)
intuitively states that if the probability of a justification formula is arbitrary close
to s, then it is at least s. Observe that the rule (ST) is infinitary in the sense that
it has an infinite number of premises. It corresponds to the Archimedean property
for the real numbers (see Proposition 4.1.1).
A proof of an LPJ-formula A from a set T of LPJ-formulas is a sequence of formulas
Ak indexed by countable ordinal numbers such that the last formula is A, and each
formula in the sequence is an axiom, or a formula from T , or it is derived from the
preceding formulas by a PJ-rule of inference.

axiom schemata of PJ
+

(MP) if T ` A and T ` A→ B then T ` B
(CE) if `JCS α then `PJCS P≥1α

(ST) if T ` A→ P≥s− 1
k
α for every integer k ≥ 1

s
and s > 0

then T ` A→ P≥sα

Figure 3.1.2: System PJCS

When we present proofs in a logic we are going to use the following abbreviations:
P.R.: it stands for “propositional reasoning”. E.g. when we have ` A → B we

can claim that by P.R. we get ` ¬B → ¬A. We can think of P.R. as an
abbreviation of the phrase “by some applications of (P) and (MP)”.

S.E.: it stands for “syntactical equivalence”. E.g. according to our syntactical
conventions the formulas P≥1−s(α ∨ β) and P≤s(¬α ∧ ¬β) are syntactically
equivalent. We will transform our formulas to syntactically equivalent ones
(using the syntactical abbreviations defined on Sections 2.1 and 3.1), in order
to increase readability of our proofs. We have to be very careful when we
apply S.E.. For example the formulas P≥s(¬α ∨ β) and P≥s(α → β) are
syntactically equivalent, whereas the formulas P≥sα and P≥s¬¬α are not.

i.h.: it stands for inductive hypothesis.
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Semantics

A model for some PJCS is a probability space. The universe of the probability
space is a set of models for the logic JCS (i.e. a set of CS-evaluations). In order to
determine the probability of a justification formula α in such a probability space
we have to find the measure of the set containing all the CS-evaluations that satisfy
α. The following definitions formalize the notions of a PJCS-model and the notion
of satisfiability in a PJCS-model.

Definition 3.1.1 (Algebra Over a Set). Let W be a non-empty set and let H be
a non-empty subset of P(W ). H will be called an algebra over W iff the following
hold:
• W ∈ H ;

• U, V ∈ H =⇒ U ∪ V ∈ H ;

• U ∈ H =⇒ W \ U ∈ H .

Definition 3.1.2 (Finitely Additive Measure). Let H be an algebra over W and
let µ : H → [0, 1]. We call µ a finitely additive measure iff the following hold:
(1) µ(W ) = 1 ;

(2) for all U, V ∈ H:

U ∩ V = ∅ =⇒ µ(U ∪ V ) = µ(U) + µ(V ) .

Definition 3.1.3 (Probability Space). A probability space is a triple

Prob = 〈W,H, µ〉 ,

where:
• W is a non-empty set ;

• H is an algebra over W ;

• µ : H → [0, 1] is a finitely additive measure.
The members of H are called measurable sets.

Definition 3.1.4 (PJCS-Model). Let CS be any constant specification for the logic
J. A model for PJCS or simply a PJCS-model is a structureM = 〈W,H, µ, ∗〉 where:
• 〈W,H, µ〉 is a probability space ;
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• ∗ is a function from W to the set of all CS-evaluations, i.e. ∗(w) is a CS-
evaluation for each world w ∈ W . We will usually write ∗w instead of ∗(w).

The notion of independent setsin a model is defined as usual.

Definition 3.1.5 (Independent Sets in a PJCS-Model). Let M = 〈W,H, µ, ∗〉 be
a model for some PJCS and let U, V ∈ H. U and V will be called independent in
M iff the following holds:

µ(U ∩ V ) = µ(U) · µ(V ) .

In order to determine the probability of a justification formula α, the set of worlds
satisfying α should be measurable. Therefore we need the notion of a measurable
model.

Definition 3.1.6 (Measurable Model). LetM = 〈W,H, µ, ∗〉 be a model for some
PJCS and let α ∈ LJ. We define the following set:

[α]M = {w ∈ W | ∗w |= α} .

We will omit the subscript M , i.e. we will simply write [α], if M is clear from
the context. A PJCS-model M = 〈W,H, µ, ∗〉 is measurable iff [α]M ∈ H for every
α ∈ LJ. The class of measurable PJCS-models will be denoted by PJCS,Meas.

We have the following standard properties of a finitely additive measure.

Lemma 3.1.7 (Properties of a Finitely Additive Measure). Let H be an algebra
over some set W , let µ : H → [0, 1] be a finitely additive measure and let U, V ∈ H.
Then the following hold:

(1) µ(U ∪ V ) + µ(U ∩ V ) = µ(U) + µ(V ) ;

(2) µ(U) + µ(W \ U) = 1 ;

(3) U ⊇ V =⇒ µ(U) ≥ µ(V ) .

Proof. Observe that since H is an algebra over W we have that U ∪ V , U ∩ V ,
W \ U , U \ V , and V \ U belong to H.
(1) We have:

µ(U ∪ V ) + µ(U ∩ V ) =
µ((U \ V ) ∪ (U ∩ V ) ∪ (V \ U)) + µ(U ∩ V ) .
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And since the sets (U \ V ), (U ∩ V ), (V \ U) are mutually disjoint we get:

µ(U ∪ V ) + µ(U ∩ V ) =
µ(U \ V ) + µ(U ∩ V ) + µ(V \ U) + µ(U ∩ V ) =
µ((U \ V ) ∪ (U ∩ V )) + µ((V \ U) ∪ (U ∩ V )) =
µ(U) + µ(V ) .

(2) It holds that:

1 = µ(W ) = µ(U ∪ (W \ U)) U∩(W\U)=∅= µ(U) + µ(W \ U) .

(3) Assume that U ⊇ V . We have that:

µ(U) = µ((U \ V ) ∪ V ) V ∩(U\V )=∅= µ(U \ V ) + µ(V ) .

And since µ(U \ V ) ≥ 0 we get µ(U) ≥ µ(V ).

Remark 3.1.8. Let M = 〈W,H, µ, ∗〉 be a model for some PJCS and let α, β ∈ LJ.
It holds:

[α ∨ β]M ={w ∈ W | ∗w |= α ∨ β} = {w ∈ W | ∗w |= α or ∗w |= β} =
{w ∈ W | ∗w |= α} ∪ {w ∈ W | ∗w |= β} = [α]M ∪ [β]M ;

[α ∧ β]M ={w ∈ W | ∗w |= α ∧ β} = {w ∈ W | ∗w |= α and ∗w |= β} =
{w ∈ W | ∗w |= α} ∩ {w ∈ W | ∗w |= β} = [α]M ∩ [β]M ;

[¬α]M ={w ∈ W | ∗w |= ¬α} = {w ∈ W | ∗w 6|= α} =
W \ {w ∈ W | ∗w |= α} = W \ [α]M .

Hence if M ∈ PJCS,Meas we get by Lemma 3.1.7:

µ([α ∨ β]M) + µ([α ∧ β]M) = µ([α]M) + µ([β]M) ;
µ([α]M) + µ([¬α]M) = 1 .

Definition 3.1.9 (Truth in a PJCS,Meas-model). Let CS be any constant specifica-
tion for the logic J. Let M = 〈W,H, µ, ∗〉 be a PJCS,Meas-model. We define what it
means for an LPJ-formula to hold in M inductively as follows:

M |= P≥sα⇐⇒ µ([α]M) ≥ s ;
M |= ¬A⇐⇒M 6|= A ;

M |= A ∧B ⇐⇒
(
M |= A and M |= B

)
.
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Definition 3.1.10 (Satisfiability and Semantical Consequence in PJ). Assume
that T ⊆ LPJ, let A ∈ LPJ and let M be a PJCS,Meas-model.

• We say that M satisfies A iff M |= A holds.

• M |= T means that that M satisfies all the members of the set T .

• We write T |=PJCS,Meas A (and read that A is a semantical consequence of T )
to denote that for every PJCS,Meas-model M , M |= T implies M |= A.

• A will be called PJCS,Meas-satisfiable (or simply satisfiable, if there is no dan-
ger of confusion) if there is some PJCS,Meas-model M that satisfies A.

We now define two important decision problems that are related to the logic PJ.

Definition 3.1.11 (The PJCS,Meas-Satisfiability Problem). Let CS be any constant
specification for the logic J. The PJCS,Meas-satisfiability problem or is the following
decision problem:

for a given A ∈ LPJ is A PJCS,Meas-satisfiable?

Definition 3.1.12 (The PJCS-Derivability Problem). Let CS be any constant spec-
ification for the logic J. The PJCS-derivability problem or the derivability problem
in the logic PJCS is the following decision problem:

for a given A ∈ LPJ, can we have a proof for A in PJCS?

Lemma 3.1.13 (Properties of the Class PJCS,Meas). Let CS be any constant speci-
fication for the logic J, let M = 〈W,H, µ, ∗〉 ∈ PJCS,Meas and let α ∈ LJ. Then the
following hold:

(1) M |= P≤sα⇐⇒ µ([α]) ≤ s ;

(2) M |= P<sα⇐⇒ µ([α]) < s ;

(3) M |= P>sα⇐⇒ µ([α]) > s ;

(4) M |= P=sα⇐⇒ µ([α]) = s .

Proof. (1) M |= P≤sα
S.E.⇐⇒M |= P≥1−s¬α

Definition 3.1.9⇐⇒

µ([¬α]) ≥ 1− s Remark 3.1.8⇐⇒
1− µ([α]) ≥ 1− s⇐⇒ µ([α]) ≤ s .
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(2) M |= P<sα
S.E.⇐⇒M |= ¬P≥sα⇐⇒M 6|= P≥sα

Definition 3.1.9⇐⇒ µ([α]) < s .

(3) M |= P>sα
S.E.⇐⇒M |= ¬P≤sα⇐⇒M 6|= P≤sα

(1)⇐⇒ µ([α]) > s .

(4) M |= P=sα
S.E.⇐⇒M |= P≥sα ∧ P≤sα⇐⇒(

M |= P≥sα and M |= P≤sα
) (1) and Definition 3.1.9⇐⇒(

µ([α]) ≥ s and µ([α]) ≤ s
)
⇐⇒ µ([α]) = s .

3.2 Properties of the Logic PJ

In this section we establish some theorems that prove useful properties for the
logic PJ.
First we have that the deduction theorem holds for the logic PJ.

Theorem 3.2.1 (Deduction Theorem for PJ). Let T ⊆ LPJ and assume that
A,B ∈ LPJ. Then for any PJCS we have:

T,A `PJCS B ⇐⇒ T `PJCS A→ B .

Proof. (⇐=): If T `PJCS A → B then we also have that T,A `PJCS A → B and
trivially T,A `PJCS A. Thus by a simple application of (MP) we have T,A `PJCS B.
(=⇒): By transfinite induction on the depth of the proof T,A `PJCS B. We
distinguish cases depending on the last rule used to obtain B from T,A:

1. Assume that B = A. Then A → B is an instance of (P). Thus we trivially
have T `PJCS A→ B.

2. Assume that B ∈ T or B is an axiom of PJCS. Then B → (A → B) is an
instance of (P). Thus T `PJCS B → (A→ B). We also have that T `PJCS B.
By an application of (MP) we get T `PJCS A→ B.

3. Assume that B is the result of an application of the rule (MP). That means
there exists a C such that:

T,A `PJCS C

T,A `PJCS C → B .
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By the inductive hypothesis we get:

T `PJCS A→ C

T `PJCS A→ (C → B) .

And by P.R. we have:
T `PJCS A→ B .

4. Assume that B is the result of an application of (CE). That means there
exists α ∈ LJ such that B = P≥1α and also `JCS α. Hence we have:

`JCS α (3.1)
`PJCS P≥1α [(3.1), (CE)] (3.2)
`PJCS P≥1α→ (A→ P≥1α) [(P)] (3.3)
`PJCS A→ P≥1α [(3.2), (3.3), (MP)]

T `PJCS A→ B .

5. Assume that B is the result of an application of (ST). That means that
B = C → P≥sα and also for some positive s ∈ S:

T,A `PJCS C → P≥s− 1
k
α, for every integer k ≥ 1

s
.

Thus we have:

T `PJCS A→ (C → P≥s− 1
k
α), for every integer k ≥ 1

s
[i.h.] (3.4)

T `PJCS (A ∧ C)→ P≥s− 1
k
α, for every integer k ≥ 1

s
[(3.4),P.R.] (3.5)

T `PJCS (A ∧ C)→ P≥sα [(3.5), (ST)] (3.6)
T `PJCS A→ (C → P≥sα) [(3.6),P.R.] (3.7)
T `PJCS A→ B . [(3.7),S.E.]

The following theorem states that if α → β is a theorem of some JCS, then PJCS
proves that β is at least as probable as α. It is interesting to observe that this
property resembles the application axiom in modal and justification logics (and of
course also the rule modus ponens). The theorem also states some monotonicity
properties of inequalities that can be prove in PJCS.

Lemma 3.2.2. For any PJCS the following hold:

(i) `PJCS P≥1(α→ β)→ (P≥sα→ P≥sβ) ;
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(ii) If `JCS α→ β then `PJCS P≥sα→ P≥sβ ;

(iii) if s > r then `PJCS P≥sα→ P>rα ;

(iv) `PJCS P>rα→ P≥rα ;

(v) if r ≥ s then `PJCS P≥rα→ P≥sα .

Proof. All items are proved by purely syntactical arguments:

(i) `JCS ¬(α ∧ ⊥) [(P)] (3.8)
`PJCS P≥1¬(α ∧ ⊥) [(3.8), (CE)] (3.9)
`JCS (¬α ∧ ¬⊥) ∨ ¬¬α [(P)] (3.10)
`PJCS P≥1

(
(¬α ∧ ¬⊥) ∨ ¬¬α

)
[(3.10), (CE)] (3.11)

`PJCS

(
P≥sα ∧ P≥0⊥ ∧ P≥1¬(α ∧ ⊥)

)
→ P≥s(α ∨ ⊥) [(DIS)] (3.12)

`PJCS P≥0⊥ [(PI)] (3.13)
`PJCS

(
P≥sα ∧ P≥0⊥

)
→ P≥s(α ∨ ⊥) [(3.9), (3.12),P.R.] (3.14)

`PJCS P≥sα→ P≥s(α ∨ ⊥) [(3.13), (3.14),P.R.] (3.15)
`PJCS

(
P≤1−s(¬α ∧ ¬⊥) ∧ P<s¬¬α

)
→ P<1

(
(¬α ∧ ¬⊥) ∨ ¬¬α

)
(UN) (3.16)

`PJCS ¬¬P≥1
(
(¬α ∧ ¬⊥) ∨ ¬¬α

)
[(3.11),P.R.] (3.17)

`PJCS ¬P<1
(
(¬α ∧ ¬⊥) ∨ ¬¬α

)
[(3.17),S.E.] (3.18)

`PJCS ¬
(
P≤1−s(¬α ∧ ¬⊥) ∧ P<s¬¬α

)
[(3.16), (3.18),P.R.] (3.19)

`PJCS P≤1−s(¬α ∧ ¬⊥)→ ¬P<s¬¬α [(3.19),P.R.] (3.20)
`PJCS P≤1−s(¬α ∧ ¬⊥)→ ¬¬P≥s¬¬α [(3.20),S.E.] (3.21)
`PJCS P≤1−s(¬α ∧ ¬⊥)→ P≥s¬¬α [(3.21),P.R.] (3.22)
`PJCS P≥s(α ∨ ⊥)→ P≥s¬¬α [(3.22),S.E.] (3.23)
`PJCS P≥sα→ P≥s¬¬α [(3.15), (3.23),P.R.] (3.24)
`PJCS ¬

(
P≥1(α→ β)→ (P≥sα→ P≥sβ)

)
→

P≥1(α→ β) ∧ P≥sα ∧ ¬P≥sβ [(P)] (3.25)
`PJCS ¬

(
P≥1(α→ β)→ (P≥sα→ P≥sβ)

)
→
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P≥1(α→ β) ∧ P≥s¬¬α ∧ ¬P≥sβ [(3.24), (3.25),P.R.] (3.26)
`PJCS ¬

(
P≥1(α→ β)→ (P≥sα→ P≥sβ)

)
→

P≥1(¬α ∨ β) ∧ P≤1−s¬α ∧ P<sβ [(3.26),S.E.] (3.27)
`PJCS P≤1−s¬α ∧ P<sβ → P<1(¬α ∨ β) [(UN)] (3.28)
`PJCS ¬

(
P≥1(α→ β)→ (P≥sα→ P≥sβ)

)
→(

P≥1(¬α ∨ β) ∧ P<1(¬α ∨ β)
)

[(3.27), (3.28),P.R.] (3.29)

`PJCS ¬
(
P≥1(α→ β)→ (P≥sα→ P≥sβ)

)
→(

P≥1(¬α ∨ β) ∧ ¬P≥1(¬α ∨ β)
)

[(3.29),S.E.] (3.30)
`PJCS P≥1(α→ β)→ (P≥sα→ P≥sβ) . [(3.30),P.R.]

(ii) `JCS α→ β (3.31)
`PJCS P≥1(α→ β) [(3.31), (CE)] (3.32)
`PJCS P≥1(α→ β)→ (P≥sα→ P≥sβ) [(i)] (3.33)
`PJCS P≥sα→ P≥sβ . [(3.32), (3.33), (MP)]

(iii) `PJCS P≤rα→ P<sα [(WE)] (3.34)
`PJCS ¬P<sα→ ¬P≤rα [(3.34),P.R.] (3.35)
`PJCS ¬¬P≥sα→ P>rα [(3.35),S.E.] (3.36)
`PJCS P≥sα→ P>rα . [(3.36),P.R.]

(iv) `PJCS P<rα→ P≤rα [(LE)] (3.37)
`PJCS ¬P≤rα→ ¬P<rα [(3.37),P.R.] (3.38)
`PJCS P>rα→ ¬¬P≥rα [(3.38),S.E.] (3.39)
`PJCS P>rα→ P≥rα . [(3.39),P.R.]

(v) If r = s then we have that P≥rα → P≥sα is an instance of (P). If r > s we
have the following:

`PJCS P≥rα→ P>sα [(iii)] (3.40)
`PJCS P>sα→ P≥sα [(iv)] (3.41)
`PJCS P≥rα→ P≥sα . [(3.40), (3.41),P.R.]

Internalization states that the logic internalizes the notion of its own proof, i.e.
when we have a proof in a logic, then a formula that “encodes” this proof is provable
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in the logic. In probabilistic internalization we have the same property, but with
a form of uncertainty in the premises. Many forms of probabilistic internalization
can be proved for the logic PJ. Theorem 3.2.3 states two of them. Item (1)
of Theorem 3.2.3 states that if we have uncertainty for the conjunction of the
premises, this uncertainty is passed to the result, whereas item (2) of Theorem 3.2.3
states that uncertainty in a single premise is again passed to the result.

Theorem 3.2.3 (Probabilistic Internalization). Let CS be an axiomatically ap-
propriate constant specification for the logic J. For any α, β1, . . . , βn ∈ LJ,
t1, . . . , tn ∈ Tm and s ∈ S, if:

β1, . . . , βn `JCS α

then there exists a term t such that:

(1) P≥s(t1 : β1 ∧ . . . ∧ tn : βn) `PJCS P≥s(t : α) ;

(2) for every i ∈ {1, . . . , n}:{
P≥1(tj : βj)

∣∣∣ j 6= i
}
, P≥s(ti : βi) `PJCS P≥s(t : α) .

Proof. By Theorem 2.3.1 we find that there exists a term t such that:

t1 : β1, . . . , tn : βn `JCS t : α .

By repeatedly applying Theorem 2.3.2 we get:

`JCS t1 : β1 → ( . . . → (tn−1 : βn−1 → (tn : βn → t : α)) . . . ) . (3.42)

So we have:
(1) By statement (3.42) and P.R. we get:

`JCS

(
t1 : β1 ∧ . . . ∧ tn : βn

)
→ t : α .

By Lemma 3.2.2(ii):

`PJCS P≥s
(
t1 : β1 ∧ . . . ∧ tn : βn

)
→ P≥s

(
t : α

)
and by Theorem 3.2.1:

P≥s
(
t1 : β1 ∧ . . . ∧ tn : βn

)
`PJCS P≥s

(
t : α

)
.

(2) Let i ∈ {1, . . . , n} and {j1, . . . , jn−1} = {1, . . . , n} \ i. By statement (3.42) and
P.R. we get:

`JCS tj1 : βj1 → ( . . . → (tjn−1 : βjn−1 → (ti : βi → t : α)) . . .) .
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By (CE) we get:

`PJCS P≥1

(
tj1 : βj1 → ( . . . → (tjn−1 : βjn−1 → (ti : βi → t : α)) . . .)

)
.

By repeatedly applying Lemma 3.2.2(i) and P.R. we get:
`PJCSP≥1(tj1 : βj1)→ ( . . . → (P≥1(tjn−1 : βjn−1)→ (P≥s(ti : βi)→

P≥s(t : α))) . . .) .
And by repeatedly applying Theorem 3.2.1 we get:

P≥1
(
tj1 : βj1

)
, . . . , P≥1

(
tjn−1 : βjn−1

)
, P≥s

(
ti : βi

)
`PJCS P≥s

(
t : α

)
i.e. {

P≥1(tj : βj)
∣∣∣ j 6= i

}
, P≥s(ti : βi) `PJCS P≥s(t : α) .

Remark 3.2.4. If we consider the formulation of probabilistic internalization with-
out premises, then for an axiomatically appropriate CS we obtain that:

`JCS α implies `PJCS P≥1(t : α) for some term t.
The above rule contains a combination of constructive and probabilistic necessita-
tion.

We close this section by presenting a semantical characterization of independence
in the system PJ. It seems that a syntactical characterization of independence is
impossible in PJ.
Theorem 3.2.5. Let CS be a constant specification for the logic J. Let u, v ∈ Tm,
let α, β ∈ LJ and let M be a PJCS,Meas-model. Assume that [u : (α → β)]M and
[v : α]M are independent in M . Then for any r, s ∈ S we have:

M |= P≥r(u : (α→ β))→
(
P≥s(v : α)→ P≥r·s(u · v : β)

)
.

Proof. Assume that M = 〈W,H, µ, ∗〉.
Let w ∈ [u : (α → β)] ∩ [v : α]. We have that ∗w |= u : (α → β) and that
∗w |= v : α. Since ∗w is a CS-evaluation, by Theorem 2.3.3 we get that ∗w satisfies
all instances of axiom (J), i.e. ∗w |= u : (α → β) → (v : α → u · v : β). Hence we
have ∗w |= u · v : β, i.e. w ∈ [u · v : β]. So we proved that [u : (α→ β)] ∩ [v : α] ⊆
[u · v : β]. So by Lemma 3.1.7(3) we get:

µ
(
[u · v : β]

)
≥ µ

(
[u : (α→ β)] ∩ [v : α]

)
.

And since [u : (α→ β)] and [v : α] are independent in M we have:

µ
(
[u · v : β]

)
≥ µ

(
[u : (α→ β)]

)
· µ
(
[v : α]

)
. (3.43)

Assume that:



30 CHAPTER 3. PROBABILISTIC JUSTIFICATION LOGICS

M |= P≥r(u : (α→ β)) and M |= P≥s(v : α), i.e.
µ
(
[u : (α→ β)]

)
≥ r and µ

(
[v : α]

)
≥ s .

By inequality (3.43) we have µ
(
[u · v : β]

)
≥ r · s, i.e. M |= P≥r·s(u · v : β). Hence

we proved that:

M |= P≥r(u : (α→ β))→
(
P≥s(v : α)→ P≥r·s(u · v : β)

)
.

3.3 The Probabilistic Justification Logic PPJ

Observe that the language of PJ does neither include justification operators over
probability operators (e.g. t : (P≥sA)) nor iterations of the probability operator
(e.g. P≥r(P≥sA)). In this section, we present a logic over a language that remedies
these shortcomings. The logic PPJ [KOS16] allows formulas of the form t : (P≥sA)
as well as P≥r(P≥sA). This explains the name PPJ: the two P ’s refer to iterated
P -operators. Since we can have justification over probabilities it is possible to
extend the notion of constant specification. A constant specification for the logic
PPJ will contain instances of the justification as well as the probabilistic axioms
(see Figure 3.3.1).

Syntax

The language LPPJ is defined by the following grammar:

A ::= p | P≥sA | ¬A | A ∧ A | t : A

where t ∈ Tm, s ∈ S and p ∈ Prop. For the language LPPJ we assume the same
abbreviations as for the language LPJ.
The axiom schemata of the logic PPJ are presented in Figure 3.3.1.
Let CS be any constant specification for the logic PPJ. The deductive system
PPJCS is the Hilbert system obtained by adding to the axiom schemata of PPJ the
rules (MP), (CE), (ST) and (AN!) as given in Figure 3.3.2.
As we can see, the axiomatization for PPJCS is simply a combination of the axioma-
tization for PJCS and the axiomatization for JCS. However, the version of rule (CE)
that is used for the logic PPJ deserves some comment. As the reader can recall,
rule (CE) has also been used in the axiomatization of the logic PJ, with different
condition on the premise: when we have `JCS α, then we can prove `PJCS P≥1α.
The reason why formula α has to be a theorem of JCS is clear since the premise
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(P) finitely many axiom schemata in the language of LPPJ

axiomatizing classical propositional logic
(J) ` u : (A→ B)→ (v : A→ u · v : B)
(+) (` u : A ∨ v : A)→ u+ v : A
(PI) ` P≥0A

(WE) ` P≤rA→ P<sA, where s > r

(LE) ` P<sA→ P≤sA

(DIS) ` P≥rA ∧ P≥sB ∧ P≥1¬(A ∧B)→ P≥min(1,r+s)(A ∨B)
(UN) ` P≤rA ∧ P<sB → P<r+s(A ∨B), where r + s ≤ 1

Figure 3.3.1: Axiom Schemata of PPJ

axiom schemata of PPJ
+

(AN!) ` !nc : !n−1c : · · · : !c : c : A, where (c, A) ∈ CS and n ∈ N
(MP) if T ` A and T ` A→ B then T ` B
(CE) if ` A then ` P≥1A

(ST) if T ` A→ P≥s− 1
k
B for every integer k ≥ 1

s
and s > 0

then T ` A→ P≥sB

Figure 3.3.2: System PPJCS

of the rule is proved in a different logic than the result of the rule. In the case
of PPJ one could argue that rule (CE) could be formulated without the condition
that the premise is a theorem, since there is only one logical system (the system
PPJ) involved. However, it turns out the Deduction Theorem (Theorem 3.3.9)
cannot be proved without this condition. That is why we have the condition that
the premise of the rule (CE) is a theorem in PPJ.

Semantics

A PPJCS-model is a combination of a PJCS-model and a JCS-model. It consists of
a probability space, where to every possible world a CS- evaluation as well as a
probability space is assigned. This way we can deal with iterated probabilities and
justifications over probabilities.
We proceed by formally defining the notion of a PPJCS-model and the notion of
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satisfiability in PPJCS-models.

Definition 3.3.1 (PPJCS-Model). Let CS be a constant specification for the logic
PPJ. A PPJCS-model is a quintuple M = 〈U,W,H, µ, ∗〉 where:

1. U is a non-empty set of objects called worlds;

2. W,H, µ and ∗ are functions, which have U as their domain, such that for
every w ∈ U :

• 〈W (w), H(w), µ(w)〉 is a probability space with W (w) ⊆ U ;

• ∗w is a CS-evaluation1.

The ternary satisfaction relation |= is defined between models, worlds, and formu-
las.

Definition 3.3.2 (Truth in a PPJCS-model). Let CS be a constant specification
for the logic PPJ and letM = 〈U,W,H, µ, ∗〉 be a PPJCS-model. We define what it
means for an LPPJ-formula to hold in M at a world w ∈ U inductively as follows:

M,w |= p ⇐⇒ p∗w = T for p ∈ Prop ;

M,w |= P≥sB ⇐⇒
(

[B]M,w ∈ H(w) and µ(w)
(
[B]M,w

)
≥ s

)
where [B]M,w = {x ∈ W (w) | M,x |= B} ;

M,w |= ¬B ⇐⇒ M,w 6|= B ;
M,w |= B ∧ C ⇐⇒

(
M,w |= B and M,w |= C

)
;

M,w |= t : B ⇐⇒ B ∈ t∗w .

Measurable models are defined as expected.

Definition 3.3.3 (Measurable Model). Let CS be a constant specification for the
logic PPJ and let M = 〈U,W,H, µ, ∗〉 be a PPJCS-model. M is called measurable
iff for every w ∈ U and for every A ∈ LPPJ:

[A]M,w ∈ H(w) .

PPJCS,Meas denotes the class of PPJCS-measurable models.

1We will usually write ∗w instead of ∗(w).
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Remark 3.3.4. In Definition 3.3.2, the condition for the truth of P≥sB may have
some “strange” consequences. For example, we may have M,w |= ¬P≥sB when
[B]M,w /∈ H(w). However, this condition becomes “normal” for measurable models,
i.e. for a measurable model M = 〈U,W,H, µ, ∗〉 we have:

M,w |= P≥sB ⇐⇒ µ(w)
(
[B]M,w

)
≥ s .

Since we are going to use only measurable models, the “strange” consequences of
Definition 3.3.2 will not be important for us.

Definition 3.3.5 (Semantical Consequence and Satisfiability in PPJ). Let T be
a subset of LPPJ, let A ∈ LPPJ and let M = 〈U,W,H, µ, ∗〉 be a PPJCS,Meas-model.

• We say that A is satisfied in the world w ∈ U iff M,w |= A.

• We say that A is satisfied in the model M iff there is a world w ∈ U , such
that M,w |= A.

• We say that A is PPJCS,Meas-satisfiable (or simply satisfiable, if there is no
danger of confusion) iff there exists a PPJCS,Meas-model where A is satisfied.

• We write M,w |= T if and only if:

(∀A ∈ T )
[
M,w |= A

]
.

• We say that A is a semantical consequence of T (we write T |=PPJCS,Meas A)
iff for every PPJCS,Meas-model M and for for every world w of M :

M,w |= T =⇒M,w |= A .

Remark 3.3.6. Let T ⊆ PPJ, let A ∈ PPJ and let M be some PPJCS,Meas-model.
The notion of semantical consequence defined in Definition 3.3.5 is usually called
local semantical consequence, since it is required that A holds in some world of M
if T holds in the same world of M . A notion of global semantical consequence can
also be defined, where, given some model M , A has to hold in all worlds of M , if
T holds in all worlds of M . However, in this thesis we will use only the notion of
local semantical consequence.

We now define two important decision problems that are related to the logic PJ.

Definition 3.3.7 (The PPJCS,Meas-Satisfiability Problem). Let CS be any con-
stant specification for the logic PPJ. The PPJCS,Meas-satisfiability problem is the
following decision problem:
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for a given A ∈ LPPJ is A PPJCS,Meas-satisfiable?

Definition 3.3.8 (The PPJCS-Derivability Problem). Let CS be any constant spec-
ification for the logic PPJ. The PPJCS-derivability problem or the derivability
problem in the logic JCS is the following decision problem:

for a given A ∈ LPPJ, is there a proof for A in PPJCS?

Finally we have the deduction theorem for PPJ. Its proof is almost identical with
the proof of the deduction theorem for the logic PJ. The only modifications concern
the justification axioms and the rule (AN!) that belong to the axiomatics of PPJ
and not to the axiomatics of PJ. However, these modifications are trivial, thus we
present the deduction theorem for PPJ without a proof.

Theorem 3.3.9 (Deduction Theorem for PPJ). Let T ⊆ LPPJ and A,B ∈ LPPJ.
For any PPJCS we have:

T,A `PPJCS B ⇐⇒ T `PPJCS A→ B .

3.4 Application to the Lottery Paradox

Kyburg’s famous lottery paradox [Kyb61] goes as follows. Consider a fair lottery
with 1000 tickets that has exactly one winning ticket. Now assume a proposition
is believed if and only if its degree of belief is greater than 0.99. In this setting
it is rational to believe that ticket 1 does not win, it is rational to believe that
ticket 2 does not win, and so on. However, this entails that it is rational to believe
that no ticket wins because rational belief is closed under conjunction. Hence it is
rational to believe that no ticket wins and that one ticket wins.
PPJCS makes the following analysis of the lottery paradox possible. First we need
a principle to move from degrees of belief to rational belief (this formalizes what
Foley [Fol09] calls the Lockean thesis): we suppose that for each term t, there
exists a term pb(t) such that:

t : (P>0.99A) → pb(t) : A . (3.44)

Let wi be the proposition ticket i wins. For each 1 ≤ i ≤ 1000, there is a term ti
such that ti :

(
P= 999

1000
¬wi

)
holds. Hence by statement (3.44) we get

pb(ti) : ¬wi for each 1 ≤ i ≤ 1000. (3.45)
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Now if CS is an axiomatically appropriate constant specification for PPJ, then

s1 : A ∧ s2 : B → con(s1, s2) : (A ∧B) (3.46)

is a valid principle (for a suitable term con(s1, s2)) in the semantics of PPJCS.
Hence by statement (3.45) we conclude that

there exists a term t with t : (¬w1 ∧ · · · ∧ ¬w1000) , (3.47)

which leads to a paradoxical situation since it is also believed that one of the
tickets wins.
In PPJCS we can resolve this problem by restricting the constant specification such
that (3.46) is valid only if con(s1, s2) does not contain two different subterms of
the form pb(t). Then the step from (3.45) to (3.47) is no longer possible and we
can avoid the paradoxical belief.
This analysis is inspired by Leitgeb’s [Lei14] solution to the lottery paradox and
his Stability Theory of Belief according to which it is not permissible to apply
the conjunction rule for beliefs across different contexts. Our proposed restriction
of (3.46) is one way to achieve this in a formal system. A related and very interest-
ing question is whether one can interpret the above justifications ti as stable sets
in Leitgeb’s sense. Of course, our discussion of the lottery paradox is very sketchy
but we think that probabilistic justification logic provides a promising approach
to it that is worth further investigations.
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Chapter 4

Soundness and Completeness

In this chapter we present soundness and strong completeness theorems for the
logics PJ and PPJ. The soundness theorems (in Section 4.1) are proved by a
transfinite induction on the depth of the proof. The strong completeness theorems
(in Sections 4.2 and 4.3) are obtained by applying the standard Henkin procedure.

4.1 Soundness

In order to prove the soundness theorems we need the Archimedean property for
the real numbers.

Proposition 4.1.1 (Archimedean Property for the Real Numbers). For any real
number ε > 0 there exists an n ∈ N such that 1

n
< ε.

The following theorem states that any PJCS is sound with respect to the class
PJCS,Meas.

Theorem 4.1.2 (Soundness for PJ). Let T ⊆ LPJ and let A ∈ LPJ. Then for any
constant specification CS for the logic J we have:

T `PJCS A =⇒ T |=PJCS,Meas A .

Proof. Let T ⊆ LPJ and let A ∈ LPJ. We prove the claim by transfinite induction
on the depth of the derivation T `PJCS A. Let M = 〈W,H, µ, ∗〉 ∈ PJCS,Meas. We
assume that M |= T . We distinguish the following cases:

(1) A ∈ T . Then M satisfies A by assumption.

37
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(2) A is an instance of (P). Then obviously M satisfies A.

(3) A is an instance of (PI). This means:

A = P≥0α .

Since µ : H → [0, 1] and [α] ∈ H we have µ([α]) ≥ 0, i.e. M |= P≥0α, i.e.
M |= A.

(4) A is an instance of (WE). That means:

A = P≤rα→ P<sα, with s > r .

We have:

M |= A ⇐⇒(
M |= P≤rα =⇒M |= P<sα

) Lemma 3.1.13(2)⇐⇒(
µ([α]) ≤ r =⇒ µ([α]) < s

)
The last statement is true since r < s. Thus M |= A.

(5) A is an instance of (LE). Similar to case (4).

(6) A is an instance of (DIS). Then we have:

A =
(
P≥rα ∧ P≥sβ ∧ P≥1¬(α ∧ β)

)
→ P≥min(1,r+s)(α ∨ β) .

It holds:

M |= A ⇐⇒

M |=
(
P≥rα ∧ P≥sβ ∧ P≥1¬(α ∧ β)

)
→ P≥min(1,r+s)(α ∨ β) S.E.⇐⇒

M |=
(
P≥rα ∧ P≥sβ ∧ P≤0(α ∧ β)

)
→ P≥min(1,r+s)(α ∨ β) .

By Lemma 3.1.13(2) the last statement is equivalent to:(
µ([α]) ≥ r and µ([β]) ≥ s and µ([α ∧ β]) ≤ 0

)
=⇒

µ([α ∨ β]) ≥ min(1, r + s) .

Let µ([α]) ≥ r, µ([β]) ≥ s and µ([α ∧ β]) ≤ 0. By Remark 3.1.8 we have:
µ([α ∨ β]) = µ([α]) + µ([β]) − µ([α ∧ β]) ≥ r + s. Since µ([α ∨ β]) ≤ 1 we
have µ([α ∨ β]) ≥ min(1, r + s). Thus, the last of the above statements is
true, so M |= A.
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(7) A is an instance of (UN). Then we have:

A =
(
P≤rα ∧ P<sβ

)
→ P<r+s(α ∨ β), r + s ≤ 1 .

We have:

M |= A ⇐⇒(
M |=

(
P≤rα ∧ P<sβ

)
→ P<r+s(α ∨ β)

) Lemma 3.1.13⇐⇒((
µ([α]) ≤ r and µ([β]) < s

)
=⇒ µ([α ∨ β]) < r + s

)
.

Assume that µ([α]) ≤ r and µ([β]) < s. By Remark 3.1.8 we have that
µ([α∨β]) = µ([α])+µ([β])−µ([α∧β]) < r+s−µ([α∧β]). Since µ([α∧β]) ≥ 0
we have µ([α ∨ β]) < r + s. Thus, the last of the above statements is true,
so M |= A.

(8) A is obtained by an application of the rule (MP). Thus, there exists some
B ∈ LPJ such that T `PJCS B and T `PJCS B → A. By the inductive
hypothesis we have that M |= B and M |= B → A. Thus M |= A.

(9) A is obtained by an application of the rule (CE). That means A = P≥1α and
also `JCS α for some α ∈ LJ. By Theorem 2.3.3 we have |=CS α, which implies
that (∀w ∈ W )[∗w |= α], i.e. [α] = W . Thus µ([α]) = 1, i.e. M |= P≥1α.

(10) A is obtained by an application of (ST). That means A = B → P≥sβ for
s > 0 and also T `PJCS B → P≥s− 1

k
β for every integer k ≥ 1

s
. By the inductive

hypothesis we have that M |= B → P≥s− 1
k
β for every integer k ≥ 1

s
.

Assume that M |= B. This implies that for every integer k ≥ 1
s
we have

M |= P≥s− 1
k
β, i.e.

µ([β]) ≥ s− 1
k

for every integer k ≥ 1
s
. (4.1)

Assume that µ([β]) < s, i.e. s − µ([β]) > 0. By the Archimedean property
for the real numbers we know that there exists some integer n such that
1
n
< s − µ([β]), which implies n > 1

s−µ([β]) ≥
1
s
since s > µ([β]) ≥ 0. Hence,

there exists some n ≥ 1
s
with µ([β]) < s− 1

n
, which contradicts (4.1). Thus

µ([β]) ≥ s, i.e. M |= P≥sβ. So, we proved that M |= B implies M |= P≥sβ.
As a consequence we have that M |= A.

In a very similar way we can prove that any PPJCS is sound with respect to the
class PPJCS,Meas.
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Theorem 4.1.3 (Soundness for PPJ). Let CS be any constant specification for the
logic PPJ. Then the following holds:

(∀A ∈ LPPJ)(∀T ⊆ LPPJ)
[
T `PPJCS A =⇒ T |=PPJCS A

]
.

Proof. Let A ∈ LPPJ. Then our goal is to show the following statement:

(∀T ⊆ LPPJ)
[
T `PPJCS A =⇒ T |=PPJCS A

]
.

The proof is done by transfinite induction on the depth of the PPJCS-derivation
for A. Since the cases for the probabilistic axioms and rules are similar to the ones
from Theorem 4.1.2, here we show only the cases for the justification axioms and
rules plus the case for the rule (CE) which is slightly different:

• A is an instance of (J). That means:

A ≡ u : (B → C)→ (v : B → u · v : C) .

Let
M = 〈U,W,H, µ, ∗〉 ∈ PPJCS,Meas

and let w ∈ U be such that M,w |= T . Our goal is to show that M,w |= A.
The following statements are equivalent:

M,w |= A

M,w |= u : (B → C)→ (v : B → u · v : C)[(
M,w |= u : B → C

)
and

(
M,w |= v : B

)]
=⇒M,w |= u · v : C(

B → C ∈ u∗w
)
and

(
B ∈ v∗w

)
=⇒ C ∈ (u · v)∗w .

The last statement is true according to Definition 2.2.1, hence M,w |= A.

• A is an instance of (+). This means

A ≡ (u : B ∨ v : B)→ u+ v : B .

Let
M = 〈U,W,H, µ, ∗〉 ∈ PPJCS,Meas

and let w ∈ U be such that M,w |= T . Our goal is to show that M,w |= A.
The following statements are equivalent:

M,w |= A(
M,w |= u : B or M,w |= v : B

)
=⇒M,w |= (u+ v) : B(

B ∈ u∗w or B ∈ v∗w
)

=⇒ B ∈ (u+ v)∗w .
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The last statement is true according to Definition 2.2.1, hence

M,w |= A .

• A is an instance of (AN!). This means:

A = !nc : !n−1c : · · · : !c : c : B

where (c, A) ∈ CS and n ∈ N. Let

M = 〈U,W,H, µ, ∗〉 ∈ PPJCS,Meas

and let w ∈ U be such that M,w |= T . Our goal is to show that M,w |= A.
We know that ∗w is a CS-evaluation, thus according to Definition 2.2.1 we
get:

!n−1c : · · · : !c : c : B ∈ (!nc)∗w
i.e.

∗w |= !nc : !n−1c : · · · : !c : c : B

Thus M,w |= A.

• A is obtained by an application of (CE). That means A ≡ P≥1B and also
`PPJCS B. Let

M = 〈U,W,H, µ, ∗〉 ∈ PPJCS,Meas

and let w ∈ U be such that M,w |= T . Our goal is to show that M,w |= A.
By i.h. we have that ∅ |= B, i.e. (∀M ′)(∀x)[M ′, x |= B]. In particular we
have that for all x ∈ U , M,x |= B. So

[B]M,w = {x ∈ W (w) | M,x |= B} = W (w) ,

since W (w) ⊆ U . Thus µ(w)([B]M,w) = 1, i.e. M,w |= P≥1B, i.e.

M,w |= A .

4.2 Strong Completeness for PJ

In this section constant specifications are always assumed to be constant specifi-
cations for the logic J.
In this section we present a strong completeness theorem for the logic PJ, which
is obtained by the standard Henkin procedure, i.e. by a canonical model con-
struction. As we mentioned in the introduction, our logic would not be strongly
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complete without the infinitary rule (ST), since the probabilistic language lacks
compactness.
As a first step, we define the notion of consistent sets.

Definition 4.2.1 (L-Consistent Sets). Let L be a logic over the language L and
let T ⊆ L:
• T is L-consistent iff T 0L ⊥. Otherwise T is said to be L-inconsistent.

• T is L-maximal iff for every A ∈ L either A ∈ T or ¬A ∈ T .

• T is maximal L-consistent iff it is L-maximal and L-consistent.
Equivalently we can say that T is L-consistent iff there exists some A ∈ L such
that T 0L A.

Before proving completeness for PJ we need to prove some auxiliary lemmata and
theorems.

Lemma 4.2.2 (Properties of PJCS-Consistent Sets). Let CS be any constant spec-
ification for the logic J and let T be a PJCS-consistent set.

(1) For any formula A ∈ LPJ at least one of the sets T,A and T,¬A is PJCS-
consistent.

(2) If ¬(A → P≥sβ) ∈ T for s > 0, then there is some integer n ≥ 1
s
such that

T,¬(A→ P≥s− 1
n
β) is PJCS-consistent.

Proof. (1) Assume that T,A and T,¬A are both PJCS-inconsistent, i.e. that
T,A `PJCS ⊥ and T,¬A `PJCS ⊥. Then by P.R. and Theorem 3.2.1 we get
T `PJCS ⊥, which contradicts the fact that T is PJCS-consistent. Hence at least
one of the sets T,A and T,¬A is PJCS-consistent.
(2) Assume that for every integer n ≥ 1

s
the set T,¬(A → P≥s− 1

n
β) is PJCS-

inconsistent. Then we have the following:

T ,¬(A→ P≥s− 1
n
β) `PJCS ⊥, ∀n ≥ 1

s
(4.2)

T `PJCS ¬(A→ P≥s− 1
n
β)→ ⊥, ∀n ≥ 1

s
[Thm. 3.2.1, (4.2)] (4.3)

T `PJCS A→ P≥s− 1
n
β, ∀n ≥ 1

s
[(4.3),P.R.] (4.4)

T `PJCS A→ P≥sβ [(4.4), (ST)] (4.5)
T `PJCS ¬(A→ P≥sβ) (4.6)
T `PJCS ⊥ . [(4.5), (4.6),P.R.] (4.7)
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Statement (4.7) contradicts the fact that T is PJCS-consistent. Thus there exists
some n ≥ 1

s
such that T,¬(A→ P≥s− 1

n
β) is PJCS-consistent.

Lemma 4.2.3 establishes some properties of maximal consistent sets. Items (1)–(5)
are standard, whereas item (6) is special for our system.

Lemma 4.2.3 (Properties of Maximal PJCS-Consistent Sets). Let CS be any con-
stant specification for the logic J and let T be a maximal PJCS-consistent set. Then
the following hold:

(1) For any formula A ∈ LPJ, exactly one member of {A,¬A} is in T .

(2) For any formula A ∈ LPJ:

T `PJCS A⇐⇒ A ∈ T .

(3) For all formulas A,B ∈ LPPJ we have:

A ∨B ∈ T ⇐⇒ A ∈ T or B ∈ T .

(4) For all formulas A,B ∈ LPJ we have:

A ∧B ∈ T ⇐⇒ {A,B} ⊆ T .

(5) For all formulas A,B ∈ LPJ we have:

{A,A→ B} ⊆ T =⇒ B ∈ T .

(6) Let α ∈ LJ, let X = {s | P≥sα ∈ T } and let t = sup(X). Then:

(i) For all r ∈ S[0, t) we have that P>rα ∈ T ;
(ii) For all r ∈ S[0, t) we have that P≥rα ∈ T ;
(iii) If t ∈ S then P≥tα ∈ T ;
(iv) For any r ∈ S:

t ≥ r ⇐⇒ P≥rα ∈ T .

Proof. (1) By Definition 4.2.1, we know that at least one member of {A,¬A} be-
longs to T . If both members of {A,¬A} belong to T then we can easily con-
clude that T `PJCS ⊥, which contradicts the fact that T is PJCS-consistent.
Thus, exactly one member of {A,¬A} belongs to T .
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(2) The direction (⇐=) is obvious. We prove the direction (=⇒) by contrapo-
sition. Assume that A /∈ T . By (1) we have that ¬A ∈ T . So, by the
consistency of T , we cannot have T `PJCS A. Thus we have T 0PJCS A.

(3) (⇐=) : Assume that A ∈ T . We have:

T ` A (4.8)
T ` A ∨B . [(4.8),P.R.]

By the last statement and by (2) we have A ∨ B ∈ T . If B ∈ T we prove
the claim similarly.
(=⇒) : Assume that A∨B ∈ T and that both A and B do not belong in T .
By (1) we have that {¬A,¬B} ⊆ T . Hence we have:

T ` ¬A (4.9)
T ` ¬B (4.10)
T ` ¬(A ∨B) [(4.9), (4.10),P.R.]
T ` A ∨B .

The last two statements contradict the fact that T is PJCS-consistent. Thus,
at least one of A, B belong to T .

(4) (⇐=) : We have:

T `PJCS A (4.11)
T `PJCS B (4.12)
T `PJCS A ∧B [(4.11), (4.12),P.R.]

By the last statement and by (2) we have A ∧B ∈ T .
(=⇒) : We have that T `PJCS A ∧ B. By P.R. we get that T `PJCS A and
T `PJCS B. By (2) we have that A,B ∈ T .

(5) We have:

T `PJCS A (4.13)
T `PJCS A→ B (4.14)
T `PJCS B [(4.13), (4.14), (MP)] (4.15)
B ∈ T . [(4.15), (2)]

(6) We have:
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(i) Let r ∈ S[0, t). Assume that P>rα /∈ T . Then assume that for some
r′ ∈ S(r, 1] we have P≥r′α ∈ T . Since r′ > r by Lemma 3.2.2(iii) we
have that T `PJCS P≥r′α → P>rα. By (2) we have P≥r′α → P>rα ∈ T
and by (5) we have P>rα ∈ T which is absurd since we assumed that
P>rα /∈ T . Thus, for all r′ ∈ S(r, 1] we have P≥r′α /∈ T . Thus r is an
upper bound of X, which is again absurd since r < t and t = sup(X).
Hence we conclude that P>rα ∈ T .

(ii) Let r ∈ S[0, t). By (i) we have that P>rα ∈ T . By Lemma 3.2.2(iv)
and the maximal consistency of T we have P>rα → P≥rα ∈ T and by
(5) we get P≥rα ∈ T .

(iii) If t = 0 then by (PI) we have that T `PJCS P≥0α. Thus by (2) we have
that P≥tα ∈ T .
Let t > 0. By (ii) we have that for all n ≥ 1

t
, P≥t− 1

n
α ∈ T . So by the

rule (ST) and the maximal consistency of T we get P≥tα ∈ T .
(iv) Let r ∈ S.

Assume that P≥rα ∈ T . Then obviously t = sups{P≥sα ∈ T } ≥ r.
Assume that t ≥ r. If t = r then by (iii) we get P≥rA ∈ T . If t > r
then by (ii) we get P≥rA ∈ T .

Now we can prove the well known Lindenbaum Lemma for the logic PJ.

Lemma 4.2.4 (Lindenbaum). Let CS be any constant specification for the logic J
and let T be a PJCS-consistent set. Then there exists a maximal PJCS-consistent
set T , such that T ⊆ T .

Proof. Let T be a PJCS-consistent set. Let A0, A1, A2, . . . be an enumeration of
all the formulas in LPJ. We define a sequence of sets {Ti}i∈N such that:

(1) T0 := T ;

(2) for every i ≥ 0:

(a) if Ti ∪ {Ai} is PJCS-consistent, then we set Ti+1 := Ti ∪ {Ai}, otherwise
(b) if Ai is of the form B → P≥sγ, for s > 0, then we choose some integer

n ≥ 1
s
such that Ti ∪ {¬Ai,¬(B → P≥s− 1

n
γ)} is PJCS-consistent1 and

we set Ti+1 := Ti ∪ {¬Ai,¬(B → P≥s− 1
n
γ)}, otherwise

(c) we set Ti+1 := Ti ∪ {¬Ai};
1We will show in the case (ii) below that such an n always exists.
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(3) T = ⋃∞
i=0 Ti.

By induction on i we will prove that Ti is PJCS-consistent for every i ∈ N.
(i) The consistency of T0 follows from that of T .

(ii) Let i ≥ 0. Assuming that Ti is PJCS-consistent, we will prove that Ti+1 is
PJCS-consistent. We have the following cases:

• If Ti+1 is constructed using the case (2)(a) above, then it is obviously
PJCS-consistent.
• If Ti+1 is constructed using the case (2)(b) above then we know that
Ti, Ai is PJCS-inconsistent, thus according to Lemma 4.2.2(1) we have
that Ti,¬Ai is PJCS-consistent. We also have that Ai = B → P≥sγ for
s > 0. So, according to Lemma 4.2.2(2) we know that there exists some
n ≥ 1

s
such that Ti,¬Ai,¬(B → P≥s− 1

n
γ) is PJCS-consistent, thus Ti+1

is PJCS-consistent.
• If Ti+1 is constructed using the case (2)(c) above then we know that
Ti, Ai is PJCS-inconsistent, thus according to Lemma 4.2.2(1) we have
that Ti,¬Ai is PJCS-consistent, i.e. Ti+1 is PJCS-consistent.

Now we will show that T is a maximal PJCS-consistent set.
We have that for every A ∈ LPJ either A ∈ T or ¬A ∈ T . Thus according to
Definition 4.2.1, the set T is LPJ-maximal.
It remains to show that T is PJCS-consistent. We will first show that T does
not contain all LPJ-formulas (see (A) below) and then that T is PJCS-deductively
closed for LPJ (see (B) below). The fact that T is PJCS-consistent follows easily
from (A) and (B).
(A) Assume that for some A ∈ LPJ both A and ¬A belong to T . That means

there are i, j such that A ∈ Ti and ¬A ∈ Tj. Since

T0 ⊆ T1 ⊆ T2 ⊆ . . . ,

we have that {A,¬A} ⊆ Tmax(i,j), which implies that the set Tmax(i,j) is PJCS-
inconsistent, a contradiction. Thus, T does not contain all members of LPJ.

(B) We show that T is PJCS-deductively closed for LPJ-formulas.
Assume that for some A ∈ LPJ we have that T `PJCS A. We will prove by
transfinite induction on the depth of the derivation T `PJCS A that A ∈ T .
We distinguish cases depending on the last rule or axiom used to obtain A
from T .
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(1) If A ∈ T then we are done.
(2) Assume that A is an instance of some PJ-axiom. We know that there

exists some k such that A = Ak. Assume that ¬Ak ∈ Tk+1. Then we
have that Tk+1 `PJCS ¬Ak and Tk+1 `PJCS Ak (since Ak is an axiom),
which contradicts the fact that Tk+1 is PJCS-consistent. Hence, Ak ∈
Tk+1, i.e. A ∈ T .

(3) If A is obtained from T by an application of the rule (MP), then by
the inductive hypothesis we have that all the premises of the rule are
contained in T . So there must exist some l such that Tl contains all
the premises of the rule. So, Tl `PJCS A. There exists also some k
such that A = Ak. Assume that ¬A ∈ Tmax(k,l)+1. This implies that
Tmax(k,l)+1 `PJCS A and Tmax(k,l)+1 `PJCS ¬A, which contradicts the fact
that Tmax(k,l)+1 is PJCS-consistent. Thus we have that A ∈ Tmax(k,l)+1,
i.e. A ∈ T .

(4) Assume that A is obtained by T by an application of the rule (CE).
This means that A = P≥1α and that `JCS α for some α ∈ LJ. We know
that there exists some k such that A = Ak. Using the same arguments
with case (2) we can prove that A ∈ Tk+1, i.e. A ∈ T .

(5) Assume that A is obtained from T by the rule (ST). That means that
A = B → P≥sγ for s > 0 and also that for every integer k ≥ 1

s
we

have T `PJCS B → P≥s− 1
k
γ. Assume that A does not belong to T , thus

¬A ∈ T , i.e. ¬(B → P≥sγ) ∈ T . Let m be such that Am = B → P≥sγ.
We find that ¬(B → P≥sγ) ∈ Tm+1 and by the construction of T , there
exists some l ≥ 1

s
such that ¬(B → P≥s− 1

l
γ) ∈ Tm+1. However, we

also find that the formula B → P≥s− 1
l
is a premise of (ST), thus by the

inductive hypothesis B → P≥s− 1
l
∈ T . So, there exists an m′ such that

B → P≥s− 1
l
∈ Tm′ . Thus

{¬(B → P≥s− 1
l
), B → P≥s− 1

l
} ⊆ Tmax(m+1,m′) ,

which contradicts the fact that Tmax(m+1,m′) is PJCS-consistent. Thus
A ∈ T .

Now we can prove that T is PJCS-consistent.
Assume that T is not PJCS-consistent. Then we have the following:

T `PJCS ⊥ (4.16)
(∀A ∈ LPJ)

[
T `PJCS ⊥ → A

]
[(P)] (4.17)

(∀A ∈ LPJ)
[
T `PJCS A

]
[(4.16), (4.17), (MP)] (4.18)
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(∀A ∈ LPJ)
[
A ∈ T

]
. [(4.18), (B)] (4.19)

Statement (4.19) contradicts (A), thus T is PJCS-consistent.
So, we proved that T is a maximal PJCS-consistent set that contains the PJCS-
consistent set T .

Remark 4.2.5. Since in the logic PJ the proofs may have infinite depth, the usual
method for proving the Lindenbaum lemma (i.e. the one used for finitary log-
ics) cannot be applied here. In finitary systems the consistency of the set T (in
the proof of Lemma 4.2.4) is obtained by the consistency of the sets Ti. Since
T = ∪i∈NTi the consistency of T , in a finitary system, would simply follow by
contradiction:

Assume that T ` ⊥. Then there should exist some finite T ′ ⊆ T such that
T ′ ` ⊥. But then T ′ ⊆ Ti for some i, which contradicts the consistency of Ti.

However, such an argument cannot be used for an infinitary system. Therefore, we
have to change the construction of the sets Ti (in the way we did in Lemma 4.2.4)
in order to obtain consistency for T .

Now we will define a canonical model for any maximal PJCS-consistent set of for-
mulas.

Definition 4.2.6 (Canonical Model for PJ). Let CS be any constant specification
for the logic J and let T be a maximal PJCS-consistent set of LPJ-formulas. The
canonical model for T is the quadruple MT = 〈W,H, µ, ∗〉, defined as follows:

• W =
{
w
∣∣∣ w is a CS-evaluation

}
;

• H =
{

[α]MT
∣∣∣ α ∈ LJ

}
;

• for every α ∈ LJ, µ
(
[α]MT

)
= sups

{
P≥sα ∈ T

}
;

• for every w ∈ W , ∗w = w .

Remark 4.2.7. In Definition 4.2.6 the canonical modelMT = 〈W,H, µ, ∗〉 is defined.
Observe that in the definition ofH we use the set [α]MT . This is not a problem since
by Definition 3.1.6 we have that [α]MT depends only on ∗, W , and the justification
formula α, which do not depend on H. The same holds for µ. Thus, the canonical
model is well-defined.

Now we establish the most difficult part of the completeness proof, which is to
show that the canonical model is a measurable model.
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Lemma 4.2.8. Let CS be any constant specification for the logic J and let T be a
maximal PJCS-consistent set. The canonical model for T ,MT , is a PJCS,Meas-model.

Proof. Let MT = 〈W,H, µ, ∗〉. Observe that according to Definition 4.2.6, for
every α ∈ LJ we have:

[α]MT =
{
w ∈ W

∣∣∣ ∗w |= α
}

=
{
w
∣∣∣ w is a CS-evaluation and w |= α

}
.

In order for MT to be a PJCS,Meas-model we have to prove the following:
(1) W is a non-empty set:

We know that there exists a CS-evaluation, thus W 6= ∅.

(2) H is an algebra over W :

It holds that [>] = W . Thus W ∈ H. Hence H 6= ∅. Let [α] ∈ H. It holds
that [α] ⊆ W . Thus H ⊆ P(W ).
Let α, β ∈ LJ and assume that [α], [β] ∈ H. We have that ¬α, α ∨ β ∈ LJ
and by Remark 3.1.8 [α] ∪ [β] = [α ∨ β] ∈ H and W \ [α] = [¬α] ∈ H.
So, according to Definition 3.1.1, H is an algebra over W .

(3) µ is a function from H to [0, 1]:

We have to prove the following:

(a) the domain of µ is H and the codomain of µ is [0, 1]:
Let [α] ∈ H for some α ∈ LJ. We have that P≥0α is an axiom of PJ,
thus P≥0α ∈ T . Hence, the set {s ∈ S | P≥sα ∈ T } is not empty, which
means that it has a supremum. We have that µ([α]) = sups{P≥sα ∈ T }.
Thus, µ is defined for all members of H, i.e. the domain of µ is H. In
sups{P≥sα ∈ T } we have by definition that s ∈ S, i.e. s ≤ 1. By
a previous argument it also holds that sups{P≥sα ∈ T } ≥ 0. Thus
0 ≤ sups{P≥sα ∈ T } ≤ 1, i.e. 0 ≤ µ([α]) ≤ 1. So the codomain of µ is
[0, 1].

(b) for every U ∈ H, µ(U) is unique:
Let U ∈ H and assume that U = [α] = [β] for some α, β ∈ LJ. We will
prove that µ([α]) = µ([β]). Of course it suffices to prove that:

[α] ⊆ [β] =⇒ µ([α]) ≤ µ([β]) . (4.20)
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We have:

[α] ⊆ [β] implies
(∀w ∈ W )

[
w ∈ [α] =⇒ w ∈ [β]

]
implies

(∀w ∈ W )
[
w |= α =⇒ w |= β

]
implies

(∀w ∈ W )
[
w |= α→ β

]
implies

|=CS α→ β implies by
Theorem 2.3.3

`JCSα→ β implies by
Lemma 3.2.2(ii)

(∀s ∈ S)
[
`PJCS P≥sα→ P≥sβ

]
implies by

Lemma 4.2.3(2)
(∀s ∈ S)

[
P≥sα→ P≥sβ ∈ T

]
implies by

Lemma 4.2.3(5)
(∀s ∈ S)

[
P≥sα ∈ T =⇒ P≥sβ ∈ T

]
implies

{s ∈ S | P≥sα ∈ T } ⊆ {s ∈ S | P≥sβ ∈ T } implies
sup
s
{P≥sα ∈ T } ≤ sup

s
{P≥sβ ∈ T } i.e.

µ([α]) ≤ µ([β]) .

Hence (4.20) holds, which proves that µ(U) is unique.

(4) µ is a finitely additive measure:
Before proving that µ is a finitely additive measure we need to prove the
following statement:

µ([α]) + µ([¬α]) ≤ 1 . (4.21)
Let:

X = {s | P≥sα ∈ T } ;
Y = {s | P≥s¬α ∈ T } ;
r1 = µ([α]) = sup(X) ;
r2 = µ([¬α]) = sup(Y ) .

Let s ∈ Y . It holds that P≥s¬α ∈ T . If 1−s < r1 then by Lemma 4.2.3(6)(i)
we would have P>1−sα ∈ T . By S.E. we get ¬P≤1−sα ∈ T and by S.E. again
we get ¬P≥s¬α ∈ T which contradicts the fact that T is PJCS-consistent.
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Thus 1 − s ≥ r1, i.e. 1 − r1 ≥ s, i.e. 1 − r1 is an upper bound of Y , hence
1− r1 ≥ r2, i.e. r1 + r2 ≤ 1, i.e. (4.21) holds.
Now in order to prove that µ is a finitely additive measure we need to prove
the following:

(i) µ(W ) = 1 .
We have that `JCS >. By the rule (CE) we get `PJCS P≥1>. By
Lemma 4.2.3(2) we get P≥1> ∈ T . It holds that W = [>]. Thus
µ(W ) = µ([>]) = sups{P≥s> ∈ T } ≥ 1, i.e. µ(W ) = 1.

(ii) [α] ∩ [β] = ∅ =⇒ µ([α] ∪ [β]) = µ([α]) + µ([β]) .
Let α, β ∈ LJ such that:

[α] ∩ [β] = ∅ ;
r = µ([α]) = sup

s

{
s
∣∣∣ P≥sα ∈ T } ;

s = µ([β]) = sup
r

{
r
∣∣∣ P≥r ; β ∈ T

}
;

t0 = µ([α ∨ β]) = sup
t
{P≥t(α ∨ β) ∈ T } .

Our aim is to show that:
t0 = r + s .

It holds [β] ⊆ [¬α]. By (4.20) we have µ([β]) ≤ µ([¬α]) and by (4.21)
we have:

µ([β]) ≤ 1− µ([α])
i.e. s ≤ 1− r
i.e. r + s ≤ 1 . (4.22)

We also have that

µ([¬(α ∧ β)]) = µ(W \ ([α] ∩ [β])) = µ(W ) = 1 .

Thus 1 = sups{P≥s¬(α ∧ β) ∈ T }. So, by Lemma 4.2.3(6)(iii) we find

P≥1¬(α ∧ β) ∈ T . (4.23)

We distinguish the following cases:
• Suppose that r > 0 and s > 0. By Lemma 4.2.3(6)(ii) we have that

for every r′ ∈ S[0, r) and every s′ ∈ S[0, s), P≥r′α, P≥s′β ∈ T . It
holds that r′ + s′ < r + s and by (4.22) we get r′ + s′ < 1. Thus
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by (4.23) and by axiom (DIS) we get P≥r′+s′(α ∨ β) ∈ T . Hence
t0 = supt{P≥t(α ∨ β) ∈ T } ≥ r + s.

If r + s = 1 then we have that t0 = 1, i.e. t0 = r + s.

If r + s < 1 then since r, s > 0 we have that r, s < 1. Assume that
r+ s < t0. By Lemma 4.2.3(6)(ii) for every t′ ∈ S(r+ s, t0) we have
P≥t′(α ∨ β) ∈ T . We choose rational numbers r′′ and s′′ such that
t′ = r′′ + s′′ and r′′ > r and s′′ > s. If we had P≥r′′α, P≥s′′β ∈ T
this would imply that

µ([α]) = sup
s
{s | P≥sα ∈ T } = r ≥ r′′

and
µ([β]) = sup

r
{r | P≥rβ ∈ T } = s ≥ s′′ ,

which is absurd since r′′ > r and s′′ > s. Thus we have:
¬P≥r′′α ∈ T ,¬P≥s′′β ∈ T

and by S.E. we get:
P<r′′α ∈ T , P<s′′β ∈ T .

By Axiom (LE) we get:
P≤r′′α ∈ T , P<s′′β ∈ T .

It holds that r′′ + s′′ = t′ < t0 ≤ 1. Thus by Axiom (UN) we get:
P<r′′+s′′(α ∨ β) ∈ T and by S.E. ¬P≥r′′+s′′(α ∨ β) ∈ T , i.e.

¬P≥t′(α ∨ β) ∈ T ,
which is a contradiction since P≥t′(α ∨ β) ∈ T and T is PJCS-
consistent. Thus r + s = t0.
• Assume that at least one of r, s is equal to 0. Then we can reason

as in the above case with the only exception that r′ = 0 or s′ = 0
(depending on whether r = 0 or s = 0 respectively).

(5) for all w ∈W , ∗w is a CS-evaluation.
It holds by the construction of MT .

(6) for all α ∈ LJ, [α]MT ∈ H.

It holds by the construction of MT .

Now we prove that the model for a maximal consistent set T satisfies all the
formulas in T .
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Lemma 4.2.9 (Truth Lemma for PJ). Let CS be a constant specification. Let
T be a maximal PJCS-consistent set of LPJ-formulas and let MT be the canonical
model for T . We have:

(∀A ∈ LPJ)[A ∈ T ⇐⇒MT |= A] .

Proof. We prove the claim by induction on the structure of A ∈ LPJ. We distin-
guish the following cases:

A ≡ P≥sα: The following statements are equivalent:

MT |= A

MT |= P≥sα

µ([α]MT ) ≥ s

sup
r

{
P≥rα ∈ T

}
≥ s [Definition 4.2.6]

P≥sα ∈ T [Lemma 4.2.3(6)(iv)]
A ∈ T .

A ≡ ¬B: The following statements are equivalent:

A ∈ T
¬B ∈ T
B /∈ T [Lemma 4.2.3(1)]

MT 6|= B [i.h.]
MT 6|= ¬A
MT |= A .

A ≡ B ∧ C: The following statements are equivalent:

A ∈ T
B ∧ C ∈ T
B ∈ T and C ∈ T [Lemma 4.2.3(4)]

MT |= B and MT |= C [i.h.]
MT |= B ∧ C
MT |= A .

And finally we can establish strong completeness for PJ.
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Theorem 4.2.10 (Strong Completeness for PJ). Let CS be any constant specifi-
cation for the logic J, let T ⊆ LPJ and let A ∈ LPJ. Then we have:

T |=PJCS,Meas A⇐⇒ T `PJCS A .

Proof. The direction ⇐= follows from Theorem 4.1.2.
We prove the direction =⇒ by contraposition. Assume that T 0PJCS A. This means
that T 0PJCS (¬A)→ ⊥. By Theorem 3.2.1 we get T,¬A 0PJCS ⊥, i.e. the set T,¬A
is PJCS-cosistent. By Lemma 4.2.4 there exists a maximal PJCS-consistent set T
such that T ⊇ T ∪ {¬A}. By Lemma 4.2.9 we have that MT |= T and MT |= ¬A.
By Lemma 4.2.8 we have that MT ∈ PJCS,Meas. Hence T 6|=PJCS,Meas A.

4.3 Strong Completeness for PPJ

In this section constant specifications are always assumed to be constant specifi-
cations for the logic PPJ.
The strong completeness theorem for the logic PPJ is obtained by a canonical
model construction. Most of the lemmata and theorems needed for the proof are
proved very similarly to the ones for the logic PJ. However, in order to deal with
iterated probabilities and with justifications over probabilities we need to employ
some ideas from the completeness proof for the probabilistic logic LPP1 [ORM09]
and from the completeness proof for the justification logic J [Art12, KS12].
It is straightforward to show that Remark 3.1.8 and Lemmata 3.1.13, 3.2.2, 4.2.2,
4.2.3 and 4.2.4 also hold for the logic PPJ. So, in order to complete the complete-
ness proof we have to define the canonical model for PPJCS and show that it is a
measurable PPJCS-model.

Definition 4.3.1 (Canonical Model for PPJ). Let CS be a constant specification
for the logic PPJ. The canonical model for PPJCS is the quintuple

M = 〈U,W,H, µ, ∗〉 ,

defined as follows:
• U =

{
w
∣∣∣ w is a maximal PPJCS-consistent set of LPPJ-formulas

}
;

• for every w ∈ U the probability space 〈W (w), H(w), µ(w)〉 is defined as
follows:
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(i) W (w) = U ;

(ii) H(w) =
{

(A)M
∣∣∣ A ∈ LPPJ

}
where (A)M =

{
x
∣∣∣ x ∈ U,A ∈ x}; 2

(iii) for all A ∈ LPPJ, µ(w)
(
(A)M

)
= sups {P≥sA ∈ w};

• for every w ∈ W the CS-evaluation ∗w is defined as follows:

1. for all p ∈ Prop:

p∗w =

T , if p ∈ w ;
F , if ¬p ∈ w ;

2. for all t ∈ Tm:
t∗w =

{
A
∣∣∣ t : A ∈ w

}
.

We now prove some properties of the set (A)M .

Lemma 4.3.2. Let M = 〈U,W,H, µ, ∗〉 be the canonical model for some PPJCS
and let A,B ∈ LPPJ. Then the following hold:

(i) (¬A)M = U \ (A)M ;

(ii) (A)M ∩ (B)M = (A ∧B)M ;

(iii) (A)M ∪ (B)M = (A ∨B)M .

Proof. (i) We have:

(¬A) = {x | x ∈ U,¬A ∈ x}
Lemma 4.2.3(1)= {x | x ∈ U,A /∈ x}
= U \ (A) .

(ii) We have:

(A) ∩ (B) = {x | x ∈ U,A ∈ x} ∩ {x | x ∈ U,B ∈ x}
= {x | x ∈ U,A ∈ x and B ∈ x}
Lemma 4.2.3(4)= {x | x ∈ U,A ∧B ∈ x}
= (A ∧B) .

2If M is clear from the context, we may simply write (A) instead of (A)M .
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(iii) We have:

(A) ∪ (B) = {x | x ∈ U,A ∈ x} ∪ {x | x ∈ U,B ∈ x}
= {x | x ∈ U,A ∈ x or B ∈ x}
Lemma 4.2.3(3)= {x | x ∈ U,A ∨B ∈ x}
= (A ∨B) .

Now we will prove that the canonical model for PPJCS is a PPJCS-model.

Lemma 4.3.3. Let CS be a constant specification for PPJ. The canonical model
for PPJCS is a PPJCS-model.

Proof. Let M = 〈U,W,H, µ, ∗〉 be the canonical model for PPJCS. In order for M
to be a PPJCS-model we have to prove the following:
U is a non-empty set:

There exists a PPJCS-maximal consistent set. Thus U 6= ∅.
For every w ∈ U the triple 〈W (w),H(w), µ(w)〉 is a probability space:

We have to prove the following:

(1) W (w) is a non-empty subset of U :
It is obvious since W (w) = U and U 6= ∅.

(2) H(w) is an algebra over W (w):
It holds that:

(>)M = {x | x ∈ U,> ∈ x} = U = W (w) .

Thus W (w) ∈ H(w).
Let (A)M ∈ H(w) for some A ∈ LPPJ. It holds that:

(A)M = {x | x ∈ U,A ∈ x} ⊆ U = W (w) .

Thus H(w) ⊆ P(W (w)).
Let (A), (B) ∈ H(w) for some A,B ∈ LPPJ. By Lemma 4.3.2 we have that
W (w)\(A) = U \(A) = (¬A) ∈ H(w) and that (A)∪(B) = (A∨B) ∈ H(w).
So, according to Definition 3.1.1, H(w) is an algebra over W (w).

(3) µ(w) is a function from H(w) to [0, 1]:
We have to prove the following:
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(a) The domain of µ(w) is H(w) and the codomain of µ(w) is
[0, 1]:
Let (A) ∈ H(w). We have that P≥0A is an axiom of PPJ, thus P≥0A ∈
w. Hence the set {s ∈ S | P≥sA ∈ w} is not empty which means that
it has a supremum. So µ(w)((A)) is defined. Thus the domain of µ(w)
is H(w).
Let (A) ∈ H(w). By a previous argument we have that

µ(w)((A)) = sup
s
{P≥sA ∈ w} ≥ 0 .

In sups{P≥sA ∈ w} we have by definition that s ∈ S, i.e. s ≤ 1. Thus
sups{P≥sA ∈ w} ≤ 1, i.e. µ(w)

(
(A)

)
≤ 1. So the codomain of µ(w) is

[0, 1].
(b) For every V ∈ H(w), µ(w)(V ) is unique:

Let V ∈ H(w) and assume that V = (A) = (B) for some A,B ∈ LPPJ.
We will prove that µ(w)

(
(A)

)
= µ(w)

(
(B)

)
. Of course, it suffices to

prove that:

(A) ⊆ (B) =⇒ µ(w)
(
(A)

)
≤ µ(w)

(
(B)

)
. (4.24)

We have:

(A) ⊆ (B) implies
(∀x ∈ U)

[
x ∈ (A) =⇒ x ∈ (B)

]
implies

(∀x ∈ U)
[
A ∈ x =⇒ B ∈ x

]
implies

(∀x ∈ U)
[
A /∈ x or B ∈ x

]
implies by

Lemma 4.2.3(1)
(∀x ∈ U)

[
¬A ∈ x or B ∈ x

]
implies by

Lemma 4.2.3(3)
(∀x ∈ U)

[
¬A ∨B ∈ x

]
implies by S.E.

(∀x)
[
x is a maximal PPJCS-consistent set (4.25)

=⇒ A→ B ∈ x
]
.

Assume that 0 A → B. By P.R. we get 0 ¬(A → B) → ⊥. By
Theorem 3.2.1 we get ¬(A → B) 0 ⊥, which implies that the set
{¬(A → B)} is PPJCS-consistent. By Lemma 4.2.4 we have that there
exists a maximal PPJCS-cosistent set T such that

T ⊇ {¬(A→ B)} .
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However by statement (4.25) we have that A → B ∈ T which contra-
dicts the fact that T is PPJCS-consistent. Thus ` A → B. Therefore,
by Lemma 3.2.2(ii) we have that (∀s ∈ S)

[
` P≥sA → P≥sB

]
. Hence,

since w is a maximal PPJCS-consistent set, we get the following:

(∀s ∈ S)
[
P≥sA→ P≥sB ∈ w

]
implies by L. 4.2.3(5)

(∀s ∈ S)
[
P≥sA ∈ w =⇒ P≥sB ∈ w

]
implies

{s ∈ S | P≥sA ∈ w} ⊆ {s ∈ S | P≥sB ∈ w} implies
sup
s
{P≥sA ∈ w} ≤ sup

s
{P≥sB ∈ w} i.e.

µ(w)
(
(A)

)
≤ µ(w)

(
(B)

)
.

Hence statement (4.24) holds, which proves that µ(w)(V ) is unique.

(4) µ(w) is a finitely additive measure:

The proof for this claim is identical to the proof for the analogue claim in
Theorem 4.2.10 that is why it is omitted.

For every w ∈W , ∗w is a CS-evaluation:
According to Definition 4.3.1, ∗w maps every atomic proposition to a truth value
and every term to a set of LPPJ-formulas. Now we need to show that ∗w satisfies
the properties of a CS-evaluation according to Definition 2.2.1.
Let A,B ∈ LPPJ, let c ∈ Con and let u, v ∈ Tm. We need to show that:

(a)
(
A→ B ∈ u∗w and A ∈ v∗w

)
=⇒ B ∈ (u · v)∗w :

Let A ∈ v∗w and let A → B ∈ u∗w. By Definition 4.3.1 we have that
u : (A→ B) ∈ w and that v : A ∈ w. By axiom (J), by (MP) and by
the fact that w is a maximal PPJCS-consistent set we get that u · v : B ∈ w.
By Definition 4.3.1 we have that B ∈ (u · v)∗w.

(b) u∗w ∪ v∗w ⊆ (u+ v)∗w :

Let B ∈ u∗w ∪ v∗w. Assume that B ∈ u∗w. This means that u : B ∈ w. By (+)
and (MP) we get that u + v : B ∈ w, i.e. B ∈ (u + v)∗w. If B ∈ v∗w then we
proceed similarly.

(c) For (c,A) ∈ CS and for all n ∈ N we have that:

!n−1c :!n−2c : · · · :!c : c : A ∈ (!nc)∗w .
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Assume that (c, A) ∈ CS. Then by rule (AN!) we get that for all n ∈ N:
`PPJCS !nc :!n−1c : · · · :!c : c : A .

By Lemma 4.2.3(2) we have that for all n ∈ N:
!nc :!n−1c : · · · :!c : c : A ∈ w .

By Definition 4.3.1 we have that for all n ∈ N:
!n−1c :!n−2c : · · · :!c : c : A ∈ (!nc)∗w .

Before proving that the canonical model is a PPJCS,Meas-model we need the follow-
ing auxiliary lemma.
Lemma 4.3.4. Let M = 〈U,W,H, µ, ∗〉 be the canonical model for some PPJCS.
Then we have:

(∀A ∈ LPPJ)(∀w ∈ U)
[
[A]M,w = (A)M

]
.

Proof. Let w ∈ U and let A ∈ LPPJ. We will prove the claim by induction on the
structure of A. We distinguish the following cases:

1. A ≡ p ∈ Prop. It holds that:
[A]M,w = [p]M,w = {x ∈ W (w) | M,x |= p} = {x ∈ U | p∗x = T}

= {x ∈ U | p ∈ x} = (p)M = (A)M .

2. A ≡ t : B. It holds that:
[A]M,w = [t : B]M,w = {x ∈ W (w) | M,x |= t : B} = {x ∈ U | B ∈ t∗x}

= {x ∈ U | t : B ∈ x} = (t : B)M = (A)M .

3. A ≡ P≥sB. By the inductive hypothesis we have that for all x ∈ U ,
[B]M,x = (B)M .

And of course it holds that [B]M,x ∈ H(x), since (B)M ∈ H(x). Thus, we
have:

[A]M,w = [P≥sB]M,w ={x ∈ W (w) | M,x |= P≥sB}
={x ∈ W (w) | µ(x)

(
[B]M,x

)
≥ s}

={x ∈ W (w) | µ(x)
(
(B)M

)
≥ s}

={x ∈ U | sup
r
{P≥rB ∈ x} ≥ s} .

By Lemma 4.2.3(6)(iv) we get:
[P≥sB]M,w = {x ∈ U | P≥sB ∈ x} = (P≥sB)M = (A)M .
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4. A ≡ B ∧ C. It holds that:

[A]M,w = [B ∧ C]M,w = [B]M,w ∩ [C]M,w
i.h.= (B)M,w ∩ (C)M,w

Lemma 4.3.2(ii)= (B ∧ C)M,w = (A)M .

5. A ≡ ¬B. It holds that:

[A]M,w = [¬B]M,w = W (w) \ [B]M,w
i.h.= U \ (B)M,w

Lemma 4.3.2(i)= (¬B)M,w = (A)M .

From Lemma 4.3.4 we get the following corollary.

Corollary 4.3.5. The canonical model for any PPJCS is a PPJCS,Meas-model.

Proof. Let M = 〈U,W,H, µ, ∗〉 be the canonical model for some PPJCS and let
A ∈ LPPJ. For any w ∈ U , by Lemma 4.3.4, we have that [A]M,w = (A)M ∈ H(w).
Thus, M ∈ PPJCS,Meas.

Making use of the properties of maximal consistent sets, we can establish the Truth
Lemma for the logic PPJ.

Lemma 4.3.6 (Truth Lemma for PPJ). Let CS be some constant specification for
the logic PPJ and let M = 〈U,W,H, µ, ∗〉 be the canonical model for PPJCS. For
every A ∈ LPPJ and any w ∈ U we have:

A ∈ w ⇐⇒ M,w |= A .

Proof. We prove the claim by induction on the structure of A. We distinguish the
following cases:
A = p ∈ Prop. It holds:

M,w |= A ⇐⇒
M,w |= p ⇐⇒

p∗w = T Definition 4.3.1⇐⇒
p ∈ w ⇐⇒
A ∈ w .
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A = t : B. It holds:

M,w |= A ⇐⇒
M,w |= t : B ⇐⇒

B ∈ t∗w
Definition 4.3.1⇐⇒

t : B ∈ w ⇐⇒
A ∈ w .

A = P≥sB. It holds:

M,w |= A ⇐⇒
M,w |= P≥sB ⇐⇒

µ(w)
(
[B]M,w

)
≥ s

Lemma 4.3.4⇐⇒

µ(w)
(
(B)M

)
≥ s

Definition 4.3.1⇐⇒

sup
r
{P≥rB ∈ w} ≥ s

Lemma 4.2.3(6)(iv)⇐⇒

P≥sB ∈ w ⇐⇒
A ∈ w .

A = ¬B: It holds:

M,w |= A ⇐⇒
M,w |= ¬B ⇐⇒

M,w 6|= B
i.h.⇐⇒

B /∈ w Lemma 4.2.3(1)⇐⇒
¬B ∈ w ⇐⇒
A ∈ w .

A = B ∧ C: It holds:

M,w |= A ⇐⇒
M,w |= B ∧ C ⇐⇒

M,w |= B and M,w |= C
i.h.⇐⇒

B ∈ w and C ∈ w Lemma 4.2.3(4)⇐⇒
B ∧ C ∈ w ⇐⇒
A ∈ w .
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Finally, we get the strong completeness theorem for the logic PPJ.

Theorem 4.3.7 (Strong Completeness for PPJ). Let T ⊆ LPPJ and let A ∈ LPPJ.
Then, for any PPJCS we have:

T `PPJCS A ⇐⇒ T |=PPJCS,Meas A .

Proof. We prove the two directions of the equivalence separately:
=⇒: It follows from Theorem 4.1.3.
⇐=: Let CS be any constant specification for the logic PPJ. We prove the claim
by contraposition. Assume that T 0PPJCS A. This means that T 0PPJCS (¬A)→ ⊥.
By Theorem 3.3.9 we get T,¬A 0PPJCS ⊥, i.e. the set T ∪{¬A} is PPJCS-cosistent.
By Lemma 4.2.4 there exists a maximal PPJCS-consistent set of formulas w such
that w ⊇ T ∪ {¬A}. Let M be the canonical model for PPJCS. By Corollary 4.3.5
we have that M ∈ PPJCS,Meas. By Lemma 4.3.6 we have that M,w |= T and
M,w |= ¬A. Hence T 6|=PPJCS,Meas A.



Chapter 5

Decidability and Complexity

In this chapter we present decidability procedures for the probabilistic justification
logics PJ and PPJ. Our algorithms are combinations of decidability algorithms
for the logic J [Kuz00, Kuz08] and decidability algorithms for probabilistic log-
ics [FHM90, ORM09]. Note that in the case of PPJ these combinations are not
trivial, due to the presence of formulas of the form t : P≥sA. Our decidability
procedures make use of well known results from the theory of linear programming.
In the case of PJ we also establish upper and lower complexity bounds.
The results for this chapter are drawn from [Kok16, KOS16].

5.1 Small Model Property for PJ

The goal of this section is to prove a small model property for the logic PJ. The
small model property will be the most important tool for establishing the upper
bound for the complexity of the satisfiability problem in the logic PJ.
In this section constant specifications are always assumed to be constant specifi-
cations for the logic J.

Definition 5.1.1 (Subformulas). The set subf(·) is defined recursively as follows:
For LJ-formulas:

• subf(p) := {p} ;

• subf(t : α) := {t : α} ∪ subf(α) ;

• subf(¬α) := {¬α} ∪ subf(α) ;

• subf(α ∧ β) := {α ∧ β} ∪ subf(α) ∪ subf(β) .

63
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For LPJ-formulas:

• subf(P≥sα) := {P≥sα} ∪ subf(α) ;

• subf(¬A) := {¬A} ∪ subf(A) ;

• subf(A ∧B) := {A ∧B} ∪ subf(A) ∪ subf(B) .
Observe that for A ∈ LPJ we have that subf(A) ⊆ LPJ ∪ LJ.

Definition 5.1.2 (Atoms). Let A be an LPJ- or an LJ-formula. Let X be the set
that contains all the atomic propositions and the justification assertions from the
set subf(A). An atom of A is any formula of the following form:∧

B∈X
±B ,

where ±B denotes either B or ¬B. We will use the lowercase Latin letter a for
atoms, possibly with subscripts.

Let A that of the form ∧
iBi or of the form ∨

iBi. Then C ∈ A means that for
some i, Bi = C.

Definition 5.1.3 (Sizes). The size function | · | is defined as follows:
For LPJ-formulas: (recursively)
• |P≥sα| := 2 ;

• |¬A| := 1 + |A| ;

• |A ∧B| := |A|+ 1 + |B| .
For sets:
Let W be a set. |W | is the cardinal number of W .
For non-negative integers:
Let r be an non-negative integer. We define the size of r to be equal to the length
of r written in binary, i.e.:

|r| :=

1 , r = 0 ;
blog2(r) + 1c , r ≥ 1 ,

where b·c is the function that returns the greatest integer that is less than or equal
to its argument.
For non-negative rational numbers:
Let r = s1

s2
, where s1 and s2 are relatively prime non-negative integers with s2 6= 0,

be a non-negative rational number. We define:

|r| := |s1|+ |s2| .
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Let A ∈ LPJ we define:

||A|| := max
{
|s|

∣∣∣ P≥sα ∈ subf(A)
}
.

A proof for Theorem 5.1.4 can be found in [Chv83, p. 145].

Theorem 5.1.4. Let S be a system of r linear equalities. Assume that the vector1
x is a solution of S such that all of x’s entries are non-negative. Then there is a
vector x∗ such that:

(1) x∗ is a solution of S;

(2) all the entries of x∗ are non-negative;

(3) at most r entries of x∗ are positive.

Theorem 5.1.5 establishes some properties for the solutions of a linear system.

Theorem 5.1.5. Let S be a linear system of n variables and of r linear equalities
and/or inequalities with integer coefficients each of size at most l. Assume that the
vector x = x1, . . . , xn is a solution of S such that for all i ∈ {1, . . . , n}, xi ≥ 0.
Then there is a vector x∗ = x∗1, . . . , x

∗
n with the following properties:

(1) x∗ is a solution of S;

(2) for all i, x∗i is a non-negative rational number with size bounded by

2 ·
(
r · l + r · log2(r) + 1

)
.

(3) at most r entries of x∗ are positive;

(4) for all i ∈ {1, . . . , n}, if x∗i > 0 then xi > 0;

Proof. In S we replace the variables that correspond to the entries of x that are
equal to zero (if any) with zeros. This way we obtain a new linear system S0, with
r linear equalities and/or inequalities and m ≤ n variables. x is a solution2 of S0.
It also holds that any solution of S0 is a solution3 of S.

1We will always use bold font for vectors.
2In the proof of Theorem 5.1.5 all vectors have n entries. The entries of the vectors are assumed

to be in one to one correspondence with the variables that appear in the original system S.
Let y be a solution of a linear system T . If y has more entries than the variables of T we

imply that entries of y that correspond to variables that appear in T compose a solution of T .
3Assume that system T has less variables than system T ′. When we say that any solution of

T is a solution of T ′ we imply that the missing variables are set to 0.
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Assume that the system S0 contains an inequality of the form

b1 · y1 + . . .+ bm · ym ♦ c (5.1)

for ♦ ∈ {<,≤,≥, >} where y1, . . . , ym are variables of S and b1, . . . , bm, c are
constants that appear in S. x is a solution of (5.1). We replace the inequality
(5.1) in S0 with the following equality:

b1 · y1 + . . .+ bm · ym = b1 · x1 + . . .+ bm · xm .

We repeat this procedure for every inequality of S0. This way we obtain a system
of linear equalities which we call S1. It is easy to see that x is a solution of S1 and
that any solution of S1 is also a solution of S0 and thus of S.
Now we will transform S1 to another linear system by applying the following
algorithm.
Algorithm:
We set i = 1, ei = r, vi = m, xi = x and we execute the following steps:

(i) If ei = vi then go to step (ii). Otherwise go to step (iii).

(ii) If the determinant of Si is non-zero then stop. Otherwise go to step (v).

(iii) If ei < vi then go to step (iv), else go to step (v).

(iv) We know that the vector xi is a non-negative solution for the system Si.
From Theorem 5.1.4 we obtain a solution xi+1 for the system Si which has
at most ei entries positive. In Si we replace the variables that correspond to
zero entries of the solution xi+1 with zeros. We obtain a new system which
we call Si+1 with ei+1 equalities and vi+1 variables. xi+1 is a solution of Si+1
and any solution of Si+1 is a solution of Si. We set i := i + 1 and we go to
step (i).

(v) From any set of equalities that are linearly dependent we keep only one
equation. We obtain a new system which we call Si+1 with ei+1 equalities
and vi+1 variables. We set i := i+ 1 and xi+1 := xi. We go to step (i).

Let I be the final value of i after the execution of the algorithm. Since the only
way for our algorithm to terminate is through step (ii) it holds that system SI
is an eI × eI system of linear equalities with non-zero determinant (for eI ≤ r).
System SI is obtained from system S1 by possibly replacing some variables that
correspond to zero entries of the solution with zeros and by possibly removing some
linearly dependent equalities. So, any solution of SI is also a solution of system
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S1 and thus a solution of S. From the algorithm we have that xI is a solution of
SI . Since SI has a non-zero determinant Cramer’s rule can be applied. Hence, the
vector xI is the unique solution of system SI . Let xIi be an entry of xI . xIi will
be equal to the following rational number∣∣∣∣∣∣∣∣

a11 . . . a1eI

. . .
aeI1 . . . aeIeI

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
b11 . . . b1eI

. . .
beI1 . . . beIeI

∣∣∣∣∣∣∣∣
where all the aij and bij are integers that appear in the original system S. By
properties of the determinant we know that the numerator and the denominator
of the above rational number will each be at most equal to r! · (2l − 1)r. So we
have that:

|xIi | ≤ 2 ·
(

log2(r! · (2l − 1)r) + 1
)

=⇒

|xIi | ≤ 2 ·
(

log2(rr · 2l·r) + 1
)

=⇒

|xIi | ≤ 2 ·
(
r · log2(r) + l · r + 1

)
.

As we already mentioned the final vector xI is a solution of the original linear
system S. We also have that all the entries of xI are non-negative, at most r of its
entries are positive and the size of each entry of xI is bounded by 2 · (r · log2 r +
r · l + 1). Furthermore, since the variables that correspond to zero entries of the
original vector x were replaced by zeros, we have that for every i, if the i-th entry
of xI is positive then the i-th entry of x is positive too. So, xI is the requested
vector x∗.

Theorem 5.1.6 is an adaptation of the small model theorem from [FHM90]. Similar
techniques have also been used in [ORM09] to obtain decidability for the logic
LPP2. Observe, that the small model obtained in Theorem 5.1.6 is not only small
in terms of possible worlds, it is also small in terms of the probabilities and the CS-
evaluations that are assigned to each world. Otherwise decidability for PJ would
not follow from the small model property.

Theorem 5.1.6 (Small Model Property for PJ). Let CS be any constant specifica-
tion for the logic J and let A ∈ LPJ. If A is PJCS,Meas-satisfiable then it is satisfiable
in a PJCS,Meas-model M = 〈W,H, µ, ∗〉 such that:

(1) |W | ≤ |A| .
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(2) H = P(W ) .

(3) For every w ∈ W , µ({w}) is a rational number with size at most

2 ·
(
|A| · ||A||+ |A| · log2(|A|) + 1

)
.

(4) For every V ∈ H
µ(V ) =

∑
w∈V

µ({w}) .

(5) For every atom of A, a, there exists at most one w ∈ W such that ∗w |= a.

Proof. Let CS be any constant specification for the logic J and let A ∈ LPJ. Let
a1, . . . , an be all the atoms of A. By propositional reasoning (in the logic PJCS) we
can prove that:

PJCS ` A↔
K∨
i=1

li∧
j=1

P♦ijsij
(βij)

where all the P♦ijsij
(βij) appear in A and ♦ij ∈ {≥, <}.

By using propositional reasoning again (but this time in the logic JCS) we can
prove that each βij is equivalent to a disjunction of some atoms of A. So, by using
Lemma 3.2.2(ii) we have that:

PJCS ` A↔
K∨
i=1

li∧
j=1

P♦ijsij
(αij)

where each αij is a disjunction of some atoms of A. By Theorem 4.2.10 we have
that for any M ∈ PJCS,Meas:

M |= A⇐⇒M |=
K∨
i=1

li∧
j=1

P♦ijsij
(αij) . (5.2)

Assume that A is satisfiable. By Eq. (5.2) there must exist some i such that

li∧
j=1

P♦ijsij
(αij)

is satisfiable. Let M ′ = 〈W ′, H ′, µ′, ∗′〉 be a PJCS,Meas-model such that:

M ′ |=
li∧
j=1

P♦ijsij
(αij) . (5.3)
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For every k ∈ {1, . . . , n} we define:

xk = µ′([ak]M ′) . (5.4)

In every world of M ′ some atom of A must hold. Thus, we have:

W ′ =
n⋃
k=1

[ak]M ′ .

And since µ′(W ′) = 1 we get:

µ′
( n⋃
k=1

[ak]M ′
)

= 1 . (5.5)

The ak’s are atoms of the same formula, so we have:

k 6= k′ =⇒ [ak]M ′ ∩ [ak′ ]M ′ = ∅ . (5.6)

By Eqs. (5.5), (5.6) and the fact that µ′ is a finitely additive measure we get:
n∑
k=1

µ′([ak]M ′) = 1

and by Eq. (5.4):
n∑
k=1

xk = 1 . (5.7)

Let j ∈ {1, . . . , li}. From Eq. (5.3) we get:

M ′ |= P♦ijsij

(
αij
)
.

This implies that µ′([αij]M ′) ♦ij sij, i.e.

µ′

 ∨
ak∈αij

ak


M ′

 ♦ij sij

which by Remark 3.1.8 implies that

µ′

 ⋃
ak∈αij

[ak]M ′
 ♦ij sij .

By Eq. (5.6) and the additivity of µ′ we have that:∑
ak∈αij

µ′([ak]M ′) ♦ij sij
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and by Eq. (5.4): ∑
ak∈αij

xk ♦ij sij .

So we have that

for every j ∈ {1, . . . , li},
∑

ak∈αij

xk ♦ij sij . (5.8)

Let S be the following linear system:
n∑
k=1

zk = 1∑
ak∈αi1

zk ♦i1 si1

...∑
ak∈αili

zk ♦ili sili

where the variables of the system are z1, . . . , zn. We have the following:
(i) By Eqs. (5.7) and (5.8) the vector x = x1, . . . , xn is a solution of S.

(ii) By Eq. (5.4) every xk is non-negative.

(iii) Every sij is a rational number with size at most ||A||.

(iv) System S has at most |A| equalities and inequalities.
From (i)-(iv) and Theorem 5.1.5 we have that there exists a vector

y = y1, . . . , yn

such that:
(I) y is a solution of S.

(II) Every yi is a non-negative rational number with size at most

2 ·
(
|A| · ||A||+ |A| · log2(|A|) + 1

)
.

(III) At most |A| entries of y are positive.

(IV) For all i, if yi > 0 then xi > 0.
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Without loss of generality we assume that y1, . . . , yN are the positive entries of y,
where

0 < N ≤ |A| . (5.9)
We define the quadruple M = 〈W,H, µ, ∗〉 as follows:
(a) W = {w1, . . . , wN}, for some w1, . . . , wN .

(b) H = P(W ).

(c) For all V ∈ H:
µ(V ) =

∑
wk∈V

yk .

(d) Let i ∈ {1, . . . , N}. We define ∗wi
to be some CS-evaluation that satisfies the

atom ai. Since yi is positive, by (IV), xi is positive too, i.e. µ′([ai]M ′) > 0,
which means that [ai]M ′ 6= ∅, i.e. that the atom ai is CS-satisfiable.

It holds:

µ(W ) =
∑

wk∈W
yk

=
n∑
k=1

yk

(I)= 1

Let U, V ∈ H such that U ∩ V = ∅. It hods:

µ(U ∪ V ) =
∑

wk∈U∪V
yk

=
∑
wk∈U

yk +
∑
wk∈V

yk

= µ(U) + µ(V ) .

Thus µ is a finitely additive measure. By Definitions 3.1.4 and 3.1.6 we have that
M ∈ PJCS,Meas.
We will now prove the following statement:

(∀1 ≤ k ≤ n)
[
wk ∈ [αij]M ⇐⇒ ak ∈ αij

]
. (5.10)

Let k ∈ {1, . . . , n}. We prove the two directions of Eq. (5.10) separately.
(=⇒:) Assume that wk ∈ [αij]. This means that ∗wk

|= αij. Assume that ak /∈ αij.
Then, since αij is a disjunction of some atoms of A, there must exist some ak′ ∈ αij,
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with k 6= k′, such that ∗wk
|= ak′ . However, by definition we have that ∗wk

|= ak.
But this is a contradiction, since ak and ak′ are different atoms of the same formula,
which means that they cannot be satisfied by the same CS-evaluation. Hence,
ak ∈ αij.
(⇐=:) Assume that ak ∈ αij. We know that ∗wk

|= ak, which implies that

∗wk
|= αij, i.e. wk ∈ [αij]M .

Hence, Eq. (5.10) holds. Now, we will prove the following statement:(
∀1 ≤ j ≤ li

)[
M |= P♦ijsij

αij
]
. (5.11)

Let j ∈ {1, . . . , li}. It holds

M |= P♦ijsij
(αij) ⇐⇒

µ([αij]M) ♦ij sij ⇐⇒∑
wk∈[αij ]M

yk ♦ij sij
Eq. (5.10)⇐⇒

∑
ak∈αij

yk ♦ij sij .

The last statement holds because of (I). Thus, Eq. (5.11) holds.
By Eq. (5.11) we have that M |= ∧li

j=1 P♦ijsij
(αij), which implies that

M |=
K∨
i=1

li∧
j=1

P♦ijsij
(αij),

which, by Eq. (5.2), implies that M |= A.
Let wk ∈ W . It holds:

µ({wk}) =
∑

wi∈{wk}
yi = yk . (5.12)

Now we will show that conditions (1)–(5) in the theorem’s statement hold.

• Condition (1) holds because of (a) and Eq. (5.9).

• Condition (2) holds because of (b).

• Condition (3) holds because of Eq. (5.12) and (II).
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• For every V ∈ H, because of Eq. (5.12), we have:

µ(V ) =
∑
wk∈V

yk =
∑
wk∈V

µ({wk}) .

Hence condition (4) holds.

• By (d) every world of M satisfies a unique atom of α. Thus condition (5)
holds.

So, M is the model in question.

5.2 Complexity Bounds for PJ

In this section constant specifications are always assumed to be constant specifi-
cations for the logic J.
Lemma 5.2.1 states that if two CS-evaluations agree on some atom of a justification
formula then they agree on the formula itself.

Lemma 5.2.1. Let CS be any constant specification. Let α ∈ LJ and let a be an
atom of α. Let ∗1, ∗2 be two CS-evaluations and assume that

∗1 |= a⇐⇒ ∗2 |= a .

Then we have:
∗1 |= α⇐⇒ ∗2 |= α .

Proof. We prove the claim by induction on the structure of α.
• Assume that α is an atomic proposition or a justification assertion. Then it

must be either α ∈ a or ¬α ∈ a. Thus, since ∗1 and ∗2 agree on a they must
also agree on α, i.e. ∗2 |= α⇐⇒ ∗1 |= α.

• If the top connective of α is ¬ or ∧ then the claim follows easily by the
inductive hypothesis.

Lemma 5.2.2. Let α ∈ LJ and let a be an atom of α. Let ∗ be a CS-evaluation
and assume that ∗ |= a. The decision problem

does ∗ satisfy α?

belongs to the complexity class P.
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Proof. We prove the claim by induction on the structure of α.
• Assume that α is an atomic proposition or a justification assertion. Then it

must be either α ∈ a or ¬α ∈ a. If α ∈ a then we have ∗ |= α and if ¬α ∈ a
then ∗ 1 α. Obviously this check can be done in polynomial time.

• If the top connective of α is ¬ or ∧ then the claim follows easily by the
inductive hypothesis.

Recall that in Section 2.3 we pointed out that Kuznets’ algorithm [Kuz00] for the
JCS-satisfiability problem is divided in two parts: the saturation algorithm and
the completion algorithm. A complexity evaluation for the completion algorithm
(using our notation) is stated in Theorem 5.2.3.

Theorem 5.2.3. Let CS be a decidable and schematic constant specification. Let
a be an atom of some LJ-formula. The decision problem

is a JCS-satisfiable?

belongs to the complexity class coNP.

Now we are ready to prove the upper bound for the complexity of the PJCS,Meas-
satisfiability problem.

Theorem 5.2.4. Let CS be a decidable and schematic constant specification. The
PJCS,Meas-satisfiability problem belongs to the complexity class Σp

2.

Proof. First we will describe an algorithm that decides the problem in question
and we will explain its correctness. Then we will evaluate the complexity of the
algorithm.
Algorithm:

Let A ∈ LPJ. It suffices to guess a small PJCS,Meas-model M = 〈W,H, µ, ∗〉 that
satisfies A and also satisfies the conditions (1)–(5) that appear in the statement of
Theorem 5.1.6. We guessM as follows: we guess n atoms of A, call them a1, . . . , an,
and we also choose n worlds, w1, . . . , wn, for n ≤ |A|. Applying Theorem 5.2.3 we
verify that for each i ∈ {1, . . . , n} there exists a CS-evaluation ∗i such that ∗i |= ai.
We define W = {w1, . . . , wn}. For every i ∈ {1, . . . , n} we set ∗wi

= ∗i. Since we
are only interested in the satisfiability of justification formulas that appear in A,
by Lemma 5.2.1, the choice of the ∗wi

is not important (as long as ∗wi
satisfies ai).

We assign to every µ({wi}) a rational number with size at most:

2 ·
(
|A| · ||A||+ |A| · log2(|A|) + 1

)
.
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We set H = P(W ). For every V ∈ H we set:

µ(V ) =
∑
wi∈V

µ({wi}) .

It is then straightforward to see that conditions (1)–(5) that appear in the state-
ment of Theorem 5.1.6 hold.
Now we have to verify that our guess is correct, i.e. that M |= A. Assume that
P≥sα appears in A. In order to see whether P≥sα holds we need to calculate the
measure of the set [α]M in the model M . The set [α]M will contain every wi ∈ W
such that ∗wi

|= α. Since ∗wi
satisfies an atom of A it also satisfies an atom of α.

So, by Lemma 5.2.2, we can check whether ∗wi
satisfies α in polynomial time. If∑

wi∈[α]M µ({wi}) ≥ s then we replace P≥sα in A with the truth value T, otherwise
with the truth value F. We repeat the above procedure for every formula of the
form P≥sα that appears in A. At the end we have a formula that is constructed
only from the connectives ¬, ∧ and the truth constants T and F. Obviously, we
can verify in polynomial time that the formula is true. This, of course, implies
that M |= A.
Complexity Evaluation:
All the objects that are guessed in our algorithm have size that is polynomial on
A. Also the verification phase of our algorithm can be made in polynomial time.
Furthermore the application of Theorem 5.2.3 is possible with an NP-oracle (an
NP-oracle can obviously decide coNP problems too). Thus our algorithm is an
NPNP algorithm and since Σp

2 = NPNP the claim of the theorem follows.

The lower complexity bound for the PJCS,Meas-satisfiability problem can be proved
much easier.

Theorem 5.2.5. Let CS be a decidable, schematic and axiomatically appropriate
constant specification. The PJCS,Meas-satisfiability problem is Σp

2-hard.

Proof. We can prove that the JCS-satisfiability problem can be reduced to the
PJCS,Meas-satisfiability problem as follows:
Let α ∈ LJ. We will prove that:

α is JCS-satisfiable ⇐⇒ P≥1α is PJCS,Meas-satisfiable.

For the direction =⇒:
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Assume that there exists a CS-evalution ∗, such that ∗ |= α. Then we can construct
the quadruple M = 〈W,H, µ, ∗′〉 with

W = {w} ;
H = {∅, {w}} ;

µ(∅) = 0 ;
µ({w}) = 1 ;

∗′w = ∗ .

It is then straightforward to show that M ∈ PJCS,Meas and that M |= P≥1α. Thus
P≥1α is PJCS,Meas-satisfiable.
For the direction ⇐=:
Assume that there exists a PJCS,Meas-model M = 〈W,H, µ, ∗〉 such that

M |= P≥1α, i.e. µ([α]M) ≥ 1.

If [α]M = ∅ then it should be µ([α]M) = 0 which contradicts the fact that µ([α]M) ≥
1. Hence, there is a w ∈ W such that ∗w |= α. Thus, α is JCS-satisfiable.
So, we proved that the JCS-satisfiability problem can be reduced to the PJCS,Meas-
satisfiability problem. By Theorem 2.3.5 the JCS-satisfiability problem is Σp

2-hard.
Hence, the PJCS,Meas-satisfiability problem is Σp

2-hard too.

From Theorems 4.2.10, 5.2.4 and 5.2.5 we can get the following corollary.

Corollary 5.2.6. Let CS be any decidable, schematic and axiomatically appropri-
ate constant specification. The PJCS,Meas-satisfiability problem is Σp

2-complete and
the PJCS-derivability problem is Πp

2-complete.

Remark 5.2.7. Let CS be any decidable, schematic and axiomatically appropri-
ate constant specification. By Corollary 2.3.6 we have that the JCS-derivability
problem belongs to the class Πp

2-complete. By Corollary 5.2.6 we have that the
PJCS-derivability problem belongs to the class Πp

2-complete too. So, adding proba-
bility operators to the justification logic J does not increase the complexity of the
logic, although it makes the language more expressive.

5.3 Decidability for PPJ

In this section constant specifications are always assumed to be constant specifi-
cations for the logic PPJ.
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Assume that we want to test some A ∈ LPPJ for satisfiability. The test is divided
in two parts: first we test whether the “justification and classical constraints” that
appear in A are satisfiable and then we test whether the “probabilistic constraints”
that appear in A are satisfiable. Of course we have to make sure that both kinds
of constraints are satisfied in the same PPJCS,Meas-model. The satisfiability testing
for the “justification and classical constraints” will be done using an adaptation
of the satisfiability algorithm for the logic J, whereas the satisfiability testing for
the “probabilistic constraints” will be done using similar ideas as the ones used
for the satisfiability testing in the logic PJ. In order to formally present our
satisfiability algorithm we will first explain what is meant under “satisfiability
testing for justification and classical constraints”, then what is formally meant
under “satisfiability testing for probabilistic constraints” and finally how both
kind of constraints can be satisfied at the same model.
By testing satisfiability of “justification and classical constraints” that appear in
an LPPJ-formula we mean that we test whether a CS-evaluation satisfies an LPPJ-
formula. In order to formally define the sentence “a CS-evaluation satisfies an
LPPJ-formula” we have to extend the definition of a CS-evaluation.

Definition 5.3.1 (Extended CS-Evaluation). Let CS be any constant specification.
An extended CS-evaluation, is a function ∗ that maps atomic propositions and
LPPJ-formulas of the form P≥sA to truth values and maps justification terms to
sets of LPPJ-formulas such that the conditions of Definition 2.2.1 are satisfied.
That is for p ∈ Prop, u, v ∈ Tm, c ∈ Con, A,B ∈ LPPJ and s ∈ S we have:

(1) (P≥sA)∗ ∈ {T,F}, p∗ ∈ {T,F} and u∗ ⊆ LPPJ ;

(2)
(
A→ B ∈ u∗ and A ∈ v∗

)
=⇒ B ∈ (u · v)∗ ;

(3) u∗ ∪ v∗ ⊆ (u+ v)∗ ;

(4) if (c, A) ∈ CS then for all n ∈ N we have:

!n−1c : !n−2c : · · · :!c : c : A ∈ (!nc)∗ .

Satisfiability under an extended CS-evaluation can be defined in the following way:

Definition 5.3.2 (Satisfiability under an Extended CS-evaluation). Let CS be a
constant specification and let ∗ be some extended CS-evaluation. We define what
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it means for an LPPJ-formula to hold in ∗ as follows:

∗ |= p ⇐⇒ p∗ = T for p ∈ Prop ;
∗ |= P≥sB ⇐⇒

(
P≥sB

)∗
= T ;

∗ |= ¬B ⇐⇒ ∗ 6|= B ;
∗ |= B ∧ C ⇐⇒

(
∗ |= B and ∗ |= C

)
;

∗ |= t : B ⇐⇒ B ∈ t∗ .

When we say that some A ∈ LPPJ is CS-satisfiable, we mean that there exists an
extended CS-evaluation that satisfies A.
According to Definition 5.3.1 the satisfiability of an LPPJ formula under an ex-
tended CS-evaluation is similar to the satisfiability of an LJ-formula under a CS-
evaluation. Therefore, it makes sense to use an extension of the usual decision
procedure for the basic justification logic J (see Section 2.3) to decide whether an
LPPJ-formula is CS-satisfiable.

Lemma 5.3.3. Let CS be a decidable schematic constant specification. For any
formula A ∈ LPPJ, it is decidable whether A is CS-satisfiable.

Proof. As mentioned earlier we can test whether an LPPJ-formula is CS-satisfiable
by extending the decidability algorithm for justification logic J. Most of the al-
gorithm can be easily adapted to our probabilistic setting. The only part of the
algorithm that needs major adaptations is the representation of schematic formulas
and therefore the unification algorithm.
In the setting of PPJ we need three kinds of schematic variables: for terms, formulas
and rational numbers. Because of the side conditions that come with the axioms
(WE) and (UN) our schematic formulas should be paired with systems of linear
inequalities. For example, the scheme (WE) should be represented by the schematic
formula P≤rA → P<sA (with the schematic variables r, s, and A) together with
the inequality r < s, whereas a scheme that is obtained by a conjunction of the
schemata (WE) and (UN) should be represented as(

P≤r1A1 → P<s1A1
)
∧
(
P≤r2A2 ∧ P<s2B2 → P<r2+s2(A2 ∨B2)

)
together with the inequalities{

r1 < s1, r2 + s2 ≤ 1
}
.

We should not forget that the rational variables belong to S. So we have to add
constraints like 0 ≤ r ≤ 1.
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Hence in addition to constructing a substitution, the unification algorithm also has
to take care of the linear constraints. For instance, in order to unify the schemata
P≥rA and P≥sB the algorithm has to unify A and B, and to equate r and s, i.e. it
adds r = s to the linear system. In the end, the constructed substitution only is a
most general unifier if the linear system is satisfiable. This implies decidability of
the PPJCS,Meas-satisfiability problem since it is well known that satisfiability testing
for systems of linear equations is decidable (see e.g. [Lue73]).
Another complication are constraints of the form

l = min(1, r + s) (5.13)

that originate from the scheme (DIS). Obviously, Eq. (5.13) is not linear. However,
for a linear system C, we find that

C ∪ {l = min(1, r + s)}

has a solution if and only if

C ∪ {l = r + s, r + s ≤ 1} or C ∪ {l = 1, r + s > 1}

has a solution. Thus we can reduce solving a system involving Eq. (5.13) to solving
several linear systems.

Lemma 5.3.3 is enough for testing whether “justification and classical constraints”
can be satisfied. Now we proceed with definitions and lemmata that are needed
for testing the satisfiability of “probabilistic constraints”.

Definition 5.3.4 (Subformulas and Atoms). The set of subformulas, subf(·), of
an LPPJ-formula is recursively defined by:

subf(p) := {p} for p ∈ Prop ;
subf(P≥sA) := {P≥sA} ∪ subf(A) ;

subf(¬A) := {¬A} ∪ subf(A) ;
subf(A ∧B) := {A ∧B} ∪ subf(A) ∪ subf(B) ;

subf(t : A) := {t : A} ∪ subf(A) .

Assume that subf(A) = {A1, . . . , Ak} for some A ∈ LPPJ. A formula of the form

±A1 ∧ . . . ∧ ±Ak ,

where ±Ai is either Ai or ¬Ai, will be called an atom4 of A. The set atoms(A)
contains all atoms of A.

4Recall that atoms for LPJ- and LPPJ-formulas are defined differently.
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Lemma 5.3.5. Let M = 〈U,W,H, µ, ∗〉 ∈ PPJCS,Meas and let A ∈ LPPJ. Further,
let B ∈ subf(A), let C ∈ atoms(A) and let w ∈ U . Assume that M,w |= C. Then
we have:

M,w |= B ⇐⇒ B ∈ C.

Proof. We prove the two directions of the lemma separately:
⇐=: From B ∈ C and M,w |= C we immediately get M,w |= B.
=⇒: Since B is a subformula of A, we have either B ∈ C or ¬B ∈ C. If ¬B ∈ C,
then we would have M,w |= ¬B, i.e. M,w 6|= B, which contradicts the fact that
M,w |= B. Thus, we conclude B ∈ C.

The next lemma is the key for proving decidability of PPJCS. It completes the algo-
rithm that we described from the beginning of the section by formally explaining
how “justification and classical constraints” and “probabilistic constraints” can
be satisfied in the same model. As it will be clear from the proof, the lemma
practically states a small model property.

Lemma 5.3.6. Let CS be a constant specification and let A be an LPPJ-formula.
A is PPJCS,Meas-satisfiable if and only if there exists a non-empty set

Y = {B1 , . . . , Bn} ⊆ atoms(A)

such that all of the following conditions hold:

1. for some i ∈ {1, . . . , n}, A ∈ Bi.

2. for every 1 ≤ i ≤ n, there exists an extended CS-evaluation that satisfies Bi.

3. for every 1 ≤ i ≤ n, there are some xij with 1 ≤ j ≤ n, that satisfy the
following linear equalities and inequalities:

n∑
j=1

xij = 1

(∀1 ≤ j ≤ n)
[
xij ≥ 0

]
for every P≥sC ∈ Bi,

∑
{j|C∈Bj}

xij ≥ s

for every ¬P≥sC ∈ Bi,
∑

{j|C∈Bj}
xij < s .
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Proof. Let CS be a constant specification and let A ∈ LPPJ. We prove the two
directions of the lemma separately:
=⇒: Let M = 〈U,W,H, µ, ∗〉 ∈ PPJCS,Meas. Assume that A is satisfiable in some
world of M .
Let ≈ denote a binary relation over U such that for all w, x ∈ U we have:

w ≈ x if and only if
(
∀B ∈ subf(A)

)[
M,w |= B ⇔M,x |= B

]
.

It is easy to see that≈ is an equivalence relation. LetK1, . . . , Kn be the equivalence
classes of ≈ over U . For every i ∈ {1, . . . , n} we choose some wi ∈ Ki. For every
i ∈ {1, . . . , n} some subformulas of A hold in the world wi and some do not. So,
without loss of generality, we assume that for every i ∈ {1, . . . , n} there exists a
Bi ∈ atoms(A) such that M,wi |= Bi. For i 6= j we have Bi 6= Bj since wi and wj
belong to different equivalence classes. Let Y = {B1, . . . , Bn}. Since A holds in
some wi, Y is non-empty. It remains to show that the conditions in the statement
of the lemma hold:

1. Let w ∈ U be such thatM,w |= A. The world w belongs to some equivalence
class of ≈ that is represented by wi. Thus M,wi |= A. By Lemma 5.3.5 we
find A ∈ Bi, i.e. condition 1 holds.

2. Let i ∈ {1, . . . , n}. It holds that M,wi |= Bi. We define the extended
CS-evaluation ∗i as follows (the fact that ∗i is an extended CS-evaluation
immediately follows from the fact that ∗wi

is a CS-evaluation):

• for every p ∈ Prop:
p∗i = p∗wi

;

• for every P≥sB ∈ LPPJ:

(P≥sB)∗i =

T , if M,wi |= P≥sB

F , if M,wi 6|= P≥sB ;

• for every t ∈ Tm :
t∗i = t∗wi

.

The following statement can be shown by straightforward induction on the
complexity of the formula.(

∀B ∈ subf(Bi)
)
[M,wi |= B ⇐⇒ ∗i |= B] (5.14)

Since, Bi ∈ subf(Bi) and M,wi |= Bi, by statement 5.14 we get ∗i |= Bi.
And of course this holds for every 1 ≤ i ≤ n. Therefore, condition 2 holds.
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3. Let i ∈ {1, . . . , n}. We set

yij = µ(wi)(Kj ∩W (wi)), for every 1 ≤ j ≤ n . (5.15)

We are going to do some calculations to show that these values yij satisfy
the linear system in condition 3.
First of all we have∑

1≤j≤n
yij =

∑
1≤j≤n

µ(wi)(Kj ∩W (wi))
the Kj ’s are mutually disjoint=

µ(wi)
( ⋃

1≤j≤n

(
Kj ∩W (wi)

)) ⋃n

j=1 Kj=U
=

µ(wi)
(
W (wi)

)
.

And since µ(wi) is a finitely additive measure over W (wi) we get:∑
1≤j≤n

yij = 1 . (5.16)

By Eq. (5.15) we also have:

(∀1 ≤ j ≤ n)
[
yij ≥ 0

]
. (5.17)

Let P≥sC ∈ Bi. Since M,wi |= Bi it also holds that M,wi |= P≥sC, i.e.

µ(wi)([C]M,wi
) ≥ s . (5.18)

We will prove that:

⋃
{j|C∈Bj}

(
Kj ∩W (wi)

)
= [C]M,wi

. (5.19)

Let w ∈ [C]M,wi
. We have w ∈ W (wi) andM,w |= C. w must belong to some

Kj. We also have that M,wj |= C and M,wj |= Bj, which by Lemma 5.3.5
implies C ∈ Bj. Thus, we proved that there exists some j such that C ∈ Bj

and w ∈ Kj ∩W (wi). Thus

w ∈
⋃

{j|C∈Bj}

(
Kj ∩W (wi)

)
.
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On the other hand let w ∈ ⋃{j|C∈Bj}

(
Kj ∩W (wi)

)
. So, there exists some j,

such that C ∈ Bj and w ∈ Kj ∩W (wi). It holds that M,wj |= Bj and since
w ∈ Kj we have that M,w |= Bj which implies that M,w |= C. So, since
w ∈ W (wi), we have that w ∈ [C]M,wi

.
Therefore Eq. (5.19) holds.
By Eq. (5.18) and Eq. (5.19) we get:

µ(wi)
( ⋃
{j|C∈Bj}

(
Kj ∩W (wi)

))
≥ s .

Since the Kj’s are mutually disjoint and µ(wi) is a finitely additive measure
we have:

∑
{j|C∈Bj}

µ(wi)
(
Kj ∩W (wi)

)
≥ s

and by Eq. (5.15): ∑
{j|C∈Bj}

yij ≥ s .

So we proved that

for every P≥sC ∈ Bi,
∑

{j|C∈Bj}
yij ≥ s . (5.20)

By a similar reasoning we can prove that

for every ¬P≥sC ∈ Bi,
∑

{j|C∈Bj}
yij < s . (5.21)

By Eqs. (5.16), (5.17), (5.20) and (5.21) we have that the yij’s satisfy the
linear system in condition 3.

⇐=: Assume that there exists some Y = {B1, . . . , Bn} ⊆ atoms(A) such that
conditions 1–3 in the lemma’s statement hold. For every 1 ≤ i ≤ n, let ∗i be an
extended CS-evaluation such that ∗i |= Bi (by condition 2 we know that such an
extended CS-evaluation exists). Let xij, for i, j ∈ {1, . . . , n}, be numbers that
satisfy the linear system in condition 3.
We define the quintuple M = 〈U,W,H, µ, ∗〉 as follows:

• U = {w1, . . . , wn} for some w1, . . . , wn.
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• For all 1 ≤ i ≤ n we set:

1. W (wi) = U ;
2. H(wi) = P(W (wi));
3. for every V ∈ H(wi):

µ(wi)(V ) =
∑

{j|wj∈V }
xij ;

4. for every p ∈ Prop:
p∗wi

= p∗i

and for every t ∈ Tm:
t∗wi

= t∗i .

First we show that M ∈ PPJCS,Meas. Since Y is non-empty, n is positive thus U is
non-empty too. Let 1 ≤ i ≤ n. It holds that:

(i) H(wi) is an algebra over W (wi), since H(wi) is the powerset of W (wi).

(ii) For every A ∈ LPPJ we have that [A]M,wi
∈ P(W (wi)), i.e. [A]M,wi

∈ H(wi).

(iii) µ(wi) is defined for all V ∈ H(wi) and by the first two lines of the linear
system in condition 3 it holds that the codomain of µ(wi) is [0, 1].
We also have that:

µ(wi)(W (wi)) = µ(wi)(U) =
∑

{j|wj∈U}
xij =

∑
1≤j≤n

xij = 1 .

Let U, V ∈ H(wi) such that U ∩ V = ∅. It holds

µ(wi)(U ∪ V ) =
∑

{j|wj∈U∪V }
xij

=
∑

{j|wj∈U}
xij +

∑
{j|wj∈V }

xij

= µ(wi)(U) + µ(wi)(V ) .

Thus, µ(wi) is a finitely additive measure over H(wi).

(iv) The fact that ∗i is an extended CS-evaluation immediately implies that ∗wi

is a CS-evaluation.
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From (i) - (iv) we conclude that M ∈ PPJCS,Meas. It remains to show M,wi |= A
for some i.
First we have to show the following statement:

(∀D ∈ subf(A))(∀1 ≤ i ≤ n)
[
D ∈ Bi ⇐⇒M,wi |= D

]
. (5.22)

Let D ∈ Bi. We will prove statement (5.22) by induction on the structure of D.
Let 1 ≤ i ≤ n. We distinguish the following cases:

D ≡ p ∈ Prop: It holds:

D ∈ Bi ⇐⇒
p ∈ Bi ⇐⇒
∗i |= p ⇐⇒
p∗i = T ⇐⇒
p∗wi

= T ⇐⇒
M,wi |= p ⇐⇒
M,wi |= D .

D ≡ t : C: We have:

D ∈ Bi ⇐⇒
t : C ∈ Bi ⇐⇒
∗i |= t : C ⇐⇒
C ∈ t∗i ⇐⇒
C ∈ t∗wi

⇐⇒
M,wi |= t : C ⇐⇒
M,wi |= D .

D ≡ P≥sC . We prove the two directions of the claim separately.
=⇒: Assume that D ∈ Bi, i.e. P≥sC ∈ Bi. By the third line of the linear
system in condition 3 we have: ∑

{j|C∈Bj}
xij ≥ s .

By the inductive hypothesis we have:∑
{j|M,wj |=C}

xij ≥ s . (5.23)



86 CHAPTER 5. DECIDABILITY AND COMPLEXITY

It holds that

[C]M,wi
= {wj ∈ W (wi) | M,wj |= C} = {wj | M,wj |= C} . (5.24)

By the definition of M we have:

µ(wi)([C]M,wi
) =

∑
{j|wj∈[C]M,wi

}
xij

(5.24)=
∑

{j|M,wj |=C}
xij .

And by (5.23) we have that

µ(wi)([C]M,wi
) ≥ s

i.e.
M,wi |= P≥sC

i.e.
M,wi |= D .

⇐=: Let M,wi |= D. Assume that D /∈ Bi, i.e. ¬D ∈ Bi, that is:

¬P≥sC ∈ Bi .

By the last line of the linear system in condition 3 we have that∑
j:C∈Bj

xij < s .

By using a similar argument as before we can prove that

µ(wi)([C]M,wi
) < s

i.e.
M,wi 6|= D

which is absurd. Therefore D ∈ Bi.

D ≡ D1 ∧D2: Here D ∈ Bi means

D1 ∧D2 ∈ Bi . (5.25)

We know that ∗i |= Bi. Assume that D1 /∈ Bi or D2 /∈ Bi. Then it should
be ¬D1 ∈ Bi or ¬D2 ∈ Bi, i.e. ∗i 1 D1 or ∗i 1 D2. But this is absurd since
we have that ∗i |= D1 ∧D2. So, both D1 and D2 belong to Bi. Hence (5.25)
is equivalent to the following statements.

D1 ∈ Bi and D2 ∈ Bi
i.h.⇐⇒

M,wi |= D1 and M,wi |= D2 ⇐⇒
M,wi |= D1 ∧D2 ⇐⇒
M,wi |= D .
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D ≡ ¬D′: We have:

D ∈ Bi ⇐⇒
¬D′ ∈ Bi ⇐⇒

D′ /∈ Bi
i.h.⇐⇒

M,wi 6|= D′ ⇐⇒
M,wi |= ¬D′ ⇐⇒
M,wi |= D .

We conclude that statement (5.22) holds.
We have A ∈ subf(A). Thus, by statement (5.22) we find:

(∀1 ≤ i ≤ n)
[
A ∈ Bi ⇐⇒M,wi |= A

]
.

By condition 1, there exists an i such that A ∈ Bi. Thus, there exists an i such
that M,wi |= A. Hence, A is PPJCS,Meas-satisfiable.

In the proof of Lemma 5.3.6 we construct a model with at most 2|subf(A)| worlds that
satisfies A. Hence a corollary of Lemma 5.3.6 is that any A ∈ LPPJ is PPJCS,Meas-
satisfiable if and only if it is satisfiable in a PPJCS,Meas-model with at most 2|subf(A)|

worlds. In other words, Lemma 5.3.6 implies a small model property for PPJCS.
Moreover, Lemma 5.3.6 dictates a procedure to decide the satisfiability problem
for PPJCS.
Theorem 5.3.7. Let CS be a decidable and schematic constant specification. The
PPJCS,Meas-satisfiability problem is decidable.

Proof. Let CS be a decidable almost schematic constant specification and let A ∈
LPPJ. The formula A is satisfiable if and only if for some Y ⊆ atoms(A) all
conditions in the statement of Lemma 5.3.6 hold. Since atoms(A) is finite, it
suffices to show that for every Y ⊆ atoms(A) the conditions 1–3 in the statement
of Lemma 5.3.6 can be effectively checked:

• Decidability of condition 1 is trivial.

• Decidability of condition 2 follows from Lemma 5.3.3.

• In condition 3 we have to check for the satisfiability of a set of linear inequal-
ities. There are several decision procedures available for this problem (see,
for example, [Lue73]).

We conclude that the PPJCS,Meas-satisfiability problem is decidable.
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Chapter 6

Conclusion and Further Work

This thesis provides a first extensive study of uncertain reasoning in justification
logic. We investigated how probabilistic logic and justification logic can be com-
bined in order to obtain probabilistic justification logics that allow the analysis
of epistemic situations with incomplete information. The language of our logics
is defined by adding probability operators to the language of justification logic.
Syntax of our logics consists of the usual axioms for probability combined with
the axioms for justification logic. In order to give semantics to our logics we com-
bined the standard model for probability with ontological models for justification
logics in what turned out to be a Kripke-style semantics for our logics. Note that
we had to rely on an infinitary rule in order to obtain strong completeness. We
proved decidability results for our logics and in the case where no iterations of the
probability operators are allowed we proved that the computational complexity
of the probabilistic justification logic remains the same as the complexity of the
underlying justification logic.
The main directions for further research can be divided in two categories:
A. Extending the logical framework for probabilistic reasoning in justi-
fication logics.

As the reader has noticed, in this thesis we only studied the enrichment of the basic
justification logic J with probabily operators. The main reason for this restriction
is that in the first study of the probabilistic extension of justification logic we
wanted to focus on the simplest possible framework. However the probabilistic
extension of more complicated justification logics than J is also worth studying.
For example the factivity axiom

t : A→ A

89
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or the positive introspection axiom

t : A→!t : t : A

can be added to the logic PPJ, so that we can have a probabilistic version of the
famous Logic of Proofs (LP).
Another idea for extending the logics presented in this thesis is to study multi-
agent systems. Consider again the Motivating Example from Chapter 1. In the
example there are three agents:

agent i: Peter

agent j: Marc

agent k: the New York Times

Assume also that t stands for “Marc said so” and A stands for “the tax rates will
increase”.
So far we considered only single-agent probabilistic justification logics. However,
we can describe the situation in the Motivating Example more precisely, using
formulas of the form: Pi,≥s(t :j A) meaning that agent i puts probability at least
s to the fact that agent j considers t as evidence for statement A. Naturally this
requires building a multi-agent probabilistic justification logic, where each agent
is able to use their own machinery for constructing evidence and determining
probabilities. It is also interesting to allow the agents the ability to interact and
to use different kind of reasoning methods, that is to let them use different logical
systems.
A further extension would be to investigate some cases where statistical evidence
can serve as justifications. For instance, if we know that the conditional probability
of B given A is s, it seems natural to use A (or, better, a justification term h(A)
that is obtained from the formula A) as a justification for B with probability
s. Thus, it would be interesting to study a system that has an axiom like the
following:

P≥s(B|A)→ P≥s(h(A) : B) .

B. Studying the computational complexity of (probabilistic) justifica-
tion logics

Although we have decision procedures for the logic PPJ, we have not established
complexity bounds for this logic yet. We already know that one iteration of the
probability operator does not increase the computational complexity of the logic,
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since the complexity of PJ remains the same as the complexity of the underlying
logic J. However, it has been proved in the literature that arbitrary iterations
of the probability operator lead to combinatorial explosion in the complexity of
the logic. For example, the satisfiability problem for the logic LPP1 [ORM09],
which is a probabilistic logic with the same design as that of PPJ, is in PSPACE.
Furthermore in [FH94] it is proved that the satisfiability problem of a logic similar
to PPJ, that allows iterations of knowledge and probability operators, is PSPACE-
complete. For the above reasons we conjecture that satisfiability testing for the
logic PPJ should also be PSPACE-complete.
Traditional computational complexity theory attempts to characterize the com-
plexity of a problem as a function of the input size n. Parameterized complexity
theory [DF99, FG06] requires for every problem the definition of a structural pa-
rameter k, which attempts to capture the aspect of the problem which causes its
intractability. One of the central notions in this theory is called fixed-parameter
tractability (FPT): an algorithm is called FPT if it runs in time O(f(k)·nc), where
f is any computable function and c a constant. The design of FPT-algorithms for
justification logics and probabilistic justification logics can lead to better under-
standing of the reasons that cause the combinatorial explosion of the satisfiability
problem in these logics.
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