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Abstract 

Under the concept of "Industry 4.0", production processes will be pushed to be increasingly interconnected, 
information based on a real time basis and, necessarily, much more efficient. In this context, capacity optimization 
goes beyond the traditional aim of capacity maximization, contributing also for organization’s profitability and value. 
Indeed, lean management and continuous improvement approaches suggest capacity optimization instead of 
maximization. The study of capacity optimization and costing models is an important research topic that deserves 
contributions from both the practical and theoretical perspectives. This paper presents and discusses a mathematical 
model for capacity management based on different costing models (ABC and TDABC). A generic model has been 
developed and it was used to analyze idle capacity and to design strategies towards the maximization of organization’s 
value. The trade-off capacity maximization vs operational efficiency is highlighted and it is shown that capacity 
optimization might hide operational inefficiency.  
© 2017 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the scientific committee of the Manufacturing Engineering Society International Conference 
2017. 
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1. Introduction 

The cost of idle capacity is a fundamental information for companies and their management of extreme importance 
in modern production systems. In general, it is defined as unused capacity or production potential and can be measured 
in several ways: tons of production, available hours of manufacturing, etc. The management of the idle capacity 
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Abstract 

Improvements in data storage and processing technologies have led many managers to change how they make decisions, relying 
less on intuition and more on data. This trend is especially notable for the manufacturing industry where Big Data applications, i.e. 
data analytics, are mentioned as an important enabler of value creation with the event of the fourth industrial revolution. Designing 
and building the entire data value chain that enables Big Data applications in manufacturing requires new knowledge about digital 
technologies combined with already established knowledge about the specific manufacturing processes. This paper focuses on the 
convergence of these different knowledge spaces applied to a specific case of implementing a Big Data application for predictive 
maintenance. Every step of building the data value chain from data acquisition to system feedback is presented and discussed in 
terms of the major challenges that were observed during the project. Results show that, just as the literature suggests, the knowledge 
gaps between different domains is a key component to manage for succeeding when building Big Data applications in the context 
of future manufacturing and maintenance. 
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1. Introduction 

Recent improvements in data storage and processing technologies have led many managers to change how they 
make decisions, relying less on intuition and more on data [1]. This trend is especially notable for the manufacturing 
industry where Big Data applications, i.e. data analytics, are mentioned as an important enabler of value creation with 
the event of the fourth industrial revolution (Industry 4.0) [2]. The goal is to build Cyber-Physical Production Systems 
(CPPS) that can sense and adapt to its environment, which requires sensors and actuators to work together in complex 
emerging systems [3]. With CPPS it is possible to achieve self-adaptation and more dynamic automation. An important 
step towards these adaptable systems is to achieve predictive capabilities by improved decision making from data 
analytics [3, 4]. Manufacturing companies collect production data today but few utilize Big Data applications [5]. 

Maintenance is one area that is currently getting attention for data analytics applications. In digitalized 
manufacturing, maintenance must take a key role to reduce the risk and minimize the consequences of unplanned 
stops and disruptions [6, 7]. Data analytics can help to predict deviations in data, to trigger preventive actions to avoid 
failures or to reduce their consequences [8]. 

Even though technology provides the opportunities and enables better and more data to the decision-maker, 
developer and business leaders tend to focus on the potential of the technology that can collect and analyze big volumes 
of data rather than on the outcome of applying the technology [9]. To identify the right problems to address in an 
organization, the domain expert stays vital. The persons within an organization that have a deep expertise within an 
area are the ones that can identify where the biggest opportunities and challenges are [10]. 

Designing and building the entire data value chain that enables Big Data applications in manufacturing requires 
new knowledge about digital technologies combined with already established knowledge about the specific 
manufacturing processes. This study focuses on the convergence of these different knowledge spaces applied to a 
specific case of implementing a Big Data application for predictive maintenance. The data value chain is defined and 
every step is discussed regarding the diversity of different technologies and the specific domain knowledge needed. 

1.1. 5G-Enabled Manufacturing 

In the Swedish research project, 5G-Enabled Manufacturing, researchers and engineers work together to answer 
the question “What if we had unlimited free connectivity on the shop floor?”. To answer this question, the shop floor 
at one factory in Gothenburg was supplied with an LTE network with 5G technologies. The idea is that a 5G network, 
which is a future cellular technology targeted for 2020, can be used to achieve low-cost mobile and stationary 
connectivity that the future factory needs. 

Within the project, three specific demonstrators were created to show the capabilities the connectivity can enable. 
The first demonstrator is to have a cloud infrastructure and data analytics capabilities, meaning a data-center for data 
storage and data distribution as well as software with applicable libraries to achieve useful analytic results. The second 
demonstrator was a specific object to connect and get real-time data from, which is a grinding machine. Ball screw, 
slide, and motors are critical components in a grinding machine. These components were in focus during the project 
regarding predicting deviations. The third demonstrator is a mobile decision support system that the technicians, 
managers, and operators are using to some extent in the factory. The system is today connected using a Wi-Fi network 
and it is to some extent integrated with some parts of the factory to supply operators with mobile production data. This 
system is also used as a digital and mobile way to share information such as disturbances and instructions. Together 
the three demonstrators form the specific case of predictive maintenance on a grinding machine using LTE network 
with 5G technologies on the shop floor, which is further described in chapter 3. 

2. Big Data in Manufacturing 

This chapter aims to explain the connections between different enabling technologies and put Big Data in 
perspective to Industry 4.0. 

Author name / Procedia Manufacturing 00 (2018) 000–000  3 

2.1. Industry 4.0 and CPPS 

By examining the literature about “how to do Industry 4.0”, Hermann, et al. [11] identified four main design 
principles: interconnection, information transparency, decentralized decisions, and technical assistance. 
Interconnection, enabled by standards and modularization, increase collaboration between humans and machines. This 
enables new data and information and here is where information transparency becomes important. All the data needs 
to be refined to add value, enabled by Big Data, cloud computing, and smart devices [12]. Decentralized decision-
making is a cornerstone for CPPS, where every entity acts as autonomous as possible. This includes the human part 
of the system that can be supported by technical assistance to allow for correct and autonomous decisions. 

The Industry 4.0 maturity index [4] models a system in six separate steps that are needed to reach the capabilities 
of CPPS. The first two steps are computerization and connectivity, which requires digitized and interoperable systems. 
These steps allow data to be collected from sensors, machines, or other systems and sent to where it is needed. The 
third step, visibility, refers to the collection of all the raw production data. In the fourth step, transparency, the data is 
aggregated, correlated, and analyzed to understand why something has happened. The transparent information can be 
used to achieve predictive capacity, which is the fifth step. The idea is to project the collected data into the future and 
predict different scenarios. In the last step, adaptability, the system constantly adapts to the predictions. 

A third model for CPPS is the 5C architecture model [13]. In this model, a CPPS consists of five levels: Smart 
Connection, Data-to-Information Conversion, Cyber, Cognition, and Configuration. The smart connection level 
means connectivity of the physical data sources. Data-to-Information conversion refers to the data processing or data 
analytics stage. The cyber level is the sum of all the information, but instead of focusing on all the raw, this level 
concerns with groups of analyzed data e.g. machine fleets or data over time. At the cognition level, the information 
needs to be presented in the correct way to experts so that it helps them in their decision-making. The last level, 
configuration, is the feedback from the virtual world back to the physical world. 

These three different models of Industry 4.0 and CPPS are very similar (see Figure 1) even though they emphasize 
different things. They all put Big Data and analytics as central parts of the system but at the same time, it requires 
much more than just applying algorithms to raw data. 

Figure 1: Three models of Industry 4.0 and CPPS and where they place data analytics [4, 11, 13]. 

2.2. Big Data applications 

Big Data applications need to manage the four important V’s of data: Volume, Variety, Velocity, and Veracity 
[14], which has been enabled by new technologies in distributed computing and data storage. According to Chen, et 
al. [15], any Big Data system requires the following six subsystems: data generation, data acquisition, data 
transportation, data pre-processing, data storage, and data analytics. When looking at how to specifically implement 
Big Data in the context of manufacturing and maintenance, Li, et al. [16] demonstrates an architecture that combines 
the CPPS view and the Big Data subsystems with required technologies (see Figure 2). It is a modular model that 
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analytics [3, 4]. Manufacturing companies collect production data today but few utilize Big Data applications [5]. 

Maintenance is one area that is currently getting attention for data analytics applications. In digitalized 
manufacturing, maintenance must take a key role to reduce the risk and minimize the consequences of unplanned 
stops and disruptions [6, 7]. Data analytics can help to predict deviations in data, to trigger preventive actions to avoid 
failures or to reduce their consequences [8]. 
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the question “What if we had unlimited free connectivity on the shop floor?”. To answer this question, the shop floor 
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which is a future cellular technology targeted for 2020, can be used to achieve low-cost mobile and stationary 
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and it is to some extent integrated with some parts of the factory to supply operators with mobile production data. This 
system is also used as a digital and mobile way to share information such as disturbances and instructions. Together 
the three demonstrators form the specific case of predictive maintenance on a grinding machine using LTE network 
with 5G technologies on the shop floor, which is further described in chapter 3. 
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includes feedback to the system in a CPS module, which is the physical part i.e. the manufacturing system. Data is 
acquired in the IoT module and pre-processed and analyzed in a Data Mining (DM) module. Like in the 5C architecture 
model, the results are distributed as services on the Internet of Services (IoS) module. 

 

 

Figure 2: Simplified view of an architecture for predictive maintenance, adapted from [16]. 

Data analysis in manufacturing and maintenance has mainly been used to explain “what happened”, but also to 
some extent for prediction. Vibration monitoring and analysis is common practice for condition-based maintenance 
(CBM). Predictive maintenance by vibration analysis is not commonly used but it was demonstrated already in 1985 
[17]. Prognostic and Health Management (PHM) is a term used for strategies and techniques using big data sets, 
focusing on failure detection, current health assessment and prediction of remaining useful life [18, 19], root cause 
analysis of failures, and support maintenance planning [20]. In previous research, data sets from controlled 
environments have been used to validate PHM methods and algorithms [21]. Data from real factories is less frequently 
used to develop and validate PHM methods and algorithms due to complications with uncontrollable external factors, 
which makes the validation difficult [20]. In addition, Pellegrino, et al. [22] states the following research challenges: 
(1) system-level analytics focusing on the entire production system, (2) interoperability between systems and 
equipment, (3) lack of awareness, experience, and training to apply PHM principles and tools. 

Big data and advanced algorithms are getting more explored in manufacturing companies to be used for fact-based 
decisions [5], as the algorithms can help to find more complex correlations in the data. The use of big data in 
maintenance has been shown by Li, et al. [23] for data-driven bottleneck detection. Algorithms have been used to 
identify bottlenecks from real-time production data to (among other) prioritize maintenance activities [24, 25]. 

3. Case Description 

This chapter describes the case of building the data value chain for the predictive maintenance case, monitoring a 
grinding machine and utilizing results using a decision support system. The data value chain is defined in Figure 3 
and every step is described with a focus on the challenges experienced and/or observed. 

 

Figure 3: The data value chain. 

3.1. Data Acquisition 

There were two parallel approaches acquire data. One approach was to identify some key data sources that “should” 
be relevant when doing root cause analysis. The other approach was to add as much data as possible to test connectivity 
and perhaps get synergies during data processing. A small team of experts decided on a list of specific parts of the 
process that they wanted to be monitored. It was also decided that a couple of extra sensors should be mounted on the 
grinding machine. This resulted in four different ways to collect data divided into two main groups: internal machine 

 Author name / Procedia Manufacturing 00 (2018) 000–000  5 

parameters and externally mounted sensors. Internal machine parameters are sensor signals and program system 
parameters that accessed from the internal machine computer. There are three externally mounted sensors or sensor 
systems. A vibration measuring system called IMX, two externally mounted sensors measuring cooling fluid and 
temperature connected with the communication protocol IO-Link, and a temperature sensor embedded on a Raspberry 
Pi. 

A generic challenge regarding data acquisition is with what frequency the data should be collected. In this case, 
most data is collected every 100 milliseconds. 

3.1.1. Grinding machine onboard computer 
The industrial grinding machine has an onboard dedicated computer that controls the grinding process, user 

interfaces, and external connections. 39 parameters were decided on in an early stage, but the work to get all of them 
accessible was not an easy one. Mainly three types of challenges were encountered at this stage. First was the limitation 
of recourses. There was only one person available that could reprogram the machine to allow access to the wanted 
parameters. The second was the limitation of the machine control system. The system supported OPC UA that was 
the chosen way of communication but it turned out that the implementation did not allow access to all wanted 
parameters through OPC UA. The third challenge comes from the nature of working with a manufacturing system, 
and that is the limited time that it is possible to implement changes in a producing machine on the shop floor. The 
managers running the manufacturing process will not allow changes to a working machine without good reasons to 
do so. In the end, 43 different tags are acquired from the machine computer including values for the position of axis, 
torque, drive load, time of processes etc. 

3.1.2. Externally mounted sensors 
The advantage to collect data from externally mounted sensor systems is that it avoids any issues regarding the 

internal control system, such as limitations or access to limited recourses. A disadvantage is of course that there are 
more systems to connect and keep track of. Choosing between the two options is sometimes only a matter of 
preference, like with the IO-Link sensors or embedded temperature sensor. These could have been connected to the 
machine internal computer and accessed that way. However, for the IMX system that option would not achieve the 
same results since this system does some processing or aggregation of the vibration data before sending it further. Just 
as with the internal computer, mounting external sensor systems is also limited by the manufacturing process that 
always gets priority. 

3.2. Data Transfer 

Each digital system supports different, and sometimes several, types of communication protocols. The grinding 
machine computer and the IMX system both support the standard OPC UA, and this was chosen as a preferred 
communication because of its being future proof with a Service Oriented Architecture (SOA) [26]. The IO-Link 
sensors send its data through the IO-Link master as a TCP data stream according to each sensors specification, 
published in an IO-Link database [12]. The temperature sensor can be read locally in the Raspberry Pi computer and 
then sent by any communication system with support for the Linux platform. On top of the described systems, the IoT 
platform Calvin [27] was used to send the data to the data-center. This solution makes it possible to unify the data 
close to the network edge and transfer the data in the same way over the Calvin platform. The challenges at this stage 
were related to the commonly known problem of the difference between industrial networks and IP networks. Sending 
data to the data-center is part of the software engineering domain while industrial networks are part of the 
manufacturing domain. Therefore, the local experts with knowledge of the process and industrial systems have little 
knowledge about available communication options. While the experts of the communication systems don’t understand 
the specifics about the industrial related data such as frequency, size, data types etc. Another challenge is to choose 
the different communication protocols, which often is limited to what is available depending on the system. 
Furthermore, using an IoT platform is naturally optional, it this case it was useful, but that is also an architectural 
decision to make. 
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(1) system-level analytics focusing on the entire production system, (2) interoperability between systems and 
equipment, (3) lack of awareness, experience, and training to apply PHM principles and tools. 

Big data and advanced algorithms are getting more explored in manufacturing companies to be used for fact-based 
decisions [5], as the algorithms can help to find more complex correlations in the data. The use of big data in 
maintenance has been shown by Li, et al. [23] for data-driven bottleneck detection. Algorithms have been used to 
identify bottlenecks from real-time production data to (among other) prioritize maintenance activities [24, 25]. 

3. Case Description 

This chapter describes the case of building the data value chain for the predictive maintenance case, monitoring a 
grinding machine and utilizing results using a decision support system. The data value chain is defined in Figure 3 
and every step is described with a focus on the challenges experienced and/or observed. 

 

Figure 3: The data value chain. 

3.1. Data Acquisition 

There were two parallel approaches acquire data. One approach was to identify some key data sources that “should” 
be relevant when doing root cause analysis. The other approach was to add as much data as possible to test connectivity 
and perhaps get synergies during data processing. A small team of experts decided on a list of specific parts of the 
process that they wanted to be monitored. It was also decided that a couple of extra sensors should be mounted on the 
grinding machine. This resulted in four different ways to collect data divided into two main groups: internal machine 
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parameters and externally mounted sensors. Internal machine parameters are sensor signals and program system 
parameters that accessed from the internal machine computer. There are three externally mounted sensors or sensor 
systems. A vibration measuring system called IMX, two externally mounted sensors measuring cooling fluid and 
temperature connected with the communication protocol IO-Link, and a temperature sensor embedded on a Raspberry 
Pi. 

A generic challenge regarding data acquisition is with what frequency the data should be collected. In this case, 
most data is collected every 100 milliseconds. 

3.1.1. Grinding machine onboard computer 
The industrial grinding machine has an onboard dedicated computer that controls the grinding process, user 

interfaces, and external connections. 39 parameters were decided on in an early stage, but the work to get all of them 
accessible was not an easy one. Mainly three types of challenges were encountered at this stage. First was the limitation 
of recourses. There was only one person available that could reprogram the machine to allow access to the wanted 
parameters. The second was the limitation of the machine control system. The system supported OPC UA that was 
the chosen way of communication but it turned out that the implementation did not allow access to all wanted 
parameters through OPC UA. The third challenge comes from the nature of working with a manufacturing system, 
and that is the limited time that it is possible to implement changes in a producing machine on the shop floor. The 
managers running the manufacturing process will not allow changes to a working machine without good reasons to 
do so. In the end, 43 different tags are acquired from the machine computer including values for the position of axis, 
torque, drive load, time of processes etc. 

3.1.2. Externally mounted sensors 
The advantage to collect data from externally mounted sensor systems is that it avoids any issues regarding the 

internal control system, such as limitations or access to limited recourses. A disadvantage is of course that there are 
more systems to connect and keep track of. Choosing between the two options is sometimes only a matter of 
preference, like with the IO-Link sensors or embedded temperature sensor. These could have been connected to the 
machine internal computer and accessed that way. However, for the IMX system that option would not achieve the 
same results since this system does some processing or aggregation of the vibration data before sending it further. Just 
as with the internal computer, mounting external sensor systems is also limited by the manufacturing process that 
always gets priority. 

3.2. Data Transfer 

Each digital system supports different, and sometimes several, types of communication protocols. The grinding 
machine computer and the IMX system both support the standard OPC UA, and this was chosen as a preferred 
communication because of its being future proof with a Service Oriented Architecture (SOA) [26]. The IO-Link 
sensors send its data through the IO-Link master as a TCP data stream according to each sensors specification, 
published in an IO-Link database [12]. The temperature sensor can be read locally in the Raspberry Pi computer and 
then sent by any communication system with support for the Linux platform. On top of the described systems, the IoT 
platform Calvin [27] was used to send the data to the data-center. This solution makes it possible to unify the data 
close to the network edge and transfer the data in the same way over the Calvin platform. The challenges at this stage 
were related to the commonly known problem of the difference between industrial networks and IP networks. Sending 
data to the data-center is part of the software engineering domain while industrial networks are part of the 
manufacturing domain. Therefore, the local experts with knowledge of the process and industrial systems have little 
knowledge about available communication options. While the experts of the communication systems don’t understand 
the specifics about the industrial related data such as frequency, size, data types etc. Another challenge is to choose 
the different communication protocols, which often is limited to what is available depending on the system. 
Furthermore, using an IoT platform is naturally optional, it this case it was useful, but that is also an architectural 
decision to make. 
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3.3. Pre-Processing and Storage 

At the data-center, the data is stored in a document database [28] which is a NOSQL [17] database that can handle 
different types of data. This is important for Big Data applications, variety being one of the four V’s of Big Data. To 
handle two other V’s, volume and velocity, the Apache Hadoop [29] and Kafka [30] platforms are used for distributing 
the data. This cloud infrastructure is common and what is needed for Big Data applications today. The data is stored 
as documents in the database as JavaScript Object Notation (JSON). To be able to use the data together some parts of 
these documents should be similar, even if the datatypes are different and the data comes from different sources and 
means of transportation. The challenge here is to understand what specific part of the data that is important for future 
processing. Also, to identify important metadata that is needed to correctly connect the data together. 

3.4. Data Analytics 

The major challenge for the data analytics step was very much aligned with the literature in that it is difficult for 
the data analysis experts to choose correct methods and data sources without having the deep knowledge of the domain 
experts [1]. In this case, since the approach was to collect a mix of known relevant data and some extra data with 
potential synergies, the first issue was to choose what scenario to start with. The choice was to focus on anomaly 
detection in the vibration sensor data. A specific challenge about anomaly detection based on vibration data is that it 
lacks a “correct” value. Vibration data is easy to understand as a concept but can be affected by many external events 
that are not monitored, any anomaly needs to be manually correlated with the knowledge of experts on-site. 

There are several open source libraries available with machine learning algorithms. In this case, the anomaly 
detector from Twitter's Luminol library, suited for continuous and seasonal data, was used [31]. Anomalies were 
identified for the eight different vibration sensors, and during a working day, the number of anomalies for the vibration 
sensors varied between ca 5–50 (Figure 4). 

The following challenge was to find the reason for the anomalies. Root Cause Analysis (RCA) was done based on 
other data sources/parameters besides the vibrations, for example, torque and temperature. The data is very frequently 
collected (100 ms), and to get a generic visual understanding of the nature of the data, the data was first aggregated in 
five-minute periods. The min-, mean-, max-, sum- and standard deviation of the periodical data were visualized in 
heat maps. It is a tool that can graphically aid the process of working with the data. 

A Decision Tree algorithm (Figure 4) is used for the RCA to find the combinations of values from other parameters. 
It also provides the possibility to graphically display the value-combinations as a ‘tree’, which is important to increase 
the understanding of the results of the machine learning algorithms and how data relate to each other. 
 

 

Figure 4: Left: Detected anomalies marked in red for one vibration sensor, Kanal1ENVTotal (data blue, smoothed data green). Right: Decision 
Tree for a sensor with five detected anomalies (deviations). Blue boxes show on value combination for deviations. 

A major problem with applying algorithms for continuous data in a discrete manufacturing process is that the 
process is not continuous. Unfortunately, the parameter that state the current specific process was one of the data 
sources that were difficult to access early. Eventually, this was accessed and a new approach was staged. The different 
working phases, e.g. rough grinding, fine grinding, waiting, idle, etc., was now separated from each other. The phase 
lengths vary between about one second to around ten seconds and the data used in the heatmaps and Decision Tree 
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was re-calculated into the discrete phase-time periods that are continuous in time but of different length. The phase 
was now included in the heat maps as well as the Decision Trees. 

3.5. System Feedback 

As mentioned above, the system feedback was planned to be through the mobile decision support system already 
used to some extent on the shop floor. Technically, with the current setup and infrastructure, it was very easy to send 
data to this system. It is a modern system that supports the publish-subscribe protocol MQTT [32], which has become 
popular for many IoT applications. 

Since the actual data analytic stage is an ongoing process it was difficult to visualize the results in any meaningful 
way. It is too difficult at this stage to understand what the anomalies represent and how they should be interpreted. 
However, some real-time data can be visualized more directly and still achieve some added value for operators and 
technicians. E.g. by visualizing the thickness of the grinding wheel it is possible to manually predict when it should 
be changed (allowing more proactive work instead of being only reactive). It was also decided that the vibration data 
should be presented in real-time so that a machine operator could see if something unexpected happens. This does not 
provide any predictive capability but it can still be useful information. The issue with this vibration data is to know 
how to visualize it for humans. The sensor system measures vibrations on several axes and then creates a spectrum 
analysis before sending it further, this data is not obviously interpreted. 

4. Discussion and Conclusions 

This paper describes the challenges encountered when building the data value chain for predictive maintenance of 
a grinding machine in 5G-Enabled Manufacturing. The data value chain has been implemented in an industrial context 
and development of algorithms for predictive maintenance has been started. As stated by Jin, et al. [20], uncontrollable 
external factors are making the validation difficult, and lack of experience to apply and use PHM [22]. In this case, 
we have started to develop the experience by combining the domains of manufacturing, information technology, and 
data analytics. 

Just as emphasized in the literature, the knowledge gap between different domain experts cannot be overestimated 
[10]. These domain differences are not limited to the analysis phase but do to some extent exist along the entire data 
chain. With the described challenges in mind, the authors suggest the following changes for future Big Data 
implementations: 
 
 Agile work cycle. Meaning that there should be very short iterations between new data acquisitions, analysis, and 

utilization. This includes following the entire value chain for every new data source. Adding everything at once 
can create too many questions at every step of the chain, halting any progress. 

 Know what parts of the process that are self-comparable, and what parts are not relevant. In a discrete 
manufacturing flow, there are lots of different phases and some are just idle and simply cannot influence the 
process. 

 Connect the data to relevant metadata depending on products, components, machines, batches, or product 
families etc. 

 Experiment with the data but let the manufacturing process experts guide these experiments, do not suffice with 
letting them comment on results. 
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processing. Also, to identify important metadata that is needed to correctly connect the data together. 
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provide any predictive capability but it can still be useful information. The issue with this vibration data is to know 
how to visualize it for humans. The sensor system measures vibrations on several axes and then creates a spectrum 
analysis before sending it further, this data is not obviously interpreted. 

4. Discussion and Conclusions 

This paper describes the challenges encountered when building the data value chain for predictive maintenance of 
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and development of algorithms for predictive maintenance has been started. As stated by Jin, et al. [20], uncontrollable 
external factors are making the validation difficult, and lack of experience to apply and use PHM [22]. In this case, 
we have started to develop the experience by combining the domains of manufacturing, information technology, and 
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Just as emphasized in the literature, the knowledge gap between different domain experts cannot be overestimated 
[10]. These domain differences are not limited to the analysis phase but do to some extent exist along the entire data 
chain. With the described challenges in mind, the authors suggest the following changes for future Big Data 
implementations: 
 
 Agile work cycle. Meaning that there should be very short iterations between new data acquisitions, analysis, and 

utilization. This includes following the entire value chain for every new data source. Adding everything at once 
can create too many questions at every step of the chain, halting any progress. 

 Know what parts of the process that are self-comparable, and what parts are not relevant. In a discrete 
manufacturing flow, there are lots of different phases and some are just idle and simply cannot influence the 
process. 

 Connect the data to relevant metadata depending on products, components, machines, batches, or product 
families etc. 
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