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a b s t r a c t 

Cavitating multi-phase flows include an extensive range of cavity structures with different length scales, 

from micro bubbles to large sheet cavities that may fully cover the surface of a device. To avoid high 

computational expenses, incompressible transport equation models are considered a practical option for 

simulation of large scale cavitating flows, normally with limited representation of the small scale vapour 

structures. To improve the resolution of all scales of cavity structures in these models at a moderate 

additional computational cost, a possible approach is to develop a hybrid Eulerian mixture -Lagrangian 

bubble solver in which the larger cavities are considered in the Eulerian framework and the small (sub- 

grid) structures are tracked as Lagrangian bubbles. A critical step in developing such hybrid models is 

the correct transition of the cavity structures from the Eulerian mixture to a Lagrangian discrete bub- 

ble framework. In this paper, such a multi-scale model for numerical simulation of cavitating flows is 

described and some encountered numerical issues for Eulerian–Lagrangian transition are presented. To 

address these issues, a new improved formulation is developed, and simulation results are presented 

that show the issues are overcome in the new model. 

© 2018 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY-NC-ND license. 
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. Introduction 

Cavitation is a common phenomenon in industrial hydraulic

ystems, such as marine propulsion systems and fuel injectors. It

s in many cases an undesirable and unavoidable occurrence. One

ssue is material loss and degradation due to cavitation erosion,

hich is believed to be the result of violent and very fast col-

apses of the generated vapour micro-bubbles. Moreover, cavitation

s often accompanied by issues of noise, vibrations, load variations

nd loss of efficiency in hydraulic devices such as propellers and

umps. Multiphase cavitating flows contain an extensive range of

avity structures with different length scales. A sheet cavity that

ully or partially cover the suction side of a hydrofoil may break

p into smaller cloud cavities and micro bubbles which are fur-

her transported into regions of higher pressure, where collapse-

ike condensation results in the formation of liquid jets and pres-

ure shocks. Due to the mentioned significance and complexity of

he flow field, understanding and controlling cavitation has been a

ajor challenge in engineering in recent decades. 
∗ Corresponding author. 
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Computational Fluid Dynamics (CFD) simulation, as a supple-

ent or alternative to experimental measurements, can give a

ore comprehensive understanding of the hydrodynamics of cav-

tation erosion. Various numerical methods are being used by dif-

erent researchers today and most of them can be categorized into

wo general approaches. The first approach is based on the mixture

quation of state, assuming thermodynamic equilibrium (e.g. [1,2] ).

his approach requires very small time steps since it considers

ompressible liquid and vapour phases and it limits the applica-

ions of the model [3] . Therefore, even if there are suitable models

hat can adequately estimate the behaviour of vapour structures,

heir application in industrial problems (e.g. marine propellers) is

imited, as they require substantial computational resources and

ong simulation times. 

The second approach is based on a transport equation for

apour or liquid fraction, incorporating models for vapourization

nd condensation. Various numerical models are included in

his general classification which may be further categorized into

ifferent groups, e.g. compressible or incompressible approaches.

lso, the transport equation may be developed in both Eulerian

nd Lagrangian viewpoints to track the vapour structures and

heir interactions with the liquid phase. In the Eulerian models

e.g. [4–8] ), the multiphase flow is usually treated as a single
nder the CC BY-NC-ND license. ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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fluid mixture and mass transfer between the phases is defined by

explicit source terms. This method performs rather well in regions

with moderate flow changes but in zones of strong, vortical flow,

they cannot capture cavity transport accurately. A major reason

is that, typically, these models utilise an asymptotic form of

the well-known Rayleigh–Plesset equation of bubble dynamics

[9] . Another limitation of this model (as well as other Eulerian

approaches) is that vapour structures smaller than the grid size,

such as cavitation nuclei and bubbles, or sparse clouds of bubbles,

cannot be handled very well. 

The Lagrangian models (e.g. [10] ), on the other hand, enable

more detailed formulations for transport, dynamics, and acoustics

of discrete vapour bubbles. As this group of models are developed

based on a more accurate form of the Rayleigh–Plesset equation,

they can have a more precise estimation of the dynamics of cav-

itating flows with large values of vorticity and pressure gradients.

While the bubble sizes in this viewpoint can be much smaller than

the grid size, these models are computationally expensive when

the number of bubbles is large. Further, this approach is limited in

representation of large or non-spherical vapour structures. 

Considering the above mentioned capabilities and limitations of

the Eulerian and Lagrangian formulations, a solution can be to de-

velop a hybrid model that is capable in both resolving the large

vapour structures through a mixture approach, and capturing the

small-scale structures as discrete bubbles (e.g. [11] ). In this pa-

per, such a hybrid mixture-bubble model is implemented in Open-

FOAM. In this model, the large vapour structures are handled using

the Eulerian single fluid mixture method and the small scale spher-

ical bubbles are tracked in the Lagrangian framework. This model

is similar to the work of Vallier [12] , in turn inspired by the study

of Tomar et al. [13] . However, new development presented in this

study includes improvements in some features including the con-

tinuity and volume fraction equations as well as the calculation of

mixture properties. This is a multi-scale model to simulate cavitat-

ing flows with different length scales. 

In general, in multi-phase flows, using multi-scale simulation

models is a popular approach and numerous studies can be found

in literature. For example, Tomiyama and Shimada [14] proposed a

(N+2)-field modeling approach which can deal with two contin-

uous phase fields and N dispersed gas phase fields. Also, Černe

et al. [15] and Štrubelj and Tiselj [16] developed another model

by coupling of an interface capturing Volume of Fluid (VOF) based

method with the two-fluid model, so that in parts of the domain

where the flow was too dispersed to be described by the inter-

face capturing algorithms, the two-fluid model was used. How-

ever, as explained before, Eulerian approaches are limited in cap-

turing small bubble dynamics with reasonable computational ex-

pense and most of the developed multi-scale models in literature

are Eulerian–Eulerian solvers. The concept of multi-scale hybrid

Eulerian–Lagrangian solvers is a more recent approach to simu-

late multiphase flows in large scale applications for which effec-

tive small scale details need to be represented sufficiently well.

This methodology has gained more popularity in recent years for

simulation of atomizing gas-liquid flows [17] . The works of Kim

et al. [18] , Herrmann [19] and Tomar et al. [13] are the pioneer-

ing effort s to couple the Lagrangian Particle Tracking (LPT) with

interface capturing schemes, such as Level Set [19] and VOF [13] .

Also, Ling et al. [20] developed a hybrid model with more empha-

sis on the correction of momentum equation source terms due to

the Eulerian–Lagrangian coupling in order to accurately compute

the dynamics of the Lagrangian droplets that are larger than the

grid spacing. In that study, the Eulerian structures are directly con-

verted to one Lagrangian droplet with equal volume (similar to

Tomar et al. [13] ), but only a special zone of the flow domain is

subjected to this conversion and thin ligaments and sheets are ex-

empted from this treatment. In addition to the direct transition
rom Eulerian to Lagrangian structures, there are statistical algo-

ithms (e.g. [21] ) in which the transfer of mass from Eulerian to

agrangian framework is done via a statistical model, tuned to the

pstream predictions of the Eulerian model. This method reduces

he computational time in comparison to the previous method, but

ome of the information (positions, mass, momentum) may not

e preserved during the transition. Also, Ström et al. [22] used

 switching zone with a statistical method which is designed to

nsure that the Lagrangian parcels exit the zone with the correct

tatistics. The advantage of this approach was that the computa-

ionally demanding resolution of the liquid primary atomization

rocess could be avoided altogether. 

The mentioned Eulerian–Lagrangian hybrid models have been

eveloped for atomizing gas-liquid flows. However, this approach

an be utilized for cavitating flows as well. For example, Hsiao

t al. [23] and Ma et al. [24] have developed a model with cou-

ling of a Lagrangian Discrete Singularities Model and an Eule-

ian level set approach. In these studies, the Eulerian cavities are

irectly transformed to Lagrangian bubbles, but the bubble vol-

me is spread smoothly over neighbouring cells within a selected

adial distance. There are important distinctions between cavitat-

ng flow and atomizing flow applications which should be consid-

red in model developments. In the mentioned hybrid models for

tomizing flows (except [22] ), it has been assumed that the La-

rangian particles do not occupy any volume in the Eulerian de-

cription which is valid when the Lagrangian formulation is used

nly in the dilute regions of a flow. Also, the resulting model will

e useful in situations where continuous phase density is very low

n comparison to the dispersed phase density [22] , such as liquid

pray applications. However, in cavitating flows we encounter the

pposite case since the continuous phase density (water) is much

arger than the (vapour) bubble density and such an assumption

s not valid. Besides that, in liquid atomizers, the dilute dispersed

ow and the continuous two-phase flows are present in separate

egions of the domain as the dispersed droplets are the result of

he break-up of the two-phase structures in the downstream; this

akes the numerical implementation of the transition algorithm

ore convenient. In contrast, in cavitating flows, at each point of

he two-phase regime both small bubbles as well as large Eule-

ian cavities can be present. Another significant difference between

he two applications is that in atomized liquids, for direct transi-

ion, each liquid fragment is usually converted into one Lagrangian

roplet with equal volume, while in cavitating flows, each Eule-

ian structure is actually a cloud of bubbles or a bubbly mixture

nd its properties (e.g. density) are not equal to the pure vapour

dispersed phase) properties. Therefore, the cavity might be re-

laced by a group of smaller bubbles (instead of one larger bubble)

n such a way that the properties of the combined bubble group

re equal to the corresponding values of the old Eulerian cavity.

apour condensation / liquid vapourization is a mass transfer pro-

ess which only happens in cavitating flows, adding the need for

odelling mass transfer in the governing equations. As stated be-

ore, a key factor in developing such solvers is the correct and

mooth transition between Lagrangian and Eulerian structures and

t is more important in cavitating flow simulations. When an Eu-

erian mixture structure is transformed to a Lagrangian bubble or

ice versa, since the related transport equation to track the struc-

ure is modified, a wrong transition process may cause drastic non-

ontinuous changes and spurious pressure pulses in the domain. 

In the current paper, the coupling of the Lagrangian library

ith a mixture-based Eulerian solver is described in some detail,

ith focus on the correct definition of the transition process and

he improved Eulerian governing equations. In this solver the con-

ensation / vapourization source terms are considered in the gov-

rning equations and there is no need to distribute bubble vol-

me over the neighbouring cells. The new model is developed in
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he open source C ++ package OpenFOAM by improving the inter-

haseChangeFOAM solver and coupling it with a Lagrangian library,

eveloped based on the available Lagrangian models in OpenFOAM

25] . 

In the following sections, the general Eulerian mixture model,

he Lagrangian bubble model, and their coupling are described

rst. Then the main issue in the transition process is explained

nd the proposed formulation to overcome this issue is developed.

inally a qualitative and quantitative validation of the improved

odel performance is presented. 

. Method 

.1. Eulerian mixture model 

In this model, the vapour and liquid phases are treated as a sin-

le mixture fluid fully in an Eulerian framework, where the conti-

uity equation and one set of momentum equations for the mix-

ure are solved. We here consider an incompressible flow model,

otivated by the balance of computational cost and model accu-

acy for the intended applications as described above, but a similar

ramework can be developed for compressible flows. 

The continuity equation is then given by 

∂u i 

∂x i 
= 

(
1 

ρl 

− 1 

ρv 

)
˙ m . (1) 

he RHS term is the effect of vapourization and condensation,

here ˙ m is the rate of mass transfer between phases, ρ l is the

iquid density and ρv is the vapour density. Further, the Navier–

tokes equations are 

∂(ρm 

u i ) 

∂t 
+ 

∂ 
(
ρm 

u i u j 

)
∂x j 

= 

∂τi j 

∂x j 
+ ρm 

g i . (2)

ere, ρm 

and τ ij are the mixture density and the stress tensor, re-

pectively, which are defined as 

m 

= αρl + (1 − α) ρv , (3) 

i j = −pδi j + μm 

(
∂u i 

∂x j 
+ 

∂u j 

∂x i 
− 2 

3 

∂u k 

∂x k 
δi j 

)
, (4) 

here μm 

is the mixture dynamic viscosity, given by 

m 

= αμl + (1 − α) μv , (5)

nd α is the liquid volume fraction which specifies the relative

mount of liquid in a given volume, e.g. a computational cell. In

he Eulerian approach, the evolution of the volume fraction is cal-

ulated by solving a scalar transport equation given as 

∂α

∂t 
+ 

∂ ( αu i ) 

∂x i 
= 

˙ m 

ρl 

. (6) 

o close the above set of equations the mass transfer rate, ˙ m ,

hould be determined. There are many numerical models in litera-

ure to estimate this term and most of them are based on a sim-

lified form of the well-known Rayleigh–Plesset equation. In this

tudy, the Schnerr–Sauer model [26] is used, but the methodology

or the hybrid solver does not rely on this particular choice of mass

ransfer model. The vapourization and condensation rates are then

iven by 

˙ m c = C c α(1 − α) 
3 ρl ρv 

ρm 

R B 

√ 

2 

3 ρl | p − p threshold | max (p − p threshold , 0) , 

˙ 
 v = C v α(1 + αNuc − α) 

× 3 ρl ρv 

ρm 

R B 

√ 

2 

3 ρl | p − p threshold | min (p − p threshold , 0) , (7)
here ˙ m c and ˙ m v are the rates of condensation and vapourization,

espectively, and ̇ m = ˙ m c + ˙ m v . In the above equations, R B and αNuc 

re user defined model parameters corresponding to generic radius

nd volume fraction of bubble nuclei in the liquid. Also, p threshold 

s a threshold pressure at which the phase change is assumed to

appen, usually considered as the vapour pressure of the fluid. 

One feature of this Eulerian approach is that it treats the struc-

ures that are smaller than the grid size as a homogeneous mix-

ure, therefore sparse vapour clouds or sub-grid inhomogeneity in

avitation clouds are not well treated. An extremely high mesh

esolution is required to resolve small individual cavitation bub-

les. Besides that, during the last steps of the cavity collapse and

arly stages of its rebound, the cavity size changes very rapidly and

ince the Eulerian approaches are based on a simplified form of the

ayleigh–Plesset equation, they cannot give an accurate estimation

f the cavity inertia. Thus, as a solution, a combination of the Eu-

erian mixture formulation, for the macroscopic development, with

 Lagrangian model, to account for evolution of small scale struc-

ures, may be developed, aiming for a more realistic estimation of

he whole range of cavity sizes. 

.2. Discrete bubble model 

In this model, the cavities are treated as discrete (possibly

arcels of) Lagrangian bubbles transported in an ambient Eule-

ian continuous flow. At each time step, the Eulerian equations are

olved first and then the bubbles are tracked by solving a set of

rdinary differential equations along the bubbles trajectories, given

y 

dx b,i 

dt 
= u b,i , 

 b 

du b,i 

dt 
= F d + F l + F a + F p + F b + F g . (8) 

he RHS of the second equation includes various forces that are

xerted on the bubbles which are, from left to right, sphere drag

orce [27] , Saffman–Mei lift force [28] , added mass, pressure gra-

ient force, buoyancy force, and gravity; the latter terms are nat-

rally expressed through the model formulation. These forces typ-

cally depend on the bubble size. Explicit inclusion of all relative

orces is another advantage of the Lagrangian model which gives

he opportunity to consider different flow effects on cavity be-

aviour. 

The variation of bubble size is calculated by solving the

ayleigh–Plesset equation (see [29,30] ), 

 (t) ̈R (t) + 

3 

2 

˙ R 

2 (t) = 

p B − p 

ρm 

− 4 νm 

˙ R (t) 

R (t) 
− 2 σst 

ρm 

R (t) 
, (9)

here R is the bubble radius, p B is the bubble inside pressure, p

s the fluid pressure, and σ st is the surface tension. In this study,

he time-step adaptive second-order Rosenbrock method is imple-

ented to solve the Rayleigh–Plesset equation numerically (see

.g. [31] for a description of this approach). Most of the popu-

ar Eulerian explicit mass transfer models, including the Schnerr–

auer model described above, are derived based on an asymptotic

orm this equation in which the first term on the left hand side is

gnored for simplicity. As stated before, such a simplification may

ffect the cavity inertia at the last steps of the collapse or early

tages of its rebound. 

An important issue in the tracking of Lagrangian bubbles that

hould be considered, is the relative sizes of bubbles and grid cells.

ometimes (e.g. when a new bubble is injected) a bubble may be

arger and occupy a number of cells. In OpenFOAM, when a bubble

pproaches a wall, the wall boundary condition is applied correctly

nly if the bubble size is smaller than the wall cell height. There-

ore, to have a correct prediction of wall boundary condition for
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Fig. 1. Transition of small cavities to Lagrangian bubbles. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this 

article.) 
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bubbles, a second coarser grid, should be used for bubble tracking

as the aspect ratio of wall cells increases in a viscous flow simula-

tion. Therefore, at each time step the continuous flow field equa-

tions are solved in the main grid and then the obtained Eulerian

values are transformed to the coarser grid to track the bubbles.

Note that this is a limitation in the current formulation in Open-

FOAM, and not necessarily a general issue with a Lagrangian bub-

ble model. 

Since the dispersed phase (Lagrangian bubbles) in the cavitat-

ing flow is locally dense, and have properties quite different from

liquid properties, the bubbles have considerable effect on the am-

bient flow field, similar to Eulerian cavities. Thus the Eulerian–

Lagrangian computations should be based on four-way coupling.

In other words, both the bubble-bubble and bubble-flow inter-

actions should be considered. In the current methodology, the

bubble-bubble interaction is considered through implementation of

bubble-bubble collision; after a collision, a pair of bubbles may co-

alesce to form a larger bubble or they may bounce back from each

other and this is specified based on the bubbles relative velocity

and the interaction time. The bubble-flow interaction can be im-

plemented in the Eulerian equations in different ways that in large

define the characteristics of the hybrid model. This is further ex-

panded in the following sections. 

2.3. The multi-scale hybrid solver 

In the multi-scale solver, the cavities are categorized as Eule-

rian structures and Lagrangian bubbles. At each time step, small

Eulerian cavity structures (normally representing a cluster of bub-

bles) that are not resolved by sufficient number of computational

cells, are transformed to Lagrangian bubbles. Thus, the correspond-

ing Eulerian liquid volume fraction of the respective cells ( α) needs

to be set equal to 1. This transition is shown schematically in Fig. 1

for a simple grid. The grid cells that have Eulerian cavities are

coloured blue with α < 1. Two of the cavities are resolved only by

four cells and they are replaced by Lagrangian bubbles. Also, if a

bubble later becomes large enough or it hits an Eulerian cavity, it

is transformed back to a Eulerian structure by deleting the bubble

and setting a corresponding new α value in the occupied cells. 

In the common straight-forward manner, when an Eulerian

vapour structure is replaced by a bubble, the liquid volume fraction

values ( α) in the respective cells is set to 1; see e.g. [12] . This sud-

den change will cause a jump in the values of the mixture prop-

erties, ρm 

and μm 

, based on the Eqs. (3) and (5) . Since there is a

significant difference between the values of the liquid and vapour

properties, this jump is considerable. Besides that, the mass trans-

fer rate, ˙ m , experiences a sudden change after removing an Eule-

rian vapour structure Eq. (7) . Such significant changes in the flow

properties and the continuity equation source term can cause spu-

rious numerical pressure pulses which may have significant unre-
listic effects on the flow field. For example, these pulses can de-

rease the local pressure in the cavitating region which leads to

eneration of new vapour structures. Also, spurious pressure pulses

ave negative effect on the noise prediction and erosion estimation

f the flow. 

Therefore the Eulerian governing equations should be modified

o both avoid the spurious pressure pulse problem and while still

onsider the bubble effect on the continuous flow. 

.4. The realizable hybrid mixture-bubble model 

To avoid the issue described above, the coupling between the

ubbles and the Eulerian mixture flow needs to be reconsidered.

here are two methods to implement the bubble effect on the Eu-

erian flow field. One approach is to consider the bubbles as a sep-

rate phase by defining a new void fraction for them and apply

he bubble effect through correct implementation of this parame-

er in the Eulerian equations ( Eqs. (1) , (2) and (6) ). Also, the bub-

le reacting force should be applied directly as a source term in

he Navier–Stokes equation. This approach is used by, e.g., Ström

t al. [22] . A simpler approach is to implement the bubble effect

y modifying the volume fraction contribution in the calculation

f mixture properties and phase change rate ( Eqs. (3) , (5) and (7) ).

n this latter approach, the mixture properties and phase change

ate are affected not only by the Eulerian vapour cavities, but also

y the Lagrangian bubbles volume fraction in the domain. In other

ords, the mixture approach is the same as before, but now some

f the vapour structures are tracked by solving the Eulerian trans-

ort equation and some of them are treated as discrete Lagrangian

ubbles. Then the vapour volume fraction is obtained from the dis-

ribution of both of the Eulerian cavities and Lagrangian bubbles. It

s important to note that the Lagrangian bubbles do not constitute

 second phase, but they contribute as vapour structures in the

ixture fluid; therefore, there is no inter-phase momentum trans-

er term to be considered in the Navier–Stokes equations. Due to

ts simplicity, the later approach is used in this study. Hsiao et al.

23] used the same method to calculate new mixture properties. 

In order to avoid spurious pressure pulse problems and create

 smooth and physically reasonable transition, three improvements

ave been developed: the joint representation of the phases in the

ixture framework; a careful introduction of bubbles in relation to

ell size and mixture distribution; and attention to mass transfer

n presence of discrete bubbles. Starting with the first item, mix-

ure properties and phase change rate should be defined based on

 new term which is similar to α but that does not change during

ulerian–Lagrangian transition. In each bubbly cell, the cell volume

s occupied by both fluid and bubbles. The fluid contribution in

he cell is defined by a new parameter which is called β; simi-

arly the bubble volume fraction in the cell is 1 − β . It is obvious

hat in cells containing bubbles, β is less 1, while it is equal to
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Fig. 2. Improved transition; the numbers show the α value is the left image and the β value in the right image .(For interpretation of the references to colour in this figure 

legend, the reader is referred to the web version of this article.) 
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 everywhere else. During the Eulerian to Lagrangian transition,

 vapour structure which occupies ( 1 − α) fraction of the hosting

ells is replaced by a bubble which occupies ( 1 − β) fraction of the

ame cells. Therefore the new value of β in the host cells is the

ame as the old value of α. Also, the new value of α is 1 which is

xactly the same as the old value of β since there were no bub-

les in the host cells before the transition. In other words, both

and β have similar sudden changes, however their product αβ
oes not change during the Eulerian–Lagrangian transition. In the

ubble cells, where α = 1 , αβ has the same value as β and every-

here else it is equal to α. Consequently, this parameter is suitable

o replace α in the definition of mixture properties and calculation

f phase change rate, ˙ m . Therefore, the mixture properties formula

an be modified as 

ρm 

= αβρl + (1 − αβ) ρv , 

m 

= αβμl + (1 − αβ) μv . 
(10) 

urther, the phase change rate formula is modified as 

˙ m c = C c αβ(1 − αβ) 

× 3 ρl ρv 

ρm 

R B 

√ 

2 

3 ρl | p − p threshold | max (p − p threshold , 0) , 

˙ 
 v = C v αβ(1 + αNuc − αβ) 

× 3 ρl ρv 

ρm 

R B 

√ 

2 

3 ρl | p − p threshold | min (p − p threshold , 0) . (11) 

sing the above equation avoids drastic changes in the mixture

ow representation and large spurious pressure pulses in the flow.

Continuing with the second correction needed in the multi-

cale solver we note that during transition, in each cell of the host

ells group, the new value of β should be exactly equal to the old

alue of α to keep the αβ parameter conserved. In other words,

he bubble contribution in each cell should be equal to the con-

ribution of the corresponding Eulerian cavity. However, while the

ummation of cavity contribution (old α) is the same as the sum-

ation of bubble contribution (new β), their individual contribu-

ion in each single cell is not equal since they have different ge-

metrical shapes ( Fig. 1 ). As a solution, instead of injecting one

arge bubble, the vapour structure should be replaced by a group

f small bubbles which do not occupy more than one cell; this is

lso consistent with the notion of subgrid scale modelling. The size

f new bubbles in each cell are determined based on the old value

f α such that the value of αβ is conserved in that cell. The im-

roved transition approach is shown schematically in Fig. 2 . The

lue cells include Eulerian cavities and the red ones are occupied

y Lagrangian bubbles. In the white cells both α and β are equal

o 1. Also, instead of large bubbles, several smaller bubbles are in-

ected, as compared to Fig. 1 . This leads to an increase in compu-
ational cost, as more bubbles are introduced, but gives a signifi-

antly improved representation of the smaller vapour structures. It

s important to note that the vapour volume fraction of the small

ulerian cavities are less than one, which means that the cavity

s not pure vapour. In other words, during mixture-bubble tran-

ition we are dealing with a small cloud of many bubbles (dis-

ributed in the surrounding liquid) and not a single bubble full of

ure vapour. From the Eulerian mixture it is not possible to obtain

he distribution of bubble diameters and positions in this small

loud. However, it is interesting to know that the bubble distribu-

ion and sizes do not considerably change the collapse rate of the

otal cloud from an Eulerian point of view, as inferred from the

orks of Schmidt et al. [3,32] . In these studies, a group of bub-

les with random distribution in position and size were simulated

oth as individual bubbles as well as an equivalent cloud and the

esults show that both simulations lead to quite similar collapse

rofile. Therefore, replacing the cavity with more smaller bubbles

ather than one single large bubble, not only solve the numerical

ressure pulse issue, but also makes the transition more aligned

ith real physics. The small bubbles can have different distribu-

ions in size and position, however, to decrease the computational

xpenses it is suggested to keep the number of bubbles as low as

ossible, therefore only one or two bubbles are injected in each

ell as in Fig. 2 . 

Avoiding vapour generation in the bubbly cells is one further

mprovement needed in the solver. In each computational cell that

ontains vapour, the cavity structure should be tracked either by

he Eulerian transport equation or the Lagrangian bubble tracking

lgorithm. In other words, there cannot exist an Eulerian cavity in

 cell that is occupied by a Lagrangian bubble, and vice versa. To

void compromising this situation, the mass transfer source term

n the volume fraction equation should be omitted in the bubbly

ells. Thus, Eq. (6) should be rewritten as 

∂α

∂t 
+ 

∂ ( αu i ) 

∂x i 
= 

˙ m 

ρl 

∗ pos (β − 1) . (12) 

hen there is a bubble in a cell, β is less than 1, therefore the

os (β − 1) equals zero and no Eulerian vapour fraction is gener-

ted in the cell. Without this modification an Eulerian structure

an be generated in bubble host cells, according to Eq. (11) , as the

ow pressure is usually equal or less than the threshold (vapour)

ressure in these cells. Then, the vapour structure in such cells

nd its contribution to the mixture properties will be considered

wice. Besides that, the new Eulerian cavity is small at the time of

eneration and therefore it will be transformed into a Lagrangian

ubble in the next time step and then the new and old bubbles

an coalesce and make a larger bubble. And this process would be

epeated in each time step by generating new Eulerian structures
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Fig. 3. (a) Initial cavities with different length scales over a hydrofoil; (b) Initial pressure field, where the line indicates the isocontour of vapour fraction α = 0 . 5 . (For 

interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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which lead to an unstable and unphysical growth of the Lagrangian

bubble. 

2.5. Solution strategy 

The final solution strategy consists of two algorithms. The major

algorithm to solve the flow governing equations, and another algo-

rithm for Eulerian–Lagrangian transition. In the developed solver,

after initializing of the flow field and defining the solution param-

eters, in each time step the governing equations are solved in the

following order: 

Algorithm 1 Solution procedure. 

1: for t=start time:end time do 

2: Solve Eq. (2) to obtain new velocity field. 

3: Find the mass transfer rate, ˙ m , from Eq. (11). 

4: Obtain the new pressure field, by solving Eq. (1). 

5: Update the mass transfer rate, ˙ m , from Eq. (11). 

6: Solve Eq. (12) to find the new liquid volume fraction field. 

7: Solve Eqs. (8) and (9) for each bubble to obtain the new

positions and diameters. 

8: Perform the mixture-bubble transition algorithm (Algorithm

2). 

9: Update the mixture properties by solving Eq. (10). 

10: end for 

The second algorithm is the Eulerian mixture -Lagrangian bub-

ble transition algorithm. The original step-by-step transition pro-

cess is explained by Vallier [12] . However, to meet the currently in-
roduced improvements, the algorithm needs to be revised. Similar

o Vallier’s approach, in the first step all of the cavity structures in

he flow domain are detected. Next, the number of computational

ells that resolve each structure are counted. If this number is less

han a threshold value (e.g. 5, in this study), it is decided that the

elative structure is not resolved by sufficient number of grid cells.

hen, for each cavity that is not well resolved, the Algorithm 2 is

ollowed. 

lgorithm 2 Transition algorithm. 

1: Create a list of cell labels {cell j , j=1:J}, associated with the

cavity structure. 

2: for j=1:J do 

3: Evaluate the cavity volume V v apour, j . 

4: Find the minimum edge length of the cell, 
min, j 

5: Find the minimum No. of bubble(s) in the cell, N b , and

the largest possible bubble radius, R b , so that N b 
4 
3 πR b 

3 =
V v apour, j , R b < 
min, j . 

6: for k=1: N b do 

7: Find the bubble position vectors X b,k in the cell j : The

positions vectors are N b points in the cell volume with uniform

distribution. 

8: Set the bubble velocity, U b , equal to the Eulerian mixture

velocity in the cell, U j . 

9: Inject the bubble 

10: end for 

11: Remove the Eulerian cavity of the cell by setting α j = 1 . 

12: end for 
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Fig. 4. Pressure field (the line indicates the isocontour of vapour fraction α = 0 . 5 ) of the original model (a) 1 time step after transition; (b) a few time steps later. Note the 

blue area (negative pressure) around the large red bubbles. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 

this article.) 
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Also, if a Lagrangian bubble collides with a large Eulerian cavity,

r it becomes large enough to be resolved by sufficient number of

ells, it will be transformed to an Eulerian structure by deleting

he bubble, while in the host cell β is set to 1 and α = βold . The

ransition criteria can be improved in further development of the

odel, which is the topic of a future study. 

. Result 

In this section, the performance of the original and the new re-

lizable multi-scale models are compared for qualitative validation

f the proposed improvements. In Fig. 3 a, two cavity structures

ith different length scales are shown over the suction side of a

D hydrofoil. The large structure should be kept in the Eulerian

ramework while the smaller one is a candidate to be transformed

o the Lagrangian bubble framework. Also, in Fig. 3 b, the pressure

ontour around the cavities before transition is depicted. The con-

our is plotted in logarithmic scale for easier detection of pres-

ure pulses. Inside the cavities (green area) the pressure is around

apour pressure, which is 2340 Pascal in this problem. 

The pressure field after the Eulerian–Lagrangian transition of

he original multi-scale model is shown in Fig. 4 . Fig. 4 a displays

he prediction one time step after the transition. As can be seen,

he local pressure at the small cavity location decreases to not only

maller than the threshold vapour pressure but also to large neg-

tive values. Also, at some time steps later ( Fig. 4 b), due to the

ecrease in pressure as well as the mass transfer rate in the α
quation ( Eq. (6) ), new vapour structures are generated which are
ubsequently transformed to Lagrangian bubbles leading to more

ulses in the flow. Such pressure pulses are repeated several times

n the domain. 

The pressure contour obtained from the realizable model is

hown in Fig. 5 . Here, the small cavity structure is replaced by

ore but smaller bubbles in order to keep the αβ parameter con-

erved in all cells during the transition. As a result, no pressure

ulse or negative pressure is seen in the domain. 

To gain a better understanding, in Fig. 6 the minimum pressure

f the flow field is shown for 75 time steps after the Eulerian–

agrangian transition. It is seen that the minimum pressure of

he realizable model is approximately constant and is around the

hreshold vapour pressure, while for the original model, the pres-

ure repeatedly yield large negative values due to several spurious

ulses that occur after the transition. Such large negative pressures

an influence the noise prediction and erosion estimation of a cav-

tating flow and if they occur near the hydrofoil, the hydrodynamic

orce estimation may be affected as well; in the worst case the nu-

erical stability of the solver may be compromised. 

In Fig. 7 , the local vapour volume as well as the number of

agrangian bubbles around the transition area are depicted for

5 time steps after the transition. For the realizable model, the

ulerian–Lagrangian transition occurs once and after that no Eu-

erian vapour cavity is seen in the region and the number of bub-

les stays constant. However, for the original model, new vapour

avities are generated in the area several times. As stated above,

his vapour generation is due to the mass transfer source term in
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Fig. 5. Pressure contour after the Eulerian–Lagrangian transition of the realizable model; the line indicates the isocontour of vapour fraction α = 0 . 5 . 

Fig. 6. Minimum pressure after the first transition. 

Fig. 7. Vapour volume and number of bubbles after the first transition. 
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Eq. (6) and the large negative pressure after each transition. As the

new cavities are small, they are transformed to Lagrangian bubbles

instantaneously which in turn leads to new spurious pulses and

yet again vapour generation. Also, the number of Lagrangian bub-
les increases in the domain. It should be noted that these bubbles

re larger than the corresponding ones in the realizable model. The

ew bubbles increase the vapour content of the flow and interact

ith the earlier generated bubbles; both of these effects are unre-

listic. 

. Summary 

A new multi-scale approach for numerical simulation of cavi-

ating flows has been presented. The coupling of the Eulerian mix-

ure model with the Lagrangian discrete bubble model makes the

olver capable of resolving various cavity structures with different

ength scales, including sub-grid bubbles. An issue in previous at-

empts at developing such a model has been that the transition of

n Eulerian structure to a Lagrangian framework induces spurious

ressure pulses and spurious vapour generation. In this paper, we

resent a remedy to this issue by reformulating the coupling be-

ween the bubbles and the Eulerian governing equations to more

ccurately include the effects of bubbles on the Eulerian flow. This

mounts to considering the total vapour on the flow, and not only

he Eulerian mixture vapour fraction. Also, several discrete bubbles

re inserted to achieve a better representation of the spatial dis-

ribution of the Eulerian mixture during the transition. Further, an

xample of the problem with the previous approach and how the

ew model overcome this was given through the dynamics of a

mall shed cavity in the flow over a 2D foil. 

In future studies, the hybrid model will be improved further. It

ncludes the improvement of the Lagrangian library in order to es-

imate the local flow effects on bubble dynamics more accurately,

s compared to the previous studies. Also, the model performance

ill be validated quantitatively with available benchmark studies

n literature. The Lagrangian module has the potential to predict

he cavitation inception, since the inception sites, nuclei, can be

reated as micro bubbles. Besides that, incorporation of the radi-

ted acoustic pressure wave due to bubble collapse and rebound

an be used in surface erosion estimation. 
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