
1

An Interior Point Algorithm
for Optimal Coordination of Automated Vehicles at

Intersections
Robert Hult, Mario Zanon, Sébastien Gros, Paolo Falcone

Abstract—In this paper, we consider the optimal coordination
of automated vehicles at intersections under fixed crossing-orders.
We state the problem as a Direct Optimal Control problem, and
propose a line-search Primal-Dual Interior Point algorithm with
which it can be solved. We show that the problem structure is
such that most computations required to construct the search-
direction and step-size can be performed in parallel on-board the
vehicles. This is realized through the Schur-complement of blocks
in the KKT-matrix in two steps and a merit-function with separa-
ble components. We analyze the communication requirements of
the algorithm, and propose a conservative approximation scheme
which can reduce the data exchange. We demonstrate that in hard
but realistic scenarios, reductions of almost 99% are achieved,
at the expense of less than 1% sub-optimality.

I. INTRODUCTION

The last decade has sen rapid development of technologies
for Automated Vehicles (AV). Simultaneously, several stan-
dards have been adopted for vehicle-to-vehicle communica-
tion, and use of next generation cellular communication in
automotive applications is under investigation. Due to this,
the interest for applications where the AVs share information
and cooperate is increasing, and it is commonly held that such
Cooperative Automated Vehicles (CAV) would have positive
effects on the traffic system.

One such application is the coordination of CAVs at in-
tersections. The idea is to let the CAVs jointly decide how
to cross the intersection safely and efficiently, rather than
relying on traffic-lights, road signs and traffic rules. In this
paper, we study a numerical algorithm for the optimal control
formulation of such scenarios.

The literature on algorithms for coordination of CAVs at
intersections was surveyed in [1]–[3], and even though most
work is recent, the number of publications is growing rapidly.
While a substantial part of the literature rely completely on
heuristics [4]–[6], a number of contributions that employ Opti-
mal Control (OC) tools [7]–[15] have been proposed recently.
However, most OC-based algorithms rely on heuristics to some
extent. This is largely due to the difficult combinatorial nature
of the problem, which stems from the need to determine
the order in which the vehicles cross the intersection. In a
number of contributions the problem is solved in two stages
where 1) the crossing order is found through a heuristic
(typically variations of “first-come-first-served”) and 2) the
control commands are found using OC-tools [11]–[14]. The
algorithm in this paper is intended for such applications,
and deals with the problem of finding the optimal control
commands for a fixed crossing order.

Intersection Center

Lane Center

Lane Center

Fig. 1: Illustration of distribution structure

We have studied the intersection problem in earlier work. In
particular, we introduced a Sequential Quadratic Programming
(SQP) algorithm based on a primal decomposition of the fixed-
order coordination problem in [16], where most computations
are parallelized and performed on-board the vehicles. We
considered a receding horizon application of the SQP-based al-
gorithm in [17], where we also presented experimental results.
We considered the extension to non-linear motion models and
economic objective functions in [18] and to scenarios where
vehicles turns inside the intersection in [19]. In [20], we
proposed an OC-based heuristic for crossing order selection,
and compared the performance of to traffic-lights and other
coordination algorithms in [21].

However, the algorithm in [16] did not account for rear-end
collisions between vehicles on the same lane, and required the
solution of a non-smooth Nonlinear Program (NLP).

In this paper, we solve the fixed-order coordination problem
with a Primal-Dual Interior Point (PDIP) algorithm which
resolves both these issues. The algorithm relies on distributed
computation of both the search-direction and step-size. As in
[16], [17], this approach is partly centralized, and relies on the
presence of central units for a smaller part of the computations.
In particular, the algorithm uses one intersection-wide central
unit and one central unit for each lane, with communication
flows as illustrated in Fig. 1.

We use the Schur-complement of sub-matrices in the KKT-
matrix to distribute the solution of the KKT-system for the
search-direction, and a merit-function with separately com-
putable components to distributed the step-size selection. This
enables parallelization so that most computations can be
performed on-board the vehicles, a smaller part on the lane-
centers and the smallest part on the intersection center.

2

CZ 1 CZ 2

CZ 3CZ 4

Fig. 2: Illustration of the scenarios considered, Assumption 2 (black lines)
and the Conflict Zones (red boxes).

A. Contributions

The contributions in this paper are 1) The application of a
distributed PDIP algorithm to the intersection problem, 2) the
analysis of the communication requirements in a practical set-
ting 3) a method with which the communication requirements
can be reduced at the cost of sub-optimality.

We stress that while similar distribution schemes can be
found in the literature (see e.g. [22], [23] and the references
therein), the application to the intersection problem is novel.

B. Outline

The remainder of the Paper is organized as follows. In Sec-
tion II we model and state the intersection problem using an
Optimal Control formalism. In Section III we review Primal-
Dual Interior Point methods and outline how the computations
involved can be distributed. In Section IV, we construct the
KKT-system (11) for a variable order which makes the prob-
lem structure apparent. In Section V we show how the solution
of the KKT system can be distributed with computation at
the vehicle, lane and intersection centers. In Section VI we
show how to select the step-size in a distributed fashion. In
Section VII we state a rudimentary practical algorithm and
provide a numerical example. In Section VIII we analyze
the communication requirements and propose an approximate
representation of the RECA constraints, using which the data
sent per iterate can be reduced. Finally, the paper is concluded
in Section IX

II. OPTIMAL COORDINATION AT INTERSECTIONS

We consider intersection scenarios as shown in Fig. 2, where
N vehicles approach a four-way intersection, and make the
following assumptions:

Assumption 1 (Full automation and cooperation). There are
no non-cooperative entities present in the scenario.

Assumption 2 (Vehicles on rails). The vehicles do not change
lanes and move along fixed and known paths along the road.
All vehicles on the same lane uses the same path.

Assumption 1 means that we do not consider scenarios with,
e.g. legacy vehicles, pedestrians or bicyclists. The assumption
is restrictive and limits the applicability to traffic scenarios
in a distant future. Assumption 2, however, is not restrictive,
since vehicles at intersections in general follow the centerline
of the lane that they are on. Both assumptions are standard in
the literature (see e.g. [4]–[6], [10]).

A. Motion Models

Assumption 2 enables simple motion models that describe
the one-dimensional movement of vehicles along their paths.
We consider constrained ODE motion-models such that

ẋi(t) = fi(xi(t),ui(t)), (1a)
0 ≥ hi(xi(t),ui(t)), (1b)

where i is the vehicle index, xi(t) ∈ Rni and ui(t) ∈ Rmi
are the vehicle state and control. In particular, xi(t) =
(pi(t), vi(t), x̃i(t)), where pi(t) is the position of the vehicle’s
geometrical center on its path, vi(t) is the velocity along the
path and, if applicable, x̃i(t) collects all remaining states (e.g.
acceleration and/or internal states of the power-train). Both
fi : Rni × Rmi 7→ Rni and hi : Rni × Rmi 7→ Rqi are
continuously differentiable.

B. Side Collision Avoidance (SICA)

Side collisions can only occur between vehicles on different
lanes, when these are inside an area around the points where
the vehicles’ paths intersect. We denote these areas Conflict
Zones (CZ), and note that more than one vehicle pair (i, j)
can have potential collisions at a particular CZ. Collision
avoidance consequently amounts to ensuring that vehicles
on different lanes occupy each CZ in a mutually exclusive
fashion. We enforce this condition using auxiliary variables
that describe the time of entry (tinr,i) and departure (tout

r,i) of
the r:th CZ, implicitly defined through

pi(t
in
i,r) = pin

r,i, and pi(t
out
i,r) = pout

r,i .
1 (2)

Here, pin
r,i and pout

r,i are defined as shown in Fig. 3, using the
vehicle length Li and width Wi. A condition for Side Collision
Avoidance (SICA) is then

tout
r,i ≤ tinr,j , (i, j, r) ∈ S. (3)

The set S collects all vehicle pairs (i, j) and CZ where side
collisions can occur, and encodes the crossing order (which
vehicle crosses the intersection first).

C. Rear-End Collision Avoidance (RECA)

Due to Assumption 2, rear-end collisions can only occur
between two adjacent vehicles on the same path. We collect
all vehicle pairs (i, j) such that i is immediately behind j on

1In the event that vi(t
in
i,r) = 0, tini,r is not uniquely defined by pi(t

in
i,r) =

pinr,i. A practical remedy is to instead use the slightly more complex definition
tinr,i = min t s.t. pi(t

in
i,r) = pinr,i. Since ṗ(tini,r) = 0 rarely will be

encountered in practice, this is avoided for ease of presentation.

3

pini,r

poutj,r

pinj,r

pouti,r

pi(t)

pj(t)

Path i

Pa
th
j

6

?

Lj

-�Wj

Fig. 3: Illustration of the elements used in the side collision avoidance
conditions.

the same lane in CR, and state the necessary condition for
Rear-End Collision Avoidance (RECA)

pi(t) + δij ≤ pj(t), (i, j) ∈ CR (4)

where δij = Li/2 + Lj/2.

D. Optimal Control Formulation

We employ a direct optimal control formulation of the coor-
dination problem, assuming a piece-wise constant parametriza-
tion of the inputs ui(t). That is, ui(t) = ui,k, ui,k ∈ Rmi ,
t ∈ [tk, tk+1), k = 1, . . . ,K − 1,K ∈ N where tk = k∆t and
∆t is the time-discretization size. We introduce the vectors
xi = (xi,0, . . . , xi,K), xi,k ∈ Rni and consider a multiple
shooting discretization of the dynamics (1a), enforcing

xi,k+1 = xi(tk+1) = Fi(xi,k, ui,k,∆t), (5)

and xi,0 = x̂i,0, where x̂i,0 is the initial state of vehicle i.
Here, Fi(xi,k, ui,k,∆t), Fi : Rni × Rmi × R 7→ Rni denotes
the solution to (1a) at t = tk + ∆t, when xi(tk) = xi,k and
ui(t) = ui,k. The state and control trajectories xi(t) and ui(t)
are thereby described by xi and ui = (ui,0, . . . , ui,K1

), which
we collect as wi = (xi, ui). Moreover, we express the position
pi(t) at time t as a function of wi

pi(t, wi) = Fi,p(xi,k, ui,k, t− tk), k = bt/∆tc, (6)

where Fi,p : Rni × Rmi × R 7→ R denotes the position
component of Fi. Consequently, all tini,r, t

in
i,r are well defined,

continuous functions of wi through (2) when (5) holds. Note
that while (6) describes the position at an arbitrary time t, the
position at tk is a part of xi,k, which we denote pi,k. Finally,
we only enforce the inequality constraints (1b) at times tk.

With the index set Ia = {0, . . . , a}, for an integer a > 0,
the problem of optimal intersection coordination is

min
w,T

N∑
i=1

Ji(wi) (7a)

s.t. xi,k = x̂i,0, i ∈ N , (7b)
xi,k+1 = Fi(xi,k, ui,k,∆t), i ∈ N , k ∈ IK−1, (7c)

pi(t
in
i,r, wi) = pin

r,i i ∈ N , r ∈ Ri, (7d)

pi(t
out
i,r , wi) = pout

r,i , i ∈ N , r ∈ Ri, (7e)

hi(xi,k, ui,k) ≤ 0 i ∈ N , k ∈ IK−1, (7f)
pi,k + δij ≤ pj,k(t) (i, j) ∈ CR, k ∈ IK (7g)

tout
r,i ≤ tinr,j (i, j, r) ∈ S. (7h)

where N = (1, . . . , N), w = (w1, . . . , wN), T =
(T1, . . . , TN) and Ti collects Tr,i = (tinr,i, t

out
r,i), ∀r ∈ Ri, with

Ri collecting the CZ crossed by vehicle i.
The objective functions Ji is on the form

Ji(wi) = V f
i (xi,N) +

K−1∑
k=0

`i(xi,k, ui,k), (8)

with the continuously differentiable terminal cost V f
i : Rni 7→

R and stage cost `i : Rni×Rmi 7→ R. The latter can be defined
directly by xi,k, ui,k or indirectly through the integration of a
function of xi(t),ui(t) over [tk, tk+1].

Note that in its “full” form, problem (7) includes selection
of the crossing order S. This is a notoriously difficult combi-
natorial problem, and obtaining exact solutions is in general
intractable. In this paper, we assume that the crossing order S
is provided externally through a heuristic and fixed. Problem
(7) is consequently denoted the fixed-order problem, and is a
continuous Nonlinear Program (NLP).

Remark 1. We present Problem (7) for four-way intersections
with one lane in each direction and no turning vehicles. How-
ever, we emphasize that this is not restrictive and that general
geometries could be considered using the same formalism. In
particular, we refer to [19] for details on how turning vehicles
can be included. Moreover, we note that both (3) and (4) in
practice would be defined with state-dependent margins (e.g.
time-headways). Such details are omitted for brevity.

III. SOLUTION WITH AN INTERIOR POINT ALGORITHM

The primal-dual interior point (PDIP) algorithms are itera-
tive procedures devised to find (local) minimizers of inequality
constrained NLPs. They operate by taking Newton-type steps
in the primal and dual variables on a perturbed representation
of the first-order optimality conditions. By simultaneously
driving the perturbation to zero, a sequence of primal-dual
solution candidates results. This sequence converge to local
minima of the NLP under some conditions [25].

A. A PDIP formulation of the fixed order problem

Collecting y = (w, T), (7a) in J(w), (7b)-(7e) in g(y)
and (7f)-(7h) in h(y), the perturbed first order optimality

4

conditions of Problem (7) are

∇yL = 0 (9a)
g(y) = 0 (9b)

h(y) + s ≤ 0 (9c)
D(s)µ− 1τ = 0 (9d)

µ ≥ 0 (9e)
s ≥ 0 (9f)

Here, s are the slack variables associated with h, D(s) is a
the matrix with s on the main diagonal, τ ∈ R+ is the barrier
parameter and ∇yL is the gradient of the Lagrange function

L(y, λ, µ) = J(w) + λ>g(y) + µ>h(y), (10)

where λ and µ are the Lagrange multipliers associated with
constraints g and h respectively. Collecting y, λ, µ, s in z, we
write (9a)-(9d) as rτ (z) = 0.

Starting from a z[0] strictly satisfying (9e),(9f), the sequence
of primal-dual solution candidates is generated through the
Newton-iteration

z[k+1] = z[k] + α[k]∆z[k] (11)

where k is the iteration index, α[k] the step size and ∆z[k] the
search-direction. The latter is obtained as the solution of the
KKT-system

M(z[k])∆z[k] = −rτ [k](z[k]). (12)

where the matrix M(z) is known as the KKT-matrix, typically
constructed as a modification of ∂rτ

∂z , evaluated at z[k]. The
step-size is selected such that the updated solution candi-
date z[k+1] strictly satisfies (9e), (9f) and provides sufficient
decrease on the merit function φ(z) and strictly satisfies
(9e),(9f). Finally, as the PDIP algorithm progresses, the barrier
parameter is τ [k] is updated, i.e.,

τ [k+1] = ξ(τ [k], z[k]), (13)

using some update strategy ξ, so that eventually τ [k] → 0.

B. Distribution Strategy

If the PDIP algorithm is applied in a fully centralized
setting, the linear system (12) is solved using a standard linear
algebra routine. This means that all information needed to
assemble M(z[k]) and rτ [k](z[k]) must be made available to the
central node before the search-direction ∆z[k] can be found.
However, the structure of Problem (7) admits (12) to be solved
with most computations performed separately for each vehicle
and for each lane. Due to this, ∆z[k] can be computed without
constructing and solving the full KKT-system centrally. More-
over, the evaluation of the merit function can be split along
the same lines, whereby the step size α[k] can be selected in
a distributed fashion. In the following sections, we detail how
these distributions are made and the information-exchange
required between the vehicles, lane centers and intersection
center.

IV. CONSTRUCTION OF THE KKT-SYSTEM

In this section, we construct rτ [k](z[k]) and M(z[k]) for the
fixed-order coordination problem (7), and select a variable
ordering which makes the problem structure visible. For
brevity, we omit the iteration index and dependence on τ in
what follows, and only include the arguments of r and M to
highlight specific dependencies.

A. Ordering of the primal-dual variables

We first note that problem (7) is such that the primal
variables (i.e. the trajectories wi and timeslots Ti, ∀i ∈ N)
are associated with a specific vehicle, and that couplings
between the primal variables of different vehicles are due to
the inequality constraints (7g) and (7h). We also note (7b)-(7e)
and the objective function are separable between the vehicles.
The problem can thereby be seen as consisting of three levels

1) The Vehicle Level, consisting of the objective function
and constraints (7b)-(7e). Due to the absence of inter-
vehicle couplings, the functions on the vehicle level are
separable between the vehicles.

2) The Lane Level, consisting of all RECA constraints
(7g) which couples vehicles on the same lane. Due to
the absence of RECA constraints between vehicles on
different lanes, (7g) are separable between the lanes.

3) The Intersection Level, consisting of all SICA con-
straints (7h) which couples vehicles on different lanes.

We denote the number of lanes L, NL = {1, . . . , L}, collect
the set of vehicles on lane j in Nlj and make the following
sub-division of the primal-dual variables of NLP (7)

• zi: collects the primal variables for vehicle i with the
slacks and multipliers associated with that vehicle’s con-
straints (7g) and (7h).

• zv(j): collects zi for all vehicles i on lane j.
• zv: collects zi, ∀i ∈ N .
• zl(i): are the slacks and multipliers for the RECA con-

straints (7g) of vehicle i
• zlj : collects the slacks and multipliers for all RECA

constraints (7g) involving vehicles on lane j.
• zT : collects the slacks and multipliers of all SICA con-

strints

Without loss of generality we assume that the vehicles are
ordered as they appear on each lane, i.e., vehicles i, . . . , n1

are on lane 1, vehicles n1 + 1, . . . , n1 + n2 are on lane 2 and
so on. and order the primal-dual variables as follows

z = (zv, zc) (14)
zv = (z1, . . . , zN) (15)
zc = (zl, zT) (16)
zl = (zl1 , . . . , zlL) (17)

In the remainder of this section we construct the KKT
system for this ordering of the variables. We perform the
construction in steps, and first introduce the equations related
to the individual vehicles (7a)-(7e), followed by the equations
associated with the coupling constraints.

5

B. Components relating to the vehicles

For ease of presentation, we introduce the vehicle problem

min
yi

Ji(wi) (18a)

s.t. CEi (wi, Ti) = 0 (18b)

CIi (wi) ≤ 0 (18c)

where yi = (wi, Ti) and written constraints (7b)-(7e) for
vehicle i as CEi (yi) = 0 and constraints (7f) as CIi (wi) ≤ 0.
That is, the solution to (18) is the “greedy” solution of vehicle
i, where all couplings to other vehicles are ignored. The
Lagrange function of (18) is

Li(zi) = Ji(wi) + λ>i C
E
i (wi, Ti) + µ>i C

I
i (wi) (19)

where λi and µi are the multipliers associated with (18b) and
(18c), respectively. Defining zi = (yi, λi, µi, si), where si are
the slack variables associated with constraint (18c), the KKT
system for (18) reads Mi∆zi = −ri(zi), where

ri(zi) =


∇yiL

CEi (wi, Ti)
CIi (wi) + si

µi −D(si)
−11τ

 , (20)

and

Mi(zi) =


∇2
yiLi ∇yiCEi ∇yiCIi

∇yiCEi
>

∇yiCIi
>

I
I D(si)

−1D(µi)


(21)

C. Components relating to the coupling constraints

Collecting the position of vehicle i in pi = (pi,0, . . . , pi,K),
we write RECA constraint (7g) between vehicle i and i+1 as

Cl,(i,i+1)(pi, pi+1) = pi+1 − pi + 1δi+1,i ≤ 0 (22)

and denote the corresponding Lagrange multipliers and slack
variables as µl,(i,i+1), sl,(i,i+1) respectively. All rear-end col-
lision avoidance constraints (22) for the vehicles on lane j and
the associated multipliers and slacks are collected in

Clj (p̄j) =

 Cl,(i,i+1)(pi, pi+1)
...

Cl,(i+n−1,i+n)(pi+nj−1, pi+nj)

 ≤ 0 (23)

µlj = (µl,(i,i+1), . . . , µl,(i+nj−1,i+nj)) (24)

slj = (sl,(i,i+1), . . . , sl,(i+nj−1,i+nj)) (25)

where p̄j = (pi, . . . , pi+nj) and {i, . . . , i + nj} = Nlj are
the indices of the nj vehicles on lane j. Similarly, with
p̄ = (p̄1, . . . , p̄L), we collect all RECA constraints with the
associated slacks and multipliers in

Cl(p̄) =

Cl1(p̄1)
...

ClL(p̄L)

 (26)

µl = (µl1 , . . . , µlL) (27)
sl = (sl1 , . . . , slL). (28)

Finally, we collect all SICA constraints (7h) in

CT (T) ≤ 0 (29)

and denote the associated Lagrange multipliers and slacks in
µT and sT , respectively. With this, we let

zlj = (µlj , slj) (30)
zl = (zl1 , . . . , zlL) (31)
zT = (µT , sT) (32)

D. Centralized KKT System

The Lagrange function of NLP (10) can thus be written as

L(z) = Lv(zv) + Lc(T, p̄, zc), (33)

Lv(zv) =

N∑
i

Li(zi), (34)

Lc(T, p̄, zc) = LT (T, zT) + Ll(p̄, zl), (35)

LT (T, zT) = µ>TCT (T), (36)

Ll(p̄, zl) =

L∑
j=1

Llj (p̄j , zlj), (37)

Ll(p̄j , zlj) = µ>ljClj (p̄j), (38)

and we re-state the KKT-system of Problem (7) as

M(z)∆z = −r(z), (39)

where

r(z) =

[
rv(zv, µl, µT)
rc(T, p̄, zc)

]
, (40)

with

rv(zv, µl, µT) =

 r1(z1) +∇z1Lc
...

rN (zN) +∇zNLc

 , (41)

and

rc(T, p̄, zc) =

[
rl(p̄, zl)
rT (T, zT)

]
, (42)

rl(p̄, zl) =

 rlj (p̄1, zl1)
...

rlL(p̄L, zlL)

 , (43)

rlj (p̄j , zlj) =

[
Clj (p̄j) + slj

µlj −D(slj)
−11τ

]
, (44)

rT (T, zT) =

[
CT (T) + sT

µT −D(sT)−11τ

]
. (45)

In the next section, we detail the structure of M(z) and show
how the solution to (39) can be distributed.

V. DISTRIBUTED SOLUTION OF THE KKT-SYSTEM

The distributed solution of (39) are made possible by the
structure of the KKT-matrix, and uses the Shur-complement

6

Vehicles

V
eh

ic
le

s
R

E
C

A
SI

C
A

RECA SICA

Mv

Mcv

Mvc

Mlv

MTv

Mvl MvT

MT

Ml1

Ml2

Ml

Mc

Fig. 4: Illustration of the KKTMatrix of (7).

of different sub-matrices of M(z) in two steps. In particular,
the structure of M(z) is such that the following hold

Centralized KKT System (39)⇔ Coupling Sub-system (54a)
Vehicle Sub-systems (54b)

Coupling Sub-system (54a)⇔ SICA Sub-system (60a)
RECA Sub-systems (60b)

An illustration of the KKT matrix structure is given in
Fig. 4, where we use the notation

Mv(zv) = blockdiag(M1, . . . ,MN), (46)
Mc(zc) = blockdiag(Ml,MT), (47)
Ml(zl) = blockdiag(Ml1 , . . . ,MlL), (48)

Mlj (zlj) =

[
0 I
I D(slj)

−1D(µlj)

]
, (49)

MT (zT) =

[
0 I
I D(sT)−1D(µT)

]
, (50)

for the diagonal blocks, and

Mvc =
[
Mvl MvT

]>
, (51)

Mvl = ∇zvCl(p̄), MvT = ∇zvCT (T), (52)

for the cross terms, and define Mcv = M>vc, MTv = M>vT and
Mlv = M>vl We also note that due to the linearity of Cl and
CT , Mcv are constant matrices.

A. Separation between the Vehicles and Couplings

Note that the KKT matrix M(z) can be sub-divided as

M(z) =

[
Mv M>cv
Mcv Mc

]
(53)

With the Schur-complement of Mc in M , (39) can be solved as(
Mc −McvM

−1
v M>cv

)
∆zc = −rc +McvM

−1
v rv (54a)

Mv∆zv = −rv −M>cv∆zc. (54b)

That is, we can separate computation of the search direction
in the coupling variables, ∆zc, from that in the variables as-
sociated with the vehicles, ∆zv , by solving (54a) and (54b) in
sequence. We show next that McvM

−1
v Mcv and McvM

−1
v rv

consist of independent components from each vehicle.

M1

M2

M3

M4

M5

M6

(a) Mv

M
c
,1

M
c
,2

M
c
,3

M
c
,4

M
c
,5

M
c
,6

(b) Mcv

Ml

MT

(c) Mc

Fig. 5: Illustration of the sub-matrices involved in the first decomposition level
from the KKT matrix shown in Fig. 4

Distributed solution of the KKT-System, first level: An
illustration of the the sub-matrices Mv , Mcv and Mc are
shown in Fig. 5c, and we note that Mcv can be divided into
components associated with each vehicle

Mcv = [Mc,1, . . . ,Mc,N] , Mc,i =
∂rc
∂zi

. (55)

Since Mv is block diagonal with one block Mi for each
vehicle, we have that

McvM
−1
v M>cv =

N∑
i=1

Mc,iM
−1
i M>c,i (56)

McvM
−1
v rv =

N∑
i=1

Mc,iM
−1
i (ri +∇ziLc) . (57)

Since Mc,i are constant matrices, the terms required to
assemble McvM

−1
v M>cv and McvM

−1
v rv can be computed

separately for each vehicle. Due to the structure of Mv and
Mcv , (54b) can be solved independently for each i as

Mi∆zi = −ri −∇ziLc −M>c,i∆zc (58)

where we stress that M>c,i∆zc only requires components of
∆zc relating to couplings involving vehicle i.

Since (44) and (45) are such that Mc is independent of zv ,
the solution to (39) can be found in three steps: 1) Compute
Mc,iM

−1
i M>c,i and Mc,iM

−1
i ri ∀i ∈ N , 2) assemble and

solve (54b), 3) solve (58) ∀i ∈ N .

B. Separation between RECA and SICA couplings

We define[
Γ Λ>

Λ Ψ

]
=

[
Ml −MlvM

−1
v M>lv −MlvM

−1
v M>Tv

−MTvM
−1
v M>lv MT −MTvM

−1M>Tv

]
,

(59a)

γ = −rl +MlvM
−1
v rv, (59b)

ψ = −rT +M>TvM
−1
v rv, (59c)

so that matrix (59a) and vectors (59b),(59c) are the left-
and right hand side of (54a), respectively. With the Schur
complement of Ψ in (59a), (60a) can be solved as(

Ψ− ΛΓ−1Λ>
)

∆zT = ψ − ΛΓ−1γ (60a)

Γ∆zl = γ − Λ>∆zT . (60b)

That is, the direction in the variables associated with the SICA
constraints, ∆zT can be separated from that of the variables
associated with the RECA constraints, ∆zl, by solving (60a)

7

and (60b) in sequence. We show next that ΛΓ−1Λ> and
ΛΓ−1γ consists of independent components from each lane.

Distributed solution of the KKT-System, second level: Note
that Λ is defined by sums of terms from each vehicle due
to (56). However, constraints (23) only couple vehicles on
the same lane and constraints (29) only couple vehicles on
different lanes, which can be used to separate the computations
required to construct Λ between the lanes. Recalling that the
vehicles are ordered as they appear on their lanes, we let
• rv(j)(zv(j), zlj , zT) collect ri(ri)−∇ziLc ∀i ∈ Nlj ,
• Mv(j)(zv(j)) be the block diagonal matrix with blocks
Mi, i ∈ Nlj ,

so that

Mlv = blockdiag

(
∂rl1
∂zv(1)

, . . . ,
∂rlL
∂zv(L)

)
, (61)

MTv =

[
∂rT
∂zv(1)

, . . . ,
∂rT
∂zv(L)

]
, (62)

Mv = blockdiag(Mv(1), . . . ,Mv(L)), (63)

where

∂rT
∂zv(j)

=

[
∂CT
∂zv(j)

0

]
,

∂rlj
∂zv(j)

=

[
∂Clj
∂zv(j)

0

]
, (64)

and

−MTvM
−1
v M>lv = Λ = [Λ1, . . . ,ΛL], (65)

where

Λj(zv(j)) =

[
− ∂CT
∂zv(j)

M−1
v(j)

(
∂Clj
∂zv(j)

)>
0

0 0

]
, (66)

and

MlvM
−1
v M>lv = blockdiag

(
∂rl1
∂zv(1)

M−1
v(1)

(
∂rl1
∂zv(1)

)>
, . . . ,

∂rlL
∂zv(L)

M−1
v(L)

(
∂rlL
∂zv(L)

)>)
, (67)

where

∂rlj
∂zv(j)

M−1
v(j)

(
∂rlj
∂zv(j)

)>
=

[
∂Clj
∂zv(j)

M−1
v(1)

(
∂Clj
∂zv(j)

)>
0

0 0

]
.

(68)
Since Ml(zl) = blockdiag(Ml1 , . . . ,MlL), we have

Γ(zv, zl) = blockdiag(Γ1(zv(1), zl1), . . . ,ΓL(zv(L), zlL)),
(69)

where

Γj(zv(j), zlj) = Mlj −
∂rlj
∂zv(j)

M−1
v(j)

(
∂rlj
∂zv(j)

)>
, (70)

and γ = (γ1, . . . , γL), where

γj = −rlj +
∂rlj
∂zv(j)

Mv(j)rv(j) (71)

Since all SICA and RECA constraints are linear, Λj , the blocks
of (67) and the product in (71) are thereby defined solely by
the primal-dual variables of vehicles on lane j (through Mv(j)

and rv(j)) and the multipliers of the couplings in which they
take part (through the ∇ziLc terms in rv(j)). Due to this, the
left- and right hand side of (60a) are

ΛΓ−1Λ> =

L∑
j=1

ΛjΓ
−1
j Λ>j (72a)

ΛΓ−1γ =

L∑
j=1

ΛjΓ
−1
j γj , (72b)

i.e., the terms in ΛΓ−1Λ> and ΛΓ−1γ can be computed
independently for each lane. Finally, Λ and Γ are such that
(60b) can be solved as the L independent sets of equations

Γj∆zlj = γj − Λ>j ∆zT , j ∈ NL, (73)

i.e., one set of equations for each lane.
Consequently, (39) can be solved in the following steps: 1)

compute the components in (59a), (59b) and (59c) for each
vehicle, 2) compute the terms in (72) for each lane, 3) solve
(60a) for ∆zT , 4) solve (73) for ∆zlj (using ∆zT), 5) solve
(58) for ∆zi (using ∆zT and ∆zl(i)).

C. Algorithm

We first note that
∂rlj
∂zv(j)

M−1
v(j)

(
∂rlj
∂zv(j)

)>
in Γj is sparse,

where all non-zero elements are in the blocks

∂Cl1
∂zv(1)

M−1
v(1)

(
∂Cl1
∂zv(1)

)>
=

c1 + c2 −c2
−c2 c2 + c3 −c3

−c3 c3 + c4 −c4
.

−cn1−1

−cn1−1 cn1


(74)

where

ci =
∂zi
∂pi

>
M−1
i

∂zi
∂pi

. (75)

Similarly, Λj is also sparse, with all non-zero elements in
the blocks ∂CT

∂zv(j)
M−1
v(j)

∂Clj
∂zv(j)

, respectively. The latter are in
turn built up by the vehicle specific blocks

I−i
∂zi
∂Ti

>
M−1
i

∂zi
∂pi

(76)

∂zi
∂pi

>
M−1
i

∂zi
∂Ti

I−i (77)

where I−i is a square matrix of size sizeof(Ti), with 1 or −1
on the diagonal and zero otherwise, where the sign of the
individual diagonal entires depend on the corresponding Ti’s
entry in constraint CT .

Finally, the term MTvM
−1
v MTv in Ψ is also sparse, with

all non-zero elements in the block ∂CT
∂zv

M−1
v

∂CT
∂zv

>
, built up

by the following elements from the vehicles

I−i
∂zi
∂Ti

>
M−1
i

∂zi
∂Ti

I−i (78)

8

Algorithm 1 Distributed solution of KKT system. Here, C
denotes the central unit for the intersection, Lj denotes the
central unit for lane j, and Ai denotes vehicle i. All vehicles
are assumed to hold local copies of the corresponding µfi , µri
and µTi .

1: procedure SEARCHDIRECTION(z,τ)
2: ∀Ai: Compute DAi→C ,DAi→l(i), and pass to C,Lj

where j is the lane of vehicle i
3: ∀Lj : Compute ΛjΓ

−1
j Λ>j , ΛjΓ

−1
j γj and pass to C

4: CT : Assemble and solve (60a), pass the appropriate
parts of ∆µT to all Clj , and all Ai.

5: ∀Lj : Solve (73) for ∆zlj , using the received compo-
nents of ∆µT , pass the appropriate parts of ∆µlj to all
Ai on lane j

6: ∀Ai: Solve (58) for ∆zi, using the received compo-
nents of ∆µT and ∆µlj

7: end procedure

in a manner similar to (74). However, unlike the RECA
constraints (23), we there is in general is no “chain-structure”
in the SICA constraints (29), due to which the resulting matrix
∂CT
∂zv

M−1
v

∂CT
∂zv

>
is not block-banded as (74).

With this we note that each vehicle needs to pass the
following information to its lane center

∂zi
∂pi

>
M−1
i

∂zi
∂pi

,
∂zi
∂Ti

>
M−1
i

∂zi
∂pi

, (79a)

∂zi
∂pi

>
M−1
i (ri +∇ziLc), pi, (79b)

and the following information to the intersection center

∂zi
∂Ti

>
M−1
i

∂zi
∂Ti

,
∂zi
∂Ti

>
M−1
i (ri +∇ziLc), Ti. (80)

Each lane center on the other hand, needs to assemble and
solve ΛjΓ

−1
j Λ>j , ΛjΓ

−1
j γj , and pass the results to the inter-

section center.
Moreover, ∇ziLc is a sparse vector, with the only non-zero

elements being on the positions corresponding to pi and Ti.
These consist of the (signed) multipliers of the corresponding
constraints, so that

∇ziLc =
∂zi
∂pi

(µi,r − µi,f) +
µzi
∂Ti

I−i µi,T , (81)

where µi,f , µi,r denotes the multipliers for the RECA con-
straints (elements of µlj for the vehicle’s lane) where the
vehicle is in front and to the rear, respectively, and where
µi,T are the multipliers for the SICA constraints in which the
vehicle is involved (elements of µT). Collecting the matrices
and vectors of (79) in DAi→l(i) and those of (80) in DAi→C ,
we summarize the distributed solution of (39) in Algorithm 1.

Note that Lines 2 and 3 are separable between the vehicles,
where the main effort consist of the (parallel) factorization
of matrices Mi. Similarly, Lines 3 and 5 are separable
between the lanes, and the main effort consists of the (parallel)
factorization of matrices Γj . The factors of Mi and Γj can be
stored and reused on Lines 6 and 5, respectively.

An interpretation of Algorithm 1, is that the search direction
in the vehicle variables zi is constructed as

∆zi = ∆zGreedy
i + ∆zRECA

i + ∆zSICA
i (82)

where
∆zGreedy

i = −M−1
i ri (83)

is the “greedy” step, ignoring couplings to other vehicles,

∆zRECA
i = −M−1

i

∂zi
∂pi

(µi,r + ∆µi,r − µi,f −∆µi,f) (84)

corrects for couplings to vehicles on the same lane,

∆zSICA
i = −M−1

i

∂zi
∂Ti

I−i (µi,T + ∆µi,T) (85)

corrects for couplings to vehicles on other lanes.

VI. DISTRIBUTED COMPUTATION OF THE STEP-SIZE

In this section, we discuss selection of the step size α
through a back-tracking line-search on a merit function where
most computations can be distributed.

A. Feasibility enforcing step-size selection

To ensure that α is chosen so that s[k+1] > 0, µ[k+1] > 0,
we employ the fraction from the boundary rule

s+ αmax∆s ≥ κs (86a)
µ+ αmax∆µ ≥ κs (86b)

where κ > 0 is a parameter [25]. Due to the problem structure,
(86) can be evaluated separately for the vehicles, giving αmax

i ,
∀i ∈ N , for the RECA constraints on a lane, giving αmax

lj
,

∀j ∈ NL and for the SICA constraints αmax
T . The maximum

allowed step size for the search direction ∆z is thereby

αmax = min(αmax
1 , . . . , αmax

N , αmax
l1 , . . . , αmax

lL , αmax
T) (87)

B. Solution-improving step-size selection

We find α ≤ αmax which improves the solution by back-
tracking on the merit function suggested in [25], which reads

φ(y, s) =

N∑
i=1

φi(yi, si) +

L∑
j=1

φlj (p̄j , slj) + φT (T, sT) (88)

where

φi(yi, si) = Ji(wi) + ν
(
||CEi (wi, Ti)||1 + ||CIi (wi) + si||1

)
− τ1> log(si),

φlj (p̄j , slj) = ν||Clj (p̄j) + slj ||1 − τ1> log(slj),

φT (T, sT) = ν||CT (T) + sT ||1 − τ1> log(sT),

with the logarithm taken element-wise and parameter ν. We
use the Armijo condition, and accept a step α when

φ(y + α∆y, s+ α∆s) ≤ φ(y, s) + ζφ′(y, s)α, (89)

9

Algorithm 2 Distributed selection of step-size α, first level.
C denotes the central unit, Lj denotes the central unit for lane
j, and Ai denotes vehicle i. Parameters: γ ∈]0, 0.5], β ∈]0, 1]

1: procedure STEPSIZESELECTION(z,∆z,τ)
2: ∀Ai: Find αmax

i , assemble φi(yi, si) and φ′i(yi, si),
pass to C together with ∆Ti, pass ∆pi to Lj .

3: ∀Lj : Find αmax
lj

, assemble φlj (p̄j , slj) and φ′i(p̄j , slj)

4: C: Find αmax
T and determine αmax with (87).

5: C: Find φT (T, sT),φ′T (T, sT) ass. φ(y, s),φ′(y, s)
6: C: Set α = αmax

7: loop
8: ∀Ai: Pass φi(yi + α∆yi, si + α∆si) to C
9: ∀Lj : Pass φlj (p̄j + α∆p̄j , slj + α∆slj) to C

10: C: Compute φT (T +α∆T, sT +α∆sT), assemble
φ(y + α∆y, s+ α∆s) through (88)

11: if φ(y + α∆y, s + α∆s) < φ(y, s) + αγφ′(y, s)
then

12: return α, αmax and accept notice to all Ai, Lj
13: else
14: α← βα
15: Pass α to all Ai, Lj
16: end if
17: end loop
18: end procedure

where ζ ∈]0, 0.5] is a parameter, and

φ′(y, s) =
dφ(y + α∆y, s+ α∆s)

dα

∣∣∣∣
0←α

=
∂φ

∂y
∆y+

∂φ

∂s
∆s

=

N∑
i=1

φ′i(yi, si) +

L∑
j=1

φ′lj (p̄j , slj) + φ′T (T, sT). (90)

Noting that computation of φ(y, s), φ′(y, s) can be
separated between the vehicles (φi(yi, si),φ′i(yi, si)),
the lanes (φlj (p̄j , slj),φ′lj (p̄j , slj)) and the intersection
(φT (T, sT),φ′T (T, sT)), Algorithm 2 summarizes the
selection of α.

C. Handling non-convexity

It is known [25] that (∆y,∆s) is a descent direction on φ, if

v>
[
∇2
yL

D(s)−1D(µ)

]
v > 0, ∀v :

[
∇yg>
∇yh> I

]
v = 0.

(91)
Since D(s)−1D(µ) � 0 by construction, this is determined
by ∇2

yL. If (91) does not hold, a modification of ∇2
yL can

be used. One particular (and likely conservative) alternative,
is to find U � 0 such that H = ∇2

yL + U � 0, and use
H in place of ∇yL. Importantly, such modification could
be applied independently for all vehicles, since ∇2

yL =
blockdiag(∇2

y1
L1, . . . ,∇2

yNLN). That is, ∆z is a descent
direction on φ(y, s) if each vehicle uses a positive definite
modification of ∇2

yiLi when necessary.

Algorithm 3 A Basic Distributed Primal-Dual Interior Point
algorithm for the fixed order intersection problem.

1: procedure FIXEDORDERPDIP(τ [0])
2: k ← 0
3: C : Initialize z[0]

T and send µ[0] to all Ai and Lj
4: ∀Lj : Initialize z[0]

lj
and send µ[0]

lj
to Ai on lane j.

5: ∀Ai: Initialize z[0]
i and send T [0]

i to C, p[0]
i to Lj

6: loop
7: k ← k + 1
8: C: Send iteration start and τ [k] to all Ai, Lj .
9: ∀Ai: Compute Mi, ri , modify if necessary ∇2

yiLi.
10: ∆z[k] ←SEARCHDIRECTION(z[k],τ [k])
11: α[k] ←STEPSIZESELECTIONz,∆z,τ
12: C: Update z[k+1]

T ← z
[k]
T + α[k]∆z

[k]
T

13: ∀Lj : Update z[k+1]
lj

← z
[k]
lj

+ α[k]∆z
[k]
lj

14: ∀Ai: Update z[k+1]
i ← z

[k]
i + α[k]∆z

[k]
i

15: if TERMINATE(z[k+1],∆z[k],τ [k]) then
16: return Solution found
17: else
18: τ [k+1] ← UPDATEBARRIERPARAMETER()
19: end if
20: end loop
21: end procedure

VII. A PRACTICAL ALGORITHM

A basic procedure which uses Algorithms 1 and 2 is sum-
marized in Algorithm 3. Note that Algorithm 3 gives exactly
the same iterates and has the same convergence properties as
a fully centralized algorithm.

1) Termination Criteria: We use the norm of r as termina-
tion criteria, such algorithm terminates when

||rτ [k](z[k+1])|| < ε and τ [k] < ε, (92)

for some tolerance ε. Termination must thus be decided
centrally, and the components of r that relate to the lane
couplings and vehicles must be available at the central node.

2) Barrier Parameter Update: While elaborate schemes are
possible for updates of τ , we employ the Fiacco-McCormick
rule for simplicity. In particular, we update τ [k+1] ← ητ [k],
where the parameter η ∈]0, 1[, when ||rτ [k](z[k+1])|| < τ [k].
The barrier parameter must thus be decided centrally.

A. Example

As an example, we consider a scenario with three vehicles
on each lane. Assuming that all vehicles are electric, their
motion is described by

ṗi(t) = vi(t), (93a)

v̇i(t) =
1

mi
(cTorqueMi(t)− Fb

i − cdragvi(t)
2 − crr), (93b)

M(t) ≤ min(Mmax, Pmax
i /ωi(t)) (93c)

0 ≤ ωi(t) ≤ ωmax
i , (93d)

where Mi(t) is the motor torque, Fb
i (t) the friction brake

force, ωi(t) = cωvi(t) the motor speed and xi(t) =

10

(pi(t), vi(t)), ui(t) = (Mi(t),F
b
i (t)). The parameters

cTorque, cω, cdrag, crr, ωmax
i ,Mmax and are selected as in

Pmax
i [18], and we use K = 100 and Explicit 4th order

Runge-Kutta integrators from ACADO [26] with ∆t = 0.2.
The objective function is

Ji(wi) = Qfi (vi,K − vr)2+
K∑
k=0

Qi(vi,k − vr)2 + (ui,k − uri)>Ri(ui,k − uri), (94)

where vr is a reference speed, and uri is an input which
maintains vr. Here, the weights are selected as Qi = 1/(vri)

2

and Ri = diag((1/Tmax
i,m)2, 1/F b,max

i)2), and Qfi is the cost-
to-go associated with the LQR controller computed with
Qi, Ri and the linearization of (93b) around vri .

The vehicles are initialized randomly between 80 and 120
meters before the intersection, with vi,0 = vr = 70 km/h.
The initial solution candidate w[0]

i , T
[0]
i is the solution to (18),

where all vehicles drive at vr for k = 0, . . . ,K, λ[0] = 0,
µ[0] = s[0] = 1 and τ [0] = 1.

The development of ||r(z)[k]||2 and τ [k] is shown in Fig. 6a,
and the step sizes used is shown in Fig. 6b. Note that the
increases ||r(z)|| that follows decreases in τ , is a consequence
of the somewhat rudimentary IP method deployed.

To illustrate how the algorithm progresses in the primal vari-
ables, the velocity profiles of one vehicle is provided in Fig. 6c.
Note that the final 15 iterates are virtually indistinguishable
from each other. In a practical context, little would likely be
lost by stopping after iteration 16.

For illustration, the sparsity-pattern of M is given in Fig. 7.
The size is 25832×25832, where Mv is of size 24176×24176,
Mlj of size 404 × 404 and MT of size 40 × 40. Besides
evaluating the involved functions and their derivatives, the
main computational effort is therefore the factorization of the
vehicle blocks Mi, roughly sized 2010× 2010 2, and the lane
blocks Mlj , sized 404 × 404. Since the factors for all Mi’s
can be computed in parallel between the vehicles (Line 2
in Algorithm 1), and the Γj’s can be factorized in parallel
between the lanes (Line 3), the computational time required
to solve the KKT system tdirection will roughly be

tdirection ≈ max
i∈N

(timeToFactorize(Mi))+

max
j∈NL

(timeToFactorize(Γj)) (95)

However, computational time will likely not dominate the
time it takes to find a solution. Following the lessons learned
from the experiments reported in [17], the time required
to communicate between the vehicles, lane centers and in-
tersection center is likely larger. In the next section, we
analyze the communication requirements, and discuss some
modifications to the scheme which decrease both the number
of transmissions and the amount of data communicated.

2This implementation only includes the elements of Ti needed for the SICA
constraints. The size of Ti therefore vary between different i.

VIII. COMMUNICATION REQUIREMENTS

In this section, we discuss the communication requirements
of Algorithm 3. We first analyze the data flow between the ve-
hicles, lane centers and intersection center in Section VIII-A,
and demonstrate that the proposed algorithm requires an
unrealistic data exchange. We discuss how the requirements
can be reduced in Sections VIII-B and VIII-C.

A. Analysis of Communication Requirements

Most data is exchanged during solution of the KKT-system
in Algorithm 1 and the selection of the step-size in Algo-
rithm 2. Descriptions of the data involved as well as the
number of floats communicated are summarized in Table I.

Most often K � nTi , whereby most communication occurs
during Line 2 of Algorithm 1 when the vehicle sends Dli. Be-
sides the communication between the lane-centers and the in-
tersection center and an initial round of communication where
the initial guess z[0]

c is sent to the vehicles, the communication
required for the remaining parts (i.e., the indication of a new
iteration, the current barrier parameter value, termination of
line-search or algorithm completion) consists of single floats
and logicals. As illustrated in Fig. 8, these can therefore be
sent together with the search-direction and step-size results.
In particular, we highlight in the figure where the various
components of ||r(z[k])|| can be passed to the intersection
center, for use in termination criteria and barrier parameter
update rule.

Communication in the Example: As summarized in Table I,
the most data is sent between the vehicles and their lane
centers during the first part of the search-direction computation
(Line 2 of Algorithm 1). In the example studied above K =
100 whereby each vehicle is required to send more than 5000
floats per iterate (more than 320000 bits) to their respective
lane leader. Even if all vehicles can communicate in parallel
the physical transmission will take at least 58.7 ms using the
802.11p protocol, which is the current standard for vehicular
communications3. During 33 iterations, at least 1.94 would be
spent communicating to construct ∆z, which is much too high
for practical applications. In the next subsection, we discuss
how the data exchange can be reduced.

B. Reduction of Data exchange per iterate

The main issue is the K2 growth in the number of com-
municated floats on Line 2 of Algorithm 1. This is comes
from the use of second order information, and that the RECA
constraints are enforced at every time instant k. One obvious
remedy is therefore to reduce the time horizon length K
significantly. However, long horizons K are desirable, and an
alternative approach is needed.

To this end, we propose to replace all RECA constraints

pi,k + δij ≤ pj,k(t), k ∈ IK (96)

with constraints on the form

3The time per bit is computed using the formula 50 + 8ceil((ndata bits +
22)/48) µs, reported in [27]. Double precision is assumed.

11

0 10 20 30

10
−10

10
−5

10
0

10
5

Iteration k

τ [k]

||r(z[k], τ [k])||2

(a) Progress Metrics. Dashed line is tolerance.

0 10 20 30

0

0.2

0.4

0.6

0.8

1

Iteration k

αmax,[k]

α[k]

(b) Heterogeneous. The velocity profile of the
heavy vehicle is drawn in bold.

0 5 10 15 20

55

60

65

70

75

Time t s

V
el

o
ci

ty
v
i,
k

k
m

/h

(c) Velocity profiles for a vehicle corresponding to
the solution candidates z[k]i .

Fig. 6: Algorithm progress from a 12-Vehicle Example. In (c), the initial guess is drawn in red and the optimal solution in thick green, with the solution at
intermediate iterates ranging between red and green.

0 0.5 1 1.5 2 2.5

nz = 83456 ×10
4

0

0.5

1

1.5

2

2.5

×10
4

Fig. 7: KKT Matrix M(z) from a 12-vehicle scenario. The large upper left
hand block is Mv , consisting of the sub-blocks Mi, i ∈ N . The smaller
blocks in the lower right corner are Mlj , while MT is barely visible. The
lines demarcates the sections of Mca and Mcv associated with the RECA
constraints on each lane and (barely visible) the SICA constraints

Ai Ai Ai Ai

Lj Lj Lj Lj Lj

C C C C

DTi

Dli Dlj

∆µT

∆µT

∆µlj ∆pi

∆Ti, α
max
i

φi(0)

φ′i(0)

αmax
ljφlj

(0)

φ′lj
(0)

α
αmax

α
αmax

φlj
(α)

φi(α)
r
+
i

r
+
lj

α

α

φlj
(α)

φi(α)
r
+
i

r
+
lj

τ [k+1]

τ [k+1]

SEARCHDIRECTION STEPSIZESELECTION New It.

Fig. 8: Illustration of the communication flows in the problem. The horizontal
direction indicates sequence whereas the vertical differentiates the vehicle,
lane and intersection levels. Here, Dlj collects ΛjΓ−1

j Λ>j and ΛjΓ−1
j γj ,

and with slight abuse of notation we write φ(α) = φ(y + α∆y, s + α∆s)
and similarly for φ′(α), and denote r+ = r(z + α∆z).

pi,k + δij/2 ≤ Bij(k, θij) k ∈ IK (97a)
Bij(k, θij) + δij/2 ≤ pj,k k ∈ IK , (97b)

where Bij(k, θij) is a function of k, parametrized with θij ∈
Rq , and introduce θij , ∀(i, j) ∈ CR as additional decision
variables in the fixed order problem (7). Rather than enforcing

the RECA constraints directly using pi and pj , (97) requires
that Bij(k, θij) is between pi,k and pj,k at all k, whereby
RECA is ensured by selection of the coupling parameter
θij . This circumvents the K2 growth in the number of floats
communicated, and enables practical schemes which relies on
a more realistic data exchange that scales as q2. The price
payed is conservativeness and sub-optimality, as the set of
feasible trajectories is reduced when q < K.

The parametrized RECA coupling can be included in the
distributed scheme in two different ways that give the same
solution. In the following discussion, we notation as shown in
(9), where θi,f and θi,r are coupling parameters of vehicle i’s
forward (97a) and rearward (97b) facing RECA conditions,
respectively. That is, if vehicle j is in front of vehicle i,
we have that θi,f = θj,r = θij . Similarly, we let Bi,f (θi,f)
and Bi,r(θi,r) collect the function Bij(k, θij) for ∀k ∈ IK
in the forward and rearward facing constraints for vehicle
i, respectively, and denote the corresponding multipliers and
slacks (νi,f , s

f
i) and (νi,r, s

r
i). We also let θi = (θi,f , θj,r),

Bi(θi) = (Bi,f (θi,f), Bi,r(θi,r)), νi = (νi,f , νi,f) and
sRECA
i = (si,f , si,r) for each vehicle, collect θij for all vehicle

pairs (i, j) on lane j in θlj , and collect θij for all (i, j) ∈ CR
in θ.

The “Primal” Approach: The first alternative is to handle
the coupling parameters θij at the lane centers, and con-
straints (97a), (97b) on-board the vehicles. The lane cen-
ter variables are in this case zlj = θlj , so that rlj =
∇θljL =

∑
i∈NLj

∇θljBiνi, and the vehicle variables zi

include (νi, s
RECA
i). The information sent to the lane center is

∇θiBi
∂zi
∂νi

>
M−1
i

∂zi
∂νi
∇θiB>i , size (2q)2, (98a)

∇θiBi
∂zi
∂νi

>
M−1
i

∂zi
∂Ti

, size 2qTi, (98b)

∇θiBiνi, size 2q. (98c)

Assuming that both θi,f and θi,r are of the same size q,
this amounts to 2q2 + (3 + 2nTi)q floats on Line 2 of
Algorithm 1. Moreover, the information sent from the lane
center to a vehicle on Line 5 of Algorithm 1 consists of ∆θi

12

Link Location Data per Communication Round #Floats
SEARCHDIRECTION

Ai to Lj A.1,L.2
∂zi

∂pi

>
M−1

i

∂zi

∂pi︸ ︷︷ ︸
(K+1)2

,
∂zi

∂Ti

>
M−1

i

∂zi

∂pi︸ ︷︷ ︸
nTi (K+1)

,
∂zi

∂pi

>
M−1

i (ri +∇ziLc)︸ ︷︷ ︸
K+1

, pi︸︷︷︸
K+1

1
2
K2 +

(
nTi + 9

2

)
K + 3 + nTi

Ai to C A.1, L.2
∂zi

∂Ti

>
M−1

i

∂zi

∂Ti︸ ︷︷ ︸
n2
Ti

,
∂zi

∂Ti

>
M−1

i (ri +∇ziLc)︸ ︷︷ ︸
nTi

, Ti︸︷︷︸
nTi

1
2
n2
Ti

+ 5
2
nTi

Lj to C A.1, L.3 ΛjΓ−1
j Λ>j︸ ︷︷ ︸

n2

Tl
j

, ΛjΓ−1
j γj︸ ︷︷ ︸

n
Tl
j

1
2
n2
T lj

+ 3
2
nT lj

C to Lj A.1, L.4 ∆µT lj︸ ︷︷ ︸
n
Tl
j

nT lj

C to Ai A.1, L.4 ∆µT,i︸ ︷︷ ︸
nTi

nTi

Lj to Ai A.1, L.5 ∆µi,f︸ ︷︷ ︸
K+1

, ∆µi,r︸ ︷︷ ︸
K+1

2K + 2

STEPSIZESELECTION
Ai to Lj A.2, L.2 ∆pi︸︷︷︸

K+1

K + 1

Ai to C A.2, L.2 ∆Ti︸︷︷︸
nTi

, αmax
i , φi(yi, si), φ′i(yi, si) nTi + 3

Lj to C A.2, L.3 αmax
lj

, φlj (p̄j , slj), φ′lj (p̄j , slj) 3

C to Ai, Lj A.2, L.6/15 α, αmax 1
Ai to C A.2, L.8 φi(yi + α∆yi, si + α∆si) 1
Lj to C A.2, L.9 φlj (p̄j + α∆p̄j , slj + α∆slj) 1

TABLE I: Summary of the data in the separate communication instances between the vehicles (Ai), the lane centers (Lj) and the intersection center (C). The
location columns states in which Algorithm (A) and Line (L) the communication takes place. The numbers under the braces denotes the size of the matrices
and vectors involved. Here, nTi is the number of time variables of vehicle i, all assumed to be part of SICA couplings. T l

j collects all time variables for
vehicles on lane j, nT lj

= sizeof(T l
j) and ∆µT lj

is the update direction for the Lagrange multipliers corresponding to the SICA constraints which involve

T l
j . The three final rows consists of the line-search iteration, and can consequently be performed more than once.

θi,f = θij = θj,r

Bi,f (θi,f) = Bj,f (θj,r)

πi,f = πj,r

Ai Aj

(νi,f , si,f)(νi,r, si,r) (νj,r, sj,r) (νj,f , sj,f)

Fig. 9: Illustration of the relationship between the variables introduced to
reduce the communication demands.

(2q floats). Since pi and pj only are coupled indirectly, the
term ∂zi

∂pi
(µi,r − µi,f) is not present in ∇ziLc, and ∆µi,r or

∆µi,f (c.f. (41)) is not sent by the lane-centers.
The “Dual” Approach: The second alternative is to consider

θi,f and θj,r as separate variables, and couple the vehicles
through the constraint

θi,r − θj,f = 0. (99)

In this approach, (θi, νi, s
RECA
i) is included in the vehicle

variables zi while zlj = πlj collects the Lagrange multipliers
πij of the constraints (99), for all couplings on lane j.
Correspondingly, rlj (zv(j), zlj) consists of θi,r − θj,f for all

couplings on lane j, and the information sent from vehicle i
on Line 5 of Algorithm 1 is

∂zi
∂θi

>
M−1
i

∂zi
∂θi

, size (2q)2, (100a)

∂zi
∂θi

>
M−1
i

∂zi
∂Ti

, size 2qTi, (100b)

θi size 2q. (100c)

i.e., the same amount of data as the Primal approach. More-
over, denoting the multiplier associated with vehicle i’s for-
ward and rearward-facing couplings as πi,f and πi,r, respec-
tively, we have

∇ziLc(z) =
∂zi
∂θi,f

πi,f −
∂zi
∂θi,r

πi,r +
∂zi
∂Ti

µi,T . (101)

Consequently, the lane center-to-vehicle communication on
Line 5 of Algorithm 1 consists of ∆πi,f , ∆πi,r, i.e. 2q floats.

Since both approaches have the same communication
footprint, they are both useful alternatives. However, when
Bij(k, θij) is nonlinear in θij terms appear off the main
block-diagonal in ∇2

(y,θ)L. Due to this, positive definiteness
of ∇yL can not be ensured by simply modifying ∇2

yiLi (c.f.
the discussion in Section VI-C). In Dual approach on the other

13

P
o
si

ti
o
n
p

m

Time t s

Fig. 10: Illustration with Bij(k, θij) piece-wise linear with three linear
segments. The trajectories of two vehicles are drawn in gray and the
parameterized function in red, with the round markers being the parameters.

Sub-optimality %

R
el

at
iv

e
Fr

eq
ue

nc
y

Fig. 11: Distribution of the suboptimality resulting from the use of approxi-
mate RECA constraints with a piece-wise linear Bij(k, θij)

hand, all primal variables are at the vehicle level, and block-
wise regularization is possible.

Evaluation and Example: By selecting θij such that q is
small, significant reductions in the amount of data communi-
cated are achieved at the cost of sub-optimality. To evaluate the
cost-benefit trade-off we consider the case shown in Fig. 10,
where Bij(k, θij) is the piece-wise linear function

Bij(k, θij) =
θ

(1)
ij +

θ
(2)
ij −θ

(1)
ij

bK/3c k k ∈ [0, bK/3c]

θ
(2)
ij +

θ
(3)
ij −θ

(2)
ij

bK/3c (k − bK/3c) k ∈ [bK/3c+ 1, 2bK/3c]

θ
(3)
ij +

θ
(4)
ij −θ

(1)
ij

dK/3e (k − 2bK/3c) k ∈ [2bK/3c+ 1,K + 1]

(102)

where the superscript on θij indicates the element (i.e. q =
4). When nTi = 4, no more than 60 floats are sent from
a vehicle to the lane-center on Line 5 of Algorithm 1, which
theoretically will take at least 0.7 ms (see footnote on Page 10),
a reduction of almost 99 %.

To assess the sub-optimality induced, we evaluated 500
scenarios with 4 vehicles per lane (16 in total), using the
models and objective functions of Section VII-A. In all
scenarios the vehicles had an initial speed of 70 km/h but
were initialized at randomly drawn distances between 50 and
150 meters from the intersection and the crossing order was
computed with the heuristic of [20]. As Fig. 11 demonstrates,
the sub-optimality induced by the parametrized constraints is
below 0.1 % in more than half of the cases, with a few worst

0 5 10 15 20

-1

-0.5

0

0.5

V
el

o
ci

ty
D

if
fe

re
n
ce

k
m

/h

Time t s

Fig. 12: Difference between the optimal velocity profiles and those obtained
using the parametrized RECA constraints (97) for a 16 vehicle scenario.

10
−6

10
−4

10
−2

10
0

10
−5

10
0

10
5

15

20

25

30

35

τmin

S
u
b
-o

p
ti

m
al

it
y

%

It
er

at
io

n
s

Fig. 13: Sub-optimality (red) and number of iterations (blue) required to reach
||r(z)|| ≤ ε for different value of τmin.

case instances just over 1%. The small impact is illustrated in
Fig. 12, which shows the difference in the optimal velocity
profiles for a scenario corresponding to the median sub-
optimality (at 0.091%). Interestingly, the difference between
the optimal control commands at k = 0 in the two solutions
is not greater than about 0.013 % of the input range for any
vehicle in this scenario. It is worth noting that this would be
below the quantization error of many actuators, an indication
that the difference might not be noticed in practice. Finally,
we emphasize that these scenarios are “hard” in the sense
that they mandates harsh accelerations for some vehicles.
Even though such scenarios are rare, one can use a more
“flexible” parametrization of Bij to reduce sub-optimality,
e.g. by including additional linear segments or (piece-wise)
polynomials.

C. Reduction of the number of communication rounds

Algorithm 3 is rudimentary and could be augmented in
several ways to converge in fewer iterations. For instance,
instead of the simplistic update rule for τ , one can employ
adaptive strategies or a Predictor-Corrector strategy [25].

Another approach is to prevent τ from becoming too small
but otherwise solve the problem to a sufficiently high accuracy.
In this case, all equality constraints are satisfied to the set
tolerance, and the inequality constraints are satisfied with a
margin. While convergence to the desired tolerance occurs
in fewer iterations, sub-optimality is introduced. However, as
we remarked in the discussion around Fig. 6c, practically
acceptable solutions can be obtained well before τ comes close
to relevant tolerances for ||r(z)||. It is therefore expected that
the practical implications of using τmin significantly larger
than the residual tolerance ε is small. As an example, Fig. 13
shows results from the scenario considered in Section VII-A,
where τ is prevented from being smaller than τmin, for τmin
between 1 and 10−6, with ε = 10−6 for all cases. The sub-
optimality induced and the number iterations required to reach

14

0 5 10 15 20

55

60

65

70

Time t s

V
el

o
ci

ty
v
i,
k

k
m

/h

Fig. 14: Velocity profiles for a vehicle corresponding to the solution satisfying
||r(z)||2 ≤ 10−6 for different values of τmin. For the red trajectory τmin =
1 and for the green trajectory τmin = 10−6. Hues between red and green
correspond to intermediate values.

||r(z)|| ≤ ε is shown in Fig. 13. Note for instance that 23
iterations, are required for τmin = 10−2, compared to 33 in
case of τmin = 10−6, at the expense of less than 1 % sub-
optimality. The optimal velocity profiles for one vehicle for
the different values of τmin is shown in Fig. 14 (c.f. Fig. 6c).
We emphasize that the difference with respect to the optimal
solution is small enough to be practically irrelevant for all but
the highest value of τmin.

IX. CONCLUSION

In this paper we presented a Primal-Dual Interior Point
algorithm for the optimal coordination of automated vehicles
at intersections under a fixed crossing order. The algorithm is
motivated by deficiencies in earlier work, and enables inclu-
sion of complicating rear-end collision avoidance constraints.
We showed that the problem is structured so that the KKT-
system can be solved in steps, where most operations are
parallelized and solved separately for all vehicles and for
all lanes. We demonstrated that step-size selection through
backtracking on a merit function can be distributed under the
same pattern. To reduce the data exchange, we proposed a
parametrized and slightly conservative re-formulation of the
rear-end collision avoidance constraints, and demonstrated its
merits through randomized evaluation.

We are currently investigating formulations of the coordina-
tion problem that allows removal of the restrictive assumption
of full CAV penetration. We also aim at extending our ap-
proach to scenarios with several connected intersections.

REFERENCES

[1] C. Englund, L. Chen, J. Ploeg, E. Semsar-Kazerooni, A. Voronov, H. H.
Bengtsson, and J. Didoff, “The grand cooperative driving challenge
2016: boosting the introduction of cooperative automated vehicles,”
IEEE Wireless Communications, vol. 23, no. 4, pp. 146–152, August
2016.

[2] J. Rios-Torres and A. A. Malikopoulos, “A survey on the coordination
of connected and automated vehicles at intersections and merging at
highway on-ramps,” IEEE Transactions on Intelligent Transportation
Systems, vol. 18, pp. 1066–1077, 2017.

[3] R. Hult, G. R. Campos, E. Steinmetz, L. Hammarstrand, P. Falcone,
and H. Wymeersch, “Coordination of cooperative autonomous vehicles:
Toward safer and more efficient road transportation,” IEEE Signal
Processing Magazine, vol. 33, no. 6, pp. 74–84, Nov 2016.

[4] K. Dresner and P. Stone, “A Multiagent Approach to Autonomous
Intersection Management,” Journal of Artificial Intelligence Research,
vol. 31, no. 1, pp. 591–656, Mar. 2008.

[5] H. Kowshik, D. Caveney, and P. R. Kumar, “Provable systemwide safety
in intelligent intersections,” IEEE Transactions on Vehicular Technology,
vol. 60, no. 3, pp. 804–818, March 2011.

[6] J. Lee and B. Park, “Development and evaluation of a cooperative
vehicle intersection control algorithm under the connected vehicles
environment,” IEEE Transactions on Intelligent Transportation Systems,
vol. 13, no. 1, pp. 81–90, March 2012.

[7] K. Kim and P. R. Kumar, “An mpc-based approach to provable system-
wide safety and liveness of autonomous ground traffic,” IEEE Transac-
tions on Automatic Control, vol. 59, no. 12, pp. 3341–3356, Dec 2014.

[8] A. Katriniok, P. Kleibaum, and M. Josevski, “Distributed model predic-
tive control for intersection automation using a parallelized optimization
approach,” IFAC-PapersOnLine, vol. 50, no. 1, pp. 5940 – 5946, 2017,
20th IFAC World Congress.

[9] A. Britzelmeier and M. Gerdts, “Non-linear model predictive control
of connected, automatic cars in a road network using optimal control
methods,” IFAC-PapersOnLine, vol. 51, no. 2, pp. 168 – 173, 2018, 9th
Vienna International Conference on Mathematical Modelling.

[10] A. A. Malikopoulos, C. G. Cassandras, and Y. J. Zhang, “A decentralized
energy-optimal control framework for connected automated vehicles at
signal-free intersections,” Automatica, vol. 93, pp. 244 – 256, 2018.

[11] P. Tallapragada and J. Cortés, “Coordinated intersection traffic manage-
ment,” IFAC-PapersOnLine, vol. 48, no. 22, pp. 233 – 239, 2015, 5th
IFAC Workshop on Distributed Estimation and Control in Networked
Systems NecSys 2015.

[12] L. Riegger, M. Carlander, N. Lidander, N. Murgovski, and J. Sjöberg,
“Centralized mpc for autonomous intersection crossing,” in 2016 IEEE
19th International Conference on Intelligent Transportation Systems
(ITSC), Nov 2016, pp. 1372–1377.

[13] J. Shi, Y. Zheng, Y. Jiang, M. Zanon, R. Hult, and B. Houskal,
“Distributed control algorithm for vehicle coordination at traffic inter-
sections,” in 2018 European Control Conference (ECC), June 2018, pp.
1166–1171.

[14] M. Kneissl, A. Molin, H. Esen, and S. Hirche, “A feasible mpc-
based negotiation algorithm for automated intersection crossing *,” in
European Control Conference (ECC), 06 2018, pp. 1282–1288.

[15] C. Bali and A. Richards, “Merging vehicles at junctions using mixed-
integer model predictive control,” in European Control Conference
(ECC), 06 2018, pp. 1740–1745.

[16] R. Hult, M. Zanon, S. Gros, and P. Falcone, “Primal decomposition of
the optimal coordination of vehicles at traffic intersections,” in 2016
IEEE 55th Conference on Decision and Control (CDC), Dec 2016, pp.
2567–2573.

[17] R. Hult, M. Zanon, S. Gros, and P. Falcone, “Optimal coordination
of automated vehicles at intersections: Theory and experiments,” IEEE
Transactions on Control Systems Technology, pp. 1–16, 2018.

[18] ——, “Energy-optimal coordination of autonomous vehicles at intersec-
tions,” in 2018 European Control Conference (ECC), June 2018, pp.
602–607.

[19] R. Hult, M. Zanon, S. Gros, and P. Falcone, “Optimal coordination of
automated vehicles at intersections with turns,” in To be presented at
the European Control Conference (ECC), 2019.

[20] R. Hult, M. Zanon, S. Gras, and P. Falcone, “An miqp-based heuristic
for optimal coordination of vehicles at intersections,” in 2018 IEEE
Conference on Decision and Control (CDC), Dec 2018, pp. 2783–2790.

[21] R. Hult, M. Zanon, S. Gros, H. Wymeersch, and P. Falcone,
“Optimization-based coordination of connected, automated vehicles at
intersections,” submitted to Vehicle System Dynamics, 2019.

[22] S. K. Pakazad, A. Hansson, M. S. Andersen, and I. Nielsen, “Distributed
primal-dual interior-point methods for solving tree-structured coupled
convex problems using message-passing,” Optimization Methods and
Software, vol. 32, no. 3, pp. 401–435, 2017.

[23] J. Gondzio and A. Grothey, “Parallel interior-point solver for structured
quadratic programs: Application to financial planning problems,” Annals
of Operations Research, vol. 152, no. 1, pp. 319–339, Jul 2007.

[24] K. Dresner and P. Stone, “Multiagent traffic management: a reservation-
based intersection control mechanism,” in Proceedings of the Third
International Joint Conference on Autonomous Agents and Multiagent
Systems, 2004. AAMAS 2004., July 2004, pp. 530–537.

[25] J. Nocedal and S. J. Wright, Numerical Optimization, 2nd ed. New
York, NY, USA: Springer, 2006.

[26] R. Quirynen, M. Vukov, M. Zanon, and M. Diehl, “Autogenerating
microsecond solvers for nonlinear mpc: A tutorial using
acado integrators,” Optimal Control Applications and Methods,
vol. 36, no. 5, pp. 685–704, 2015. [Online]. Available:
https://onlinelibrary.wiley.com/doi/abs/10.1002/oca.2152

[27] J. A. Fernandez, K. Borries, L. Cheng, B. V. K. V. Kumar, D. D. Stancil,
and F. Bai, “Performance of the 802.11p physical layer in vehicle-
to-vehicle environments,” IEEE Transactions on Vehicular Technology,
vol. 61, no. 1, pp. 3–14, Jan 2012.

