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Abstract

Vehicle automation can make driving safer; it can compensate for human
impairments that are recognized as the leading cause of crashes. Vehicle
automation has become a central topic in transportation and human factors
research. This thesis addresses some unresolved challenges on how to guide
attention for safe use of automation and on how to improve the design of
automation to account for humans’ abilities and limitations. Specifically, this
thesis investigated how driver attention changed with automation and the driving
situation. The objective was to inform the design of vehicle systems and develop
design knowledge to support safe driving. A novelty of this thesis was in the use
of real-world driving data and Bayesian methods (improved statistical modeling
techniques). The analysis of driver behavior was based on data collected in
naturalistic driving studies (to study the effect of assistive automation) and
in a simulator experiment (to study the effect of unsupervised automation).
Driver behavior was examined with measures of visual and motor response,
together with contextual information, on the driving situation. The results
show that assistive automation affected driver attention in real-world driving.
In general, drivers devoted less attention at the forward path with automation
than without. However, driver attention was sensitive to the presence of other
traffic and changes in illumination—variations in the surrounding environment
that increased the uncertainty of the driving situation—and it was elicited by
visual, audio, and vestibular-kinesthetic-somatosensory information (perceptual
cues) that alerted to an impending conflict. Driver response to a critical
situation with unsupervised automation had a reflexive component (glance on-
path, hands on wheel, and feet on pedals) and a planned component (decision
and execution of evasive maneuver). Warnings primarily alerted attention
rather than triggering an intervention. Expectation, which changed over time
depending on experience, affected driver response substantially. This thesis
found that the safety implications of diverting attention away from the driving
situation need to be interpreted in relation to the characteristics and criticality
of the driving situation (driving context) and need to consider the reduction
of risk exposure due to automation (e.g., headway maintenance and collision
warnings). Drivers were, for example, successful at changing their behavior in
the presence of other vehicles and in different light conditions independently of
automation. If drivers are not attentive at critical points, warnings are effective
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for triggering a quick shift of attention to the driving task in preparation to an
evasive action. The results improved on those of earlier studies by providing a
comprehensive assessment of driver attentional response in routine driving and
critical situations. The results can support evidence-based recommendations
(inattention guidelines) and be used as a reference for driver modeling and
vehicle systems development.

Keywords. Attention, visual behavior, response process, vehicle automation, natural-
istic data, driving simulator data, human factors.
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Popular abstract

Automated vehicles promise to make driving safer and more comfortable. They
can compensate for human limitations that may cause crashes. Automated
vehicles can also reduce a driver’s effort of keeping the vehicle in the lane and
at safe distance from other vehicles. Today’s vehicles have assistive automation
systems that use automation to keep a vehicle within the lane and from driving
too close to the vehicle in front. These systems, however, do not work at all
times, and require constant supervision by the driver. An important question
is then whether assistive automation may give drivers the false impression
that their attention to the road is no longer important. In fact, if automation
fails when the driver is not attentive, a crash may happen. The aim of our
research was to make automated vehicles safer. We did so by studying the
theory of attention, which explains how humans perceive and interact with the
environment, and by measuring how drivers behave in automated vehicles. We
found that drivers looked less to the road ahead when the vehicle had assistive
automation compared to when the vehicle was manually driven. This result
seems to suggest that automation may compromise safety. However, drivers were
successful at changing their behavior according to the context (e.g., presence of
other vehicles, and light conditions) independently of automation. Our findings
indicate that today’s automated systems may not reduce drivers’ ability to
react to hazards on the road. We described our findings with mathematical
models that will help future automated vehicles to be safer. The novelty of
our research is in the use of real-world driving data and new methods for data
analysis.
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1. Introduction

Vehicle automation is advancing rapidly. Assistive automation is already avail-
able in the market as a combination of adaptive cruise control (ACC) and
lane centering system (SAE, 2018). Unsupervised automation, which may
revolutionize driving, is being tested on public roads (California Department of
Motor Vehicles, 2018).

In addition to reducing driving demand and increase comfort, automation has
enormous potential to enhance safety. Automation can compensate for drivers’
errors (e.g., due to inattention), which have been identified as the main reason
for crashes (Singh, 2015). Ironically, automation could as well compromise
safety because of unintended behavioral effects (Bainbridge, 1983; Merat et al.,
2018; Seppelt and Victor, 2016; Victor et al., 2018). Vehicles equipped with
assistive automation require constant supervision (SAE, 2018): if the system
reaches its operational limits, or fail because of sensors’ malfunction, the driver
needs to intervene quickly—with or without notification. Unfortunately, a
large body of research questioned drivers’ ability to resume control if needed
(de Winter, Happee, Martens, and Stanton, 2014; Merat et al., 2018). One
reason is the poor monitoring skills, which may further degrade as automation
evolves and failures becomes rarer (out-of-the-loop concept; J. D. Lee, Wickens,
Liu, and Boyle, 2017; Merat et al., 2018). In fact, if automation handles most
of the driving situations smoothly, drivers may believe that automation can
handle any situations (Victor et al., 2018).

Along with increasing interest in advancing vehicle automation, there has been
an increasing interest in capturing what are the repercussions on driver behavior
(J. D. Lee, 2008). The effect of vehicle automation has become a major—and
controversial—topic of research. If the interference of automation on human
performance cannot be solved, it must be balanced on whether automation has
a positive net-benefit compared to manual control (Seppelt and Victor, 2016;
Victor et al., 2018).

Research on automation has been mostly experimental (e.g., simulator studies),
because data on real-world driving were scarce. Driving simulators facilitate
the evaluation of emerging technology at the cost of low ecological validity, but
the decisive test of any technology is the real-word application. Thus, further
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research on the real-world effect of automation was needed. Part of the novelty
of this thesis comes from the unique opportunity to use real-world driving data
collected as part of two naturalistic studies, which include manual and assistive
automation driving: EuroFOT (Kessler et al., 2012) and EyesOnRoad (Karlsson
et al., 2016).

Earlier analyses on EuroFOT stated again the controversial effect of automation
on safety. It was found that ACC (sustained assistance of the longitudinal
vehicle control) reduced the exposure to critical situations by maintaining a
safe headway to the traffic ahead, but, in routine driving, drivers tended to
monitor the driving situation less compared to manual driving (Malta et al.,
2012). The effect of ACC can give insights on how automation, albeit with
limited functionality, influences driver behavior. Unfortunately, real-world data
collected with vehicles equipped with more sophisticated automation are yet to
be available, but on-road naturalistic studies are planned or ongoing (Fridman
et al., 2018).

As the performance of automation depends on the interaction between the
human and the system (J. D. Lee et al., 2017), several human factors challenges
arise: What are the effects of automation on driver’s attention to the driving
task? What are the safety implications of those changes? Are drivers prompt to
respond to critical situations? How can attention be elicited in situations that
require an intervention by the driver? This thesis will address these questions
by looking directly at the human. The overall objective is to inform the design
of vehicle systems that accounts for human perceptual and cognitive abilities to
promote safe driving.

For example, with assistive automation, the human is responsible, at any
time, for safe operation of the vehicle (SAE, 2018). Therefore, humans need
to monitor the driving situation (i.e., the surrounding environment and the
system) to recognize hazards and react upon them. As humans are notoriously
poor at sustained monitoring tasks (Merat et al., 2018), there may be a need
for in-vehicle systems to assess whether the monitoring task is appropriate for
the context at hand, otherwise alerts could be triggered to inform drivers of
their deteriorated performance. Despite an increase interest on the subject,
and few limited solutions available in the market, the development of real-time
systems to evaluate monitoring behavior remains a complex challenge. In fact,
monitoring (and its quantification and assessment) has shown to be an elusive
concept (Merat et al., 2018). However, a key to understand monitoring may
be the concept of attention. Attention is closely related to monitoring task,
being a perceptual and cognitive mechanism that guides actions to interact
with the surrounding environment. Attention will be the core concept of this
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thesis and it will guide the interpretation of the findings from the empirical
research.

There is a large and growing body of literature on attention, in driving and
other contexts. The purpose of the forthcoming chapter 3 is to summarize the
topic, based on research on cognitive psychology and neuroscience, and to apply
this knowledge to study driving behavior. Section 3.1 introduces the concept
of attention, which is essential to perceive, comprehend, and interact with the
environment. Section 3.1 emphasizes that attention is not a passive information
processing mechanism: people are actively engaged in the perception-action
cycle, which is driven by bottom-up stimuli and top-down goals. Moreover,
section 3.1 highlights the primary role of visual perception for interacting with
the environment and it indicates that visual behavior is a strong indicator for
what people attend to. Section 3.2 narrows the scope of what was described
in section 3.1 to driving, an activity that heavily relies on vision. Section 3.2
introduces why visual behavior is crucial for driving and it emphasizes that
driving safely requires appropriate allocation of attention. Section 3.3 explains
that the appropriate allocation of attention depends on the driving context.
Bottom-up stimuli and top-down goals interplay in detecting relevant changes in
the driving context and interact with it. Section 3.3 defines driving context as
the interaction between components in the driver-vehicle-environment system.
Section 3.4 applies the concepts presented in section 3.3 to the car-following
scenario, one of the most common driving situation. This example reveals the
complex dependencies in the driver-vehicle-environment system and confirms
the competition between bottom-up stimuli and top-down goals to maintain a
safe headway to the vehicle in front. The car-following scenario also illustrates
how automation can affect driver behavior (and its interpretation) compared to
manual driving.
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2. Objectives

This PhD project was devoted to promoting a safe interaction between the
driver and the automated vehicle. The general objectives of this project were
a) to advance the understanding of driver’s behavior and performance in the
context of vehicle automation and b) to inform the design of vehicle systems
that support appropriate driver behavior, by acknowledging perceptual and
cognitive abilities.

The main research questions addressed in this thesis were:

1. What are the effects of automation on drivers’ attention to the driving
task?

2. What are the safety implications of those changes?

3. Are drivers prompt to respond to critical situations?

4. How can attention be elicited in situations that require an intervention by
the driver?
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3. Background

3.1. Visual attention

Attention is the mechanism to select and prioritize aspects important for carrying
out an activity, among a range of information in the environment coming from
sensory inputs (Carrasco, 2011; Desimone and Duncan, 1995; Findlay and
Gilchrist, 2003; E. E. Smith and Kosslyn, 2014a).

Vision dominates our experience. It has a crucial role for planning and executing
a variety of daily tasks, for example driving (Goodale, 2011; Land, 2006, 2009).
Vision enables us to perceive the environment and guide motor actions to
interact with it (Carrasco, 2011; Goodale, 2011; Land, 2006, 2009; E. E. Smith
and Kosslyn, 2014b, 2014c).

Visual attention is the process of allocating visual system’s resources (the eye
and the cortex) to a location informative for interacting with the environment
(Carrasco, 2011; Corbetta and Shulman, 2002; Goodale, 2011). Visual attention
can be allocated by moving the eyes to an area of interest (overt attention),
or by attending to an area in the visual periphery without moving the eyes
(covert attention; Carrasco, 2011; Corbetta and Shulman, 2002). Overt and
covert attention are integral part of the visual attention process. The covert
attention allows for monitoring the visual field, and it usually precedes the shift
of overt attention towards a new location of interest (Carrasco, 2011; Corbetta
and Shulman, 2002; Goodale, 2011; Land, 2006, 2009; Nobre, Gitelman, Dias,
and Mesulam, 2000). The resolution of the visual field, in fact, is not uniform.
Because of the anatomy of the retina, only the central part of the visual
field (fovea) is capable of high resolution (Carrasco, 2011; Land, 2006; E. E.
Smith and Kosslyn, 2014a, 2014c). The fovea is a small area of the retina
where there is a concentration of the cone cells; the visual resolution rapidly
decreases with eccentricity from the fovea toward the periphery, where the
rod cells are more numerous (Carrasco, 2011; Land, 2006; E. E. Smith and
Kosslyn, 2014c). Some information can be extracted only with the peripheral
vision (e.g., color, luminance, movement), but it is necessary to move the
eyes to shift the foveal vision and enhance the perception on a precise spot
(Land, 2006, 2009). Thus, eye movements are a strong indicator of where the
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visual attention allocated (Carrasco, 2011; Corbetta et al., 1998; Corbetta and
Shulman, 2002).

The movement of the eyes is a combination of saccades, fixations, and smooth
pursuit movements (Kowler, 2011; Land, 2006). Saccades are quick ballistic
movements to move the eyes to a new location. Fixations are periods between
saccades in which the eyes are held stationary to enable perception. Smooth
pursuit movements allow to track moving targets. Eye movements and visual
behavior can be described by several metrics at different levels of details
(Duchowski, 2017b; Victor, Engström, and Harbluk, 2008). Because we are
usually interested on where attention is devoted with respect to an area larger
than the foveal region, and because of limitations in eye-tracking technology,
visual behavior is described in this thesis at the level of glance—a construct that
embeds fixational, saccadic, and smooth pursuit movements (see also section
4.3).

Visual attention is a combination of bottom-up and top-down processes (Car-
rasco, 2011; Corbetta and Shulman, 2002; Desimone and Duncan, 1995; E. E.
Smith and Kosslyn, 2014a, 2014c). Bottom-up processes are involuntary and
driven by sensory inputs. For example, they allow for detecting basic features of
the visual scene (e.g., color, edges). Top-down processes, instead, are voluntary
and driven by task goals. They allow for seeking, extracting, and interpreting
relevant information for the current activity (Corbetta and Shulman, 2002;
Desimone and Duncan, 1995; Land, 2006, 2009; E. E. Smith and Kosslyn,
2014c). Context, prior knowledge, and (spatial and temporal) expectation
guide top-down processes. They facilitate the attentional process by making it
more efficient and accurate to the current situation (Corbetta and Shulman,
2002; Desimone and Duncan, 1995; Land, 2006, 2009; E. E. Smith and Kosslyn,
2014c). Bottom-up and top-down processes continuously interact and compete.
For example, a salient visual stimulus in the periphery may elicit a bottom-up
process and interrupt an on-going top-down process, causing an automatic shift
of attention from the current focus towards the stimuli. It is hypothesized that
such salient stimuli, which can quickly capture attention, may be associated
with behavioral urgency (Corbetta and Shulman, 2002; Desimone and Duncan,
1995; Franconeri and Simons, 2003; Lin, Franconeri, and Enns, 2008). For
example, given visual stimuli of the same magnitude, looming objects indicate
an impending collision and would trigger a reflexive response, whereas receding
objects should not elicit the same response, being neither potentially urgent
nor threatening.

The perception of the external world is enhanced by integrating stimuli from
different sensory modalities. Visual stimuli are not the only external stimuli
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that can prompt reflexive orienting of attention (Spence and Santangelo, 2009).
Other examples include abrupt, unexpected onset of auditory and tactile stimuli,
which have implications for the design of warning strategies in applied settings
(Spence and Santangelo, 2009). In general, redundant multisensory warnings
are more effective than unimodal signals (J. D. Lee, McGehee, Brown, and
Marshall, 2006; Spence and Santangelo, 2009), because such cues can provide
information about events occurring far outside the field of view. Other types
of attention orienting stimuli are related to the perception of self-motion (i.e.,
the result of vestibular, proprioceptive, and kinesthetic information). Such
cues, for example, can originate from an externally-induced deceleration of
a vehicle (J. D. Lee, McGehee, Brown, and Nakamoto, 2007; SAE, 2018).
Unfortunately, a systematic understanding of how vestibular cues contributes
to capture attention is still lacking, as they are little researched in the cognitive
neuroscience and experimental psychology literature.

3.2. Visual attention in driving

Driving is an example of visually-guided action that requires efficient visual
attention allocation to safely operate the vehicle (Land, 2006; Shinar, 2017b):
scan the environment to detect obstacles and events (vision for perception)
and support the longitudinal and lateral control of the vehicle based on this
information (vision for action).

Drivers, in general, direct their visual attention at the forward roadway, because
that is the most relevant location for safe driving (P. Green, 2015; Shinar, 2017b;
Victor et al., 2015; Victor, Harbluk, and Engström, 2005). Because of the limited
field of view in the eyes, however, driving entails short glances directed away
from the forward roadway to attend to other sources of information—to be
aware of the surroundings of the vehicle, look at road signs, and check the
instrument cluster (P. Green, 2015; Shinar, 2017b). In general, drivers spend
about 15% of their time looking away from the forward path in routine driving
(Victor et al., 2005). These off-path glances are part of scanning activities that
are driven by expectation and becomes more efficient with experience (top-down
process; Engström, Victor, and Markkula, 2013; P. Green, 2015; Shinar, 2017b).
Such scanning activities are related to the driving task; they serve a significant
role in perceiving the driving environment and maintaining safety. Some aspects
of driving rely on covert attention. Peripheral view alone has been shown to be
sufficient to maintain the lane position of the vehicle (Summala, Nieminen, and
Punto, 1996). Moreover, unexpected visual stimuli in the peripheral view—a

11



pedestrian suddenly stepping on the road, or a flashy light—can trigger bottom-
up processes and capture the driver’s attention (Engström et al., 2013; Shinar,
2017b).

Visual scanning activities require efficient and timely attention allocation—
looking at the right place at the right time—otherwise the driver may fail to
notice objects and events, and to successfully respond to hazards (Hancock,
Mouloua, and Senders, 2008). Hazards are objects, conditions, or situations
that tend to produce an accident if not handled correctly (Dewar and Olson,
2015). The "mismatch between the current allocation of resources and that
demanded by activities critical for safe driving" is defined as inattention in
driving (Engström et al., 2013, p. 34). When attention is misdirected towards
an activity not required for safe driving (i.e., secondary to the driving task), it
is usually referred as to distraction (J. D. Lee, Young, and Regan, 2008). The
visual behavior of an inattentive driver is often characterized by a switch of
visual attention back and forth between the forward path and another location
(visual time-sharing; Victor et al., 2009; Wierwille, 1993).

Improper allocation of visual attention—because of inattention and distraction—
is a longstanding issue in traffic safety. Visual inattention and distraction have
been identified as the most common crash contributing factor by large scale
naturalistic studies (Dingus et al., 2006; Klauer, Dingus, Neale, Sudweeks, and
Ramsey, 2006; Victor et al., 2015) and in-depth crash investigations (Singh,
2015). There is a strong relationship between visual behavior and crash risk.
Long off-path glances, and the consequent deficit of attention allocation on
path (Seppelt et al., 2017), have been a main concern, as it is also evident
in recently released guidelines for reducing the attention demand of in-vehicle
interfaces (NHTSA, 2013). However, as argued by Victor et al. (2015), even
short lapses of attention from the forward path can lead to crashes—timing
and driving context matter more than glance duration per se. For example,
during visual time-sharing, frequent and inappropriate off-path glances increase
the uncertainty of the driver situation (Horrey and Wickens, 2007; Klauer
et al., 2006; Liang, Lee, and Horrey, 2014; Senders, Kristofferson, Levison,
Dietrich, and Ward, 1967; Victor et al., 2015), and short on-path glances may
not be long enough to make up for the information decay or to uptake enough
information to predict a critical situation (Senders et al., 1967; Seppelt et al.,
2017).

There is an increased desire to counteract inattention and its consequences.
This is reflected by the demand of new advanced driver assistance systems
(ADASs) to reduce the exposure to critical situations and prevent accident
to happen. By providing information, warning, and interventions, ADASs
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compensate and countermeasure drivers’ attentional limits (J. D. Lee, 2008).
Unfortunately, ADASs that monitor the attentiveness of the driver (in a direct
fashion rather than from indirect measures of vehicle control; J. D. Lee et al.,
2013; Young, Regan, and Lee, 2008) are still in their infancy (J. D. Lee et al.,
2013), with few solutions already available in the market (Kelly, 2017). The
main challenge is the identification of relevant, robust, and unobtrusive measure
of inattention.

There are, in fact, many causes for inattention, both internal and external the
vehicle (Engström et al., 2013). For example, the 100-car study has identified
about 60 categories of causes for inattention—mainly related to secondary tasks
being performed (Klauer et al., 2006). This method of analysis has limitations:
because it requires video annotations (often done manually) it is time consuming,
it has issue related to validity and reliability of the coded variables, and it cannot
be done in real-time. Additionally, this approach does not take into account
that even if the demand of the task is low, if this task is done frequently or for
an extended time, the increase in crash risk may be comparable to that of a
more demanding task performed less often (NHTSA, 2013).

Despite uncertainty still exists about the relationship between visual behavior
and inattention (e.g., it is unclear if unsafe behavior is dependent of glance
characteristics and independent of task type; Victor et al., 2015) and technical
solutions are still immature (J. D. Lee et al., 2013), the approach based on the
quantification of visual behavior is promising. First, because of the scientific
evidence that vision plays a crucial role in regulating attention and guide motor
actions. Second, because eye-tracking systems installed in the vehicle enable
real-time and unobtrusive data collection.

3.3. Visual attention and driving task demand

The level of attention one should devote to driving depends on the task de-
mand. Task demand can be understood as the amount of resources (e.g.,
visual, motor, and cognitive) required to perform an activity (Engström et al.,
2013).

Safe driving requires an attentional state that keeps matching that which is
required by the driving task (Engström et al., 2013). As the driving task
can be understood in terms of its component—the driver, the vehicle driven,
and the driving environment form a joint system (DVE system; Coughlin,
Reimer, and Mehler, 2011; Engström and Aust, 2011)—to study visual behavior
and attention in driving, a broader situated approach should be taken. The
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components of the DVE system influence and interact with each other. Each
component can be represented as a set of features with different temporal
dimensions. Some features may vary slowly during a trip, whereas others may
change rapidly. In general, the driving task demand evolves gradually, but
sometimes changes occur abruptly. The traffic environment can become highly
complex, and critical situation may appear unexpectedly, which is why it is
crucial to continuously detect, identify, and assess the many dynamics and
changing elements on road (Wickens and Horrey, 2008).

3.3.1. Driver features

Driving is, to large extent, a self-paced task (Summala, 2007). It means that
the drivers themselves, being the operators of the vehicle, can actively control
the evolution of the task demand and adapt to it (Engström and Aust, 2011).
For example, they can choose a different road, reduce the speed, or increase the
headway to the surrounding traffic to compensate for an increased demand in
case of complex and less predictable scenarios. Summala (2007) proposed that,
in general, drivers aim to keep themselves inside their subjective comfort zone,
whose boundary is primarily determined by safety margins to obstacles in the
environment. Thus, routine, non-critical driving may be understood as acting
to maintain a comfortable level of task demand throughout the drive (adaptive
behavior; Engström and Aust, 2011; Summala, 2007).

The comfort zone’s boundary, however, may be stretched by extra motives if the
driver could gain a benefit that justifies the cost of getting closer to the discom-
fort zone—and in turn increases the amount of demanded attentional resources
(Summala, 2007). For example, drivers may adopt shorter headway when in a
hurry, but doing so they are more vulnerable to crash. Hence, to prevent a col-
lision, they deploy an increase attentional effort to compensate to intentionally
reduced safety margins (Engström et al., 2013) and be able to timely respond
to sudden changes of other road users’ behavior.

To avoid a critical situation and reduce the feeling of discomfort, drivers adopt
safety margins to obstacle on the road. Safety margin can be defined as the
spatial and temporal distance between the boundary of the comfort zone and
safety zone (Engström and Aust, 2011). The safety zone represents the set
of parameters in the DVE system in which a collision can still be avoided
(Engström and Aust, 2011).

The safety zone is (to large extent) objective (Engström and Aust, 2011): it
depends on the properties of the vehicle (e.g., brake capacity), the environment
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(e.g., surface condition), and the drivers themselves (e.g., their reaction time).
The safety margins, however, are subjective, and they may be inadequate for
the current driving context if there is a mismatch with the allocated attentional
resources. Even short off-road glances can be dangerous if the safety margin
adopted is not sufficient to cope with sudden changes in the traffic environment
(proactive barrier; Engström et al., 2013).

The drivers’ abilities to preserve the comfort zone depends substantially on
expectancy (Engström and Aust, 2011). Expectancy is the proactive, top-down
allocation of attentional resources based on the prediction on how the current
driving situation will evolve, from previous experience and other contextual
information (Engström et al., 2017; Engström et al., 2013; Senders et al., 1967;
Victor et al., 2008). For example, if the need for a response is expected to
disappear, drivers may delay their action. Conversely, if a need for a response is
anticipated, drivers may act proactively (Summala, 2000). Expectation can be
failed: many accidents happen because of a mismatch of expectations (Engström
et al., 2013; Victor et al., 2018).

3.3.2. Vehicle features

The properties of the vehicle influence the attention required for the driving
task too. For example, Senders et al. (1967) showed an increase of attentional
demand (and an increase of discomfort) at higher speed, and when the handling
of the vehicle is poor, making lane keeping more difficult.

Recently, there has been an increasing interest in how ADASs, and higher forms
of automation, may influence the attentional demand of driving. For example,
electronic stability control (ESC) and anti-lock braking system (ABS) were
shown to help drivers adapting properly to changes of the DVE system and
reduce control loss (Markkula, 2015); a reduced attentional effort to the vehicle
control task would be expected. However, such systems have also shown to
cause unintended effects (negative behavioral adaptation; OECD, 1990; Rudin-
Brown, 2010): studies have shown a reduction of safety margins (increase of
speed and shorter following headway) when using ABS and ESC, claiming
detrimental effects on safety (Rudin-Brown, 2010). Behavioral adaptation can
be understood as the tendency to maintain a chosen, subjective level of task
difficulty (task difficulty homeostasis; Fuller, 1984; Rudin-Brown, 2010). As new
automated features are introduced, unintended behavioral effects may become
more accentuated (e.g., Jamson, Merat, Carsten, and Lai, 2013; see also section
3.4).
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3.3.3. Environment features

Figure 3.1.: Visualization of safety zone, comfort zone, and safety margin applied to the
car-following scenario. Headway is an example of feature of the driver-vehicle-
environment (DVE) system relevant in car-following driving situations.

The features related to the driving environment that affect driving demand
can be related to the infrastructure (e.g., road type, road geometry), traffic
(e.g., traffic flow, and behavior of other road users), and other variables such
as illumination and weather. For example, on-road studies showed an increase
of attention devoted to the forward road on curvy roads (Olson, Battle, and
Aoki, 1989; Senders et al., 1967; Tivesten and Dozza, 2014), on trafficked
roads (Jamson et al., 2013; Senders et al., 1967; Tivesten and Dozza, 2014), in
car-following (Olson et al., 1989; Tivesten and Dozza, 2014) especially when
approaching the lead vehicle (Tijerina, Barickman, and Mazzae, 2004), and in
night driving (Olson et al., 1989). As introduced in the previous paragraph,
these environmental features in turn influence the safety zone (e.g., the road
grip affects the braking capabilities of the vehicle), and the driver’s perception
capabilities (e.g., ability to see in low light conditions), and driver’s expectancy
(e.g., in busy traffic the driver needs to predict how the road users will behave).
Some of the features of the DVE system can be directly measured from signals
in controller area network (CAN) bus (e.g., illumination and presence of other
vehicles). Others driving demand variables can be inferred by the pedal and
steering activities (Harry, Matthew, and Gerald, 2008).

3.4. An example: Visual attention in car-following

3.4.1. Car following in manual driving

Car following is one of the most common driving situations, and rear-end
collisions are the most frequently occurring (and studied) type of accident.
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Rear-end crashes accounts for approximately 27% of all light-vehicle crashes
(Najm and Smith, 2007).

Safely following a lead vehicle requires continuous adjustment of kinematic
parameters to maintain the safety margin to the lead vehicle, which in turns
reduces the crash risk and the feeling of discomfort (Figure 1). Drivers do these
adjustments based on the estimation of the time and space distance to the
lead vehicle, while taking into account the current state of other components of
the DVE system (e.g., drivers need to evaluate the characteristics of driving
environment and of the vehicle, because the stopping distance depends on the
brake capacity and the road grip). Furthermore, drivers need to estimate their
performance, for example their response time to an event on the road. These
adjustments can be proactive, when based on the expected evolution of the
DVE system (e.g., the lead vehicle will not suddenly brake), or reactive, when
the response is to a change of the DVE system (Engström and Aust, 2011;
Engström et al., 2013).

The most common metric to measure the safety margin to a lead vehicle is
time to collision (TTC). TTC is the ratio of the distance between the vehicles
and their relative speed, and it expresses how long it will take to a collision
if no action is taken. (According to this definition, if the cars are traveling
at the same speed, TTC tends to infinite; if the lead vehicle is faster than
the following one, TTC is undefined.) In order to estimate TTC, drivers may
predominantly use visual cues, such as looming—the optical expansion of the
lead vehicle at the eyes of the driver (Hoffmann, 1968; Hoffmann and Mortimer,
1994; D. N. Lee, 1976; Mortimer, 1990). This theory is corroborated by previous
research that shows drivers change their visual scanning pattern in the presence
of lead vehicle, which becomes the focus of attention (P. Green, 2015; Tijerina
et al., 2004; Tivesten and Dozza, 2014). Drivers may rely on the visual angle
subtended by the lead vehicle (θ), its rate of change (θ̇), or the combination
thereof (τ) to estimate the headway (Hoffmann, 1968; Hoffmann and Mortimer,
1994; Lamble, Laakso, and Summala, 1999; D. N. Lee, 1976; Mortimer, 1990;
Summala, Lamble, and Laakso, 1998). Appendix A provides further details on
how to compute these looming quantities. The perception threshold of looming
(e.g., θ, θ̇, or τ) increases with retinal eccentricity, hence the further away the
glances are from the forward path, the longer the time will be before the driver
may realize that a collision is impending (Lamble et al., 1999; Summala et al.,
1998.

There is a range of other contextual cues that may support the driver to control
the distance to a lead car. For example, another visual cue is the brake light
onset, which signals that the lead vehicle started braking. However, brake light
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onset alone may not be the cue that elicit a brake reaction, since it does not
consistently signal a critical situation (Markkula, Engström, Lodin, Bärgman,
and Victor, 2016; Victor et al., 2015).

3.4.2. Car following in automated driving

ACC is an assistive system that automates the longitudinal control and allows
following a lead vehicle by maintaining the headway according to chosen settings.
ACC uses a combination of sensors (e.g., a front facing radar and a camera) to
detect the vehicle in front. ACC is intended as a comfort system—to release the
driver from some of the control task in normal driving situations—especially on
highways. ACC has shown to reduce the exposure to critical situations due to
an increase of safety margins with respect to manual driving (Jamson et al.,
2013; Malta et al., 2012).

ACC’s braking capacity is limited to a level sufficient for normal car-following
situations, not extreme braking (the braking authority varies among implemen-
tation, but it is usually about 0.3 g as suggested in the standards ISO 15622:2010
and ISO 22179:2009). When the braking capacity is exceeded, for example
because of a highly decelerating lead vehicle, a frontal collision warning (FCW)
is issued. The FCW is usually a visual and auditory warning that is designed
to capture driver’s visual attention to the forward road and prompt an evasive
maneuver to an impending collision. The FCW exploits bottom-up processes
to capture drivers’ attention via salient stimuli (see also section 3.1 and 3.3).
ACC requires drivers’ constant supervision and readiness to regain control when
necessary—without solely relying on the warning (SAE, 2018). In fact, drivers
should be receptive to silent failures, for example, due to sensor limitations
(SAE, 2018; Strand, Nilsson, Karlsson, and Nilsson, 2014).

The driving task demand is reduced when driving with ACC, because some
control tasks are allocated to the vehicle automated system (i.e., accelerating and
braking to maintain a safe headway to the vehicle in front). As a consequence,
the use of ACC in routine driving has been shown to generally decrease the
attention allocated for monitoring the road, which is considered potentially
unsafe (Jamson et al., 2013; Malta et al., 2012; Rudin-Brown, 2010; Rudin-
Brown and Parker, 2004). There has been a growing concern, mostly from
experimental studies, that drivers would not respond appropriately in critical
situations (de Winter et al., 2014), but it was not clear what would be the effects
in real-world driving. Further research on the real-world effects of automation
was needed.
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4. Methods

4.1. Overview of the research approach

The research in this thesis was quantitative; it was based on data collected from
two naturalistic driving studies and from a driving simulator experiment. The
analysis of driver behavior was based on psycho-physical data (visual and motor
activities), which were obtained with manual video reduction or with an eye-
tracker system. Statistical description of the data was used extensively. Table 4.1
gives an overview of the research approach used in this thesis. The forthcoming
sections describe the research approach in detail.

The naturalistic driving data used for this thesis were collected in earlier
projects, in which ethical requirements were fulfilled by consulting with the
national ethical board in Sweden. The driving simulator study was conducted
in agreement with national regulations and local guidelines in Germany. All
participants in the experiment provided written consent prior to participation,
which informed them about the study (including how data was stored and
treated) granted their right to interrupt the study at any time without having
to provide any explanation. For all data, procedures to warrant data privacy
and protection were applied, for instance data analysis was performed in
dedicated rooms (either at SAFER, the Vehicle and Traffic Safety Center at
Chalmers, or at Volvo Cars) with secured and limited access to password-
protected data

Table 4.1.: Overview of the research approach.

Paper Data collection Psychophysical data Statistics

I Naturalistic Visual (Video reduction) Frequentist
II Naturalistic Visual (Video reduction) Frequentist
III Naturalistic Visual (Eye-tracker) Frequentist
IV Naturalistic Visual (Eye-tracker) Bayesian
V Simulator Visual, motor (Video reduction) Bayesian
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4.2. Data collection: Naturalistic and driving simulator
data

Investigating and understanding driver behavior is challenging because of the
interplay between the human and the driving context (section 3.3), and because
there is not a single method that alone can capture the nuances of how people
drive (Bärgman, 2016; Shinar, 2017a). The empirical research included in
this thesis leveraged on two data sources: data collected with naturalistic
driving studies (Paper I–IV) and with a driving simulator experiment (Paper
V). Naturalistic driving studies and simulator experiments differ on many levels
(Shinar, 2017a; Young et al., 2008). Because they have their own merits, the
choice of the better test venue depends on the research questions and on practical
constraints (e.g., cost and time). However, because drivers normally adapt
their driving strategy to the driving situation at hand, differences between
test venues may largely impact results (Engström and Aust, 2011). In general,
these data collection methods are complementary, and they can yield a better
understanding of driver behavior if considered together (Bärgman, 2016; Shinar,
2017a).

Much of the human factors research on automation has been carried out with
simulator studies. The are many reasons that justify this approach. First, and
foremost, the high experimental control over participants and driving context.
High experimental control eases the manipulation of one (or more) independent
variables to test the effect on one (or more) dependent variables. Moreover,
it is possible to control for contextual effects and for the intrinsic variability
due to individual differences (Kantowitz, Roediger, and Elmes, 2009; Shinar,
2017a). Second, driving simulators are a relatively economical tool—depending
on their sophistication—to collect data in a short time (Shinar, 2017a). Finally,
because driving is simulated, it is a safe environment in which participants
can try innovative technologies and get exposed to critical situations without
harm (Shinar, 2017a; Young et al., 2008). This latter reason was the main
motivation to use a driving simulator to collect systematic data on the response
process to different critical situations in highly automated driving (Paper
V).

The major drawback of driving simulator studies is that it is questioned how
well driver behavior in the simulator translates to real-world driving. Even high-
fidelity simulators have issues associated with the ecological validity of driver
behavior under artificial driving conditions (Young et al., 2008). Thus, further
research on the real-world effect of automation to enhance our understanding
of driver behavior during automated driving. Most of the research included in
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this thesis (Paper I–IV) is based on data collected from two naturalistic studies,
EuroFOT (Kessler et al., 2012) and EyesOnRoad (Karlsson et al., 2016). These
studies are unique, as that they could give novel insights on how drivers used
and interacted with assistive automated technology in condition representative
of actual driving.

Naturalistic driving studies are, usually, strictly observational. When a system is
being tested, these studies are known as field operational tests (FOTs; Bärgman,
2016; Barnard et al., 2017). The main, distinctive property of naturalistic studies
is that they allow to investigate driver behavior with the highest ecological
validity. Data are, in fact, collected unobtrusively from instrumented vehicles
on everyday driving in real traffic—a procedure that requires considerable
investment in terms of money and time as the testing period varies between
few month to few years (Bärgman, 2016; Barnard et al., 2017; Shinar, 2017a).
The main disadvantage of naturalistic driving studies is the low experimental
control over participants and driving context (Bärgman, 2016; Shinar, 2017a).
To ameliorate the low experimental control, careful inclusion criteria need
to be set to extract relevant portion of data for fulfill the objective of the
research. However, it remains difficult to isolate—and impossible to repeat—the
circumstances of, for example, rare hazardous event.

Depending on the inclusion criteria, naturalistic data can be more or less exten-
sive, sparse, and unbalanced. Moreover, naturalistic data are often corrupted by
sensors noise and malfunctions. These properties make data analysis arduous.
Thus, new methods for data analysis and statistical modelling were needed, as
it is discussed in the forthcoming sections.

4.3. Psycho-physical data: Visual and motor behavior

Figure 4.1.: Eccentricity between the area of interest (AOI) the eyes are directed to (i.e.,
glance location) and a reference AOI (AOI’).
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Driving is a visually-guided task that is largely regulated by visual attention
mechanisms (vision for perception and action; chapter 3). The scientific ev-
idence suggests that visual behavior is a strong indicator of where attention
is allocated, which is why visual behavior is central to this thesis (chapter
3).

The most common technique to measure eye movements is the use of eye-
tracking systems based on pupil detection and corneal reflection, as they offer
a good trade-off between data quality and invasiveness (Duchowski, 2017a).
This type of eye-tracker comes in two variants: head-mounted and remote.
Head-mounted eye-trackers are more invasive than remote eye-trackers, and, in
theory, yield higher data quality. In practice, however, major data quality issues
have hindered the use of any eye-trackers in traffic safety research—even in well-
constrained laboratory settings (e.g., eye-glasses are often one of the reasons for
data losses). Naturalistic settings are even more challenging because of changes
in illumination, vehicle vibrations, and the inability to re-calibrate the eye-
tracker if the tracking quality deteriorates. (The cost of installing a high-quality
eye-tracker in each vehicle would also be prohibitive.)

Because of questionable data quality, it is common to analyze visual behavior
based on frame-by-frame manual reduction from video recordings of the driver’s
face—especially in naturalistic settings (Klauer et al., 2006; Victor et al., 2015).
The same approach was used for Paper I, II, and V. Manual video reduction is
a tedious and intensive task, but it is necessary. Based on first-hand experience,
each frame of video requires on average 5 s. This means that 1 min of video
recorded at 10 Hz (600 frames in total) would require about 50 min. As a
consequence, it can be performed on small fraction of the recorded data, and,
of course, not in real-time.

Manual video reduction is routinely done in terms of glances, which combine
fixations, saccades, and smooth pursuits (Chapter 3.1). A glance is defined
as the transition of the eyes to an area of interest followed by one or more
contiguous fixations within that area, until the eyes move to another area of
interest (standard ISO 15007-1). While the level of detail is relatively limited,
it is sufficient, as we are usually interested on where the attention is devoted
with respect to an area of interest larger than the foveal region (e.g., if the
driver is looking on path or at the center stack). Several glance-based metrics
can be derived, but there is no general agreement on the features that best
describe attention or deficit thereof (J. D. Lee et al., 2013). For example, basic
metrics of visual behavior include the glance location and eccentricity (and the
duration and frequency of those glances; see also methods in Paper I–V). Glance
location is the area of interest the eyes are directed to. Glance eccentricity is
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defined as the radial angle between the current location of the glance and a
reference direction (Fig. 4.1). (Further information on key terms, parameters,
and measurement of visual behavior in the context of road vehicles can be found
in the standard ISO 15007.)

Recent advances in machine vision algorithms now enable automatic measure-
ment of glance behavior in real-world driving with simpler setups (Fridman,
Langhans, Lee, and Reimer, 2016; Hansen and Ji, 2010). The dataset EyesOn-
Road (Karlsson et al., 2016) used in Paper III–IV is an example of this. A large
dataset of naturalistic glance data was a prerequisite for Paper III–IV in order
to develop a novel reference model of visual behavior. Basing a reference model
of visual behavior on data from simulator studies would have been unsuitable
due to validity issues (see previous section 4.2). The system used to collect the
data in the EyesOnRoad project automatically classified glances as being either
on- or off-path. Binary classification of glances as on- and off-path is common
(Klauer et al., 2006; Victor et al., 2015). This classification is motivated by the
fact that drivers tend to look at the forward path about 85% of the time, and
that off-path glances are a sensitive indicator of increase of crash-risk (Klauer
et al., 2006; Liang, Lee, and Yekhshatyan, 2012; Victor et al., 2015). However,
there are certain drawbacks associated with this coarse glance classification, as
off-path glances towards, for example, the mirrors have different safety impli-
cations compared to glances towards a secondary, distracting task. Similarly,
as discussed in chapter 3, glances at low eccentricity may still allow to detect
threats on the road.

Successful driving performance depends on seeing and detecting events on
the road, but also on acting upon them (chapter 3). While Paper I–IV were
mainly based on visual behavior, the objective of Paper V was to obtain further
in-depth information on the complete response process in critical situations
(visual behavior, motor readiness, and intervention). Different authors have
measured the response process in a variety of ways. Traditionally, the response
process in manual driving has been assessed by measuring brake reaction time
(M. Green, 2000). Brake and steer reaction time remain the most common
measure in the recent literature on vehicle automation (McDonald et al., 2019).
The benefit of these measures is that they are easy to collect from the CAN bus
(or other sensors on the pedals and steering wheel), both in naturalistic and
simulated driving. However, the disadvantage is that these measures do not
capture the motor readiness stage (i.e., preparation to act on the pedal or on the
steering wheel). If the motor readiness stage is discounted, the results may lead
to misinterpretation on driver behavior in automated driving. For example, as
discussed in sections 3.3–3.4 (and partly in Paper II), an increase in brake/steer
reaction time during automation may be the consequence of drivers waiting,

23



until the last second, to intervene—they expected the system to resolve the
issue or because the need for intervention may disappear.

Paper V relied, as in the case of visual behavior, on manual annotation of hands
and feet movement. Participants, in fact, may hover their feet on the pedals,
or their hands on the steering wheel, without touching the controls. There
are some solutions to track hands and foot motion based on computer vision.
Unfortunately, they are still in their development stage (Ohn-Bar and Trivedi,
2016; Tran, Doshi, and Trivedi, 2012); automatic video annotation is promising
for reducing the burden of manual video reduction and for enabling real-time
assessment of drivers’ response process.

4.4. Statistical framework: From frequentist to Bayesian
statistics

Data collection is followed by data analysis, to answer research questions and
generalize the results to a broader population of interest. Traditionally, human
factors researchers have relied on classical (frequentist) statistical techniques
to describe the data and perform inference, for example, by using confidence
intervals (CIs) and p-values (Wagenmakers, 2007; Wagenmakers et al., 2018).
CIs provide information on the sampling error of the parameter of interest
(Morey, Hoekstra, Rouder, Lee, and Wagenmakers, 2016). The CI is the
interval that is likely to cover, with a set long-run probability (usually 95%),
the constant, unknown value of the parameter of the population from which
the data sample was drawn (Morey et al., 2016). The p-value is the usual
criterion for null-hypothesis significant testing. The null-hypothesis significant
testing sets out the inference problem based on a test statistics (e.g., the t-test)
and two alternate hypotheses: a null hypothesis (i.e., the manipulation of
the independent variable has no effect on the dependent variable) is tested
against an alternate hypothesis (i.e., the manipulation yields a difference in the
quantity of interest). The p-value is used as a measure of the strength of the
evidence against the null hypothesis. If the p-value is smaller than an arbitrary
threshold (usually 5%), the difference measured by the test statistics from
the experimental manipulation is deemed significant, and the null-hypothesis
is rejected. Confidence intervals and p-values are used for substantiating
research findings, but they are often misinterpreted (Wagenmakers et al., 2018).
Moreover, a statistical significance difference may be practically insignificant
(Ellis, 2016). The general shortcomings with the practice of the frequentist
statistics is topic of debate and they are beyond the scope of this thesis (for a
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discussion see Kruschke and Liddell, 2017a; Morey et al., 2016; Wagenmakers,
2007; Wagenmakers et al., 2018).

In the beginning, the research included in this thesis used frequentist methods,
because they are standard in the field (Paper I–III). However, by the end of the
PhD, it was clear that these methods were inadequate for the objective of this
PhD work (Paper IV–V). In fact, frequentist methods have two main, practical
limitations. First, null-hypothesis significant testing yields a dichotomous
answer (e.g., presence or absence of an effect due to automation on driver
behavior), whereas the research aimed at estimating the magnitude of the effect
(e.g., how much does automation affect driver behavior). Second, confidence
intervals do not carry any distributional information (e.g., the 95% CI of the
estimated mean is not the interval in which the true parameter lies with 95%
probability).

Paper IV–V adopted the Bayesian framework because it offered attractive
alternatives to classical frequentist statistics (Kruschke and Liddell, 2017a;
Wagenmakers, 2007; Wagenmakers et al., 2018). Regarding the limitations
mentioned before, Bayesian methods focus on the estimation of the magnitude
of the effects, not on the dichotomous rejection of a null hypothesis. Moreover,
the quantification of the uncertainty of the estimation can be interpreted—
intuitively—in terms of probability (e.g., the 95% credible interval of the
estimated mean is the interval in which the true parameter lies with 95% prob-
ability). Another pragmatic advantage is that Bayesian methods accommodate
any data distributions (i.e., is not limited to normal distributions as many
frequentist tests are), apply to any parameterized model of data, and ease
the construction of complex hierarchical models that incorporate nuisance in
the parameters due to individual differences (Kruschke and Liddell, 2017a;
Kruschke and Vanpaemel, 2015). Thanks to the Bayesian approach we were
able to capture the characteristics of driver behavior in greater detail than
before. Moreover, the results enable accurate and robust models for computer
simulations.

Bayesian methods are gaining traction in many fields; Paper IV–V were one
of the few examples in traffic safety research and in the human factors field
in general. With the Bayesian framework it was possible to encode domain
knowledge, understand the data generation process, make predictions, and
update beliefs based on new evidence—all by preserving uncertainty in the
measurement and estimation (Kruschke and Liddell, 2017a). Because Bayesian
methods are computational demanding, their application was limited. Re-
cent advances in computation, algorithms, and probabilistic programming
libraries now make Bayesian data analysis possible for a wide range of problems
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(Bürkner, 2016; Carpenter et al., 2017; Salvatier, Wiecki, and Fonnesbeck,
2016).

26



5. Results

This thesis work resulted in five scientific papers: one conference paper (Paper
I) and four journal papers. Three of the journal papers (Paper II, III, and
IV) have already been published in some of the leading international scientific
journals for traffic safety research. The papers are summarized in the next
sections. Table 5.1 indicates how the papers contributed to answering the
research questions of this thesis.

Table 5.1.: Overview of the research questions addressed by the appended papers.

Research question Paper

What are the effects of automation on
drivers’ attention to the driving task?

I–V

What are the safety implications of those
changes?

I–V

Are drivers prompt to respond to critical
situations?

I, II, V

How can attention be elicited in situations
that require an intervention by the driver?

I, II, V
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Paper I. The timecourse of driver visual attention in naturalistic
driving with adaptive cruise control and forward collision warning

Full citation: Tivesten, E., Morando, A., & Victor, T. (2015). The timecourse of driver
visual attention in naturalistic driving with adaptive cruise control and forward collision
warning. Paper presented at the Driver Distraction and Inattention conference, Sydney, New
South Wales.

Introduction ACC automates the longitudinal control of the vehicle. It is a
comfort system that have been shown to have a positive effect on safety-related
measures—despite a general decrease of attention devoted to monitor the road
ahead. Safety concerns have been raised (e.g., lack of supervisory control by
the driver and the inability to cope with critical situations).

Objective The objective of this paper was to investigate driver’s visual be-
havior in critical situations (those exceeding the braking ACC’s braking au-
thority) and understand if drivers were prompt to respond to impending con-
flicts.

Method The naturalistic dataset EuroFOT was used. Visual behavior was
manually annotated based on videos of the driver’s face. Signals recorded from
the controller area network (CAN) bus were used for events selection. Critical
events were defined as hard deceleration by the ACC or the FCW onset. Glance
location-based metrics were used.

Results Drivers were already looking on path at the onset of the critical
situation—they anticipated the lead-vehicle conflict. Instead, in non-critical
situations they were more willing to take their eyes off-path when using ACC
than in manual driving.

Discussion The safety consequences of visual behavior needs to be assessed
according to the real-time evolution of the driving context. In routine driving,
there was a reduction of attention to the forward path with automation compared
to manual driving—a symptom of reduction of task demand. However, drivers
reoriented their visual attention to the forward path and anticipated an impend-
ing lead vehicle conflict before the situation became critical. The reason for this
behavior was not identified yet; we speculated that sensory stimuli from the
driving environment may have captured drivers’ attention.
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Paper II. Drivers anticipate lead-vehicle conflicts during automated
longitudinal control: Sensory cues capture driver attention and
promote appropriate and timely responses

Full citation: Morando, A., Victor, T., & Dozza, M. (2016). Drivers anticipate lead-vehicle
conflicts during automated longitudinal control: Sensory cues capture driver attention and
promote appropriate and timely responses. Accident Analysis & Prevention, 97, 206-219. doi:
10.1016/j.aap.2016.08.025.

Introduction This paper extends the results from Paper I by focusing on the
threat-anticipation mechanism.

Objective The objective of this paper was to identify the mechanism that
captured drivers’ attention to the forward path before the lead-vehicle conflict.
The main hypothesis was that sensory cues from the driving scenario were
indicative of an impending conflict.

Method The analysis used the naturalistic driving database EuroFOT. Anal-
ysis of visual behavior was done in the context of critical lead-vehicle scenarios
when driving with ACC. Critical situations were identified as the FCW on-
set. Eye movements were manually annotated from videos of the driver’s
face. The main glance metric used thorough the paper were glance location
and glance eccentricity from the forward path. The time course of visual
attention was related to vehicle data (e.g., speed, acceleration, and radar
information.

Results Visual and deceleration cues were relevant for capturing driver at-
tention to the forward path in anticipation of the threat. The FCW was an
effective attention-orienting mechanism when no threat anticipation was present
(i.e., false warnings).

Discussion The results provide new insights on drivers’ response to conflicts
when longitudinal control is automated, proving that contextual sensory cues
are important for alerting drivers of an impending critical situation, allowing
for a prompt reaction. Moreover, off-path glances were shown to have different
safety implications than off-threat glances. Therefore, we concluded that visual
behavior is to be interpreted in the context of critical events.
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Paper III. A reference model for driver attention in automation:
Glance behavior changes during lateral and longitudinal assistance.

Full citation: Morando, A., Victor, T., & Dozza, M. (2018). A reference model for driver
attention in automation: Glance behavior changes during lateral and longitudinal assis-
tance. IEEE Transactions on Intelligent Transportation Systems. doi: 10.1109/TITS.2018.
2870909.

Introduction Drivers adapt their visual behavior to the driving context. How-
ever, information on the effect of different driving context is little, scattered
across studies, or limited to manual driving.

Objective The objective of this paper was to parametrize drivers’ on- and off-
path glance behavior in routine driving and quantify the effect of a) the use of low-
automation, b) the presence of other traffic, and c) illumination.

Methods The analysis used the naturalistic driving database EyesOnRoad.
The data included eye-tracking information classified as on- and off-path glances.
Visual behavior was examined with respect to a range of glance-based metrics,
including glance distribution fitting.

Results A reference model for on- and off-path glance behavior in routine
driving was developed. There was a reduction of attention to the forward path
when a) using automation compared to manual driving, b) in open-road driving
compared to car-following, and c) in daylight compared to night driving. Other
results include a novel post-processing technique to enhance the quality of
eye-tracking data collected in real-world environment.

Discussion Drivers’ visual response is coupled to features of the driving situa-
tion. The analysis of the on-path glances (often discounted) suggests that they
may be more sensitive to the driving context than the off-path glances. The
reference model (a set of metrics and target values) that was developed in this
study can improve simulations for driving safety assessment and the design of
inattention countermeasures.
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Paper IV. A Bayesian reference model for visual time-sharing
behavior in manual and automated naturalistic driving

Full citation: Morando, A., Victor, T., & Dozza, M. (2019). A Bayesian reference model for
visual time-sharing behavior in manual and automated naturalistic driving. IEEE Transactions
on Intelligent Transportation Systems. doi: 10.1109/TITS.2019.2900436.

Introduction Visual time-sharing (VTS) behavior characterizes an inattentive
driver. A comprehensive assessment of VTS behavior in real-world driving
(with and without automation) is currently lacking.

Objective This objective of this paper was to model drivers’ on- and off-path
glance behavior during visual time-sharing and quantify the effect of automation
on this model.

Methods The analysis used a subset of naturalistic driving database Eye-
sOnRoad from Paper III but limited to open road driving in daylight. VTS
sequences were extracted with a rule-based algorithm. Visual behavior was
examined with respect to a range of glance-based metrics, including glance
distribution fitting. Bayesian generalized linear mixed models (GLMMs) were
applied.

Results The effect of automation on VTS behavior was minimal across all
glance metrics under analysis. The percentage of time glances fell on-path
was the only metrics that was considerably lower during VTS compared to all
routine driving (but it did not differentiate between manual and automated
driving).

Discussion The findings from the new Bayesian analysis proposed in this paper
enable the quantification of the difference in VTS behavior in greater detail than
the classical (frequentist) method. Bayesian methods have practical advantages,
for example they yield results that are interpretable in terms of probabilities and
that are robust to unbalanced dataset. The reference model (a set of metrics
and target values) that was developed in this study can improve simulations
for driving safety assessment and the design of inattention countermeasures
(including guidelines).
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Paper V. Users’ response process to critical situations in automated
driving: Rear-ends, sideswipes, and false warnings

Full citation: Morando, A., Victor, T., Bengler, K., & Dozza, M. (2019). Users’ response to
critical situations in automated driving: Rear-ends, sideswipes, and false warnings. Submitted.
doi: 10.13140/RG.2.2.18560.89603/1.

Introduction The understanding on how users resume control of a highly au-
tomated vehicle in critical situations is crucial for safety. However, a systematic
analysis of the users’ response process is currently lacking.

Objective The objective of this paper was to provide a comprehensive account
of user’s visual-motor response process to critical situations (front and lateral
vehicle conflicts). The study also investigated the effect of false warnings and
expectation.

Methods A simulator study (high fidelity, fixed-based, 45 participants) was
designed. Participants performed a visual-manual distracting task. The response
chain was broken down in its visual, motor, and intervention component. The
carryover effect, typical of within-subjects design, was modeled with Bayesian
GLMMs.

Results The collision warning was effective at capturing users’ visual attention
and prompt the resumption of control. The time for reorienting the glance
to the away from the secondary task and motor readiness was similar across
trials and participants, whereas glance location, the time and choice of evasive
maneuver was influenced by the driving situation at hand and by carryover
effect from previous exposures.

Discussion The study provides new insights to direct the research into drivers’
response process to critical situations in automated driving. We concluded
that, to understand users’ response process, it is essential to consider the visual,
manual, and intervention components of the response chain. Collision warnings
are primarily attention alerting, rather than directly associated with a brake or
steer reaction. Moreover, the carryover effect should not be discounted in the
analysis of data from simulator experiments.
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6. Discussion

The real-world safety impact of vehicle automation is a controversial topic in
the human factors’ community. For example, assistive automation such as ACC
(SAE, 2018) has shown positive effects in reducing the exposure to critical
situations in real-world driving by maintaining safety margins (Malta et al.,
2012). However, ACC has also shown to decrease drivers’ attention to the
forward road compared to manual driving, especially from experimental studies
(Carsten, Lai, Barnard, Jamson, and Merat, 2012; de Winter et al., 2014; Malta
et al., 2012). This is potentially unsafe, as drivers may not be able to cope
with critical situations, those beyond system’s capabilities (Merat et al., 2018;
Nilsson, Strand, Falcone, and Vinter, 2013; Rudin-Brown and Parker, 2004;
SAE, 2018).

Paper I confirmed, in routine real-world driving, a lower attention level to the
forward path with ACC than without. The use of ACC might have reduced the
driving task demand, which in turn affected visual attention allocation at an
aggregate level (section 3.3 and 3.4). However, by looking at the time course of
visual attention in critical situations (at aggregate level), Paper I unveiled an
anticipatory mechanism: drivers anticipated an impending lead-vehicle conflict
by increasing the visual attention to the forward road before the situation
became critical. This was evidence that allocation of attention away from
the road is a function of the current driving situation demand (Ranney, 1994;
Summala, 2007), as introduced in section 3.3 and 3.4. A situated approach
is then essential for understanding driver visual behavior: context and timing
matter. This paper also concluded that drivers may have reacted to perceptual
cues from the surrounding environment signaling a threat before a warning
may be triggered; these cures may not be available in a simulated environment
(Engström and Aust, 2011). The reason for this anticipatory response was,
however, not clearly identified in Paper I.

Paper II set out to understand what cues may have alerted the drivers of an
impending conflict in Paper I. Based on a similar dataset used in Paper I (critical
events were selected anytime a FCW was issued while the ACC was active in
real-world driving), Paper II provided a comprehensive account for how driver
responded to critical situations. The paper suggested that a combination of
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sensory cues may have captured drivers’ attention in anticipation to lead-vehicle
conflicts: looming, brake light onset, and deceleration cues. Section 3.2 and 3.3
highlighted that visual information is the dominant in driving. However, visual
detection performance generally deteriorates towards the retinal periphery,
therefore the further the driver diverts the eyes away from the forward path the
worse the ability to detect threats and objects on the road (Victor et al., 2008).
Paper II added that vestibular-kinaesthetic-somatosensory cues, originating
from ACC-induced deceleration, may have played a role in capturing drivers’
attention because of an arising headway conflict. Deceleration cues are often
discounted in simulator studies, but they were acknowledged as beneficial in
several studies (Fancher et al., 1998; J. D. Lee et al., 2007; J. D. Lee et al., 2006).
Once attention was shifted to the forward roadway, drivers might have relied on
visual stimuli (looming and brake light onset) to perceive and assess the imminent
threat. These findings help to resolve the controversy of improved performance
in safety despite a decrease in attention to the road during routine driving
when using ACC (Malta et al., 2012). Moreover, the findings have implications
for testing and developing automated systems: simulator experiments and
real-world applications may exploit deceleration cues from brake actuation as
a cue to look ahead because of an evolving headway conflict. If drivers are
not receptive to such stimuli, and they do not anticipate the impeding threat,
warnings are effective to capture attention quickly (J. D. Lee et al., 2006), even
if drivers’ attention is further away from the forward path (as shown from the
analysis of a collection of false-positive warnings).

Paper I and Paper II relied on the manual annotation of glances from video
recordings of the driver’s face. This method is time consuming and hinders real-
time applications (see section 4.3). Real-time inattention countermeasures could
enhance driving safety by providing feedback to the driver (alerts or other forms
of intervention, e.g., brake pulses to reorient driver’s attention back to the driving
task) and by adapting vehicle functionalities to compensate for the deteriorated
performance. Despite the potential, few limited solutions are available in the
market (Kelly, 2017). The development of real-time systems to evaluate human
behavior is a complex challenge, further worsened by technological limitations
(J. D. Lee et al., 2013). Yet, real-time systems based on eye-tracking remain
promising, especially because data can be collected unobtrusively. This is
because eye-movements are a strong indicator of attention (Chapter 3), and
also because of recent advances in technology and machine vision algorithms
that enable robust and extensive measurement of glance behavior in real-world
driving (Fridman, Lee, Reimer, and Victor, 2015; Hansen and Ji, 2010). The
design of these assistive systems would benefit from a reference model (a set
of metrics and target values) to compare and thereby detect abnormal visual
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behavior; such model was lacking. Current measures of inattention are limited
because they rely on fixed thresholds (e.g., off-road glances longer than 2 s in
single or aggregated form; Horrey and Wickens, 2007; Klauer et al., 2006; Liang
et al., 2014).

Paper III presented the analysis of naturalistic data collected with vehicles
equipped with a prototype eye-tracker that proved to be suited for real-world
applications. The paper proposed a comprehensive data analysis procedure
that captured important features of glance behavior in real-world driving,
with and without automation. Importantly, the study provided a reference
model of routine driving, which was lacking in the literature. Part of the
contributions of this paper were methodological: a) a filtering routine to
account for physiological constraints, b) a weighting procedure to address
unbalanced data, and c) a method to describe glance data. The latter, in
particular, attempted to improve how glance data are summarized in the
literature—usually by the mean. The mean does not accurately describe
skewed and noisy distributions (Rousselet, Pernet, and Wilcox, 2017). In the
paper, glance analysis used quantiles, which are better choice for describing the
tendency of the data (Rousselet et al., 2017), and distribution fitting, which
summarizes the distribution with a minimum set of parameters. The model and
its metrics described how visual response was tightly coupled to the interplay
between features of the driving context (i.e., use of automation, presence of lead
vehicle, changes in illumination), which corroborates the information presented
in section 3.3. Moreover, the paper included the analysis of on-path glances
that are critical to uptake information on the driving situation, but few studies
have investigated them (Seppelt et al., 2017). The results from Paper III (in
particular the fitted distributions) can be used to simulate glance time-series for
computer simulations (e.g., counter-factual simulation for safety benefit analysis;
Bärgman, Lisovskaja, Victor, Flannagan, and Dozza, 2015) and to inform the
design of inattention countermeasures based on visual behavior (J. D. Lee et al.,
2013).

Paper III provided a reference model for routine driving (with and without
assistive automation). However, there are instances in which drivers are par-
ticularly vulnerable to an increase crash risk as they visual time-share (VTS)
between the forward path and another location for extended time (Victor et al.,
2008; Wierwille, 1993). This behavior was not captured by the model in Paper
III.

Paper IV added to the results in Paper III by focusing on the visual time-
sharing (VTS) behavior. The main objective was similar: to develop a novel
reference model of VTS for targeted interventions against drivers’ inattention.

35



Another objective was to introduce Bayesian statistical modeling techniques,
which are still underused in the human factors’ community. Bayesian methods
are attractive (Kruschke, 2013; Kruschke and Liddell, 2017a, 2017b; Kruschke
and Vanpaemel, 2015). For example, a) the results are interpretable in terms of
probabilities, b) they accommodate sparse, unbalanced, and non-normal data, c)
they focus on the estimation of the magnitude of the effect (and its uncertainty)
rather than on the significance of the hypothesis testing, and d) they yield the
estimation of the parameters of distribution of the data (see section 4.4). Thanks
to the Bayesian approach, the analysis in Paper IV provided a detailed and
comprehensive account of the effect of automation on a range of VTS metrics,
which was lacking in the published research. There was a minimal change in
VTS behavior between manual and automated driving, but the proportion
of glances towards the forward path was found to be a sensitive metrics to
discriminate VTS sequences among all routine driving. As the model in Paper
III, this model can be used a) in counter-factual simulations (Bärgman et al.,
2015), b) in the design of real-time inattention countermeasures (J. D. Lee
et al., 2013), and c) in the development of inattention guidelines (NHTSA,
2013).

Recent development of unsupervised automated driving has led to a proliferation
of studies to understand how drivers may resume control in critical situations. In
fact, drivers are allowed—by design—to forgo the control of the vehicle and the
monitoring of the surrounding environment, but they are expected to intervene
promptly to any situation beyond the vehicle’s operational design (SAE, 2018).
Thus, unsupervised automated driving may require different strategies to elicit
driver’s attention than assistive automation (Merat et al., 2018), but it is unclear
how this transition of control should be planned and executed. As real-world
driving data on unsupervised automated driving are scarce, most research is
still conducted with driving simulators. However, different authors have studied
drivers’ response process in a variety a way; the results are scattered across
studies (McDonald et al., 2019).

Paper V proposed a procedure, based on Bayesian methods, for analyzing
the outcome of a driving simulator experiment in a comprehensive way. This
procedure enabled examination of the drivers’ response chain in greater detail
than previously done. Additionally, it addressed some common limitations in
the literature on the topic (e.g., how to deal with the carryover effect typical of
within-subjects designs) that may hinder the understanding of driver behavior
if not properly handled (Aust, Engström, and Viström, 2013; Kantowitz et al.,
2009). The response chain to a collision warning was broken down in its visual,
motor, and intervention components. Typically, research has focused on one
of the components or only on measures of reaction time (McDonald et al.,
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2019). The results indicated that the choice and timing of the intervention
(e.g., braking) depended on the critical situation at hand, while the visual
and motor components (glance on road, hands on wheel, feet on pedals) were
mostly a reflexive reaction to the warning. These results suggest that collision
warnings are attention orienting mechanism rather than maneuver initiator.
Furthermore, the carryover effect from earlier exposure to critical situations
affected the response substantially (e.g., a threat on the side of the vehicle
primed the drivers to look at the side, rather than at the forward path, in the
next event), as shown in earlier studies on manual driving (Aust et al., 2013;
M. Green, 2000). Paper V was one of the few studies which modeled explicitly
the effect of repeated exposure, showing that the full sequence of exposures
guides driver’s action, not only the single previous one. Critical situations
included rear-end crashes (one of the most studied; Gold, Naujoks, Radlmayr,
Bellem, and Jarosch, 2017), but also sideswipes and false warnings which have
not been investigated before. Sideswipes gave insights on how drivers responded
to critical scenarios of greater surprise, requiring greater glance eccentricity to
be noticed than rear-ends. False warnings gave insights on if and how drivers
responded to imperfect warnings. The results revealed that most participants
(70%) performed an evasive maneuver in response to a false warning. The
safety consequences of this behavior require further investigation, however,
as inappropriate responses may undermine the operation of automation and
compromise safety (J. D. Lee et al., 2006).

Limitations The generalizability of the findings from this thesis is subject to
certain limitations that derive from the methodology followed for data collection,
data analysis, and statistical modeling. In general, the same considerations
presented in Chapter 4 apply. There are other sources of uncertainty. First, it is
unknown the extent to which the findings from Paper I–IV can be extrapolated
to different social norms and cultural values (Sagberg, Selpi, Bianchi Piccinini,
and Engström, 2015); the participants in the naturalistic studies EuroFOT and
EyeOnRoad were recruited from Volvo Car personnel, who drove a company car
in the Göteborg area (the second-largest city in Sweden). Similar issues surround
the results from the simulator study in Paper V, as the participants were mostly
students at the Technical University of Munich (Germany). Second, Paper I, II,
and V relied on manual video reduction, which was performed only by the author
of the thesis; the intra- and inter-rater reliability was not established. Third,
the eye-tracker used for Paper III–IV did not provide information about the
off-path areas of interest nor the glance eccentricity; some off-path glances (e.g.,
towards the mirror) may be critical for safety and the ability to detect threats
on the road degrade with increasing visual eccentricity.
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Future research Further research, which considers the limitations mentioned,
is recommended. First, future studies may examine more closely, and under
tighter experimental control, the effectiveness of sensory cues to communicate
system limits though actuation found in Paper I–II. Second, future studies may
quantify how the results (e.g., the reference models in Paper III–IV) can be
tuned according to a broader range of driving situations. Third, future studies
may improve the reliability of glance-based methods for studying inattention by
leveraging on eye-trackers that measure glance location and eccentricity. Fourth,
future studies may apply more sophisticated probabilistic modeling technique
(e.g., hidden Markov models), which incorporate visual-motor response and
features from the driving context, to model driver’s response process. Finally, a
natural progression of this work is to extend it to future analyses of real-world
driving data with more sophisticated automation, both in routine driving and
in critical situations.
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7. Conclusions

By using naturalistic driving data with high ecological validity, proposing
novel and robust processing for behavioral data, and introducing Bayesian
statistics in traffic safety research, this thesis made major contributions to
the current literature on the human factors in automated driving. Specifi-
cally, this thesis advanced our knowledge for answering four topical research
questions.

1. What are the effects of automation on drivers’ attention to the driving task?

This work showed that, in routine real-world driving, drivers allocated less
attention to the driving situation with automation than without (Paper I–IV).
However, drivers’ attention was sensitive to other changes in the driving
context and the interplay thereof (e.g., the presence of a lead-vehicle and
darkness). We quantified these effects in a novel reference model that was
lacking in the literature (Paper III). Moreover, the Bayesian data analysis
that we introduced allowed to model—in greater details than previously
done—the characteristics of visual behavior during visual time-sharing (Paper
IV).

2. What are the safety implications of those changes?

This thesis found that the implications of diverting attention away from the
driving situation needs to be interpreted in the specific context (e.g., the
characteristics and criticality of the driving situation; Paper I–III) rather
than at a general level as done in previous research. Although attention was
reduced at an aggregate level, drivers were attentive at critical points, for
example to upcoming lead-vehicle conflicts (Paper I–II); this indicates that
drivers can proactively increase their attention to promptly respond in case
of sudden changes in the traffic environments. Moreover, the reduction of
risk exposure due to automation needs to be acknowledged (Paper I–III);
the safety implications of eyes off-path are different than when the eyes are
off-threat if automation maintains a safe headway to other traffic.

3. Are drivers prompt to respond to critical situations?
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We demonstrated that driver attention is not a static mechanism, but it
adapts and responds specifically to the evolution of the real-world driving
situations and with experience (Paper I–III). While drivers may anticipate
critical situations, warnings are an effective strategy for triggering a quick
shift of attention to the driving task in preparation to an evasive action
(Paper II and V). This thesis also provided novel in-depth information
on the complete response process in critical situations under unsupervised
automated driving (using advanced Bayesian methods; Paper V).

4. How can attention be elicited in situations that require an intervention by
the driver?

Our studies unveiled that attention can be elicited by sensory cues from
the driving situation (e.g., visual, vestibular-kinesthetic-somatosensory) that
signaled an impending conflict (Paper I–II). Traditional warnings (e.g., audio)
were found to be primarily attention alerting, rather than directly associated
with a brake or steer intervention as previous research has implied (Paper II
and V).

The outcome of this PhD work has a number of other implications for assessment
and testing of vehicle systems (ADASs and automation). First, the findings
are valuable for the development of computational driver models to be used
in computer simulations for driving safety assessment, for example counter-
factual analysis for evaluating the safety benefit of ADASs (Bärgman et al.,
2015). Second, the findings can support the design of real-time inattention
countermeasures, for example attention reminder systems based on eye-tracking
(J. D. Lee et al., 2013), or attention-sensitive ADASs (Victor et al., 2008).
Third, the findings can inform the rule-making process, for example inattention
guidelines (NHTSA, 2013).
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A. Mathematical derivation of looming
quantities

Figure A.1.: Schematic for the mathematical derivation of the measures of looming in car-
following situation.

Measures of looming can be computed from trigonometry. Based on Fig. A.1,
the range r(t) to the lead vehicle, in meters, is given by

r(t) =
w
2

tan (θ(t)/2) (A.1)

where θ is the angle (in rad) of the lead vehicle at the eyes of the driver, and w is
the width of the lead vehicle (in meters). From (A.1), we get

θ(t) = 2 · tan−1
(

w

2 r (t)

)
(A.2)

The time derivative of (A.2) yields

θ̇ = 2 · d
dt

[
tan−1

(
w

2 r (t)

)]
(A.3)

By applying the chain rule on (A.3), we get

θ̇ = 2 ·
[
d

du
tan−1 (u) · du

dt

]
(A.4)

where
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d

du
tan−1 (u) = 1

1 + u2

u = w

2 r (t)

(A.5)

By substituting (A.5) into (A.4), we obtain

θ̇ = 2 ·

 1
1 + w2

4 r(t)2

·
(

−w

2 · r(t)−2 · ṙ
) (A.6)

By simplifying (A.6), we get the final expression for θ̇

θ̇ = 2 ·

 1
1 + w2

4 r(t)2

·
(

−w

2 · 1
r(t)2 · ṙ

)
= −2 ·

[
4 r(t)2

4 r(t)2 + w2 · w2 · ṙ

r(t)2

]

= − 4 wṙ
4 r2 + w2

(A.7)

The rate of dilation of the image of the lead vehicle on the retina (in s), τ , is
computed as the ratio of θ and θ̇ (D. N. Lee, 1976).

It turns out that τ is the optical approximation of TTC (D. N. Lee, 1976). In
fact, the time derivative of (A.1) yields the range rate ṙ

ṙ = w

2 · 1
cos2 (θ/2) · θ̇2 (A.8)

Given that

TTC = r(t)
ṙ

(A.9)

if we substitute (A.1) and (A.8) in (A.9), we obtain
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TTC =
w
2 · tan (θ/2)
w
2 · 1

cos2(θ/2) · θ̇2

= sin (θ/2)
cos (θ/2) · cos2 (θ/2) · 2

θ̇

= 2
θ̇

· sin (θ/2) · cos (θ/2)

(A.10)

The equation (A.10) can be simplified using the trigonometric identity

sin (a) · cos (b) = 1
2 · [sin (a+ b) + sin (a− b)] (A.11)

The equation (A.10) can then be written as

TTC = 2
θ̇

· 1
2 · sin (θ) = sin (θ)

θ̇
(A.12)

which shows that TTC is optically specified, and that TTC is equal, save
the small angle approximation, to the quantity τ (as defined in D. N. Lee,
1976)

TTC = sin (θ)
θ̇

≈ θ

θ̇
= τ (A.13)
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