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Recently, the SWEET sensing setup has been proposed as a way of exploiting reservoir
computing for sensing. The setup features three components: an input signal (the drive), the
environment and a reservoir, where the reservoir and the environment are treated as one
dynamical system, a super-reservoir. Due to the reservoir-environment interaction, the in-
formation about the environment is encoded in the state of the reservoir. This information
can be inferred (decoded) by analyzing the reservoir state. The decoding is done by using
an external drive signal. This signal is optimized to achieve a separation in the space of
the reservoir states: Under different environmental conditions, the reservoir should visit dis-
tinct regions of the configuration space. We examined this approach theoretically by using an
environment-sensitive memristor as a reservoir, where the memristance is the state variable.
The goal has been to identify a suitable drive that can achieve the phase space separation,
which was formulated as an optimization problem, and solved by a genetic optimization al-
gorithm developed in this study. For simplicity reasons, only two environmental conditions
were considered (describing a static and a varying environment). A suitable drive signal has
been identified based an intuitive analysis of the memristor dynamics, and by solving the
optimization problem. Under both drives the memristance is driven to two different regions
of the one-dimensional state space under the influence of the two environmental conditions,
which can be used to infer about the environment. The separation occurs if there is a synchro-
nization between the drive and the environmental signals. To quantify the magnitude of the
separation, we introduced a quality of sensing index: The ability to sense depends critically on
the synchronization between the drive and environmental conditions. If this synchronization
is not maintained the quality of sensing deteriorates.

Keywords: reservoir computing; sensing; memristor networks; environment-sensitive
memristor

1. Introduction

According to Moore’s law the number of microprocessors at the chip doubles
roughly every second year. [1] It has been predicted that this trend will slow down
for various reasons, either due to practical engineering limitations (e.g. the wiring
problem) or due the presence of effects that are specific to small scales (e.g. rela-
tivistic or quantum effects). The field of unconventional computation emerged as a
response to this challenge. The goal is to develop alternative information process-
ing devices by using non-CMOS technologies. There are many examples of such
computing frameworks, such as neuromorphic computing, molecular computing, or
reaction-diffusion computing, to name a few. [2–7] In particular, reservoir comput-
ing gained a considerable interest in the recent decade.
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The field of reservoir computing started as an insight about behaviour of synaptic
weights during the neural network training process. [8–11] The weights need to be
adjusted to achieve a desired computation. It has been realized that only a limited
set of weights is adjusted in the network training process, normally referred to as
an “outer layer”. This led to the further insight that instead of neural network one
could use an arbitrary dynamical system for computation, and augment it with the
outer layer. The dynamical system used this way is referred to as a reservoir. The
modern understanding of reservoir computing emphasizes the fact that a Turing
universal expressive power can be achieved if the reservoir exhibits separation prop-
erty on the state of inputs. The separation property is often realized by complex
systems at the edge of chaos. [12]

Recently, a novel approach for using reservoir computing for sensing has been
suggested, [13, 14] to be referred to as the SWEET sensing setup. The frame-
work features three components: An environment one wishes to sense (a sensing
target), an environment sensitive element, and a user defined signal (the drive).
A tight link between the sensing element and the environment is assumed: both
are treated conceptually as one dynamical system, a super-reservoir. The sensing
is done by using an indirect sensing approach: A behavior of the sensing unit is
studied under different environmental conditions q and different drives u, and if
different environmental conditions lead to radically different responses, this can be
used to infer the state of the environment.

In brief, the goal is to find a single drive u that will cause the reservoir to occupy
vastly different regions of the configuration space, Ω1, Ω2, ∙ ∙ ∙ , ΩE , under distinct
environmental conditions, q1, q2, ∙ ∙ ∙ , qE . To achieve unambiguous sensing, it is nec-
essary to find a drive such that the distance between the regions Ω1, Ω2, ∙ ∙ ∙ , ΩE is
maximized (phase space separation).

Such sensors could be used in situations where the use of the standard CMOS-
based technology is not possible or is limited in some way, e.g. due to the lack
of biocompatibility, if there is a need for low-power sensing, or simply where the
embedded sensing application needs to be realized. For example, a series of medical
challenges require advanced sensing techniques, and many novel biotechnological
sensing platforms have been developed aiming at fast response (on-line) medical
care for minimally invasive health monitoring. These developments often involve
interdisciplinary work at the interface between physics, chemistry, biology, and
computer science.

We investigate the possibility of using memristor networks to realize the SWEET
sensing setup. There are two reasons for choosing the memristor to demonstrate
the sensing principle. First, if one can assume that the memristance depends on
the environmental condition, the memristor is one of the simplest electronic com-
ponents that can function as the state weaver, and is extremely suitable for testing
the SWEET algorithm both in theoretical and practical terms. Second, we wish to
examine the principal question whether an environment sensitive memristor can
function as the SWEET sensing element. Should this be possible, the number of
memristor applications can be increased, realizing novel functionalities beyond the
intended scope that the technology has been developed for (e.g. memory or generic
analog computation).

The work is organized as follows. In section 2, the problem of identifying the
drive is formulated as an optimization problem. In section 3, an instance of the
optimization problem has been solved for two environmental conditions. A quality
of sensing index is introduced and evaluated under various conditions. Section 4
contains the summary of the main findings.
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2. Methods

Memristor model: A memristor is a two port element with time-dependent resis-
tance and memory. The resistance depends on the amount of electrical charge Q(t)
that has passed through the element. Thus the resistance R changes depending on
the current I that passed through the memristor. The current is controlled by the
applied voltage ΔV that the memristor has been exposed to. This behavior can be
described as

Ṙ(t) = fξ[ΔV (t)] θ[R(t)−Rmin] θ[Rmax −R(t)] (1)

where t denotes time, θ(x) is the step function [θ(x > 0) = 1, θ(x ≤ 0) = 0] and ξ
is a list of parameters that describe the memristor, e.g. the resistance bounds, the
threshold voltages, etc. When convenient the index ξ will be omitted, and f will
be used instead of fξ.

In this work we use a simple theoretical model of the memristor suggested in
[15]. The model describes most of the experimental findings:

f [ΔV (t)] = β ΔV (t) +
1
2
(α− β) [|ΔV (t) + Vthr| − |ΔV (t)− Vthr|] (2)

The parameter α describes how fast the resistance changes when the applied voltage
|ΔV | is smaller than the threshold Vthr. For larger voltages the resistance changes
more rapidly described by the parameter β. Equation (2) should only be used
when Rmin ≤ R ≤ Rmax since the resistance is always bounded. Therefore, outside
the range R ∈ [Rmin, Rmax], Ṙ = 0. Thus for this particular model the list of
parameters is given by ξ = {α, β, Vthr, Rmin, Rmax} which describe the properties
of the material that the memristor is made of. In experiments usually β � α.

It is assumed that the influence of the environment can be described by a suitable
modification of Eq. (1),

Ṙ(t) = fξ[ΔV (t), q(t)] θ[R(t)−Rmin] θ[Rmax −R(t)] (3)

where q(t) is a variable (observable) that describes the environment. The key chal-
lenge is to construct the function fξ[ΔV, q]. For practical reasons, we model the
influence of the environment by assuming the original form of f but with the pa-
rameters that are affected by the environment. In rigorous mathematical terms,
this can be formulated as

fξ[ΔV, q] = fξ(q)[ΔV ] (4)

The question is which of the parameters in ξ(q) are environment-sensitive.
The general consensus regarding the principles of the memristor operation, e.g.

as discussed in references [16, 17], is that the common mechanism behind the
resistance change is the alternation in the microscopic structure of the material
caused by the transport of chargers and atoms. This transport is controlled by
the applied voltage, which affects the injection and the removal of charges at the
interfaces, and the transport through the memristive material. Our hypothesis is
that the presence of ions in the solution changes the value of the electrical poten-
tial in the memristive material. While not directly affecting the transport within
the material, this could affect the charge injection and removal processes at the
interfaces. Since the memristor is behaving as a static material in the regime when
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the applied voltage is low, this should not affect parameter α, however, parame-
ters β and Vthr might be affected. The minimal and maximal resistance values are
controlled by the manufacturing processes (e.g. the width of the titanium dioxide
layer) and they should not depend strongly on the environment. For simplicity
reasons we only investigate the model where parameter β is environment sensitive:
ξ(q) = {α, β(q), Vthr, Rmin, Rmax}.

To simplify the analysis, we used the simplest possible form of β(q), the linear
relationship

β(t) = c1 q(t) + c0 (5)

where c0 and c1 are arbitrary constant which for simplicity reasons are taken to
be c0 = 0 and c1 = 1, which trivially implies β = q. This linear approximation
should be valid in the limit when the concentration of ions is small. Accordingly,
the function f is given by

f [ΔV (t), q(t)] = q(t) ΔV (t) +
1
2

[α− q(t)] [|ΔV (t) + Vthr| − |ΔV (t)− Vthr|] (6)

Figure 1 shows how f changes depending on variations in the environmental con-
ditions.

Sensing procedure: The state of the reservoir at every time instance t is de-
fined by the memristance values of the network: Ri(t) with i = 1, 2, ∙ ∙ ∙ , NR. The
sensing is implemented as a computation. The input to the computation consists of
the drive signal u(t), and the external field variable q(t). The output of the compu-
tation is constructed using the standard reservoir computing technique. A simple
linear readout mechanism is used to assess the state of the system, the resistances
Ri[q, u](t), i = 1, 2, ∙ ∙ ∙ , NR, and calculate the output as

yw[q, u](t) = w0 +
NR∑

i=1

wi Ri[q, u](t) (7)

where w = {w0, w1, ..., wNR
} are adjustable parameters and NR is the number of

memristors. The notation Ri[q, u](t) is used to emphasize the fact that the mem-
ristance Ri at a time point t depends on earlier values of q and u. In rigorous
mathematical terms the memristance is a functional of these two variables. The
memristance depends on the history of how these two variables change in time,
thus on an infinite (uncountable) sequence of values. Figure 2 illustrates how the
output is constructed.

The goal is to find a drive signal u(t) such that yw[q, u](t) can be used to charac-
terize the state of environment q(t) [13, 14]. Mathematically the characterization
procedure can be described as the process of computing

φ[q](t) (8)

at every time instance t where φ is a known mapping defined by the user. It specifies
which feature of the environment one wishes to characterize. For example, if the
goal were to distinguish between two environmental conditions q0 and q1 one could
use the mapping φ with the following properties: φ[q] ≈ 1 for q ≈ q1 and φ[q] ≈ 0
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for q ≈ q0. The goal is to find u(t) such that

yw[q, u](t) ≈ φ[q](t) (9)

holds for every time instance t and every state of the environment q.
The procedure of finding the most optimal drive is equivalent to solving the

following optimization problem. The goal is to minimize the difference between the
desired output φ[q](t) and the simulated output yw[q, u](t) for all environmental
conditions of interest. Therefore, the problem is to identify a drive signal u(t) and
the coefficients w such that

δ2
w[u](t) =

E∑

γ=1

|yw[qγ , u](t)− φ[qγ ](t)|2 (10)

is as small as possible for every time instance and environmental condition. This
is achieved by minimizing

δ2
w[u] = lim

T→∞

1
T

∫ T

0
δw[u](t) dt (11)

over both w and u. By assumption the system is observed starting from t = 0. Note
that the equations above should be augmented with the information about the
initial conditions (e.g. the state of the memristors, the state of the environment,
etc.). However, since the memristor model assumed in here exhibits the fading
memory property [5], the influence of the initial conditions “fades” in time if the
system is driven for a long time. Thus if T is large the effect of the initial condition
can be neglected, which will indeed be assumed for simplicity reasons. The following
expression is a compact representation of the optimization problem:

δ∗ = min
w,u

δw[u] (12)

Genetic algorithm optimization: A genetic algorithm package was developed
to solve the above optimization problem using the Mathematica programming lan-
guage. The algorithm is based on the concepts of mutation and crossover, and it
works as follows.

Since q(t) is assumed to be periodic it is reasonable to search for periodic drive
signals too. The drive signal u(t) is defined in terms of its Fourier coefficients and
its frequency:

u(t) = a0 +
Nc∑

i=1

ai sin(iωt) +
Nc∑

i=1

bi cos(iωt) (13)

In this way the signal u is encoded as a set of parameters

Pu = {a0, a1, ..., aNc
, b1, ..., bNc

, ω} (14)

Therefore, the optimization problem given in Eq. (12) can be rewritten as follows:

δ[Pu, w](t) =
E∑

γ=1

|yw[qγ , u](t)− φ[qγ ](t)|2 (15)
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For a given u, the weights w are identified by linear regression,

δ[Pu] = min
w

lim
T→∞

1
T

∫ T

0
δ[Pu, w](t) dt (16)

where several environmental conditions are considered simultaneously. This is im-
portant because one drive u has to work for all environmental conditions. In the
final step one needs to find the optimal set of parameters Pu by minimizing

δ∗ = min
Pu

δ[Pu] (17)

which will be referred to as the cost value.
The most optimal set of parameters Pu is found as follows. The algorithm is

used to identify a globally optimal solution within the given bounds for Pu. Each
parameter in Pu is limited to a user-defined interval. Once chosen these intervals
are kept fixed. The algorithm includes the following steps:

(1) Initialize a pool of random initial candidate solutions. Their number is defined
by the user and is denoted by M. Each candidate solution is constructed by
choosing the parameters in Pu randomly from their respective intervals.

(2) Initialize variables POLD
u1 , POLD

u2 , ∙ ∙ ∙POLD
uM by using the candidate solutions found

in step 1.
(3) Evaluate the fitness of POLD

u1 , POLD
u2 , ∙ ∙ ∙POLD

uM using Eq. (17). This is computa-
tionally the most demanding step of the algorithm.

FOR LOOP 1: For every POLD
ui construct the drive u(t) by using Eq.

(13).

FOR LOOP 2: For every environmental condition q1, q2, ∙ ∙ ∙ , qE , simulate the
memristor network in the interval [0, T ]1 and store the values of the resistances
Ri[qγ , u](t) for all memristors i = 1, 2, ∙ ∙ ∙ , NR, environmental conditions
γ = 1, 2, ∙ ∙ ∙ , E, and with the pre-defined set of time instances that are used for
sampling, tk with k = 1, 2, ∙ ∙ ∙ , NT . The separation between two adjacent time
instances is tk+1 − tk = Δt.

End LOOP 2

Calculate the w and the cost δ[Pu
OLD

i] by using

δ[Pu] = min
w

(
1

NT

NT∑

k=1

δ[Pu, w](tk)

)

(18)

which is the discretized version of Eq. (16). Similarly, the discrete version of Eq.
(11) is given as:

δ2
w[u] =

1
NT

NT∑

k=1

δw[u](tk) (19)

1in this work the simulator was developed in [18]
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End LOOP 1

(4) Let PNEW
u1 , PNEW

u2 , ∙ ∙ ∙PNEW
uNnew

be the solutions which are created by either mu-
tation or crossover between two or one of the solutions POLD

u1 , POLD
u2 , ∙ ∙ ∙POLD

uM .
Form new candidate solutions by randomly choosing between either crossover
or mutation. If a crossover is chosen, perform Nnew crossovers and create Nnew

new solutions. Every crossover is used to form one new candidate solution be-
tween two randomly chosen solutions of the solutions POLD

u1 , POLD
u2 , ∙ ∙ ∙POLD

uM .
If a mutation is flagged, perform Nnew mutations and create Nnew solutions.
Every mutation is used to form one new candidate solution by mutating one of
POLD

u1 , POLD
u2 , ∙ ∙ ∙POLD

uM chosen at random.
(5) Repeat step (3) with POLD

ui ← PNEW
ui .

(6) Sort the new and old solutions based on their costs. Keep the M solutions
with the smallest costs δ∗ (the remaining ones are ignored), which will become
POLD

u1 , POLD
u2 , ∙ ∙ ∙POLD

uM in the next pass through step 4.
(7) Terminate if the smallest cost is below the target threshold or if the maximum

number of iterations has been reached. Otherwise, continue with step (4). If
terminated, the solution with the smallest cost is an approximation to the opti-
mization problem.

The maximum frequency ωmax ≡ Nc ω used to represent the drive u(t) should be
carefully chosen depending on the value of Δt so that roughly ωmax . 2π/Δt. The
highest frequency of a Fourier component was chosen ten times smaller than 1/Δt
so as to assure that there is enough resolution to represent the highest frequency
components. The increment Δt should be small enough to ensure there is no aliasing
of the high frequency components of u(t).

3. Results

For simplicity reasons and to illustrate the key ideas, we have investigated in detail
the simplest form of a memristor network, the one-memristor network as illustrated
in Fig. 3. Only two environmental conditions are assumed, E = 2, that are denoted
by q1(t) and q2(t). The function q1(t) is constant in time, and q2(t) has a periodic
square-wave form; q1 mimics an inert environment and q2 is a simple example of a
varying environment.

To obtain the numerical results all variables have been re-scaled to obtain dimen-
sionless quantities. The mathematical details are shown in the appendix. In brief,
every variable z ∈ {t, f, R, V, α, β, q} is expressed as z = z̃z0 where z0 carries the di-
mension. Then, all equations are expressed in the variables z̃ ∈ {t̃, f̃ , R̃, Ṽ , α̃, β̃, q̃}.
We use: t0 = 1s, R0 = 1Ω, V0 = 1V , and q0 = α0 = β0 is defined in the appendix.
In the following, the tilde symbol will be omitted from t̃, f̃ , R̃, Ṽ , α̃, β̃, and q̃.

The functions q1(t) and q2(t) are defined as

Wfc,td
(t) = W [fc ∙ (t− td)] (20)

q(t) = q0 + A0 ∙Wfc,td
(t) (21)
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where function W describes a square-wave form with the amplitude and the period
equal to 1 (the nodes are at n/2 with n an integer). Function Wfc,td

is obtained
after shifting W in time by td and re-scaling the frequency by factor fc. The time
dependence of Wfc,td

has also the form of a square wave, with frequency fc. Function
q1(t) is defined by A0 = 0 and q0 = 3. Function q2(t) is given by q0 = 3, A0 = 1,
fc = 2 and td = 0. The graphs of q1 and q2 are shown in Fig. 4.

To realize the SWEET sensing setup one has to find a drive u(t) that can dis-
tinguish between these two environments, i.e. the network should output 0 when
exposed to the environment q1 and 1 when exposed to the environment q2. Math-
ematically, the network should mimic φ that behaves as φ[q1] = 0 and φ[q2] = 1.

3.1 The one-memristor network sensor with an intuitive drive

After an extensive analysis of the numerical results, we identified the mechanism
that was responsible for phase space separation. Based on this insight, a repre-
sentative drive signal was constructed, without using the algorithm, that can be
used to illustrate the key idea behind the sensing mechanism. This signal will be
referred to as “guessed” or “intuitive” drive and will be denoted by u1. The results
of the computer simulation of the memristor behavior under the influence of the
two environments are shown in Figs. 5, 6, 7. The drive u1 was chosen to achieve
the following.

In Fig. 5 the result of simulating the one memristor network is shown for the
constant environment. The drive u1(t) was constructed so that the resistance
R11(t) ≡ R[q1, u1](t) increases when u1(t) is positive and it decreases when u1(t) is
negative. Because the environment signal q1(t) does not change in time, the only
parameter which affects the function f (cf. Eq. 2) is the drive signal u1(t). Since
u1(t) has equal positive and negative amplitudes, the increase and decrease of the
R11(t) happens with the same slope (of the opposite sign). As a result of that
behavior, there is no overall change in R11(t) over one period.

In Fig. 6 the result of simulating the one memristor network is shown when
the environment has a square wave behavior (q = q2(t)). The drive was con-
structed so that u1(t) is positive (negative) when q2(t) is high (low). In this way,
R21(t) ≡ R[q2, u1](t) has an increase with a high slope and a decrease with a smaller
slope. Accordingly, there is an overall increase in R21(t) over one period. Clearly,
this tendency gets amplified over subsequent periods and after a finite number of
periods, R21(t) reaches the maximum value Rmax.

Output y[q,u1](t) for both environmental conditions is shown in Fig. 7. The
resistances R11(t) and R21(t) were used to calculate the output y[q, u1](t) based on
Eq. (7).

Key result: The one memristor network with the drive u1(t) functions as a
SWEET sensor that can distinguish between the two environments, the inert one
q1 and the varying one q2. When exposed to q1 the sensor outputs a value close to
0, and when exposed to q2 a value close to 1. However, if there was a slight loss of
synchronization between u1(t) and q2(t), the sensor would be less efficient.

A difficulty with constructing a drive by hand is that the way of thinking pre-
sented in this section cannot be generalized for larger networks. In the next section,
an identical analysis will be done but with a drive found by using the automatic
procedure detailed earlier (genetic algorithm optimization, section 2).
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3.2 Solving the optimization problem of a one-memristor network

The algorithm discussed in the methods section has been used to find the optimal
drive for the sensing problem depicted in Fig. 3. The algorithm was run with
Nc = 4 which resulted in the drive u = u2. The operation of the sensor (driven by
u2) has been simulated under the influence of the two environmental conditions.
The results of the simulations are shown in Figs. 8, 9, 10.

Figure 8 shows the result of the simulation of the SWEET sensor while exposed
to q1. One can see that the resistance R12(t) ≡ R[q1, u2](t) increases gradually, for
the same reasons that were discussed earlier regarding the choice of the intuitive
drive u1(t): When the drive u2(t) is positive, the R12(t) increases and when u2(t) is
negative the R12(t) decreases. Since q1 is constant, the overall rate of change over
one period of u2(t) depends on the mean value of u2(t). The algorithm produced a
signal with the mean value that is positive and, accordingly, the resistance R12(t)
has a tendency to increase (over one period of u2).

Figure 9 shows the same as Fig. 8 but for the varying environment q2. Under this
environmental condition the resistance R22(t) ≡ R[q2, u2](t) gradually decreases
in time. It is not easy to interpret this behavior as for u1. The graphs show a
complex interplay between the timings of q2 and u2. Very likely a human could
never guess such a signal. The resistances R12(t) and R22(t) are further processed
by the readout layer to produce the output which is shown in Fig. 10.

Key result: The drive found by the algorithm leads to the phase separation
too. However, the signal found by the algorithm leads to a different separation of
the configuration space of the sensor. This is discussed in the next section.

3.3 Comparison between the outputs

Intuitively one would expect that the sensor performs better if operated with the
drive found by the algorithm. A quick inspection of the graphs in Figs. 7 and 10
shows that to some extent this might be true. However, the output with u2 varies
more than the one with u1, and it is rather challenging to claim a clear “winner”.
In the following several intriguing differences of the sensor behavior when operated
with u1 and u2 are discussed. These differences are summarized in tab. 1.

Table 1. The overview of the sensor behavior under the two drives with the main conclusions (top row). The

second and the third rows provide the supporting information. Variable Rinit is used to denote the initial

condition of the memristance.

Signal u2 achieves a bet-
ter phase space separa-
tion

Signal u1 achieves a bet-
ter accuracy (smaller
variation)

Signal u2 achieves a
faster phase separation

u1 the key parameter to
observe: the separation
Rmax − Rinit in Figs. 5
and 6

the key quantity to ob-
serve: the variation of
y[q, u](t) around φ[q1]
and φ[q2] in Fig. 7

phase space separation
is achieved after Δt ≈ 5,
see Fig. 7

u2 the key parameter to
observe: Rmax−Rmin in
Figs. 8 and 9

the key quantity to ob-
serve: the variation of
y[q, u](t) around φ[q1]
and φ[q2] in Fig. 10

phase space separation
is achieved after Δt ≈ 2,
see Fig. 10

Signal u2 achieves a better phase separation: For example, on one hand, in
the case of the signal found by the algorithm, u2, the resistance is made to increase
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to Rmax and decrease to Rmin for the distinct environmental conditions. On the
other hand, for the sensor operated with u1 (the guessed drive), only the increase
to Rmax is observed. This implies that, in principle, the optimized drive is more
efficient in achieving the phase space separation.

Signal u1 achieves a better accuracy: The output with u1 varies less than
the output with u2 Signal u2 is an order of magnitude larger than u1 and, as a
result, the resistance R[q, u2] changes faster than R[q, u1]. Therefore, for a better
accuracy, smaller drives might be better, leading to more stable signals.

Signal u2 achieves a faster phase separation: This behavior is potentially
important for on-line sensing applications, when the rapid changes in the state of
the environment should be detected. To do this, the sensor needs to be sufficiently
responsive. One can see that the phase separation is achieved for u1 (u2) within
the interval Δt ≈ 5 (2). This happens since u2 � u1.

This indicates that, in principle, larger drives lead to a fast response, but at
the cost of decrease in accuracy, and there is a trade-off between these choices.
When the drive u1 was constructed, this trade-off was not a determining factor.
On the other hand, the optimization problem weights them both, and the signal
u2 incorporates this trade-off. By design, the algorithm “demands” both a fast
response and a high accuracy (non-volatile output). The high accuracy is rewarded
by minimizing δ∗ (to achieve the clustering of the outputs around the respective
sensing goals). The fast response is favoured implicitly. Equation (17) involves all
the time-points from the initial state, and for the finite simulation time T the initial
output values could dominate. For T →∞ the accuracy is favoured over the speed
of the response.

3.4 Measuring quality of sensing

The question is whether it is possible to compare the performance of different
sensors in a simple way, e.g. to study how the quality of sensing depends on changes
in different sensing setups. This is important from a practical point of view. The
pertinent question is how an applied drive signal affects the performance of the
sensor, or one might be interested to understand how a replacement of a sensor
component affects the device.

In principle, one could always use δ∗ to estimate the quality of sensing, but
this quantity depends on how the readout layer has been engineered. It would be
better to quantify the performance of the sensor in a more direct way. Since the
phase space separation realized by the sensor is determining factor for good sensing
performance, we exploit it instead to define a quantitative measure of the quality
of sensing.

In the case of the one-memristor sensor it is possible to measure the phase space
separation in a very precise way. In rigorous mathematical terms, we introduce a
Quality of Sensing index ν when E = 2,

ν =
|μ1 − μ2|
σ1 + σ2

(22)

where μ1, μ2 and σ1, σ2 are the means and the standard deviations of R[q1, u](t)
and R[q2, u](t) respectively. A relatively high index ν means that a high degree
of configuration space separation has been achieved. This in turn implies that the
sensing element can easily distinguish between two environments.

For example, by calculating the index ν for the guessed drive and the drive found
by the algorithm, we found that the index ν is larger for the drive found by the
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algorithm (ν = 2.07) than for the guessed drive (ν = 1.92), but the values are
rather close. This would suggest that the drive found by the algorithm works a bit
better. This is not an unrealistic prediction, given the discussion in the previous
section.

3.5 Robustness of the sensing procedure

The drives u1 and u2 have been optimized for the specific sensing setup with two
a priori known environmental conditions. However, in real applications, there are
unpredictable factors which might deteriorate the performance of the sensor. The
question is whether the sensor operated with an optimized drive could function
under realistic experimental conditions. To analyze this, the robustness of the con-
figuration space separation has been examined in two ways. First, this has been
done by analyzing how ν varies when q2(t) is altered and q1(t) and u2(t) are kept
unchanged: ν(q1, q2, u2)→ ν(q1, q2 + δq, u2). This has been achieved by separately
altering each of fc, td and A0. Second, variations in ν have been analyzed when
noise η(t) is added to the drive u2(t) and q1(t) and q2(t) are kept unchanged:
ν(q1, q2, u2)→ ν(q1, q2, u2 + η).

The dependency of ν on fc (the frequency of q2) is shown in Fig. 11. The index
ν is largest when fc = 2, since the system was optimized at that point. When the
frequency changes, ν becomes smaller. For example, from fc = 2 to fc = 1.98,
there is a change from ν = 2.07 to ν = 0.31. In Fig. 12, the outputs y[q1, u2](t)
and y[q2, u2](t) are shown for fc = 1.98 and u = u2. One can see there is no clear
separation between the outputs. The ν was also calculated for broader range of fc

values (Fig. 13). The figure shows that there are fc values (except for fc = 2) with
a relatively high ν, e.g. when fc = 1.43. The outputs for the two environmental
conditions for fc = 1.43 are shown in Fig. 14. The outputs are sufficiently distinct
to distinguish between the two environmental conditions.

The dependence of ν on td (the time-shit parameter of q2) is shown in Fig. 15.
A non zero td means that there is a phase difference between u2 and q2. As the
parameter td is altered, the quality of sensing oscillates. These oscillations occur
since the synchronization between the drive u2 and the environment q2 is lost and
regained periodically as td is altered. Note that the largest values for ν occur at
the multiples of Δtd = 0.1 (including td = 0 since the system was optimized at
that point). Interestingly, the period of these peaks differs from the period of q2.

The dependence of ν on the A0 parameter is shown in Fig. 16. As A0 increases
in the range [0,1] the ν index increases too, and attains a maximum value for
A0 = 1.3. Note that the sensor has been optimized for A0 = 1.0. It is somewhat
surprising that ν increases in such a way. The quality of sensing has deteriorated
when A0 < 1.0 but has not deteriorated when A0 > 1.0. This finding shows that, in
a situation when the lower bound on the environmental signal is known, it might
be advantageous to optimize the one-memristor sensor for the lowest expected
amplitude.

The dependency of the index ν was also calculated with regard to two types
of variations in the input signal u2 → u2 + η with η = u0 + η′. The variable u0

describes uniform shifts. The variable η′ represents a genuine noise, a stochastic
variable with zero mean and a finite standard deviation σ. Since the uniform shifts
play a crucial role we consider the cases where u0 6= 0: For example, the sign of the
drive is important because it affects whether the memristance will be driven to the
region of the maximum or the minimum value. In fact, as the examples with u1

and u2 show, this balance is actively exploited for sensing. The presence of u0 6= 0
can destroy the balance.
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This behavior is illustrated in Fig. 17 which depicts the assumed probability dis-
tribution function of η. The mean of the distribution is u0. The standard deviation
is given by σ = χ/

√
12 where the parameter χ defines the width of the uniform

distribution. The variation of the index ν with regard to u0 and χ is analyzed in
Figs. 18 and 19. As anticipated sufficiently large values of |u0| and χ deteriorate
the quality of sensing.

Key result: The quality of sensing deteriorates regardless whether the environ-
mental conditions are changed or the drive is altered. It seems that the quality of
sensing depends critically on the:

• the choices of the drive,
• the environment frequency
• and the shifts in time

This indicates that the synchronization between the environment signal and the
drive signal is important for the device operation and should be carefully main-
tained.

4. Conclusions

The possibility of using environment sensitive memristor networks for advanced
sensing applications has been investigated theoretically, in the context of the
SWEET sensing setup. The key challenge was to demonstrate the feasibility of
realizing the SWEET sensing setup where the reservoir (the state waver) is a
memristor network. For simplicity reasons, the simplest possible memristor net-
work has been considered (a single environment sensitive memristor unit), and
only two distinct environmental conditions have been assumed q1 and q2. The key
challenge was to find a drive u that can be used to operate the sensor under these
environmental conditions, in a way that the device outputs 0 (1) when exposed to
environment q1 (q2). This is possible if the drive can achieve the phase space sepa-
ration (in the space of weaver states). A relatively simple model of the interaction
between the environment and the memristor has been assumed. It has been shown
that indeed the desired drive u can be found. Accordingly, memristor networks
have the potential to be used for realizing SWEET sensors.

Drive 1: In Section 3.1, a drive u = u1 was guessed on purely intuitive basis
such that the memristance R[q, u] is driven to two different regions for the two
environmental conditions q1, q2. When the environmental condition is constant q1,
the memristance R[q1, u] stays in the region around the initial value. On the other
hand, when the environmental condition has a square wave form q2 with the same
phase and frequency as the drive u, then, the memristance value is driven to the
region of the maximum possible value. However, if there is a slight loss of synchro-
nization between u and q2, then, the memristance R[q2, u] would not be driven to
the region of the maximum value and would stay in the region around the initial
value. Therefore, in this example an exact synchronization between q2 and u is
needed. Such an exact synchronization would be unlikely to be achieved under real
experimental conditions. Another limitation of such a method is that it is unlikely
that a useful drive could be guessed for large memristor networks. This example
was discussed only to illustrate the basic mechanisms of using one memristor for
sensing.

Drive 2: In section 3.2 the genetic algorithm optimization was used to identify a
solution of the SWEET sensing problem being illustrated in Fig. 3. The procedure
is generic and could be used for more complex reservoirs, e.g. memristor networks
with a large number of memristors. The algorithm identified a drive u = u2 such
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that R[q1, u] was driven to the region of the maximum possible value and R[q2, u]
was driven to the region of the minimum possible value. The fact that R[q, u] is
driven to two different regions for q1 and q2 respectively is the reason why such a
sensor would distinguish between the environmental conditions.

The strength of the drive signal controls the trade-off between two important
behaviors. On one hand, the size of the drive signal affects the quality of sensing.
Larger drives lead to more volatile outputs, which imply worse phase separation as
the system crosses easier into different regions of the configuration space. On the
other hand, stronger drive signals improve (shorten) the response time of the sensor.
The speed of response might be important in on-line sensing applications where
the goal is to detect fast environmental changes. It is an interesting observation
that the trade-off between the accuracy and the speed of response can be regulated
to some extent by choosing the strength of the drive signal.

In section 3.5 the quality of sensing index ν has been suggested as a measure of
the phase space separation and the related sensing performance of the device. The
deterioration of the quality of sensing was analyzed with regard to the changes in
environmental signals, and the variations of the drive signal due to the presence
of noise. Since the sensor has been optimized for a specific set of conditions, as
expected, for most of the induced changes the quality of sensing deteriorates. (For
example, index ν has increased when the environmental signal q2 got stronger.)
The key observation is that the quality of sensing worsens if the synchronization
is lost between the drive and the environmental signal. An interesting question is
whether it is possible to identify a drive u that can result in a more robust sensing,
at least within certain range of changes, so that the synchronization is maintained
in some way.

The question is whether it may be possible to sense more than two environmental
conditions (E > 2) with the one-memristor network, i.e. whether it is possible to
achieve the desired phase space separation. This is still under investigation. For
example, Fig. 20 (drawn by hand) is an illustration of the desired phase space
structure. Regardless of whether a drive can be found that would result in such a
structure it should be noted that the use of the linear readout layer has its limi-
tations. The linear readout cannot separate one-dimensional configuration space,
since the equation system

w1 ∙Ra + w0 = φ[qa]

w1 ∙Rb + w0 = φ[qb]

w1 ∙Rc + w0 = φ[qc]

(23)

does not have a solution in the coefficients w0 and w1. Only if there is a suitable
alignment of memristance values then the linear readout could work (provided
the values φ[qa], φ[qb], and φ[qc] could be freely chosen to match the resistance
ordering).

The work can be extended in several ways. It might be possible to generalize
this construction to assess the sensing performance for SWEET sensors realized
with more complicated networks. Potentially, larger and more complex memristor
networks can be used for sensing a larger number of environmental conditions or
for investigating the sensing of more complicated environments with more accu-
racy. In the situations where there is an upper limit for the number of memristor
components, the important question is whether the performance of the sensor can
be optimized by changing the connectivity pattern of the network.

Further, the question is whether the quality of sensing depends strongly on the
environment-memristor interaction model. Additionally, the uncertain variability
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of parameters such as Vthr and β among different memristor devices could impose
limitations regarding the optimum drive and deteriorate the quality of sensing.
However, they could also increase the sensing power of the device (by enlarging
the complexity of the configuration space). The effects of such variations could be
considered in future work.

The recent development of the memristor simulators [19] could be leveraged to
test experimentally the ideas presented in this study. In particular, the features
that could be exploited is the greater flexibility and possible better control of the
manufacturing process of the emulator devices. However, this is only possible if the
the emulator contains at least one environment-sensitive component.

The optimization algorithm could be improved too (e.g. by allowing for explicit
optimization of the time shift, and overall signal amplitude, or by trying to find
signals that are resilient to the loss of the synchronization). Despite the fading
memory property, for shorter time intervals T , the choice of the initial condition
could play a role, since the response time of the sensor might change. This might
be important in on-line sensing scenarios and affect how the sensor operates when
there are rapid environmental changes.
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Figure 1. The form of function f given in Eq. (6) plotted with Vthr = 0.5, α = 1 for two distinct
environmental conditions q = 3 (full line) and q = 4 (dashed line).

Figure 2. A memristor network consists of NR memristors. The network is driven by a signal u under an
environmental condition q. The output is a weighted sum of the memristances.
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Figure 3. a) The sensor consists of a single memristor driven by a signal u(t). Two environmental con-
ditions are considered; case 1: a constant environmental signal q = q1(t); case 2: a varying environmental
signal with a square-wave form q = q2(t). The function φ[q](t) is the sensing goal. The sensor should
output 0 (1) when exposed to q1 (q2). b) The output y[q, u](t) is a re-scaled memristance with a shift. The
optimization problem: find a drive u(t) such that y[q1, u](t) ≈ φ[q1](t) and y[q2, u](t) ≈ φ[q2](t) for every
time t.

Figure 4. A graphical representation of the environmental signals. The environment q(t) = q1(t) is as-
sumed to be inert. The environment q(t) = q2(t) is assumed to be changing in time as a square wave.
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Figure 5. The time-dependence of the resistance R(t) = R[q1, u1](t) ≡ R11(t) when the sensor is driven
by the signal u(t) = u1(t) and exposed to environment q = q1(t). There is no overall change in R(t) over
one period of u(t): When u(t) is positive R(t) increases and when u(t) is negative R(t) decreases, always
by the same amount (since u has equal positive and negative amplitudes). Note that if the drive u(t) had
a positive/negative mean value, R(t) would be gradually increasing/decreasing.

Figure 6. The time-dependence of the resistance R(t) = R[q2, u1](t) ≡ R21(t) when the sensor is driven
by the signal u(t) = u1(t) and exposed to q = q2(t). There is an overall increase in R(t) over one period of
u(t). When u(t) is positive R(t) increases and when u(t) is negative R(t) decreases. R(t) increases with a
larger rate since the increase happens with a larger slope (q(t) = 4) than the decrease (q(t) = 2). In this
way Rmax is gradually reached.
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Figure 7. The output y[q, u](t) of the one-memristor network for the two environmental conditions q(t) =
q1, q2 and the drive u(t) = u1(t). The output was driven to the two different sensing goals: around φ[q] = 0.0
for q = q1 and φ[q2] = 1.0 for q = q2.

Figure 8. Resistance R(t) = R[q1, u2](t) ≡ R12 as a function of time under the drive u(t) = u2(t) and
the environmental condition q = q1(t). When u(t) is positive R(t) increases and when u(t) is negative R(t)
decreases. Therefore, since u(t) has a positive mean value, R(t) gradually increases over periods of u(t),
and Rmax is reached.
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Figure 9. Resistance R(t) = R[q2, u2] ≡ R22 under u(t) = u2(t) and q = q2(t). When u(t) is positive
(negative) R(t) increases (decreases). The rate of change of R(t) depends on whether the environmental
signal is large (q = 4) or small (q = 2). When q = 4, R(t) has larger rates of change than when q = 2.
The synchronization of the drive u(t) and the environmental condition q(t) is such that there is an overall
decrease in R(t) and it is driven to the region around Rmin.

Figure 10. The output y[q, u](t) of the one-memristor sensor for the two environmental conditions q(t) =
q1, q2 and the drive u(t) = u2(t). The output mimics the sensing goal: φ[q] ≈ 0.0 for q = q1 and φ[q] ≈ 1.0
for q = q2.
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Figure 11. The quality of sensing index ν with respect to the parameter fc of q2 and u = u2.

Figure 12. The output y[q, u](t) of the one-memristor sensor for the two environmental conditions when
u = u2 and the parameter fc of q2 has been changed to fc = 1.98 instead of fc = 2.0. The output y[q, u](t)
mimics the sensing goal for q = q1 but not for q2. The phase separation is weaker: ν ≈ 0.3.
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Figure 13. The quality of sensing index ν with respect to a broad range of the parameter fc of q2 and
u = u2. ν is largest for fc = 2.0. However, there were other values of fc with a high index ν (e.g. fc = 1.43).

Figure 14. The output y[q, u](t) of the one-memristor sensor for the two environmental conditions with
fc being altered from fc = 2.0 to fc = 1.43. The sensing is possible (distinction between the two outputs
exists) within Δt ≈ 12 after the beginning of the simulation. This behavior results in a large index ν ≈ 1.7.
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Figure 15. The quality of sensing index ν with respect to the parameter td of q2 and u = u2.

Figure 16. The quality of sensing index ν with respect to the parameter A0 of q2 for u = u2.
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Figure 17. The probability density function of the noise η. η is uniformly distributed with a mean value
u0 in an interval equal to χ.

Figure 18. The Quality of sensing index ν for u(t) = u2(t) + u0.
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Figure 19. The Quality of sensing index ν as a function of χ. Parameter χ controls the standard deviation
of the noise. The index ν gradually decreases as the drive signal becomes more random.

Figure 20. A sketch of the phase space separation (drawn by hand) that is necessary for using the one-
memristor sensor under three environmental conditions. A drive u should be found such that the resistance
R(t) is driven to three separate regions of the configuration space R(t) ≈ Ra, R(t) ≈ Rb and R(t) ≈ Rc

under the environmental condition q = qa, q = qb to q = qc respectively.
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Appendix A. Dimensional analysis

Every measurable quantity has to be expressed in specific units. To make the nu-
merical analysis easier, all variables are resealed to obtain dimensionless quantities.
The symbols with subscript 0 define the units of the variables, and the ones with
the tilde represent dimensionless variables used in the numerical simulations. The
following scaling is used for the numerical work:

t = t0 ∙ t̃

R(t) = R0 ∙ R̃(t̃)

ΔV (t) = V0 ∙ Δ̃V (t̃)

Vthreshold = V0 ∙ Ṽthreshold

β = β0 ∙ β̃

α = β0 ∙ α̃

(A1)

The physical memristor model is defined by

∂R(t)
∂t

= β ∙ΔV (t) +
1
2
∙ (α− β) ∙ ([ΔV (t) + Vthreshold]

−[ΔV (t)− Vthreshold])
(A2)

By using Eq. (A1) in (A2) gives

∂(R0 ∙ R̃(t̃)
∂t

= β0 ∙ β̃ ∙ V0 ∙ Δ̃V (t̃)+

1
2
∙ (β0 ∙ α̃− β0 ∙ β̃) ∙ ([V0 ∙ Δ̃V (t̃) + V0 ∙ Ṽthreshold]

−[V0 ∙ Δ̃V (t̃)− V0 ∙ Ṽthreshold)

(A3)

Using the standard calculus, shown here for pedagogical reasons, one obtains the
following expressions:

∂(R0 ∙ R̃(t̃))
∂t

= R0 ∙
∂(R̃(t̃))

∂t
= R0 ∙

∂(R̃(t̃))

∂t̃
∙
∂t̃

∂t
=

R0 ∙
∂(R̃(t̃))

∂t̃
∙

1
t0

(A4)

R0 ∙
∂(R̃(t̃))

∂t̃
∙

1
t0

= β0 ∙ V0 ∙ (β̃ ∙ Δ̃V (t̃)+

1
2
∙ (α̃− β̃) ∙ ([Δ̃V (t̃) + Ṽthreshold]

−[Δ̃V (t̃)− Ṽthreshold])

(A5)
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∂(R̃(t̃))

∂t̃
=

β0 ∙ V0 ∙ t0
R0

∙ (β̃ ∙ Δ̃V (t̃)+

1
2
∙ (α̃− β̃) ∙ ([Δ̃V (t̃) + ˜Vthreshold]

−[Δ̃V (t̃)− ˜Vthreshold])

(A6)

We choose β0 as

β0 =
R0

t0 ∙ V0
(A7)

since this eliminates the factor that contains the variables with a dimension (V0,
R0, and t0). This defines the units of the variables α and β. Finally, by combining
Eqs. (A3-A7) results in

∂(R̃(t̃))

∂t̃
= β̃ ∙ΔṼ (t̃)+

1
2
∙ (α̃− β̃) ∙ ([Δ̃V (t̃) + ˜Vthreshold]

−[Δ̃V (t̃)− ˜Vthreshold]

(A8)

which is the desired equation that contains dimensionless quantities only. This
equation was used to implement the algorithm on the computer.


