
CLort: High Throughput and Low Energy Network Intrusion Detection
on IoT Devices with Embedded GPUs

Downloaded from: https://research.chalmers.se, 2019-11-13 13:48 UTC

Citation for the original published paper (version of record):
Stylianopoulos, C., Johansson, L., Olsson, O. et al (2018)
CLort: High Throughput and Low Energy Network Intrusion Detection on IoT Devices with Embedded
GPUs
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology.
It covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004.
research.chalmers.se is administrated and maintained by Chalmers Library

(article starts on next page)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Chalmers Research

https://core.ac.uk/display/198055651?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


CLort : High Throughput and Low Energy
Network Intrusion Detection on IoT Devices

with Embedded GPUs?

Charalampos Stylianopoulos[0000−0002−6845−9163] B, Linus Johansson, Oskar
Olsson, and Magnus Almgren[0000−0002−3383−9617]

Chalmers University of Technology, Gothenburg, Sweden
{chasty, magnus.almgren}@chalmers.se

Abstract. While IoT is becoming widespread, cyber security of its de-
vices is still a limiting factor where recent attacks (e.g., the Mirai bot-
net) underline the need for countermeasures. One commonly-used secu-
rity mechanism is a Network Intrusion Detection System (NIDS), but
the processing need of NIDS has been a significant bottleneck for large
dedicated machines, and a show-stopper for resource-constrained IoT de-
vices. However, the topologies of IoT are evolving, adding intermediate
nodes between the weak devices on the edges and the powerful cloud in
the center. Also, the hardware of the devices is maturing, with new CPU
instruction sets, caches as well as co-processors. As an example, modern
single board computers, such as the Odroid XU4, come with integrated
Graphics Processing Units (GPUs) that support general purpose com-
puting. Even though using all available hardware efficiently is still an
open issue, it has the promise to run NIDS more efficiently.

In this work we introduce CLort , an extension to the well-known NIDS
Snort that a) is designed for IoT devices b) alleviates the burden of
pattern matching for intrusion detection by offloading it to the GPU.
We thoroughly explain how our design is used as part of the latest re-
lease of Snort and suggest various optimizations to enable processing on
the GPU. We evaluate CLort in regards to throughput, packet drops
in Snort, and power consumption using publicly available traffic traces.
CLort achieves up to 52% faster processing throughput than its CPU
counterpart. CLort can also analyze up to 12% more packets than its
CPU counterpart when sniffing a network. Finally, the experimental eval-
uation shows that CLort consumes up to 32% less energy than the CPU
counterpart, an important consideration for IoT devices.

Keywords: IoT · NIDS · GPU · pattern matching · high throughput.

1 Introduction

Even though Internet of Things (IoT) technologies have become widespread and
mature, cyber security is still a problem. Several attacks, across very different

? Preprint of https://doi.org/10.1007/978-3-030-03638-6 12

https://doi.org/10.1007/978-3-030-03638-6\protect _12


environments, demonstrate in painstaking detail that the community needs to
build security mechanisms suitable for IoT, or else deployment may slow down. A
recent example is the series of attacks against the electricity network in both the
distribution and transmission grid in Ukraine by controlling the devices found
in substations.

Challenges to improve security in IoT stem from different factors. For a
long time, an IoT system was designed with very limited edge devices that
communicated with a powerful cloud. Even though the cloud could handle many
security mechanisms, the attacks happen at the edges of the network, targeting
devices that need to be cheap, conserve power and are too limited to run their
own security mechanisms. Fortunately, modern IoT systems have become more
heterogeneous with different types of devices. The previously limited edge is
becoming slightly more powerful with new processors and architectures, and the
powerful cloud has been complemented by a range of devices, the so-called fog
in-between the edge and the cloud, with devices that offer more computational
power and, for some applications, a much faster response rate than sending the
data to the cloud. These intermediate IoT devices promise to also improve the
security of the system as a whole.

In this paper, we take advantage of the recent maturity of IoT devices and
investigate how a network intrusion detection system, one of the cornerstones of
regular IT security, can run efficiently in the IoT. More specifically, as recently
released devices come with integrated co-processors or graphics processing units,
we investigate how to use the full hardware of a dedicated “security node” to
improve the speed (throughput) of the analysis, while using less energy to do
so. Moreover, as one challenge of IoT is the distributed nature of the system,
it may not be possible to define a single choke point for network analysis. As
we demonstrate that our solution processes packets faster, it may be possible to
run the intrusion detection system on existing nodes in the network while still
leaving enough CPU cycles for the nodes’ primary function.

The outline of the paper is the following. In Section 2, we outline background
concepts related to this work, namely Snort, the Aho-Corasick algorithm and a
high-level description of general purpose computing on GPUs. In Section 3, we
explain the design of our system followed by the evaluation in Section 4. Section 5
describes related work and we conclude the paper in Section 6.

2 Background

Given the prominence of Snort as a network intrusion detection system, we start
with an introduction to such systems in general and Snort in particular. We
then describe the pattern matching algorithm in Snort (Aho-Corasick). Finally,
we give a brief background on general purpose computing on GPU devices.

2.1 Network Intrusion Detection Systems and Snort

The purpose of a Network Intrusion Detection System (NIDS) is to inspect all
incoming and outgoing network traffic and alert for any malicious behaviour.



Many NIDS are signature-based, meaning that they rely on a set of patterns
that are part of known attacks or vulnerabilities. One of the benefits of NIDS,
over for example a firewall, is that they inspect not only the packet headers but
also the packet payload (a.k.a. deep packet inspection) in order to detect a wide
range of malicious attacks.

Nowadays, Snort is one of the most commonly deployed signature-based
NIDS. Originally developed in the late 90s, Snort has been in active development
ever since and has become the de facto NIDS. Its most recent version (Snort 3,
in alpha version when this paper is written), offers many new features, such as a
modular architecture, cross-platform support and multi-threaded processing of
traffic from different interfaces.

Snort relies on rules that determine what kind of malicious behaviour it
should look for in a packet. Rules usually contain a fixed string pattern, as well
as other options that need to be true to flag a packet as malicious (e.g., traffic
towards specific ports). A very brief outline of Snort’s processing pipeline is the
following: (i) Snort captures packets from a network interface or a capture file,
(ii) a decode module creates common metadata for this packet, such as source and
destination ports and encapsulated protocols, (iii) packets that belong to a TCP
stream are reassembled, (iv) a search engine performs pattern matching on the
packets, where the payload data are compared against the malicious patterns,
and (v) if a match is found, a validation step is invoked to ensure that the rest
of the rule options are also true for the packet containing the match. Finally,
(vi) Snort outputs a verdict for the packet (whether or not it is malicious).

The pattern matching in step (iv) is an expensive bottleneck and therefore
the focus of this paper. Snort uses the Aho-Corasick pattern matching algorithm,
as described below.

2.2 The Aho-Corasick patten matching algorithm

Aho-Corasick [1] is a popular, state machine based algorithm that allows Snort
to match the payload against multiple patterns at the same time. The first
step of Aho-Corasick is to build a state machine out of all the patterns, where
the individual characters in the patterns become the transitions to new states.
The state machine is usually implemented as a two-dimensional state transition
array, with a row for each state and a column for every possible transition from
that state to the next one. An extra bit in the array is reserved for final states,
i.e. states that indicate that a full pattern has been matched.

After building the state machine at setup time, performing pattern matching
on the packet payload is relatively straightforward: starting from the initial state,
the algorithm examines one character and uses it to determine the next state.
The algorithm keeps jumping from state to state, based on the information found
in the state transition array. If the execution reaches one of the final states, a
pattern has been found in the payload and Snort will then check other parameters
of the full rule before sending out an alert.



We have chosen to use Aho-Corasick as a cornerstone for the work in this
paper because: (i) it is what Snort actually uses and (ii) it can be parallelized,
making it a good match for the GPU.

2.3 General Purpose GPU Computing

Originally designed for graphics processing tasks, in the last decade GPUs have
been proven increasingly successful for offloading computation from the CPU [5].
Hence, General Purpose Computing on the GPU (GPGPU computing) is a term
used for the use of GPUs to perform tasks that would be usually performed on
the CPU.

The internal architecture of GPUs involves thousands of threads (orders of
magnitudes more than on a standard CPU) that have a very simple pipeline
and generally operate on a lower frequency. As such, the GPU is an appealing
platform for computing tasks that benefit from a high degree of parallelization.

There are two main frameworks that make general purpose computing possi-
ble on GPUs: CUDA [10], developed by NVIDIA and OpenCL [8], an open-source
library developed by the Khronos Group. Although high-end desktop GPUs have
been extensively used for various projects using these two frameworks, embed-
ded GPUs, such as the one we use in this project, have only recently gained
support for GPGPU computing. The platform used in this work offers OpenCL
1.2 support, so we use this framework in this paper.

3 Design of CLort

As one of the most expensive operations of the NIDS for the CPU is the pattern
matching engine, we describe the design of CLort and the way it extends Snort by
offloading the pattern matching to the GPU. We start with the general, high level
design of CLort . Then, we discuss issues related to several steps of this design,
namely the transferring of data to and from the GPU and the parallelization
of pattern matching on the GPU. Finally, we show how optimizations, such as
the double buffering technique, are incorporated into our design to get the most
speedup.

3.1 CLort ’s general design

The general design of CLort is described in the left part of Figure 1 (where
the right part is described later in Section 3.4). Incoming packets enter CLort ’s
pipeline after being processed by the first, pre-processing stages of Snort (see
Section 2.1). The payload of each packet is sent to the GPU, to be checked against
the state machine created by the patterns that are relevant to that packet. After
that, the GPU executes the kernel that implements the Aho-Corasick pattern-
matching algorithm. The CPU waits until the execution of the GPU is finished
and the results are available. After that, execution continues with the rest of
Snort’s pipeline that includes validating the matches and logging the verdict for
the packet (i.e. logging whether it is malicious).



Prepare and 
transfer data 

to GPU

Fetch and 
check results

Prepare 
pattern

matching

Summarize 
results

Launch 
search on 

filled buffer

Prepare data 
for second

buffer

Prepare
pattern 

matching

Search

Fetch and 
check results

C
P
U

G
P
U

Buffer incoming packets

Payload, 
Length

Results Summarize 
results

Output results

Search

Results

Waiting for 
results from 

GPU

Search next buffer

Buffer incoming packets

Payload, 
Length

C
P
U

G
P
U

Fig. 1. The left part shows the high level design of CLort , with the different steps
involved in offloading the pattern matching of Snort to the GPU. The right part depicts
an optimization with double buffering to increase the utilization of the CPU.

3.2 Data transfers between the CPU and the GPU

Performing the pattern matching on the GPU requires that relevant data is
transferred to the memory of the GPU, and then that the result is transferred
back to the CPU. In general, data transfers to and from the GPU’s device
memory can be a significant bottleneck. However, for our hardware (further
described in Section 4.1), the particular characteristics of the GPU offer an
interesting way to alleviate that bottleneck. The Mali GPU of the Odroid XU4
does not have a separate device memory but shares the physical memory with the
CPU. Thus, we can avoid unnecessary data transfers by mapping the memory
region (using OpenCL’s interface) of the data that we should send. The memory
region is then directly accessible to the GPU. To allow the CPU to read the
results, we map the region back to the CPU address space.

Related to data transfers, it is worth mentioning some details on the data
structures that are transferred (or, in our case, mapped) to the GPU, specifically
the state machine of Aho-Corasick (described in Section 2.1). Originally, the state
machine is a two-dimensional array, with a row for each state and a column for
each possible transition from that state to a next one. Here we note that: (i) in
order to be mapped to the GPU, the state machines need to be serialized as
a one-dimensional array (a simple transformation). The serialization and the
corresponding mapping of the memory only happen once per state machine
during setup, as the state machines are read-only data structures known at
the start of Snort. (ii) Snort creates multiple state machines based on traffic
characteristics (protocols, ports, etc.) and packets are matched against a state



machine that is relevant to their traffic which also our implementation respects:
when a packet is mapped to the GPU for processing, the correct state machine
is used as an argument to the kernel that will process that packet.

3.3 Search on the GPU: Parallel Aho-Corasick

When state machines and the packet payloads are available to the GPU, pattern
matching is performed using the Aho-Corasick algorithm (Section 2.2).

We parallelize Aho-Corasick in the following way: we split the payload data
into a number of chunks, equal to the number of available GPU threads. Each
thread is able to process its own chunk, in parallel, without the need for inter-
thread communication. The input is divided evenly, so that every thread has
equal amount of work to do, compared to the other threads. This avoids the
problem of some threads terminating early and stalling, which exists in other
parallelization methods for Aho-Corasick [9].

However, splitting the payload into chunks might result in a malicious pattern
being split across more than one chunk, with no single thread being able to
detect the full pattern in “their” part. In order to detect such patterns, we let
each thread process a fixed number of characters also from the chunk of the
next thread (equal to the length of the longest pattern). This way, at least one
thread will detect every malicious pattern. The disadvantage, however, is that
short patterns that exist at the beginning of the chunks will be reported by two
threads. We compensate by keeping an auxiliary data structure that holds the
length of every pattern that is associated with a final state (a state indicating
that a full pattern has been found). When we have a match in a thread, we
use this data structure to determine the starting position of the match. If the
start is within the chunk of the thread that found the match, it will be reported
otherwise it will be ignored (as the next thread “owning” that chunk will find
the same pattern and report it).

3.4 Packet Buffering: the double-buffering technique

As mentioned in other work [18,7], launching a kernel for every single packet is
not efficient for two main reasons. Firstly, there is significant overhead associated
with launching a GPU kernel and it is good to amortize this cost over several
packets. Secondly, with a single packet, especially if the packet is small, there
might not be enough parallelism to fully exploit the GPU. There will not be
enough data to distribute to all available GPU threads or each thread will only
process a very small amount of data before exiting. For that reason, we buffer
packets on the CPU to submit in batches to the GPU. When a new packet arrives
in the Snort pipeline, it will be copied into a buffer. The processing of that packet
is postponed at this point and Snort can continue acquiring new packets. When
the buffer is full, we launch the GPU kernel to process all packets at once.
Having more data to process allows us to make the most of the parallelism the
GPU has to offer. Even though we introduce a small amount of latency before a
packet is being processed, it is not a problem on regular networks as the buffer



is significantly smaller than the traffic received during a short period of time.
However, as we describe later in Section 4, our current implementation that uses
buffers cannot make use of the final parts of Snort’s pipeline (validation and
verdict).

We have investigated two different designs in our work (Figure 1). In the
basic design (to the left in the figure), when a kernel is being executed on the
GPU, the CPU waits until the end of the execution to get the results. While this
is a straightforward design, it does not optimize throughput for a node dedicated
for monitoring the network but may work well if there are other tasks needing
cycles on the CPU.

In the double buffering design (shown to the right), both the CPU and the
GPU perform work in parallel and, as will be shown in our evaluations, this
increases the utilization of the CPU. In short, in the double buffering technique,
as proposed by [19], two buffers are used to store packets on the CPU. When
the first buffer is full and the GPU starts processing packets, the CPU can
keep buffering packets in the second buffer. When the second buffer is also full,
the CPU will first collect the results from the GPU execution, before launching
another kernel to process data in the second buffer.

In Section 4.2 we measure the effect of the double buffering technique and
show that it successfully reduces the overall processing time.

4 Evaluation

We implemented CLort using the OpenCL framework. This section presents
the results from the experimental evaluation of CLort , using a wide range of
experiments to measure and evaluate the benefits that CLort brings in intrusion
detection for IoT. The experiments are performed on four versions of Snort: Snort
original, Snort modified (CPU), CLort single buffer (GPU), and CLort double
buffer (GPU). The Snort modified (CPU) is included to make the comparisons
as fair as possible. This version of Snort behaves just like CLort (buffers packets
and does not perform the validation and verdict steps from Section 2.1), but
runs the search on the CPU. All comparisons and relative speedups reported use
Snort modified (CPU) as a baseline.

4.1 Experimental Methodology

Hardware: We use the Odroid XU4 platform [12], a single board computer
with a big.LITTLE architecture (ARM Cortex-A15 and ARM Cortex-A7). The
reason for choosing this hardware platform is that it supports an integrated GPU
(ARM Mali-T628, 6 shader cores) that is compatible with OpenCL 1.2, allowing
us to perform General Purpose Computing on its GPU. The GPU offers many
interesting differences compared to standard high-end GPUs, such as individual
program counters for each thread, the lack of local memory, as well as a shared
device memory between the GPU and CPU (2GB). The device also supports a
high speed Ethernet port, making it a good candidate for a high speed NIDS.



Name Details

SmallFlows Appneta sample, 9.4 MB data, 1209 flows over a 5 minute duration.

BigFlows Appneta sample, 368 MB data, 40686 flows over a 5 minute duration.

ISCX12 131 The first 1 million packets from ISCX2012 on 13 of June, 634 MB of
data from a data set that includes activity from network infiltration.

ISCX12 121 The first 1.5 million packets from ISCX2012 on 12 of June, 1.01 GB
of data from a data set without malicious activity.

ISCX12 12 Full The entire file from ISCX2012 on 12 of June, 4.22 GB of data from a
data set without malicious activity.

Table 1. The data sets used throughout the evaluation section.

For a subset of the experiments (c.f. Section 4.4) an almost identical platform is
used (Odroid XU3), that, contrary to the XU4, is equipped with energy sensors
but with a slower network card.

The Odroid would most likely be counted as quite powerful for consumer
IoT in the home, but its cost could be motivated for professional settings for
industrial IoT, especially if the node can run several functions for the network.
Moreover, accounting for the recent trends of development of the hardware (i.e.
Raspberry Pie 3), it is likely that these devices will also be common in the
consumer space.

Realistic Traffic Traces: We use publicly available data sets that capture
a realistic behaviour of network traffic for the experiments in this paper. Five
different capture files are used, as shown in Table 1. The first two traffic traces
(hereby named SmallFlows and BigFlows) come from Appneta [2], the current
developers of Tcpreplay. SmallFlows is a synthetic capture representing a com-
bination of different applications and BigFlows is a capture of real traffic from
a busy private network.

The other capture files come from ISCXIDS2012 [16,15]. These data sets are
specifically designed to simulate real traffic in order to test and evaluate IDSs.
These capture files are larger, ranging from just a few up to several gigabytes.
As all capture files are publicly available, they form a repeatable baseline.

Rule sets: Unless otherwise stated, we use the 829 rules (each rule containing at
least one pattern) that are enabled by default in Snort’s community distribution.
In Section 4.2, we experiment with bigger sets of rules.

Metrics: First, we measure the throughput : how much traffic is processed per
unit of time (Section 4.2). We then measure the percentage of received packets
that are analyzed by the NIDS (either Snort or CLort), when capturing live traffic
from the network interface (Section 4.3). We also measure the power consumption
(important consideration for IoT devices): what is the power consumption of
different hardware components when processing incoming traffic (Section 4.4).



smallFlows bigFlows ISCX12 131 ISCX12 121 ISCX12 121-full
Data sets

0

50

100

150

200
T
h
ro

u
g
h
p
u
t 

(M
b
p
s)

Snort original
Snort modified (CPU)

CLort single buffer (GPU)
CLort double buffer (GPU)

(a) The overall throughput of CLort , across different data sets.

Default (829) Intermediate (2000) Full (3370)
Number of rules

0

50

100

150

200

T
h
ro

u
g
h
p
u
t 

(M
b
p
s)

(b) The overall throughput of CLort , for different numbers of rules

Fig. 2. Throughput evaluation of CLort across different (a) data sets and (b) number
of rules.

4.2 Evaluating Throughput

The first set of experiments focus on throughput, by varying the traffic to be
analyzed as well as the number of rules in Snort.

Overall throughput: Figure 2a presents the processing throughput across dif-
ferent data sets, where we measure the complete execution of Snort (Section 2.1)
by reading the pcap files from disk. In these experiments, we use the default num-
ber of rules (829 rules). The experiments were repeated 5 times and we report
the average and the standard deviation of the measured throughput across all 5
runs.

First, both CLort versions that use the GPU consistently outperform the
CPU versions across all data sets in our experiments, suggesting that the GPU
is capable of accelerating the task of pattern matching. We achieve up to 52%
higher throughput compared to the CPU (modified) version of Snort, which is
significant, considering that: (i) we only offload pattern matching (step iv) from



Section 2.1, while the other steps of Snort’s processing (steps i-iii) are still part
of the measured time and (ii) we achieve it using resources (the embedded GPU)
that are already available on the platform.

Second, in almost all cases, the double buffering technique provides a perfor-
mance boost (up to 20%) compared to the single buffer approach. This means
that the double buffer optimization successfully overlaps the CPU and GPU
execution, keeping both processing units busy with useful work.

Varying the number of rules: By changing the number of rules, we can
determine how it affects the Snort runtime performance for scenarios with more
rules than the default community rule set (baseline, 829 rules). We enable all
available rules that contain fixed string patterns (3370 rules) and also create an
intermediate set with 2000 randomly chosen rules.

We run the experiments with several pcap files from Table 1, but only include
the ISCX12 121 data set as the results were similar across all runs. In Figure 2b,
both CLort versions that utilize the GPU continue to outperform the CPU
versions of Snort. Increasing the number rules reduces the raw throughput of
all versions as expected since the state machines grow larger and there is extra
processing work for the rest of Snort’s pipeline. In the case of the full rule set, we
see that the relative speedup achieved by CLort is smaller. This is because many
of the extra rules introduce processing that is not related to the search engine
that we parallelize (e.g. many of the rules involve regular expression matching).

4.3 Sniffing the network

The experiments in Section 4.2 show that CLort has a higher processing through-
put when reading packets from a capture file. In this section, we test the per-
formance of CLort in a setting much closer to the way a NIDS is deployed in
practice by capturing traffic directly from the network.

The experimental setup is the following. We connect the Odroid XU4, run-
ning CLort , to the span port of a switch (HP V1910-24G). As such, it sees all
traffic on the network segment handled by the switch. We then use a laptop
(MacBook Pro ’14) to replay the pcap files from the ISCX12 131 data set using
tcpreplay at different speeds. Also, versions of Snort and CLort use the default
set of 829 rules. The network segment also contains a dhcp server, so there is
spurious minimal traffic in addition to the traffic being replayed by the laptop.

There are several potential bottlenecks in the system: the hardware replaying
the pcap file, the switch handling the span port, the network card of the Odroid
in promiscuous mode, the kernel processing before handing the packets to the
NIDS, and finally the NIDS’s pipeline. To exclude problems beyond our improve-
ments of Snort, we measure the ratio between the packets that are received by
the NIDS and the ones that the NIDS successfully analyzes.

Figure 3 shows the percentage of the received packets that CLort and Snort
manage to analyze at various traffic rates. After approximately 70Mbps, all ver-
sions start dropping packets. However, both versions of CLort are able to process



0 100 200 300 400 500 600
Produced traffic rate (Mbps)

65

70

75

80

85

90

95

100

Pe
rc

. o
f r

ec
ei

ve
d 

pa
ck

et
s a

na
ly

ze
d 

(%
)

Snort original
Snort modified (CPU)
CLort single buffer (GPU)
CLort double buffer (GPU)

Fig. 3. Percentage of the received packets that CLort managed to analyze, as we in-
crease the rate at which we replay traffic.

a larger portion of the received packets, up to 12% more than the modified CPU
version of Snort. These results show that the throughput gained from using
the GPU translates to CLort being able to handle more packets than its CPU
counterpart.

4.4 Evaluating Energy Consumption

The final part of the evaluation studies the energy consumption. The ODROID-
XU4 is unfortunately not equipped with power measuring sensors. For this rea-
son, we use an older version (ODROID-XU3 [11]) for the energy consumption
experiments. The ODROID-XU3 is equipped with the same processor setup as
well as the same GPU and CPU as the ODROID-XU4. The only significant dif-
ference (for the power consumption tests) between these two hardware systems
is that the network card is slower for the XU3 (100 Mbps instead of 1Gbps),
but the RAM speed and the memory bandwidth is faster. The RAM speed of
the ODROID-XU3 is 933Mhz and the memory bandwidth is 14.9GB/s, whereas
the RAM speed of the ODROID-XU4 is 750Mhz and the memory bandwidth is
12GB/s.

We measured the power consumption of the following three components:
CPU (A15), GPU and RAM memory with a sample rate of 100 samples/second
running the ISC12 121 data set using the default number of rules. Figure 4
summarizes the results, with one graph each for the CPU, GPU, RAM, along
with the total power consumption. Note that each sub-figure uses its own scale
on the y-axis.

As expected, looking at Figure 4a (the power consumption of the GPU in
isolation), we can see that only the GPU versions consume any power on the
GPU, while the CPU versions consume little to no power on the GPU. The



0 10 20 30 40 50 60 70 80 90
Time (s)

0.1

0.2

0.3

0.4

0.5

0.6

P
o
w

e
r 

C
o
n
su

m
p
ti

o
n
 (

W
a
tt

)

Snort original
Snort modified (CPU)

CLort single buffer (GPU)
CLort double buffer (GPU)

(a) Power consumption on GPU

0 10 20 30 40 50 60 70 80 90
Time (s)

0.5

1.0

1.5

2.0

2.5

3.0

3.5

P
o
w

e
r 

C
o
n
su

m
p
ti

o
n
 (

W
a
tt

)

Snort original
Snort modified (CPU)

CLort single buffer (GPU)
CLort double buffer (GPU)

(b) Power consumption on CPU(a15)

0 10 20 30 40 50 60 70 80 90
Time (s)

0.02

0.03

0.04

0.05

0.06

0.07

0.08

P
o
w

e
r 

C
o
n
su

m
p
ti

o
n
 (

W
a
tt

)

Snort original
Snort modified (CPU)

CLort single buffer (GPU)
CLort double buffer (GPU)

(c) Power consumption on RAM

0 10 20 30 40 50 60 70 80 90
Time (s)

0.5

1.0

1.5

2.0

2.5

3.0

3.5

P
o
w

e
r 

C
o
n
su

m
p
ti

o
n
 (

W
a
tt

)

Snort original
Snort modified (CPU)

CLort single buffer (GPU)
CLort double buffer (GPU)

(d) Total power consumption

Fig. 4. Power consumption measurements of the CPUs, GPU and RAM.

double buffer version of CLort consumes slightly more power than the single
buffer, but for a shorter period of time.

The power consumption of the CPU (A15) in Figure 4b shows that the CPU
versions are almost equal in their execution time and they consume the most
power. The GPU versions utilize the CPU less; since the pattern matching has
been offloaded to the GPU, it leads to lower power consumption on the CPU.
The single buffer version consumes the least CPU power on average between
the different versions (close to 2 Watt) but runs longer than the double buffer
version.

Figure 4c shows the power consumed by the memory, where the range on the
y-axis is very small compared to the other components. In general, the memory
is responsible for only a small part of the power draw in all versions, never
more than 0.08 W. Notice that the original version of Snort consumes the least
amount of power on average. This is because all other versions include extra
memory operations to read and write packet data to the buffers.

Figure 4d shows the total, aggregated power consumption from the different
components. Overall, the CPU versions of Snort and the double buffer version of
CLort have almost the same average power draw, though the double buffer ver-



Version Average Power (W) Total Energy Consumed (Joule)

CLort GPU (double) 2.87 145.7

CLort GPU (single) 2.63 159.4

Snort CPU (modified) 2.91 215.6

Snort CPU (original) 2.83 217.5
Table 2. Average power draw and total energy consumed for each version.

sion has a much shorter execution time. The single buffer GPU version consumes
the least amount of power (2.63 Watt on average).

Table 2 summarizes the average power consumption, along with the total
energy consumed during the execution time of each version. The single buffer
version of CLort consumes 9.8% less power on average than the CPU version
making it a better fit for scenarios where the power envelope is limited. On
the contrary, the double buffer version of CLort consumes less energy in total
(32.4% less than the CPU), since it is able to process traffic faster. This, and in
conjunction with the results from Section 4.3 makes it an appealing alternative
for scenarios where the traffic load is high and the total consumed energy must
be minimized.

5 Related Work

Below we discuss related work, divided into two lines of work: NIDS on high-end
systems with GPUs and then NIDS on devices typical of IoT.

5.1 NIDS on GPUs

Over the years, significant efforts have focused on accelerating the functions of
a NIDS using high-end, desktop GPUs. The seminal work by Jacob et al. [6]
was the first to offload the pattern matching on the GPU. Due to the lack of
general-purpose GPU programming APIs at the time, they used graphics li-
braries (OpenGL). Their prototype, PixelSnort, achieved at best a 40% increase
in performance when the CPU was under high load, but with no noticeable
performance gain under normal load. Moreover, their pattern matching algo-
rithm is based on the Boyer-Moore algorithm [3], which evaluates each pattern
individually, making it hard to scale for a large number of patterns.

More recent work takes advantage of the ease of programming and perfor-
mance offered by general purpose APIs such as OpenCL and CUDA. Vasiliadis
et al. [18] use CUDA and implement the Aho-Corasick algorithm to offload pat-
tern matching and Xie et al. [20] use OpenCL to implement a modified version of
Aho-Corasick (PFAC [9]). Apart from differences with our design, both of these
works target high-end GPUs, while we focus on resource-constrained, embedded
GPUs that share resources with the CPU (memory).

Another, interesting line of work focuses on how to make efficient use of all
the computing devices in the system and orchestrate the processing between the



CPU and the GPU. Vasiliadis et al. [19] present Midea, a system based on Snort
that makes use of highly parallel CPUs, multiple GPU devices and networks
cards. They also describe different optimization techniques to alleviate bottle-
necks, due to data transfers and synchronization. Jamshed et al. [7] present Kar-
gus, a similar, highly parallel system based on their own, custom IDS. Recently,
Papadogiannaki et al. [13] presented a scheduler that dynamically distributes
the packet processing workload across a system with heterogeneous hardware
resources (including both discrete and integrated GPUs). Finally, Go et al. [4]
also show that integrated GPUs are a cost-effective alternative for packet pro-
cessing. All the above-mentioned work achieve very high processing throughput
using high-end CPUs and GPUs and target large-scale networks or even back-
bone traffic. Contrary, we focus on resource-constrained devices that better fit
the area of IoT networks.

5.2 NIDS on IoT related devices

Security for IoT and resource constrained devices is an active research topic.
A project that examines the feasibility of using Snort for resource-constrained
devices, similar to the spirit of this work, is RPiDS by Sforzin et al. [14]. In this
work, a Raspberry Pi 2 running Snort to function as a portable IDS was thor-
oughly tested to evaluate the capacity of modern single-board-computers. The
measurements showed that the Raspberry Pi could run Snort without ever filling
its entire memory capacity. These results strengthen the argument that single-
board-computers are a reasonable choice for security in future IoT networks,
especially since it is expected that hardware improves with time. However, when
the authors experimented with live traffic they reported that there are packet
losses, even at low rates, which we also confirm in our experiments (Section 4.3).
This raises interesting questions on the bottlenecks involved in the system that
cause these losses. In this work, we take one step further and show how more
hardware feature available at these devices (e.g. the GPU) can be used to im-
prove the feasibility of a NIDS on resource-constrained devices and reduce the
above-mentioned packet losses.

Moving to even more low-end devices and cyber-physical systems, a large
body of work focuses on custom IDS that are tailored to the functionality of
such devices. One such example is Tabrizi et al. [17] that present a software
tool, which produces a customized IDS based on the memory capacity of the
targeted device. Given the user-defined security coverage functions, the security
properties of the system and memory requirements, the tool can produce an IDS
customized to operate on the specified system. The authors were able to produce
an IDS, tailored for an electrical smart meter, that operated on 4MB of memory.
However, different from this work, they propose an anomaly-based IDS and their
main focus is on minimizing memory consumption for low-end devices.



6 Conclusion

In this paper, we consider the security of the Internet-of-Things and address
the processing challenges that are part of Network Intrusion Detection Systems.
Specifically, we propose CLort , a system based on the latest release of Snort
(version 3.0) that is designed to tackle the processing needs of NIDS for high-
end IoT devices by offloading pattern matching to a GPU. We describe the
system design and the effects of various optimizations, such as a double-buffering
technique.

We thoroughly evaluate the performance of CLort under realistic traffic and
show that by using the GPU: (i) CLort achieves up to 52% faster processing
throughput than Snort (ii) is able to process up to 12% more packets from the
network interface under high load and, (iii) achieves the above while consuming
32% less energy than its CPU counterpart.

The work in this paper suggests that using the GPU capabilities offered
by modern, high-end IoT devices is an appealing alternative that strengthens
security by alleviating the processing bottlenecks of security countermeasures,
such as network intrusion detection. The source code of CLort is available at
https://github.com/Arklights/Master

Acknowledgements

The research leading to these results has been partially supported by the Swedish
Civil Contingencies Agency (MSB) through the project “RICS” and by the Eu-
ropean Community Horizon 2020 Framework Programme through the UNITED-
GRID project under grant agreement 773717. We also thank Simon Kindström
for his help with the energy measurements.

References

1. Aho, A.V., Corasick, M.J.: Efficient String Matching: An Aid to
Bibliographic Search. Commun. ACM 18(6), 333–340 (Jun 1975).
https://doi.org/10.1145/360825.360855

2. Appneta: Sample captures, http://tcpreplay.appneta.com/wiki/captures.

html/ [Accessed: 2018-09-18]
3. Boyer, R.S., Moore, J.S.: A Fast String Searching Algorithm. Commun. ACM

20(10), 762–772 (Oct 1977). https://doi.org/10.1145/359842.359859
4. Go, Y., Jamshed, M.A., Moon, Y., Hwang, C., Park, K.: Apunet: Revitalizing

GPU as packet processing accelerator. In: 14th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 17). pp. 83–96. USENIX Association,
Boston, MA (2017)

5. GPGPU: General-Purpose Computation on Graphics Hardware, http://gpgpu.

org [Accessed: 2018-07-19]
6. Jacob, N., Brodley, C.: Offloading IDS Computation to the GPU. In: 22nd Annual

Computer Security Applications Conference (ACSAC’06). pp. 371–380 (Dec 2006).
https://doi.org/10.1109/ACSAC.2006.35

https://github.com/Arklights/Master
https://doi.org/10.1145/360825.360855
http://tcpreplay.appneta.com/wiki/captures.html/
http://tcpreplay.appneta.com/wiki/captures.html/
https://doi.org/10.1145/359842.359859
http://gpgpu.org
http://gpgpu.org
https://doi.org/10.1109/ACSAC.2006.35


7. Jamshed, M.A., Lee, J., Moon, S., Yun, I., Kim, D., Lee, S., Yi, Y., Park,
K.: Kargus: A Highly-scalable Software-based Intrusion Detection System. In:
Proceedings of the 2012 ACM Conference on Computer and Communica-
tions Security. pp. 317–328. CCS ’12, ACM, New York, NY, USA (2012).
https://doi.org/10.1145/2382196.2382232

8. Khronos group: OpenCL Overview, https://www.khronos.org/opencl/ [Ac-
cessed: 2018-07-19]

9. Lin, C.H., Liu, C.H., Chien, L.S., Chang, S.C.: Accelerating Pattern Matching
Using a Novel Parallel Algorithm on GPUs. IEEE Transactions on Computers
62(10), 1906–1916 (Oct 2013). https://doi.org/10.1109/TC.2012.254

10. NVIDIA: About CUDA, https://developer.nvidia.com/about-cuda [Accessed:
2018-07-19]

11. ODROID-XU3: ODROID-XU3, http://www.hardkernel.com/main/products/

prdt_info.php?g_code=g140448267127 [Accessed: 2018-06-08]
12. ODROID-XU4: ODROID-XU4 User Manual, https://magazine.odroid.com/

wp-content/uploads/odroid-xu4-user-manual.pdf [Accessed: 2018-03-28]
13. Papadogiannaki, E., Koromilas, L., Vasiliadis, G., Ioannidis, S.: Efficient soft-

ware packet processing on heterogeneous and asymmetric hardware architec-
tures. IEEE/ACM Transactions on Networking 25(3), 1593–1606 (June 2017).
https://doi.org/10.1109/TNET.2016.2642338

14. Sforzin, A., Mármol, F.G., Conti, M., Bohli, J.: RPiDS: Raspberry Pi
IDS - A Fruitful Intrusion Detection System for IoT. In: 2016 Intl
IEEE Conferences on Ubiquitous Intelligence & Computing, Advanced and
Trusted Computing, Scalable Computing and Communications, Cloud and
Big Data Computing, Internet of People, and Smart World Congress
(UIC/ATC/ScalCom/CBDCom/IoP/SmartWorld), Toulouse, France, July 18-21,
2016. pp. 440–448 (2016). https://doi.org/10.1109/UIC-ATC-ScalCom-CBDCom-
IoP-SmartWorld.2016.0080

15. Shiravi, A., Shiravi, H., Tavallaee, M., Ghorbani, A.A.: Intrusion detection evalu-
ation dataset (ISCXIDS2012), http://www.unb.ca/cic/datasets/ids.html [Ac-
cessed: 2018-05-08]

16. Shiravi, A., Shiravi, H., Tavallaee, M., Ghorbani, A.A.: Toward devel-
oping a systematic approach to generate benchmark datasets for in-
trusion detection. Computers & Security 31(3), pp. 357–374 (2012).
https://doi.org/https://doi.org/10.1016/j.cose.2011.12.012

17. Tabrizi, F.M., Pattabiraman, K.: Flexible Intrusion Detection Systems
for Memory-Constrained Embedded Systems. In: 2015 11th European De-
pendable Computing Conference (EDCC). pp. 1–12. IEEE (Sept 2015).
https://doi.org/10.1109/EDCC.2015.17

18. Vasiliadis, G., Antonatos, S., Polychronakis, M., Markatos, E.P., Ioannidis, S.:
Gnort: High Performance Network Intrusion Detection Using Graphics Pro-
cessors. In: Recent Advances in Intrusion Detection: 11th International Sym-
posium, RAID 2008, Cambridge, MA, USA, September 15-17, 2008. Pro-
ceedings. pp. 116–134. Springer Berlin Heidelberg, Berlin, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-87403-4 7

19. Vasiliadis, G., Polychronakis, M., Ioannidis, S.: Midea: A multi-parallel intrusion
detection architecture. In: Proceedings of the 18th ACM Conference on Computer
and Communications Security. CCS ’11, ACM, New York, NY, USA (2011)

20. Xie, H., Xiang, Y., Chen, C.: Parallel Design and Performance Optimization based
on OpenCL Snort. In: Proceedings of the 2017 2nd Joint International Information
Technology, Mechanical and Electronic Engineering Conference, JIMEC (2017)

https://doi.org/10.1145/2382196.2382232
https://www.khronos.org/opencl/
https://doi.org/10.1109/TC.2012.254
https://developer.nvidia.com/about-cuda
http://www.hardkernel.com/main/products/prdt_info.php?g_code=g140448267127
http://www.hardkernel.com/main/products/prdt_info.php?g_code=g140448267127
https://magazine.odroid.com/wp-content/uploads/odroid-xu4-user-manual.pdf
https://magazine.odroid.com/wp-content/uploads/odroid-xu4-user-manual.pdf
https://doi.org/10.1109/TNET.2016.2642338
https://doi.org/10.1109/UIC-ATC-ScalCom-CBDCom-IoP-SmartWorld.2016.0080
https://doi.org/10.1109/UIC-ATC-ScalCom-CBDCom-IoP-SmartWorld.2016.0080
http://www.unb.ca/cic/datasets/ids.html
https://doi.org/https://doi.org/10.1016/j.cose.2011.12.012
https://doi.org/10.1109/EDCC.2015.17
https://doi.org/10.1007/978-3-540-87403-4_7

	CLort: High Throughput and Low Energy Network Intrusion Detection on IoT Devices with Embedded GPUs

