
Thesis for The Degree of Licentiate of Engineering

Parallel Data Streaming Analytics in the Context of
Internet of Things

Hannaneh Najdataei

Division of Networks and Systems
Department of Computer Science & Engineering

Chalmers University of Technology and Gothenburg University
Gothenburg, Sweden, 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Chalmers Research

https://core.ac.uk/display/198056882?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Parallel Data Streaming Analytics in the Context of Internet of
Things

Hannaneh Najdataei

Copyright ©2019 Hannaneh Najdataei
All rights reserved.

Technical Report No 195L
ISSN 1652-876X
Department of Computer Science & Engineering
Division of Networks and Systems
Chalmers University of Technology and Gothenburg University
Gothenburg, Sweden

Printed by Chalmers Reproservice,
Gothenburg, Sweden 2019.

ii

Parallel Data Streaming Analytics in the Context of Internet of
Things

Hannaneh Najdataei
Department of Computer Science & Engineering, Chalmers University of Technology

Abstract

We are living in an increasingly connected world, where the ubiquitously
sensing technologies enable inter-connection of physical objects, as part of
Internet of Things (IoT), and provide continuous massive amount of data.
As this growth soars, benefits and challenges come together, which requires
development of right tools in order to extract valuable information from data.
For that, new techniques (e.g. data stream processing) have emerged to perform
continuous single pass analysis and enhance parallelism. However, employing
such techniques is not a trivial task due to its challenges such as partial
knowledge of the data and the trade-off between parallelism and consistency.
Moreover, depending on the source, data volumes may fluctuate over time
which requires the degree of parallelism to be adapted in runtime.

In this work, we contribute to the design of computational infrastructures
and development of tools to address these challenges. In this regard, we
focus on two problem domains. First, we target continuous data analysis and
particularly focus on data clustering, as a significant representative problem,
to extract information from massive data, generated by high-rate sensors. We
propose Lisco, a single-pass continuous Euclidean distance-based clustering
which exploits the inherent ordering of the spatial and temporal data, and
its parallel counterpart, P-Lisco, to enhance pipeline- and data-parallelism.
These algorithms provide high throughput of results with low latency, through
pushing the processing closer to the data sources. Moreover we provide a
framework, DRIVEN, that performs a continuous bounded error approximation
to compress the volumes of data, and then transmits the compressed data to
next layers of the IoT architecture to perform clustering on it, in a continuous
fashion, using generalized form of Lisco. The compression in data retrieval
speeds up the transmission of the data while preserving very similar clustering
quality as raw data transmission. In the second domain, we target the elasticity
in data streaming to utilize computational resources in runtime regarding the
data rate fluctuations. For that, we provide a stream processing framework,
STRETCH, and introduce the concept of virtual shared-nothing parallelization
that is able to adapt the resources, maximize the throughput and latency, and
preserve determinism. Thorough experimental evaluations on architectures
representative of high-end servers and of resource-constrained embedded devices
indicate the scalability benefits of all proposed algorithms.

Keywords: Internet of Things, data analysis, clustering, edge computing,

fog computing, stream/continuous data processing, parallelism, scalability,
elasticity

iii

Acknowledgment

I would like to express my sincere gratitude to my supervisors Marina Papatri-
antafilou, Vincenzo Gulisano and Philippas Tsigas. The challenging journey
of PhD has become precious and enjoyable with your uplifting discussions,
continuous support and generous guidance. I consider myself lucky to have
three great mentors and thoroughly look forward to continue working with all
of you.

I specially would like to thank Yiannis Nikolakopoulos for his support and
advice to make first years of my PhD studies a rewarding experience. I am
also grateful to my co-authors, past and current colleagues in the Division of
Networks and Systems for their direct or indirect contribution to this work and
providing a friendly environments. Thank you, Adones, Ali, Aljoscha, Amir,
Aras, Bapi, Bastian, Bei, Beshr, Carlo, Charalampos, Christos, Dimitris, Elad,
Elena, Erland, Fazeleh, Georgia, Iosif, Ivan, Joris, Karl, Magnus, Nasser, Olaf,
Oliver, Romaric, Thomas R., Thomas P., Tomas, Valentin T., Valentin P.,
Vladimir and Wissam.

I wish to acknowledge the financial support by the Swedish Foundation for
Strategic Research, project Factories in the Cloud (FiC), with grant number
GMT14-0032.

Finally, I am deeply grateful to my parents for their endless love, support,
and for confidence in me. To my lovely sister and wonderful brother to be always
there for me. To my friends in Gothenburg for providing happy distractions.
And, to my dear husband and my better half, Alireza, for his love, sympathetic
ear and for believing in me.

Hannaneh Najdataei
Göteborg, April 2019

v

List of Publications

Appended publications

This thesis is based on the following publications:

[A] H. Najdataei, Y. Nikolakopoulos, V. Gulisano, M. Papatriantafilou
“Continuous and Parallel LiDAR Point-cloud Clustering”
The 38th International Conference on Distributed Computing Systems
(ICDCS). IEEE, 2018.

[B] B. Havers, R. Duvignau, H. Najdataei, V. Gulisano, A. Chaitanya
Koppisetty, M. Papatriantafilou “DRIVEN: a framework for efficient
Data Retrieval and clustering in Vehicular Networks”
The 35th International Conference on Data Engineering (ICDE). IEEE,
2019.

[C] H. Najdataei, Y. Nikolakopoulos, M. Papatriantafilou, P. Tsigas, V. Gulisano
“STRETCH: Scalable and Elastic Deterministic Streaming Analysis with
Virtual Shared-Nothing Parallelism”
under submission, 2019.

vii

viii

Other publications

The following publication was published during my PhD studies. However, it
is not appended to this thesis, due to contents overlapping that of appended
publications.

[a] H. Najdataei, M. Subramaniyan, V. Gulisano, A. Skoogh, M. Papatri-
antafilou “Stream-IT: Continuous and dynamic processing of production
systems data - throughput bottlenecks as a case-study”
The 28th International Symposium on Industrial Engineering (ISIE).
IEEE, 2019

Contents

Abstract iii

Acknowledgement v

List of Publications vii

List of Figures xiii

1 Introduction 1
1.1 Background . 3

1.1.1 IoT Data Features . 3
1.1.2 Parallelism and Multicore Processing 4
1.1.3 Data Stream Processing 6

1.2 Research Questions and Challenges 9
1.2.1 Continuous Processing and Analysis 9
1.2.2 Elasticity in Stream Processing 10

1.3 Thesis Contributions . 11
1.3.1 Efficient Continuous Data Clustering 11
1.3.2 Scalable and Elastic Deterministic Data Stream

Analysis . 12
1.4 Conclusions and Future Work 12
Bibliography . 13

2 Continuous and Parallel LiDAR Point-cloud Clustering 19
2.1 Introduction . 20
2.2 Preliminaries . 21

2.2.1 LiDAR - sensor and data 21
2.2.2 Problem formulation: from point-cloud to clusters . . . 22
2.2.3 Euclidean-distance-based clustering in PCL 23

2.3 Towards Continuous Clustering 23
2.3.1 Main idea . 23
2.3.2 Coping with the challenges of continuous clustering . . . 25

2.3.2.1 Partial view of neighbor mask 25
2.3.2.2 Continuous cluster management 26

2.4 Algorithm Lisco . 27
2.4.1 Algorithmic implementation 27
2.4.2 Correctness . 29
2.4.3 Complexity analysis . 30

ix

x CONTENTS

2.5 Parallel Lisco . 31

2.5.1 Algorithmic implementation 31

2.5.2 Correctness . 32

2.5.3 Parallelization estimation 34

2.6 Evaluation . 34

2.6.1 Data . 35

2.6.2 Evaluation setup . 35

2.6.2.1 Intel(R) Xeon(R) 37

2.6.2.2 ODROID-XU3 37

2.6.3 Performance evaluation - Intel Xeon 37

2.6.3.1 Synthetic datasets 37

2.6.3.2 Real-world dataset 38

2.6.4 Performance evaluation - ODROID-XU3 39

2.6.4.1 Synthetic datasets 40

2.6.4.2 Real-world dataset 40

2.7 Other related work . 41

2.8 Conclusions and Future Work 43

2.9 Acknowledgments . 43

Bibliography . 43

3 DRIVEN: a framework for efficient Data Retrieval and clus-
tering in Vehicular Networks 49

3.1 Introduction . 50

3.2 Preliminaries . 51

3.2.1 Data Streaming . 51

3.2.2 Piecewise Linear Approximation 52

3.2.3 Distance-based clustering 53

3.3 System model and problem statement 53

3.4 Overview of the DRIVEN framework 55

3.4.1 Sample use case: study vehicles’ surroundings 55

3.4.2 Data retrieval and PLA approximation 56

3.4.3 Data clustering with Lisco 58

3.4.3.1 Clustering LiDAR data (intuition) 59

3.4.3.2 Lisco generalization in DRIVEN 59

3.5 Evaluation . 61

3.5.1 Data . 61

3.5.2 Software and hardware setup 61

3.5.3 Evaluation metrics . 61

3.5.4 Use cases . 62

3.5.4.1 Q1 LiDAR . 62

3.5.4.2 Qa2 1-Vehicle 1-Day 64

3.5.4.3 Qb2 1-Vehicle 7-Day 67

3.6 Related Work . 69

3.7 Conclusion . 71

Bibliography . 71

CONTENTS xi

4 STRETCH: Scalable and Elastic Deterministic Streaming Anal-
ysis with Virtual Shared-Nothing Parallelism 77
4.1 Introduction . 78
4.2 Preliminaries . 80
4.3 Problem Modeling and Objectives 81
4.4 Overview of STRETCH . 83
4.5 Intra-epoch processing . 86

4.5.1 Enforcing properties P1-P3 in E0 87
4.5.2 Sample implementations - ScaleJoin 88

4.6 Inter-epoch Processing . 89
4.6.1 ScaleGate and ESG . 89
4.6.2 Switching epochs . 90
4.6.3 Satisfying properties P4-P6 from Ei to Ei+1 91
4.6.4 Satisfying properties P1-P3 in Ei,∀i > 0 92

4.7 ESG’s API implementation . 92
4.8 Modelling STRETCH ’s performance 94
4.9 Evaluation . 95

4.9.1 Evaluation setup . 96
4.9.2 VSN vs PSN scalability - synthetic dataset 96
4.9.3 VSN vs PSN scalability - Twitter dataset 96
4.9.4 ScaleJoin usecase . 97

4.9.4.1 Intra-epoch performance 98
4.9.4.2 Inter-epoch performance 98

4.10 Relatedwork . 101
4.11 Conclusions and future work 102
Bibliography . 102

xii CONTENTS

List of Figures

1.1 The 3-tier architecture including cloud, fog, and edge layers. . . 2

1.2 Classical architecture for shared-memory multicore systems . . 5

1.3 Information processing . 7

2.1 Top and side views for the LiDAR’s light pulses showing steps
and lasers, and its resulting 2D view. In the 2D view, non-
reflected pulses are white while reflected ones are coloured . . . 22

2.2 Top and side views (A and B) showing which steps and lasers,
respectively, to include in the neighbor mask (C) for the latter
to contain at least all the points within distance ε from p. . . . 24

2.3 Example showing how two subclusters found by Lisco’s continu-
ous analysis may eventually end up in the same cluster. 26

2.4 Examples in which the merge method’s implementation induces
O(1) cost by hierarchically linking heads of subclusters belonging
to the same subcluster (B) or, alternatively, the getH’s imple-
mentation induced cost O(1) cost by having all points directly
linked with the subcluster head (C). In (B), the complexity of
getH can no longer be O(1) but potentially linear in the number
of subclusters for some of the points, while in (C), the head
of all the points of a subcluster needs to be updated when the
subcluster is merged with another one. 29

2.5 Different scenarios for synthetic datasets. In SCEN1-SCEN4,
the LiDAR is located on the black car in the middle while in
SCEN5, it is located on the purple column. 36

2.6 Average execution time on synthetic datasets with confidence
level 99% over 20 runs (minPts = 10, different ε values, Intel
Xeon) . 37

2.7 Scalability of PCL, Lisco, and P-Lisco with respect to the
number of points (Intel Xeon) 38

2.8 Average execution time over 2280 rotations from real dataset
(minPts = 10, different ε values, Intel Xeon) 39

2.9 Average execution time of PCL E Cluster and Lisco on synthetic
datasets with confidence level 99% over 20 runs (minPts = 10,
different ε values, ODROID-XU3) 39

2.10 Average execution time of Lisco and P-Lisco with 1,2, and 4
Scouts on synthetic datasets with confidence level 99% over 20
runs (minPts = 10, different ε values, ODROID-XU3) 39

xiii

xiv LIST OF FIGURES

2.11 Scalability of PCL, Lisco, and P-Lisco with respect to the
number of points (ODROID-XU3) 40

2.12 Average execution time over 2280 rotations from real dataset
(minPts = 10, different ε values, ODROID-XU3) 41

2.13 Asymptotic behaviour of the dominating component of worst
case complexity of Lisco and corresponding calculation using
2280 rotations of real datasets for ε = 0.7. 42

3.1 Example of a Piecewise Linear Approximation using maximum
error ∆ = 0.5. 52

3.2 System model overview for DRIVEN. 54
3.3 Overview of the modules deployed in the resulting streaming

continuous query for the LiDAR use case. 55
3.4 Best-fit lines of a set of points: solid for 10 points, dashed for 11. 56
3.5 PLA compression flowchart with y1’s channel detailed. 57
3.6 Example of how the search space for a point p (for the LiDAR

use case) can be limited to points potentially reported by lasers
(and with certain angles) within a mask centered in p a) and the
corresponding 2D matrix maintained by Lisco b). 60

3.7 Sketch of data structure produced by qpre (Q1). 64
3.8 Compression and clustering statistics (Q1) for various ∆ρ. . . . 65
3.9 Gathering time ratio (Q1) for various ∆ρ and network speeds. . 66
3.10 Sketch of data structure produced by qpre (Qa2). 66
3.11 (a), (b): Compression statistics (Qa2); (c): Adjusted rand index

(Qa2). 66
3.12 Gathering time ratios (Qa2) for various (a) maximal errors for

different network speeds and (b) raw data sizes (rolling average
over 13 values, different colors are used for distinct values of
∆x,∆y) for a 3G network. 67

3.13 Sketch of data structure produced by qpre (Qb2). 67
3.14 (a), (b): Compression statistics (Qb2); (c): Adjusted rand index

(Qb2). 68
3.15 Gathering time ratios (Qb2) for various (a) maximal errors for

different network speeds and (b) raw data sizes (rolling average
over 13 values, different colors are used for distinct values of
∆x,∆y) for a 3G network. 69

4.1 Overview of STRETCH. 83
4.2 ScaleGate’s skip list, and readers’ / sources’ handles. 93
4.3 Scalability based on the model 95
4.4 VSN and PSN scalability. 97
4.5 The performance of STRETCH framework with ScaleJoin for

Join operator using time-based window with window size 5 minutes 99

Chapter 1

Introduction

“The world’s most valuable resource is no longer oil, but data”. According to
the economist article [1] in 2017, data is the oil of the digital era. Nowadays,
it is expected to see everything of material significance on the planet to be
sensor tagged and connected to the internet in order to report its state in
real-time [2]. These information-sensing Internet of Things (IoT) devices make
data ubiquitous and massive. The raw data itself, nonetheless, is not lucrative
but the analytics offers value [3]. Moreover, the characteristics of this massive
data (often referred as Big Data) such as high volume and high rate, make
the traditional state-of-the-art analysis approaches inefficient and impractical.
This inefficiency of traditional approaches, has begun a new wave of scientific
revolution and led to innovative analytics.

It is right to say that Big Data has changed the direction of the development
of the hardware architecture as well as software [4]. Motivated by scalability
demands of analytical methods, the number of cores in processors is being
increased to support scalable parallel computing. Moreover, the cloud com-
puting paradigm has emerged as one step towards revolutionizing distributed
computing to enable convenient and on demand network access to a shared pool
of resources (e.g. servers, storage). In IoT applications, the main motivation
behind employing virtual clouds consists of high-end servers is to carry out
heavy data analysis. The reason is that IoT devices are often equipped with
reduced computational power, i.e. resource-constrained devices, and hence
likely to be less efficient in performing heavy analysis. The benefits of cloud
computing are nonetheless followed by challenges. The first challenge is that,
when dealing with Big Data, it might be impossible to send all data to the
cloud without exhausting the available bandwidth. Also, sending data to the
cloud for analysis and getting back the results to make further decisions, could
cause significant high latency which is not tolerable for certain applications
requiring real-time processing.

The difficulties of shifting all data to the cloud for analysis led to the
emergence of the paradigms such as fog computing and edge computing in
which the processing procedures are being pushed down closer to where data
originates. While edge computing is not a new concept, it mostly had been
used to filter and route data to the cloud. Today, however, edge computing
is offering more compute and analytic powers on devices. Similar to the edge

1

2 CHAPTER 1. INTRODUCTION

Figure 1.1: The 3-tier architecture including cloud, fog, and edge layers.

computing, fog computing is pushing the analysis from cloud servers down,
closer to the source of data. In fog computing, the analysis is performed on
intermediate levels, i.e. fog nodes or IoT gateways. Bringing cloud, fog, and
edge computing together results in a 3-tier architecture, as shown in Figure 1.1,
where the distribution of data processing is enabled along the Things-to-Cloud
continuum.

Where to process the data? The edge/fog/cloud architecture provides suit-
able platforms for various processing applications with different requirements.
For instance, applications requiring instantaneous decision making and real-
time processing are better matched on the edge layer while the cloud computing
is more suitable for those that are related to Big Data analytics or less sensitive
to the response time. Furthermore, different tiers of the architecture offer plat-
forms with specific capabilities. For example, edge devices often have limited
computational power with limited memory capacity while cloud consists of
high-end servers.

When to process the data? The increasing speed of the data generation
demands some form of analytics to process data before it becomes too big. The
accumulated data can cause several challenges from latency in producing the
processing results to the difficulties in memory usages. To this end, regardless
of which layer the analysis is running on, there is a need to process the constant
flow of data continuously. The continuous processing improves memory access
patterns as well as real-time processing, which is a requirement for many of
the applications (e.g. e-commerce order processing, failure detection, air traffic
control). An example of continuous processing is data stream processing, or
shortly data streaming [5].

How to process the data? Data streaming is a processing paradigm, partic-
ularly suited for applications with small delay constraint to process massive
amount of data. It performs analysis on data in motion, as the latter is received,

1.1. BACKGROUND 3

without need to be stored. Prior to the stream processing, the data needed
to be stored in a database or other forms of storage and only after that, the
analytical queries were performed over batch of the stored data. Nowadays, the
conventional store-then-process techniques are not enough for many application
due to the performance and storage constraints.

Stream processing introduces a new paradigm in which the queries exist
continuously while the data flows through them. In another words, it provides
continuous analysis in which the data is modeled as transient data streams
rather than persistent relations. For example, by using stream processing and
querying the constant receiving data from a temperature sensor, it is possible to
raise an alarm once the temperature reaches a certain threshold. The benefits
of stream processing, nonetheless, come with a price: the need for designing
efficient streaming analysis while dealing with the continuous arrival of data in
rapid, multiple and unbounded streams with various rates over time.

In this thesis, we contribute to the body of research on efficient and practical
data analytics to achieve higher throughput of results with lower processing
response time. We design algorithms for continuous data analysis that do not
rely on platform-specific constructs, so to be suitable for various architectures
deployed on different layers of the 3-tier architecture. We present efficient data
structures to leverage parallelism and contribute to the online analytics. In
addition, we explore the adaptive reconfiguration of processing units in order
to fully utilize the resources and prevent the unnecessary latency for over-
provisioning as well as prevent saturation of the system for under-provisioning.

The rest of this chapter is organized as follows. Section 1.1 reviews the
introductory background about IoT data characteristics, multicore systems
with the consequent parallelism, and data stream processing. Section 1.2
discusses the detailed thesis scope by describing problem domains and their
corresponding challenges. Section 1.3 presents the highlights of contributions in
the thesis to solve the aforementioned challenges. Finally, Section 1.4 concludes
the discussion of this chapter.

1.1 Background

In this section we overview the background topics which are related to the scope
of this thesis. First, we discuss the characteristics of data in IoT applications
and the reasons that make the processing challenging for it. Then, we provide
background on multicore systems and how they support parallelism as tools
to enable efficient data processing. Finally, we review data stream processing
and how it differs from conventional data processing so to be suitable for IoT
applications.

1.1.1 IoT Data Features

Since 2011, the emergence of Cyber-Physical Systems and Industry 4.0 [6] have
rapidly accelerated the growth of data and made Big Data a trend in industry.
The main intention was based on the desire to enhance the productivity and
make evolutionary progresses [7]. This gives immense opportunities to the
research community to introduce innovative, practical, and efficient analytics
in order to help the industry achieve its goals. Big data analytics is a form

4 CHAPTER 1. INTRODUCTION

of advanced data mining (i.e. Knowledge Discovery from Data [8]) that has
progressed gradually to turn a large collection of data into knowledge. To
distinguish the Big Data analytics from the conventional ones, it is necessary
to define Big Data and its features.

By hearing the term Big Data, normally the first impression is about its size.
However, it involves several dimensions while size is only one. Although there
has been a divergent discourse on the exact definitions for Big Data during
past years, all share a few dimensions based on the “three Vs” suggested by
Doug Laney [9]. Laney suggested the Volume, Velocity, and Variety, as three
dimensions of challenges in data management. Later, Gartner [10] gave a more
detailed definition as:

“Big Data is high-volume, high-velocity and/or high-variety in-
formation assets that demand cost-effective, innovative forms of
information processing that enable enhanced insight, decision mak-
ing, and process automation.”

In the following, each dimension is described briefly.
Volume refers to the size of the data. As also appeared in the name, Big

Data is enormous amount of data. It is, nevertheless, impractical to define a
threshold for the size of a dataset to be considered as Big Data. The reason is
that the volume dimension along the other dimensions, i.e. velocity and variety,
categorizes a dataset as Big Data. In some cases (e.g. sensor readings), data is
in form of unbounded streams with infinite size which can be also categorized
as Big Data.

Velocity refers to the speed of generating data. In recent years, using the
well developed and ubiquitous technological tools, the generating rate of data
is unprecedented. However, the term of velocity refers to not only the speed of
incoming data, but also the speed that the data should be processed. Therefore,
due to the increasing rate at which data is generated, there is a growing demand
for real-time processing [11].

Variety refers to the range of the data types. Big Data covers the various
data types of the spectrum from fully structured (e.g. tabular data) that can
be easily sorted and stored, to unstructured (e.g. video, audio) that is random
and difficult for the machine to analyze. The high variety of the data is what
makes data “really big” [12].

In the literature, various big data analytics are introduced for different IoT
applications [4], among all, the online near real-time processing is the interest
of this thesis. Such analytics are for applications in which timeliness of the
response is at the top priority. In these applications typically the input data is
changing constantly and rapidly (e.g. sensor data) where the stream flow rate
may vary considerably. To achieve the goals, online analytics need to utilize all
the available computational resources, and consequently leverage techniques
such as parallel computing and stream processing [13].

1.1.2 Parallelism and Multicore Processing

The demand for more computing power, encouraged processor designers to
improve the performance of a processor by increasing the clock rate. This
strategy worked fine until it hit the physical limit (i.e. power wall) which showed

1.1. BACKGROUND 5

Figure 1.2: Classical architecture for shared-memory multicore systems

that the power dissipation does not scale with the size of a transistor. After
crashing into the power wall, the designing approach shifted from employing a
power-inefficient processor to usage of many efficient ones on the same chip, and
hence promoting parallel computing rather than sequential programming [14].
While parallel computing is not new, during the recent years the interest in
it has increased due to multicores becoming the norm in computing systems,
ranging from smaller devices such as phones, to high-end servers. Therefore,
it is true to say that the interest in parallel computing nowadays, is not the
result of an innovation in programming but actual limitations in building
power-efficient, high clock-rate, single core chips [15].

A processor on a chip hosting multiple computational units (i.e. cores), is
referred as multicore processor. A system containing one or more multicore
processors is referred as multicore system. Such systems enable parallelism (i.e.
multi-threaded executions) by running tasks on different cores. Ideally, a large
task is divided into several small independent sub-tasks, each is assigned to a
core to be completed. However, distributing sub-tasks over cores is not always
trivial. In many cases, sub-tasks have correlations that require the overlapping
execution of processes/threads to be synchronized through the shared memory.
In the rest of this thesis, we use the terms process and thread interchangeably
to refer to an execution entity that is running on the processor.

Figure 1.2 illustrates a classical architecture for shared-memory multicore
systems including multiple processors with several cores, connected via a shared
memory, where each core may have several private and shared caches. The
cores execute tasks independently and coordinate via a shared address space
to which each core has access with different layer of memory hierarchy.

In parallel computing, concurrent access of cores to a data object shared in
the memory, needs to be synchronized in order to guarantee data consistency.
This is provided by several synchronization mechanisms (e.g. locks, semaphores)
and hardware primitives (e.g. compare-and-swap, test-and-set) using which,
the notion of atomic operations is supported. Atomic operations are the ones
that appear to be completed by a thread without any interference [16].

Shared data objects can vary, from basic ones, such as registers, to higher
level objects described through Abstract Data Types (ADTs). ADT is an
interface definition of operations that can be executed on the data structure.

6 CHAPTER 1. INTRODUCTION

An algorithmic implementation of ADT in the shared-memory system is a
concurrent data structure which organizes data for efficient concurrent access
while hiding details on the interaction of the processes. An efficient concurrent
data structure is a key to harness the available parallelism in multicore systems
by providing correct synchronization with high-level of interface operations.

Design and implementation of concurrent data structures, nonetheless, are
challenging as they are required to be correct and scalable [16]. The correctness
of such data structures is proved through the safety and liveness properties [17].
The safety property describes the consistency guarantees by showing that
“something bad will not happen”, while the liveness property describes the
progress guarantees by showing “something good will eventually happen”.

Various formalizations are presented in the literature for the safety property
such as linearizability [18] and sequential consistency [19]. Linearizability
preserves real-time occurrence of the operations and requires that each operation
takes effect instantaneously at some point (i.e. linearization point) between
its invocation and response. An execution is linearizable if there exists an
ordered sequence of invocation and response events (i.e. history) that observes
real-time ordering of the latter at all processes. However, in some cases, the
real-time order of events at different processes may not be significant. In such
situations, sequential consistency is used as the safety condition. Instead of
real-time order of events, sequential consistency preserves the program order
of operations issued by the same process. Sequential consistency is a weaker
condition compared to the linearizability since every linearizable execution also
provide sequential consistency but the reverse is not necessarily true.

Similarly, the liveness property is defined through various formalizations
such as wait-freedom [20] and lock-freedom [16]. Wait-freedom is the strongest
progress guarantee which concerns individual progress. It guarantees that
every process has a bound on the number of steps to take before its operation
completes regardless of delays or failures of other processes. Lock-freedom
guarantees some process complete it operation after a bounded number of
steps, and hence ensures the system-wide progress. During the past years,
extensive effort has been made to construct more efficient and practical data
structures [16, 21–24].

The new developments in hardware are not limited to high-end servers (e.g.
Intel Xeon Phi [25]), but affect all computational devices, even the embedded
resource-constraint ones (e.g. Odroid XU4 [26]). For instance, the embedded
devices used for edge computing are now supporting parallel programming [26]
by employing multicore architecture. This motivates the design and implemen-
tations of high-level parallel and heterogeneous programming models which
can be adapted to any platform in the IoT architecture [27–29].

1.1.3 Data Stream Processing

Traditional database management systems (DBMSs) have been used for decades
to manage data. The primary goal of DBMSs is to store data in a form of
persistent dataset and then run one-time queries over it. As an example,
consider using a DBMS in a university to maintain information about courses,
students, and grades. Upon receiving a new data record (referred as tuple in
the remaining), containing CourseID, StudentID, and Grade fields, a DBMS

1.1. BACKGROUND 7

(a) One-time query in DBMSs
(b) Continuous query in stream
processing

Figure 1.3: Information processing

stores it in the database. Then, once a request made by a user of a DBMS to
process a query such as listing all the courses that a specific student has failed,
DBMS retrieves information from the storage and run the query to produce
the results.

Although DBMSs are useful in applications where the updates of the
database are relatively infrequent, they are inefficient for modern high-volume
and high-velocity data-driven applications where Big Data is being generated.
In such applications, data is changing constantly which makes the frequent
access to the storage costly. Furthermore, due to the need for storing tuples
before processing, DBMS is impractical for applications requiring real-time
analysis. In this case, considering the architecture of DBMSs, one option is
to remove the requirement of storing tuples before processing, and therefore
analyse tuples upon receiving them. This modification has emerged a new
paradigm for continuous processing, which is referred as data stream processing.

Data stream processing is one pass analysis over the data on the fly. In
contrast to DBMSs, stream processing employs continuous queries [30] which
are queries that are issued once and continuously run over the flow of tuples.
As an example, consider a scenario where a sensor is used to monitor speed
of a vehicle and raise an alarm if it exceeds a certain threshold. Using stream
processing, the query is issued once and run over constantly arriving tuples
reporting speed of the vehicle. In this way, there is no need to store all the tuples
for later processing. Figure 1.3 illustrates high level overview of information
processing procedure using DBMSs and stream processing. As shown in the
figure, stream processing can run the query immediately after a new tuple
arrives which in turn enables online analysis. However, it faces issues in the
way that tuples need to be processed.

A challenging issue regarding data stream processing lies in the fact that
naturally, streaming data is unbounded. In addition, since stream processing
does not store data, there is a requirement to keep a portion of it to run some
queries that need past data. In the vehicle example, assume we are interested
in finding the average speed during the past hour and raise an alarm if the
average is above a threshold. Various models have been proposed to keep a
portion of a stream data with differences in downgrading the importance of
the older tuples [31]. Among all, sliding window [32] is one of the prominent

8 CHAPTER 1. INTRODUCTION

models in which only the most recent tuples that fit in a window are kept.
The window itself can be either time-based or tuple-based and is defined by
two parameters size and advance. In time-based windows, size is indicating
the length of a window in time units and advance shows how much in time
the window should go forward (e.g. to group latest tuples within a window of
size 10 seconds every 3 seconds). In tuple-based windows, size is the length of
a window in the order of number of tuples and advance indicates how many
tuples the window should go forward (e.g. to group last 10 tuples every 3
receiving tuples).

To support the stream processing paradigm, Stream Processing Engines
(SPEs) have emerged as a new class of system software. SPEs are generally
providing high level programming interfaces to run continuous queries. They
are modeled as Directed Acyclic Graphs (DAGs) where vertices are processing
operators and directed edges are continuous streams of data. Examples of such
systems are STREAM [33], Apache Storm [34], Apache Flink [35], Stream-
Cloud [36]. The processing operators are either stateless, i.e. do not keep state
as the result of previous tuples and perform actions based on each tuple individ-
ually (e.g. filter out the tuples using their attributes), or stateful, i.e. use state
affected by the previous tuples to produce results (e.g. aggregate to compute
average). Due to the unbounded nature of the streams, stateful operators are
computed over windows. Data streaming can be used to implement analysis
tools for a wide range of applications requiring simple analytics (e.g. filter,
average) or more complicated ones (e.g. clustering, regression).

SPEs provide pipeline and task parallelism, naturally, by assigning tasks
and operators to different processing units. However, in most cases, distributing
operators on processing units causes imbalanced workload that affects system
performance. Typically, the performance of SPEs is measured by two metrics;
throughput and latency. Throughput indicates number of tuples processed per
time unit while latency is the time difference between receiving a tuple and
producing the corresponding results.

In order to achieve higher throughput and lower latency, SPEs enable data
parallelism by replicating instances of operators and partitioning data over
them. For stateless operators, the partitioning can be accomplished in an
arbitrary fashion (e.g. random, round-robin) while stateful operators require
techniques that are aware of states and route tuples, that affect the same state,
to the same partition.

Partitioned operators leverage data parallelism by creating sub-streams
and assigning the abnalysis of each sub-stream to a computational process.
Therefore, the processing latency of each sub-stream is affected by its tuples and
the specifications of the corresponding process. This might cause inconsistency
in data received by the downstream operator if behaviour can be affected by
the order. Similar to the correctness properties for concurrent data structures,
discussed in Section 1.1.2, streaming consistency needs to be discussed for data
stream processing. One way to formalize the streaming consistency is through
the determinism property.

Determinism is required to ensure the consistent results for different execu-
tions with the same sequence of input tuples. To support determinism, one
option is to merge the input streams into one timestamp-sorted stream and
then, process tuples from the latter in the timestamp order. For that, concur-

1.2. RESEARCH QUESTIONS AND CHALLENGES 9

rent data structures can be used to coordinate all processes involved in the
procedure [37, 38]. ScaleGate [24, 39, 40] and W-Hive [24, 40] are examples of
such data structures that have been proposed to enable communication among
operators in SPEs and support determinism. ScaleGate efficiently merges
several timestamp-sorted streams into one and allows the operator instance to
process tuples in timestamp order once they are “ready”. A tuple is defined as
ready to be processed, if its timestamp is less than or equal to the latest tuple
timestamps received from all input streams [39].

In a nutshell, ScaleGate enhances data parallelism while supporting consis-
tency. It provides an encapsulated object, allowing for an arbitrary number
of sources to add their input tuples while arbitrary number of reader entities
consume the ready tuples. Furthermore, it supports determinism since all the
reader entities read the tuples in the timestamp order regardless of the order
of input tuples.

1.2 Research Questions and Challenges

This thesis investigates aspects of computational infrastructures and devel-
opment of tools for IoT data analytics in the edge/fog/cloud architecture to
enhance parallelism while preserving determinism, with the focus on two prob-
lem domains: (i) continuous processing, and (ii) elasticity in stream processing.

1.2.1 Continuous Processing and Analysis

When focusing on data analysis for IoT applications, the major challenge is
given by the volume and velocity of the data that is produced using devices (e.g.
sensors) at the edge. This requires efficient analytical solutions to distribute
the processing procedure over physical computational resources deployed at
different tiers. In this way, the system has the opportunity to sustain the data
rate and prevent the communication bandwidth exhaust. Another challenge
is given by the computational and memory limitations of devices at the edge,
which requires fine-grained analysis to enhance the usage of resources.

As discussed in Section 1.1.3, continuous analysis is proposed as a general
approach to address these challenges. Designing algorithms for continuous
clustering is nonetheless not a trivial task [31]. Continuous processing requires
efficient data structures shared by threads for concurrent and frequent accesses
in order to support parallelism without adding an extra overhead to the
processing time. Moreover, it provides online single pass analysis of data which
means at any moment in time, the analysis might have incomplete information.

In this problem domain, we focus on data clustering, as an important
representative example in data analysis context and a key-component for other
problems (e.g. machine learning, pattern recognition, information retrieval).
Data clustering is the process of grouping data into sets (i.e. clusters) using
similarity metrics, in a way that the intra-cluster similarity is maximized. An
extensive literature exists about clustering, which can be classified based on
the semantics used to define a cluster [8] (e.g. k-means approach to produce
balanced spherical-shape clusters, density-based clustering [41] to partition sets
into unknown number of arbitrarily shaped clusters).

10 CHAPTER 1. INTRODUCTION

During the past decade, the problem of clustering for high-rate flow of
data for different applications has been widely studied [42]. Generally, the
studies indicate the trade-off between accuracy and performance for contin-
uous clustering. For some applications that the results need to be accurate,
typically data is collected in batches and then the clustering algorithm is per-
formed [43]. However, this introduces latency into the processing. Therefore, if
the accuracy is not top priority, approximation algorithms [31, 44] are run over
data continuously to achieve higher performance with an accuracy loss on the
clustering.

Based on the above mentioned challenges, the general research questions in
the domain, which this thesis investigates, are:

Can we design algorithms for continuous clustering (i) to be scalable and
therefore suitable for IoT systems, (ii) to be hardware independent thus to be
deployed on various platforms, while (iii) producing accurate results with high
performance? Can we provide a solution, in case of limited communication
bandwidth compared to the volume of sensed data, to (iv) integrate approximation
techniques with continuous clustering, while (v) having a small accuracy loss?

Section 1.3.1 gives a brief overview of the proposed solutions in the thesis
that aim at addressing these issues. Later, Chapters 2 and 3 describe the
contributed results in detail.

1.2.2 Elasticity in Stream Processing

In the concept of stream processing, there is a rich scientific literature on
leveraging the modern multicore systems’ computational power in terms of
parallelism where the number of parallel instances is fixed. Such techniques
focus on a specific operator parallelization [39, 45, 46] or determinism [38, 39],
among other aspects. These fixed resources, nonetheless, are not able to be
adjusted at runtime and therefore render over- or under-provisioning scenarios
in the case of changing stream rates [47]. In the over-provisioning scenario, the
number of allocated resources is set regarding the load peaks, which causes
the under-utilization of the system and high cost during non-peak times. In
the under-provisioning scenario, there are not enough resources, which causes
higher analysis latency and, in the case of bursty workload, saturation in the
system [48]. Therefore, in addition to scalability, elasticity has to be provided
in order to enhance resource utilization in the system.

The elasticity mechanism enables runtime resource adjustments to adapt
the number of parallel computational instances regarding the stream rate. It
introduces challenges especially for the stateful analysis where redistribution of
work among new number of resources is often followed by state migration [48, 49].
State migration is the procedure of transferring the current state from one
thread to the new one, as the latter has been running the analysis. While
state migration is particularly needed in distributed shared-nothing systems, it
hampers the performance unnecessarily, if parallel instances have the option
of sharing memory. On the other hand, to take advantage of intra-node
resources (e.g. shared-memory), it is required to efficiently manage and scale
computation on a node level first (i.e. scaling up) before scaling out to the
distributed nodes [50].

Another challenge in programming elastic stateful analysis, relies on pre-

1.3. THESIS CONTRIBUTIONS 11

serving determinism even with varying degree of parallelism. Preserving deter-
minism in elastic analysis, in turn, might require elastic and re-configurable
data structures.

In the second problem domain, we focus on elasticity in stream processing
to address its discussed challenges, which yield new and interesting research
questions as follows:

Can we support elastic stateful analysis and prioritizes scaling up to utilize
intra-node resources, rather than scaling out, while (i) enabling deterministic
execution, (ii) safely sharing state with all parallel instances to enhance per-
formance, and accordingly, (iii) maximizing efficiency in terms of throughput,
latency and reconfiguration times?

This thesis investigates the solutions to address the above mentioned issues.
Section 1.3.2 overviews the proposed solution while more details are presented
in Chapter 4.

1.3 Thesis Contributions

The contributions of this thesis are solutions for a number of data analytical
challenges in the problem domains mentioned in the previous section. In this
section, we outline the results and more details are presented in Chapter 2 to
Chapter 4.

1.3.1 Efficient Continuous Data Clustering

An inspiring yet challenging application for continuous data processing in the
context of IoT is data clustering for LiDAR (Light Detection And Ranging)
sensor. LiDAR is a high rate sensor that generates massive amount of data in
form of large streams of readings. A LiDAR commonly mounts several lasers
on a rotating column. At each rotation step, these lasers shoot light rays and,
based on the time the reflected rays take to reach back to the sensor, produce
distance readings. Therefore, each laser in the LiDAR generates stream of data.
Combining all lasers of the LiDAR, produces a stream of distance readings as
3D points at high rates (known as point clouds), in the realm of millions of
readings per second.

Due to the high data rates and sensitivity of the applications, the LiDAR
point cloud clustering algorithms are required to be fast and accurate. For
that, in Chapter 2, we introduce Lisco, a single-pass continuous Euclidean
distance-based clustering, to process LiDAR point cloud in near real-time.
Lisco exploits the inherent ordering of LiDAR data points to achieve the same
accuracy as state-of-the-art batch-based clustering algorithm while decreasing
the latency. Furthermore, the parallel version of Lisco, P-Lisco, is proposed
to exploit the internal pipeline of the data analysis steps. Both Lisco and
P-Lisco algorithms are architecture independent and thus, suitable to run on
any platform.

Later, in Chapter 3, we present a framework, called DRIVEN (Data Re-
trieval and clusterIng in VEhicular Networks), to utilize computational resources
and communication bandwidth of different tiers in the edge/fog/cloud architec-
ture in the context of vehicular networks. The framework applies a continuous
bounded error approximation through Piecewise Linear Approximation [51], to

12 CHAPTER 1. INTRODUCTION

compress volumes of data before forwarding to the next tier. It also performs
the generalized form of Lisco leveraging the inherent ordering of the spatial
and temporal data being collected in a continuous fashion, as the analysis tool.
The framework is tested using real-world LiDAR and GPS data to study the
trade-offs in compression between the speed up, both for data processing and
data transferring, and accuracy of the clustering results.

1.3.2 Scalable and Elastic Deterministic Data Stream
Analysis

The challenges discussed in Section 1.2.2, address the trade-off between data
sharing and shared-nothing scenarios among threads to enhance parallelism
as well as synchronization. In case of shared-nothing, the threads work in-
dependently and parallelism is maximized, but the reconfiguration and state
migration are costly. In the case of data sharing, there is no need for state
migration and the workload shifting among threads can be done efficiently, but
contention, which is caused by concurrent access of threads, might affect the
scalability. Therefore, there is a need to find the right amount of sharing to
enable efficient reconfiguration and workload redistribution as well as enhancing
parallelism and performance while preserving determinism.

Towards this goal, in Chapter 4, we introduce the concept of “virtual shared-
nothing” parallelization and leverage it in the proposed framework, called
STRETCH. The framework allows users to exploit parallelization techniques
and take advantage of shared-memory synchronization to boost the scaling
up of streaming applications. We also extend the API of ScaleGate to allow
for live provisioning and decommissioning of both source and readers entities
while preserving determinism. Furthermore, we provide a fully-implemented
prototype and empirical evidence that the STRETCH ’s virtual shared-nothing
parallelism allows for better performance than existing shared-nothing ones. It
is also shown that STRETCH framework enables fast elastic reconfiguration
in case of requiring thread provisioning or decommissioning.

1.4 Conclusions and Future Work

This thesis targets the challenges of data analysis and computational infrastruc-
tures in the context of Internet of Things by focusing on two problem domains;
continuous analysis and elasticity in stream processing.

For the first domain, we focus on continuous clustering algorithms to rapidly
extract valuable information from raw data that come in high-rate streams. We
have presented the Lisco algorithm to process LiDAR point clouds while the
latter are being collected. Then, we present its parallel counterpart, P-Lisco, to
leverage the parallelism of processing pipeline in an architecture-independent
fashion. As the next step in this domain, we presented the DRIVEN framework
for data retrieval and clustering in vehicular networks. The framework provides
efficient information retrieval using Piecewise Linear Approximation to compress
the data stream in a continuous fashion. It also utilizes Lisco’s properties to
generalize its use and perform appropriate clustering as the analysis tool.

For the second domain, we focus on elasticity capability in stream processing
to handle the bursty data streams. For that, we present the STRETCH

BIBLIOGRAPHY 13

framework which enables virtual shared-nothing parallelism and provides extra
efficient reconfiguration when scaling is required. Moreover, it maximizes
throughput and latency of stateful analysis while supporting determinism even
with varying degree of parallelism in the runtime.

Based on insights from work in elasticity characteristic of data stream-
ing, there are interesting aspects worth to be investigated as followup work.
As an example, would it be possible to combine scale-out capabilities with
STRETCH ’s scale-up mechanism? This would provide fast reconfiguration
when needed as well as preserving determinism. Another interesting direction
concerns the scaling control policy. Currently, STRETCH uses a manual
controller which can be substituted with an intelligent automatic one, to trigger
reconfiguration for provisioning or decommissioning threads based on the data
rate and available resources.

Data streaming with elasticity capability can be applied for many applica-
tions requiring varying amount of resources over time to cope with fluctuations.
Examples of such applications include analysis regarding social media (e.g.
twitter), where an event or occurrence may cause a huge peak in data genera-
tion.

Furthermore, the achievements of Lisco algorithm for LiDAR motivate
investigating the properties of the data in general, that can enable continuous
and parallel processing. It also inspires employing continuous processing
for several applications dealing with challenges related big IoT data. For
instance, new and upcoming production systems are empowered with sensing
and communication devices, which generate massive data. Efficiently processing
this massive data, may improve the functionality of the system and increase the
productivity. A specific example in this regard is monitoring the throughput
and detect the bottlenecks (i.e. limiting factors) in a production line. The
reason is that an improvement in bottleneck detection procedure results in
an improvement in real-time production control which in turn facilitates the
implementation of improvement actions in the production system.

Another application that can benefit from data streaming is online object
tracking. This application is particularly interesting for security and safety rea-
sons. For example, using data streaming, a moving object in a prohibited area
can be detected online so to react properly. Moreover, continuous processing
can facilitate the detection of an object for moving vehicles and hence allows
them to plan better for avoiding the obstacle.

Data streaming can also be applied for validation and quality improvement
on data before performing analysis. This pre-processing approach, can improve
the quality of analysis, as well decrease the size of data before transferring via
a communication link to other tiers or storing in the database.

Bibliography

[1] “The world’s most valuable resource is no longer oil, but
data,” 2017, https://www.economist.com/leaders/2017/05/06/
the-worlds-most-valuable-resource-is-no-longer-oil-but-data.

https://www.economist.com/leaders/2017/05/06/the-worlds-most-valuable-resource-is-no-longer-oil-but-data
https://www.economist.com/leaders/2017/05/06/the-worlds-most-valuable-resource-is-no-longer-oil-but-data

14 BIBLIOGRAPHY

[2] M. Stonebraker, U. Çetintemel, and S. Zdonik, “The 8 requirements of
real-time stream processing,” ACM Sigmod Record, vol. 34, no. 4, pp.
42–47, 2005.

[3] S. LaValle, E. Lesser, R. Shockley, M. S. Hopkins, and N. Kruschwitz,
“Big data, analytics and the path from insights to value,” MIT sloan
management review, vol. 52, no. 2, p. 21, 2011.

[4] C. P. Chen and C.-Y. Zhang, “Data-intensive applications, challenges,
techniques and technologies: A survey on big data,” Information sciences,
vol. 275, pp. 314–347, 2014.

[5] B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom, “Models and
issues in data stream systems,” in Proceedings of the twenty-first ACM
SIGMOD-SIGACT-SIGART symposium on Principles of database systems.
ACM, 2002, pp. 1–16.

[6] N. Jazdi, “Cyber physical systems in the context of industry 4.0,” in 2014
IEEE international conference on automation, quality and testing, robotics.
IEEE, 2014, pp. 1–4.

[7] J. Manyika, M. Chui, B. Brown, J. Bughin, R. Dobbs, C. Roxburgh, and
A. H. Byers, “Big data: The next frontier for innovation, competition, and
productivity,” 2011.

[8] J. Han, J. Pei, and M. Kamber, Data mining: concepts and techniques.
Elsevier, 2011.

[9] D. Laney, “3-d data management: Controlling data volume, velocity
and variety,” 2001, http://blogs.gartner.com/doug-laney/files/2012/01/
ad949-3D-Data-Management-Controlling-Data-Volume-Velocity-and-Variety.
pdf.

[10] G. I. Glossary, 2019, https://www.gartner.com/it-glossary/big-data/.

[11] A. Gandomi and M. Haider, “Beyond the hype: Big data concepts, meth-
ods, and analytics,” International Journal of Information Management,
vol. 35, no. 2, pp. 137–144, 2015.

[12] S. Sagiroglu and D. Sinanc, “Big data: A review,” in 2013 International
Conference on Collaboration Technologies and Systems (CTS). IEEE,
2013, pp. 42–47.

[13] M. Marjani, F. Nasaruddin, A. Gani, A. Karim, I. A. T. Hashem, A. Sid-
diqa, and I. Yaqoob, “Big iot data analytics: architecture, opportunities,
and open research challenges,” IEEE Access, vol. 5, pp. 5247–5261, 2017.

[14] S. Akhter and J. Roberts, Multi-core programming. Intel press Hillsboro,
2006, vol. 33.

[15] K. Asanovic, R. Bodik, J. Demmel, T. Keaveny, K. Keutzer, J. Kubiatowicz,
N. Morgan, D. Patterson, K. Sen, J. Wawrzynek et al., “A view of the
parallel computing landscape,” Communications of the ACM, vol. 52,
no. 10, pp. 56–67, 2009.

http://blogs.gartner.com/doug-laney/files/2012/01/ad949-3D-Data-Management-Controlling-Data-Volume-Velocity-and-Variety.pdf
http://blogs.gartner.com/doug-laney/files/2012/01/ad949-3D-Data-Management-Controlling-Data-Volume-Velocity-and-Variety.pdf
http://blogs.gartner.com/doug-laney/files/2012/01/ad949-3D-Data-Management-Controlling-Data-Volume-Velocity-and-Variety.pdf
https://www.gartner.com/it-glossary/big-data/

BIBLIOGRAPHY 15

[16] M. Herlihy and N. Shavit, The art of multiprocessor programming. Morgan
Kaufmann, 2011.

[17] L. Lamport, “Proving the correctness of multiprocess programs,” IEEE
transactions on software engineering, no. 2, pp. 125–143, 1977.

[18] M. P. Herlihy and J. M. Wing, “Linearizability: A correctness condition
for concurrent objects,” ACM Transactions on Programming Languages
and Systems (TOPLAS), vol. 12, no. 3, pp. 463–492, 1990.

[19] L. Lamport, “How to make a correct multiprocess program execute cor-
rectly on a multiprocessor,” IEEE Transactions on Computers, vol. 46,
no. 7, pp. 779–782, 1997.

[20] M. Herlihy, “Wait-free synchronization,” ACM Transactions on Program-
ming Languages and Systems (TOPLAS), vol. 13, no. 1, pp. 124–149,
1991.

[21] D. Cederman, A. Gidenstam, P. Ha, H. Sundell, M. Papatriantafilou, and
P. Tsigas, “Lock-free concurrent data structures,” Programming Multicore
and Many-core Computing Systems, vol. 86, p. 59, 2017.

[22] D. Cederman, B. Chatterjee, N. Nguyen, Y. Nikolakopoulos, M. Papa-
triantafilou, and P. Tsigas, “A study of the behavior of synchronization
methods in commonly used languages and systems,” in 2013 IEEE 27th
International Symposium on Parallel and Distributed Processing. IEEE,
2013, pp. 1309–1320.

[23] Y. Nikolakopoulos, A. Gidenstam, M. Papatriantafilou, and P. Tsigas, “A
consistency framework for iteration operations in concurrent data struc-
tures,” in 2015 IEEE International Parallel and Distributed Processing
Symposium. IEEE, 2015, pp. 239–248.

[24] V. Gulisano, Y. Nikolakopoulos, D. Cederman, M. Papatriantafilou, and
P. Tsigas, “Efficient data streaming multiway aggregation through concur-
rent algorithmic designs and new abstract data types,” ACM Transactions
on Parallel Computing (TOPC), vol. 4, no. 2, p. 11, 2017.

[25] Intel. (2019) Xeon-phi. https://www.intel.com/.

[26] Hardkernel. (2019) Odroid-xu4. https://www.hardkernel.com.

[27] A. Ernstsson, L. Li, and C. Kessler, “Skepu 2: Flexible and type-safe
skeleton programming for heterogeneous parallel systems,” International
Journal of Parallel Programming, vol. 46, no. 1, pp. 62–80, 2018.

[28] Y. Nikolakopoulos, M. Papatriantafilou, P. Brauer, M. Lundqvist,
V. Gulisano, and P. Tsigas, “Highly concurrent stream synchronization in
many-core embedded systems,” in Proceedings of the Third ACM Inter-
national Workshop on Many-core Embedded Systems. ACM, 2016, pp.
2–9.

https://www.intel.com/
https://www.hardkernel.com

16 BIBLIOGRAPHY

[29] I. Walulya, Y. Nikolakopoulos, M. Papatriantafilou, and P. Tsigas, “Con-
current data structures in architectures with limited shared memory sup-
port,” in European Conference on Parallel Processing. Springer, 2014,
pp. 189–200.

[30] S. Babu and J. Widom, “Continuous queries over data streams,” ACM
Sigmod Record, vol. 30, no. 3, pp. 109–120, 2001.

[31] M. Garofalakis, J. Gehrke, and R. Rastogi, Data Stream Management:
Processing High-Speed Data Streams. Springer, 2016.

[32] M. Datar, A. Gionis, P. Indyk, and R. Motwani, “Maintaining stream
statistics over sliding windows,” SIAM journal on computing, vol. 31, no. 6,
pp. 1794–1813, 2002.

[33] A. Arasu, B. Babcock, S. Babu, M. Datar, K. Ito, R. Motwani, I. Nishizawa,
U. Srivastava, D. Thomas, R. Varma et al., “Stream: The stanford stream
data manager,” IEEE Data Eng. Bull., vol. 26, no. 1, pp. 19–26, 2003.

[34] “Apache Storm,” http://storm.apache.org, 2019.

[35] P. Carbone, A. Katsifodimos, S. Ewen, V. Markl, S. Haridi, and
K. Tzoumas, “Apache flink: Stream and batch processing in a single
engine,” Bulletin of the IEEE Computer Society Technical Committee on
Data Engineering, vol. 36, no. 4, 2015.

[36] V. Gulisano, R. Jimenez-Peris, M. Patino-Martinez, C. Soriente, and
P. Valduriez, “Streamcloud: An elastic and scalable data streaming system,”
IEEE Transactions on Parallel and Distributed Systems, vol. 23, no. 12,
pp. 2351–2365, 2012.

[37] V. Gulisano, Y. Nikolakopoulos, M. Papatriantafilou, and P. Tsigas, “Data-
streaming and concurrent data-object co-design: Overview and algorithmic
challenges,” in Algorithms, Probability, Networks, and Games. Springer,
2015, pp. 242–260.

[38] I. Walulya, D. Palyvos-Giannas, Y. Nikolakopoulos, V. Gulisano, M. Pap-
atriantafilou, and P. Tsigas, “Viper: A module for communication-layer
determinism and scaling in low-latency stream processing,” Future Gener-
ation Computer Systems, vol. 88, pp. 297–308, 2018.

[39] V. Gulisano, Y. Nikolakopoulos, M. Papatriantafilou, and P. Tsigas, “Scale-
join: A deterministic, disjoint-parallel and skew-resilient stream join,”
IEEE Transactions on Big Data, 2016.

[40] D. Cederman, V. Gulisano, Y. Nikolakopoulos, M. Papatriantafilou, and
P. Tsigas, “Brief announcement: concurrent data structures for efficient
streaming aggregation,” in Proceedings of the 26th ACM symposium on
Parallelism in algorithms and architectures. ACM, 2014, pp. 76–78.

[41] M. Ester, H.-P. Kriegel, J. Sander, X. Xu et al., “A density-based algorithm
for discovering clusters in large spatial databases with noise.” in Kdd, 1996,
pp. 226–231.

http://storm.apache.org

BIBLIOGRAPHY 17

[42] J. A. Silva, E. R. Faria, R. C. Barros, E. R. Hruschka, A. C. De Carvalho,
and J. Gama, “Data stream clustering: A survey,” ACM Computing
Surveys (CSUR), vol. 46, no. 1, p. 13, 2013.

[43] R. B. Rusu, N. Blodow, Z. C. Marton, and M. Beetz, “Close-range scene
segmentation and reconstruction of 3d point cloud maps for mobile ma-
nipulation in domestic environments,” in Intelligent Robots and Systems,
2009. IROS 2009. IEEE/RSJ International Conference on. IEEE, 2009,
pp. 1–6.

[44] G. Cormode, M. Garofalakis, P. J. Haas, C. Jermaine et al., “Synopses for
massive data: Samples, histograms, wavelets, sketches,” Foundations and
Trends® in Databases, vol. 4, no. 1–3, pp. 1–294, 2011.

[45] B. Gedik, R. R. Bordawekar, and P. S. Yu, “Celljoin: a parallel stream join
operator for the cell processor,” The VLDB Journal—The International
Journal on Very Large Data Bases, vol. 18, no. 2, pp. 501–519, 2009.

[46] P. Roy, J. Teubner, and R. Gemulla, “Low-latency handshake join,” Pro-
ceedings of the VLDB Endowment, vol. 7, no. 9, pp. 709–720, 2014.

[47] C. Hochreiner, M. Vögler, S. Schulte, and S. Dustdar, “Elastic stream
processing for the internet of things,” in 2016 IEEE 9th International
Conference on Cloud Computing (CLOUD). IEEE, 2016, pp. 100–107.

[48] V. Cardellini, M. Nardelli, and D. Luzi, “Elastic stateful stream process-
ing in storm,” in 2016 International Conference on High Performance
Computing & Simulation (HPCS). IEEE, 2016, pp. 583–590.

[49] B. Gedik, “Partitioning functions for stateful data parallelism in stream
processing,” The VLDB Journal—The International Journal on Very
Large Data Bases, vol. 23, no. 4, pp. 517–539, 2014.

[50] P. B. Gibbons, “Big data: Scale down, scale up, scale out.” in IPDPS,
2015, p. 3.

[51] R. Duvignau, V. Gulisano, M. Papatriantafilou, and V. Savic, “Piecewise
linear approximation in data streaming: Algorithmic implementations and
experimental analysis,” arXiv preprint arXiv:1808.08877, 2018.

18 BIBLIOGRAPHY

