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Abstract
A stochastic model to study particle dispersion in a round jet configuration using the one-dimensional-
turbulence model (ODT) is evaluated. To address one of the major problems for multiphase flow simulations,
namely computational costs, the dimension-reduced model is used with the goal of predicting these flows more
efficiently. ODT is a stochastic model simulating turbulent flow evolution along a notional one-dimensional
line of sight by applying instantaneous maps which represent the effect of individual turbulent eddies on
property fields. As the impact of the particles on the carrier fluid phase is negligible for cases considered, a
one-way coupling approach is used, which means that the carrier-phase is affecting the particle dynamics but
not vice versa. The radial dispersion and axial velocity are compared with jet experimental data as a function
of axial position. For consistent representation of the spatially developing round jet, the spatial formulation
of ODT in cylindrical coordinates is used. The investigated jet configuration has a nozzle diameter of 7
mm and Reynolds numbers ranging from 10000 to 30000. The flow statistics of the ODT particle model
are compared with experimental measurements for two different particle diameters (60 and 90 µm), thereby
testing the Stokes number dependence predicted by ODT.
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Introduction

For a wide spectrum of disciplines turbulent
dispersed two-phase flows are of particular interest
with respect to understanding the physical funda-
mentals of these flows. Dispersed two-phase flows
are very difficult to investigate experimentally and
only a few advanced techniques to obtain spatially
resolved unsteady data exist today. CFD (compu-
tational fluid dynamics) is a very powerful tool with
which to investigate turbulent dispersed flows and
acquire detailed flow information. However, many
CFD approaches for turbulent dispersed flows rely
on many modeling assumptions and their predictive
capabilities are limited. Due to the extremely
high costs of direct numerical simulation (DNS)
studies of particle-laden flows, their application
so far is limited to academic cases and systems
with relatively low particle numbers. Large eddy
simulations (LES) incorporating a model to capture
the sub-grid-scale turbulence predict well the
unsteadiness of turbulence, but the accuracy of the
results is very dependent on several LES parameters
and the chosen subgrid-model.

In this study an alternative approach called one-
dimensional turbulence (ODT) is used. ODT is a
stochastic approach with reduced dimensionality to
resolve affordably the full range of length and time
scales as in a DNS. While molecular phenomena
like viscous dissipation evolve along that single di-
mension, the turbulent cascade is modeled through
stochastically sampled remappings of the velocity
profiles, called eddy events. Schmidt et al. [1, 2] and
Sun et al. [3] extended the ODT model to predict
particle laden flow in different configurations. These
formulations assume an instantaneous in time (re-
ferred to as Type-I) particle-eddy interaction and
showed promising results in homogeneous turbu-
lence and turbulent channel flow. One limitation
was the need to compare the temporal ODT out-
put data with spatial experimental results. Here the
work of [1, 2] and [3] is continued and extended by
using a spatial formulation of ODT in cylindrical co-
ordinates. The present study is based on the same
test case as in [3].

One-dimensional turbulence

One-dimensional turbulence was developed by
Kerstein [4] as a stochastic model that generates
unsteady solutions of turbulent flows on a one-
dimensional domain. This domain is usually ori-
ented in the direction of the largest expected ve-
locity gradients, e.g. in the lateral/radial direction
for simulating a turbulent dispersed jet configura-

tion. In a Lagrangian setting its basic elements
are the momentum balance for the three momen-
tum components omitting advection and pressure
forcing and a stochastic model for turbulent advec-
tion. This model is based on so-called eddy events
in which the velocity profiles are remapped. In the
present spatially advanced cylindrical formulation,
first mentioned in [5], the radially (r) oriented ODT
line plus the direction (z) of spatial advancement
can be interpreted in each realization as an instan-
taneous snapshot of a 2D cut through the 3D flow
field. The underlying flow in the Lagrangian frame
of reference is governed by the steady solution of
the momentum equation derived from the Reynolds
theorem. The unsteadiness is captured by a random
sequence of eddy events and so the model obeys the
conservation laws of statistically steady flows but
also reflects unsteadiness due to turbulence. Namely,
due to different spatial development in each realiza-
tion, a set of simulated realizations is the ODT ana-
log of a statistical ensemble of turbulent flow states.
This formulation for ODT was introduced in [4] and
discussed in more detail in [6].
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Figure 1: Illustrative sketch of mass flux balance
between spatial steps

governing equations

ODT evolution equations are obtained by con-
sidering the balances of mass and momentum flux
crossing cell boundaries within the axial interval z0
to z0 + ∆z; see Fig. 1. The balance equation for the
mass flux is

1

r

∂(rρur)

∂r
+
∂(ρuz)

∂z
= dρuz , (1)

where the cell velocities in the evolving and the
line direction are uz and ur, respectively. dρuz
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represents the changes during eddy events happen-
ing between z0 and z0 + ∆z due to mapping and
re-distributions of energy components. This value
is zero if there are no eddy event events within the
∆z interval, otherwise its value is determined by
the mapping process described below.

The control-volume balance equation for each
component of momentum flux is

∂(rρuiuz)

∂z
+
∂(rρuiur)

∂r
=

∂

∂r

(
rµ
∂ui
∂r

)
+ dρiuz

,

(2)
where µ is the dynamic viscosity and dρiuz rep-
resents, as in the mass flux balance, the sudden
changes during eddy events happening between z0
and z0 + ∆z, which are balanced as gains or losses
at the cell boundaries. Outside the eddy region they
are zero. For this study the density ρ is constant
and the pressure gradient is zero, so the pressure
term is omitted.

Eddy events

As mentioned above, turbulent advection is
modeled through eddy events re-mapping the veloc-
ity and all other property profiles over a sampled
eddy region r0 < r < r0 + l characterized by a posi-
tion r0 and a length scale l. Eddy location and size
are randomly sampled to mimic turbulent eddy oc-
currences in reality. Triplet mapping is used as the
mapping method in ODT, which means in a planar
coordinate system that each profile is compressed by
a factor of three and three copies of it fill the sampled
region. The second copy in the middle is inverted to
conserve the continuity of the profile (illustrated in
[4]). Instead of considering the eddy region as just
the length of the eddy, in a cylindrical system the
region is represented as the area above (seen in Fig.
2). The triplet map function f(r), which describes
the pre-triplet map fluid position as function of the
post-position, is given for the case r0 ≥ 0 as

f(r) = r0 +



√
3(r − r0)2 if r0 ≤ r ≤ r0 +

√
l2

3√
2l2 − 3(r − r0)2 if

√
l2

3
≤ r ≤

√
2l2

3√
3(r − r0)2 − 2l2 if

√
2l2

3
≤ r ≤ l

r − r0 otherwise.

(3)

For the case r0 < 0 the algebraic signs have to be
adjusted in consideration of the possibilities r0 + l
is greater or smaller zero. For re-distributing en-
ergy among the velocity components kernel trans-
formations are introduced, which add or subtract
energy from velocity profiles. The reason for the re-
distribution is the return-to-isotropy phenomenon of
turbulent flows going from larger to smaller scales.

As a result, the eddy region is mapped as

ui(r)→ ui(f(r)) + ciK(r). (4)

The kernel K(r) is defined as the fluid dis-
placement profile under a triplet map and obeys∫ r0+l
r0

K(r)r dr = 0. ci is the kernel coefficient and
defines the kernel amplitude. Due to its measure
preserving property all integral properties and mo-
ments remain constant during a triplet map. Of par-
ticular interest is the conserved kinetic energy. It is
used to determine the eddy timescale τe(l, r0), which
is the last eddy parameter after position and length
to define an eddy event. Scaling arguments are used
to relate a measure Ekin of the available kinetic en-
ergy within the sampled eddy to the eddy timescale,

Ekin ∼ ρl3

2τ2 . This motivates

1

τe
= C

√
2

ρl3
(Ekin − ZEvp). (5)

The viscous penalty energy is given as Evp = µ2

2ρl .
C is the adjustable eddy rate parameter and scales
the overall eddy event frequency. Z is the viscous
penalty parameter, which controls the suppression
of unphysically small eddies. The same is done for
large eddies using the elapsed time method, in which
the eddy time can be compared with the simulation
elapsed time t. Eddy events are only allowed when
t ≥ βτe, where β is another model parameter.

We assume that the occurrence of eddies with
given r0 and l follows a Poisson process in time with
a rate determined by the eddy timescale provided
in (5). Technically this is implemented by oversam-
pling, i.e. generation of candidate eddies at a much
higher rate than needed, and thinning of the Poisson
process with an acceptance-rejection method. For
details we refer to [7].

Lagrangian particle model

Due to the very small ratio of particle mass
to fluid mass in cases considered here, a one-way
coupling between particle and gas phase is assumed,
which means the particle phase has no influence
on the fluid phase. Similar to the ODT structure,
the particle model is separated into two parts. The
first one is the particle advancement due to the
underlying flow field and the second is governed by
so-called particle-eddy interactions (PEI).

The gas velocity of the underlying flow field af-
fects particle motion according to the particle drag
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law, which is given as

dup,i
dt

= −up,i − ug,i
τp

f + gi,

drp
dt

= up,r.

(6)

Here, the subscript p and g represent the particle
and gas phase, respectively. gi is the i-th compo-
nent of the gravity acceleration vector. The particle

response time, τp =
ρpd

2
p

18µ based on Stokes flow, is
given in terms of the diameter dp and density ρp of
the particle and the fluid viscosity µ. Clift et al.[8]
suggested a non-linear correction factor f for a parti-

cle slip-velocity Reynolds number, Re =
ρg|~up−~ug|dp

µ ,
smaller than 200, which holds for the present cases
as well as many practical dilute flow systems. The
factor f is defined as

f = 1 + 0.15Re0.687p . (7)

For the PEI model used here and described in the
following section, the PEI is the only effect of the
gas phase on the particle phase for the ODT line-
directed motion and so it is defined that the gas
velocity in this direction for the drag law (6) is zero.
The drag law (Eq. 6) is solved by a first-order Euler
method. As the ODT line evolves in spatial coor-
dinate (∆z), the temporal step ∆t should be trans-
formed. Therefore, a constant particle velocity over
∆z is assumed, which yields

∆t =
∆z

up,z
. (8)

Particle-eddy interaction model

Schmidt et al. [1, 2] developed multiple PEI
models for different applications. In this study the
instantaneous (type-I) PEI model is implemented.
The model is applied to a particle if it is located
in the sampled eddy region. For solution of the
particle’s equations of motion (6) during an eddy
event we need to define an eddy gas phase velocity
ug,i and a particle interaction time τPEI which
defines the time interval for the integration in time
of (6).

In the instantaneous PEI model the gas phase
velocity ug,r is determined using the concept of a
mass-less tracer particle following the flow instan-
taneously, i.e. the location of a tracer particle af-
ter the particle-eddy interaction is determined by
the triplet-map (3) only. As illustrated in Fig. 2,
the triplet map provides three different post-map
particle locations, so a unique position is sampled

randomly from those three positions. The resulting
particle displacement ∆RTM is then used with the
eddy time τe in (5) to define the gas phase velocity
in direction of the ODT line as ug,r = ∆RTM/τe.
The other two velocity components are taken from
the gas phase velocity at the original location of the
particle. The particle interaction time τPEI is de-
fined as the earliest time when the particle leaves
the eddy space-time box [l× l×βpτe]. βp is a model
parameter, which defines the interaction time length
of particle and eddy. To find the interaction time,
Stokes law is modified and analytically solved to find
the earliest time when the particle leaves the space-
time eddy box. The initial position of the particle
in the lateral direction is assumed to be the lateral
mid-point.
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Figure 2: Illustration of particle displacement by a
cylindrical triplet map

Test case

experiments

The aim of this study is to validate the nu-
merical model extension with the measurements of
Kennedy and Moody [9]. They studied turbulent
dispersion of particles in shear-dominated flows and
span a range of Reynolds and Stokes numbers by
varying the jet velocity, nozzle diameter and parti-
cle diameter. In this work we vary the jet velocity
for Reynolds number of 10000, 20000 and 30000 and
investigate the particle diameters 60 and 90 µm. The
hexadecane droplets have a density of ρp = 770 kg

m3

and have a tolerance of their diameter of 2 µm. The
experiments were performed at standard room tem-
perature and pressure, thus the particles are non-
vaporizing. In the streamwise direction a nonzero
gravity effect must be considered. Table 1 shows
the initial conditions of the particle and gas phases
for each test case. The initial jet velocities are based
on the Reynolds numbers with a jet exit diameter of
7 mm.
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Re=105 Re=2 · 105 Re=3 · 105

ug,z0 21.5 m/s 43 m/s 64.5 m/s
up,z0(60µm) 17.5 m/s 30 m/s 46 m/s
St(60µm) 26 53 77

up,z0(90µm) 15 m/s 32 m/s 51.5 m/s
St(90µm) 61 122 178

Table 1: Initial conditions of the particle and gas
phases

simulation setup

As the initial jet profile on the ODT domain the
following function is used

ug,z(r) =
ug,z0

2

[(
1 + tanh

(r − L1

ωl

))
×
(

1− 1

2

(
1 + tanh(

r − L2

ωl
)
))]

.

(9)

L1 and L2 are the middle positions of the transitions
and ωl is the transition boundary layer width.
This study uses 512 ODT realizations, which Sun
et al.[3] reported as sufficient to capture stationary
statistics.

Results

gas phase

For the assessment of the gas-solid particle
interaction, the first step is to achieve reasonable
agreement of the gaseous flow between experiments
and ODT simulations. A viscous penalty param-
eter Z = 400 with an eddy frequency parameter
C = 12 resulted in overall agreement which is
shown in Fig. 3a and 3b for axial mean veloc-
ity and the turbulence intensity along the centerline.

The axial positions z, mean axial velocities
uc,z and turbulent intensities are normalized by
the jet exit diameter D, the jet exit velocity ug,z0
and the axial mean velocity uc,z, respectively. The
graphs of the axial mean velocities at the centerline
show a similar behavior as the experimental data
for different Reynolds numbers. However, they
are slightly overpredicted near the jet exit, where
the experimental jet velocity gradients are greater.
The reason could be an under-predicted turbulent
intensity at this point, which would enforce diffu-
sion and accelerates the velocity decay. Fig. 3b
shows more significant differences for the turbulent
intensities for the ODT simulations with respect to
the Reynolds numbers than the experiments.
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(b) Mean turbulent intensity on centerline

Figure 3: Properties of jet configuration compared
with experimental data

particle phase

In this study a particle-eddy interaction pa-
rameter βp = 0.008 is used for the entire simulation
time based on a previous parameter study, which
is not discussed in this work. Presented in Figs. 4
and 5 are the results for the dispersion (a) and axial
velocities (b) of the particles, respectively. The
position in the streamwise direction is normalized
by the jet exit diameter D.

As seen in Fig. 4a, the results of a particle with
a diameter of 60 µm agree very well with the experi-
mental data. Both show that the particle dispersion
is increasing with decreasing Reynolds number. For
a particle diameter of 90 µm the results agree well
for Re = 10000 and 20000, but the derivations be-
tween simulation and experimental results increases
with increasing Stokes number. Both experiments
and simulations show a decreasing dispersion with
an increasing diameter at fixed Reynolds number
corresponding to an increasing Stokes number. This
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Figure 4: Mean radial dispersion of particles

behavior is expected due to the increasing particle
response time.

The results for particle axial velocity in Fig. 5
show a continuous decay over their trajectory with
a small peak at the beginning, where the particle
accelerates to the fluid phase velocity. The small
derivations of the velocities between experiments
and simulations seem to be similar to the ones
in the fluid phase and are very likely a result of
them. However, the results for the axial velocity
decay show that the model is capable to capture
the experimental behavior of the particle phase rea-
sonably well, both qualitatively and quantitatively.

Conclusion

The aim of this study was to develop an exten-
sion of an existing ODT model for dispersed gas-
solid flow [3] by introducing spatial advancement in
cylindrical coordinates for turbulent jet configura-
tions. Modifications were made in the deterministic
advancement of the particle phase and the particle-
eddy interaction model. The formulation in cylindri-
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Figure 5: Mean axial velocity of particles

cal coordinates required a modification of the triplet
map and the particle displacement during a parti-
cle eddy interaction. The presented results show
good agreement with the experimental data, repro-
ducing the results of Sun et al. [3] without needing to
transform the temporal coordinate. This is the first
step of extending the ODT model for dispersed gas-
solid flow using a spatial formulation. In a second
step we will perform a two-way coupling between
solid particles and gas phase. The future focus is to
get a better understanding of the underlying physics
of particle/droplet-turbulence interaction, e.g. tur-
bulence modulation by the dispersed phase. Here,
ODT can contribute by simulating cases in param-
eter ranges which are not accessible using conven-
tional simulation methods such as DNS or high res-
olution LES.
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Nomenclature

m mass
r radial coordinate
ui i-th velocity component
z axial coordinate
ρ density

Subscripts
0 initial
e eddy
g gas-phase
p particle-phase
PEI particle-eddy interaction
TM triplet map
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