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Abstract—Fundamental information-theoretic concepts are ex-
plained for nonspecialists, with emphasis on their practical usage.
The notions of a “FEC threshold” and a “nonlinear Shannon
limit” are critically reviewed, highlighting their limitations and
possible alternatives.

Index Terms—Achievable information rate, bit error rate,
block error rate, channel capacity, FEC limit, FEC threshold,
fiber-optic communications, forward error-correction coding,
generalized mutual information, nonlinear Kerr effect.

I. INTRODUCTION

By adding a controlled amount of redundancy to a trans-
mitted digital signal, and checking this redundancy in the
receiver, transmission errors can be corrected. This is the
idea behind forward error correction (FEC) coding, which is
an integral part of almost any digital communication system,
including fiber-optic systems. A fundamental question is how
much FEC overhead (OH) is required to guarantee a certain
performance. Claude E. Shannon found in 1948, somewhat
counter-intuitively, that error-free performance (in the sense
of arbitrarily small bit or block error rate) can be achieved
over any noisy channel, provided that data is arranged in
long enough blocks and that ideal FEC with sufficient OH is
applied to each block [1]. In the limit of infinite block length,
the achievable bit error rates (BER) and block error rates
(BLER) are shown in Fig. 1 as functions of the information
rate (which depends on the OH). The threshold rate, below
which error-free performance is achievable, is defined as the
channel capacity C. Interestingly, the regions have exactly
the same shape for any channel [2, p. 195], although the
channel capacity may differ. These results and their far-
reaching extensions, which constitute the field of information
theory, apply also to nonlinear media such as optical fibers,
although they were conceived much later.

II. THE FIBER NONLINEARITY AND ITS IMPLICATIONS

The reference model for the propagation of light in optical
fibers is the nonlinear Schrödinger equation (NLSE) [3, p. 50]
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Fig. 1. Achievable bit and block error rates as a function of information rate,
at asymptotically large block length. Any BER to the left of the solid green
curve can be achieved for any communication channel, and so can any BLER
to the left of the dashed blue curve. The capacity C is the highest rate for
which an arbitrarily small BER or BLER is achievable.

(or its two-dimensional version, the Manakov equation, in
the polarization-multiplexed case [4]). Besides attenuation and
dispersion, the NLSE includes Kerr nonlinearity, a peculiar
characteristic of the optical fiber channel which determines a
rotation of the phase of the optical signal proportional to its
instantaneous intensity. According to the split-step method [3,
Ch. 2], the NLSE channel can be practically represented by
dividing the fiber link into many small steps, over which the
effects of dispersion and Kerr nonlinearity are split, as shown
in the green block in Fig. 2. Noise from optical amplifiers is
also introduced at every step (for distributed amplification).

With no or negligible Kerr nonlinearity (e.g., at low power),
the classical theory of additive white Gaussian noise (AWGN)
channels could be essentially applied, and capacity would
depend on the signal-to-noise ratio (SNR) through the well
known log(1 + SNR) formula [1]. With Kerr nonlinearity, on
the other hand, the problem becomes very complicated: signal
and noise interact nonlinearly and non-instantaneously during
propagation, giving rise to non-Gaussian channel statistics,
long temporal correlations (memory), and spectral broadening.
The situation gets even more complicated in wavelength-
division-multiplexed (WDM) systems, in which nonlinear in-
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Fig. 2. Schematic representation of an optical fiber system, showing the split-step model of the NLSE channel, including dispersion, nonlinearity (NL), and
noise, and its discrete-time version seen by the TX and RX.

teractions take place also between WDM signals (not repre-
sented in Fig. 2 for simplicity). For these reasons, channel
statistics cannot be analytically evaluated nor reliably esti-
mated numerically, so that the capacity of the optical fiber
at high power is essentially unknown.

An optical fiber communication system can be conveniently
represented by the model depicted in Fig. 2. A sequence of
information bits (the message) is processed by a FEC encoder,
which adds some redundant bits needed for error correction,
and mapped to a sequence of symbols x = (x1, . . . , xN )
by a digital modulator; symbols x are then encoded in a
waveform x(t) by digital signal processing (DSP) and a
digital-to-analog converter (DAC) (e.g., a linear modulator);
x(t) propagates through the NLSE channel; the corresponding
output waveform y(t) is filtered and sampled by an analog-to-
digital converter (ADC) and DSP block to obtain the output
samples y = (y1, . . . , yN ); the output samples are finally
demodulated and decoded to detect the transmitted symbols,
correct for possible errors, and eventually extract the message.

From an information-theoretical perspective, the system can
be first studied at a higher level by considering the three
light blue blocks highlighted in Fig. 2: the transmitter (TX),
comprising the FEC encoder and digital modulator and char-
acterized by the distribution p(x); the discrete-time channel,
comprising the DAC, NLSE channel, and ADC and character-
ized by the conditional distribution p(y|x); and the receiver
(RX), consisting of the digital demodulator and FEC decoder.
Since the actual channel statistics p(y|x) are unknown, the
RX makes decisions based on a possibly mismatched channel
law q(y|x).1

A relevant quantity in this case is the achievable information
rate (AIR) [5], [6]

Iq(X;Y ) = lim
N→∞

1

N
E

{
log

q(y|x)
q(y)

}
(1)

≈ 1

N
log

q(y|x)
q(y)

[bit/symbol] (2)

where q(y) =
∫
p(x)q(y|x)dx, and achievable means that, by

using an ideal FEC code (in the sense of the previous section),
it is possible to encode Iq(X;Y ) information bits per symbol
on x, transmit them through the channel of Fig. 2, and reliably

1In this representation, the DAC and ADC, as well as some DSP operations
aimed at simplifying the channel model, are formally included in the discrete-
time channel, though usually physically located in the TX or RX.

(with arbitrarily low error probability) decode them from y by
using a receiver optimized for q(y|x). While the expectation
in (1) should be computed with respect to the actual joint
statistics p(y|x)p(x), the approximation (2)—based on the
asymptotic equipartition property [7, Ch. 3] and accurate
for large N—can be readily evaluated both in numerical
simulations and experiments without any knowledge of the
actual channel statistics. In practice, the knowledge of p(y|x)
is not required either to compute (2) or to design a system that
can achieve it. In the context of optical fiber communications,
the AIR has been explicitly used as a practical performance
metric, both in linear (e.g., [8]–[10]) and nonlinear scenarios
(e.g., [11]–[14]).

Based on (1)–(2), the problem of capacity evaluation can
be practically subdivided into three parts: the computation
of the AIR (2) for given p(x) and q(y|x); the optimization
of (2) over q(y|x), which can also be regarded as a chan-
nel modeling/estimation problem; and the optimization over
p(x), which corresponds to an optimization of the modulation
format. The maximum over q(y|x), which always occurs for
q(y|x) = p(y|x) [5], is called the mutual information, and the
maximum mutual information over p(x), which can only be
computed numerically except for very simple channels such as
the AWGN, is the channel capacity C, which was conceptually
defined in the previous section.

Within this framework, any suboptimum choice of p(x) and
q(y|x) leads to an achievable rate and, thus, to a capacity lower
bound. For instance, a typical choice is that of optimizing the
input distribution and detection metric for an AWGN channel,
i.e., drawing independent and identically distributed circularly
symmetric Gaussian input symbols x and assuming that the
Kerr nonlinearity can be accounted for in q(y|x) by simply
increasing the variance of the AWGN affecting the output
symbols y. This choice, supported by the Gaussian noise
model [15] and made (or practically entailed), for instance, in
[16], [17], yields an AIR that has the same formal expression
as the AWGN channel capacity, log(1 + SNR), but with an
SNR that, rather than increasing unboundedly with power as in
true AWGN channels, has a finite maximum at some optimum
power, after which it decreases again due to Kerr nonlinearity.
The corresponding maximum AIR, often referred to as nonlin-
ear Shannon limit [18], has been sometimes overinterpreted as
a true capacity limit but, more rigorously, should be considered
just as a capacity lower bound achievable by conventional (i.e.,
optimized for the AWGN channel) systems [19]. In fact, better
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Fig. 3. AIRs for a five-channel WDM system over a 1000 km link with ideal
distributed amplification and different detection metrics.

choices of p(x) and q(y|x) might yield higher AIRs.
As an example, Fig. 3 shows the AIR as a function of the

launch power for a five-channel Nyquist-WDM system over
1000 km of standard fiber with ideal distributed amplification
(simulated by the split-step method as shown in Fig. 2),
a Gaussian input distribution p(x), and different detection
metrics q(y|x): AWGN after dispersion compensation (DC)
(neglecting nonlinearity); AWGN after digital backpropagation
(DBP) (accounting for deterministic intra-channel nonlinear-
ity); and AWGN plus Wiener phase noise (PN) after DBP
(accounting also for PN caused by inter-channel nonlinearity).
The second and third metrics, being better matched to the
true channel statistics, provide an AIR gain of about 0.4 and
1.1 bit/symbol, respectively. AIR gains based on different
choices of p(x) and/or q(y|x) have been reported for various
scenarios (single-channel or WDM, distributed or lumped
amplification, single- or dual-polarization, . . . ) [14], [19]–[22].

Even the very existence of an AIR maximum at some finite
optimum power is related to the suboptimum choice of p(x)
and q(y|x), as channel capacity is a monotonic function of
average power [23]. In fact, the unbounded capacity (growing
to infinity for infinite power) of many simplified optically-
related nonlinear channels has been demonstrated [19], [24],
[25].

III. POST-FEC BER PREDICTION

In the development and optimization of optical commu-
nication systems, it is common to separate the design and
evaluation of the FEC code from the rest of the system. The
signal quality is estimated after the optical receiver and DSP
but before FEC decoding, and known properties of the code
are utilized off-line to predict the performance after decoding.
This is because the BER after FEC decoding, the so-called
post-FEC BER, is typically in the order of 10−15 or less, and it
is very resource-demanding to estimate such low BER values.

The most common signal quality metric for this purpose is
the pre-FEC BER. The pre-FEC BER p required to achieve
a certain post-FEC BER is called the FEC threshold or
FEC limit. Such FEC thresholds have been computed for
a variety of codes assuming a binary symmetric channel,

which is a discrete-time, binary channel where bit errors occur
independently and with equal probability p for zeros and
ones. For this channel, FEC thresholds have been estimated
by dedicated FEC-decoding hardware, Monte-Carlo simulation
data extrapolated to low post-FEC BERs, or analytic approx-
imations. FEC thresholds of some selected codes that have
been recommended for use in optical communication systems
are listed in Table I, along with their sources.

In optical experiments and simulations, it is very common
to define acceptable (i.e., almost error-free) performance using
a FEC threshold. In most literature, however, FEC thresholds
are given without a reference, or with an incorrect one. This
unfortunate practice has led to numerous questionable claims,
in terms of thresholds that cannot be validated and in some
cases contradict other published thresholds for the same code.
As an illustrative example, the presently most popular FEC
threshold, which is 3.8 · 10−3, was used in at least 44 papers
at the Optical Fiber Communication Conference (OFC) 2017
alone, but not once with a correct reference. Three times at
OFC 2017, and many more times in other publications, it was
incorrectly attributed to [28, App. I.9], where this particular
threshold does not appear. Similar error propagation can be
observed among references for other FEC thresholds.

When applied in practical communication systems, the
validity of FEC thresholds relies on two key assumptions:
hard decisions (HD) and independent, uniform pre-FEC bit
errors. Otherwise the channel is statistically different from the
binary symmetric channel for which the FEC performance was
derived, and the performance cannot be guaranteed. We will
now briefly discuss these two assumptions in turn.

HD means that the input to the FEC decoder is bits and
nothing else. No information about the reliability of these bits
is passed from the demodulator. Therefore the FEC thresholds
in Table I, which were all derived under this assumption, are
sometimes more precisely called HD-FEC thresholds. How-
ever, p cannot be used for precise post-FEC BER predictions
in systems with soft decision (SD) decoding [37]. For this
reason, so-called SD-FEC thresholds should be avoided, or
at least used with caution. They are approximations only,
with unknown accuracy. Two systems, operating on different
channels or using different modulation, may have the same
pre-FEC BER p but different soft metrics (probabilities that the
pre-FEC bits are correctly detected). Such systems will have
the same post-FEC BER if HD-FEC is applied but different
in case of SD-FEC.

If the pre-FEC BER is unreliable for post-FEC BER pre-
diction in SD systems, which metric should be used instead?
The mutual information was proposed as a metric in [38]
and the generalized mutual information (GMI), defined as
the sum of bit-wise mutual informations2 was proposed in
[37]. Of these metrics, the mutual information provides the
most accurate prediction in systems with nonbinary coding
and symbol-wise hard or soft decisions [40], whereas the GMI

2This definition of GMI is the dominating one in optical communications,
whereas “GMI” often denotes a more general quantity in the information-
theoretic literature [39, Ch. 4].



TABLE I
HARD-DECISION FEC THRESHOLDS OF CERTAIN CODES RECOMMENDED FOR OPTICAL COMMUNICATIONS

OH Code type Source post-FEC BER p

2.7% Reed–Solomon (RS) (528,514) “KR4” [26]a 10−15 2.18 · 10−5

5.8% RS(544,514) “KP4” [26]a 10−15 2.26 · 10−4

6.7% RS(255,239) [27]a 10−15 8.27 · 10−5

6.7% Bose–Chaudhuri–Hocquenghem (BCH)+BCH [28, App. I.3] 10−15 3.15 · 10−3

6.7% BCH+RS [28, App. I.4] 10−15 2.17 · 10−3

6.7% RS(2720,2550) [28, App. I.8] 10−15 1.10 · 10−3

6.7% Proprietary “P-FEC” [29]–[32] 10−15 − 10−20 3.84 · 10−3

6.7% BCH+BCH [33]b,c 10−15 4.42 · 10−3

7% (6.7%?) Continuously interleaved BCH [34] 10−15 4.52 · 10−3

20% Low-density parity-check (LDPC) convolutional [35]b 10−15 2.7 · 10−2

24.5% Convolutional+RS [28, App. I.2] 10−15 5.20 · 10−3

6.7− 24.3% BCH+BCH [28, App. I.7] 10−15 1.30 · 10−3 − 1.30 · 10−2

6.25− 33.33% Staircase [36]c 10−15 4.70 · 10−3 − 2.24 · 10−2

aThe pre-FEC BER p was estimated by the accurate approximation in [28, App. I.8.2], assuming bounded-distance decoding.
bThe pre-FEC BER was calculated from the given Q factor in dB as p = (1/2)erfc(10Q/20/

√
2).

cThe pre-FEC BER or Q factor was extrapolated from simulation results at significantly higher post-FEC BERs, and may therefore be inaccurate.

gives better prediction in systems with bit-wise soft decisions
[37]. Unfortunately, no GMI thresholds for specific FEC codes
at low post-FEC BERs such as 10−15 have yet been published,
but GMI thresholds at higher post-FEC BERs are available,
suitable for use in concatenated FEC systems based on an
inner SD decoder and and outer HD decoder [37], [40]. The
GMI can also be interpreted as an achievable rate with ideal
FEC coding.

To address the second key assumption, that bit errors
occur independently, a large interleaver is typically applied
(or assumed) after the FEC encoder, and a corresponding
deinterleaver before the FEC decoder. Otherwise the input bits
(and their corresponding soft metrics) to the decoder will be
correlated. This correlation may come from several sources,
such as residual channel memory, transceiver imperfections,
cycle slips in the phase recovery, multilevel modulation, and/or
an inner FEC code. These effects typically cause error bursts
in the pre-FEC bit stream, which may affect the FEC decoder
performance either beneficially or adversely, depending on the
type of code. In either case, the performance predicted based
on the binary symmetric channel will be invalid. To achieve
full decorrelation, the interleaver length should be equal to the
burst length times the code length.

An important aspect that is often overlooked is that if the
FEC code is fixed, and the rest of the system is designed
for optimum performance at the corresponding FEC or GMI
threshold, then the overall system will almost surely perform
suboptimally [41]. A significantly better performance may be
obtained by considering a different FEC OH (and hence a
different threshold) and reoptimizing other system parameters.
For example, there exists a fundamental trade-off between
modulation order and FEC OH, which is not exploited if the
code is fixed to some ad-hoc value (such as 6.7%). It is quite
possible that the overall throughput is increased if the OH
is increased (from say 6.7% to 20% or even higher), since

the improved error-correction capability may enable a higher-
order modulation format. Similar trade-offs exist between the
OH and other important system parameters, such as baudrates,
WDM spacing, DSP algorithms, amplifier spacing, launch
powers, and many others.

IV. DISCUSSION AND RECOMMENDATIONS

We have introduced some information-theoretic concepts
and tools useful for the design and analysis of optical fiber
systems. The widespread notion of a so-called nonlinear Shan-
non limit for optical fibers and its more rigorous interpretation
as an AIR with mismatched decoding have been discussed.
The problem of predicting the post-FEC BER from pre-FEC
metrics has been also considered, discussing the use and
validity of different predictors for HD and SD decoding, such
as the pre-FEC BER and the GMI. To conclude, we give
the following recommendations to optical communications
engineers.
• When the channel statistics are unknown or too compli-

cated, as for nonlinear optical fibers, use the AIR with
mismatched decoding as a figure of merit.

• Consider the nonlinear Shannon limit just as a capacity
lower bound, achievable by systems optimized for the
AWGN channel.

• Keep looking for improved transmission and detection
strategies, as the capacity limit of optical fiber systems is
still unknown.

• Use Gaussian models and approximations with caution:
they provide accurate results for conventional systems,
but may lead to overlooking potential AIR gains and
underestimating channel capacity.

• To predict the post-FEC performance of systems with
HD-FEC decoding, use the pre-FEC BER and compare
it with HD-FEC thresholds whose origin and correctness
can be validated in references. Do not copy someone



else’s reference for a threshold without checking that the
claimed threshold is actually there.

• Use the pre-FEC GMI to predict the post-FEC perfor-
mance of systems with binary SD-FEC decoding.

• Consider multiple thresholds to optimize the FEC OH
(code rate), which may significantly improve the system
performance.

• Use (or assume) a large interleaver—otherwise, post-
FEC performance predictions based on FEC thresholds
or other pre-FEC metrics may be very inaccurate.
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