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Abstract
The future of autonomous vehicles is rapidly approaching and the published and
available research, both from vehicle manufacturers and universities, is abundant.
This new technology promises less pollution, lower accident rates, decreased conges-
tion and the possibility to relax or work while a vehicle takes you where you need to
go.

In this thesis we use nonlinear model predictive control to control autonomous
vehicles overtaking on highways and driving through intersections. One of the
main disadvantages of model predictive control is that the optimal control problems
can be computationally expensive to solve. This could certainly be the case for
the exact temporal formulation of the intersection and highway problem since the
modeling of for both applications include binary decisions; and thus, have mixed
integer optimization programs as their optimal control problems. To decrease the
computational complexity of these optimal control problems this thesis introduces a
novel reformulation technique for optimal control problems which removes the integer
decisions present due to the collision constraints; which results in a continuous,
nonlinear control problem for both applications. The remodeling technique involves
changing the independent variable from travel time to traveled distance, introducing
travel time and inverse velocity as states and lastly by introducing new input signals.
After the remodeling, the continuous, nonlinear optimal control problems are solved
using sequential quadratic programming. Further, it is shown that the introduced
remodeling technique guarantees that the subproblems of the sequential quadratic
programming scheme provides feasible solutions to the original nonlinear program
being solved; for both the intersection and overtaking problem. This makes it possible
to stop the sequential quadratic programming scheme prematurely and still have
access to a solution that is feasible in the nonlinear program; provided, of course,
that the subproblems themselves are feasible.

Keywords: Model predictive control, Convex optimization, Autonomous driving,
Real-time implementation.
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Chapter 1

Introduction

There are several instances of what seem to be autonomous objects throughout myth
and religion. For instance, Odin, the head of the asa gods in Norse mythology,
wielded a spear called Gugnir, which was given to him by Loki with the assertion
that, ”It is a unique spear in that when aimed and thrown it never misses its mark”.
Further, it is asserted, also by Loki, that the ship Skidbladnir ”... never fail to
find a breeze, and will sail as well over land as it does over the sea.”, [1]. The idea
of autonomy is very old and was, as many other things, attributed to magic. A
more modern approach to autonomy and automated machines emerged in the 1920s
with the first mention of the word robot in Karel Čapek’s play Rossum’s Universal
Robots (however, similarly to autonomy the concept of Robots had been present in
ancient myth and mythology for centuries), [2]. One of the first experminents with
automated vehicles was also carried out in the twenties when an automated driving
system was tested in Milwaukee, [3].

While autonomous driving has been around for almost a century it is in the last few
decades that the concept has garnered significant attention from researchers, vehicle
manufacturers and media outlets. Some of the notable and highly reported events
were the US national automated highway system consortium’s proof of technical
feasibility of automated driving made in 1997, [4], the DARPA grand challenge in
2005, [5], and the DARPA urban challenge in 2007, [6].

One can ask what an autonomous or self-driving vehicle even is. Is it enough
for a vehicle to be not much more than an automated (horizontal) elevator which
transports human or goods between two fixed points in a static environment or
should it be like the ship Skidbladnir and be able to move anywhere at any time
adapting to a dynamic world? In an attempt to answer this question, the SAE
international [7] introduced six different levels of autonomy in 2014

Level 0: No automation: Manual driving.

Level 1: Driver Assistance: Adaptive cruise control, Automatic braking.

Level 2: Partial automation.

Level 3: Conditional automation: traffic jam chauffeur.

3
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Level 4: High automation: Local driverless taxi.

Level 5: Complete automation: Autonomous during all conditions.

On Levels 1-2 it is assumed, even when driver support features are engaged, that
there is a human who is ready to take over at any time; if necessary. On Level 3 the
human driver should be prepared to, at any time, take over the wheel, but should
only have to do so when it is requested by the automated feature. Levels 4-5 are
truly autonomous in the sense that no human driver is needed.

Levels 1 and 2 are standard in many vehicles today through features such as
adaptive cruise control and automated lane keeping. However, most of the predicted
benefits, such as stress release for drivers, reduction of pollution, accidents and traffic
congestion, require an autonomy of level 4 or 5, [8]. Many automotive companies are
working hard to bring vehicles to this new level of automation. For example, BMWs
senior vice president say that BMW are on the track to release a vehicle with Level
3 autonomy (or higher) in 2021, Volvo CEO predicts Volvo will have a self-driving
car for highways by the same year and Renault-Nissan predicts they will have a
driverless car ready for 2025. This leap, from Level 1-2 to 3-5, is significant since the
level of autonomy needed is heavily reliant on accurate real-time data collection to
describe the surroundings. The data can be gathered via sensors (e.g., cameras and
Lidar) attached to the vehicle, or outside sources such as infrastructure. Since no
infrastructure to support autonomous vehicles exist today, the main approach used
is to mount sensors on the vehicle. In this thesis however, we are not concerned with
acquiring and fusing sensor data. Instead, we will assume that this task has already
been carried out. The thesis focus on control of the autonomous vehicle given this
data.

There are many interesting control problems related to autonomous driving. Some
of the most studied problems include platooning, highway driving, driving through
intersections and parking. At the higher levels of autonomy, the traffic situations
that can occur are so diverse that it will probably not be possible to use one single
controller for all situations. Instead, the autonomous vehicle will be controlled via a
hierarchical structure which will be capable of making decisions, generate trajectories
and detect/avoid danger. This makes it relevant to address isolated control problems
such as the ones mentioned above, even in the context of complete automation.
There are many different methods that can be used to attack these isolated control
problems. For example, multi agent systems, reinforcement learning [9], stochastic
optimization and fuzzy control [10].

Some of the isolated control problems can be viewed as collision avoidance prob-
lems, and are often addressed using grid/graph search problems or (non)linear model
predictive control (MPC), [11]. MPC approaches have been shown increased attention
due to their ability to systematically handle system constraints and nonlinearities.
In practice, MPC makes it simple to mathematically describe safety and comfort
requirements via formulation of optimization constraints in the optimal control
problem. In this thesis we will take a closer look at the optimal control problem
when applying MPC to two of the most commonly studied problems in autonomous
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vehicles research; namely overtaking on a highway and coordination of vehicles
driving through an intersection.

In autonomous overtaking on a highway the automated vehicle, often referred to
as the ego or host vehicle, is approaching a slower moving leading vehicle from behind.
The goal is to overtake the leading vehicle via a double lane change, thus returning
to the initial lane at the end of the manoeuvre. This has to be done while: avoiding
collision with the leading vehicle; avoiding collision with surrounding traffic; staying
within the road boundaries. These demands can be incorporated into the optimal
control problem via constraints on the position of the ego vehicle. Graphically, the
position constraints can be depicted as in Figure 1.1. To avoid collision with the
leading vehicle a rectangular zone, refered to as the critical zone, is placed around
the leading vehicle into which it is forbidden for the ego vehicle to enter. For other
surrounding vehicles, ramp barriers are used to avoid collision. In Figure 1.1 it seems
like the collision avoidance can easily be modeled using continuous, linear constraints.
However, this is not the case when time progress since the velocity of the ego vehicle
is not known prior to solving the optimal control problem. This introduce two binary
decisions into the optimal control problem; at what time should the ego vehicle reach
the beginning of the critical zone and at what time should it reach the end of the
critical zone. Thus, the optimal control program for the overtaking problem becomes
a mixed integer program (MIP).

In the problem of coordinating vehicles driving through an intersection given a
predefined order, the goal for a centralized controller is to guide vehicles through
an intersection along predefined paths while avoiding collision between the vehicles.
In a similar way to the overtaking program the collision avoidance can be modeled
by introducing restrictions on the position of the vehicles. However, in this case
this cannot be done by completely prohibiting the vehicles from entering a certain
area; since they all need to travel through the intersection. Instead critical zones
are introduced for each vehicle pair which have intersecting paths, as illustrated
by the grey areas in Fig. 1.2. Within these critical zones, collision is possible and
therefore collision avoidance must be applied; either by allowing only one vehicle in a
particular zone at the time; or by ensuring their distance within the zones are large
enough to avoid collision. In contrast to the overtaking problem, the zones in which
collision is possible is not attached to any moving vehicles, and are therefore fixed.
The velocities of the controlled vehicles are, however, still unknown and therefore,
just as in the case of the overtaking problem it is necessary to include binary choices
into the program. This time there are two or four binary choices per vehicle pair
with intersecting paths; when the vehicles enter the critical set and/or when they
exit that same critical set.

As was illustrated in the two previous paragraphs the optimal control problem
of the MPC might be a complicated optimization program. This highlights the
main downside of MPC (and nonlinear MPC in particular); namely that it can be
computationally expensive. This might limit its use as a real-time implementable
algorithm. Thus, it is important to model the optimal control problem carefully
such that it is as computationally tractable as possible. This careful modeling of the
optimal control problem is the main focus of this thesis.
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Figure 1.1: Overtaking scenario where an ego vehicle (E) is overtaking a leading
vehicle (E) in the presence of two vehicles, (F) and (R), in the adjacent lane.

Critical zone

Figure 1.2: Intersection scenario where three vehicles are approaching an intersec-
tion. The lines of each vehicle display their predefined paths and the grey areas
illustrate the critical zones within which collision between vehicles are possible.

Before addressing the problem of the binary decisions in the optimal control
problems for the overtaking and intersection problems, a choice of how to describe
the controlled vehicles need to be made. There is an abundance of vehicle models
present in the literature. Differences between the vehicle model includes dynamical vs
kinetic models, linear vs nonlinear vehicle models and the number of wheels modeled.
In this thesis we will use one of the simplest models possible, a dynamical, linear
point mass model.

Some common vehicle model used in the literature are: the four-wheels model,
the two-wheels model, the one-wheel model and the point mass model; where the
vehicle models are listed in order from most to least complex. Naturally, choosing a
less complex model will reduce the complexity of the optimal control problem but
also affect the accuraccy of the vehicle model. To this end, we will study under
which assumptions it is feasible to apply the mentioned vehicle models; in particular
in application to the overtaking and intersection problems.

We will show that the optimal control problem of the overtaking and intersection
problems can be simplified significantly by application of a novel remodeling technique.
The remodeling can be divided into three steps: 1. switching the roles of the travel
time and traveled distance; 2. introducing inverse velocity as a state; 3. introducing
new control signals. The purpose of step 1 is to eliminate the binary modes of the
overtaking and intersection problems. As we shall see exchanging time for velocity
achieves this, since the decisions that are binary when considering position as an
optimization variable, is actually linear when considering time as an optimization
variable instead. However, assuming that a linear point mass model has been used
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to describe the controlled vehicles, this change of variables introduces nonlinearities
into the dynamical model describing the vehicles. This is remedied in steps 2-3 in
which the vehicle model is transformed, through exact remodeling, into an alternative
linear vehicle model by the introduction of new states and controls. The result
of this remodeling is that the optimal control problems, for both applications, are
continuous nonlinear programs. It is then discussed how these nonlinear programs
can be solved using the common sequential quadratic programming scheme, [12],
[13].

Thesis outline and main contribution
The main contributions of this thesis are as follows

Contribution 1: New remodeling scheme for computationally efficient MPC for
vehicular scenarios with intersection paths.

Contribution 2: Application of this remodeling scheme to intersection control and
highway driving.

Contribution 3: A heuristic that reduces the number of crossing orders that needs
to be considered when determining the optimal order for vehicles
to cross an intersection.

The thesis is divided into the typical two parts. In the first part, context and
explanation is given for the papers that are appended in part 2.
The thesis has the following structure

Chapter 2

This chapter contains introduced the linear point mass model which is used to
describe the vehicle dynamics throughout the intersection. Further, it contains a
mixed integer formulation of the intersection program, which will later be used
to showcase the applicability of the remodeling scheme introduced in Chapter 3.
Lastly, the mathematical methods for solving optimziation programs that are used
throughout the Kappa is introduced; sequential quadratic programming and real-time
iterations.

Chapter 3

A remodeling scheme is presented which reduces the computational complexity
of the optimal control problems of the MPC. The remodeling scheme includes change
of reference frame and careful choices of state and control constraints. The remod-
eling is introduced step-wise; starting with the simple case of one vehicle being
controlled longitudinally, followed by multiple vehicles being controlled longitudinally
to vehicles being controlled both longitudinally and laterally. Along the way, the
remodeling scheme will be applied to the intersection and highway driving problem
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to showcase its applicability.

Chapter 4

In Chapter 3, the problem of longitudinally controlling vehicles traveling through an
intersection, in a given order, was addressed. In this chapter we briefly address the
problem of determining the crossing order, by iteratively solving the optimal control
problem introduced in Chapter 3. Further, a heuristic is introduced which removes
redundant crossing orders.

Chapter 5

This chapter contains a short summary of each of the appended papers.

Chapter 6

The final chapter of the Kappa outline directions for future work.



Chapter 2

Background

The scope of this chapter is to give a brief background to concepts used throughout
the thesis and also to provide context and motivation to assumptions and arguments
made in both the introductory chapters and the appended papers. In Section 2.2 the
optimal control problem of coordinating vehicles driving through an intersection in a
predefined order is formulated as an MIP; using the point mass model to describe
the dynamics of the controlled vehicles. This problem will then be remodeled into
an NLP, using a novel remodeling technique presented in Chapter 3.

Section 2.3 introduces the notation of mixed integer nonlinear programming and
nonlinear programming, and it is discussed why, in general, a nonlinear program is
preferable over a mixed integer one; in terms of solver efficiency.

Finally, in Section 2.4, it is discussed how continuous nonlinear programs (NLP)
can be solved using sequential quadratic programming (SQP) and when this iterative
procedure produces feasible point to the original NLP in each iteration.

2.1 Vehicle dynamics
In this thesis we will use a simple linear point mass model for the vehicle dynamics.
This model given by the equations of motion

mẍ = Fx − Fz sin θ − Fd(ẋ), (2.1a)
mÿ = Fy, (2.1b)
vx = ẋ, (2.1c)
vy = ẏ, (2.1d)
Fz = mg. (2.1e)

where the notation is given in Table 2.1.
However, this point mass model is holonomic since the longitudinal and lateral

dynamics are independent of each other. Since, vehicles are wellknown to be non-
holonomic, i.e., its position in a cartesian coordinate system is determined by the
followed path, we recapture this property by restricting the slip angle of the vehicle
β = arctan(ẏ/ẋ) and then introducing the inequality

ẏ ∈ [smin, smax]ẋ, (2.2)

9



10 2.1. Vehicle dynamics

Table 2.1: Nomenclature for vehicle modeling. The entry 1 in the unit column
means that the variable is unitless.

Symbol Description Units
x, y, z Longitudinal, lateral and vertical coordinates m
v Linear velocity ms−1

m Vehicle mass kg
F Force N
θ Angle of road inclination rad

where smin = − arctan(β) and smax = arctan(β), as was suggested in [14].

The point mass model can be simplified even further, by assuming that the slope
of the road is zero, θ = 0, and assuming that the drag is zero, i.e., Fd(ẋ) = 0. These
simplifications lead to the linear point mass model

ẋ = Ax +Bu, (2.3a)
ẏ ∈ [smin, smax]ẋ, (2.3b)

where the state and input vectors are

x(t) = [x, vx, y, vy]T , u(t) = [Fx, Fy]T

and the matrices are given by

A =


0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

 , B =


0 0
1
m

0
0 0
0 1

m

 . (2.4)

In the next section this point mass model is used when modeling the problem of
coordinating vehicles driving through an intersection.



Chapter 2. Background 11

2.2 Intersection problem
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Figure 2.1: Illustration of a scenario where several autonomous vehicles approach
an intersection, defined by a range of positions over a predefined paths. Collision
avoidance is modeled via critical sets, here depicted in gray.

Consider three vehicles approaching a four-way intersection as in Fig. 2.1. Each
vehicle, i ∈ {1, 2, 3}, plan on passing through the intersection along its predefined
path, pi. In this section, the crossing order of the vehicles is assumed to be fixed to
O = [1, 2, 3].

The roads connecting to the area where the roads meet in Fig. 2.1, from here on
referred to as the area of intersections, are called legs. The leg from which a vehicle
approaches an intersection is the entry leg of that vehicle. For instance, vehicle 1 in
Fig. 2.1 has entry leg 1, while vehicle 2 has entry leg 2. Further, a departure leg is
the leg by which a vehicle leaves the area of intersection, e.g. vehicle 2 and 3 have
the same departure leg, namely leg 4.

For each vehicle of the three vehicles, it is assumed that

Assumption 1 a path is given and known;

Assumption 2 the assigned path is perfectly followed;

Assumption 3 the acceleration along the path can be varied;

Assumption 4 its clock is synchronized with the other vehicles and is located
within a certain control radius centered at the intersection.

2.2.1 Longitudinal dynamics
Let xi(t) = [pi(t), vi(t)]T denote the state vector of vehicle i, consisting of position
pi(t) and velocity vi(t) = ṗi(t) along its path. A full measurement of the state xi(t)
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is available at all times. The dynamical model for each vehicle is then given by the
longitudinal part of the point mass model (2.3a), namely

ẋi(t) = Axi(t) +Bui(t),

with

A =
[
0 1
0 0

]
, B =

[
0
1

mi

]
, (2.5)

where the longitudinal force is chosen as the control signal, i.e., ui(t) = Fi(t) =
p̈i(t)/mi, where mi is the mass of the ith vehicle.

2.2.2 State and control constraints
Let

ximin(t) = [0, vimin(t)]T , ximax(t) = [free, vimax(t)]T ,

uimin(t) = Fixmin(t) = aixmin(t)
mi

, uimax(t) = Fixmax(t) = aixmax(t)
mi

,

where vimin(t), vimax(t), aimin(t), aimax(t), with 0 < vimin ≤ vimax(t), aimin < 0,
aimax(t) ≥ 0, for all t ∈ [0, tif], denote the minimum and maximum speed and
acceleration limits, respectively. Each vehicle i is subject to state and control
constraints

xi(t) = [ximin(t),ximax(t)], ∀i ∈ N ,
ui(t) = [uimin(t), uimax(t)], ∀i ∈ N ,

where each inequality is imposed for all time instances t ∈ [0, tif], until vehicle i
reaches its final destination pif. The final time, tif is free and the largest of these
times will be the time it takes to carry out the full solution.

2.2.3 Critical set
For each vehicle, i ∈ {1, 2, 3} let Ci(j) denote the set of all positions along the path
where collision with vehicle j 6= i, is possible. Studying Fig. 2.1 it is seen that the
sets are given by

C1(2) = {p1(t) ∈ [0, p1f] : p1(t) ∈ [L1,2, H1,2]}
C1(3) = ∅,
C2(1) = {p2(t) ∈ [0, p2f] : p2(t) ∈ [L2,1, H2,1]},
C2(3) = {p2(t) ∈ [0, p3f] : p2(t) ∈ [L2,3, p2f]}
C3(1) = ∅,
C3(2) = {p3(t) ∈ [0, p3f] : p3(t) ∈ [L3,2, H3,2]},

where the critical sets of vehicles 1 and 3 are empty since their paths do not intersect
within the intersection. The parameters Li,j and Hi,j are time-invariant, their values
depend on the geometry of the workspace and the relation between the paths of
vehicles i and j.
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2.2.4 Occupancy interval
For each critical set there is a corresponding occupancy interval, which contains
the times corresponding to the positions of the critical set, i.e., it is the set of time
instances when vehicle i resides within the critical set Ci(j):

G1(2) = {t ∈ [0, t1f] : p1(t) ∈ C1(2)}, G1(3) = ∅,
G2(3) = {t ∈ [0, t2f] : p2(t) ∈ C2(3)}, G2(1) = {t ∈ [0, t2f] : p2(t) ∈ C2(1)},
G3(1) = ∅, G3(2) = {t ∈ [0, t3f] : p3(t) ∈ C3(2)}.

2.2.5 Collision avoidance
Collision avoidance is guaranteed if vehicles keep a long enough distance between
each other inside their nonempty critical zone. This is ensured by the following
constraints

t1 − thw ≤ t2 for all (t1, t2) ∈ G1(2)× G2(1), (2.6)
t2 − thw ≤ t3 for all (t2, t3) ∈ G2(3)× G3(2) (2.7)

where thw is a time headway which introduces an extra safety distance between the
vehicles. The first constraint implies that, when both vehicles 1 and 2 reside within
their critical set, vehicle 1 is in front of vehicle 2. Similarly, the second constraint
say that vehicle 2 should be in front of vehicle 3 within their critical set.

2.2.6 Full intersection problem
The performance is evaluated by a sum of cost functions

3∑
i=1

Ji(xi(t), ui(t), u̇i(t),xi(tif), tif),

where the individual cost functions may differ between vehicles. The functions Ji(·)
may include penalties on the final state, penalties for deviation from the reference
velocity vir(t), penalties for the control actions, penalties for changes in control
actions (e.g., discomfort penalties associated to longitudinal jerk), or penalties for
the total travel time, etc. The optimization program for the intersection problem
can now be formulated as

minimize
ui(t)

N∑
i=1

Ji(xi(t), ui(t), u̇i(t),xi(tif), tif), (2.8a)

subject to
ẋi(t) = Axi(t) +Bui(t), ∀i ∈ {1, 2, 3}, (2.8b)
xi(t) ∈ [ximin(t),ximax(t)], ∀i ∈ {1, 2, 3}, (2.8c)
ui(t) ∈ [uimin(t), uimax(t)], ∀i ∈ {1, 2, 3}, (2.8d)
xi(0) = xi0,xi(tif) = xif, ∀i ∈ {1, 2, 3}, (2.8e)
t1 − thw ≤ t2,∀(t1, t2) ∈ G1(2)× G2(1), (2.8f)
t2 − thw ≤ t3,∀(t2, t3) ∈ G2(3)× G3(2), (2.8g)
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where all constraints are imposed for t ∈ [0, tif]. The initial and final state val-
ues are denoted by xi0 and xif, respectively and satisfy xi0 ∈ [ximin(0),ximax(0)],
xif ∈ [ximin(tif),ximax(tif)]. The final state values xif are included both in the objec-
tive function and as a hard constraint in program (2.8). This is useful when only
part of the states are constrained to a target state (e.g. the final position pif), while
other states (such as the final velocity) are not and can thus be penalized in the
objective.

2.2.7 Objective function
A commonly used cost function, penalizing the deviation from a reference velocity, is
given by

Ji1(·) =
∫ tf

0
qi(ṗi(t)− vir)2dt, (2.9)

where vir is the reference velocity for vehicle i and qi is a nonnegative penalty
parameter that may have assigned a certain unit.

A simple model used for obtaining a comfortable drive and limiting actuator
usage, is to penalize high accelerations and jerks

Ji2(·) =
∫ tif

0
riu

2
i (t)dt+

∫ tif

0
siu̇

2
i (t)dt, (2.10)

where ri and si are nonnegative penalty parameters that may have a certain unit.
Adding the two objective functions above into Ji(·) = Ji1(·) + Ji2(·), results in an

objective function that seeks to minimize deviation from a given reference position
while keeping the ride comfortable for the occupants of vehicle i. The complete
objective function used in (2.8) is then obtained by adding the objective functions
for the three vehicles, as is done in (2.8a).

2.3 Optimization programs
The intersection program introduced in Section 2.2, is a mixed integer nonlinear
program (MINLP) of the form

minimize
x,y

f(x) (2.11a)

subject to
hi(x) = 0, for all i ∈ E (2.11b)
gi(x,y) ≤ 0, for all i ∈ I (2.11c)
y ∈ Y ⊆ {0, 1}m, (2.11d)
x ∈ X ⊆ Rn, (2.11e)

where y is a column vector of m binary variables and x is a vector of n real variables.
The binary variables y only affects the inequality constraints (2.12b). The MINLP
is one of the most general modeling paradigms in optimization and solving MINLP’s
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typically involves searching through large search trees. Therefor, solving these types
of problems have proven to be extremely challenging [15]. However, in the last fifteen-
twenty years there have been a big development in software for MINLP solvers, and
there exist several commercial and open source solvers. For a survey on MINLP, see
[16].

In this thesis we will also be consered with solving a certain subset of MINLP
problems; namely continuous nonlinear programs (NLP) of the form

minimize
∆x

f(x) (2.12a)

subject to
gi(x) ≤ 0, for all i ∈ I (2.12b)
hi(x) = 0, for all i ∈ E (2.12c)
x ∈ X ⊆ Rn. (2.12d)

where f , g1, . . . , gk, h1, . . . , hl are functions on Rn and x ∈ Rn. While several
commercial and open-source solvers for MINLP’s have emerged in the last few
decades the methods and solvers for solving NLP’s are more mature. For instance,
the algorithm we will utilize in this paper is the very efficient sequential quadratic
programming method, which has been around since the 60’s. Since, computational
efficiency is key when solving optimal control programs in real-time applications,
reducing optimization programs into a smaller class of optimization programs can be
key when evaluating their viability.

2.4 Sequential quadratic programming
Consider again the general program (2.12) but with the additional assumptions
that f(x), gi(x) and hi(x) are smooth nonlinear functions. To obtain a quadratic
version of this problem the inequality constraints (2.31) and the equality constraints
(2.12b) are linearized. Naturally, solving this new problem will, in general, give an
approximate solution to the nonlinear program, (2.12). However, one can amend
the objective function with the gradient of the original objective function and the
Lagrangian of the constraints. This yields the convex program

minimize
∆x

f(xk) +∇fT
k (xk,λk−1)∆x

+ 1
2∆xT∇2

xxL(xk,λk−1)∆x
(2.13a)

subject to
gi(xk) +∇gi(xk)∆x ≤ 0, for all i ∈ I (2.13b)
hi(xk) +∇hi(xk)∆x = 0, for all i ∈ E (2.13c)

where λk are the Lagrange multipliers of the relaxed constraints, ∇ is the gradient,
∇2

xx denotes the hessian with respect to x and L is the lagrangian. This new program,
(2.13), is referred to as a subproblem and is solved iteratively where the current
subproblem is linearized around the previous solution. If (xk,λk−1) is the k:th iterate
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of the program (2.13), the new iterate is given by (xk+1, λk+1) = (xk + α∆x,λk)
where α ∈ [0, 1] is the step length. The iterations continue until a stop criterion is
reached, e.g., until the normed difference between consecutive solutions are below
some tolerance. A simple version of the SQP algorithm is given in Algorithm 2.4.1.
For a more thorough introduction to SQP schemes, see for instance, [12] or [13].

Algorithm 2.4.1.

Step 1: Choose an initial linearization point (xk,λk−1) and set k = 1.

Step 2: Solve (2.13) with (xk,λk−1) to obtain ∆x and λk.

Step 3: Update the iterate (xk+1,λk) = (xk + α∆x,λk)

Step 4: Stop if the stopping criterion is fulfilled, otherwise set k := k + 1 and go to
step 2.

2.4.1 Real-Time iterations
Even though convex quadratic programs are fast to solve, there is no guarantee for
how many subproblems of the type (2.13) that needs to be solved before convergence.
When solving a problem offline without time restrictions this might not be an issue,
however, when applying this method in a real-time scenario where the consequence of
not obtaining a solution fast enough might lead to a fatal accident, it becomes vital.
Therefore, it is an advantage if each of the solutions to the subproblems (2.13) are
feasible in the original nonlinear program (2.12). It is, however, not true in general,
that the subproblems yield solutions that are feasible in the nonlinear program; as
the next toy example illustrates.

0 1 2 3 4 5
0

1

2

3

4

5

(a) The white area represents the points
that fullfil the constraint x ≥ 1/z, while
the area above the red line represent the
feasible points for the linearization.

-5 0 5
-5

0

5

(b) The white area represents the points
that fullfil the constraints −1/v ≤ y ≤
1/v, while the area between the red lines
represent the feasible points for the lin-
earization.

Figure 2.2: Illustration of constraints, with their feasible area depicted in white, and
their linearizations by the thick red lines. It can be seen that the linear approximation
in (2.2a) is not an inner approximation, but that the linearization of the constraints in
(2.2b) is.
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Example 2.4.1. Consider the minimization program

minimize
x,y,z

x2 + y2 (2.14a)

subject to

x ≥ 1
z

(2.14b)

− z ≤ y ≤ z (2.14c)
1 ≤ z ≤ 2 (2.14d)

The solution to this problem can be determined using the following argument: Since
the only restriction on y is that it should lay in the interval [−z, z], where z is a
positive number, y can be set to zero independently of the choices of x and z. Thus,
it remains to minimize the x part of the objective, which is achieved by choosing x
as small as possible. This corresponds to choosing z as large as possible, i.e., the
solution is (x, y, z) = (1/2, 0, 2). This gives the objective function value 1/4.

If the nonlinear constraint (2.14b) is linearized around some feasible point, say
(3/4, 0, 1) and the initial Lagrangian multiplier is set to zero, we get from (2.13) that
the first subproblem in the SQP scheme can be written as

minimize
x,y,z

2(x− 3
8)2 + 2y2 (2.15a)

subject to
x ≥ 2− z, (2.15b)
− z ≤ y ≤ z, (2.15c)
1 ≤ z ≤ 2. (2.15d)

With a similar reasoning as before, the solution to this subproblem is given by
(x, y, z) = (3/8, 0, 2). However, this solution is not feasible in the original program,
since the constraint (2.14b) yields

3
8 ≥

1
2 .

4

As we shall see in the next example, it is possible to, sometimes, remodel
the optimization program in order to transform it into a program for which all
subproblems have feasible solutions.

Example 2.4.2. Recall the minimization program from Example 2.4.1, and apply
the variable change v = 1/z. The program (2.15) can then be written as

minimize
x,y,v

x2 + y2 (2.16a)

subject to
x ≥ v (2.16b)
− 1/v ≤ y ≤ 1/v (2.16c)
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1
2 ≤ v ≤ 1 (2.16d)

Clearly, this program has the solution (x, y, v) = (1/2, 0, 1/2) with the objective
function value 1/4. Linearizing (2.16c) around the point (3/4, 0, 1) (which is the
corresponding point to the one that was linearized around in Example 2.4.1) and set
the initial Lagrangian multiplier to zero, we get the subproblem

minimize
x,y,v

2(x− 3
8)2 + 2y2 (2.17a)

subject to
x ≥ v (2.17b)
− (1− v) ≤ y ≤ 1− v (2.17c)
1
2 ≤ v ≤ 1 (2.17d)

which clearly has the solution (x, y, v) = (1/2, 0, 1/2). Note that this solution is
feasible in the program (2.16), which after reversing the variable change gives the
solution to the original program (2.14), i.e., (x, y, z) = (1/2, 0, 2). 4

One can also realize that the solutions to the subproblem of (2.15) might yield
solutions that are infeasible in the nonlinear program by studying the graph of its
nonlinear constraint and linearization, see Fig. 2.2a, in which it is clear that the
linearization makes the search-space larger. On the other hand, the subproblem of
(2.16) is an inner approximation as seen in Fig. 2.2b, and thus makes the search-space
smaller; which guarantees solutions will be feasible in the original program. Further,
we can realize from the figures that the linearization of the inequality constraints
(2.12b), will be an inner approximation if gi(x) is a concave function.



Chapter 3

Remodeling for computational
efficiency

In this Chapter the main method of the thesis is presented. It consists of remodeling
the point mass vehicle model (2.3a) to a vehicle model that is more appropriate when
modeling collision avoidance of vehicles with intersecting paths. The reformulation
consists of two main steps: 1. to exchange the independent variable, traveling
time, for the traveled distance of the vehicle; 2. to remove the nonlinearities in the
vehicle model introduced by the change of independent variables, by introducing
new state and control signals. In Section 3.1 the transformation is made for the
longitudinal dynamics; and it is then shown that applying this vehicle model to
the MIP intersection program (2.8) transforms it into a general NLP, which can be
solved using SQP. In Section 3.3 the remodeling is extended to lateral dynamics and
it is then illustrated how it is possible to use this point mass model to construct an
NLP, optimal control program for autonomous highway driving.

3.1 Remodeling: Longitudinal dynamics
Integrating the first row of the vehicle model (2.3a) yields

x(t) =
∫ t

0
vx(τ)dτ.

To exchange position for travelling time we want to invert the position function
x = x̃(t) to find t = t̃(x). For them to be inverses, it must hold that

x = x̃(t̃(x)) =
∫ t̃(x)

0
vx(τ)dτ.

Taking the derivative with respect to x gives
1 = x̃′(t̃(x))t̃′(x) = vx(t̃(x))t̃′(x)

Thus, the inverse exists if
vx(t̃(x)) = x̃′(t̃(x)) 6= 0,

t̃′(x) = 1
vx(t̃(x)) := 1

ṽx(x) := zx(x). (3.1)

19
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Here, the variable zx(x), with units s/m can be thought of as the inverse velocity of
the ego vehicle, evaluated at position x. From now on, it will be referred to as the
lethargy of the ego vehicle.

Now, since the dynamical equation for the travel time is expressed using lethargy.
Lethargy will be chosen as a state and its dynamical equation is given by

z′x(x) =
( 1
ṽx(x)

)′
= − ṽ

′
x(x)
ṽ2

x(x) = −ṽ′x(x)z2
x(x) = ũx(x). (3.2)

Thus, using equations (3.1) and (3.2), we arrive at a second linear vehicle model

x̃′(x) = Ax̃(x) +Bũx(x), (3.3)

where

x̃(x) =
[
t̃(x)
zx(x)

]
, A =

[
1 0
0 0

]
, B =

[
0
1

]
.

Further, it is possible to translate between the states and inputs using the equations

vx(t̃(x)) = zx(x), (3.4)

ũx(x) = − d
dxṽx(x)z2

x(x) = − dt
dx

˙̃vx(x)z2
x(x) = −Fx(x)z3

x(x). (3.5)

In the next section it is shown how these remodeling steps can be applied to the
constraints and objective function of the intersection program (2.8), to yield a NLP
formulation of the control problem for the intersection problem.

3.2 Application to intersection problem
Assume three vehicles are approaching a four leg intersection, as is depicted in Fig.
2.1.

To apply the vehicle model above to the intersection scenario in Fig. 2.1 it
is necessary to generalize the approach to a situation where there are 3 vehicles,
labeled i = {1, 2, 3}, travelling along paths pi(t). Since there are three different
position functions, it is first necessary to construct a generic position vector p(t)
which can describe the position of any vehicle. This can be achieved by applying the
transformation

x(t) = pi(t)− pi0(t)
pif − pi0

.

This transformation will project all the paths onto a path starting at 0 and ending
at xf = 1. Thus, using this generic position vector, each vehicle is described by a
vehicle model of the form (3.3), i.e.,

x̃′i(x) = Ax̃i(x) +Bũi(x).
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We will now see that applying this remodeling to the constraints of the intersection
problem (2.8) will remove the binary variables while maintaining a linear vehicle
model. For the state bounds, initial and final state, we simply change the parameters

x̃imin =
[
0 1

vimax(x)

]T
, x̃imax =

[
free

∫ x
0

ds
vimin(s)

]T
,

x̃i0 =
[
0 1

vi0

]T
, x̃if =

[
free 1

vif

]T
.

Using (3.5) on the input constraints (2.8d) yield the remodeled input constraints

ũi(x) ∈ z3
ix(x)[−uimax(x),−uimin(x)].

Lastly, the collision constraints (2.8f) and (2.8g) can be simplified to linear constraints
on the time states

t1(x) + thw < t2(x),
t2(x) + thw < t3(x).

The full reformulation of the intersection problem (2.8) can then be written as

minimize
ũi(x)

N∑
i=1

Ĵi(x̂i(x), ũi(x), ˙̃ui(x),xi(xf), xf), (3.6a)

subject to
x̃′i(x) = Ax̃i(x) +Bũi(x), ∀i ∈ {1, 2, 3}, (3.6b)
x̃i(x) ∈ [x̃imin(x), x̃imax(x)], ∀i ∈ {1, 2, 3}, (3.6c)
ũi(x) ∈ z3

ix(x)[−uimax(x),−uimin(x)], ∀i ∈ {1, 2, 3}, (3.6d)
x̃i(0) = x̃i0, x̃i(xif) = x̃if, ∀i ∈ {1, 2, 3}, (3.6e)
t1(x) + thw < t2(x), ∀x ∈ [L2,1, H1,2], (3.6f)
t2(x) + thw < t3(x), ∀x ∈ [L3,2, H2,3], (3.6g)

This problem is an NLP with a quadratic objective function and one nonlinear
constraint (3.6d). Since this is an NLP it can be solved using the SQP scheme
discussed in Section 2.4, by linearizing z3

ix(x) around, for example, the reference
trajectory zir(x)

z3
ix(x) ≈ z3

ir(x) + 3z2
ir(x)(zix(x)− zir(x)) = −2z3

ir(x) + 3z2
irzix(x).

Further, z3
ix(x) is convex in the domain of interest, namely zix(x) > 0. This means

that the constraints (3.6d) are concave and thus that the linearization will be an
inner approximation of the search-space. Therefore, whenever the subproblems of the
SQP scheme are feasible, the solution to that subproblem will be a feasible point to
the nonlinear overtaking program (3.6). As was discussed in Section 2.4.1, this opens
up the possibility to utilize RTI or other stopping criterions. So far, we have studied
the effect of the remodeling have on the dynamics and the inequality constraints. It
remains to transform the objective functions. This is done in the next section.



22 3.2. Application to intersection problem

3.2.1 Objective function
Applying the remodeling steps on the reference tracking objective Ji1(·), (2.9) yield
the objective function

Ĵi1(·) = qi

∫ xf

0

(
1√
zix(x) − vir(x)

√
zix(x)

)
dx

which can be formulated as a convex second order cone function. However, if one
wants to keep the quadratic shape of the objective function the term in parenthesis
can be linearized around the reference vir which results in

Ĵi1(·) ≈ qi

∫ xf

0
v3

ir(x)
(
zix(x)− 1

vir(x)

)2

dx

≈ qiv̄
3
ir(x)

∫ xf

0

(
zi(p)−

1
vir(x)

)2

dx

where v̄ir is the mean value of the reference velocity of vehicle i.
An exact translation of the second part, Ji2(·), (2.10) results in the non-convex

objective

Ĵi2(·) = ri

∫ xf

0
zix(x)

(
ũi(x)
z3

ix(x)

)2

dx

+ si

∫ xf

0
zix(x)

(
−ũi(x)
z4

ix(x) + 3 ũ
2
i (x)
z5

ix(x)

)2

dx.

Since this objective function is not convex or concave (which, for instance, can be
seen by checking the hessian matrix of the integrand), we suggest to use the quadratic
approximation

Ĵi2(·) ≈ ri

∫ xf

0
v5

ir(x)ũ2
ix(x)dx+ si

∫ xf

0
vir(x)7u′2ix(x)dp,

≈ riv̄
5
ir(x)

∫ xf

0
ũ2

ix(x)dx+ siv̄ir(x)7
∫ xf

0
u′2ix(x)dp.

As before, the objective for vehicle i is given by

Ĵi = Ĵi1 + Ĵi2.

This remodeling technique can be applied to a more general class of intersection
programs as is discussed in the next section.

3.2.2 Extention of intersection problem
For a more general treatment of the intersection program, see Paper 1 in which
the intersection problem for a four-way intersection is formulated for an arbitrary
configuration of vehicles with predefined paths but with no vehicles sharing an entry
and/or exit leg. It is also straightforward to extend the the approach to an arbitrary
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Figure 3.1: The ego vehicle (E) overtaking a leading vehicle (L) on a road with two
lanes. The center of gravity of the ego vehicle is allowed to reside between the limits ymin
and ymax, depicted by the thick, blue, solid lines.

configuration which allows vehicles to travel along the same path (as in the example
described in this section) but this work has not been submitted for publication
yet. In both these cases it is also possible to handle more scenarios where vehicles
turn left, go straight or turn right within the intersection. Applying the presented
remodeling scheme to these generalized intersection programs yield an NLP which
can be solved using sequential quadratic programming, in the same way as for the
example discussed here.

3.3 Remodeling: Lateral dynamics
To add lateral control to the dynamical model (3.3), we exchange the state y(t) to
ỹ(x) = y(t(x)) which has the derivative

ỹ′(x) = d
dxỹ(x) = dt

dx
d
dty(t(x)) = vy(x)zx(x),

ỹ′′(x) = d
dxỹ

′(x) = d
dx(vy(x)zx(x)) = v′y(x)zx(x) + vy(x)z′x(x) = ũy(x).

Thus, the dynamical model amended with lateral dynamics read

d
dx


t(x)
zx(x)
y(x)
y′(x)

 =


0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0



t(x)
zx(x)
y(x)
y′(x)

+

0 0
1 0
0 1

 [ũx(x)
ũy(x)

]
,

y′E(x̂) ∈ [smin, smax],

where (̃·) has been set to (·) for ease of notation.

3.4 Application to highway driving
In this subsection we will show how the remodeling presented in Section 3.3 can be
applied to highway driving scenarios, where the aim is to overtake a slow moving
leading vehicle. Collision avoidance with the leading vehicle can be modeled via a
rectangular critical zone around the vehicle, as is illustrated in Fig. 3.1. However,
just as was the case for the intersection application it is not possible to know when
the ego vehicle reaches the critical zone, since the velocity of the ego vehicle is an
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optimization variable. Thus, it is, as it was when solving the intersection problem,
again advantageous to apply the alternative vehicle model. However, this time the
critical zone is also moving (with the speed of the leading vehicle), therefore a change
of reference frame will be performed into a relative frame where the critical zone is
fixed; before the alternative vehicle model is applied.

Assume that the longitudinal position and velocity of the leading vehicle are
given by xL(t), vL(t) and that its lateral position is constant. Then, we introduce
the relative state vector, 

x̂E(t)
v̂Ex(t)
yE(t)
vEy(t)

 =


xE(t)
vEx(t)
yE(t)
vEy(t)

−

xL(t)
vLx(t)

0
0

 ,
y′E(t) ∈ [smin, smax]vEx(t)

where x̂E(t) and v̂Ex(t) denote the longitudinal position and velocity of the ego vehicle
with respect to the leading vehicle. A vehicle model of the form (2.3a) can be formed,
but with the longitudinal states exchanged for their relative counter part

˙̂xE(t)
˙̂vEx(t)
ẏE(t)
v̇Ey(t)

 =


0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0



x̂E(t)
v̂Ex(t)
yE(t)
vEy(t)

+


0 0
1
m

0
0 0
0 1

m


[
FEx(t)
FEy(t)

]
.

y′E(t) ∈ [smin, smax](vEx(t)− vL(t)).

If the steps from Section 3.1 and Section 3.3 are applied to this new vehicle model,
but with relative position x̂ = x− xL as the new independent variables instead of
the absolute position, the alternative vehicle model is given by

d

dx̂


t̂E(x̂)
ẑEx(x̂)
yE(x̂)
vEy(x̂)

 =


0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0



t̂E(x̂)
ẑEx(x̂)
yE(x̂)
y′E(x̂)

+


0 0
1
m

0
0 0
0 1

m


[
ûEx(x̂)
ûEy(x̂)

]
, (3.7)

y′E(x̂) ∈ [smin, smax](1− vL(t))zE(x̂). (3.8)

where

ûEx(x̂) = −F̂Ex(x̂)ẑ3
Ex(x̂),

ûEy(x̂) = ẑEx(x̂)vEy(x̂) + v′Ey(x̂)ẑEx(x̂),

ẑEx(x̂) = 1
vEx(x̂)− vL(x̂) ,

F̂Ex(x̂) = −mv̂Ex(x̂)v̂′Ex(x̂),

i.e., identical to the transformations made in Sections 3.1 and 3.3, but with the states
exchanged for their relative counter parts. To simplify the presentation of the lane
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change program, we modify the vehicle model (3.7) slightly by removing the lateral
force and using the lateral acceleration as input. This yields

x̂′E(x̂) = Âx̂E(x̂) + B̂ûE(x̂),

where

Â =

0 1 0
0 0 0
0 0 0

 , B̂ =

 0 0
1
m

0
0 1

 , x̂E(x̂) =

 t̂E(x̂)
ẑEx(x̂)
yE(x̂)

 , ûE(x̂) =
[
ûEx(x̂)
y′E(x̂)

]
.

We are now ready to apply this remodeling technique to overtaking program.

3.4.1 Full overtaking program
Similarly, to the case of the intersection program, box constraints for the minimum
and maximum bounds of the state variables are introduced

x̂min(·) = [0, 1
vxmax(x̂)− vL

, ymin(x̂)]T ,

x̂max(·) = [free, 1
vxmin(x̂)− vL

, ymax(x̂)]T .

The minimum and maximum lateral position ymin(x̂) and ymax(x̂) are not constants
as can be seen in Fig. 3.1. Instead, they should take on one of two values; where the
switch between the two values occur when the ego vehicle enters/leaves the critical
zone/overtaking window. Since, sampling is done in relative longitudinal position it
is known when these changes occur, and thus the minimum and maximum lateral
position is given by

ymin(x̂) =

w + wl, x̂ ∈ xL0 + [−llf, llr],
w, otherwise,

ymax(x̂) =

wl − w, x̂ ∈ xL0 + [−ls, le],
2wl − w, otherwise.

Similarly, the constraints on the longitudinal input is similar to the intersection case,
with the difference that all variables have been switched to their relative counter
parts, which gives

ûEx(x̂) ∈ −[Fxmax, Fxmin]ẑ3
Ex(x̂).

Lastly, initial states and a final lateral limit is set

x̂T
E(x̂0) = x̂T

0 = [0, 1
vE0

, 0, 0],

yE(x̂f) = yf,
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where the final constraint on the lateral velocity can, for instance, be used to force
the overtaking to be completed within the prediction horizon. In summary, we get
the optimization program

minimize
ûE(x̂)

Ĵ(x̂E(x̂), ûE(x̂), û′E(x̂))dx̂ (3.9a)

subject to
x̂′E(x̂) = Âx̂E(x̂) + B̂ûE(x̂), (3.9b)
x̂E(x̂) ∈ [x̂min(x̂), x̂max(x̂)], (3.9c)
ûEx(x̂) ∈ −[Fxmax, Fxmin]ẑ3

Ex(x̂), (3.9d)
y′E(x̂) ∈ [smin, smax](1 + vLẑEx(x̂)), (3.9e)
yE(x̂f) = yf, (3.9f)
x̂(0) = x̂E0. (3.9g)

As in the case of the intersection program, this is an NLP with a quadratic objective
function and one nonlinear constraint (3.9d). Just like in the case of the intersection
program the nonlinear constraint can be linearized around a reference trajectory
ẑr(x̂). Since, this constraint is the same as in the intersection case the linearization
will once again yield an inner approximation. Thus, the solution of each subproblem
of the SQP algorithm will result in a point which is feasible in the original nonlinear
program (3.9).

3.4.2 Objective function
For the objective function we suggest to use an approximate quadratic objective
function similar to the one used for the intersection program but reduced to only
one vehicle and with lateral dynamics added

Ĵ(·) =
∥∥∥∥∥
[
ẑE(x̂)
yE(x̂)

]
−
[
1/v̂r(x̂)
yr(x̂)

]∥∥∥∥∥
2

Q

+ ‖ûE(x̂)‖2
R + ‖û′E(x̂)‖2

S, (3.10)

where Q, R and S are positive semidefinite weighting matrices and v̂r is the relative
reference velocity of the ego vehicle and yr is the relative lateral position of the ego
vehicle. To see how the weighting matrices Q, R and S can be found using the
corresponding temporal formulation as was done in the intersection case, see Paper
2.

3.4.3 Generalized overtaking program
A more extensive treatment of the lane change problem can be found in Paper 2,
extended with the scenario of oncoming and adjacent vehicles as is depicted in Fig.
3.2. Collision avoidance with traffic in the adjacent lane is handled using ramp
barriers instead of critical zones. Further, the paper also considers nonconstant,
but deterministic speed of the ego vehicle. Lastly, a more realistic bound on the
longitudinal force, dependent on the velocity of the ego vehicle, is considered in the
paper.
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Figure 3.2: Overtaking scenarios with surrounding vehicles. During the overtaking of
the leading vehicle (L), the center of gravity of the ego vehicle (E) is allowed to reside
within the limits ymin, ymax. The forward collision constraint (FCC) and rear collision
constraint (RCC) make sure the ego vehicle does not collide with the vehicle at the front
(F) or rear (R), respectively. The surrounding vehicles in the top plot are referred to as
adjacent vehicles while the surrounding vehicles in the bottom are referred to as oncoming
vehicles.





Chapter 4

Intersection: Crossing sequence

In this section we will briefly address the problem of choosing the crossing order. The
most straightforward way to attack this problem would be to solve the program (2.8),
for each possible crossing order. However, the number of combinations grow with the
factorial of the number of vehicles. Thus, this method will become intractable with
growing n, e.g., if we have five vehicles we would have to solve 5! = 120 programs of
the form (2.8). However, if one studies the Fig. 2.1, one realizes that it is actually
not necessary to study all possible combinations. Clearly, the order of vehicle 2
and 3 is unimportant for the solution of (2.8). In this section we will present a
heuristic which provides us with a minimum set of crossing orders, which needs to
be examined. To keep it simple, the heuristic will be demonstrated on an example in
this section, for a proof of the validity of the heuristic, see Paper 1.

The idea behind the heuristic is simple. Given the matrix O of all possible
crossing orders, we find the orders which will give identical solutions to the program
(2.8) and remove all those rows but one from the matrix.

Example 4.0.1. The scenario depicted in Fig. 2.1, has the following crossing order
matrix

O =



1 2 3
1 3 2
2 1 3
2 3 1
3 1 2
3 2 1


.

depending on the crossing order, a different set of collision avoidance constraints will
be applied. Calculating the collision avoidance constraints for each crossing order
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and sorting them yield

[3, 1, 2] : t1(p) + thw < t2(p) t3(p) + thw < t2(p),
[1, 3, 2] : t1(p) + thw < t2(p), t3(p) + thw < t2(p),

[1, 2, 3] : t1(p) + thw < t2(p), t2(p) + thw < t3(p),

[2, 1, 3] : t2(p) + thw < t1(p), t2(p) + thw < t3(p),
[2, 3, 1] : t2(p) + thw < t1(p), t2(p) + thw < t3(p),

[3, 2, 1] : t3(p) + thw < t2(p), t2(p) + thw < t1(p).

Thus, crossing orders [3, 1, 2] and [1, 3, 2] yield identical crossing orders. So does
[2, 1, 3] and [2, 3, 1]. Therefore, it is enough to consider four crossing orders, one
from each of the groups above. Notice that in the identical crossing orders, the
only difference in the crossing order is the order of 1 and 3. This is expected, since
vehicles 1 and 3 have an empty critical set.

The complete version of the heuristic is given in Algorithm 4.0.1, where I is the
set of all vehicle pairs (i, j) which have an empty critical set. Let us illustrate how it
works on the example scenario.

Example 4.0.2. In this case we have the sets

I = {(1, 3), (3, 1)},
I1 = {(1, 3)},
I2 = ∅.

Take (1, 3). Reduce the crossing order matrix to

Õ =


1 2 3
2 3 1
3 1 2
3 2 1

 .
Now, remove (1, 3) from I1, but this makes I1 = ∅ and thus the algorithm is finished
already after one iteration. Notice that the reduced crossing matrix contains exactly
one crossing sequence from the groups calculated in Example 4.0.1.

In the Paper 1, it is proved that this heuristic will provide a minimum number of
crossing orders to check for any vehicle configuration within a four-way intersection.

Algorithm 4.0.1.

Step 0: Find the set I1 = {(i, j) ∈ I : i < j}, sort it on the first and then second
entry. Further, create the empty set I2.
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Step 1: Take the first element (i, j) in I1.

Step 2: Go through the rows of the crossing order matrix O and remove all orders
(rows) containing the pair (i, j) in sequence. Also, set I2=I2 ∪ {j}.

Step 3: Remove (i, j) from I1, i.e, I1 = I1 \ (i, j).

Step 4: If I1 = ∅ stop, otherwise take the next element (k, l) in I and do the first
of the following that apply

1. If k ∈ I2 set (i, j) = (l, k) and go to step 2,
2. Set (i, j) = (k, l) go to step 2.





Chapter 5

Summary of papers

In this chapter a brief summary is given for each of the appended papers. The Paper
1 deal with the intersection problem and the Paper 2 deals with the problem of
highway driving in an overtaking scenario.

5.1 Summary of Paper 1
This paper address the problem of deciding the crossing order of vehicles in an
intersection scenario. One way is to solve the intersection program presented in
Paper 1 for each possible crossing order to find the best one. In this paper, however,
it is shown that this is not necessary, since it can be known a-priori that two crossing
orders will give identical results. A heuristic is constructed which takes the pre-
defined paths of the vehicles as inputs and returns a minimum set of crossing orders
that need to be checked in order to guarantee finding one of the optimal crossing
orders.

5.2 Summary of Paper 2
This paper deals with solving the overtaking/lane change problem on highways
using model predictive control. It is shown that there are several ways to formulate
the optimal control problem. The four formulations used are: temporal integer
formulation; spatial formulation, spatial formulation using kinetic energy, spatial
formulation using inverse speed. The accuraccy of the solutions for the approaches
are compared, as well as their computationally efficiency. It turns out that the
accuracy is about the same for all four algorithms, but the spatial formulation using
inverse speed is significantly faster in an MPC setting since it allows for the use of
real-time iterations.
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Chapter 6

Future work

There are multiple directions in which the work can be expanded, both in practical
and more theoretical directions.

One direction is to examine what happens when disturbance is introduced on
the inputs and/or states. In reality these disturbances would correspond to sensor
inaccuracies, both external and internal. Such disturbances, if small enough, might
be handeled simply by updating the MPC fast enough. However, if this is not enough
one could try to apply, for instance, stochastic model predictive control.

A second practical direction would be to implement the algorithms in a real
vehicle and run real-time tests. This would further showcase the viability of the
algorithms by showing that it is, indeed, real-time implementable with regard to the
computer power available in a car as well as having the potential to give rise to new
interesting research questions.

More theoretical directions include studying the stability and robustness of the
introduced model predictive controllers or apply the remodeling technique to more
advanced vehicle models (such as the one- or two-wheel model) to see if that has any
benefits over the temporal formulations.
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