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Parallel and Distributed Processing in the Context of Fog Computing
High Throughput Pattern Matching and Distributed Monitoring

Charalampos Stylianopoulos
Department of Computer Science and Engineering, Chalmers University of Technology

ABSTRACT
With the introduction of the Internet of Things (IoT), physical objects now

have cyber counterparts that create and communicate data. Extracting valuable
information from that data requires timely and accurate processing, which calls
for more efficient, distributed approaches. In order to address this challenge,
the fog computing approach has been suggested as an extension to cloud pro-
cessing. Fog builds on the opportunity to distribute computation to a wider
range of possible platforms: data processing can happen at high-end servers in
the cloud, at intermediate nodes where the data is aggregated, as well as at the
resource-constrained devices that produce the data in the first place.

In this work, we focus on efficient utilization of the diverse hardware re-
sources found in the fog and identify and address challenges in computation
and communication. To this end, we target two applications that are representa-
tive examples of the processing involved across a wide spectrum of computing
platforms. First, we address the need for high throughput processing of the in-
creasing network traffic produced by IoT networks. Specifically, we target the
processing involved in security applications and develop a new, data parallel
algorithm for pattern matching at high rates. We target the vectorization capa-
bilities found in modern, high-end architectures and show how cache locality
and data parallelism can achieve up to three times higher processing throughput
than the state of the art. Second, we focus on the processing involved close to
the sources of data. We target the problem of continuously monitoring sensor
streams —a basic building block for many IoT applications. We show how dis-
tributed and communication-efficient monitoring algorithms can fit in real IoT
devices and give insights of their behavior in conjunction with the underlying
network stack.

Keywords: fog computing, resource-constrained devices, high throughput, pattern match-

ing, vectorization, distributed processing, distributed monitoring
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1
Introduction

The last decade has been marked with many disruptive technologies where the
Internet of Things (IoT) is one of the most well known. An increasing number
of objects are now becoming “smart” by getting sensing and networking capa-
bilities. The number of devices that are expected to be connected to the internet
in the coming years is impressive [1], including everyday objects, cars, as well
as devices that are part of the electricity grid and the industry [2]. However,
what is even more impressive is the amount of data that they will produce. The
upcoming challenge associated with all that data is now this: how, when and
where to process the high volumes of data, in order to extract value [3] [4]?

3



4 CHAPTER 1. INTRODUCTION

1.1 Challenges in processing IoT data: the need
for scalability on a range of new architectures

The usefulness of IoT computing comes from the fact that small devices and
sensors are able to continuously provide readings about their state and the state
of their environment. That data then needs to be processed to provide valuable
information about the system, and often to create control commands that are
fed back to the devices. IoT devices are typically resource-constrained nodes,
sometimes equipped with only enough computational power to acquire read-
ings and send them onwards. In order to accommodate the heavy processing
required for many IoT applications, IoT networks rely on a connection with
the cloud, where the hardware resources are abundant. This computing model,
however, has scalability problems and fails to meet the requirements of many
IoT applications. Primarily, the vast number of connected devices, in conjunc-
tion with the increasing volume of data generated by each device, means that it
is impossible to send all this data to the cloud without exhausting the available
bandwidth. Moreover, IoT applications often have tight latency requirements,
which means that aggregating data to the cloud, processing it and sending back
the control commands adds an unacceptably high overhead.

As a way to address these limitations, fog computing1 has been proposed as
an alternative extension to cloud computing described above [5]. The core idea
of fog computing is to move the processing to where it is most needed, closer
to the data origin. In this paradigm, the processing and control logic that would
typically be found on cloud servers is now pushed down to intermediate nodes,
closer to the sources of data. Base stations and gateways will thus be enhanced
with processing capabilities and storage, enough to quickly act on aggregated
data coming from IoT networks. Moreover, the networks themselves will take
over some of the processing and control logic, so that a significant portion of
data do not have to be forwarded upwards. It is estimated that this way, more

1The term fog computing is often used interchangeably with edge computing, with the later fo-
cusing more on processing at the devices that produce the data. We will use the term fog computing
from now on, to emphasize the need for distributed processing.
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than 40 percent of IoT data [6] will be processed on devices physically close to
the data sources, by 2019. Hence, the up-link network bandwidth will no longer
a limiting factor and there is opportunity to significantly reduce the overall pro-
cessing latency.

The introduction of fog computing opens new, interesting research ques-
tions in several ways. On one hand, fog computing comes with a new set of
challenges, that mainly revolve around the problems of (i) how to distribute
computational tasks on the layers of fog [7], (ii) how to move them there,
(iii) in what ways the different components of fog interact and connect with
each other [3] and (iv) how to maintain Quality of Service [8]. On the other
hand—and this is important in the context of this thesis—fog computing brings
together processing applications with different requirements that target different
platforms, under the same computing approach. Processing methods originally
designed for servers in the cloud now also become relevant at the intermedi-
ate layer of fog and must adapt to the hardware found there. At the same time,
computational tasks designed to operate on aggregated data on a single node can
benefit if the processing logic is made distributed and handled close to, or even
by the nodes that produce that data. This increases the design space of existing
solutions and poses interesting research questions along the whole spectrum of
processing involved in fog computing.

1.2 Background

This section outlines background topics that are relevant in the context of this
thesis. We start by discussing relevant advances in hardware, followed by back-
ground information on wireless sensor communication.

1.2.1 Advances in processing hardware

Commodity hardware is constantly changing and evolving. Every new gener-
ation of platforms is enriched with new hardware features, designed to better
serve the needs of applications. The introduction of such features enables new
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techniques that applications can use to gain performance.

A characteristic example of such important techniques is vectorization. It
utilizes processing units that operate on a vector of elements simultaneously,
instead of separate elements at a time, in a Single Instruction Multiple Data
(SIMD) manner [9, 10]. SIMD vectorization is traditionally used in compu-
tationally intensive, number-crunching applications, where computation is per-
formed on independent data, sequentially stored in memory.

Vectorization has been available on commodity hardware for many years.
Recent advances in hardware platforms have made it relevant again for the
following reasons: (i) new vector instruction sets have introduced the gather

instruction [11] that allows accessing data from non-contiguous memory loca-
tions and (ii) modern processor designs are shifting towards new architectures
with more emphasis on vectorization. As an example Intel’s Xeon Phi [12] sup-
ports 512 bit vector registers. On those platforms, vectorization is not just an
option but a must, in order to achieve high performance [13].

Along with the introduction of new hardware techniques, existing features
become more widespread and are adopted by a wider range of platforms. As an
example, even embedded devices [14] are now massively parallel and support
programmable Graphics Processor Units (GPUs), allowing some of the tech-
niques found on high-end servers to be used on those devices as well.

1.2.2 Wireless sensors networks

Considering the lower layer of fog computing, the hardware found there has
substantially different characteristics compared to the high-end servers described
in the previous section. Typical devices at this layer are small, battery powered
sensors. The main hardware components on these nodes are usually: (i) a set of
simple sensors that periodically collect data from the environment (ii) a resource
constrained microcontroller unit (MCU) for simple data and packet processing,
and (iii) a radio transceiver for communication with other nodes that is used to
form networks (either structured or mesh).

In wireless sensors networks (WSN), the battery lifetime is the most valu-
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able resource. Thus the design of hardware and software for wireless sensors
emphasizes on minimizing the energy footprint. As a consequence, applications
on wireless sensors need to deal with the fact that processing components are
very simple and resource constrained.

In addition to computation, communication in WSN is also expensive. In
fact, the radio is the most energy-hungry component, often consuming up to 10
times more energy than the MCU. For this reason, the goal of most commu-
nication protocols is radio duty cycling (RDC), where the radio is kept off as
much as possible and is turned on for only a small fraction of the total time. A
simple and commonly used RDC policy is to turn the radio on a fixed number
of times per second, called the channel check rate (CCR) [15]. A node that
wants to transmit, will keep transmitting for a duration of at least 1/CCR sec-
onds to ensure that all neighbouring nodes had a chance to turn their radio on
and receive. The channel check rate is a tunable parameter of the protocol that
directly affects the battery lifetime of the nodes.

In addition to energy reservation, latency and reliability are other impor-
tant considerations in WSNs. Sensors usually form multi-hop networks over
unreliable and lossy links that are constantly subject to interference. For this
reason, a large body of WSN research has focused on how to design reliable
and low-latency network protocols, with interesting new advances over the last
few years [16–18].

1.3 Scope of the thesis

This thesis covers aspects of processing and communication in fog, through rep-
resentative applications that pose challenges stemming from two key problems:
(i) hardware diversity and (ii) data diversity.

Hardware diversity is important since processing can happen on a wide
and heterogeneous range of platforms, from resource-constrained embedded
devices to high-end servers. On each of these platforms, understanding and
making efficient use of the new architectures’ features enable new possibilities.
Part of the work in this thesis focuses on how to make efficient use of new



8 CHAPTER 1. INTRODUCTION

architectures and features found on these platforms to enable new processing
methods.

Data diversity ranges from high-rate data aggregated to a single point, to
lower-rate data from many sources, where processing needs to happen in a dis-
tributed manner. Applications that operate on accumulated data usually require
high throughput processing rates, while distributed applications require mini-
mal, energy efficient communication and distributed control.

We use two applications that instantiate the problems just described and
highlight challenges and solutions. Those applications span across the two ends
of the spectrum of fog computing: processing for security applications close to
the cloud and distributed monitoring of sensor readings inside IoT networks.
These applications target different hardware and address different challenges
and they become relevant in the context of fog computing, as part of the same
processing pipeline. We return to these applications in the next section.

Figure 1.1 shows a conceptual representation of a fog computing architec-
ture. The two problem domains that this thesis focuses on are shown in this
figure.

1.4 Representative problems in the context of fog
computing

This section introduces the two problem domains that are used as a basis for the
work in this thesis. We summarize the challenges in this section and elaborate
further on the contributions in each domain in Section 1.5.

1.4.1 Data processing in the context of cyber-security

In the first problem domain, we consider the problems and challenges involved
in pattern matching, with a focus on its application for Network Intrusion De-
tection Systems (NIDS).

Motivation. NIDSs are typically found at the entry point of networks and
their purpose is to analyze the incoming and outgoing network traffic to detect
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Area	B

Area	A
Cloud	layer

Fog	Layer

Cyber-Physical
Systems	/	IoT

Figure 1.1: An example fog computing architecture that includes a cloud layer with

high-end servers, an intermediate layer close to the gateways and the IoT layer with

resource-constrained devices. The work in this thesis targets representative problems

on Area A (centralized, high throughput processing) and Area B (distributed processing

and communication).

any malicious behavior, ranging from unauthorized access, malware that exploit
software vulnerabilities, data exfiltration etc. They typically employ sophisti-
cated analysis that considers not only the packet headers but also the contents
of each packet (deep packet inspection [19]). There are many available NIDSs,
with Snort [20] and Bro [21] being some of the most popular and mature in the
open source community.

Network Intrusion Detection Systems gain new significance in the context
of fog computing. IoT networks are connected to the Internet, sending sensor
readings upwards towards the cloud and receiving back control traffic. The end-
devices producing sensitive data are potential attack targets. However, since
they are typically resource-constrained, traditional security mechanisms cannot
be employed on them. Hence, it is important to add protection mechanisms,
both at the entry point of the network and along the data path towards the cloud.

Challenges. An essential building block of many such systems is pattern

matching, i.e., to discover if any of many predefined patterns exist in an input
stream (multiple pattern matching), for whitelisting or blacklisting. 2 Consid-

2Apart from its role in intrusion detection, pattern matching is also a core function in many other
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ering the processing involved in NIDSs, pattern matching is the most compu-
tationally intensive part and represents a major performance bottleneck. More
than 70% of the running time of a NIDS is spent on pattern matching [25, 26].
This fact, in conjunction with the ever increasing rates of traffic that needs to
be processed, pushes the performance of NIDSs to their limits. Achieving high
pattern matching throughput is challenging yet crucial for these systems: if the
processing throughput cannot match the incoming traffic rate, the system will
have to start dropping packets and maybe miss significant attacks.

Related work. Pattern matching has been an active field of research for
many years and there are many proposed approaches. The algorithm proposed
by Aho and Corasick [27] is one of the most well known and the one currently
used by Snort. The first step of Aho-Corasick is to create a finite-state automa-
ton from the malicious patterns. Then, the algorithm scans the input traffic
byte-by-byte to traverse the automaton, until it arrives at a final state that in-
dicates the detection of an attack. Even though Aho-Corasick performs only a
small number of operations per byte, it fails to perform well in practice, due to
poor cache locality.

State of the art approaches have been proposed to address the limitations
of Aho-Corasick. A family of algorithms in the literature replace the state ma-
chine of Aho-Corasick with filters. Choi et al. [22] use a series of succinct
filters, created using a small part of each malicious pattern. In this way, most of
the benign input traffic is quickly filtered out, using cache-resident data struc-
tures. The part of the input that matches the information in the filters is further
examined in a later verification phase that involves lookups in hash tables that
contain the actual patterns. Similarly, Moraru et al. [28] use a modification of
Bloom Filters [29] to scan both the input and the subset of patterns that are
relevant.

Open problems. Even though the state of the art approaches have substan-
tially increased the achieved throughput, they perform sub-optimally in modern
architectures, because they fail to make use of the new characteristics and fea-
tures available. As an example, most pattern matching algorithms do not make

tasks, such as virus detection [22], text search [23] and genome analysis [24].
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use of the vector execution units and leave them underutilized. In this thesis we
present techniques that allow us to make the most out of the available hardware
and achieve considerable speedups in throughput. A summary of this work fol-
lows in Section 1.5.2.

1.4.2 Distributed monitoring of sensor readings

In the second problem domain, considering the computation involved in resource-
constrained IoT networks, we focus on the important problem of distributed
monitoring of sensor readings.

Motivation. We address the issue of continuously monitoring a distributed
set of sensor values and keeping track of a function of interest, defined over
the network-wide aggregate of these values. Often, the goal is to always be
able to detect whether the value of the monitored function has exceeded a pre-
defined threshold. Keeping track of such a function is a basic building block
for many IoT applications and control loops, e.g. for detecting outliers [30],
hot-spots [31] or denial-of-service attacks [32].

Monitoring sensor values is a prime example of the applications that fog
computing is designed for. The need for timely monitoring and low latency
detection of a threshold violation calls for local processing, close to the sources
of data. Ideally, the monitoring logic can even be placed inside the IoT network
and distributed to the sensor nodes themselves.

Challenges. Keeping track of a function defined over a network-wide ag-
gregate is a challenging task in practice. A simple solution is to aggregate
every reading from every node in the network to a central entity and compute
the aggregate there. Such an approach is impractical in networks with battery-
constrained devices: using the radio for transmission or reception is the single
most expensive operation in terms of energy [33]. Thus, the challenge associ-
ated with this problem is to reduce the number of sensor readings that need to
be transmitted, by letting all nodes locally determine whether a reading should
be transmitted. However, finding such local criteria is challenging when the
function to monitor is non-linear (e.g. the variance of the readings), yet it is
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non-linear functions that are particularly interesting for many real-world appli-
cations (e.g. detecting a denial-of-service attack).

Related work. Sharfman et al. [34] proposed a general method called geo-

metric monitoring (GM) that can monitor any function (linear or not) defined
over the average of network readings and keep track of its value with respect to
a threshold. Every node in this algorithm is capable of deriving constraints on
its local values and avoid communication as long as those constraints are not
violated. The GM method has been extended with sketches [35] and predic-
tion models [36] and has been applied to outlier detection [30] and data stream
queries [37].

Open problems. Apart from the existing general analysis of algorithms,
such as the one described above, the applicability to a real IoT deployment is
still unclear, from a practical perspective. Up until now, there are no insights in
how the system aspects of IoT networks interact with such algorithms. Specif-
ically, the underlying network stack can have a significant impact on the effi-
ciency of the algorithms, in terms of energy consumption on the nodes, as well
as latency and reliability of communication. Moreover, the resource constrained
nature of the sensor nodes makes the processing required by the algorithm chal-
lenging in practice.

In this thesis we take a step beyond the existing analysis and consider, not
just the algorithm in isolation, but also the interplay with system aspects, such
as the network stack. A summary of this works follows in Section 1.5.3.

1.5 Research questions and contributions

Based on the challenges discussed above, in this section, we introduce general
research questions that have driven the work in this thesis, as well as a summary
of the papers included in this thesis that contribute to these questions.
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1.5.1 Research questions

This thesis addresses the following research questions that emerge in the context
of fog computing:

• RQ1: How can new hardware support be used to improve the processing
throughput of data, across a wide spectrum of platforms.

• RQ2: How can distributed algorithms be used to push computation closer
to the sources of data, in order to utilize data locality and make efficient
use of the limited resources found there?

• RQ3: How do system aspects of the different layers of fog computing
influence the design of efficient algorithmic approaches?

RQ1 and RQ3 become particularly relevant when considering applications
that require high throughput processing of large volumes of data, such as pattern
matching. The variety of features found in modern platforms (e.g. advanced
vector instructions) offers new possibilities for faster processing, but requires
novel, hardware-aware algorithmic designs that make efficient use of those fea-
tures.

RQ2 and RQ3 have an important role in the context of fog computing, where
distributing computation is an important way to ensure scalability, in terms of
bandwidth and latency. However, turning a centralized algorithm into a dis-
tributed one is challenging, especially when it is applied in a resource con-
strained setting (e.g. in wireless sensor networks).

We relate back to these research questions and how we address them in this
thesis, in the context of the following research contributions.

1.5.2 (Paper I) Multiple Pattern Matching for Network Secu-
rity Applications: Acceleration through Vectorization

In this paper, we introduce V-PATCH, a data-parallel algorithm for pattern
matching, that uses vector instructions to process multiple bytes of input, in
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parallel. This work builds on the observation that recent, state of the art ap-
proaches for pattern matching that rely on quick filtering of the input, have
brought the problem close to the processor and achieve good cache locality. As
a result, long memory latencies are no longer the dominant bottleneck and the
computational part of pattern matching becomes significant. With that in mind,
we target that computational part and show how to improve it further, through
vectorization (see Section 1.2.1). In this way, we contribute towards RQ1 and
show how to make efficient use of the available hardware features.

We follow a two-step approach. First, we propose a refined and extended
filtering strategy that: (i) performs filtering based on cache-resident data struc-
tures and is effective for the types of patterns found in real traffic, and (ii) is
simple enough to allow efficient vectorization. As an example, we deal sep-
arately with small, but frequently found patterns and perform more targeted
filtering for longer patterns. Second, we design a vectorized version that uses
specialized instructions to parallelize the computation performed on the filters,
together with optimizations (e.g. filter merging) that allow us to make the most
of the filtering design.

We evaluate the effectiveness of V-PATCH using real malicious patterns
from Snort [38], against both real and synthetic traffic mixes. The results on two
platforms, an Intel Haswell processor and an Intel Xeon Phi co-processor, show
up to 1.8x and 3.6x times faster processing throughput respectively, against the
state of the art. Furthermore, we find that the vectorized approach retains a
stable speedup of 1.4x over the scalar one, as the number of malicious patterns
increases.

1.5.3 (Paper II) Geometric Monitoring in Action: a Systems
Perspective for the Internet of Things

In this paper, we study geometric monitoring from a full-system perspective,
when applied on real IoT networks. We propose a system design for geometric
monitoring on top of a wireless sensor network stack. Then, we thoroughly
evaluate the performance benefits achieved in practice, the run-time behavior of
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the algorithm and the effects of packet losses. Through this work, we contribute
towards RQ2 and RQ3, by showing that distributing computation to resource-
constrained devices can have significant benefits, as well as by evaluating the
effect of the system aspects in the performance of the algorithm.

We design the system on top of multi-hop mesh networks, without the need
for maintaining a topology. When a node detects a violation, it will trigger a
network-wide broadcast and inform every other node of its new value. This is
done by network flooding, where a node that receives “new” information will
broadcast it further to its neighbors. In the event that a node fails to receive an
update by any of its neighbors, that node will be out of sync until a subsequent
broadcast from the same originator arrives.

Important considerations that are taken into account are the following. First,
upon every new measurement or update, nodes need to check their local vio-
lation criteria, which typically involves finding whether two curves intersect.
This can be computationally challenging for resource-constrained devices and
in some cases, it might be impractical to compute it accurately and in time. To
this end, we propose a simple relaxation of the violation check that introduces a
trade-off between computational efficiency and communication reduction. Sec-
ond, we investigate the important parameters of the network stack that affect
the effectiveness of the algorithm in practice. As we show in the paper, the rate
at which nodes wake-up to receive traffic (Channel Check Rate, CCR) greatly
affects the energy savings of the GM method.

We evaluate our design using both full-system simulations and real IoT
testbeds. Overall, we find that GM brings significant benefits to monitoring
tasks, in terms of communication reduction. Specifically, when monitoring the
variance and the average of real temperature data, GM achieves 3x and 11x
reduction in duty-cycle, respectively. However, those benefits are limited com-
pared to the communication reduction of the algorithm in isolation (4.3x and
44x respectively), due to baseline energy overhead of the network stack. Closer
looks into the run-time behavior of the algorithm show that (i) the communi-
cation pattern varies greatly, and (ii) packet losses greatly impact the amount
of time a node is out of sync and reduce the ability of the algorithm to detect
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violations in a timely manner.

1.6 Conclusions and Future Directions

Motivated by the emergence of IoT and fog computing, this thesis targets the
challenges of processing involved across a range of platforms, by focusing on
two representative problems, namely pattern matching and continuous monitor-
ing of sensor readings.

On the problem of pattern matching for Network Intrusion Detection, we
focus on how to make efficient use of newly introduced hardware features to
improve the processing throughput, thus contributing towards RQ1 (cf. Sec-
tion 1.5.1). The work in this thesis shows that, using advanced vector instruc-
tions, it is possible to improve the pattern matching throughput, across a range
of data sets and different platforms.

On the problem of continuously monitoring distributed sensor readings, the
work in thesis contributes insights towards RQ2. We demonstrate how geo-
metric monitoring can be used to share the processing logic across the resource-
constrained devices of IoT networks and give insights from real deployments.
Through this work, important aspects of RQ3 are also made clear and we find
that a) algorithmic engineering is required to adapt to the needs of battery
and CPU-constrained devices and we suggest appropriate approximations, and
b) the underlying communication stack greatly influences the performance of
the algorithm, in terms of energy, latency and accuracy.

The results presented above target challenges and techniques on two sepa-
rate sides of the fog computing spectrum. The next challenge is how to bring
them closer together and extend them across the different layers of fog.

In the context of pattern matching, it is interesting to consider approaches
that would better fit in the intermediate layer, for the following reasons. First,
the gateways found at the intermediate layer are points of entry into the IoT
network. For this reason, fast intrusion detection is required to secure both
the gateways themselves as well as the network to which they provide access.
Second, performing intrusion detection closer to the sources of data and not
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on remote servers, provides opportunities for bandwidth reservation as well as
better response times. Finally, the hardware found at the intermediate layer is
becoming increasingly powerful and offers new capabilities. As an example,
embedded RaspberryPi-like devices come with multiple cores and even pro-
grammable GPUs [14], so they can take the role of gateways with support for
processing. Hence, it is interesting to see how to make efficient use of new
platforms and the hardware resources they have to offer.

Based on insights from the work in distributed monitoring, described above,
there are two interesting aspects that are worth further investigation. First, dis-
tributed monitoring algorithms can be extended to take into account the reality
of IoT communication. As an example, would it be possible to rely less on a
network-wide broadcast mechanism and, instead, resolve violations in a local
neighborhood? This would bring overall benefits for both the energy savings
and the accuracy of the algorithm. In this direction, we are currently looking
at ways to extend the existing literature [31] with a distributed algorithm that
is less demanding in terms of communication and is not oblivious to the under-
lying network stack. Second, it is interesting to see how to design a tailored
protocol that serves the communication needs of such distributed applications.
Recently, advances in wireless sensor protocols (e.g. synchronous transmis-
sions [16] and channel hopping [39]) have made it possible to achieve fast and
highly reliable flooding in mesh networks. One can thus investigate to what ex-
tent these protocols can serve the needs of distributed monitoring and how they
can be extended further.
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Abstract

Pattern matching is a key building block of Intrusion Detection Systems and
firewalls, which are deployed nowadays on commodity systems from laptops
to massive web servers in the cloud. In fact, pattern matching is one of their
most computationally intensive parts and a bottleneck to their performance. In
Network Intrusion Detection, for example, pattern matching algorithms handle
thousands of patterns and contribute to more than 70% of the total running time
of the system.

In this paper, we introduce efficient algorithmic designs for multiple pat-
tern matching which (a) ensure cache locality and (b) utilize modern SIMD
instructions. We first identify properties of pattern matching that make it fit for
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vectorization and show how to use them in the algorithmic design. Second, we
build on an earlier, cache-aware algorithmic design and we show how cache-
locality combined with SIMD gather instructions, introduced in 2013 to Intel’s
family of processors, can be applied to pattern matching. We evaluate our al-
gorithmic design with open data sets of real-world network traffic: Our results
on two different platforms, Haswell and Xeon-Phi, show a speedup of 1.8x and
3.6x, respectively, over Direct Filter Classification (DFC), a recently proposed
algorithm by Choi et al. for pattern matching exploiting cache locality, and
a speedup of more than 2.3x over Aho-Corasick, a widely used algorithm in
today’s Intrusion Detection Systems.

2.1 Introduction

Security mechanisms, such as Network Intrusion Detection Systems and fire-
walls, are part of every networked system and are analyzing network traffic to
protect from attacks. An essential building block of many such systems is pat-

tern matching, i.e., to discover if any of many predefined patterns exist in an
input stream (multiple pattern matching), for whitelisting or blacklisting. In the
context of Network Intrusion Detection, the data stream is the reassembled pro-
tocol stream of the packets on the monitored network and the set of patterns
(usually in the order of thousands) represents signatures of malicious attacks
that the system aims to detect.

Motivation and Challenges. Pattern matching represents a major perfor-
mance bottleneck in many security mechanisms, especially when there is a need
to employ analysis on the full packet’s payload (Deep Packet Inspection). In in-
trusion detection, for example, more than 70% of the total running time in spent
on pattern matching [1, 2]. Moreover, with the increasing interest in Network
Function Virtualization (NFV) [3, 4], applications like firewalls and Network
Intrusion Detection are now moved into the cloud, where they need to rely on
commodity hardware features for performance, like multi-core parallelism and
vector processing pipelines.

In this paper, we introduce a vectorizable design of an exact pattern match-
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ing algorithm which nearly doubles the performance when compared to the
state of the art on modern, SIMD capable commodity hardware, such as Intel’s
Haswell processors or Xeon Phi [5]. Vectorization as a technique to increase
throughput is gradually taking a more central role [6]. For example, architec-
tures with SIMD instruction-sets now provide wider vector registers (256 bits
with AVX) and introduce new instructions, such as gathers, that make vectoriza-
tion applicable to a wider range of applications. Moreover, modern processor
designs are shifting towards new architectures, like Intel’s Xeon Phi [5], that,
for example, supports 512 bit vector registers. On those platforms, vectoriza-
tion is not just an option but a must, in order to achieve high performance [7].
In this work we introduce algorithmic designs to utilize these capabilities.

Approach and Contributions. The introduction of gathers and other ad-
vanced SIMD instructions (cf. section 2.3) allows even applications with irregu-
lar data patterns to gain performance from data parallelism. For example, SIMD
can speed up regular expression matching [8–10]. Here, the input is matched
against a single regular expression at a time, represented by a finite state ma-
chine that can fit in L1 or L2 cache. Working close to the CPU is crucial for
these approaches, otherwise the long latency of memory accesses would hide
any computation speedup through vectorization.

The domain of multiple pattern matching for Network Intrusion Detection
has challenging constraints that limit the effectiveness of these approaches: ap-
plications need to simultaneously evaluate thousands of patterns and traditional
state-machine-based algorithms, such as Aho-Corasick [11], use big data struc-
tures that by far exceed the size of the cache of today’s CPUs. The size of the
patterns varies greatly (from 1-byte to several hundred byte patterns) and can
appear anywhere in the input. That is why SIMD techniques have not been pre-
viously considered for exact multiple pattern matching – with a few exceptions
discussed in Section 2.6 – for Network Intrusion Detection.

Building upon recent work [12, 13] that take steps in addressing the cache-
locality issues for this problem, our approach fills this gap: we propose algo-
rithmic designs for multiple pattern matching that bring together cache locality
and modern SIMD instructions, to achieve significant speedups when compared
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to the state of the art. Combining cache locality and vectorization introduces
new trade-offs on existing algorithms. Compared to traditional approaches that
perform the minimum required number of instructions, but on data that is away
from the processor, our approach, instead, performs more instructions, but these
instructions find data close to the processor and can process them in parallel us-
ing vectorization.

In particular, our works build on a family of recent methods [12, 13] that
propose filtering of the input streams using small, cache efficient data struc-
tures. We argue that, as a result, memory latencies are no longer the dominant
bottleneck for this family of algorithms while their computational part becomes
more significant. In this work, we follow a two-step approach. First, we pro-
pose a refined and extended method, which is able to benefit from vectoriza-
tion while ensuring cache locality. Second, we design its vectorized version by
utilizing SIMD hardware gather operations. To evaluate our approach, we ap-
ply our techniques to the DFC algorithm [12], as a representative example that
outperforms existing techniques in Network Intrusion Detection applications,
including [13], on which our proposed approach can be applied as well. In par-
ticular, we target the computational part of pattern matching for performance
optimization and make the following contributions:

• We propose algorithmic designs for multiple pattern matching which (a)
ensure cache locality and (b) utilize modern SIMD instructions.

• We devise a new pattern matching algorithm, based on these designs, that
utilizes SIMD instructions to outperform the state of the art, while staying
flexible with respect to pattern sizes.

• We (implement the algorithm and) thoroughly evaluate it under both real-
world traces and synthetic data sets. We outperform the state of the art
by up to 1.8x on commodity hardware and up to 3.6x on the Xeon-Phi
platform.

The remainder of the paper is organized as follows: Section 2.2 gives an
overview of important pattern matching algorithms and background on vector-
ization. Section 2.3 describes our system model. In Section 2.4, we present our
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approach leading to a new, vectorized design. Section 2.5 presents our exper-
imental evaluation. In Section 2.6, we give an overview of other related work
and we conclude in Section 2.7.

2.2 Background

In this section we present traditional approaches to pattern matching, followed
by a brief description of the DFC algorithm (Choi et al. [12]) to which we apply
our approach. Next, we introduce the required background on vectorization
techniques.

2.2.1 Traditional Approach to Multiple-Pattern Matching

The most commonly used pattern matching algorithm for network-based intru-
sion detection is by Aho-Corasick [11]. It creates a finite-state automaton from
the set of patterns and reads the input byte by byte to traverse the automaton and
match multiple patterns. Even though it performs a small number of operations
for every input byte, it implies– in practice and on commodity hardware – a low
instruction throughput due to frequent memory accesses with poor cache local-
ity [12]: As the number of patterns increases, the size of the state automaton
increases exponentially and does not fit in the cache. Nevertheless, the method
is heavily used in practice; e.g., both Snort [14], one of the best known intrusion
detection systems, as well as CloudFlare’s web application firewall [15], use it
for string matching.

2.2.2 Filtering Approaches and Cache Locality

Besides state-machine based approaches, there is a family of algorithms that
rely on filtering to separate the innocuous input from the matches. Recent work
focuses on alleviating the problem of long latency lookups on large data struc-
tures. Choi et al. [12] present a novel algorithmic design called DFC (Direct
Filter Classification), that replaces the state machine approach of Aho-Corasick
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with a series of small, succinct summaries called filters. Such a filter is a bit-
array that summarizes only a specific part of each pattern, e.g. its first two
bytes, having one bit for every possible combination of two characters that can
be found in the patterns. The algorithm is structured in two phases, the filtering

and verification:

• In the filtering phase, a sliding window of two bytes over the input goes
through an initial filter, as described above, to quickly evaluate whether
the current position is a possible starting point of a match. The two-byte
windows that passed the initial filter are fed to other, similar filters, each
specializing on a family of patterns depending on their length. Since the
filters are small (8KB each), they usually fit in L1 cache. Thus, the main
part of the algorithm differs from Aho-Corasick and uses only cache-
resident data structures, resulting in up to 3.8 times less cache misses
[12].

• If a window of two characters passed all filters, there is a strong indication
that it is a starting point of a match. For this reason, in the next verifica-

tion phase, the DFC algorithm performs lookups on specially designed
hash tables, containing the actual patterns and performs exact matching
on the input and the pattern, to verify the match.

Other algorithms in this family, like [13] as well as this work, operate on
the same idea: the input is filtered using cache resident data structures, and only
the “interesting” parts of the input is forwarded for further evaluation.

2.2.3 Vectorization

Single Instruction Multiple Data (SIMD) is an execution model for data parallel
applications, which utilizes processing units that operate on a vector of elements
simultaneously, instead of separate elements at a time. SIMD vectorization is
a desirable goal in computationally intensive, number-crunching applications,
where computation is performed on independent data, sequentially stored in
memory.
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Vector instruction sets have evolved over time, introducing bigger regis-
ters and support for more complex instructions. Recently, vector instruction
sets have been enriched with the gather instruction [16] that enables access-
ing data from non-contiguous memory locations (described in detail in Section
2.3). Polychroniou et al. [17] study the effect of vectorization with the gather

instruction on Bloom filters, hash tables joins and selection scans among oth-
ers.We are building on these works with SIMD instructions and extend their
design to pattern matching with the applications we focus on.

2.3 System Model

In this section we introduce the assumptions and requirements that our approach
makes on the hardware. We focus on mainstream CPUs, with vector processing
units (VPUs) that support gather instructions. The latter make it possible to
fetch memory from non-contiguous locations using only SIMD instructions1

The semantics of gather are as follows: let W be the vector length, which
is the maximum number of elements that each vector register can hold. The
parameters to the instruction are a vector register (I) that holds W indexes
and an array pointer (A). As output, gather returns a vector register (O) with
the W values of the array at the respective indexes. It is important to note that
gather does not parallelize the memory accesses; the memory system can only
serve a few requests at a time. Instead, its usefulness lies in the fact that it
can be used to obtain values from non-contiguous memory locations using only
SIMD code. This increases the flexibility of the SIMD model and allows to
efficiency employ it for workloads previously not considered, i.e., where the
memory access patterns are irregular. The alternative is to load the values us-
ing scalar code, then transfer them one by one from the scalar registers into
vector registers. Generally, switching between scalar and vector code is not
efficient [17, 18].

1In Intel processors, the gather instruction was introduced with the AVX2 instruction set and is
included in the latest family of mainstream processors (Haswell and Broadwell); gather also exists
in other architectures, such as the Xeon Phi co-processor [5].
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Apart from gather, the rest of the instructions we use can be found across
almost all the vector instruction sets available. Worth mentioning is the shuffle

instruction, that makes it possible to permute individual elements within the
vector register in any desired order. For example, we employ it for handling the
input and output of the algorithm (cf. Section 2.4.2).

The size of the cache, especially the L1 and L2, is very important for the al-
gorithmic design, as we describe later in Section 2.4. Common sizes in modern
architectures is 32 KB of L1 data cache with 256 KB of L2 cache and we will
use this as a running example. Our design is applicable to other cache sizes as
well.

2.4 Algorithmic Design

In this section, we begin by introducing S-PATCH, an efficient algorithmic
design for multiple pattern matching. It is designed with both cache locality
and vectorizability in mind. Next, we propose our vectorization approach V-
PATCH, Vectorized PATTern matCHing.

2.4.1 S-PATCH: a vectorizable version of DFC

To enable efficient vectorization, we introduce significant modifications to the
original DFC design. The key insight for the modifications, explained later
in detail, is that small patterns will be found frequently in real traffic, so they
should be identified quickly without adding too much overhead. On the other
hand, long patterns are found less frequently, but detecting them takes longer
and requires more characters from the input to pinpoint them accurately.

As the original DFC, our approach has two parts, organized as two separate
rounds. In the filtering round, we examine the whole input and feed it through
a series of filters that bear some similarities to DFC, but adapted to consider
properties of realistic traffic, as motivated above. The verification round is as
in DFC and performs exact matching on the full patterns that are stored in hash
tables. Compared with DFC, S-PATCH focuses on efficient filtering in the first
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round, because this is the computationally intensive part of the algorithm that,
as we show, can be efficiently vectorized. Splitting the two parts in separate
rounds improves cache locality, since the data structures used in each round do
not evict each other and, as shown in Section 2.4.2, makes vectorization more
practical.

Filtering

In this first phase the goals are to (i) quickly eliminate the parts of the input
that cannot generate a match and (ii) store the input positions where there is
indication for a match. In general, key properties of the filtering phase include:

• Good filtering rate. A big fraction of the input is filtered out at this stage.

• Low overhead. Every filter introduces additional computations and mem-
ory accesses, so there needs to be a balance between its overhead and the
amount of input that is filtered out.

• Size-efficiency. All the filters need to fit in L1 or L2 cache, while also
leaving room for the input and the array for the intermediate results in
cache. This is very important, because it ensures that the lookups on the
filters will be fast and, as explained later, vectorization using the gather
instruction will be feasible.

Our proposed filter design (cf. Figure 2.1) consists of three filters, each with
a specific purpose. The first one stores information about the short patterns
(less than 4 characters). It has one bit for every possible combination of two
characters, and if a particular combination is the beginning of a pattern, the
corresponding bit is set. Similarly, the second filter uses the same indexing and
accounts for the longer patterns together with the third filter. In more detail, (cf.
also Algorithm 1):
First filter. In the first part of the filtering, we examine two bytes of the input at
a time and use them to calculate an index for filters 1 and 2. If the corresponding
bit in the first filter is set, we directly store the current input position in an array
for further processing (lines 5-7).
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PaGern	  length	  
specific	  filters	  … …	  

Figure 2.1: Filter Design of S-PATCH. HT stands for the Hash Tables that contain the

full patterns.

Second filter. We also perform a lookup on the second filter using the same
index, at line 8. A hit may indicate that we have a match with a longer pattern,
but it may also be a false positive (e.g. compare the strings “attribute” and
“attack”). Thus, before storing the current input position after a match with the
second filter, the algorithm uses more bytes (in our case four) from the input
stream with a third filter to gain stronger indications whether there is actually a
match. Only when the match in the second filter is corroborated with a match
from the third filter is the current position in the input stream stored for further
processing (line 11).
Third filter. For the third filter, the index is calculated differently; we cannot
have a filter with all combinations of four bytes, due to cache-size limitations.
Instead, we use a multiplicative hash function for the four bytes of input to
compute the index in the filter, at line 9. There is a trade-off between having a
large enough filter to avoid collisions (thus providing a good filtering rate) and
having it small enough to fit in cache. The reason why we choose four bytes as
input will become clear in the next section (4 bytes fit in each one of the 32-bit
vector register values).

Note that the performance of the filtering phase is intrinsically tied to the
filter designs and the type of input. The reason why our proposed design is more
effective is twofold. Short patterns, although few,2 are likely to generate many
matches. As an example, if strings like GET and HTTP are part of the pattern set,

221% of Snort’s v2.9.7 patterns are 1-4 bytes long [12].
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Algorithm 1: Pseudocode for S-PATCH.
Data: D: data to inspect

1 # A_short : temporary array for short patterns
2 # A_long : temporary array for long patterns
3 for i=0, i <D.length, i++ do
4 index = Read two bytes from pos i in D
5 if (Filter1[index] is set) then
6 Store i in A_short
7 end
8 if (Filter2[index] is set) then
9 new_index = hash 4 bytes from input

10 if Filter3[new_index] is set) then
11 Store i in A_long
12 end
13 end
14 end
15 for i=0, i <A_short.length, i++ do
16 Verification for small patterns
17 end
18 for i=0, i <A_long.length, i++ do
19 Verification for big patterns
20 end

they will frequently be found in real network traffic. Treating them separately
in a dedicated filter allows us to focus on the longer patterns in other filters.
Long patterns, found more rarely, require more information to be distinguished
from innocuous traffic.

Verification

After the filtering, all the possible match positions in the input have been stored
in a temporary array. At this point, we need to compare the input at these
positions with the actual patterns, before we can safely report a match. As
mentioned before, the verification phase is as described by Choi et al. [12],
except that it is now done in a separate round, after the current chunk of input
has been processed by the filtering phase. For ease of reference we paraphrase
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here.

Among several optimizations, Choi et al. [12] use specially designed com-

pact hash tables that are different for different pattern lengths. Translated to our
improved filtering design, if the input at some position i passed the filtering, in
the verification phase the algorithm will perform a match on the compact hash
table that stores references to all the patterns of appropriate size. For example,
if i passed the third filter that stores information on patterns that are four bytes
or longer, in the verification phase, the algorithm performs a match on the com-
pact hash table that stores patterns of four bytes or longer (lines 18-20). Each
hash table is indexed with as many bytes as the shortest pattern that the hash
table contains (in this case, four bytes of the input will be used as an index to
the hash table). Each bucket in the hash table contains references to the full
patterns and the algorithm has to compare each one of them individually with
the input, before reporting a match. Eventually, the algorithm identifies all the
occurrences of all the patterns, producing the same output as Aho-Corasick.

In general, the compact hash tables as we use them in this phase, do not fit
L1 or L2 cache (but they might fit L3 cache) and accessing them incurs high
latency misses. However, the success of the approach lies in the fact that the
filtering phase will reject most of the input, so the algorithm resorts to verifica-
tion only when it is needed (when there is a high probability for a match). That
is why our efforts focus on the filtering part, where the data structures are close
to the processor and can benefit from vectorization.

2.4.2 V-PATCH: Vectorized algorithmic design

A basic issue when vectorizing S-PATCH is its non-contiguous memory ac-
cesses. The sequential version accesses the filters at nonadjacent locations for
every window of two characters, whereas in a vectorized design W indexes are
stored in a vector register (of length W ), each pointing to a separate part of the
data structure. For this reason, we use the SIMD gather instruction that allows
us to fetch values from W separate places in memory and pack them in a vector
register.



2.4. ALGORITHMIC DESIGN 39

Algorithm 2: Pseudocode for the V-PATCH filtering phase.
Data: D: input data to inspect

1 # W : the vector register length
2 # A_short : temporary array for short patterns
3 # A_long : temporary array for long patterns

4 #
−−→
M1 : constant mask used to convert the input to 2 byte sliding window format

5 #
−−→
M2 : constant mask used to convert the input to 4 byte sliding window format

6 for i=0, i <D.length, i += W do
7

−→
R = Fill register with raw input from D

8
−−−−−→
Indexes = shuffle(

−→
R ,
−−→
M1)

9
−→
V 1 = gather(filter1_address,

−−−−−→
Indexes)

10 if at least one element in
−→
V 1 is set then

11 Store positions of matches in A_short
12 end

13
−→
V 2 = gather(filter2_address,

−−−−−→
Indexes)

14 if at least one element in
−→
V 2 is set then

15
−−−−−−−−−→
NewIndexes = shuffle(

−→
R ,
−−→
M2)

16
−−−→
Keys = hash(

−−−−−−−−−→
NewIndexes)

17
−→
V 3 = gather(filter3_address,

−−−→
Keys)

18 if at least one element in
−→
V 3 is set then

19 Store positions of matches in A_long
20 end
21 end
22 end

Algorithm 2 gives a high level summary of the filtering phase of V-PATCH.
The first step towards vectorizing the algorithm is loading the consecutive input
characters from memory and storing them in the appropriate vector registers.
Figure 2.2 shows the initial layout of the input and the desired transformation
to W elements, each holding a sliding window of two characters. The transfor-
mation is efficiently achieved with the use of the shuffle instruction, allowing to
manually reposition bytes in the vector registers (Algorithm 2, line 8).

Once the vector registers are filled, the next step is to calculate the set of
indexes for the filters. Note that every 2-byte input value maps to a specific bit

in the filter, but the memory locations in the filter are addressable in bytes. A
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Shuffling	  mask:	  M	  

	  	  	  	  AB	   	  	  	  	  BC	   	  	  	  	  CD	   	  	  	  	  DE	   EF	   FG	   GH	   HI	  

Output	  Vector	  Register:	  O	  

Raw	  Input	  Vector	  Register:	  R	  

O = shuffle(R, M) 

ABCD	   EFGH	   IJKL	   MNOP	   QRST	   UVWX	   YZAB	   CDEF	  

Figure 2.2: Input Transformation from consecutive characters to sliding windows of two

characters.

standard technique used in the literature [12, 19] is to perform a bit-wise right
shift of the input value to the corresponding index in the filter. The remainder of
the shift indicates which bit to choose from the ones returned. Having computed
the indexes, we use them as arguments to the gather instruction that fetches the
filter values at those locations (Algorithm 2, lines 9 and 13).

Regarding the number of gather instructions used, to optimize in latency,
note that the first two filters (lines 9 and 13) are specifically designed to use
the same indexes for a given input value in gather but different base addresses
for the filters. Thus, with the filter merging optimization where the filters are
interleaved in memory (at the same base address), we can merge lines 9 and 13
into a single gather, to bring the information from both filters from memory
simultaneously. This optimization is not shown in the pseudo-code but depicted
in Figure 2.3, giving an example in which a single gather instruction fetches
information from both filters. Using bit-wise operations we can choose one
filter or the other, once the data is in the vector register.

If at least one of the W values has passed the second filter, they need to be
further processed through the third filter. Remember that the third filter uses a
window of four input characters as an index. Thus, we load a sliding window of
four input characters in each vector element in the register (line 15) and create
the hash values that we use as indexes in the third filter (lines 16-17).

Not all of the values in the vector register are useful; only the ones that
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F1[3]	  F1[1]	  F1[4]	  F1[4]	  F1[2]	  F1[6]	  F1[7]	  F1[1]	  

Input	  Vector	  Register:	  I	  
Filter	  2	  in	  memory:	  F2	  

O2 = gather(&F2, I) 

F2[3]	  F2[1]	  F2[4]	  F2[4]	  F2[2]	  F2[6]	  F2[7]	  F2[1]	  

O = gather(&F1-2, I) 

…	   G	   D	   V	   A	   X	   K	   …	  

O1 = gather(&F1, I) 

Filter	  1	  in	  memory:	  F1	  

3	   1	   4	   4	   2	   6	   7	   1	  

Input	  Vector	  Register:	  I	  

…	   G	  H	  D	   J	   V	  U	  A	  K	  X	  G	  K	   L	   …	  

Merged	  Filters	  1	  and	  2	  
in	  memory:	  F1-‐2	  

F1[3]	  F2[3]	  F1[1]	  F2[1]	  F1[4]	  F2[4]	  F1[2]	  F2[2]	   …	  

Figure 2.3: Figure describing the filter merging optimization. In the upper half, lookups

on two filters require two gather invocations. Once the filters are merged in memory in

the lower half, one gather brings information from both filters to the registers.

passed the second filter need to be processed further by the third filter. This is
a common challenge when vectorizing algorithms with conditional statements,
since for different input we need to run different instructions. There are ap-
proaches [19] that manipulate the elements in the vector registers, so that they
only operate on useful elements. For this particular algorithm, experiments with
preliminary implementations showed that the cost of moving the elements in the
registers out-weighted the benefits. Thus, we choose to speculatively perform
the filtering on all the values and then mask out the ones that do not pass the
second filter. In our evaluation (Section 2.5), we observe that operating specu-
latively on all the elements is actually not a wasteful approach, especially with
a large number of patterns to match.

As with the scalar algorithm, after a hit in the first or third filter we need
to store the position of the input where a potential match occurred. We store
the positions of the input that passed the filter from the set of W values in the
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register (lines 11 and 19). Here, we postpone the actual verification to avoid a
potential costly mix of vectorized and scalar code, where the values from the
vector registers need to be written to the stack and from there read into the scalar
registers. Such a conversion can be costly and can negate any benefits we gain
from vectorization [18].

Furthermore, to fully exploit the available instruction-level parallelism, we
manually unroll the main loop of the algorithm by operating on two vectors
(Rj) of W values instead of one, a technique that has proven to be efficient
especially for SIMD code [19]. This has the benefit that, while the results of a
gather on one set of W values are fetched from memory (line 9), the pipeline
can execute computations on the other set of values in parallel.

2.5 Evaluation

In this section, we evaluate the benefits that our vectorization techniques bring
to pattern matching algorithms. Our evaluation criteria are the processing through-
put and the performance under varying number of patterns. We show the im-
provements of V-PATCH with both realistic and synthetic datasets, as well as
with changing number of patterns. For a comprehensive evaluation, we com-
pare the results from five different algorithms: the original Aho-Corasick ( [11];
implementation directly taken from the Snort source code [14]), DFC (Choi et
al. [12], summarized in Section 2.2.2), Vector-DFC (a direct vectorization of
DFC done by us), S-PATCH (the scalar version of our algorithm, described in
Section 2.4.1, that facilitates vectorization and addresses properties of realis-
tic traffic that were not addressed before), and V-PATCH (the final vectorized
algorithm described in Section 2.4.2).

2.5.1 Experimental setup

Systems. For the evaluation we use both Intel Haswell and Xeon-Phi. More
specfically, the first system is an Intel Xeon E5-2695 (Haswell) CPU with 32KB
of L1 data cache, 256KB of L2 cache and 35MB of L3 cache. We use the
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ICC compiler (version 16.0.3) with -O3 optimization under the operating sys-
tem CentOS. Unless otherwise noted, the experiments in this section are run
on this platform. The second system is the Intel Xeon-Phi 3120 co-processor
platform. Xeon-Phi has 57 simple, in-order cores at 1.1 GHz each, with 512-
bit vector processing units. The memory subsystem includes a L1 data cache
and a L2 cache (32KB and 512KB respectively) private to each core, as well
as a 6GB GDDR5 memory, but no L3 cache. We compile with ICC -O3 (ver-
sion 16.0.3) under embedded Linux 2.6. We are only using Xeon-Phi in native
mode as a co-processor. The next versions of Xeon-Phi are standalone proces-
sors, so the problem of processor-to-co-processor communication is alleviated.
Since different hardware threads can operate independently on different parts
of the stream, in our experiments with both platforms, we focus on the speedup
achieved by a single hardware thread, through vectorization.

Patterns. We use two sets of patterns: a smaller one, named S1, consisting
of approximately 2, 500 patterns that comes with the standard distribution of
Snort3 [20] – the de-facto standard for network intrusion detection systems –
and a larger one, named S2, with approximately 20, 000 patterns, that is dis-
tributed by emergingthreats.net The patterns affect the performance of
the algorithm and this is analyzed in detail in Section 2.5.3.

Data sets. In our evaluation, we use both real-world traces and synthetic
data-sets. The real-world traces are the ICSX dataset [21, 22] (created to evalu-
ate intrusion detection systems) and the DARPA intrusion detection dataset [23].
From ICSX, we randomly take 1GB of data from each of days 2 and 6 (there-
after named ICSX day 2 and ICSX day 6, respectively) and we also use 300MB
of data from the DARPA 2000 capture. We are aware of the artifacts in the latter
set, and the discussions in the community about its suitability for measuring the
detection capability of intrusion detection systems [24]. In our experiments, we
use it only for the purpose of comparing throughput between algorithms, allow-
ing for future comparisons on a known dataset. The synthetic data set consists
of 1GB of randomly generated characters.

An important point, considering the evaluation validity, is that, typically, not

3We used version 2.9.7 for our experiments.
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all the patterns are evaluated at the same time. In a Network Intrusion Detection
System such as Snort, patterns are organized in groups, depending on the type of
traffic they refer to. When traffic arrives in the system, the reassembled payload
is matched only against patterns that are relevant (e.g. if the stream has HTTP
traffic, it is checked against HTTP related patterns, as well as more general
patterns that do not refer to a specific protocol or service). To evaluate our
algorithm in a realistic setting, we also pair traffic with relevant patterns. Since,
in our datasets, most of the traffic is HTTP [21], we focus on HTTP traffic and
match it against the patterns that are applicable based on the rule definitions. A
similar approach can be used for other protocols (e.g. DNS, FTP), but we focus
on HTTP traffic as it typically dominates the traffic mix and many attacks use
HTTP as a vector of infection.

2.5.2 Overall Throughput

In this section we compare the overall performance between the different algo-
rithms. Using the HTTP-related patterns of each set gives us 2K patterns from
pattern set S1 and 9K patterns from pattern set S2. All algorithms count the
number of matches. We use 10 independent runs of each experiment. We report
the average throughput values, as well as standard deviation as error bars.

Figure 2.4a shows the throughput of all algorithms under realistic traffic
traces and synthetic traces, when matched against the small pattern set (S1). In
Figure 2.4b we use the bigger pattern set (S2). The numbers above the bars
indicate the relative speedup compared to the original DFC algorithm.

We first discuss the results by only considering each pattern set and each
traffic set separately. For realistic traffic traces, our vectorized implementation
consistently outperforms the DFC algorithm by up to 1.86x (left parts of Fig-
ure 2.4), due to the parallelization we introduce in the filtering phase. The direct
vectorization of the original DFC algorithm (Vector-DFC) has limited perfor-
mance gain, because much of the running time of DFC is spent on verification
and not filtering. This is the main motivation for introducing a modified version
of DFC, in Section 2.4.1, focused on improving the filtering phase. By treating
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Figure 2.4: Performance comparison between the different algorithms for public and

random data sets on the Xeon platform.

small, frequently occurring patterns separately and by examining more infor-
mation in the case of long patterns, S-PATCH outperforms the original by up
to 1.47x. More importantly, it allows for much greater vectorization potential,
since the biggest portion of the algorithm’s running time is shifted to efficient
filtering of the input, and verification is done much more seldom.

Next, we evaluate the impact of the size of the ruleset on the overall through-
put (comparing Figure 2.4a with Figure 2.4b). The overall throughput of the
algorithms decreases, since the input is more likely to match and identifying
every match consumes extra cycles. The performance of Aho-Corasick, in par-
ticular, decreases by more than 40%, because the extra patterns greatly increase
the size of the state machine. The rest of the algorithms experience a 23-34%
drop in performance.

It is important to note that the performance gain of the algorithms (DFC
versus Aho-Corasick, V-PATCH versus DFC) is influenced by the input as fol-
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Figure 2.5: a) comparison between the scalar and vectorized versions of our approach,

as the number of patterns increases. b) filtering-to-verification ratio (left axis), as well

as the average number of useful elements in the vector registers after filter 2 (right axis),

as the number of patterns increases. c) comparison between the scalar and vectorized

approach, as the fraction of matches in the input increases.

lows: when feeding the algorithms a data set that contains random strings, DFC
significantly outperforms AC (right part of Figure 2.4). In this case, we do not
expect to find many matches in the input and the filtering phase will quickly fil-
ter out up to 95% of the input. This is also the reason why the modified versions
of the algorithm (S-PATCH and V-PATCH) perform less efficiently compared to
what they do in the different input scenarios; the design of the two separate fil-
ters as described in Section 2.4 shows its benefits in more realistic traffic mixes.
In turn, this poses interesting questions for the future in how to best design the
filters based on the expected traffic mix. Still, the vectorized versions provides
speedups over the scalar ones.

2.5.3 The effects of the number of patterns

As shown in Section 2.5.2, it is important to account for the actual traffic mix
the algorithms are expected to run upon when designing the filtering stage, as it
has a large impact on the performance. As new threats emerge, more malicious
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patterns are introduced and the performance of the algorithm must adapt to that
change.

We measure the effects of the number of patterns on the two best performing
algorithms and summarize the results in Figure 2.5a, also including the overall
speedup of V-PATCH compared to S-PATCH. In this experiment, we randomly
select the number of patterns from the complete set S2 (20, 000 patterns) in
order to test our algorithms with as many patterns as possible. V-PATCH con-
sistently performs better compared to S-PATCH, regardless of the number of
patterns considered. Observe that:
(i) As the number of patterns increases, so does the input fraction that passes
the filters. This causes the verification part, which is not vectorized, to take
up more of the running time, essentially reducing the parallel portion and, by
Amdahl’s law [25], the benefit of vectorization. The portion of the running time
spent in filtering, over the total running time is shown in Figure 2.5b (blue line).
(ii) As the number of patterns increases, the vectorization of the filtering be-
comes more efficient. Remember that V-PATCH will proceed with the third
filter if at least one of the values in the vector register block passes the second
filter. With a small number of patterns, we will seldom pass the second filter.
When we do, it is likely we only have a single match, meaning that the rest of
the values in the register are disabled and any computation performed for those
values is wasteful work. Increasing the number of patterns results in more po-
tential matches in the second filter and, as a consequence, less disabled values
for the third filter and thus more useful work. In Figure 2.5b (red line) we mea-
sure this effect and show the average number of useful items inside the vector
register every time we reach the third filter. Clearly, with an increasing number
of patterns, the vectorization is performed mainly on useful data and therefore
becomes more efficient.
(iii) The two trends essentially cancel each other out, keeping the overall per-
formance benefit of V-PATCH compared to S-PATCH constant after a point
(Figure 2.5a), even though the optimized filtering gradually becomes a smaller
part of the total running time.
(iv) A similar effect is observed when we keep the number of patterns con-
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stant, but increase the amount of matches in the dataset (Figure 2.5c). For this
experiment, we created a synthetic input that contains increasingly more pat-
terns, randomly selected from a ruleset of 2, 000 patterns. As more matching
strings are inserted into the input, our vectorized portion of the algorithm be-
comes more efficient and the relative speedup compared to the scalar version
slowly increases.

2.5.4 Filtering Parallelism

In this section, in order to gain better insights about the benefits of vectorization,
we measure the speedup gained in the filtering part in isolation.

Figure 2.6 compares the filtering throughput of the scalar S-PATCH and V-
PATCH, for pattern sets S1, S2, as well as the full pattern set (20K patterns).
In the same figure, we also report the performance of the vectorized filtering,
where we exclude the cost of storing the matches in the filtering phase in the
temporary arrays. As we can see from the graph, the throughput of the filtering
part is increased by up to a factor of 1.84x, on the small pattern set. Storing the
matches of the filtering part in arrays comes with a cost; when it is removed,
performance increases up to 2.15x for small pattern sets and up to 2.80x for the
full pattern set. Even though there is a small decrease at the pattern set with
9K patterns (Figure 2.6b), the relative speedups of vectorized filtering increase
with the number of patterns (Figure 2.6c).

2.5.5 Changing the vector length: Results from Xeon-Phi

We have also evaluated the effectiveness of our approach on an architecture
with a wider vector processing pipeline. The Xeon-Phi [5] co-processor from
Intel supports vector instructions that operate on 512-bit registers, thus able to
perform two times more operations in parallel, in the filtering phase.

Figure 2.7 summarizes the results from Xeon Phi, where the experiments
are identical with those described in Section 2.5.2. Note that we report the
throughput of a single Xeon-Phi thread. V-PATCH takes advantage of the wider
vector registers and outperforms the original scalar DFC algorithm, up to a
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Figure 2.6: Measuring the performance of the filtering part only. “V-PATCH-

filtering+stores” includes the cost of storing the results of the filtering phase to tem-

porary arrays .

factor of 3.6x on real data and 3.5x on synthetic random data.

As Xeon-Phi threads have much slower clock (1.1 GHz) and the pipeline is
less sophisticated (e.g. there is no out-of-order execution), it is not surprising
that the absolute throughput sustained by a single Phi thread is smaller than
that of the single thread performance of the Xeon platform used in the previous
experiments. When dealing with multiple streams in parallel, due to the higher
degree of parallelism, the aggregated gain will naturally be higher.

An interesting observation is that the DFC algorithm is slightly slower than
AC on real data, where the number of matches in the input is significantly
higher. In the original DFC algorithm, the filters are small and can easily fit
L1 or L2 cache, and the hash tables containing the patterns are bigger, but still
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Figure 2.7: Performance comparison between the different algorithms for public and

random data sets on the Xeon-Phi platform.

expected to fit L3 cache. In Xeon-Phi there is no L3 cache, so accesses to the
hash tables in the verification phase are typically served by the device mem-
ory, negating the benefits of cache locality that is part of the main idea of the
algorithm. Nonetheless, our improved filtering design reduces the number of
times we resort to verification and access the device memory, thus resulting
in 1.1x-1.5x increased throughput on realistic traffic, compared to the original
DFC design.

2.6 Related Work

2.6.1 Pattern matching algorithms

Pattern matching has been an active field of research for many years and there
are numerous proposed approaches. Aho-Corasick, explained before in Sec-
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tion 2.2.1 is one of the fundamental algorithms in the fields. There are variants
of Aho-Corasick that decrease the size of the state transition table (for exam-
ple [26]) by changing the way it is mapped in memory, but they come at an
increased search cost, compared to the standard version of Aho-Corasick used
in our evaluation. Other approaches apply heuristics that enable the algorithm
to skip some of the input bytes without examining them at all, such as Wu-
Manber [27] where a table is used to store information of how many bytes one
can skip in the input. The main issue with these approaches is that they perform
poorly with short patterns. For the problem domain investigated here, the pat-
terns can be of any length and the algorithm must handle all of them gracefully.
Moreover, in both Aho-Corasick and Wu-Manber algorithms, there is no data
parallelism because there are dependencies between different iterations of the
main loop over the input.

Recent algorithms [12, 13] follow a different idea: Using small data struc-
tures that hold information from the patterns (directly addressable bitmaps in
the case of [12], Bloom filters in the case of [13]), they quickly filter out the
biggest parts of the input that will not match any patterns and fallback to expen-
sive verification when there is an indication for a match. Our work is inspired by
this family of algorithms, showing how they can be modified to perform better
under realistic traffic and gain significant benefit from vectorization.

2.6.2 SIMD approaches to pattern matching

Even though pattern matching algorithms are characterized by random access
patterns, SIMD approaches have been used before for pattern matching, espe-
cially in the field of regular expression matching. Mytkowicz et al. [8] enu-
merate all the possible state transitions for a given byte of input to break data
dependencies when traversing the DFA. Then they use the shuffle instruction to
implement gathers and to compute the next set of states in the DFA. The algo-
rithm is applied on the case where the input is matched against a single regular
expression with a few hundreds of states and does not scale for the case of mul-
tiple pattern matching where we need to access thousands of states for every
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byte of input. Sitaridi et al. [9] use the same hardware gathers as we do, but ap-
ply them on database applications where the multiple, independent strings need
to be matched against a single regular expression. There have been approaches
that use other SIMD instructions for multiple exact pattern matching, but have
constraints that make them impractical for the case of Network Intrusion Detec-
tion. Faro et al. [28] create fingerprints from patterns and hash them, but they
require that the patterns are long, which is not always true for the typical set of
patterns found e.g. in Snort.

2.6.3 Other architectures

Outside the range of approaches that target commodity hardware, there is rich
literature on network intrusion detections systems that are customised for spe-
cific hardware. For example, SIMD approaches that target DFA-based algo-
rithms have been applied on the Cell processor [29], as well as GPUs and FP-
GAs [30–32]. Vasiliadis et al. [30] build a GPU-based intrusion detection sys-
tem that uses Aho-Corasick as the core pattern matching engine. Kouzinopou-
los and Margaritis also experiment with pattern matching algorithms on GPUs
and apply them on genome sequence analysis [31]. GPU parallelization has
many similarities with vectorization; in fact GPUs offer more parallelism that
can hide memory latencies. At the same time, it introduces additional chal-
lenges e.g. long latencies when transferring data between the host and the
GPU. In this work we utilize vector pipelines that are already part of modern
commodity architectures. Moreover, vectorization with CPUs requires careful
algorithmic design that makes use of caches and advanced SIMD instructions.
A main part of our work is showing how this problem can be tackled for the
case of intrusion detection.

2.7 Conclusion

In this paper, we introduce an efficient algorithmic design for multiple pattern
matching which ensures cache locality and utilizes modern SIMD instructions.
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Specifically, we introduce V-PATCH: it employs carefully designed and engi-
neered vectorization and cache locality for accelerated pattern matching and
nearly doubles the performance when compared to the state of the art.

We thoroughly evaluate V-PATCH and its algorithmic design with both open
data sets of real-world network traffic and synthetic ones in the context of net-
work intrusion detection. Our results on Haswell and Xeon-Phi show a speedup
of 1.8x and 3.6x, respectively, over single thread performance of Direct Filter
Classification (DFC), a recently proposed algorithm by Choi et al. for pat-
tern matching exploiting cache locality, and a speedup of more than 2.3x over
Aho-Corasick, a widely used algorithm in today’s Intrusion Detection Systems.
Moreover, we show that the performance improvements of V-PATCH over the
state of the art hold across open, realistic data sets, regardless of the number
of patterns in the chosen ruleset. The experimental study also provides insights
about the net effect of vectorization as well as trade-offs it implies in this family
of algorithmic designs.
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Abstract

Many applications in the Internet of Things (IoT) continuously monitor sensor
values and react when their network-wide aggregate exceeds a threshold. Geo-
metric monitoring (GM) promises a several-fold reduction in terms of commu-
nication and coordination between the sensors for such applications. Previous
work on GM has been limited to analytic or high-level simulation results and
does not consider critical system aspects such as the radio duty-cycle and packet
losses.

In this paper, we devise, realize and evaluate a system design for GM, en-
abling deployment possibilities on resource-constrained IoT devices and net-
work stacks. In particular we provide (i) an algorithmic implementation for

59
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commodity IoT hardware (ii) a study and insights regarding duty cycle reduc-
tion and energy savings on actual IoT nodes, in connection with existing an-
alytic and high-level simulation results about GM, as well as (iii) a study and
insights on the influence of packet losses on the effectiveness of the method,
in terms of accuracy and responsiveness. Our results, both from full-system
simulations and a publicly available testbed, show that GM indeed provides
several-fold energy savings in communication; e.g., we see up to 3x and 11x re-
duction in duty-cycle when monitoring the variance and average temperature of
a real-world data set, respectively but the results fall short of the analytic predic-
tions (4.3x and 44x, respectively). Hence, we investigate the energy overhead
imposed by the network stack as well as the effects of packet losses on the accu-
racy and responsiveness of the algorithm. Through the above insights, we offer
guidelines for the adaption of GM and similar algorithms in IoT settings.

3.1 Introduction

Sensing and monitoring the state of a system or the conditions of the environ-
ment is one of the most fundamental uses for Wireless Sensor Networks (WSNs).
In fact, it is the target application that drives a rich body of research on com-
munication protocols that address the problem of efficient dissemination and
collection of sensor readings.

Given a set of sensor nodes n1, n2, ..., nN with readings ~v1, ~v2, ..., ~vN that
vary over time, we want to continuously track whether a function f , defined
over the network-wide, weighted average of those readings, is larger than a
predefined threshold T . Keeping track of such a function is of particular interest
and serves as a basis for many applications and control loops, e.g. for detecting
outliers [2], hot-spots [25] or denial-of-service attacks [7, 8, 12]. The challenge
associated with the problem is to let all nodes accurately determine whether the
function is above or below the threshold locally, without having to share every
reading with other nodes. For simple, linear functions (e.g. when monitoring
just the average value), it is often easy to derive local constraints that minimize
communication. However, for non-linear functions (that are, in fact, the most
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interesting to monitor), deriving such constraints is challenging.

The problem of distributed monitoring has been studied extensively over
the years, in the context of distributed stream monitoring, with many interest-
ing solutions. Sharfman et al. [24] proposed a general method, called geometric
monitoring (GM), that can monitor any function, linear or not, computed over
network-wide aggregates and keep track of its value with respect to a thresh-
old. The method suppresses unnecessary communication by deriving local con-
straints that individual nodes can check without communication. The effective-
ness of the method has been thoroughly studied on distributed data streams,
with different functions and data-sets, showing impressive communication re-
duction results. Since then, GM has become a very active research topic, with
many interesting extensions that build upon the original approach. Variations
of GM have been enhanced with sketches [10] and prediction models [11] and
have been applied on outlier detection [2] and data stream queries [9]. The
above mentioned extensions are orthogonal to the original GM algorithm. In
this paper we focus on the basic principles of GM and tackle the challenges
described next.

Research Challenges: Even though GM and similar threshold monitoring al-
gorithms are designed with sensor networks in mind, there is lack of insights
from full-system design, implementation and real deployments. Existing work
on GM has focused on the algorithmic part, backed up with numerical, high
level simulations where communication is assumed instant, reliable and without
any overheads. However, the reality of WSNs for Internet of Things (IoT) envi-
ronments is different: packet losses are frequent, nodes have severe constraints
on processing power and lifetime, and message propagation is costly, both in
terms of energy as well as latency. Moreover, the impact of systems properties
that were not previously considered relevant for GM, such as radio duty cycling
and idle listening needs to be understood. Recent work on data aggregation [23]
has shown that such properties greatly influence the lifetime savings that can be
achieved in practice, and allow room for cross-layer optimizations.

Thus, the feasibility of GM for WSNs and the impact of the system’s prop-
erties imply open questions. Specifically:
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1. What are the actual battery lifetime savings that we can achieve on real
nodes?

2. What is the effect of packet losses on the accuracy and responsiveness of
the algorithm?

3. How can the processing of such methods be efficiently approximated on
CPU-constrained and energy-constrained devices suitable for the IoT?

To address these, we take a step beyond the existing analysis and consider
the whole system stack, through (i) extensive, cycle-accurate, full-system sim-
ulations and (ii) validation from a real deployment. By doing so, we are able to
evaluate if, and up to what degree, emerging results on distributed continuous
monitoring algorithms can bring practical benefits on real WSN deployments.

Contributions:

1. We bridge the gap between numerical simulation results on efficient thresh-
old monitoring and real IoT network environments.

2. We study the algorithmic implementation and the actual performance on
a real deployment, using real data sets and offer valuable insights. Specif-
ically:

• As the computational complexity of the GM method is a serious
challenge for CPU-constrained devices, we suggest an efficient ap-
proximation.

• We show that the practical energy lifetime improvements may vary
significantly and are often far from the savings estimated analyti-
cally. Specifically, we find that the overhead of idle listening is a
dominant factor that can sometimes limit the effectiveness of GM.

• The communication behaviour under GM varies greatly, where the
underlying protocol must take into account periods of no activity as
well as bursts of concurrent updates.
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• As message losses are common in practice, we study their effect
and identify that they cause the nodes to de-synchronize. We also
show that this has cascading effects that decrease the accuracy-
responsiveness of the algorithm.

The remainder of this paper is organized as follows. Section 3.2 summarizes
GM and introduces its challenges in wireless sensor networks. Section 3.3 out-
lines system design challenges and our solutions as well as tunable parameters
of the network stack that will influence properties of the system implementation.
We evaluate our full-system implementation of GM in Section 3.5, through the
experimental methodology presented in Section 3.4. We discuss related work
in Section 3.6 and conclude in Section 3.7.

3.2 Background

In this section we start by summarizing the Geometric Monitoring as a gen-
eral method for distributed threshold monitoring. We then outline background
related to wireless sensor networks communication and the system model.

3.2.1 The Geometric Monitoring Method (GM)

In their seminal work [24], Sharfman et al. present a general method that is
able to threshold-monitor arbitrary, possibly non-linear functions, defined over
network-wide aggregates. Geometric Monitoring (GM) limits the number of
broadcasts needed. Instead of having nodes broadcast at every epoch (sensor
sampling period) of the execution, each individual node uses only information
from the last available broadcast and its current (up-to-date) sensor reading to
calculate a region of the input domain where the true value of the network-
wide aggregate can be. As long as this region remains fully on one side of the
threshold, communication is avoided. If a part crosses the threshold, broadcasts
are needed to see whether the local change is offset by changes at other nodes
(false alarm) or if the function has actually crossed the threshold. The key points
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of the method are briefly explained here, but the interested reader is referred
to [24] for the full explanation with proofs.

In GM the set of sensor readings ~v1, ~v2, ..., ~vN are called local statistics

vectors. These vectors are only known locally, but sporadically a node ni will
broadcast its ~vi to every other node. The last broadcasted value from node ni is
denoted as ~v′i. The weighted average1 of the local vectors (eq 3.1) is called the
global statistics vector.

~v =

N∑
i=1

wi ∗ ~vi (3.1)

Similarly, the weighted average of the last broadcasted values is called the esti-

mate vector (~e). The estimate vector is known to all nodes and is essentially an
estimation of the global statistics vector.

When a node measures a new set of sensor readings, its local statistics vector
will drift ( ~∆vi = ~vi − ~v′i). The drift vector ~ui is defined as the displacement
of the estimate vector because of the new drift, i.e. ~ui = ~e + ~∆vi and can be
computed locally without communication.

The convex hull of the drift vectors is defined as the set of all the convex
combinations of ~ui (

∑
θi ~ui).2 As such, it is clear that the weighted average of

the drift vectors (defined similar to eq 3.1) would be part of this set. With simple
substitution, one can also see that the global estimate is equal to the weighted
average of the drift vectors and thus it must also lie in the convex hull of the
drift vectors.

Figure 3.1 shows an example with f being the bi-variant function f(x, y) =

y − x2 and T = 2. We want to know if f(~v) < T , or equivalently, if ~v lies
within a region where f has values less than T . This region is marked white
in the figure. The convex hull created by the drift vectors is the yellow area,
and ~v is guaranteed to lie somewhere inside that area. Thus, as long as the
yellow area is inside the white region, also ~v is guaranteed to be inside the
white region. However, nodes cannot locally determine the convex hull, since

1Without loss of generality, we assume 0 ≤ wi ≤ 1 and that the weights sum to one.
2See for example https://www.maa.org/sites/default/files/pdf/

upload_library/22/Ford/VictorKlee.pdf
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Figure 3.1: An example illustrating the GM method.

that would require knowing all of ~u1, ~u2, ..., ~uN .

This is where the final part of the method of Sharfman et al. [24] comes into
play. Consider the set of spheres in Figure 3.1, each centered at ~e+ ~ui

2 with a
radius of ~e− ~ui

2 . Each node can create such a sphere locally, since ~ui is known to
ni and ~e is the same across all nodes at a given time. The authors of GM prove
that the union of those spheres strictly covers the convex hull (yellow area).
Therefore, using GM, a node only needs to track whether its locally computed
sphere crosses the threshold: if not, it can remain quiet; else, it will send their
local vector to everyone, subsequently updating the estimate vector.

3.2.2 In the context of wireless sensor networks

Deploying an algorithm over a wireless sensor network can be challenging.
WSNs are multi-hop, as the radios have a limited range. The communication is
typically done over noisy and unreliable links and packet losses are common,
originating mostly from noise from the environment but also from interference
between nodes when they try to transmit concurrently. As such, the perfor-
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mance of an algorithm can be influenced by parameters and network properties,
in ways that are hard to be included in a meaningful analytical study.

Design and implementation choices in WSNs emphasize the energy foot-
print, as the node battery capacity is limited. The radio is by far the most energy-
hungry component, regardless of its mode of operation (send, receive, listen),
often consuming up to 10 times more energy than the CPU. Consequently, the
goal of most communication protocols is radio duty cycling (RDC), i.e. ensur-
ing the radio is kept off as much as possible. In its simplest form, the RDC layer
ensures that nodes turn their radio on a fixed number of times per second (called
the channel check rate (CCR), aka wake-up time). On transmission, nodes keep
transmitting the same packet for at least 1/CCR seconds, as in that time all
neighbors have listened. High CCR suits frequent communication: broadcasts
are shorter and nodes wake up more often to receive them; low CCR might be
a better choice when communication happens rarely, so nodes do not have to
check the medium often.

The channel check rate is a tunable parameter of the protocol that directly
affects a node’s duty cycle, communication latency as well as loss rate. We
study the effects of this parameter on the GM in Section 3.5, when we evaluate
the feasibility of GM on power- and CPU constrained devices.

3.3 Practical GM-based threshold-monitoring: de-
sign aspects and algorithmic implementation

For GM-based continuous threshold monitoring in IoT environments, we argue
that focal points are: (i) Design challenges from the application’s point of view
and (ii) System properties and parameters affecting the design.

3.3.1 Addressing system challenges: processing, communica-
tion

Multi-hop, all-to-all communication: In traditional WSN communication sce-
narios, either all nodes send to a single, fixed node (data collection) or all traf-
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fic is disseminated from a single, fixed node to all the others (data dissemina-
tion). With GM’s communication requirements, every node can potentially be
a source of information that needs to be disseminated to all other nodes (all-
to-all communication) and even concurrently with other nodes (as shown in
Section 3.5). In addition, sensor nodes typically form multi-hop networks, so
an individual update generated by a single node needs to be propagated through
the network in a reliable manner until every node receives that update.

We consider mesh, unstructured networks that follow a simple approach for
multi-hop propagation: every node that receives a packet with new information,
will broadcast it further on. Obviously, this leads to an increased amount of
broadcasts for every update. This is a commonly considered baseline, motivated
by its inherent property that the update will eventually propagate throughout the
network with a high degree of reliability, without the need to maintain a routing
topology. As the goal of GM is to reduce the number of updates that need to be
propagated, we expect that network-wide flooding of updates will not happen
often. We evaluate this further in Section 3.5.

To implement all-to-all communication and be able to distinguish new up-
dates from already seen ones, every packet containing an update carries a se-
quence number, locally generated at the node that issued the update. All nodes
keep track of the last known sequence number from every other node so that,
upon arrival of a new packet, they know whether it contains new information
and should be propagated further, or dropped.

Recovery from losses. The related literature on GM and similar methods does
not typically consider packet losses but assumes reliable message delivery. In
WSNs, losses are common and an important consideration for application de-
sign.

If an update from node A fails to reach B, node B will have stale information
about A and the estimate vector will be out of sync (with respect to A), until the
next update from A. An out of sync node has an inaccurate view of the network-
wide aggregate being monitored and might miss a threshold violation or report
a non-existing one.

We allow updates to get lost and rely on the application layer to eventually



68 CHAPTER 3. PAPER II

converge to the correct estimate vector. We evaluate the effect of losses on the
responsiveness of the algorithm and the time that a node might be out of sync
in Section 3.5.

Threshold checking complexity. As explained in Section 3.2, GM relies on
computing a sphere, based on the estimate vector and the local drift and check-
ing whether that sphere crosses a threshold surface. This can be computation-
ally challenging, even in low dimensions, considering that the threshold surface
might have an arbitrary shape. Even if there is a closed-form solution that ac-
curately solves this problem, it can be computationally expensive. This calcula-
tion needs to be performed for every new sampled local reading and every new
received update. The problem is particularly hard for sensor nodes, where the
computational resources are scarce: there is often not any native-floating point
support and the nodes need to go to sleep as soon as possible, to save energy.

We address this by approximating the GM-spheres (Section 3.2) with a sim-
pler shape that makes the computations significantly simpler, while ensuring
that we do not introduce false negatives. As an example in 2D, the circles from
Figure 3.1 can be replaced with squares containing the former, which results
in simpler boundary conditions (as it is simpler to check whether the sides of
a square, rather than points on a circle, cross a surface). Obviously, there will
be cases where the square check will report a violation even though the circles
do not actually cross the threshold, hence sacrificing accuracy for communi-
cation reduction. However, a similar trade-off is already inherent in GM as
there will be cases when spheres cross the threshold even though the full con-
vex hull (cf. Section 3.2) would not. This relaxation might not cope with high
dimensions, but in many cases of monitoring statistics such as variance or corre-
lations between nodes, it provides a simple and efficient solution. In Section 3.6
we discuss other alternative, shape-sensitive extensions to GM that reduce the
computational cost of threshold checking by approximating the threshold sur-
face. Contrary to those methods, we simplify the threshold checking with an
approximation that is particularly useful for the important case of tracking two
variables (e.g. when monitoring the variance, the computation time decreases
from 20ms to just 2ms).
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3.3.2 Tunable system-parameters

In this section, we go through system parameters that need to be tuned as they
affect how the application of geometric monitoring interacts with the network
stack.

Since a node might, at any time, propagate an update, we use a network
stack based on asynchronous transmissions and RDC to save energy. In this
setting, the main parameter of interest is the channel check rate (CCR).

As mentioned before, CCR affects: (i) how often nodes will wake up to
check the medium for possible packets transmissions and (ii) for how long a
broadcasting node should keep re-transmitting a packet to make sure that all
nodes receive it.

As the main goal of the GM method is to reduce the amount of updates
through the network, one would generally expect GM to benefit from lower
CCR values, compared to a naive approach that shares every sensor reading. On
the other hand, GM’s communication behaviour is highly data-dependent and
unpredictable. There are periods with high activity and low activity, depend-
ing on the value that is being monitored and how close it is to the threshold.
In addition, when an update is received by a node, the resulting recalculated
global estimate (~u) might also cause a violation, forcing the node to broadcast
its readings immediately, creating periods of burst traffic.

Based on the above, it is clear that: (i) CCR is a system parameter that will
affect the expected energy savings of the method, and (ii) it is hard to come up
with a value for CCR that can match the communication of GM at all times. We
evaluate it further in Section 3.5.

3.4 Experimental methodology

We implemented geometric monitoring in Contiki [5], a well-known operating
system for IoT applications. We targeted the TelosB platform and used a main-
stream stack that relies on ContikiMac [4] for radio duty cycling. In this section,
we assess the performance of GM in practice over a real network stack.
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Experiment Setup: We run our experiments in two settings: (i) A full-system

evaluation on the Flocklab [18] testbed, a deployment of TelosB nodes on a
university building with 26 nodes on a four hop topology. Flocklab has real-
istic interference due to the presence of people and Wi-Fi signals and allows
us to evaluate the system in a realistic environment. (ii) A full-system simula-

tion on Cooja [22], a cycle-accurate simulator where the whole network stack

is simulated in software at every node. Cooja simulates a real deployment as
accurately as possible and we use it to run long experiments (up to 20 hours
per configuration) that would not be possible in the testbed due to usage re-
strictions. The simulation platform also allows for repeatable experiments and
fine-grained control over network properties (notably packet loss) to stress-test
the algorithm. The topology here is similar to the testbed (26 nodes, 4 hops).
We use the accurate and extensive simulations in Cooja to reproducibly uncover
trends and insights, which we then validate from the real deployment in Flock-
lab.

Data set: As our source of data values, we use the Intel Lab data set [1], a
commonly used data set in the WSN literature. It contains temperature, light,
humidity and voltage readings from 54 sensors, placed inside an indoor lab,
over a period of 36 days. Nodes take a new reading every 31 seconds.

We select twenty-six nodes (the ones with IDs 22-47) that have good qual-
ity of readings and use their temperature values. The temperature values follow
a periodic, daily cycle with the temperature rising during the day and falling
moderately during the night, partly controlled by the heating and ventilation
system. Out of the 36 days, we use the first day of readings for the experiments
on Flocklab and in Cooja (20 hours). In our experiments, we replay the temper-
ature values from the data set at each node, using the same sampling frequency.

Monitoring functions: We experiment with both linear and non-linear monitor-
ing functions, namely the global average and variance of the sensor readings.
The latter is of practical use in many different scenarios, e.g. to detect the
presence of an area with irregularly high temperatures i.e. a hot-spot. The for-
mer is a simple case that can be solved even without the need for geometric
monitoring but we include it for completeness. For the average we choose a
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Experiment
label

Duration
(per exper.)

Platform Parameters Metrics of interest

A: Full system
simulations

20 hours Cooja CCR
Loss rate, Latency, Comm.
reduct., DC, Lifetime Impr.

B: Testbed validation
experiments

2 x 3 hours Flocklab
Data set
section

Loss rate, Latency, Comm.
reduct., DC, Lifetime Impr.

C: Runtime insights 20 hours Cooja Elapsed time DC, Number of updates

D: Accuracy /
Responsiveness

10 hours /
1 hour

Cooja
Artificial
loss rate

Average time out of
sync, Responsiveness

Table 3.1: Summary of the experiments presented in this section.

threshold of T = 20◦C and for the variance a threshold of T = 2◦C2, which is
crossed twice during the daily cycle. Similar to Sharfman et al. [25], we track
the variance of readings in the GM framework, by having nodes tracking a local
statistics vector ~v = (t, t2) where t is the current temperature reading. Unless
stated otherwise in the description of the experiment, the variance will be used.

Experiments: Table 3.1 summarizes the different experiments presented in this
section. In experiment series A, we use simulations to evaluate the impact of
the network stack’s parameters (CCR). In experiment B we deploy a selected
configuration on the Flocklab testbed. Experiment series C takes a closer look at
the execution and offers runtime insights. Finally experiment series D evaluates
the impact of packet loss on the accuracy and responsiveness of the method. As
a comparison, we adopt the baseline method (also used in [24]) where nodes
broadcast at every epoch, i.e. every sensor reading, as soon as they get it. We
choose this baseline since: (i) there is no other method but GM that solves the
problem of threshold monitoring for the general case (apart from its variants,
discussed in Section 3.6) and (ii) it allows us to directly compare the theoretical
savings with the ones achieved in practice (c.f. Section 3.5.1).

Metrics: For each of the experiments mentioned above, we are interested in the
following metrics:
(i) Communication reduction achieved by GM, measuring the number of up-
dates propagated; it is a measure of the efficiency of GM, purely from the ap-
plication point of view.
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(ii) Duty cycle (DC) i.e. the fraction of total time that a node has its radio
turned on, computed using Contiki’s power profiler [6]. We also define the life-

time improvement achieved through GM, as the reduction in duty cycle achieved
through the execution of GM, compared to the baseline.
(iii) Loss rate measured as the number of individual destinations of a packet
that fail to receive it (e.g. if a node sends an update and only 24 out of the other
25 nodes receive it, the loss rate is 1/25).
(iv) Communication Latency is the average time that a packet originating from
node A needs to reach another node B.
(v) Accuracy and Responsiveness where the later relates to the latency of de-
tecting an actual threshold violation. See respective definitions later in Sec-
tion 3.5.4.

3.5 Evaluation from a holistic system perspective

3.5.1 Full-system simulations

In the full system simulation (Table 3.1, A), 20 hours of data are used for each
configuration. We collect results both for the geometric method and for the
baseline. In every configuration, the GM method achieves 4.31 times commu-
nication reduction when monitoring the variance (Table 3.2, col 9) i.e. only
23.2% of the sensor readings are actually propagated.

We start by discussing the impact of the channel check rate (CCR). Table 3.2
summarizes the results for a channel check rate ranging from 8 to 64 Hz, aver-
aged across all 26 nodes.

Loss rate: For a CCR of 8 Hz, both the baseline and the GM method have unac-
ceptably high loss rate and latency values. This is due to the fact that, with this
configuration, a single broadcast is 1/8 seconds long and there is not enough
time to propagate an update around the network before another node issues a
new update. The network is thus past its operational point. For the rest of the
settings, GM has slightly smaller loss rate than the baseline. GM successfully
reduces the total amount of data transmitted through the network, which also
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Intel Lab Dataset (20 hours), Monitored Functions: Variance (T=2) and Average (T=20)

Baseline
(variance/average) 3 GM, Function: variance GM, Function: average
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8 8,44 9,98 18348 2,68 1,19 3862 3,15x

4,31x

0,76 0,46 3716 11,04x

44x

12 7,73 0,59 760 2,57 0,22 590 3,01x 1,03 0,41 2465 7,50x
16 7,28 0,18 314 2,70 0,11 336 2,69x 1,37 0,02 2078 5,31x
24 6,88 0,07 189 3,11 0,07 212 2,21x 1,96 0,20 1078 3,51x
32 7,26 0,04 162 3,70 0,04 190 1,96x 2,68 0,97 906 2,71x
48 7,81 0,12 139 4,88 0,12 151 1,60x 3,85 0,45 581 2,03x
64 9,11 0,14 134 6,18 0,12 157 1,47x 5,31 1,01 703 1,71x

Table 3.2: Full system simulations: Duty cycle, loss rate and latency for the GM method

vs the baseline, with varying CCR.

reduces the probability of collisions, hence improving the loss rate.

Latency: Regarding latency, GM is better for CCR value of 12 Hz. In these
configurations, the baseline version pushes the required bandwidth close to the
network’s saturation point (increased average latency), while the message re-
duction of GM is important and reduces the latency. On the other hand, on
higher CCR settings, GM’s latency is higher than the baseline by a small, al-
most constant value. We attribute this increase to the small amount of extra
processing required upon reception (checking for threshold violations), before
a packet can be propagated further. Reducing the processing cost (using our ap-
proximation) from 20ms to 2ms is important here for two reasons:(i) the overall
latency decreases (ii) there is enough time for processing between packet recep-
tions (for CCR value of 64 Hz, nodes wake up to receive every 16ms).

Duty cycle: We next turn our attention to duty cycle, the metric that is directly
related to a node’s effective lifetime. GM results in significant reduction in
duty cycle. As an example (Table 3.2, col 5, CCR=12 Hz), using GM reduces
the duty cycle from 7.73% to just 2.57%, a three-fold improvement. However,
this improvement diminishes as the CCR increases. The lifetime improvement
between the best configurations is 2.8x (compare duty cycles between 12 Hz
for GM and 24 Hz for the baseline), which is far from the 4.31x communication

3The baseline method behaves the same way, regardless of the function.
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Figure 3.2: Full system simulations: The duty cycle, broken down to sending and lis-

tening, as well as the cost of idle listening.

reduction achieved by the method.

A brief look at the respective results from monitoring the average (Ta-
ble 3.2, col 10), shows that the effects mentioned above for the variance are
even more pronounced now. In this case, GM manages to reduce communi-
cation by 44 times, keeping nodes mostly quiet throughout the execution. In
terms of duty cycle, GM reduces it by an impressive amount (up to 11 times
for a CCR value of 8 Hz), but still, 4 times less than the achieved reduction in
communication.

Duty cycle decomposition: A detailed look on the duty cycle explains the afore-

mentioned differences. Figure 3.2 shows the duty cycle for GM and the base-
line method (when tracking the variance), as well as its individual components.
First, the percentage of the duty cycle that is spent on sending is greatly re-
duced using the GM method, directly matching the communication reduction
ratio achieved by the algorithm. Subsequently, the GM version spends less time
receiving data at each node. Also, notice that the time spent on transmitting
decreases as the channel check rate grows. This is simply because broadcasts
are shorter when the CCR is high. In this figure, we have also included the
cost of idle listening, i.e. the cost of turning on the ratio periodically to check
for traffic, even though there is nothing to receive. This cost is the same for
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Flocklab Testbed, Monitored Function: Variance
Duty Cycle (%) Comm. Lifet. Loss rate (%) Latency(ms)

CCR Dataset section GM Baseline Red. Impr. GM Baseline GM Baseline

12
low comm. (0:00 - 03:00) 1,33

6,98
45,74x 5,26x 0,45

5,43
908

1704
high comm. (8:00 - 12:00) 4,28 2x 1,63x 0,88 634

24
low comm. (0:00 - 03:00) 2,05

6,42
45,74x 3,13x 0,91

0,84
223

268
high comm. (8:00 - 12:00) 5,50 2x 1,17x 0,49 262

Table 3.3: Testbed experiments: Results from the Flocklab testbed, on two 3 hour peri-

ods from the dataset.

both methods and is computed from the CCR value. It is evident that this cost
dominates the duty cycle when the channel check rate increases. Even for small
CCRs, the idle cost represents a significant overhead, that reduces the potential
lifetime savings of the algorithm.

3.5.2 Validation through Testbed Experiments

Goal: We use the testbed experiments of this section as a way to validate the
insights and trends gained from the full-system simulations that we presented
above.
Experiment settings: In this section, we present the results from the execution
on the Flocklab testbed (Table 3.1, B). Due to usage restrictions on the testbed,
we do not replay full day measurements from the dataset. Instead we focus
on sections of particular interest. We select two sections from the data set,
3 hours each (midnight and morning) where, as we detail further in the next
experiment series, the communication pattern of the GM method is expected
to be very different. For these experiments, we have picked a channel rate of
12 Hz, where the GM method had the lowest duty cycle on the simulations, as
well as a rate of 24 Hz for comparison.
Results: Table 3.3 shows the overall results for the two sections of the dataset.4

The topology of the testbed is slightly different than the one used in the simu-
lation (more sparse), so the absolute values are different than Table 3.2, but we
expect the general trends to hold. On the morning section (08:00 to 12:00), GM

4The baseline version has the same communication behaviour (every reading gets propagated)
regardless of the data section, so we evaluate it only on the midnight section.
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communicates 2 times less than the baseline. The lifetime improvement follows
closely, and the duty cycle is reduced by 1.63 times. For the midnight section
(00:00 to 03:00), GM achieves remarkable communication savings, reducing
the number of readings that need to be propagated by 46 times, but the asso-
ciated lifetime improvement is more modest (5.26 times). This indicates that,
during this section (and unlike the previous one), even a check rate of 12 Hz
is excessively high, and most of the energy is spent on idle listening. Similar
results can be seen when CCR is set to 24 Hz. Here, the lifetime improvements
decrease for both data set sections, especially for the period with low commu-
nication (3,13x lifetime improvement).

3.5.3 Runtime insights: a closer look

In Section A, we presented overall results after the completion of each 20 hour
long experiment. We now take a closer look into a single experiment and pro-
vide insights for the communication behaviour of the algorithm (Table 3.1, C).
We set the CCR to 12 Hz (that resulted in the best duty cycle for the GM case)
and elaborate on detailed insights from the execution of the GM method, in or-
der to distill deeper insights about the interplay between the algorithm and the
communication stack.

Monitored value: Figure 3.3a shows the actual value that is being monitored:
the variance of the temperature readings. Due to variation in the temperature
between different rooms during working hours, the data set exhibits a period of
approximately 7 hours where readings between nodes have increased variance,
up to 2.8 ◦C2.

Update decomposition: Next, we count the number of updates that nodes prop-
agate at every epoch of the execution. Recall that the epoch is defined as the
sampling at which nodes take new measurements (for the Intel Lab data set this
period is 31 seconds) and that the baseline method broadcasts all of them. For
the GM method, we distinguish between two kinds of updates. Regular updates

happen when a node gets a new sensor reading, detects a threshold violation
and therefore decides to propagate this reading to all the other nodes. When
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Figure 3.3: Runtime insights from the execution of GM over a period of 20 hours.
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Figure 3.4: Runtime insights: Percentage of epochs with concurrent updates (regular

on the left part and triggered on the right part)

other nodes received that update, they update their estimate vector and check
for a threshold violation. If there is one, that node will in turn propagate the
last stored reading to everybody. We call the latter a triggered update, since it
is triggered by the reception of an update from another node and not by a lo-
cal sensor reading. Triggered updates are interesting from the communication
protocol point of view, because they cause traffic bursts where nodes want to
concurrently share information across the network.

Temporal variation in comm. reduction: In Figure 3.3b we show the number of
updates per epoch, for the GM method as well as the baseline, computed over
a 1.5 minute sliding window and averaged across all nodes. Note that the x-
axis has been translated to reflect the elapsed time in hours, in order to match
Figure 3.3a. The baseline induces the same number of updates per epoch, equal
to the number of nodes. On the contrary, the GM method significantly reduces
the number of sensor readings that need to be updated per epoch. Especially
during the periods when variance is small and away from the threshold, almost
all communication is suppressed. As the variance comes closer to the specified
threshold, nodes start detecting frequent violations and update more of their
readings. We can also see a period close to the threshold where these updates
trigger violations on other nodes, as well as a peak in the number of updates
when the actual value of the variance is close to the threshold 2 ◦C2.
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Figure 3.4 presents a different view of the same results. Here, we count
the percentage of epochs with concurrent updates, both regular and triggered.
Figure 3.4a shows that a significant amount of epochs (34%) do not contain
any regular updates, but the majority of epochs contain concurrent updates.
Also, a noticeable percentage of epochs contain many concurrent updates (15-
26 concurrent updates). Triggered updates occur very rarely in this data set
(Figure 3.4b): 91% of epochs do not have any triggered updates. However,
there are epochs where several updates are triggered concurrently.

Temporal variation in duty cycle: In Figure 3.3c we take another look at the
duty cycle and monitor how it changes during the execution. Here, the duty
cycle is computed at every epoch and averaged across all nodes. The duty cy-
cle follows the same trend as the number of updates in Figure 3.3b: at periods
where communication is high, the radio needs to stay on longer in order to send
or receive the extra traffic. From Figure 3.3c, it is also evident that the idle

listening cost is a dominant factor that affects the duty cycle and limits the po-
tential of the GM method: even during periods with no activity, nodes waste a
constant amount of time to check the radio for transitions.

3.5.4 Accuracy/Responsiveness: The effect of packet losses

In this section we investigate the effect of losses on the accuracy and respon-

siveness of the algorithm.

Under the assumption of no packet loss, nodes should always have the same
estimate vector (described in section 3.2) and the same “view” of the network-
wide aggregate value to be monitored. In practice, losses are common and will
cause the estimate vector on different nodes to drift. We want to measure and
quantify this effect, as the packet loss rate increases. In the following, we will
state that a node A is “out of sync” with respect to node B, when its global
estimate is different from node B, either: (i) because an update from node B is
still “in flight” or (ii) because an update from node B was lost. In the first case,
node A will stay out of sync until the “in flight” update arrives. In the second
case node A will stay out of sync until a later update from B successfully arrives.
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Figure 3.5: Accuracy/Responsiveness of the algorithm measured as we introduce packet

losses.

Define as accuracy the average time a node is out of sync with respect to
any other node. Define also the responsiveness of the algorithm as the average
time elapsed from the moment the value of the monitored function has crossed
the predefined threshold, until the moment a node actually detects this. Note
that accuracy is just a measure of the time nodes have stale information with
respect to each other, which might not necessarily be an issue if the network
aggregate is not close to the threshold. On the contrary, responsiveness captures
the critical time during which the threshold has been actually crossed and the
node has not yet detected it.

We next evaluate both metrics (cf. Table 3.1, D). We run simulations where
we intentionally introduce packet losses, with a controlled rate, at each node
and report the resulting loss rate. The CCR value is set to 16 Hz.

Figure 3.5a reports the average duration that a node is out of sync, for in-
creasing loss rates. For small loss rates (0.1% approximately) nodes are out of
sync mostly until “in flight” packets arrive (400 ms). Overall, both methods stay
out of sync longer as we introduce packet losses, since more and more nodes
will miss updates and will have to wait for at least one full epoch to get back in
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sync. GM is affected to a much greater degree, simply because some nodes will
suppress their transmissions, keeping others out of sync for longer.

Figure 3.5b shows how the responsiveness of the two methods changes as
we introduce losses. On low loss rates (0.1%) nodes in both version quickly
detect the threshold violations, within approximately 300 ms. The time to detect
the violation increases rapidly for both versions as more losses are introduced.
Even with a little over 1% loss rate, it takes 1 second on average to detect the
violation, for both versions. On higher loss rate values, GM seems to take
longer to detect the violation, since more and more nodes are out of sync and
have stale information. Note that the gap between GM and the baseline is not
as large for responsiveness as for accuracy. This is because, close to when the
threshold violation happens, nodes in GM detect local violations frequently, so
the behaviour becomes similar to the baseline, for a short time interval, until the
threshold is exceeded.

Overall summary of results: The results show how GM is of practical use
in IoT environments. The presented extensive simulations and testbed runs’
outcomes suggest that GM can indeed bring several fold reduction to duty cy-
cle. However, the full system perspective reveals that the benefits achieved in
practice can be far from the expected ones, due to the overhead of idle lis-
tening. Also shown in the evaluation is the insight that to avoid that cost is
hard in GM, due to changes in the communication pattern: during its execu-
tion, GM has periods of little to no activity that would benefit from a low CCR,
as well as periods with high traffic that need a higher CCR value. This opens
interesting questions as to whether approaches that dynamically choose CCR
values [20, 21] would be efficient in managing the data-dependant communi-
cation pattern of GM. Finally, we show that packet loss has a direct impact on
the accuracy and responsiveness of the algorithm, suggesting that the network
stack should be tuned to ensure a low loss rate at all times, especially during
the critical periods where the global estimate crosses the threshold. This also
suggests that, for applications with no strict requirements on responsiveness, it
might be beneficial to sacrifice some responsiveness in favor of a lower duty
cycle (e.g. by relaxing the “eagerness” of the propagation protocol).
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3.6 Related Work

In this section, we outline related work beyond the original concept of GM
described in Section 3.2.

Geometric Monitoring (GM): In [10], the authors orthogonally augment GM
with sketches, that further reduce the communication cost by keeping track of
an approximation on the network-wide aggregate. Giatrakos et al. [11] com-
bine the communication reduction of GM with prediction models that track the
temporal evolution of sensor readings and only report when the model needs
to be updated. A summary of the use of GM for query tracking in distributed
streaming systems can also be found in [9]. This interest has been motivating
also for the work in our paper.

In [15], the authors introduce shape sensitive geometric monitoring, that
takes into account properties of the monitored function. Lazerson et al. [17]
propose a variant of GM that addresses the computational complexity of check-
ing for violations. They introduce a method of approximating the monitored
function to convex/concave components, so that it can be checked for violations
fast, without the need to construct the respective spheres. The approximation we
propose in our work is orthogonal, in the sense that we leave the function intact
and instead bind the local area that nodes have to keep track of for violations.

GM has been studied in the general context of WSN from a high level per-
spective [2, 25]. In [25] the authors present an adaption of GM that is designed
for clustered topologies. In [2] GM is used for detecting outliers in the read-
ings of wireless sensor nodes. In both of these lines of work, the network is
only considered as a communication abstraction and practical systems aspects
are not considered. Differently, we take a full system perspective and consider
practical aspects such as the effect of the RDC protocol and packet loss.

Data prediction and aggregation for WSNs: For data aggregation in WSNs, usu-
ally the goal is to collect at a single, sink node, the sensor readings from every
other node in the network. A significant amount of research effort has been put
on reducing communication by aggregating data along the way from sources to
a destination [13, 16, 19].
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Data prediction extends this design space by building models that approxi-
mate (within some error guarantees) the sensed values at every node. An update
is only sent to the sink when a node’s value deviates from the ones predicted by
the model [3]. For example, Raza et al. [23] propose a data prediction method
and are the first to evaluate it on real sensor nodes. Similar to the spirit of our
work and through a full system evaluation, they find that the sleeping interval
of the MAC protocol and the cost of maintaining a topology have significant
effects on the practical lifetime of the nodes. Istomin et al. [14] extend these
findings and propose Crystal, a protocol based on synchronous transmissions
that is tailored for the communication requirements of data prediction.

Differently from data prediction, in GM there is no need to model the physi-
cal quantities sensed at the nodes, which is often challenging and requires expert
knowledge. Moreover, in data prediction, nodes model their stream of read-
ings locally without dependencies on neighbouring nodes, whereas the thresh-
old monitoring problem that GM addresses is inherently distributed, hence the
work in [23] and [14] is not readily applicable to distributed threshold monitor-
ing.

3.7 Conclusions and Future Work

Inspired by important results on the problem of continuous monitoring, we take
a full-system approach on the applicability of Geometric Monitoring (GM) on
real IoT environments. In particular, we focus on processing and communica-
tion , as well as a cross-layer perspectives. We provide a method that simplifies
the threshold checking for resource-constrained IoT devices, with an approxi-
mation that is particularly useful for many common cases. We also study the
GM-communication interplay: we confirm several-fold reduction in communi-
cation which in turn leads to battery lifetime improvements on the nodes. We
observe however that the resulting improvement falls short of the theoretical
savings, which, as our results underline, is due to the baseline energy overhead
of the network stack. Moreover, we show that packet losses have a magnified
effect on the accuracy and responsiveness of the algorithm. Both the above
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motivate cross-layer approaches for practical purposes. We expect that these
insights will enable the design of custom protocols and cross-layer optimiza-
tion techniques that will unlock the full potential of GM threshold monitoring
applications for IoT systems.
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