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Abstract
The Mesopotamian system of sexagesimal counting numbers was based on the pro-
gressive series of units 1, 10, 1·60, 10·60, …. It may have been in use already before 
the invention of writing, with the mentioned units represented by various kinds of 
small clay tokens. After the invention of proto-cuneiform writing, c. 3300 BC, it 
continued to be used, with the successive units of the system represented by distinc-
tive impressed cup- and disk-shaped number signs. Other kinds of “metrological” 
number systems in the proto-cuneiform script, with similar number signs, were used 
to denote area numbers, capacity numbers, etc. In a handful of known mathematical 
cuneiform texts from the latter half of the third millennium BC, the ancient systems 
of sexagesimal counting numbers and area numbers were still in use, alongside new 
kinds of systems of capacity numbers and weight numbers. Large area numbers, 
capacity numbers, and weight numbers were counted sexagesimally, while each 
metrological number system had its own kind of fractional units. In the system of 
counting numbers itself, fractions could be expressed as sixtieths, sixtieths of sixti-
eths, and so on, but also in terms of small units borrowed from the system of weight 
numbers. Among them were the “basic fractions” which we would understand as 
1/3, 1/2, and 2/3. In a very early series of metro-mathematical division exercises and 
an equally early metro-mathematical table of squares (Early Dynastic III, c. 2400 
BC), “quasi-integers” of the form “integer plus basic fraction” play a prominent 
role. Quasi-integers play an essential role also in a recently found atypical cuneiform 
table of reciprocals. The invention of sexagesimal numbers in place-value notation, 
in the Neo-Sumerian period c. 2000 BC, was based on a series of innovations. The 
range of the system of sexagesimal counting numbers was extended indefinitely 
both upward and downward, and the use of quasi-integers was abolished. Sexagesi-
mal place-value numbers were used for all kinds of calculations in Old Babylonian 
mathematical cuneiform texts, c. 1700 BC, while traditional metrological numbers 
were retained in both questions and answers of the exercises. Examples of impres-
sive computations of reciprocals of many-place regular sexagesimal place-value 
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numbers, with no practical applications whatsoever, are known from the Old Baby-
lonian period. In the Late Babylonian period (the latter half of the first millennium 
BC), such computations were still popular, performed by the same persons who con-
structed the many-place sexagesimal tables that make up the corpus of Late Babylo-
nian mathematical astronomy.

1 � Preliterate number tokens possibly representing sexagesimal 
numbers

1It is now well known that people in Mesopotamia and neighboring regions were 
using small clay figurines, so-called tokens, for as much as 5 millennia before the 
invention of writing (around 3300 BC), almost certainly for some kind of commu-
nication and archiving.2 Also known is that, a relatively short time before the inven-
tion of writing, groups of such tokens started to be enclosed in hollow clay balls, 
known as bullae, sometimes with indications on the outside about the contents. Such 
bullae have been found not only in the ancient Mesopotamian city Uruk, but also 
much further east, in the ancient city Susa in what is now Iran.

It seems to be a reasonable conjecture that some of the tokens enclosed in bullae 
were direct preliterate precursors of various types of proto-cuneiform number signs 
on inscribed clay tablets from Uruk, and “proto-Elamite” number signs on inscribed 
clay tablets from Susa. Actually, in some cases it is feasible to try to interpret the 
numerical meaning of groups of tokens enclosed in bullae through comparison with 
proto-cuneiform or proto-Elamite number signs.3 One clear example is Sb 1927, a 
bulla from proto-Elamite Susa, with the following contents and outside inscription. 

The inscription on the outside of Sb 1927 appears to be a description of the 
tokens inside the bulla, with the three round holes on the outside resulting from one 
of the smaller cones being pushed into the clay with the point first. Interestingly, the 
inscription on the outside seems to have been imprinted from right to left, just as the 
proto-Elamite script was inscribed from right to left.

1  An updated version of Friberg (2014).
2  Schmandt-Besserat (1992).
3  See Friberg (2007), pp. 380–384.
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Although the proto-Elamite script (still mostly undeciphered) was unrelated to 
the proto-cuneiform script, there were clear similarities between the various systems 
of number notations used in the two scripts. In particular, system S of sexagesimal 
counting numbers was shared by both. Now, assuming that the tokens inside the 
bulla Sb 1927 represented sexagesimal numbers, one can make a conjectural identi-
fication of the punched cone, the smaller cones and the lenses inside the bulla with 
the signs for the units 10 · 60, 60, and 10 of system S. As shown in the diagram 
below, the proto-cuneiform/proto-Elamite signs for those three units were a disk-
shaped d, a large cup-shaped C, and a punched large cup Cd. 

If this identification of the tokens inside Sb 1927 with sexagesimal number units 
is correct, then the meaning of the whole set of tokens inside Sb 1927 ought to be

1(10 · 60) 3(60) 3(10), in other words 13 · 60 + 30.

Interestingly, this number in its turn may be interpreted as an “almost round” 
sexagesimal number4 of the following form:

13 1/2 · 60 = (1 – 1/10) · 15(60).

2 � Other tentatively identified preliterate systems of number 
notations

In examples like the one above, rods, lenses, cones, and a punched cone which have 
been found together in bullae can be compared to the units 1, 10, 60, and 10 · 60 of 
the well-documented proto-cuneiform/proto-Elamite system S of sexagesimal count-
ing numbers. Note the alternation of factors 10 and 6 in the factor diagram for sys-
tem S.

In another example, disks, balls, large balls, and high disks, which may be found 
together in other preliterate bullae, can be tentatively identified with the units c, d, 

4  For the concept of “almost round numbers”, see Friberg (1997/98).



186	 J. Friberg 

1 3

D, and C of the well-known proto-cuneiform/proto-Elamite system C of capacity 
numbers, used to quantify volumes of barley and similar products.

In the proto-Elamite script, the system S(pc/pE) of sexagesimal counting num-
bers was accompanied by an exclusively proto-Elamite system D(pE) of decimal 
counting numbers. Each system was used for its own specific purposes. Interest-
ingly, the tokens contained in Sb 1967, a bulla from proto-Elamite Susa5 (see the 
diagram below), can tentatively be interpreted as a set of tetrahedral tokens stand-
ing for units of a decimal system D(pE) and a separate set of ball-shaped tokens 
standing for units of system C(pc/pE). If this interpretation is correct, then the two 
larger balls and four small balls can stand for the capacity number 2D 4d, equal to 
24 d, while the three large tetrahedrons, the two punched tetrahedrons, and the four 
small tetrahedrons can stand for the decimal number 3(100) 2(10) 4 = three hundred 
twenty-four. 

Here 3(100) 2(10) 4 can be explained as an “almost round” decimal number. 
Indeed,

3(100) 2(10) 4 = 27 · 12 = (1 – 1/10) · 6(60).

5  See Friberg (2007) A Remarkable Collection, p. 382.
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Therefore, the meaning of the tokens inside the bulla Sb 1967 may have been 
that 2D 4d = 24 d of barley were accounted for as the wages in barley for (1 – 1/10) 
· 6(60) work days or (1 – 1/10) · 12 work months. This corresponds to the following 
wage rate:

2d of barley for (1 – 1/10) month of work, which is the same as (1 + 1/9) · 2d of 
barley for 1 month’s work.

3 � Sexagesimal or bisexagesimal counting numbers and whole 
or fractional capacity units in a proto‑cuneiform school text

MSVO 4, 66

obv.
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MSVO 4, 66

Just as two different systems of counting numbers were made use of in the proto-
Elamite script, namely sexagesimal and decimal, there were two different systems of 
counting numbers in use in proto-cuneiform texts, namely sexagesimal and bisexa-
gesimal. Bisexagesimal numbers seem to have been used exclusively for counting 
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rations of bread and related products. They differ from sexagesimal numbers by hav-
ing special notations for 2 · 60, for 10 · 2 · 60, and for 60 · 2 · 60.

MSVO 4, 66, shown above, is a well-known proto-cuneiform “bread-and-beer 
text” from the so-called Jemdet Nasr period, about 3000 BC. It is remarkable 
because it makes use of several different proto-cuneiform systems of number nota-
tions. In addition, it contains quite sophisticated calculations.6

The lack of names and titles of persons in charge of the account in the empty 
box 1:iv on the reverse of MSVO 4, 66 indicates that this is a school text rather than 
a normal administrative proto-cuneiform text. It is easy to see that the text lists 
expenses of barley for large and small rations of bread and beer, but the presence 
of both unusually large numbers and of rations of many different sizes confirms the 
expression that this is a rather advanced “metro-mathematical” exercise aiming to 
train students both in proper attention to metrological questions and in performing 
complicated mathematical operations.

Below is shown a factor diagram for the system B(pc) of bisexagesimal numbers, 
followed by a factor diagram for the proto-cuneiform system C(pc) of capacity num-
bers, showing both multiples and fractions of the basic capacity unit here called c. 

10 2 6 106 ?

10 · 2 · 60 60 10 1

B(pc) :

60 · 2 · 60

M2d M2 C d cDd2

2 · 60

 

3 10 6 5

3 D 60 c 6 c 5 M

C(pc) :

C D d c M

m6

1/6 M

6

2 

1/5 c

1/2 M

m2

m6d d   s

1/10 M 1/20 M

×

The list of notations for fractions of the basic capacity unit c starts with the 
“minor” unit M, equal to 1/5 of c. Fractions of M in its turn, from m2 = 1/2M to 
m6 = 1/6M, have the form of wreaths of small marks, from 2 to 6. (There are also 
known special signs for 1/10 and 1/20 of M, although those two signs do not appear 
in MSVO 4, 66.) Knowing this, it is easy to understand the calculations taking place 
in the five text boxes 1:i to 1:vi on the obverse of MSVO 4, 66, making use of bisexa-
gesimal counting numbers:

1(60) · M = 12 c = 2d, 1(2 · 60) · m2 = 12 c = 2d, 1(2 · 60) · m3 = 8 c = 1d 2c,

6  Englund (1996) and Friberg (1999).
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2(2 · 60) 1(60) · m4 = 5(60) · m4 = 15 c = 2d 3c, 5(2 · 60) · m5 = 1(2 · 60) · M = 4d,
5(10 · 2 · 60) · m6 (not explicitly indicated) = 5 · 40 c = 1C 3d 2c.

In the three text boxes 2:i to 2:iii on the obverse of MSVO 4, 66, jars of beer 
of three different (presumably known but not explicitly mentioned) strengths are 
counted in terms of sexagesimal counting numbers, 2(60), 3(60), and 5(60).

The grand totals inscribed on the reverse of the text are remarkably large and 
round numbers. Thus, the number of bread rations between M and m6 is

1(60) + 1(2 · 60) + 1(2 · 60) + 2(2 · 60) 1(60) + 5(2 · 60) + 5(10 · 2 · 60) = 1(60 · 2 · 60). (rev. 1:ia-1:iia)

The total number of jars of beer is

2(60) + 3(60) + 5(60) = 1(10 · 60). (rev. 1:iiia)

The grand total of all expenses of barley is an almost round number. Indeed

2C = 6(60)d = 360 c = 1800M, 1c 4M = 9M, so that 1C 2D 9d 4c 1M = (1 – 1/200) 
· 2C.

This can hardly be by accident, but why the grand total is of this kind is hard to 
explain.

4 � Counting with loan and interest in a proto‑cuneiform text

Recently, a number of proto-cuneiform texts from the Uruk III period (c. 3200–3000 
BC) have been identified as being concerned with loan and interest.7 One of them is 
CUSAS 1, 143, shown below. 

Like all other known mathematical cuneiform texts from before the Neo-Sumer-
ian period, this is really a metro-mathematical exercise: In text box i of this text, it 

7  Monaco (2012). See also Friberg and Al-Rawi (2016), Ch. 13.7.
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is said that the daily ration of some non-fluid product is m4. In text box ii:a-b, it 
is stated that the corresponding monthly cost in barley is 1c 3M m5 dxs, which is 
explicitly explained as the sum of the “loan” 1c 2M m2 = 30 m4 and the “interest” 
m2 m5 dxs. It is easy to see that the interest is precisely 1/10 of the loan. Indeed,

1c 2M m2 = 7M m2 = 15 m2, of which 1/10 is 15 dxs = (10 + 4 + 1) dxs = m2 m5 
dxs.

In other words, the monthly expense of barley is computed here as

(1 + 1/10) · 1c 2M m2 = (1 + 1/10) · 30 · m2.

In text box iii, the expense for five months is computed (somewhat incorrectly) as 
12c 1M m2 (instead of 12c 1M m4).

Note the use of proto-cuneiform number signs for time measures, here 1 and 
5 months. Note also that no cuneiform sign for “1/10” is used here, only the sign _

_ 
for “interest.”

5 � The historical development of the system of sexagesimal numbers

Above have been mentioned several known proto-cuneiform and/or proto-Elamite 
number systems, the systems S and C of sexagesimal counting numbers and capac-
ity numbers, the system B of bisexagesimal counting numbers, and the system D 
of decimal counting numbers (proto-Elamite only). In addition, there was a proto-
cuneiform system E of (probably) weight numbers, a system T of time numbers, and 
a system A of proto-cuneiform area numbers, the latter intimately related to length 
numbers (sexagesimal multiples of a certain basic length unit).8

The decimal system D disappeared when the short-lived proto-Elamite script 
ceased to exist. As a matter of fact, in Sumerian and Akkadian texts from the Early 
Dynastic III period half a millennium after the time of the last proto-cuneiform 
texts, only systems S and A remained of the many early systems of numbers. The 
system A of area numbers was still in use in the Old Babylonian period in the first 
half of the second millennium BC, while sexagesimal numbers continued to be used 
until the end of the cuneiform script, at least in mathematical (and astronomical) 
cuneiform texts.

The purpose of the four factor diagrams below is to show the development of 
notations for sexagesimal numbers through four different periods of the history of 
the cuneiform script in Mesopotamia. 

8  See Nissen et al. (1993), Fig. 50.
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The first one of these factor diagrams shows number notations for units of sexagesi-
mal numbers used in the proto-cuneiform and proto-Elamite scripts around 3300–2900 
BC. The second diagram shows that essentially the same number notations were used 
for sexagesimal numbers in (Old) Sumerian and Old Akkadian texts from the third mil-
lennium, possibly after rotation of the script. The third diagram shows the same set of 
number notations in (Neo-)Sumerian and Babylonian texts from the late third millen-
nium and onward, when the “round” forms of number notations had been replaced by 
“sharp” forms. “Basic fractions” is a suitable name for the fractions which we would 
understand as 1/3, 1/2, 2/3, and 5/6, for which the following cuneiform notations existed: 

They were probably related to notations for fractions in an Old Sumerian and Old 
Akkadian system of weight numbers.

The fourth factor diagram above, finally, refers to sexagesimal numbers in float-
ing place-value notation, which were in use, almost exclusively, in Neo-Sumerian 
and Babylonian mathematical texts from about 2000 BC and onward (and Late Bab-
ylonian astronomical texts from the second half of the first millennium BC):

6 � An Old Sumerian (Early Dynastic III) division exercise, around 2600 BC
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Like all other known mathematical cuneiform texts from before the Neo-Sumerian 
period, TSS 50 (shown above) is really a metro-mathematical exercise:

The barley in a full granary of (apparently) known capacity has to be divided into 
individual rations of 7  sìla each. (The sìla was a capacity unit equal to around 
1 L.) Find the number of rations.

The answer given in the text of the exercise is that the number of rations was 
45(60 · 60) 42(60) 51, with a remainder of 3 sìla. The text does not tell how this 
result was achieved. Now, in an attempt to explain the needed computation, a rea-
sonable starting point is to assume that the (presumably) known capacity of the gra-
nary was 40(60) gur.mah, where

1 gur.mah = 8 barig, 1 barig = 6 bán, 1 bán = 10 sìla.

In agreement with this assumption, the division of the presumed total 40(60) gur.
mah by 7 sìla, without recourse to sexagesimal numbers in place-value notation, can 
be explained as follows. Note that this is a metro-mathematical algorithmic compu-
tation, where each step of the computation builds on the result obtained in the previ-
ous step.

1 bán = 1 ration plus 3 sìla
1 barig = 6 · 1 bán = 8 rations plus 4 sìla
1 gur.mah = 8 · 1 barig = 1(60) 8 rations plus 4 sìla
10 gur.mah = 10 · 1 gur.mah = 11(60) 25 rations plus 5 sìla
1(60) gur.mah = 6 · 10 gur.mah = 1(60 · 60) 8(60) 34 rations plus 2 sìla
10(60) gur.mah = 10 · 1(60) gur.mah = 11(60 · 60) 25(60) 42 rations plus 6 sìla
40(60) gur.mah = 4 · 10(60) gur.mah = 45(60 · 60) 42(60) 51 rations plus 3 sìla

This presumed algorithmic computation is modeled after the explicitly performed 
metro-mathematical algorithmic division of 1 rí-ba (= 10,000) níg.sagshu by 24 níg.
sagshu in the roughly contemporary text TM.75.G.2346 from the site Ebla in pre-
sent-day Syria.9

9  See Friberg (2007) A Remarkable Collection, App. 6.6.
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7 � The second oldest known metro‑mathematical theme text, c. 2300 
BC

 A metro-mathematical theme text is a text containing two or more intimately con-
nected metro-mathematical exercises. The oldest known metro-mathematical theme 
text is from the Uruk IV period (c. 3200 BC), a school text listing the sides of two 
irregularly formed quadrilateral figures. The areas the two figures (computed by use 
of a certain “false” area rule) are both equal to the unrealistically large and round 
area number 20(60) · 15(60) square nindan = 5(60 · 60 · 60) square nindan = 10 area-
shár (1 nindan = c. 6 m).10

The second oldest known metro-mathematical text, shown above, is from the 
Early Dynastic period III in Mesopotamia, c. 2300 BC.11 The theme of this text is 
multiplication or division by counting numbers of the type 1 2/3 5 (exercise # 1) or 1 
2/3 (exercises ## 2-8), where 2/3 is one of the basic fractions mentioned above. The 
number notation 1 2/3 5 is, clearly, an abbreviated form of the number notation 1 2/3 
5 gín, where gín is a Sumerian expression for “1/60,” borrowed from the Sumerian 
system of weight measures, where

1 ma.na = 1(60) gín.

The vaguely formulated exercise # 1 can be understood as meaning

The selling price for beads is 1 2/3 5 (gín) times the buying price.

10  W 19408, 76. See Nissen et al. (1993), Fig. 50.
11  Published in Bartash (2011).
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Beads were sold for the price 1 (ma.na) – 1/2 gín. For how much were they 
bought?
Answer: 1/2 ma.na 4 gín.

In quasi-modern symbolic notations, the question can be expressed as an 
equation:

1 2/3 5 gín · n = 1 ma.na – 1/2 gín, n = ?

This is a metro-mathematical division problem, which can be solved in the fol-
lowing way: Let, for instance, n* = 4 gín be a tentative, “false solution.” Then

1 2/3 5 gín · n* = 1 2/3 · 4 gín + 5 · 1/60 · 4 gín = 6 2/3 gín + 1/3 gín = 7 gín.

However, the desired result of the multiplication was instead

1 ma.na – 1/2 gín = 59 1/2 gín = 8 1/2 · 7 gín.

Therefore, the true solution can be obtained through multiplication of n* = 4 gín 
by the “correction factor” 8 1/2, in the following way:

n = n* · 8 1/2 = 8 1/2 · 4 gín = 34 gín = 1/2 ma.na 4 gin.

An interesting, hidden meaning of this exercise is that it really, like the exercise 
discussed above in Sect. 6, may have been concerned with the problem of division 
by the sexagesimally non-regular number 7. The concept of sexagesimally regular 
numbers is well known and easy to understand in the case of sexagesimal numbers 
in place-value notation. Namely, a sexagesimal number n in place-value notation is 
said to be regular if there exists another number n´ of the same kind such that n · 
n´ = some power of 60. (Otherwise it is non-regular.) Then n´ can be referred to as 
rec. n (the reciprocal of n).

In the case of the present text, CUNES-52-18-035, where the author of the text 
had no recourse to numbers in place-value notation, the situation is more difficult. 
Anticipating what will be revealed in Sect. 10, it is motivated to call an integer-plus-
a-basic-fraction a “quasi-integer,” and to call a number n a “sexagesimally regular 
quasi-integer” if there exists another number rec. n of the same kind such that n · 
rec. n = 1(60). An example of such a sexagesimally regular quasi-integer is 1 2/3, for 
which the reciprocal number is rec. 1 2/3 = 36. Indeed,

1 2/3 · 36 = 36 + 24 = 60.

An example of a sexagesimally non-regular (quasi-)integer, on the other hand, 
is 7, for which it is possible to find only an approximate reciprocal quasi-integer, 
namely 8 1/2. Indeed,

7 · 8 1/2 = 56 + 3 1/2 = 59 1/2 = 1(60) – 1/2.
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Now, starting with an equation like this, it is easy to construct other similar 
equations by, for instance, the process of “halving and doubling” (or, more gen-
erally, “reciprocal compensation”). Halving, say, 7 and doubling 8 1/2, and then 
iterating the process, one gets

3 1/2 · 17 = 1(60) – 1/2, 1 2/3 5 gín · 34 = 1(60) – 1/2, and so on

It is likely that the author of CUNES 52-18-035 was aware of this technique, 
when he made use in exercise # 1 of the related equation.

1 2/3 5 gín · 1/2 ma.na 4 gín = 1 ma.na – 1/2 gín.

The theme for the remainder of the same text, in exercises ## 2–8, is multipli-
cation or division by the sexagesimally regular quasi-integer 1 2/3. The questions 
in all these exercises are brief and cryptically formulated. In addition, the termi-
nology is partly unknown, so the suggested interpretations can only be tentative. 
Anyway, in exercise # 2, for instance, the question appears to be a division prob-
lem of the following kind:

Potash(?) can be bought at a market rate of 1 2/3 sìla of potash for 1  sìla of 
barley.
The amount of potash bought was 2 barig. How much was paid for the potash?

Here

1 barig = 6 bán, 1 bán = 6 sìla, 1 sìla = 60 gín.

In quasi-modern notations, the question can be reformulated as the linear 
equation

1 2/3 · p = 2 barig, p = ?

One way of solving this equation is to multiply both sides of the equation by 3. 
Result:

5 p = 6 barig,

so that

p = 1/5 of 6 barig = 1 1/5 barig = 1 barig 1 1/5 bán = 1 barig 1 bán 1 1/5 sìla = 1 barig 
1 bán 1 sìla 12 gín.

Unfortunately, the one who tried to solve the equation for p forgot to multiply the 
right side of the equation by 3. Therefore, he mistakenly found the incorrect solution
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p = 1/5 of 2 barig = 2 bán + 1/5 of 2 bán = 2 bán 2 sìla + 1/5 of 2 sìla = 2 bán 2 sìla 1/3 
(sìla) 4 gín of barley.

This is the amount of barley recorded at the end of the first column on the obverse 
of the text.

Exercise # 5  is a related multiplication problem:

Someone borrowed or invested 2/3 ma.na of silver. The silver was returned at a rate 
of 1 2/3 gín of silver for each original gín. How much silver was returned?

Evidently, the answer must be, as noted in the text,

1 2/3 · 2/3 ma.na = 1 2/3 · 40 gín = 40 gín + 26 2/3 gín = 1 ma.na 6 2/3 gín.

For a modern reader, it is surprising to see how complicated such seemingly simple 
division and multiplication exercises could be at a time when it was no trivial matter 
to divide by quasi-integers, and when it was important to take account of the units and 
conversion factors in the systems of measures in terms of which the metro-mathematical 
problem was stated.

8 � An Early Dynastic cuneiform text with several tables of areas 
of squares

The basic Sumerian/Old Babylonian unit of length measure was the nindan (around 6 
meters). Its square was the basic unit of area measure, the sar. Larger units were the 
iku, the èshe, and the bùr, with

100 sar = 1 iku, 6 iku = 1 èshe, and 3 èshe = 1 bùr.

Other units were (fractions of the iku and) sexagesimal multiples of the bùr, as 
described concisely by the factor diagram below: 

A(EDIII) :
1010 6 106 3 66

The largest of these area units are just theoretical constructions, too big to be of 
any real use. Note, for instance, that

1 shár.kid = 60 · 60 · 60 · 3 · 6 · 100 sar = c. 14,000 square kilometers.
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CUNES 50-08-001 (partial transliteration below) is a large Early Dynastic III 
cuneiform text (2500–2350 BC) with a sequence of what may be called “tables of 
areas of squares.”12 The first and longest of these tables of areas of squares (sub-
table A) is a table of squares of sexagesimal multiples of the nindan. It is too long to 
be reproduced here, but it contains, for instance, the following lines:

1 nindan square (is) 1 sar (of) area
10 square 1(iku) area
1(gésh) square 2(bùr) area
10(gésh) square 3(shár) 20(bùr) area
1(shár) square 2(shár).gal area
10(shár) square 3(shár).kid 20(shár).gal area

It is easy to check that, indeed,

sq. 10(gésh) =  10 · 10 · 2(bùr) =  10 · 20(bùr) =  3(shár) 20(bùr)
sq. 1(shár) =  6 · 6 · 3(shár) 20(bùr) =  6 · 20(shár) =  2(shár).gal
sq. 10(shár) =  10 · 10 · 2(shár).gal =  10 · 20(shár).gal =  3(shár).kid 20(shár).gal.

Sub-table B is a table of squares of multiples of 1 nikkas (= 1/4 nindan).
Sub-table C is a table of squares of multiples of 1 kùsh.numun (= 1/6 nindan).
Sub-table D is a table of squares of multiples of 1 gish.bad = (1/12 nindan).
Sub-table E is a table of squares of multiples of 1 shu.bad = (1/24 nindan).

In the partial transliteration below is shown, as an example, 2 of the 10 columns 
on the clay tablet. (There are in all 7 columns on the obverse and 3 on the reverse.)

The first lines of each of these four sub-tables can be explained as, respectively,

B: sq. 1 nikkas = sq. (1/4 nindan) = 1/4 of 1/4 sar = 1/4 of 15 gín = 3 2/3 gín 5 (gín.
bi)
C: sq. kùsh.numun = sq. (1/6 nindan) = 1/6 of 1/6 sar = 1/6 of 10 gín = 1 2/3 gín
D: sq. 1 gish.bad = sq. (1/12 nindan) = 1/12 of 1/12 sar = 1/12 of 5 gín = 1/3 gín 
5 gín.bi
E: sq. 1 shu.bad = sq. (1/24 nindan) = 1/24 of 1/24 sar = 1/24 of 2 1/2 gín = 6 gín.
bi 15 gín.ba.gín.

Here

1 gín = 1/60 of 1 sar, 1 gín.bi = 1/60 of 1 gín, and 1 gín.ba.gín = 1/60 of 1 gín.bi.

Evidently, what we see here is an attempt to extend the system A of area numbers 
downward sexagesimally, so that it comes to include also a limited number of sexa-
gesimal fractions!

12  See Friberg (2007) A Remarkable Collection, App. 7.
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It is interesting to note that all the area numbers in sub-table C are of the type a 
quasi-integer times 1 sar, followed by a quasi-integer times 1 gín, and that similarly 
all the area numbers in sub-table D are of the type a quasi-integer times 1 gín, fol-
lowed by a quasi-integer times 1 gín.bi. 

sq. 1 kn

sq. 8 nk

sq. 9 nk

sq. 10 nk

sq. 2 kn

sq. 3 kn

sq. 4 kn

sq. 5 kn

sq. 6 kn

sq. 7 kn

sq. 8 kn

sq. 9 kn

sq. 10 kn

sq. 1 gb

sq. 2 gb

sq. 3 gb

sq. 4 gb

sq. 5 gb

sq. 6 gb

CUNES 50-08-001, columns vi-vii

B

…………
sq. 8 nk  4  sar 
sq. 9 nk  5 sar  3 2/3 gín   5
sq. 10 nk  6 sar  15  gín 

C

sq. 1 kn      1 2/3  gín
sq. 2 kn      6 2/3  gín
sq. 3 kn      15  gín 
sq. 4 kn  1/3 sar      6 2/3  gín
sq. 5 kn  2/3 sar      1 2/3  gín
sq. 6 kn  1 sar  
sq. 7 kn 1 1/3 sar   1 2/3  gín 
sq. 8 kn  1 2/3 sar   6 2/3  gín
sq. 9 kn  2  sar    15 gín
sq. 10 kn  2 2/3 sar   6 2/3  gín

D
sq. 1 gb 1/3 gín        5 gín.bi 
sq. 2 gb 1 2/3  gín  
sq. 3 gb 3 2/3  gín   5 gín.bi
sq. 4 gb 6 2/3  gín 
sq. 5 gb 10 1/3  gín  5 gín.bi 
…………

9 � An old Akkadian geometric division exercise, c. 2250 BC

HS 815, the cuneiform text shown below13, is one of a handful of known school 
texts of a similar kind from the Old Akkadian period in Mesopotamia (c. 
2350–2150 BC). In the first 2 lines of the text, it is stated that the long side of a 
rectangle is 1(60) 7 1/2 nindan, and it is asked about the length of the short side s 

13  Westenholz (1975).
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(sag), if the area of the rectangle is 1(iku) (= 1(60) 40 sar). The answer is given in 
the last line:

s = 1 nindan 5 kùsh 2 shu.dù.a 3 shu.si 1/3 shu.si.

In quasi-modern symbolic notations, the question can be rephrased as the lin-
ear equation

1(60) 7 1/2 nindan · s = 1(60) 40 sar (sq. nindan).

For the modern reader, this question may seem to be overly simple, but that 
was certainly not so in the mind of an Old Akkadian school boy who knew noth-
ing about sexagesimal numbers in place-value notation, and who had to remem-
ber the conversion rules of the period for the various units of length measure, 
namely

1 nindan = 12 kùsh (cubits), 1 cubit = 3 shu.dù.a, 1 shu.dù.a = 10 shu.si (fingers).

 It is not indicated in the text how the answer to the question was computed. How-
ever, there are reasons to suspect that it was computed step by step, by use of 
some simple algorithmic method, necessarily based on the observation that the 
number 1(60) 7 1/2 is a sexagesimally regular quasi-integer. Indeed,

1(60) 7 1/2 = 27 · 2 1/2, where 27 and 2 1/2 are sexagesimally regular integers or 
quasi-integers.

One possible such algorithm starts with the observation that a rectangle with the 
area 1(iku) = 1(60) 40 sar can be one where the long side is 40 nindan and the short 
side 2 1/2 nindan. Or one where the long side is 3 times shorter and the short side 3 
times longer. And so on, in the same way. (This is the procedure of repeated “tripling 
and trisecting,” or, more generally, repeated “reciprocal compensation.”) Therefore, 
the answer given in the text can have been computed in the following way:
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1(60) 40 sq. nindan = 2 1/2 nindan · 40 nindan
= 7 1/2 nindan · 13 nindan 4 cubits
= 22 1/2 nindan · 4 nindan 5 1/3 cubits
= 1(60) 7 1/2 nindan · 1 nindan 5 2/3 cubits 3 1/3 fingers

Interestingly, it can be said that the problem in this exercise had a simple solu-
tion precisely because the given number 1(60) 7 1/2 was sexagesimally regular, and 
because so were the conversion factors 12, 3, and 10 in the Old Akkadian system of 
length measures.

10 � A table of reciprocals without sexagesimal place‑value numbers

SM 2685 (shown below in conform transliteration) is a clay tablet from the Sulay-
maniyah Museum in the Kurdistan region of Northern Iraq.14 The clay tablets in 
the Sulaymaniyah Museum were acquired in the antiquities market and are therefore 
unprovenanced, but in most cases they are probably from Old Babylonian Larsa. 
The writing on SM 2685 itself is such that the text can be either from the Neo-
Sumerian Ur III period (c. 2150–2000 BC), or somewhat younger, from the Early 
Old Babylonian period. However, the content of the text has no known Old Baby-
lonian parallels. Indeed, it is likely that the clay tablet is a copy of a much older 
text, certainly from before the invention around 2000 BC of sexagesimal numbers in 
place-value notation.

The ubiquitous presence in the text of the phrase igi n gál.bi clearly shows that 
SM 2685 is some kind of table of reciprocals. The term igi n, or igi n gál, has the 
meaning “the reciprocal of n” or “the n-th part.” It is otherwise known, for instance, 
from the early curious table of areas of squares A 681 (Adab, Early Dynastic III), 
where igi 4 appears twice,15 and from an equally early and even more curious lexi-
cal text for weight measures with multiples and fractions of the ma.na (also ED III), 
which mentions igi 3 gál, igi 4 gál, and igi 6 gál.16 The Sumerian term igi n gál, lit-
erally meaning “it has n eyes,” may have been a surviving reminiscence of the proto-
cuneiform number signs m2, m3, …, m6, for the fractions 1/2M, 1/3M, …. 1/6M (in 
system C(pc), see Sect. 3).

Interestingly, in the mentioned lexical text, fractions of the weight unit ma.na 
are the gín = 1/60 ma.na, the sa10.ma.na (“exchange ma.na”) = 1/3 gín, and the sa10.
gín = 1/60 sa10.ma.na. The reason for these strange weight units may have been that 
at the time (ED III) 1 exchange- ma.na of silver was worth as much as the 180 times 
heavier ma.na of copper.17 In the table of areas of squares from Adab, fractions of 
the area unit sar = sq. nindan are not counted by use of the sexagesimal fractions gín, 
gín.bi, gín.ba.gín, but by use of the weight fractions gín, sa10.ma.na, and sa10.gín! 

14  Recently discovered by my co-worker professor Farouk Al-Rawi and published in Friberg and Al-
Rawi (2016), Ch. 13.
15  See Friberg (2007) A Remarkable Collection, Apps. A.1.3 and A 7.2.
16  CUNES 47-12-176. See Friberg (2007) op. cit, App. A.7.4.
17  Op. cit., p. 427.
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obv. rev.

Now back to SM 2685. In an effort to check that it really is a table of recipro-
cals, as suggested by the presence in each line of the table of the term igi n gál.bi, 
consider, for instance, the well-preserved first line on the reverse of the clay tablet

igi 13 1/3 gál.bi 4 1/2 which can be understood as meaning rec. 13 1/3 = 4 1/2.

Indeed,

13 1/3 · 4 1/2 = 13 · 4 + 1/3 · 4 + 13 · 1/2 + 1/3 · 1/2 = 52 + 1 1/3 + 6 1/2 + 1/6 = 59 1/2 
1/3 1/6 = 1(60).

Is this really how it was done? Even more doubtful is if this is really how it 
was shown that, as in the next line of the text

igi 13 1/2 gál.bi 4 1/3 6 2/3 which can be understood as meaning rec. igi 13 1/2 = 4 
1/3 6 2/3 gín.
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Moreover, even if it can be shown, through a series of laborious multiplications, 
that the product of the pair of numbers in each line of the table is equal to 1(60) 
(which is the case), then it remains to be shown how each such pair of numbers had 
been found. It can hardly have been done through trial and error, testing all kinds of 
weird quasi-integers to see whether there existed a corresponding more or less com-
plicated reciprocal number.

Instead, it is likely that the pairs of numbers in the table of reciprocals SM 2685 were 
constructed in a systematic series of quite simple computations, in the following way:

A first step was to find the reciprocals rec. n of all sexagesimally regular num-
bers n between 2 and 1(60), such that in each case n · rec. n = 1(60). The result 
was a table of the following kind, where the reciprocal numbers all are “extended 
quasi-integers,” meaning either a quasi-integer or a quasi-integer + a quasi-integer 
times 1 gín. The cuneiform sign gín can be omitted. Note how the verifications of 
the equation n · rec. n = 1(60) in several cases can be simplified by using a suitable 
factorization of the number n. 

n rec. n

2 30
3 20
4 15
5 12
6 10
8 7 1/2

9 6 2/3

10 6
12 5
15 4
16 3 2/3 5
18 3 1/3

20 3
24 2 1/2

25 2 1/3 4
27 2 13 1/3

30 2
32 1 5/6 2 1/2

36 1 2/3

40 1 1/2

45 1 1/3

48 1 15
50 1 12
54 1 6 2/3

1(60) 1

1/2 = 56 + 4 = 1(60)
2/3 = 54 + 6 = 1(60)

2/3
1/2 = 1(60)

1/3 = 54 + 6 = 1(60)

1/2 = 48 + 12 1(60)
1/3

1/3
2/3 = 1(60)

5/6 2 1/2
2/3

2/3
1/3 = 1(60)

1/2 = 40 + 20 = 1(60)
1/3 = 45 + 15 = 1(60)

2/3
1/3 = 1(60)

All these 25 pairs seem to have been present in the table of reciprocals SM 2685 
(before it was damaged so that some of the initial pairs were lost). On the other 
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hand, these 25 pairs are only about one half of all the pairs in the table (before it was 
damaged).

The remaining pairs in the table are such that n is a quasi-integer, but not an integer. 
Now, it is quite obvious how the pairs were constructed when the fraction in the quasi-
integer for n is one of the basic fractions 2/3, 1/2, or 1/3, namely by the kind of reciprocal 
compensation mentioned above. Namely, if n, rec. n is one of the pairs in the brief table 
above such that n · rec. n = 1(60), and if n is multiplied by 2/3, 1/2, or 1/3, while rec. n is 
multiplied by 1 1/2, 2, or 3, respectively, then the new pair is still such that the product 
of the two numbers is 1(60).

The new pairs that can be constructed in this way are shown in the table below: 

n rec. n

2 30
3 20
4 15
5 12
6 10
8 7 1/2

9 6 2/3

10 6
12 5
15 4
16 3 2/3 5
18 3 1/3

20 3
24 2 1/2

25 2 1/3 4
27 2 13 1/3

30 2
32 1 5/6 2 1/2

36 1 2/3

40 1 1/2

45 1 1/3

48 1 15
50 1 12
54 1 6 2/3

2/3
1/2

1 1/3 45

2 2/3 22 1/2

3 1/3 18

5 1/3 11 15

(6 2/3 9)

10 2/3 5 1/2 7 1/2

13 1/3 4 1/2

16 2/3 3 1/2 6

26 2/3 2 15

(33 1/3 1 2/3 8)

1/2

1 1/2 40

2 1/2 24

4 1/2 13 1/3

7 1/2 8

12 1/2 4 2/3 8
13 1/2 4 1/2 6 2/3

22 1/2 2 2/3

1/3

1 2/3 36

8 1/3 7 12

Altogether, 10 + 7 + 2 = 19 new pairs can be constructed in this way, if duplicates 
are omitted. Of these 19 new pairs, 17 are present in the table on SM 2685. Only 2 
are missing, for one reason or another.

There are still additional pairs in SM 2685, namely those where the fractional 
part of n is 12 (gín), 15 (gín), 1/2 6 (gín), or 2/3 5 (gín). These, too, can be con-
structed by use of reciprocal compensation, as shown below: 
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n rec. n

2 30
3 20
4 15
5 12
6 10
8 7 1/2

9 6 2/3

10 6
12 5
15 4
16 3 2/3 5
18 3 1/3

20 3
24 2 1/2

25 2 1/3 4
27 2 13 1/3

30 2
32 1 5/6 2 1/2

36 1 2/3

40 1 1/2

45 1 1/3

48 1 15
50 1 12
54 1 6 2/3

1 15 48

2 15 26 2/3

3 2/3 5 16

(6 15 9 1/2 6)
(6 2/3 5 8 5/6 3 1/3)

11 15 5 1/3

4 new pairs (2 missing)

[1 12 50]
(1 1/2 6 37 1/2)
(1 2/3 8 33 1/3)

[2 1/3 4 25]

(3 12 18 2/3 5 )
3 1/2 6 16 2/3

4 2/3 8 12 1/2

(5 1/3 4 11 6 2/3)

(6 1/3 4 9 1/3 2 1/2)
7 12 8 1/3

9 1/2 6 6 15 

(10 2/3 8 5 1/2 3 1/3) 

5 new pairs (7 missing)

Starting with the table of reciprocals n, rec. n, where n is any sexagesimally 
regular integer between 2 and 1(60), and proceeding with reciprocal compensa-
tions in five instances, it is possible, as shown above, to explain the constructions 
of 25 + 17 + 9 = 51 of the pairs n, rec. n in SM 2685. Three additional pairs in SM 
2685, which cannot be explained in this way, are 

53 1/3 1 7 1/2

56 15 1 4
57 1/2 6 1 2 1/2

These three pairs occur toward the end of the table on SM 2685, which is prob-
ably not a coincidence, since the construction by use of reciprocal compensation 
cannot produce any new pairs n, rec. n with n greater than 33 1/3! How these three 
pairs can have been constructed by use of an alternative procedure is immediately 
obvious in view of the observation that
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53 2/3 · 1 7 1/2 gín = (8 · 6 2/3) · (7 1/2 · 9 gín) = (8 · rec. 9) · (rec. 8 · 9 gín) =  1(60)
56 15 gín · 1 4 gín =  (15 · 3 2/3 5 gín) · (4 · 16 gín) = (15 · rec. 16) · (rec. 15 · 16 gín) =  1(60)
57 1/2 6 gín · 1 2 1/2 gín = (24 · 2 1/3 4 gín) · (2 1/2 · 25 gín) 

=
(24 · rec. 25} · (rec. 24 · 25 gín) = 1(60)

Here (8, 9), (15, 16), and (24, 25) are three examples of what may be called sexa-
gesimally regular twins of the type (n, n – 1), where both n and n – 1 are sexagesi-
mally regular. Other examples are (2, 3), (3, 4), (4, 5), (5, 6), (9, 10), but using them 
in a similar way would not produce new pairs of reciprocal numbers in SM 2685.

The last pair n, rec. n on SM 2685 is

1(60) 21, 2/3 [x x x].

This pair is exceptional in two ways and was probably added to the table of recip-
rocals as a demonstration of what can happen in more complicated cases. It is the 
only pair where n is greater than 1(60), and it is the only pair where rec. n is not 
an extended quasi-integer of the kind a quasi-integer + a quasi-integer times 1 gín. 
Indeed, since 1(60) 21 = 3 · 27, the pair (which is damaged on SM 2685) can be 
shown to be 

1(60) 21 2/3 4 1/3 6 2/3 rec. 1(60) 21 = 1/3
1/3

1/3
2/3 4 1/3

2/3

This is a twice extended quasi-integer!
In addition to the 55 exact pairs n, rec. n explained above, there are also two pairs 

with approximate reciprocals on SM 2685! They are18 

5 1/2 10 2/3 15
7   8 1/2 4

5 1/2
2/3

1/3
1/3 7 1/2

1/2 

1/2
1/2

Also these two exceptional lines were probably added to the table for pedagogical 
reasons.

As in several other known Old Babylonian tables of reciprocals, the first two lines 
of the table of reciprocals SM 257419 have the following form

1(60).da 2/3.bi 40.àm “of 1(60), its 2/3 is 40”
shu.ri.a.bi 30.àm “its half is 30”

18  Compare with the equation 1 2/3 5  gín · 1/2 ma.na 4 gín = 1 ma.na – 1/2 gín in CUNES 52-18-035, 
Sect. 7 above, where 1 2/3 5 gín was explained as 1/2 · 1/2 · 7 and 1/2 ma.na 4 gín as 2 · 2 · 8 1/2 gín.
19  This clay tablet was just like SM 2685 found by F. N. Al-Rawi in the Sulaymaniyah Museum.
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It is probably significant that in SM 2574 the first sign in line 1 is an oversize ver-
tical wedge, a clear indication that it stands for “1(60),” and not for “1.” Therefore, 
the mentioned first lines of the table can be interpreted as saying that 2/3 of 1(60) is 
40, one half of 1(60) is 30. This is potentially important, in view of the observation 
above that n · rec. n = 1(60) in each line of the atypical table of reciprocals SM 2865.

11 � A New Explanation of the Set of Attested Head Numbers in Old 
Babylonian Multiplication Tables

There are 40 documented head numbers in Old Babylonian (or Neo-Sumerian) sin-
gle, multiple, or combined multiplication tables. They are, always in this order, but 
with occasional omissions,

50, 48, 45, 44 26 40, 40, 36, 30, 25, 24, 22 30, 20, 18, 16 40, 16, 15, 12 30, 12, 
10, 9, 8 20, 8, 7 30, 7 12, 7, 6 40, 6, 5, 4 30, 4, 3 45, 3 20, 3, 2 30, 2 24, 2 15, 2, 1 
40, 1 30, 1 20, 1 15, 1 12.

Several attempts have been made to explain this list of head numbers, all with 
very limited success.20 A basic assumption has usually been that this list of head 
numbers in some way was derived from the list of reciprocals in the Old Babylo-
nian/Neo-Sumerian standard table of reciprocals. However, this assumption explains 
readily only the italicized head numbers in the list above. Now, with the discovery 
of the atypical table of reciprocals SM 2685, a simple and much more satisfactory 
explanation of the attested set of head numbers is available. Indeed, the mentioned 
list of head numbers can be explained as being derived from the list of reciprocal 
numbers in an atypical table of reciprocals very much like, but not identical with, 
SM 2685!21

Interestingly, the need of a combined multiplication table derived from the list of 
reciprocal numbers in a table of reciprocals like SM 2685 may have been felt for the 
first time by the one who constructed the impressive Early Dynastic III combined 
table of areas of squares CUNES 50-08-001 (see Sec. 8 above). Take, for instance, 
sub-table C in CUNES 50-08-001, which was constructed, essentially, by first com-
puting 1/6 · 1/6 · 1 sq. nindan = 1 2/3 gín and then multiplying this (area) number by 
the square numbers 4, 9, 16, etc. In the same way, sub-table B was constructed by 
first computing 1/4 · 1/4 · 1 sq. nindan = 3 2/3 gín 5 (gín.bi) and then multiplying by 
4, 9, 16, etc.

It is not inconceivable that the earliest precursor of the atypical table of recip-
rocals SM 2685 was not just a hypothetical atypical Neo-Sumerian table of recip-
rocals, but even a table of reciprocals from the Early Dynastic III period, contem-
porary with CUNES 50-08-001. For that matter, it is not inconceivable even that 
the earliest precursor of the Neo-Sumerian/Old Babylonian combined multiplication 

20  See, for instance, Friberg (2007) A Remarkable Collection, Sec. 2.6 f.
21  See Friberg and Al-Rawi (2016), Sec. 13.8.
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tables, preceded by a standard table of reciprocals, may have been an Early Dynastic 
III combined multiplication table for quasi-integers, preceded by an atypical table 
of reciprocals like SM 2685!

Here is a hypothetical example of what an Early Dynastic multiplication table 
for a quasi-integer like 1 2/3 area-gín may have looked like. It is easily con-
structed by use of repeated additions. Note that all the products are area num-
bers. For comparison, the corresponding multiplication table of the Old Babylo-
nian type with sexagesimal numbers in place-value notation, head number 1 40, 
is shown to the right. 

 1 2/3 1 2/3

times 2 3 1/3

times 4 6 2/3

times 5 8 1/3

times 7 11 2/3

times 8 13 1/3

times 10 16 2/3

times 11 18 1/3

times 12 1/3 sar

times 13 1/3 sar 1 2/3

times 14 1/3 sar 3 1/3

times 15 1/3 sar

times 16 1/3 sar 6 2/3

times 17 1/3 sar 8 1/3

times 18 1/2 sar

times 19 1/2 sar 1 2/3

times 20 1/2 sar 3 1/3

times 30 5/6 sar

times 40 1 sar 6 2/3

times 50 1 1/3 sar 3 1/3

times 1(60) 1 2/3 sar

 1 40 times 1 (is) 1 40

times 2 3 20

times 3 5

times 4 6 40

times 5 8 20

times 6 10

times 7 11 40

times 8 13 20

times 9 15

times 10 16 40

times 11 18 20

times 12 20

times 13 21 40

times 14 23 20

times 15 25

times 16 26 40

times 17 28 20

times 18 30

times 19 31 40

times 20 33 20

times 30 50

times 40 1 06 40

times 50 1 23 20
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12 � Counting with sexagesimal place‑value numbers in old 
Babylonian mathematical exercises

It is now well known that the invention of place-value notation for sexagesimal 
numbers appears to have been Neo-Sumerian. On the other hand, it is not known at 
all if also so-called metrological tables were a Neo-Sumerian invention, or if such 
tables were introduced a hundred or a few hundred years later, in the Old Babylo-
nian period. A metrological table is a table for conversion into sexagesimal place-
value numbers (multiples of some suitable “basic unit”) of a systematically arranged 
growing list of capacity numbers, weight numbers, area numbers, or length num-
bers.22 In the elementary first part of the education of students in Old Babylonian 
scribe schools, the learning of such metrological tables, alongside tables of recipro-
cals and multiplication tables, played a fundamental role.23

The purpose of the metrological tables was that the students would be able to 
convert given numerical measures (metrological data) in mathematical exercises into 
floating sexagesimal place-value numbers, then perform the appropriate arithmetical 
operations with the sexagesimal place-value numbers, and finally convert the result-
ing numbers (the answer) back into numerical measures again. A good example of 
how this could be done is the small mathematical problem text MLS 1842.24 There 
the question is expressed in the following way (my translation into English):

The market rate rose, and I bought 30 gur of barley, the market rate fell, and I 
bought 30 gur of barley.
I added my market rates, it was 9.
I added the silver for market rates, it was 1 ma.na 7 1/2 gín.
What were my market rates?

The solution procedure begins by saying

Note that the silver was 1 07 30. Compute the reciprocal of 1 07 30, then 53 20 
comes up.
Multiply 53 20 that came up with 9 for the market rates, then 8 comes up.
Multiply by 2 30 for your market rates, then 20 comes up.
……

What all this means is that 1 ma.na 7 1/2 gín silently has been converted into the 
sexagesimal place-value number “1 07 30.” In the same way, without any explana-
tion whatsoever, 30 gur of barley has been converted into “2 30.” The missing expla-
nation is that

1 gur = 5 barig = 5 · 6 bán = 5 · 6 · 10 sìla = 5(60) sìla, so that

22  See, for instance, Friberg (2007) A Remarkable Collection, Ch. 3 and App. 5.
23  See, for instance, Proust (2007), Chs. 5 and 8.
24  See Neugebauer and Sachs (1945), text Sb, p. 106, and Friberg and George (2010).
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30 gur = 30 · 5(60) sìla = 2 30 · 1(60) sìla = ”2 30.”

Then, the computation starts with these converted data. Unfortunately, the last 
part of the text is lost, but it is clear that the result of the computation of the two 
market rates must have been “5” and “4” in floating sexagesimal numbers. In the 
final answer, this result would have been converted back into the numerical meas-
ures 5(60) sìla = 1 gur, and 4(60) sìla = 4 barig of barley, respectively, in exchange 
for 1 gín of silver.

There are other types of known Old Babylonian mathematical texts containing 
no metrological data at all, but instead concerned exclusively with totally abstract 
sexagesimal place-value numbers. Typical examples are interesting computations of 
square roots of given “many-place” regular sexagesimal numbers as the products of 
the square roots of factors of the given numbers, or computations of reciprocals of 
given many-place regular sexagesimal numbers as the product of the reciprocals of 
factors of the given numbers. Both kinds of computations may be called “factoriza-
tion algorithms.”

Particularly interesting are algorithms for the construction of new pairs of mutu-
ally reciprocal regular sexagesimal place-value numbers with departure from already 
known such pairs. The method used in such algorithms is a further development of 
the method used for the construction of the table of reciprocals SM 2865 in Sec. 10 
above, a “reciprocal compensation algorithm.”

One such algorithm is used in the text CBS 1215. See the transliteration below.25 
The algorithm takes it departure from the given pair of reciprocals (2 05, 28 48), 
where 2 05 (= 125) = 5 · 5 · 5 and 28 48 = 12 · 12 · 12. In the first text box of CBS 
1215, in column i, the mentioned factorization method is used in order to show that 
rec. 2 05 = 28 48, and that, conversely, rec. 28 48 = 2 05. In the next text box, the 
pair of reciprocals is (4 10, 14 24), obtained by use of a “doubling and halving algo-
rithm,” a kind of reciprocal compensation. And so on, until in the last text box, in 
column vi, the final pair of reciprocals is (10 06 48 53 20, 5 55 57 25 18 45).

It is clear that this kind of algorithm text is very far from any practically useful 
computations with numbers and measures. 

25  Borrowed from Friberg (2007) A Remarkable Collection, App. 3.
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9
         8 53 20
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            14 03 45 
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2 31 42 13 20
45 30 40
1 08 16
4 16
16
           14 03 45 
        52 44 03 45
 1 19 06 05 37 30
23 43 49 41 15
1 34 55 18 45
25 18 45
6 45
9
              8 53 20
           2 22 13 20
         37 55 33 20
      2 31 42 13 20
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45 30 40
1 08 16
4 16
16
       14 03 45 
     52 44 03 45
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11 51 54 40 37 30
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9
            8 53 20
        2 22 13 20
    37 55 33 20
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5 03 24 26 40

13 � Floating sexagesimal place‑value numbers in late Babylonian 
mathematical texts

A number of Late Babylonian texts from the second half of first millennium BC 
reintroduced and developed further the mentioned Old Babylonian algorithmic 
methods for the computation of reciprocals of given regular sexagesimal place-value 
numbers or for the systematic construction of enormously comprehensive tables of 
reciprocals of many-place regular sexagesimal numbers.

An interesting example is W 2302126 (see the conform transliteration below of 
the obverse of that clay tablet). It is a school text from the Achaemenid (Persian) 
period in Mesopotamia, c. 450 BC, and contains several algorithmic computations 
of reciprocals of given numbers as the product of the reciprocals of factors of that 

26  Friberg and Al-Rawi (2016), Sec. 2.1.7.
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number. It is precisely the same method as in the Old Babylonian text CBS 1215 in 
the preceding section of this paper. The first of the computations on W 23021, for 
instance, shows that rec. 52 40 29 37 46 40 = 1 08 20 37 30. The computation begins 
in a left column by eliminating all the factors of the given number, one by one, and 
continues in a right column by multiplying together the reciprocals of the eliminated 
factors, one by one. 

Another interesting example is the extended table of reciprocals AO 645627 (see 
the photographs below), explicitly dated to the Seleucid (Hellenistic) period, c. 200 
BC. It can be shown that the table of reciprocals was constructed by use of recipro-
cal compensation, just like the Neo-Sumerian atypical table of reciprocals SM 2685 
in Sec. 10 above, although with sexagesimal place-value numbers.

The construction began by computing all powers of 3 or 5 as sexagesimal place-
value numbers with at most 6 sexagesimal places (double digits), and their recip-
rocal numbers. With departure from these powers of 3 or 5, new reciprocal pairs 
n, rec. n were computed by repeated use of the doubling and halving algorithm, 
namely as (2 n, 1/2 rec. n), or (1/2 n, 2 rec. n), as long as at least one of the numbers 
in the computed reciprocal pairs contained no more than 6 sexagesimal places. On 
the other hand, the second number of the pair was allowed to contain many more 
sexagesimal places, as in the example

rec. 1 29 40 50 24 27 = 40 08 32 44 57 28 29 55 20 09 52 35 33 20.

27  See Friberg and Al-Rawi (2016), Sec. 1.5.
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This reciprocal pair, where n is a 6-place and rec. n a 14-place regular sexagesi-
mal number, is inscribed in the third row from the end of the second column on the 
obverse of the clay tablet. It can be shown that 1 29 40 50 24 27 is the 19th power of 
3.

An even more spectacular example is the pair

rec. 1 29 12 19 26 34 23 19 49 38 08 36 52 20 44 26 40 = 40 21 22 41 (00) 09.

Here n is a 17-place and rec. n a 6-place regular sexagesimal number, even if the 
double-zero 00 between 41 and 09 is not explicitly indicated. This pair is inscribed 
on the obverse of AO  6456 in the two lines just preceding the line with the pair 
mentioned above. It can be shown that the 17-place number n is the 22nd power of 
20 = rec. 3. 

AO 6456 © Musée du Louvre, dist. RMN-GP/Raphaël Chipault
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Note that the construction of the extended table of reciprocals AO 6456 was a 
really awesome achievement. It began with the laborious computation, by use of the 
doubling-and-halving algorithms described above, of some 300 pairs (n, rec. n) of 
regular “many-place” sexagesimal numbers in floating place-value notation, prob-
ably recorded on quite a few small clay tablets. The numbers n constructed in this 
way then had to be interpreted as sexagesimal numbers between 1 and 1(60), and 
ordered by size, another extremely laborious operation. Finally, the corresponding 
pairs (n, rec. n) had to be copied onto (probably) two large clay tablets, of which AO 
6456 was the first. According to a badly understood endnote on AO 6456, the table 
of reciprocals goes from “1” to “2”. Indeed, the table of reciprocals begins with n = 
1, n = 1 00 16 53 53 20 and ends with n = 2 57 46 40, n = 3.

It is no wonder that Late Babylonian priests/mathematicians who were able to 
construct such magnificent many-place sexagesimal tables of reciprocals in some 
cases were identical with the persons who constructed the various kinds of even 
more awe-inspiring many-place sexagesimal tables belonging to the genre of Late 
Babylonian mathematical astronomy.28

14 � Conclusion: The invention of sexagesimal place‑value numbers

Various number systems in the form of series of small clay tokens representing num-
ber units appear to have been in use in the Middle East even before the invention of 
writing about 3300 BC. One of them was a system of sexagesimal counting numbers 
which appears to have been a precursor of the proto-cuneiform/proto-Elamite sys-
tem of sexagesimal counting numbers with the factor diagram 

610 10

160 1010 · 60

S(pc/pE) :

Interestingly, this factor diagram shows that two of the key features of the full-
blown Sumerian system of sexagesimal counting numbers (see the factor diagrams 
in Sec. 5 above) were present from the beginning, namely the repeating alternation 
between the factors 10 and 6, and the fact that the sign for 60 was just a bigger ver-
sion of the sign for 1.

The form of the system of sexagesimal counting numbers stayed essentially the 
same until the end of the third millennium BC. However, it is worth noticing that the 
system apparently did not involve any specific signs for fractions. Take, for instance, 
a look at the text HS 815 in Sec. 9 above, which shows that although multiples of the 
length measure nindan were counted sexagesimally, the fractions of the nindan were 
expressed in terms of special notations for small length measures. Similarly, multi-
ples of the Sumerian capacity gur were counted sexagesimally, but the fractions of 

28  See Neugebauer (1955) and Ossendrijver (2012, 2019).
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the gur were expressed in terms of notations for small capacity measures. The situa-
tion was the same in the case of the Sumerian weight unit ma.na and (essentially) in 
the case of the Sumerian area unit bùr.

The rather strange set of cuneiform signs for fractions of the Sumerian weight 
unit ma.na29 (see the factor diagram below for system M(ED III)) can be explained 
as a merger between two systems of weight numbers, one for copper with the units 
ma.na and gín, and another for silver (180 times more expensive) with the units 
“exchange ma.na” and she “barley-corn”(?). 

ma.naM(ED III):

2/3 ma.na(  1/2 kg.) 1/2 ma.na 1/3 ma.na 1/60 ma.na 1/3 gín 1/60 sm.

40 gn.60 gn. 30 gn. 20 gn. 1/60 m. 1/180 m. 1/180 gn.

m. gn.

20
gín

3
sa    .ma.na

3
10 sa    .gín10

The Sumerian cuneiform signs for the weight numbers 1/3, 1/2, and 2/3 ma.na were 
borrowed into all other Sumerian/Old Babylonian systems of number notations as 
cuneiform signs for the “basic fractions” 1/3, 1/2, 2/3. An early example is the Early 
Dynastic III table of areas of squares A 681, where 1/3 sar, 1/2 sar, and 2/3 sar are 
notations for fractions of the area unit sar.30 In the Early Dynastic III metro-mathe-
matical theme text CUNES 52-18-035 (see Sec. 7 above), the mentioned basic frac-
tions are used to denote fractions of both the ma.na and the gín.

In Old Babylonian metrological table texts, as well as in questions and answers 
in Old Babylonian mathematical exercises, the gín and the barley-corn (she), both 
borrowed from system M(S), were used as signs for the fractions 1/60 and 1/180 of 
1/60, respectively. This situation could have been the end for any smooth develop-
ment of sexagesimal fractions.

Luckily, there was another way open. This was demonstrated in Sec. 8 above, in 
the case of the large Early dynastic table of areas of squares CUNES 50-08-001, in 
which appeared two kinds of fractions of the area unit sar. On the one hand, there 
were the basic fractions 1/3,  1/2, 2/3, and on the other hand the fractions gín = 1/60 
and gín.bi = 1/60 gín (and even, in sub-table E, gín.ba.gín = 1/60 gín.bi)). More pre-
cisely, there appeared in this table of areas of squares quasi-integral multiples of the 
area units sar, gín, and gín.bi. (The notion of quasi-integers was introduced in Sec. 
10 above, in connection with an attempted explanation of the atypical table of recip-
rocals SM 2685.)

In view of all the mentioned developments, it is now clear what it took in order to 
invent sexagesimal place-value numbers at the end of the third millennium BC, namely

The accidental circumstance that the cuneiform sign for “1(60)” could not easily 
be distinguished from the similar sign for “1.”

29  See, in particular, the Old Akkadian lexical text CUNES 47-12-176, a decreasing list of weight meas-
ures, in Friberg (2007) A Remarkable Collection, App. A.7.4.
30  Friberg (2007) A Remarkable Collection, App. A.1.3.
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The observation that if also the special cuneiform sign for “10 · 60” was replaced 
by the cuneiform sign for “10,” then the repeating alternation between the factors 
10 and 6 in the factor diagram for the first few units of the system of sexagesimal 
counting numbers could be continued forever.
The abandonment of the use of quasi-integers, in favor of integral multiples of the 
gín, gín.bi, and gín.ba.gín.
The observation that the repeating alternation between the factors 10 and 6 in the 
factor diagram for sexagesimal counting numbers could be imitated in a similar 
factor diagram for sexagesimal fractions.
The invention of metrological tables, which securely linked the various traditional 
systems of measure units to abstract counting numbers in the form of sexagesimal 
“floating” place-value numbers.

Even if the inventors of sexagesimal place-value numbers did not argue directly 
in terms of “factor diagrams,” they must reasonably have had in mind something 
similar.
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