
Thesis for the Degree of Doctor Of Philosophy

Verifying Information Flow
Control Libraries

Marco Vassena

Department of Computer Science and Engineering
Chalmers University of Technology

Göteborg, Sweden 2019

Verifying Information Flow Control Libraries
Marco Vassena
Göteborg, Sweden 2019

© Marco Vassena, 2019

ISBN 978-91-7597-867-3
Doktorsavhandlingar vid Chalmers tekniska högskola
Ny serie Nr 4548
ISSN 0346-718X

Technical Report 170D
Department of Computer Science and Engineering
Research group: Information Security

Chalmers University of Technology
SE-412 96 Göteborg
Sweden
Telephone +46 (0)31-772 1000

Abstract

Information Flow Control (IFC) is a principled approach to protecting the
con�dentiality and integrity of data in software systems. Intuitively, IFC sys-
tems associate data with security labels that track and restrict �ows of informa-
tion throughout a program in order to enforce security. Most IFC techniques
require developers to use speci�c programming languages and tools that re-
quire substantial e�orts to develop or to adopt. To avoid redundant work and
lower the threshold for adopting secure languages, IFC has been embedded in
general-purpose languages through software libraries that promote security-
by-construction with their API.

This thesis makes several contributions to state-of-the-art static (MAC)
and dynamic IFC libraries (LIO) in three areas: expressive power, theoretical
IFC foundations and protection against covert channels. Firstly, the thesis gives
a functor algebraic structure to sensitive data, in a way that it can be processed
through classic functional programming patterns that do not incur in security
checks. Then, it establishes the formal security guarantees of MAC, using the
standard proof technique of term erasure, enriched with two-steps erasure, a
novel idea that simpli�es reasoning about advanced programming features,
such as exceptions, mutable references and concurrency. Secondly, the thesis
demonstrates that the lightweight, but coarse-grained, enforcement of dynamic
IFC libraries (e.g., LIO) can be as precise and permissive as the �ne-grained, but
heavyweight, approach of fully-�edged IFC languages. Lastly, the thesis con-
tributes to the design of secure runtime systems that protect IFC libraries, and
IFC languages as well, against internal- and external-timing covert channels
that leak information through certain runtime system resources and features,
such as lazy evaluation and parallelism.

The results of this thesis are supported with extensive machine-checked
proof scripts, consisting of 12,000 lines of code developed in the Agda proof
assistant.

Keywords: Information-�ow control, noninterference, functional programming,
Haskell, Agda.

III

Acknowledgments

I would �rst like to thank my advisor Alejandro Russo, for guiding me into
academia and nurturing the researcher inside me. On this journey, I could not
have wished for a better mentor than you on my side. Your enthusiasm and
dedication will always inspire me.

My gratitude goes to my coauthors: Pablo Buiras, Lucas Waye, Joachim
Breitner, Deepak Garg, Vineet Rajani, Deian Stefan, Gary Soeller, Peter Amidon,
Matthew Chan and John Renner. This thesis would have not been possible
without your help and support.

To Deian Stefan, for believing in my skills and giving me the opportunity to
do cutting edge research in sunny San Diego. I admire your motivation and end-
less energy and I am indebted for all your support and encouragement during
my stay. Hoping that our collaboration will continue and remain productive
as it started, I already anticipate many more long nights!

At UCSD I have met many kind people that helped me feeling at home. I am
very greatful to all of you! A special thanks goes to Gary, Tristan, Alex, John,
and Andi for introducing me to the Californian lifestyle: amazing Mexican food,
awesome concerts, jam sessions on the beach and just lots of fun!

Throughout these years at Chalmers, I have met many talented and pas-
sionate people. Even though some have already moved on and some have just
joined, I am still glad to have spent some time with all of you. Thank you Wolf-
gang, Gerardo, Dave, Pablo, Per, Raúl, Elena, Musard, Steven, (the old) Carlo,
Danielito, Daniel, Mauricio, Evgeny, Simon, Alexander, Je�, Carlo, Iulia, Max,
Benjamin, Thomas, Sandro, Sólrúln (and more) for all the amazing time spent
together. I traveled the world with you (sometimes on lunch trains)!

Thanks to my new PhD sister and brothers: Elisabet, Agustin, and Nachi.
Just like in a family, we take care of each other. . . and I call you when I forget
the o�ce keys!

To my dear friends Carlo, Aura, Evgeny, Ludia, Katja and Pier. Dinners,
BBQs, board games, movies, trips, hikes, poker nights, “bohemian” discus-
sions. . .with you I never get bored! Thank you so much for such a great time
and, please, never change!

A special mention goes to the band that needs no introduction. Musician
by vocation and ameatour professional video makers by necessity, spending
time with you is always so. much. fun! Thank you Pier, Carlo, Enzo, Grischa,
Evgeny! Even though people might not remember the name(s) of our band, I
am sure that they will remember our music!

Un grazie di cuore alla mia famiglia! Mamma e papà, grazie per avermi
sempre sostenuto e incoraggiato nelle mie scelte e spinto a dare il meglio di
me. Non avrei mai raggiunto questo traguardo senza i vostri insegnamenti. A
mia sorella Chiara, il tuo a�etto e la tua stima valgono tutto per me.

Thank you Katja for being you: never tired, always positive, and with a
beautiful smile on your face. Ljubim te!

V

CONTENTS

1 Introduction . 1
1 Information-Flow Control . 3

1.1 Facets of Information-Flow Control . 4
2 Information Flow Control Libraries . 8

2.1 MAC . 8
2.2 LIO . 9

3 Contributions . 10
3.1 On Formalizing IFC Libraries . 12
3.2 Flexible Manipulation of Labeled Values for IFC Libraries 13
3.3 MAC, a Veri�ed Static IFC Library . 13
3.4 Securing Concurrent Lazy Programs . 13
3.5 From Fine- to Coarse-Grained Dynamic IFC and Back 14
3.6 Towards Foundations for Parallel IFC Runtime Systems 15

Paper I, II. III

2 MAC, A Veri�ed IFC Library . 25
1 Introduction . 25
2 Overview . 29

2.1 Secure Information Flows . 30
2.2 Implicit Flows . 32

3 Core Calculus . 33
3.1 Pure Calculus . 33
3.2 Impure Calculus . 34

4 Addressing Label Creep . 36
4.1 Semantics of Join . 37

5 Exception Handling . 38
5.1 Calculus . 39
5.2 Exceptions and Join . 39

VII

6 References . 40
6.1 Semantics . 42

7 Soundness . 43
7.1 Term Erasure . 43
7.2 Two Steps Erasure . 44
7.3 Erasure Function . 44
7.4 Discussion . 48
7.5 Progress-Insensitive Non-interference . 49

8 Concurrency . 50
8.1 Termination Attack . 50
8.2 Semantics . 51
8.3 Round Robin Scheduler . 54

9 Flexible Labeled Values . 55
9.1 Functors and Relabeling . 55
9.2 Examples . 56
9.3 Semantics . 57

10 Soundness of Concurrent Calculus . 59
10.1 Erasure Function . 59
10.2 Scheduler Requirements . 64
10.3 Progress-sensitive Non-interference . 68

11 Related work . 71
12 Conclusion . 73

Appendices . 79
A Flexible Labeled Values in Sequential MAC . 79
B Thread Synchronization . 80

B.1 Semantics . 81
B.2 Erasure Function . 82

C Typing Rules . 84

Paper IV

3 Securing Concurrent Lazy Programs 89
1 Introduction . 89
2 Overview of MAC . 93
3 Lazy Calculus . 95

3.1 Security Primitives . 96
3.2 References . 97
3.3 Concurrency . 99

4 Duplicating Thunks . 100
4.1 Semantics . 101
4.2 References . 102

5 Securing MAC . 102

6 Security Guarantees . 103
6.1 Term Erasure . 104
6.2 Decorated Calculus . 104
6.3 Decorated Semantics . 105
6.4 Erasure Function . 107
6.5 Decorated Progress-Sensitive Non-interference 108
6.6 Simulation between Vanilla and Decorated semantics 109
6.7 Vanilla Progress-Sensitive Non-interference 111

7 Related Work . 112
8 Conclusions . 113

Appendices . 118
A Securing LIO . 118
B Simulation Proof . 118
C Sharing and References . 122
D Erasure Function . 124

Paper V

4 On the Granularity of Dynamic IFC 129
1 Introduction . 129
2 Fine-Grained Calculus . 132

2.1 Dynamics . 133
2.2 Security . 137

3 Coarse-Grained Calculus . 138
3.1 Dynamics . 140
3.2 Security . 144

4 Fine- to Coarse-Grained Program Translation . 145
4.1 Correctness . 150

5 Coarse- to Fine-Grained Program Translation . 152
5.1 Cross-Language Equivalence Relation . 156
5.2 Correctness . 159

6 Related work . 162
7 Conclusion . 164

Paper VI

5 Parallel IFC Runtime Systems . 171
1 Introduction . 171
2 Internal Manifestation of External Timing Attacks 174

2.1 Overview of Concurrent LIO . 174
2.2 External Timing Attacks to Runtime Systems 175

2.3 Internalizing External Timing Attacks . 176
3 Secure Parallel Runtime System . 177
4 Hierarchical Calculus . 178

4.1 Core Scheduler . 181
4.2 Resource Reclamation and Observations . 184
4.3 Parallel Scheduler . 186

5 Security Guarantees . 188
5.1 Erasure Function . 189
5.2 Timing-Sensitive Non-interference . 191

6 Limitations . 192
7 Related work . 193
8 Conclusion . 195

Appendices . 200
A Full Calculus . 200

A.1 Thread Synchronization and Communication 204
A.2 Queue Pruning . 206

B Security Proofs . 207
B.1 Two-Steps Erasure . 207
B.2 Lemmas . 213
B.3 Progress-Insensitive Non-interference . 218
B.4 Timing-Sensitive Non-interference . 221

C Attack Code . 223
C.1 Reclamation Attack . 224
C.2 Allocation Attack . 226
C.3 Helper Functions . 228

Bibliography . 231

CHAPTER

ONE

INTRODUCTION

Technology trust is a good thing,
but control is a better one.

Stéphane Nappo
Chief Information Security O�cer

Société Générale International Banking

Computer systems have transformed our society. We live in the Informa-
tion age, where information technology drives the economy and every day
billions of people exchange information through an always-growing number
of Internet-connected devices. Through their devices (e.g., smartphones, tablets
and laptops), users interact with software, often in the form of apps, in most of
their activities, from work to leisure. Nowadays, news spread around the world
within seconds over the Internet, bots trade on the stock market on behalf of
humans, and friends stay in touch on social media, just to name a few. While
engaging in these activities, users entrust apps with a large amount of infor-
mation, including private data as well (e.g., credit card number, phone number
and GPS location), and, sometimes unconsciously, expect the software to keep it
con�dential. However, software betrays the trust of their users sometimes: data
is valuable in a digital society and gets harvested for pro�t. Many companies
gather personal information for running personalized ads, hackers steal private
data for criminal �nancial gain, corporate espionage, and state-sponsored mili-
tary intelligence, warfare, and mass surveillance. Furthermore, companies have
recently started developing smart arti�cial agents to perform tasks, thought to
be beyond computers’ capabilities, such as product recommendations, natural
language processing, image recognition, etc. The machine learning algorithms
used in the development of these agents are notoriously data-hungry, thus
exacerbating the phenomenon of unauthorized data collection.

In order to protect users’ data from these threats, several approaches have
been proposed. Currently, the most widespread countermeasures are based

2

on discretionary access control, wherein access to sensitive data is restricted
to limit information leakage at the discretion of the user. However, simply
granting or denying access to some piece of data is often a too rigid security
policy in practice. Sometimes, software legitimately needs access to sensitive
data to ful�ll its functionality. Furthermore, even when access to sensitive data
is justi�ed, such policies are too coarse-grained: once access is granted, there is
no control on what the software will do with the data afterwards. The fact that
software routinely incorporates untrusted third-party software components
aggravates the situation—access to sensitive data gets implicitly extended to
those components as well. Then, either trust is extended to these components
as well—neglecting the security principle of least privilege—or the functionality
of these components must be implemented again from scratch, at the expense
of software reusability.

Example. Trip planner apps �nd an optimal means of traveling between two
or more locations. Using the Internet connection and the GPS location of a
device, these apps can give accurate real-time directions to users, even when
they do not know where they are. However, such a handy functionality comes
at a cost: security mechanisms that enforce access control require the user to
grant access to the GPS location and the Internet connection of his device. The
user is then faced with a decision: either he trusts the app and receives accurate
directions, or he denies access and �nds directions in another way. Granting
access has the risk of disclosing his location to unauthorized parties: access
control security policies allow a malicious app to locate the user via the GPS of
the device and ex�ltrate his position through the Internet connection. However,
the safe option (denying access) is not only unfortunate, but also seemingly
overly precaucious—even an honest trip planner app needs his location and an
Internet connection to compute real-time directions—therefore the user will
likely grant access in good faith. Furthermore, even if his trust is well-founded,
the app might include third-party software components (e.g., external libraries)
that could still leak his location.

As the example above shows, security policies based on access control are
insu�cient to protect data con�dentiality. To restore security, researchers have
proposed stricter security policies, which allow unrestricted access to data, but
limit where it may propagate within a system instead. The security mecha-
nisms that enforce these policies are based on information-�ow control, which
con�nes data even when manipulated by untrusted software. Even though
information-�ow control techniques have been studied widely, they have yet
to see widespread practical use—they require developers to use of speci�c
programming languages and tools that require substantial e�orts to develop
and to adopt. To reduce these e�orts, researchers have embedded information-
�ow control in software libraries of general-purpose languages. These libraries
guarantee that programs written using their programming interface (API) are
secure-by-construction.

CHAPTER 1. INTRODUCTION 3

Fig. 1: Trip planner app secured with IFC.

Contributions. This thesis makes several contributions. Firstly, it shows that
state-of-the-art information-�ow control libraries are secure using established
formal veri�cation approaches. Then, it demonstrates that the lightweight, but
coarse-grained, security enforcement techniques used in these libraries can be
as precise and permissive as the �ne-grained, but heavyweight, techniques of
fully-�edged secure languages. Lastly, this thesis makes contributions to the
design of secure runtime systems, which protect information-�ow control li-
braries, and fully-�edged secure languages as well, against leaking information
through certain runtime system resources and features.

In the following, we introduce the research area of information-�ow con-
trol, focusing on relevant techniques and libraries, and conclude with a more
detailed overview of the contributions of this thesis.

1 Information-Flow Control
In this thesis, we investigate information-�ow control (IFC), a security mecha-
nism that enforces end-to-end data con�dentiality and integrity [128]. In con-
trast to access control, information-�ow control does not restrict access to
sensitive information, but rather restricts where information of di�erent sensi-
tivity levels may propagate within a system. Intuitively, IFC systems associate
security levels or labels with resources (e.g. program variables, threads, pro-
cesses, sockets etc.) and use them to track �ows of information in the system.
A security lattice speci�es the �ow policies, that is how information is allowed
to �ow between labeled resources [37]. Then, the IFC mechanism detects when
a forbidden �ow occurs and takes action to suppress the leakage.

To illustrate the basic working principles of information-�ow control, we
revisit the trip planner app from the example above. In Figure 1, the box in
the center represents the app, which receives inputs on the left and produces
outputs on the right. The inputs and outputs are labeled with their security

4 1. INFORMATION-FLOW CONTROL

level, so that the IFC mechanism can track information �ows and enforce secu-
rity. For simplicity, we use a basic security lattice consisting of two labels, i.e.,
Public and Secret, and consider �ows from a secret input to a public output a
security violation. The trip planner app has two inputs, i.e., the user’s location,
classi�ed as Secret, and the review of a restaurant, classi�ed as Public, and
two output channels, i.e., the display of the device (Secret) and an untrusted
server controlled by the attacker (Public). Using these labels, the IFC mecha-
nism restricts how information propagates from the inputs to the outputs of the
app, according to the �ow policies of the security lattice. For example, it allows
the app to show directions involving the device’s location on the display of the
device—it is secure to send secret information on a secret channel. On the other
hand, the IFC mechanism prevents the app from transmitting the location to
the untrusted server: sending secret data on a public channel represents an
information leak.

Information-�ow control has been applied in various contexts, including
operating systems [69], e.g., HiStar [166], Asbestos [39], distributed systems
[167], e.g., Laminar [122], Fabric [79, 80], Aeolus [33], cloud computing [11],
databases [133, 134], Web frameworks, e.g., SIF [35], Swift [34], Hails [45],
Jaqueline [163], JSLINQ [14] LWeb [105], and both imperative and functional
programming languages, e.g., Jif [100] and Paragon [28] for Java, JSFlow [51]
for Javascript, Jeeves for Python [163] and Scala [164], Flow Caml [137] for
Caml, in Spark (a safety critical language subset of Ada) [117] and in many
Haskell libraries [2, 9, 30, 75, 76, 123, 124, 131, 144, 145, 149]. In this thesis, we
focus on language-based IFC mechanisms, which inspect the code of a com-
puter program to track information �ows precisely. Since these techniques
enforce security systematically throughout the code, programs are secure-by-
construction and do not leak information accidentally, e.g., due to software
bugs, or otherwise, e.g., when combined with adversarial code. Most IFC sys-
tems enforce a security property called non-interference [47], which, intuitively,
guarantees that secrets inputs of a program do not a�ect its public outputs, like
in the example above. In practice, the enforcement mechanisms of IFC systems
vary considerably. In the following, we give a brief overview of language-based
IFC techniques.

1.1 Facets of Information-Flow Control

When. Information-�ow control can enforce security statically at compile
time, dynamically at run-time, or both at compile and run-time in a hybrid
fashion. Static approaches consist of a program analysis, often in the form
of a security type system, that rejects possibly leaky programs before execu-
tion [1, 28, 82, 99, 123, 138, 157, 158]. Conversely, dynamic techniques monitor
program execution and abort a computation, or throw a runtime exception,
when it would leak information otherwise [7, 9, 55, 144]. Static approaches are
attractive, because secure programs do not incur in any performance over-
head at run-time. However, sound analyses must determine the absence of
leaks in all possible executions of a program. In practice, most analyses are

CHAPTER 1. INTRODUCTION 5

incomplete and conservatively reject secure programs as well sometimes. Dy-
namic approaches are more permissive, e.g., with respect to dead code, because
they accept or reject a single program execution, instead of an entire program,
but they might still trigger false alarms. Furthermore, some IFC monitors fea-
ture label introspection API that allow to inspect and assign security labels
at run-time, thus enabling data-dependent security policies, wherein the se-
curity level of some piece of data depends on runtime values. Finally, hybrid
approaches combine static and dynamic analysis in a single system that mixes
static and dynamic types to boost permissiveness, reduce performance over-
head, and ease the adoption of security type systems through gradual typing
techniques [3, 30, 42, 50, 93, 148]. This thesis makes contributions to both static
and dynamic information-�ow control (Chapter 2, 3 and 4, 5 respectively).

How. Programs can leak information explicitly, for example, by assigning the
content of a secret variable to a public variable. Programs can also leak infor-
mation implicitly, via the control-�ow structure of a program, for example, if
the decision of assigning some value to a public variable depends on secret data.
Both dynamic and static IFC mechanisms can detect explicit and implicit �ows
and take appropriate countermeasures. However, programs can also leak infor-
mation through covert channels, which are features of the system that are not
intended to be used for information transfer [72]. For example, programs can
signal information through the termination channel, i.e., the (non)termination
of a computation, the timing channel, i.e., the time that a program takes to
perform some public action (e.g., to terminate, print or send some data), the re-
source exhaustion channel, i.e., by exhausting some shared �nite resource such
as memory and disk space, and more (probabilistic channels, power consump-
tion) [128]. Furthermore, the same covert channel can be exploited in di�erent
ways, combining shared runtime state and features (e.g., event loops [155],
the thread scheduler [17, 125, 126], the garbage collector [107], and lazy eval-
uation [31]), shared operating system state (e.g., �le system locks [65], and
events and I/O [61,78]), and shared hardware (e.g., caches, buses, pipelines and
hardware threads [44, 108]).

Usually, leaking information through a covert channel requires carefully
crafted code: honest, but buggy, programs are unlikely to leak information
that way. However, covert channels pose a real threat for systems that execute
untrusted, adversarial code with secret data. In this scenarios, failing to de-
sign and implement appropriate countermeasures challenges the applicability
of information-�ow control. In practice, which covert channels are a concern
depends on what attackers can observe of the actual computing system—the
number of covert channels and their bandwidth vary depending on that. In
order to study the security guarantees of a system in a rigorous way, formal
models include an attacker model, which speci�es what parts of the computing
system model can be observed by the adversary. Generally speaking, external
attackers can bypass the security mechanisms of most systems—these attack-
ers can make arbitrary precise observations of the system, including execution

6 1. INFORMATION-FLOW CONTROL

time, power consumption and even physical memory. For example, external
attackers can break cryptosystems and violate the privacy of users’ browsing
history through precise timing measurements, via the external timing covert
channel [24, 41, 49, 67, 160]. In these cases, mitigation techniques can, at least,
reduce the bandwidth of information leakage [5, 141, 168, 169]. Nevertheless,
attackers can also observe timing behavior indirectly, without measuring ex-
ecution time. For example, in concurrent systems with shared resources, the
attacker can learn secret information by a�ecting the interleaving of threads
in a data race, through the internal timing covert channel [125, 126, 141, 156].
This vulnerability is more serious, because it does not rely on an external ob-
server, but leaks internally to other threads executing on the IFC system itself.
Furthermore, concurrency magni�es the bandwidth of this covert channel to
the point where secret information can be leaked e�ciently [141].

In Chapter 5 of this thesis, we observe that parallelism internalizes many
external timing channels and propose countermeasures that close both the
internal- and external-timing channels that exploit the runtime system.
What. One of the main distinguishing factor of IFC systems is the granu-
larity at which they track information �ows. Most IFC operating systems
(e.g., [39, 69, 166]) are coarse-grained, i.e., they track information �ows and en-
force �ow policies at the granularity of a process or thread. Conversely, most
IFC programming languages (e.g., [7, 51, 59, 157, 164, 165]) track information
�ows in a more �ne-grained fashion, for example at the granularity of program
variables and references. The granularity of the tracking system has important
implications for the usage of IFC technology in practice. Firstly, �ne-grained
systems require considerably more label annotations than coarse-grained sys-
tems, where a single label is typically used to protect all the data in scope of a
computation. Secondly, coarse-grained systems are often easier to design and
implement—they inherently track less information—and can even be embedded
in software libraries [2,9, 30,75,76,123,124,131,144,145,149]. However, coarse-
grained systems often su�er from the label creep problem, wherein the security
enforcement is so strict that not even honest programs can accomplish their
functionality without triggering false alarms. In contrast, �ne-grained systems
do not trigger false alarms as often as coarse-grained ones—they are seemingly
more �exible, thanks to the �ne-grained tracking mechanism.

Contrary to widespread belief and despite all these di�erences, Rajani and
Garg showed that static coarse- and �ne-grained IFC systems are equally ex-
pressive [121]. In Chapter 4, we show a similar result for dynamic IFC systems
that additionally allow label introspection at run-time.
Proof technique. Modern programming languages rely on abstractions to
reduce software complexity. However, enforcing security in expressive IFC
languages is hard: many features and abstractions are at odds with security. For
example, concurrency simpli�es modular programming, but enables leakage
through internal timing, locks allow threads to synchronize, but deadlocks can
leak information, and exceptions complicate reasoning about implicit �ows.

CHAPTER 1. INTRODUCTION 7

Any programming feature really requires careful reasoning in an IFC system:
even a simple if-statement can expose users to timing attacks [100,158]. Even
worse, security is not a compositional property: if individually secure features
are combined in the same language, their interaction might still enable data
leakage.

Following a rigorous and principled approach to security, researchers have
made signi�cant strides towards establishing sound IFC foundations—many
IFC systems now support real-world features and abstractions safely [43,51,59,
80, 101, 122, 123, 141, 144, 163, 164]. In this thesis, we reason about security of
IFC systems following the same formal approach based on term erasure [76],
a standard proof technique used to prove noninterference of IFC functional
languages [30,55,141,145]. Term erasure is a syntactic rewriting operation that
removes all data above the security level of the attacker from a program. Once
the erasure function is de�ned, the proof technique mainly requires to establish
a simulation property between the execution of a program and the execution of
the corresponding erased program. Intuitively, the property does not hold if a
program leaks secret data: the execution of the erased program would get stuck
when using secret data, or di�er from the execution of the original program,
e.g., by taking a di�erent path, if secret data a�ects the control �ow. Then, term
erasure naturally de�nes an equivalence relation that pairs programs that are
indistinguishable to the attacker. The rest of the proof technique simply com-
bines the indistinguishability relation and the simulation property described
above to mechanically derive noninterference.

Researchers have studied several variants of noninterference, with strictly
increasing levels of security [52]. Termination-insensitive noninterference guar-
antees security of terminating batch-job programs (programs may leak via
the termination channel), while termination-sensitive noninterference secures
even diverging programs. Programs with intermediate behaviors (e.g., inputs
and outputs) require a stronger notion of noninterference, based on program
progress. In particular, programs that produce the same observable behavior
up to (despite) a silent divergent point satisfy progress-insensitive (progress-
sensitive) noninterference. Lastly, timing-sensitive noninterference gives the
strongest security guarantees: it ensures that the execution time of a program
(measured as the number of reduction steps) is independent from secret infor-
mation [84, 158].

This thesis improves term erasure with two-steps erasure, a new idea that
simpli�es reasoning and security proofs for certain problematic language fea-
tures. In the thesis, we use our technique systematically and prove progress-
sensitive noninterference for static IFC concurrent calculi in Chapters 2 and 3,
termination-insensitive noninterference for �ne- and coarse-grained dynamic
IFC sequential calculi in Chapter 4 and timing-sensitive noninterference for a
dynamic IFC parallel runtime system in Chapter 5.

8 2. INFORMATION FLOW CONTROL LIBRARIES

2 Information Flow Control Libraries

Haskell [111] is a strongly-typed lazy functional programming language that
plays a privileged role in protecting data con�dentiality and integrity: it can
enforce information-�ow control via libraries [2, 9, 30, 75, 76, 123, 124, 131, 144,
145, 149]. Extending existing general-purpose languages with IFC mechanisms
(e.g., Jif [100] and Paragon [28] for Java, JSFlow [51] for Javascript, Jeeves
for Python [163] and Scala [164], Flow Caml [137] for Caml and Spark [117])
requires major engineering e�ort, because several components (all the way
from the compiler to the runtime system) must be adapted to be security-aware.
In contrast, adding IFC capabilities via a library-embedded domain speci�c
language (EDSL) is a much more lightweight approach, which avoids redundant
work and lowers the threshold for adopting secure languages [75]. The key
feature that enables library-based IFC is Haskell type system, which assigns a
distinct type to side-e�ecful (impure) code—only code with this special type
can perform I/O. Conversely, the type system guarantees that code that does
not have that type is instead side-e�ect-free (pure). For this reason, only impure
code requires speci�c security measures in Haskell—pure code cannot perform
any I/O and thus is inherently secure. To this end, these libraries exercise
a strict control over side e�ects and restrict I/O operations in their API, so
that they comply with security policies and do not leak data. Intuitively, these
libraries encapsulate I/O code inside a monad, a programming abstraction for
structuring and combining e�ectful computations [92], and provide only secure
I/O API to developers, which then write secure-by-construction code. This thesis
contributes to two state-of-the-art IFC Haskell libraries, MAC and LIO.

2.1 MAC

MAC is a static coarse-grained IFC library that brings ideas from Mandatory
Access Control [19] into a language-based setting [123]. Intuitively, the library
takes the no write-down and no read-up rules as core security principles, which
shape the entire library interface to protect data con�dentiality. The library
annotates the type of side-e�ecful computations and resources (e.g., data and
channels) with a �xed security label and provides primitive operations that
secure how they interact. Using those labels, MAC embeds appropriate �ow-
policies in the type signature of every primitive operation via type constraints
[159], so that the no write-down and no read-up rules are statically enforced.
For example, attempting to send secret data on a public channel (like in the
program schematized in Figure 1) would violate the no write-down security
policy embedded in the type signature of some primitive (e.g., function send),
and would make the program ill-typed. Interestingly, MAC embeds a security
type system, consisting of the security lattice and the mandatory access control
checks, in Haskell vanilla type system through type classes and type constraints
(standard Haskell 98 type system features [111]) and the Safe Haskell language
extension [147], which ensures that untrusted code respects type safety and
module encapsulation. Di�erent from other static IFC libraries [38,75,124,149],

CHAPTER 1. INTRODUCTION 9

MAC provides many advanced programming features, including exceptions,
mutable data structures and concurrency, and it does so in few lines of Haskell
code—the whole library counts only 200 LOC. However, in his functional pearl,
Russo does not give any formal security guarantees about MAC. Instead, he
argues that the library is secure because the API design adheres to the security
principles of mandatory access control [123].

This thesis establishes the formal security guarantees of MAC. Chapter 2
develops a formally veri�ed model of MAC and shows that it satis�es progress-
sensitive noninterference. Chapter 3 strengthens these security guarantees by
designing a countermeasure to the internal timing covert channel that exploits
Haskell lazy evaluation.

2.2 LIO

LIO is a dynamic coarse-grained �oating-label IFC library [144]. Like MAC,
LIO associates labels to computations and resources to enforce security, but, in
contrast, these labels are created at run-time and typically incorporate dynamic
information such as usernames or email addresses. To enforce security, LIO
programs carry a mutable label, called current label, which, in turn, is used to
permit restricted access to I/O operations. Intuitively, in LIO reading sensitive
data rises the current label, which �oats above the labels of all data observed by
a computation and limits where the rest of the computation may subsequently
write. In particular, write operations are subject to a security check: writing to
less sensitive resources represents a security violation that triggers a runtime
exception. This simple approach protects against implicit �ows automatically,
but can also lead to the label creep problem, wherein the current label rises
to a point where the computation cannot perform any useful side-e�ects. To
address the label creep problem, developers can restructure their program or,
in the sequential setting, execute problematic code that read and manipulate
sensitive data in a separate context through primitive toLabeled, which then
restores the current label to its previous value afterwards. Furthermore, LIO
programs feature also a clearance label, an upper bound on the current �oat-
ing label, which enables a form of discretionary access control that reduces
opportunities to exploit covert channels. LIO seems �exible enough for practi-
cal use: untrusted LIO apps can deliver extended features in GitStar.com, a
code-hosting website that enforces robust privacy policies on user data [45].

This thesis contributes to LIO in two ways. Firstly, Chapter 4 formally
proves that dynamic coarse-grained IFC languages like LIO can track infor-
mation �ows as precisely as �ne-grained IFC languages and thus can be as
permissive. Then, Chapter 5 extends LIO with parallelism, which enables si-
multaneous execution of threads on multicore systems. Crucially, the naive
interaction between Haskell vanilla runtime system and parallelism internal-
izes several external-timing channels that could not be observed before, with
devastating consequences for security. This thesis presents LIOPAR, a novel
parallel dynamic IFC runtime system design, which eliminates internal- and

GitStar.com

10 3. CONTRIBUTIONS

On Formally Veri�ed IFC Libraries

IFC
Foundations

Library
Features

Covert
Channels

Functor
Structure

Two-steps
Erasure

Granularity Lazy
Evaluation

POST ’19

Multicore

JLAMP ’17

Chapter 2 Chapter 4 Chapter 5 Chapter 3

ESORICS ’16 PLAS ’16 POPL ’19 CSF ’17

Fig. 2: Overview of this thesis.

external-timing channels that exploit the runtime system in order to restore
and strengthen the security guarantees of LIO on multicore systems.

3 Contributions
This thesis improves IFC libraries in three areas: library features, IFC founda-
tions and protection against covert channels. Figure 2 summarizes the speci�c
results included in the thesis, relates them to the areas mentioned above, and
reports the venues where single research articles have been published or sub-
mitted. In the �gure, the chapter marked with the hand-writing symbol () fea-
tures pen-and-paper mathematical security proofs. The check mark () instead
identi�es the chapters that support their technical results (formal de�nitions
and security proofs) with machine-checked artifacts. These artifacts consist of
proof scripts developed in the Agda proof assistant [103], which count more
than 12,000 LOC and have been made available online.1
Library Features. This thesis enriches labeled data with a functor algebraic
structure, which enables classic functional programming patterns [89]. The
primitive operations of these patterns allow developers to e�ortlessly process
labeled data with pure functions, without incurring in the security restrictions
of IFC libraries. These primitives promote Haskell idiomatic programming style
and enable �exible manipulation of labeled data, and, as a result, make IFC

1 Links to the machine-checked proof scripts:
– Chapter 2: https://bitbucket.org/MarcoVassena/mac-model
– Chapter 3: https://github.com/marco-vassena/lazy-mac
– Chapter 4: https://hub.docker.com/r/marcovassena/granularity

CHAPTER 1. INTRODUCTION 11

libraries easier to use and more practical. To ensure that these new operations
do not leak data, e.g., when combined with other features of the library, the
thesis presents the �rst comprehensive fully-veri�ed formal model of MAC
and proves noninterference (Chapter 2).2

Foundations. The soundness proof of the model of MAC is based on term era-
sure enriched with two-steps erasure, a �exible novel technique useful to reason
systematically about the security implications of advanced library features (e.g.,
exceptions, mutable references and concurrency). Sometimes, simulation via
vanilla term erasure falls short for some problematic primitives, e.g., when the
sensitivity of some piece of data depends on the surrounding context, and too
much or too little information gets erased. Two-steps erasure performs term
erasure in two steps. Firstly, it replaces the challenging primitives with special,
ad-hoc constructs, then, it performs the desired term erasure during reduction,
when su�cient context information is available, through the semantics of these
constructs.

Furthermore, this thesis shows that dynamic �ne- and coarse-grained IFC
languages are equally expressive (Chapter 4). Coarse-grained IFC languages
are easier to design and implement—they can even be embedded in software
libraries—but are believed to be less permissive than �ne-grained languages.
We demonstrate that coarse-grained languages can achieve �ne-grained pre-
cision and permissiveness by presenting a semantics-preserving translation
between �ne- and coarse-grained languages and use the translation to derive
noninterference of each language from that of the other.
Covert Channels. To reduce the costs of implementing secure systems, IFC
libraries reuse features of the runtime system of the host language. In general-
purpose languages, these features (e.g., schedulers, memory allocators and
garbage collectors) are not designed for security and thus make IFC libraries
vulnerable to covert channels. This thesis makes contributions to the design of
secure runtime systems that strengthen the security guarantees of IFC libraries
and full-�edged IFC languages as well.

Firstly, the thesis identi�es and eliminates external- and internal-timing
covert channels that exploit how general-purpose runtime systems manage
shared resources (Chapter 5). Intuitively, these runtime systems assign and dis-
tribute �nite, limited resources (e.g., memory and CPU-time) automatically be-
tween threads at di�erent security levels, to guarantee fair access and maximize
usage. State-of-the-art libraries like LIO and MAC ensure that only external
attackers can exploit these resource-based covert channels. However, in multi-
core systems, threads execute simultaneously on di�erent cores and the covert
channel gets internalized—threads that execute in parallel are essentially exter-
nal to one another. In response to these vulnerabilities, the thesis presents the
design of LIOPAR, a new dynamic IFC parallel runtime system that eliminates

2 Chapter 2 focuses on MAC because it lacks formal security guarantees. However,
these results extend to other IFC libraries as well.

12 3. CONTRIBUTIONS

resource-based timing channels by making resources management hierarchic
and explicit at the language level.

Secondly, this thesis addresses the internal-timing covert channel that
arises from Haskell lazy evaluation (Chapter 3). Interestingly, lazy evaluation
combines two features that have opposite security implications: non-strict eval-
uation and sharing. Informally, non-strict evaluation guarantees that function
arguments are not evaluated until needed inside a function, thus naturally stop-
ping some termination leaks [130]. Instead, sharing is responsible for caching
partial results of a program to speed up the rest of the computation. Crucially,
sharing is a subtle side-e�ect in disguise: it is pervasive, but implicit—results
of pure code are shared as well—and thus eludes the security mechanisms of
Haskell IFC libraries. To close this covert channel, the thesis presents a novel
unsharing primitive, which duplicates cached results lazily to restrict sharing
between threads at di�erent security levels.

The thesis focuses on two state-of-the-art libraries, MAC and LIO, how-
ever the ideas and the techniques presented are general and apply to other
libraries and IFC systems as well. In the following, we describe in more detail
the publications that form the thesis, which is based upon six papers: one is
published in a peer-reviewed journal, four are published individually in the
proceedings of peer-reviewed international conferences and workshops and
one is currently in submission to a peer-reviewed international conference.

3.1 On Formalizing Information-Flow Control Libraries

The paper presents a full-�edged, computer-veri�ed formal model of the MAC
library as a simply-typed λ-calculus extended with security primitives and ad-
vanced features, such as exceptions, mutable references and concurrency. The
main contribution of the paper consists of three insights, which empowers term
erasure with new proof techniques and simplify reasoning about concurrent
systems. The paper describes in detail (i) two-steps erasure, a novel proof tech-
nique to reason about security in presence of advanced stateful features; (ii)
exception masking, a novel proof technique that simpli�es reasoning about the
interaction between exceptions and security primitives; (iii) scheduler paramet-
ric proofs, the security guarantees are valid for a wide range of deterministic
schedulers, that we characterize formally with precise scheduler requirements.
As a result, we prove that MAC is secure under a round-robin scheduler by
simply instantiating our main scheduler-parametric theorem. In addition, the
insights of the paper and the extensive proof scripts (∼4,000 LOC), led us to
uncover some problems in LIO’s proofs and propose changes to repair its non-
interference guarantees.

Statement of contributions. This paper was coauthored with Alejandro Russo
and published in the proceedings of the 11th Workshop on Programming Lan-
guages and Analysis for Security (PLAS), 2016. Marco and Alejandro devised
the proof techniques, Marco developed the proof scripts of the model and sig-
ni�cantly contributed to the writing of the whole paper.

CHAPTER 1. INTRODUCTION 13

3.2 Flexible Manipulation of Labeled Values for IFC Libraries

This paper explores the algebraic structure of labeled data, i.e., an abstract data
type that explicitly tags a piece of data with a label, used in IFC libraries to
enforce security policies. These security restrictions are unnecessary when
pure computations process labeled data: pure code cannot perform any I/O and
thus is inherently secure. In this paper, we give a functor structure to labeled
data, which precisely enables this programming pattern. Furthermore, we study
an applicative functor operator, which extends this feature to work on multiple
labeled values combined by a multi-parameter function, and a relabel primitive
that securely upgrades the label of labeled values as needed when aggregating
data with heterogeneous labels. These primitives encourage the functional
programming style, typical of the host language, i.e., Haskell, and provides
�exibility when manipulating labeled data with side-e�ect free computations,
therefore fostering the secure-by-construction programming model.
Statement of contributions. This paper was coauthored with Pablo Buiras, Lu-
cas Waye, and Alejandro Russo and published in the proceedings of the 21st
European Symposium on Research in Computer Security (ESORICS), 2016. Ale-
jandro, Pablo and Lucas conceived the idea of adding a functor structure to
labeled values. Marco identi�ed some technical problems with that feature and
devised a solution. He developed the proof scripts and was responsible for
writing most of the paper.
3.3 MAC, a Veri�ed Static Information-Flow Control Library

This journal article merges and revises the previous two papers, in order to pro-
vide a uniform, coherent, comprehensive formal model of MAC, to integrate
more examples of the features of the library, to �x few technical inaccuracies in
the semantics of the calculus, to give a full account of the scheduler-parametric
progress-sensitive non-interference theorem, and to simplify its proof. An ex-
tended abstract based on these papers was accepted at the 28th Nordic Work-
shop on Programming Theory (NWPT) in 2016, where it has been selected as
one of the best contributions and then invited to a special issue of the Journal of
Logical and Algebraic Methods in Programming (JLAMP). The thesis includes
this full research article, which subsumes the workshop and the conference
papers.
Statement of contributions. This paper was coauthored with Alejandro Russo,
Pablo Buiras and Lucas Waye and published in the Journal of Logical and
Algebraic Methods in Programming (JLAMP) in December 2017. Marco revised
and merged the two papers and was responsible for writing most of the paper.
3.4 Securing Lazy Programs against Information Leakage

Lazy evaluation is a distinctive feature of Haskell, the programming language
used to implement many state-of-the-art IFC libraries and tools, including
MAC. Sharing, one of the feature of lazy evaluation, is responsible for caching
partial results of a program to speed up the rest of the computation, which,

14 3. CONTRIBUTIONS

however enables data leakage via the internal timing covert channel. To close
this channel, the paper presents lazyDup, a new unsharing primitive that lazily
restricts sharing from secret threads to public threads, thus disabling any data
race between public threads that implicitly depends on secrets via sharing. We
formally model sharing with Sestoft’s abstract machine, extended with a mu-
table store, which also exhibits sharing (the �rst of its kind), and adapt the
semantics of the calculus to duplicate thunks, when needed for security rea-
sons. We show that the calculus satis�es progress-sensitive non-interference
and support our results with machine-checked proof scripts (∼4,000 LOC).

Statement of contributions. This paper was coauthored with Joachim Breitner
and Alejandro Russo and published in the proceedings of the 30th IEEE Com-
puter Security Foundations Symposium (CSF), 2017. Joachim conceived the
�rst version of the lazy unsharing primitive and Alejandro suggested to use it
to close the sharing-based internal-timing covert channel. Marco adapted the
primitive for the operational semantics of Sestoft’s abstract machine and for
mutable references. He also extended MAC with the new primitive, he devel-
oped the proof scripts and wrote the technical sections of the paper and the
examples as well.

3.5 From Fine- to Coarse-Grained Dynamic IFC and Back

One of the main distinguishing factor of IFC techniques is the granularity
with which information �ows are tracked. For example, coarse-grained IFC
operating systems track and enforce information �ow at the granularity of a
process or thread and �ne-grained dynamic IFC programming languages track
information at the granularity of program variables and references. In these
systems, the level of granularity has important practical implications: coarse-
grained IFC systems are often easier to design and implement than �ne-grained
systems, but su�er from the label creep problem, which requires developers to
compartmentalize their application in order to avoid false alarms. In contrast,
�ne-grained systems are seemingly more �exible and do not impose this burden,
but require considerably more programmer annotations to track information
in a �ne-grained fashion. This paper removes the division between �ne- and
coarse-grained dynamic IFC systems and the belief that they are fundamentally
di�erent. In particular, it shows that �ne- and coarse-grained dynamic IFC
are equally expressive. The paper presents a traditional �ne-grained system
extended with label introspection primitives, as well as a coarse-grained system,
and prove a semantics- and security-preserving translations between them. The
results of the paper are supported with machine-checked proofs scripts (∼4,000
LOC).

Statement of contributions. This paper was coauthored with Alejandro Russo,
Deepak Garg, Vineet Rajani and Deian Stefan and published in the proceed-
ings of the 46th ACM SIGPLAN Symposium on Principles of Programming
Languages (POPL), 2019. The paper was awarded the “Distinguished Paper”
distinction by the program committee of the symposium. This award highlights

CHAPTER 1. INTRODUCTION 15

papers that the POPL program committee thinks should be read by a broad
audience due to their relevance, originality, signi�cance and clarity. At most
10% of the accepted papers can be designated as Distinguished Papers and only
6 papers out of 77 were distinguished in 2019. Deepak and Vineet proved a
similar results for static �ne-grained and coarse-grained IFC systems and con-
tributed to the preliminary parts of this work. Marco and Alejandro devised
the proof technique, Marco developed the proof scripts and wrote most of the
paper.
3.6 Towards Foundations for Parallel IFC Runtime Systems

This paper presents the foundations for a new dynamic IFC parallel runtime
system, LIOPAR. Most existing IFC systems are vulnerable to external timing
attacks because they are built atop vanilla runtime systems that do not account
for security—these runtime systems allocate and reclaim shared resources, e.g.,
CPU-time and memory, fairly between threads at di�erent security levels. This
paper demonstrates with several proof-of-concept attacks, that extending IFC
systems (even concurrent systems such as LIO) with parallelism leads to the
internalization of these attacks. In response to these attacks, the paper proposes
LIOPAR a novel parallel runtime system design that safely manages shared
resources—both CPU-time and memory—by enforcing hierarchical resource
allocation and reclamation explicitly at the language-level. LIOPAR is the �rst
parallel language-level dynamic IFC runtime system to address both internal
and external timing attacks that abuse the runtime system scheduler, memory
allocator and garbage collector. The paper formalizes the design of LIOPAR

and proves timing-sensitive non-interference, even when exposing clock and
heap-statistics APIs.
Statement of contributions. This paper is coauthored with Gary Soeller, Peter
Amidon, Matthew Chan, John Renner and Deian Stefan and published in the
proceedings of the International Conference on Principles of Security and Trust
(POST), 2019. Gary and Deian �rst conceived the idea of a hierarchical IFC
parallel runtime system and Gary developed the code of the attacks that leak
secret data externally on a single-core and internally on a multi-core machine.
Marco was responsible for formalizing the design of the runtime system, the
operational semantics, the security proofs and he signi�cantly contributed to
the writing of the whole paper. This work was done during a three-months
research visit at University of California, San Diego (UCSD).

16 3. CONTRIBUTIONS

References
1. Martín Abadi, Anindya Banerjee, Nevin Heintze, Nevin Heintze, and Jon G. Riecke.

A core calculus of dependency. In Proceedings of the 26th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL ’99, pages 147–160, New
York, NY, USA, 1999. ACM.

2. Maximilian Algehed and Alejandro Russo. Encoding dcc in haskell. In Proceedings
of the 2017 Workshop on Programming Languages and Analysis for Security, PLAS
’17, pages 77–89, New York, NY, USA, 2017. ACM.

3. A. Askarov, S. Chong, and H. Mantel. Hybrid monitors for concurrent noninterfer-
ence. In 2015 IEEE 28th Computer Security Foundations Symposium, pages 137–151,
July 2015.

4. Aslan Askarov, Danfeng Zhang, and Andrew C. Myers. Predictive black-box miti-
gation of timing channels. In Proceedings of the 17th ACM Conference on Computer
and Communications Security, CCS ’10, pages 297–307, New York, NY, USA, 2010.
ACM.

5. Thomas H. Austin and Cormac Flanagan. E�cient purely-dynamic information
�ow analysis. In Proceedings of the ACM SIGPLAN FourthWorkshop on Programming
Languages and Analysis for Security, PLAS ’09, pages 113–124, New York, NY, USA,
2009. ACM.

6. Thomas H. Austin and Cormac Flanagan. Multiple facets for dynamic information
�ow. In Proceedings of the 39th Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL ’12, pages 165–178, New York, NY,
USA, 2012. ACM.

7. Jean Bacon, David M. Eyers, Thomas F. J.-M. Pasquier, Jatinder Singh, Ioannis Papa-
giannis, and Peter R. Pietzuch. Information �ow control for secure cloud computing.
IEEE Transactions on Network and Service Management, 11:76–89, 2014.

8. Musard Balliu, Benjamin Liebe, Daniel Schoepe, and Andrei Sabelfeld. Jslinq: Build-
ing secure applications across tiers. In Proceedings of the Sixth ACM Conference on
Data and Application Security and Privacy, CODASPY ’16, pages 307–318, New York,
NY, USA, 2016. ACM.

9. Gilles Barthe, Tamara Rezk, Alejandro Russo, and Andrei Sabelfeld. Security of
multithreaded programs by compilation. Special issue of ACM Transactions on In-
formation and System Security (TISSEC), 2009.

10. David E. Bell and L. La Padula. Secure computer system: Uni�ed exposition and
multics interpretation. Technical Report MTR-2997, Rev. 1, MITRE Corporation,
Bedford, MA, 1976.

11. Andrew Bortz and Dan Boneh. Exposing private information by timing web appli-
cations. In World Wide Web. ACM, 2007.

12. Niklas Broberg, Bart Delft, and David Sands. Paragon for practical programming
with information-�ow control. In Proceedings of the 11th Asian Symposium on Pro-
gramming Languages and Systems - Volume 8301, pages 217–232, Berlin, Heidelberg,
2013. Springer-Verlag.

13. P. Buiras, D. Vytiniotis, and A. Russo. HLIO: Mixing static and dynamic typing for
information-�ow control in Haskell. In ACM SIGPLAN International Conference on
Functional Programming. ACM, 2015.

14. Pablo Buiras and Alejandro Russo. Lazy programs leak secrets. In Proceedings of
the 18th Nordic Conference on Secure IT Systems - Volume 8208, NordSec 2013, pages
116–122, New York, NY, USA, 2013. Springer-Verlag New York, Inc.

CHAPTER 1. INTRODUCTION 17

15. Winnie Cheng, Dan R.K. Ports, David Schultz, Victoria Popic, Aaron Blankstein,
James Cowling, Dorothy Curtis, Liuba Shrira, and Barbara Liskov. Abstractions for
usable information �ow control in aeolus. In Presented as part of the 2012 USENIX
Annual Technical Conference (USENIX ATC 12), pages 139–151, Boston, MA, 2012.
USENIX.

16. Stephen Chong, Jed Liu, Andrew C. Myers, Xin Qi, K. Vikram, Lantian Zheng, and
Xin Zheng. Secure web applications via automatic partitioning. In Proceedings of
the 21st ACM Symposium on Operating Systems Principles, pages 31–44, October
2007. (Best paper award.).

17. Stephen Chong, K. Vikram, and Andrew C. Myers. SIF: enforcing con�dentiality and
integrity in web applications. In Proceedings of the 16th USENIX Security Symposium,
Boston, MA, USA, August 6-10, 2007, 2007.

18. Dorothy E. Denning and Peter J. Denning. Certi�cation of programs for secure
information �ow. Communication of the ACM, 20(7):504–513, July 1977.

19. D. Devriese and F. Piessens. Information �ow enforcement in monadic libraries. In
ACM SIGPLAN Workshop on Types in Language Design and Implementation. ACM,
2011.

20. Petros Efstathopoulos, Maxwell Krohn, Steve VanDeBogart, Cli� Frey, David Ziegler,
Eddie Kohler, David Mazières, Frans Kaashoek, and Robert Morris. Labels and
event processes in the Asbestos operating system. In ACM Symposium on Operating
Systems Principles, SOSP. ACM, 2005.

21. Edward W. Felten and Michael A. Schneider. Timing attacks on web privacy. In
Proceedings of the 7th ACM Conference on Computer and Communications Security,
CCS ’00, pages 25–32, New York, NY, USA, 2000. ACM.

22. L. Fennell and P. Thiemann. Gradual security typing with references. In 2013 IEEE
26th Computer Security Foundations Symposium, pages 224–239, June 2013.

23. Earlence Fernandes, Justin Paupore, Amir Rahmati, Daniel Simionato, Mauro Conti,
and Atul Prakash. FlowFence: Practical data protection for emerging IoT application
frameworks. In USENIX Security Symposium, pages 531–548, 2016.

24. Qian Ge, Yuval Yarom, David Cock, and Gernot Heiser. A survey of microarchitec-
tural timing attacks and countermeasures on contemporary hardware. Journal of
Cryptographic Engineering, pages 1–27, 2016.

25. Daniel B. Gi�n, Amit Levy, Deian Stefan, David Terei, David Mazières, John
Mitchell, and Alejandro Russo. Hails: Protecting data privacy in untrusted web
applications. In Proc. of the 10th Symposium on Operating Systems Design and Im-
plementation, October 2012.

26. J. A. Goguen and J. Meseguer. Security policies and security models. In 1982 IEEE
Symposium on Security and Privacy, pages 11–11, April 1982.

27. Helena Handschuh and Howard M. Heys. A timing attack on RC5. In Proceedings
of the Selected Areas in Cryptography, SAC ’98, pages 306–318, Berlin, Heidelberg,
1999. Springer-Verlag.

28. D. Hedin, L. Bello, and A. Sabelfeld. Value-sensitive hybrid information �ow control
for a javascript-like language. In 2015 IEEE 28th Computer Security Foundations
Symposium, pages 351–365, July 2015.

29. D. Hedin, A. Birgisson, L. Bello, and A. Sabelfeld. JSFlow: Tracking information
�ow in JavaScript and its APIs. In ACM Symposium on Applied Computing. ACM,
2014.

30. Daniel Hedin and Andrei Sabelfeld. A perspective on information-�ow control.
In Software Safety and Security - Tools for Analysis and Veri�cation, pages 319–347,
2012.

18 3. CONTRIBUTIONS

31. Stefan Heule, Deian Stefan, Edward Z. Yang, John C. Mitchell, and Alejandro Russo.
Ifc inside: Retro�tting languages with dynamic information �ow control. In Proceed-
ings of the 4th International Conference on Principles of Security and Trust - Volume
9036, pages 11–31, New York, NY, USA, 2015. Springer-Verlag New York, Inc.

32. C. Hritcu, M. Greenberg, B. Karel, B. C. Peirce, and G. Morrisett. All your IFCexcep-
tion are belong to us. In IEEE Symposium on Security and Privacy. IEEE Computer
Society, 2013.

33. Wei-Ming Hu. Reducing timing channels with fuzzy time. Journal of Computer
Security, 1(3-4):233–254, 1992.

34. Richard A Kemmerer. Shared resource matrix methodology: An approach to identi-
fying storage and timing channels. ACM Transactions on Computer Systems (TOCS),
1(3):256–277, 1983.

35. Paul C. Kocher. Timing attacks on implementations of Di�e-Hellman,RSA, DSS, and
other systems. In Proceedings of the 16th Annual International Cryptology Conference
on Advances in Cryptology, CRYPTO ’96, pages 104–113, London, UK, UK, 1996.
Springer-Verlag.

36. Maxwell Krohn, Alexander Yip, Micah Brodsky, Natan Cli�er, M. Frans Kaashoek,
Eddie Kohler, and Robert Morris. Information �ow control for standard OS abstrac-
tions. In ACM SIGOPS Symposium on Operating Systems Principles, SOSP. ACM,
2007.

37. B. W. Lampson. A note on the con�nement problem. Communications of the ACM,
16(10):613–615, October 1973.

38. Peng Li and Steve Zdancewic. Encoding information �ow in haskell. In Proceedings
of the 19th IEEE Workshop on Computer Security Foundations, CSFW ’06, pages 16–,
Washington, DC, USA, 2006. IEEE Computer Society.

39. Peng Li and Steve Zdancewic. Arrows for secure information �ow. Theor. Comput.
Sci., 411(19):1974–1994, April 2010.

40. S. Lipner, T. Jaeger, and M. E. Zurko. Lessons from vax/svs for high-assurance vm
systems. IEEE Security Privacy, 10(6):26–35, Nov 2012.

41. Jed Liu, Owen Arden, Michael D George, and Andrew C Myers. Fabric: Building
open distributed systems securely by construction. Journal of Computer Security,
25(4-5):367–426, 2017.

42. Jed Liu, Michael D George, Krishnaprasad Vikram, Xin Qi, Lucas Waye, and An-
drew C Myers. Fabric: A platform for secure distributed computation and storage.
In Proceedings of the ACM SIGOPS 22nd symposium on Operating systems principles.
ACM, 2009.

43. Luísa Lourenço and Luís Caires. Dependent information �ow types. In Proceedings
of the 42Nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL ’15, pages 317–328, New York, NY, USA, 2015. ACM.

44. Heiko Mantel and Andrei Sabelfeld. A unifying approach to the security of dis-
tributed and multi-threaded programs. J. Comput. Secur., 11(4):615–676, July 2003.

45. Conor Mcbride and Ross Paterson. Applicative programming with e�ects. J. Funct.
Program., 18(1):1–13, January 2008.

46. Eugenio Moggi. Notions of computation and monads. Inf. Comput., 93(1):55–92,
July 1991.

47. S. Moore and S. Chong. Static analysis for e�cient hybrid information-�ow control.
In 2011 IEEE 24th Computer Security Foundations Symposium, pages 146–160, June
2011.

CHAPTER 1. INTRODUCTION 19

48. Andrew C. Myers and Andrew C. Myers. J�ow: Practical mostly-static information
�ow control. In Proceedings of the 26th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL ’99, pages 228–241, New York, NY,
USA, 1999. ACM.

49. Andrew C. Myers, Lantian Zheng, Steve Zdancewic, Stephen Chong, and Nathaniel
Nystrom. Jif 3.0: Java information �ow, July 2006.

50. Adwait Nadkarni, Benjamin Andow, William Enck, and Somesh Jha. Practical DIFC
enforcement on android. In USENIX Security Symposium, pages 1119–1136, 2016.

51. Ulf Norell. Dependently typed programming in Agda. In Andrew Kennedy and
Amal Ahmed, editors, Proceedings of TLDI’09: 2009 ACM SIGPLAN International
Workshop on Types in Languages Design and Implementation, Savannah, GA, USA,
January 24, 2009, pages 1–2. ACM, 2009.

52. James Parker, Niki Vazou, and Michael Hicks. LWeb: Information �ow security for
multi-tier web applications. In Proceedings of the ACM Conference on Principles of
Programming Languages (POPL), January 2019.

53. Mathias V. Pedersen and Aslan Askarov. From trash to treasure: Timing-sensitive
garbage collection. In 2017 IEEE Symposium on Security and Privacy, SP 2017, San
Jose, CA, USA, May 22-26, 2017, pages 693–709, 2017.

54. Colin Percival. Cache missing for fun and pro�t. In BSDCan, 2005.
55. Simon Peyton Jones et al. The Haskell 98 language and libraries: The revised report.

Journal of Functional Programming, 13(1):1–255, Jan 2003. http://www.haskell.

org/definition/.
56. Willard Rafnsson, Deepak Garg, and Andrei Sabelfeld. Progress-sensitive security

for spark. In Proceedings of the 8th International Symposium on Engineering Secure
Software and Systems - Volume 9639, ESSoS 2016, pages 20–37, Berlin, Heidelberg,
2016. Springer-Verlag.

57. Vineet Rajani and Deepak Garg. Types for Information Flow Control: Labeling
Granularity and Semantic Models. In Proc. of the IEEE Computer Security Foundations
Symp., CSF ’18. IEEE Computer Society, 2018.

58. Indrajit Roy, Donald E. Porter, Michael D. Bond, Kathryn S. McKinley, and Emmett
Witchel. Laminar: Practical �ne-grained decentralized information �ow control. In
ACM SIGPLAN Conference on Programming Language Design and Implementation,
PLDI. ACM, 2009.

59. Alejandro Russo. Functional Pearl: Two Can Keep a Secret, if One of Them Uses
Haskell. In Proceedings of the 20th ACM SIGPLAN International Conference on Func-
tional Programming, ICFP 2015, pages 280–288, New York, NY, USA, 2015. ACM.

60. Alejandro Russo, Koen Claessen, and John Hughes. A library for light-weight
information-�ow security in haskell. In Proceedings of the First ACM SIGPLAN
Symposium on Haskell, Haskell ’08, pages 13–24, New York, NY, USA, 2008. ACM.

61. Alejandro Russo and Andrei Sabelfeld. Security for multithreaded programs under
cooperative scheduling. In Irina Virbitskaite and Andrei Voronkov, editors, Per-
spectives of Systems Informatics, pages 474–480, Berlin, Heidelberg, 2007. Springer
Berlin Heidelberg.

62. Alejandro Russo and Andrei Sabelfeld. Securing interaction between threads and
the scheduler in the presence of synchronization. The Journal of Logic and Algebraic
Programming, 78(7):593 – 618, 2009. The 19th Nordic Workshop on Programming
Theory (NWPT 2007).

63. A. Sabelfeld and A. C. Myers. Language-based information-�ow security. IEEE
Journal on Selected Areas in Communications, 21(1):5–19, Jan 2003.

http://www.haskell.org/definition/
http://www.haskell.org/definition/

20 3. CONTRIBUTIONS

64. Andrei Sabelfeld and David Sands. A per model of secure information �ow in
sequential programs. Higher-Order and Symbolic Computation, 14(1):59–91, Mar
2001.

65. Thomas Schmitz, Maximilian Algehed, Cormac Flanagan, and Alejandro Russo.
Faceted secure multi execution. In Proc. of the 2018 ACM SIGSAC Conference on
Computer and Communications Security, CCS ’18, pages 1617–1634, New York, NY,
USA, 2018. ACM.

66. Daniel Schoepe, Daniel Hedin, and Andrei Sabelfeld. Selinq: Tracking information
across application-database boundaries. In Proceedings of the 19th ACM SIGPLAN
International Conference on Functional Programming, ICFP ’14, pages 25–38, New
York, NY, USA, 2014. ACM.

67. David Schultz and Barbara Liskov. Ifdb: Decentralized information �ow control for
databases. In Proceedings of the 8th ACM European Conference on Computer Systems,
EuroSys ’13, pages 43–56, New York, NY, USA, 2013. ACM.

68. V. Simonet. The Flow Caml system. Software release at http://cristal.inria.fr/ si-
monet/soft/�owcaml/, 2003.

69. Geo�rey Smith and Dennis Volpano. Secure information �ow in a multi-threaded
imperative language. In Proceedings of the 25th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL ’98, pages 355–364, New York, NY,
USA, 1998. ACM.

70. Deian Stefan, Alejandro Russo, Pablo Buiras, Amit Levy, John C. Mitchell, and
David Maziéres. Addressing covert termination and timing channels in concurrent
information �ow systems. In Proceedings of the 17th ACM SIGPLAN International
Conference on Functional Programming, ICFP ’12, pages 201–214, New York, NY,
USA, 2012. ACM.

71. Deian Stefan, Alejandro Russo, David Mazières, and John C. Mitchell. Flexible dy-
namic information �ow control in the presence of exceptions. Journal of Functional
Programming, 27, 2017.

72. Deian Stefan, Alejandro Russo, John C. Mitchell, and David Mazières. Flexible dy-
namic information �ow control in Haskell. In Proceedings of the 4th ACM Symposium
on Haskell, Haskell ’11, pages 95–106, New York, NY, USA, 2011. ACM.

73. David Terei, Simon Marlow, Simon Peyton Jones, and David Mazières. Safe haskell.
SIGPLAN Not., 47(12):137–148, September 2012.

74. Matías Toro, Ronald Garcia, and Éric Tanter. Type-driven gradual security with
references. ACM Transactions on Programming Languages and Systems, 40(4):16:1–
16:55, November 2018.

75. Ta-chung Tsai, Alejandro Russo, and John Hughes. A library for secure multi-
threaded information �ow in haskell. In Proceedings of the 20th IEEE Computer
Security Foundations Symposium, CSF ’07, pages 187–202, Washington, DC, USA,
2007. IEEE Computer Society.

76. Pepe Vila and Boris Kopf. Loophole: Timing attacks on shared event loops in
chrome. In 26th USENIX Security Symposium (USENIX Security 17), pages 849–864,
Vancouver, BC, 2017. USENIX Association.

77. D. Volpano and G. Smith. Probabilistic noninterference in a concurrent lan-
guage. In Proceedings. 11th IEEE Computer Security Foundations Workshop (Cat.
No.98TB100238), pages 34–43, June 1998.

78. Dennis Volpano, Cynthia Irvine, and Geo�rey Smith. A sound type system for
secure �ow analysis. J. Comput. Secur., 4(2-3):167–187, January 1996.

CHAPTER 1. INTRODUCTION 21

79. Dennis Volpano and Geo�rey Smith. Eliminating covert �ows with minimum
typings. In Proceedings of the 10th IEEE Workshop on Computer Security Foundations,
CSFW ’97, pages 156–, Washington, DC, USA, 1997. IEEE Computer Society.

80. P. Wadler and S. Blott. How to make ad-hoc polymorphism less ad hoc. In Proceed-
ings of the 16th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL ’89, pages 60–76, New York, NY, USA, 1989. ACM.

81. Wing H. Wong. Timing attacks on rsa: Revealing your secrets through the fourth
dimension. XRDS, 11(3):5–5, May 2005.

82. Jean Yang, Travis Hance, Thomas H Austin, Armando Solar-Lezama, Cormac Flana-
gan, and Stephen Chong. Precise, dynamic information �ow for database-backed
applications. In ACM SIGPLAN Notices, volume 51, pages 631–647. ACM, 2016.

83. Jean Yang, Kuat Yessenov, and Armando Solar-Lezama. A language for automati-
cally enforcing privacy policies. In Proceedings of the 39th Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL ’12, pages 85–96,
New York, NY, USA, 2012. ACM.

84. Stephan Arthur Zdancewic. Programming Languages for Information Security. PhD
thesis, Cornell University, Ithaca, NY, USA, 2002. AAI3063751.

85. Nickolai Zeldovich, Silas Boyd-Wickizer, Eddie Kohler, and David Mazières. Making
information �ow explicit in HiStar. In USENIX Symp. on Operating Systems Design
and Implementation. USENIX, 2006.

86. Nickolai Zeldovich, Silas Boyd-Wickizer, and David Mazières. Securing distributed
systems with information �ow control. In Proceedings of the 5th USENIX Symposium
onNetworked Systems Design and Implementation, NSDI’08, pages 293–308, Berkeley,
CA, USA, 2008. USENIX Association.

87. Danfeng Zhang, Aslan Askarov, and Andrew C. Myers. Predictive mitigation of
timing channels in interactive systems. In Proceedings of the 18th ACM Conference
on Computer and Communications Security, CCS ’11, pages 563–574, New York, NY,
USA, 2011. ACM.

88. Danfeng Zhang, Aslan Askarov, and Andrew C. Myers. Language-based Control
and Mitigation of Timing Channels. In ACM Conference on Programming Language
Design and Implementation. ACM, 2012.

Paper I, II, III

Based on

On Formalizing Information-Flow Control Libraries,

by Marco Vassena and Alejandro Russo,

11th Workshop on Programming Languages and Analysis for Security;

Flexible Manipulation of Labeled Values for IFC Libraries,

by Marco Vassena, Pablo Buiras, Lucas Waye, and Alejandro Russo,

21st European Symposium on Research in Computer Security;

MAC, a Veri�ed Static Information-Flow Control Library,

by Marco Vassena, Alejandro Russo, Pablo Buiras and Lucas Waye,

Journal of Logical and Algebraic Methods in Programming.

CHAPTER

TWO

MAC, A VERIFIED IFC LIBRARY

Abstract. The programming language Haskell plays a unique, privi-
leged role in information-�ow control (IFC) research: it is able to enforce
information security via libraries. Many state-of-the-art IFC libraries (e.g.,
LIO and HLIO) support a variety of advanced features like mutable
data structures, exceptions, and concurrency, whose subtle interaction
makes veri�cation of security guarantees challenging. In this work, we
focus on MAC, a statically-enforced IFC library for Haskell. In MAC,
like other IFC libraries, computations have a well-established algebraic
structure for computations (i.e., monads) responsable to manipulate la-
beled values—values coming from an abstract data type which associates
a sensitivity label to a piece of information. In this work, we enrich la-
beled values with a functor structure and provide an applicative functor
operator which encourages a more functional programming style and
simpli�es code. Furthermore, we present a full-�edged, mechanically-
veri�ed model of MAC. Speci�cally, we show progress-insensitive non-
interference for our sequential calculus and pinpoint su�cient require-
ments on the scheduler to prove progress-sensitive noninterference for
our concurrent calculus. For that, we study the security guarantees of
MAC using term erasure, a proof technique that ensures that the same
public output should be produced if secrets are erased before or after
program execution. As another contribution, we extend term erasure
with two-steps erasure, a �exible novel technique that greatly simpli�es
the noninterference proof and helps to prove many advanced features
of MAC.

1 Introduction
Nowadays, many applications (apps) manipulate users’ private data. Such apps
could have been written by anyone and users who wish to bene�t from their
functionality are forced to grant them access to their data—something that
most users will do without a second thought [91]. Once apps collect users’

26 1. INTRODUCTION

information, there are no guarantees about how they handle it, thus leaving
room for data theft and data breach by malicious apps. The key to guaranteeing
security without sacri�cing functionality is not granting or denying access to
sensitive data, but rather ensuring that information �ows only into appropriate
places.

Language-based Information-Flow Control (IFC) [128] is a promising ap-
proach to enforcing information security in software. A traditional IFC enforce-
ment scrutinizes how data of di�erent sensitivity levels (e.g., public or private)
�ows within a program, detects when an unsafe �ow of information occurs and
takes action to suppress the leakage. To do that, most IFC tools require the de-
sign of new languages, compilers, interpreters, or modi�cations to the runtime,
e.g., [28, 99, 116, 122]. Nonetheless, in the functional programming language
Haskell, the strict separation between side-e�ect free and side-e�ectful code
enables lightweight security enforcements. Speci�cally, it is possible to build a
secure programming language atop Haskell, as an embedded domain-speci�c
language that gets distributed and used as a Haskell library [75]. Many of the
state-of-the-art Haskell security libraries, namely LIO [145], HLIO [30], and
MAC [123], bring ideas from Mandatory Access Control [19] into a language-
based setting.1 These libraries promote a secure-by-construction programming
model: any program written against their API does not leak secrets. This model
is attractive, because it protects not only against benign code that leaks acciden-
tally, e.g., due to a software bug, but also against a malicious program designed
to do so. Every computation in such libraries has a current label which is used
to (i) approximate the sensitivity level of all the data in scope and (ii) restrict
subsequent side-e�ects which might compromise security. IFC uses labels to
model the sensitivity of data, which are then organized in a security lattice [37]
specifying the allowed �ows of information, i.e., `1 v `2 means that data
with label `1 can �ow into entities labeled with `2. Although these libraries
are parameterized on the security lattice, for simplicity we focus on the classic
two-point lattice with labels H and L to respectively denote secret (high) and
public (low) data, and where H 6v L is the only disallowed �ow. The follow-
ing diagram shows a graphical representation of a public computation in these
libraries, i.e., a computation with current label L.

Code
17◦C

Current label L

H -sink
L-sink

The computation can read or write data in scope, which is considered public
(e.g., average temperature of 17◦C in the Swedish summer), and it can write

1 From now on, we simply use the term libraries when referring to LIO, HLIO, and
MAC.

CHAPTER 2. MAC, A VERIFIED IFC LIBRARY 27

to public (L-) or secret (H -) sinks. By contrast, a secret computation, i.e., a
computation with current label H , can also read and write data in its scope,
which is considered sensitive, but in order to prevent information leaks it can
only write to sensitive/secret sinks. Structuring computations in this manner
ensures that sensitive data does not �ow into public entities, a policy known as
noninterference [47]. While secure, programming in this model can be overly
restrictive for users who want to manipulate di�erently-labeled values. To
address this shortcoming, libraries introduce the notion of a labeled value as an
abstract data type which protects values with explicit labels, in addition to the
current label. The following diagram shows a public computation with access
to both public and sensitive pieces of information, such as a password (pwd).

Code
17◦C

pwd

Current label L

H -sink
L-sink

H

Public computations can freely manipulate sensitive labeled values provided
that they are treated as black boxes, i.e., they can be stored, retrieved, and
passed around as long as its content is not inspected. Libraries LIO and HLIO
even allow public computations to inspect the contents of sensitive labeled
values, raising the current label to H to keep track of the fact that a secret is
in scope—this variant is known as a �oating-label system.

Reading sensitive data usually amounts to “tainting” the entire context or
ensuring the context is as sensitive as the data being observed. As a result,
the system is susceptible to an issue known as label creep: reading too many
secrets may cause the current label to be so high in the lattice that the compu-
tation can no longer perform any useful side e�ects. To address this problem,
libraries provide a primitive which enables public computations to spawn sub-
computations that access sensitive labeled values without tainting the parent.
In a sequential setting, such sub-computations are implemented by special
function calls. In the presence of concurrency, however, they must be executed
in a di�erent thread to avoid compromising security through internal timing
and termination covert channels [141].

Practical programs need to manipulate sensitive labeled values by trans-
forming them. It is quite common for these operations to be naturally free of
I/O or other side e�ects, e.g., arithmetical or algebraic operations, especially
in applications like image processing, cryptography, or data aggregation for
statistical purposes. Writing such functions, known as pure functions, is the
bread and butter of functional programming style, and is known to improve
programmer productivity, encourage code reuse, and reduce the likelihood of
bugs [62]. Nevertheless, the programming model involving sub-computations
that manipulate secrets forces an imperative style, whereby computations must
be structured into separate compartments that must communicate explicitly.

28 1. INTRODUCTION

While side-e�ecting instructions have an underlying algebraic structure, called
monad [92], research literature has neglected studying the algebraic structure
of labeled values and their consequences for the programming model. To em-
power programmers with the simpler, functional style, we propose additional
operations that allow pure functions to securely manipulate labeled values,
speci�cally by means of a structure similar to applicative functors [89]. In par-
ticular, this structure is useful in concurrent settings where it is no longer
necessary to spawn threads to manipulate sensitive data, thus making the code
less imperative (i.e., side-e�ect free).

Additionally, practical programs often aggregate information from hetero-
geneous sources. For that, programs need to upgrade labeled values to an upper
bound of the labels being involved before data can be combined. In previous
incarnations of the libraries, such relabelings require to spawn threads just for
that purpose. As before, the reason for that is libraries decoupling every compu-
tation which manipulate sensitive data—even those for simply relabeling—so
that the internal timing and termination covert channels imposed no threats.
In this light, we introduce a primitive to securely relabel labeled values, which
can be applied irrespective of the computation’s current label and does not
require spawning threads.

We provide a mechanized security proof for the security library MAC and
claim our results also apply to LIO and HLIO.2 MAC has fewer lines of code
and leverages types to enforce con�dentiality, thus making it ideal to model
its semantics in a dependently-typed language like Agda. The contributions of
this paper are:

1. We develop the �rst exhaustive full-�edged formalization of MAC, a state-
of-the-art library for Information-Flow Control, in a call-by-needλ-calculus
and prove progress-insensitive noninterference (PINI) for the sequential
calculus.

2. We enrich the calculus with scheduler-parametric concurrency and prove
progress-sensitive noninterference (PSNI) [4] for a wide-range of deter-
ministic schedulers, by formally identifying su�cient requirements on
the scheduler to ensure PSNI—a novel aspect if compared with previous
work [55, 141]. We leverage on the generality of our result and prove that
MAC is secure by instantiating our PSNI theorem with a round-robin
scheduler, i.e., the scheduler used by GHC’s runtime system.

3. We corroborate our results with an extensive mechanized proof developed
in the Agda proof assistant that counts more than 4000 lines of code. The
mechanization has provided us with stimulating insights and pinpointed
problems in proofs of similar works.

4. We improve and simplify the term-erasure proof technique by proposing a
novel �exible technique called two-steps erasure, which we utilize system-
atically to prove that many advanced features are secure, especially those
that change the security level of other terms and detect exceptions.

2 The proofs scripts are available at https://bitbucket.org/MarcoVassena/mac-model.

CHAPTER 2. MAC, A VERIFIED IFC LIBRARY 29

data Labeled ` a = Labeled TCB a
data MAC ` a =MACTCB {runTCB :: IO a }
instance Monad (MAC `)

label :: `L v `H ⇒ a → MAC `L (Labeled `H a)
unlabel :: `L v `H ⇒ Labeled `L a → MAC `H a

Fig. 1: Core API for MAC.

5. We introduce a functor structure, a relabeling primitive and an applicative
operator that give �exibility to programmers, by upgrading labeled values
and conveniently aggregating heterogeneously labeled data.

6. We have released a prototype of our ideas in the MAC library.3

Highlights. This work builds on our previous papers “Flexible Manipulation
of Labeled Values for Information-Flow Control Libraries” [152] and “On For-
malizing Information-Flow Control Libraries” [153], which we have blended
and signi�cantly rewritten and corrected in a few technical inaccuracies. We
have integrated these works with several examples and shaped them into a uni-
form, coherent and comprehensive story of this line of work. We summarize
the novel contributions of this article as follows:

– Uniform, coherent and comprehensive account of a formal model of MAC;
– Integration of examples in the description of the features of the library;
– Fixed several technical inaccuracies in the semantics of the calculus;
– Simpli�cation and full account of the scheduler-parametric PSNI proof.

In the following, we point out the technical di�erences between this article
and the conference version in footnotes.

This paper is organized as follows. Section 2 gives an overview of MAC.
Section 3 formalizes the core of MAC in a simply-typed call-by-need lambda-
calculus. Section 4 presents a secure primitive that regulates the interaction
between computations at di�erent security levels. Sections 5 and 6 extend the
calculus with other advanced practical features, namely exceptions and muta-
ble references. Section 7 proves that the sequential calculus satis�es progress-
insensitive noninterference (PINI). Section 8 extends the calculus with concur-
rency and Section 9 presents functor, applicative, and relabeling operations.
Section 10 gives the security guarantee of the concurrent calculus, which sat-
is�es progress-sensitive noninterference (PSNI). Section 11 gives related work
and Section 12 concludes.

2 Overview
In MAC, each label is represented as an abstract data type. Figure 1 shows the
core part of MAC’s API. Abstract data type Labeled ` a classi�es data of type

3 The MAC library is available at https://hackage.haskell.org/package/mac

30 2. OVERVIEW

a with a security label `. For instance, pwd :: Labeled H String is a sensitive
string, while rating :: Labeled L Int is a public integer. (Symbol :: is used to
describe the type of terms in Haskell.) Abstract data type MAC ` a denotes a
(possibly) side-e�ectful secure computation which handles information at sen-
sitivity level ` and yields a value of type a as a result. A MAC ` a computation
enjoys a monadic structure, i.e., it is built using the fundamental operations
return :: a → MAC ` a and (>>=) :: MAC ` a → (a → MAC ` b) →
MAC ` b (read as “bind”). The operation return x produces a computation
that returns the value denoted by x and produces no side-e�ects. The function
(>>=) is used to sequence computations and their corresponding side-e�ects.
Speci�cally, m >>= f takes a computation m and function f which will be ap-
plied to the result produced by running m and yields the resulting computation.
We sometimes use Haskell’s do-notation to write such monadic computations.
For example, the program m >>= λx → return (x + 1), which adds 1 to the
value produced by m, can be written as follows:

do x ← m
return (x + 1)

2.1 Secure Information Flows

Generally speaking, side-e�ects in a MAC ` a computation can be seen as
actions which either read or write data. Such actions, however, need to be con-
ceived in a manner that respects the sensitivity of the computations’ results as
well as the sensitivity of sources and sinks of information modeled as labeled
values. The functions label and unlabel allow MAC ` a computations to se-
curely interact with labeled values. To help readers, we indicate the relationship
between type variables in their subindexes, i.e., we use `L and `H to attest that
`L v `H. If a MAC `L computation writes data into a sink, the computation
should have at most the sensitivity of the sink itself. This restriction, known
as no write-down [19], respects the sensitivity of the data sink, e.g., the sink
never receives data more sensitive than its label. In the case of function label , it
creates a fresh labeled value, which from the security point of view can be seen
as allocating a fresh location in memory and immediately writing a value into
it—thus, it applies the no write-down principle. In the type signature of label ,
what appears on the left-hand side of the symbol⇒ are type constraints. They
represent properties that must be statically ful�lled about the types appearing
on the right-hand side of ⇒. Type constraint `L v `H ensures that when
calling label x (for some x in scope), the computation creates a labeled value
only if `L, i.e. the current label of the computation, is no more con�dential than
`H, i.e. the sensitivity of the created labeled value. In contrast, a computation
MAC `H a is only allowed to read labeled values at most as sensitive as `H—
observe the type constraint `L v `H in the type signature of unlabel . This
restriction, known as no read-up [19], protects the con�dentiality degree of the

CHAPTER 2. MAC, A VERIFIED IFC LIBRARY 31

isWeak :: String → IO Bool

p :: IO Bool
p = do

putStrLn "Choose a password:"

pwd ← getLine
return (isWeak pwd)

Fig. 2: isWeak can leak the password.

result produced by MAC `H a , i.e. the result might only involve data `L which
is, at most, as sensitive as `H.

We remark that MAC is an embedded domain speci�c language (EDSL),
implemented as a Haskell library of around 200 lines of code and programs
written in MAC are secure-by-construction. What makes it possible to provide
strong security guarantees via a library is the fact that Haskell type-system
enforces a strict separation between side-e�ect free code, which is guaranteed
not to perform side e�ects, and side-e�ectful code, where side-e�ects may oc-
cur.4 Speci�cally side-e�ects, i.e., input-output operations, can only occur in
monadic computations of type IO a . Crucially pure computations are inher-
ently secure, while IO computations are potentially leaky. In MAC, a secure
computation of type MAC ` a is internally represented as a wrapper around
an IO a computation, that is used to implement side-e�ectful features, such as
references and concurrency. MAC provides security-by-construction because
impure operations, i.e., those of type IO , can only be constructed using MAC
label-annotated API, which accepts only those that are statically deemed se-
cure. Function runTCB extracts the underlying IO a computation from a secure
computation of type MAC ` a . Thanks to the secure-by-construction design,
the IO computation so obtained is secure and can be executed directly, without
the need of additional protection mechanism, such as monitors. Note that the
function runTCB is part of the Trusted Computing Base (TCB), i.e., it is available
only to trusted code. In what follows, we describe an example which illustrates
MAC’s programming model, particularly the use of label , unlabel .
Example. The most common use of label is to classify data to be protected. As
an example, consider the Haskell program listed in Figure 2, which prompts the
user for a password through the terminal and then passes it to a routine to check
if the password is listed on dictionaries of commonly used passwords. Observe
that the program performs input-output operations: putStrLn :: String →
IO () prints to standard output and getLine :: IO String reads from standard
input. Clearly the content of variable pwd should be handled with care by
isWeak :: String → IO Bool . In particular a computation of type IO Bool
can also perform arbitrary output operations and potentially leak the password.

4 In the functional programming community, they are also known as pure and impure
code respectively.

32 2. OVERVIEW

isWeak :: Labeled H String → MAC L (Labeled H Bool)

p :: IO Bool
p = do putStrLn "Choose a password:"

pwd ← getLine
let lpwd = label pwd :: MAC L (Labeled H String)
Labeled TCB b ← runTCB (lpwd >>= isWeak)
return b

Fig. 3: Label H protects the password in isWeak.

One way to protect pwd is by writing all password-related operations, like
isWeak, within MAC, where pwd is marked as sensitive data. Adjusting the
type of isWeak appropriately, MAC prevents intentional or accidental leakage
of the password. Several secure designs are possible, depending on how isWeak
provides its functionality. For example a secure interface could be isWeak ::
Labeled H String → MAC L (Labeled H Bool), where the outermost
computation (MAC L) accounts for reading public data, e.g., fetching online
dictionaries of common passwords, while the labeled result (Labeled H Bool),
protects the sensitivity of this piece of information about the password, namely
if it is weak or not. The type isWeak :: Labeled H String → MAC H Bool
is also secure and additionally allows to read from secret channels, e.g., �le
/etc/shadow, to check that the password is not reused. Figure 3 shows the
modi�cations to the code needed to use a secure password strength checker.
Observe how label is used to mark pwd as sensitive by wrapping it inside a
labeled expression of type Labeled H String . After that, the labeled password
is passed to function isWeak by bind (>>=), function runTCB executes the whole
computation, whose labeled result is then pattern matched with Labeled TCB,
exposing the boolean value, that is �nally returned.5

2.2 Implicit Flows

The interaction between the current label of a computation and the no read-up
and no write-down security policies makes implicit �ow ill-typed. Consider for
instance, the following ill-typed program, which attempts to leak the value of
the secret boolean into a public boolean:

implicit :: Labeled H Bool → MAC H (Labeled L Bool)
implicit secret = do

bool ← unlabel secret
if bool then label True -- type error: H 6v L

else label False

5 In Figure 3, the code in the IO monad is trusted, hence the use of runTCB and
Labeled TCB. The function isWeak is not trusted and the password is protected by
MAC secure API.

CHAPTER 2. MAC, A VERIFIED IFC LIBRARY 33

Types: τ ::= () | Bool | τ1 → τ2
Values: v ::= () | True | False | λx .t
Terms: t ::= v | t1 t2 | if t1 then t2 else t3

(App)
t1 ; t ′1

t1 t2 ; t ′1 t2

(Beta)
(λx .t1) t2 ; t1 [t2 / x]

(If1)
t1 ; t ′1

if t1 then t2 else t3 ; if t ′1 then t2 else t3

(If2)
if True then t1 else t2 ; t1

(If3)
if False then t1 else t2 ; t2

Fig. 4: Syntax and semantics of the pure calculus.

Unlike other IFC system, the code cannot branch on secret directly, because it
is explicitly labeled (it has type Labeled H Bool instead of Bool). In order to
branch on sensitive data, the program needs �rst to unlabel it, thus incurring
in the no read-up restriction that requires the computation to be sensitive as
well, that is the program must have type MAC H a (for some type a). The
only primitive that produces labeled data is label , which according to the no
write-down restriction, prevents a sensitive computation from creating a public
labeled value. Then, the program implicit from above is ill-typed because it
tries to label a piece of data with L in a computation labeled with H , which
does not respect the type constraint of label (H 6v L).

Features Overview. Modern programming languages provide many abstractions
that simplify the development of complex software. In the following, we ex-
tend MAC with additional primitives that make software development within
MAC practical, without sacri�cing security. The list of programming features
securely supported in MAC include exception handling (Section 5), references
(Section 6), concurrency (Section 8), functors (Section 9) and synchronization
primitives (Appendix B).

3 Core Calculus
This section formalizes MAC as a simply typed call-by-name λ-calculus ex-
tended with unit and boolean values and security primitives.

3.1 Pure Calculus

Figure 4 shows the formal syntax of the pure calculus underlying MAC, where
meta variables τ , v and t denote respectively types, values, and terms. The
typing judgment Γ ` t : τ denotes that term t has type τ assuming typing
environment Γ . The typing rules of the pure calculus are standard and omitted.

34 3. CORE CALCULUS

Label: `
Store: Σ
Types: τ ::= · · · | MAC ` τ | Labeled ` τ
Con�guration: c ::= 〈Σ, t〉
Values: v ::= · · · | return t | Labeled t
Terms: t ::= · · · | t1 �= t2 | label | unlabel t

(Lift)
t ; t ′

〈Σ, t〉 −→ 〈Σ, t ′〉

(Bind1)
〈Σ, t1〉 −→ 〈Σ′, t ′1〉

〈Σ, t1 >>= t2〉 −→ 〈Σ′, t ′1 >>= t2〉

(Bind2)
〈Σ, return t1 >>= t2〉 −→ 〈Σ, t2 t1〉

(Label)
〈Σ, label t〉 −→ 〈Σ, return (Labeled t)〉

(Unlabel1)
t ; t ′

〈Σ, unlabel t〉 −→ 〈Σ, unlabel t ′〉

(Unlabel2)
〈Σ, unlabel (Labeled t)〉 −→ 〈Σ, return t〉

Fig. 5: Core of MAC.

The small-step semantics of the the calculus is represented by the relation
t1 ; t2, which denotes that term t1 reduces to t2. Rule [Beta] indicates that
the calculus has call-by-name semantics, because the argument of a function,
evaluated to weak-head normal form by rule [App], is not evaluated upon
function application, but rather substituted in the body—we write t1 [x / t2]
for capture-avoiding substitution.6 Rule [If1] evaluates the conditional of an
if-then-else expression and rules [If2,If3] take the appropriate branch.

3.2 Impure Calculus

We now extend this standard calculus with the security primitives of MAC
as shown in Figure 5. Meta variable ` ranges over labels, which are assumed
to form a lattice (L ,v). Labels are types in MAC despite we place them
in a di�erent syntactic category named `—this decision is made merely for
clarity of exposition. The new type Labeled ` τ represents a (possibly side-
e�ect free) resource, which annotates a value t :: τ wrapped in Labeled with
the security level `. For example, Labeled 42 :: Labeled L Int is a public
integer. In the following, we introduce further forms of labeled resources like
mutable references (Section 6) and synchronization variables (Appendix B). The
actual implementation of MAC handles more labeled resources and provides

6 In the machine-checked proofs all variables are De Bruijn indexes.

CHAPTER 2. MAC, A VERIFIED IFC LIBRARY 35

(Labelτ)
`L v `H Γ ` t : τ

Γ ` label t : MAC `L (Labeled `H τ)

(Unlabelτ)
`L v `H Γ ` t : Labeled `L τ

Γ ` unlabel t : MAC `H τ

(Bindτ)
Γ ` t1 (MAC ` τ1) Γ ` t2 : (τ1 → MAC ` τ2)

Γ ` t1 >>= t2 : MAC ` τ2

(Returnτ)
Γ ` t : τ

Γ ` return t : MAC ` τ

Fig. 6: Typing rules for the core of MAC.

a uniform implementation for them [123].7 The constructor Labeled is not
available to the user, who can only use label and unlabel to create and inspect
labeled resources, respectively.

A con�guration 〈Σ, t〉 consists of a store Σ and a term t describing a com-
putation of type MAC ` τ and represents a secure computation at sensitivity
level `, which yields a value of type τ as result. For the moment, we ignore
the store in the con�guration (explained in Section 6). In order to enforce the
security invariants, functions label and unlabel live in the MAC monad and
the typing rules in Figure 6 ensure that the label of the resource is compatible
with the security level of the current computation, as explaind in the previous
section. We explain the relation between these typing rules and the Haskell
API type signatures in Figure 1 as follows. The typing rules in Figure 6 are
type scheme rules, i.e., there is such a judgment for every label `L and `H ∈ L ,
such that `L v `H, where labels come from either type signatures or explicit
type annotations in programs, as we showed in the previous section. The type
constraints in the API, i.e., what appears before the symbol ⇒, is placed as
a premise of the corresponding typing rule. We remark that type constrains
are built using type classes, a well-established feature of Haskell type system,
therefore we do not discuss them any further [159]. Besides those primitives,
computations are created using the standard monad operations return and
>>=. The primitive return lifts a term in the monad at security level ` by means
of typing rule [Returnτ]. Unlike the Dependency Core Calculus (DCC) [1],
secure computations at di�erent security levels do not mix in MAC: the typing
rule [Bindτ] prevents that from happening—note the same label ` is expected
both in the types of t1 and t2. Just like rules [Labelτ ,Unlabelτ], the typing
rules [Returnτ ,Bindτ] are type scheme rules, i.e., there is such a rule for each
label ` ∈ L . For easy exposition, in the following we give the type of MAC’s
constructs as Haskell APIs.

7 In our conference version [152,153], we follow the originalMAC paper [123] and rep-
resent all labeled resources using the same labeled data type Res t ::Res ` τ , where
t :: τ determines the kind of resource. For example Res (Id 42) :: Res ` (Id Int) is
a term representing a public integer. Here, for clarity of exposition, we use separate
data types for each labeled resource. This design choice does not a�ect our results.

36 4. ADDRESSING LABEL CREEP

savePwd :: Labeled H String → MAC L (MAC H ())
savePwd lpwd = do putStrLnMAC "Saving new password"

return (passwdMAC lpwd)

Fig. 7: A nested computation that writes at security level L and H .

We explicitly distinguish pure-term evaluation from top-level monadic-
term evaluation, similarly to [143]. In the calculus, MAC terms step according
to the relation c1 −→ c2, which extends the pure evaluation relation ; via
rule [Lift]. The semantics rules in Figure 5 are fairly straightforward and
follow the pattern seen in the pure semantics, where some context-rules, e.g.,
[Bind1, Unlabel1] reduce a subterm, and then the interesting rule, e.g. [Bind2,
Unlabel2], takes over. For example, rule [Bind1] executes the computation,
whose result is then passed to the continuation by means of rule [Bind2]. Rule
[Unlabel1] evaluates the argument to a labeled value and rule [Unlabel2]
returns its content. Rule [Label] creates a labeled expression by wrapping the
argument in Labeled and returns it in the security monad. It is worth pointing
out that the MAC enforces security statically, thus no run-time checks are
needed to prevent insecure �ows of information in these rules.

4 Addressing Label Creep
Let us continue the password example from the introduction. After checking
that the password is strong enough, the program replaces the old password
with the new one by updating �le /etc/shadow with the new hashed password,
using primitive passwdMAC :: Labeled H String → MAC H ()—notice that
the label of the computation is H , in order to unlabel the password and hash
it. (We treat password hashes as con�dential data as well, because they could
enable o�ine dictionary attacks otherwise.) The program should also inform
the user that the password is being saved by printing on the screen a message.
Since printing on the screen represents a public write operation, MAC assigns
type putStrLnMAC :: String → MAC L () to it. In Figure 7, function savePwd
combines passwdMAC and putStrLnMAC to save the password and inform the
user. Observe that putStrLnMAC "Saving new password" :: MAC L () and
passwdMAC lpwd :: MAC H () belong to di�erent MAC computations, which
are nested and cannot be merged for security reasons. Intuitively, MAC disal-
lows executing those operations in the same computation because otherwise
secret data (e.g., the password) could be unlabeled and then leaked on a public
channel (e.g., the screen). In particular, primitive bind only allows chaining
computations that have the same security label. For example, the program in
Figure 8 is rejected as ill-typed, because the �rst computation is labeled with
L and the second computation with H and L 6≡ H :

As a result, programs that handle data and channels with heterogeneous
labels necessarily involve nested MAC ` a computations in the return type.

CHAPTER 2. MAC, A VERIFIED IFC LIBRARY 37

savePwdBad :: MAC L ()
savePwdBad = do putStrLnMAC "Saving new password"

passwdMAC lpwd -- type error: L 6≡ H

Fig. 8: Ill-typed program (L 6≡ H).

In this case, the type of savePwd lpwd :: MAC L (MAC H ()) indicates
that it is a public computations, which prints on the screen, and that produces
a sensitive computation MAC H Int , which lastly writes to the sensitive
�le. Obviously having to nest computations complicates programming with
MAC.8 For example, savePwd lpwd requires to run the public computation
to completion �rst, and then execute the resulting sensitive computation. We
recognize this pattern of returning nested computations as a static version of
a problem known in dynamic systems as label creep [32, 128]—which occurs
when the context gets tainted to the point that no useful operations are allowed
anymore.

4.1 Semantics of Join

To alleviate the label creep problem of sequential programs, MAC features
primitive join , which safely integrates more sensitive computations into less
sensitive ones.9 MAC assigns the following type signature to primitive join :

join :: `L v `H ⇒ MAC `H τ → MAC `L (Labeled `H τ)

Intuitively, function join runs the computation of type MAC `H τ and wraps
the result into a labeled expression to protect its sensitivity. As we will show
in Section 7.5, programs written using the monadic API, label , unlabel , and
join satisfy progress-insensitive noninterference (PINI), where leaks due to non-
termination of programs are ignored. This design decision is similar to that
taken by mainstream IFC compilers (e.g., [51,100,137]), where the most e�ective
manner to exploit termination takes exponential time in the size (of bits) of the
secret [4].

Figure 9 extends the category of terms with the new term join t . Rule
[Join] formalizes the semantics of join using big-step semantics—similar to
other work [123, 145], we restrict ourselves to terminating computations. We
write 〈Σ, t〉 ⇓ 〈Σ′, v〉 if and only if v is a value and 〈Σ, t〉 −→∗ 〈Σ′, v〉, where
relation −→∗ denotes the re�exive transitive closure of the stepping relation

8 Remember that Haskell employs lazy evaluation, thus the nested computation is not
automatically evaluated, but needs to be explicitly executed. Only trusted code can
force the evaluation of MAC computations through runTCB.

9 The join primitive of MAC is unrelated to the monadic primitive join::Monad m ⇒
m (m a)→ m a of the Haskell prelude.

38 5. EXCEPTION HANDLING

Terms: t ::= · · · | join t

(Join)
〈Σ, t〉 ⇓ 〈Σ′, return t ′〉

〈Σ, join t〉 −→ 〈Σ′, return (Labeled t ′)〉

Fig. 9: Calculus with join .

−→. Rule [Join] executes the secure computation t ⇓ return t ′ and wraps
the result t in Labeled to protect its sensitivity.10

Revisited Example. The following program savePwd ′ simpli�es the previous
program savePwd in Figure 7 by replacing return with join .

savePwd ′ :: Labeled H String → MAC L ()
savePwd ′ lpwd = do putStrLnMAC "Saving new password"

join (passwdMAC lpwd)
putStrLnMAC "Password saved"

Compare the two versions of the program. The return type of savePwd ′ does
not involve a nested computation and thus it does not suspend the execution
of the sensitive computation passwdMAC, which then occurs directly after the
�rst public print statement.

5 Exception Handling
Exceptions are a standard programming language mechanism that abort the
execution of a program when an anomalous condition arises. When a pro-
gram raises an exception, exception handling primitives allow programmers
to detect these conditions and, if recovery is possible, resume execution after-
wards. Unfortunately, it is impractical to write real-world programs in MAC
as it has been presented so far: the library does not feature exception handling
primitives. For example, consider again the program savePwd ′ from above. If
primitive passwdMAC fails due to some IO exception, e.g., �le etc/shadow has
already been opened or does not exist, the whole program crashes. Failing to
support exceptions not only makes writing real-world programs impractical,
but it may also result in information leakage. Intuitively, exceptions a�ect the
control �ow of a program, and an uncaught exception can propagate through-
out a program and eventually crash it, potentially suppressing public events.
For example, if passwdMAC throws an exception, the program aborts before print-
ing "Password saved" on the screen. Observe that, such behavior constitutes
a leak, because the failure comes from a sensitive context, i.e., passwdMAC lpwd ,
10 We refrain from using label t ′ because we will soon add exceptions to secure com-

putations.

CHAPTER 2. MAC, A VERIFIED IFC LIBRARY 39

Types: τ ::= · · · | χ
Values: v ::= · · · | ξ | throw t
Terms: t ::= · · · | catch t1 t2

(Bindχ)
〈Σ, throw t1 >>= t2〉 −→ 〈Σ, throw t1〉

(Catch1)
〈Σ, t1〉 −→ 〈Σ′, t ′1〉

〈Σ, catch t1 t2〉 −→ 〈Σ′, catch t ′1 t2〉

(Catch2)
〈Σ, catch (return t1) t2〉 −→ 〈Σ, return t1〉

(Catch3)
〈Σ, catch (throw t1) t2〉 −→ 〈Σ, t2 t1〉

Fig. 10: Exception handling primitives.

and therefore can depend on the value of the secret password. To remedy this
situation, MAC features the following exception handling primitives, where χ
represents the exception type:

throw :: χ→ MAC ` τ
catch :: MAC ` τ → (χ→ MAC ` τ)→ MAC ` τ

Primitive throw simply raises an exception and aborts the current computation.
Then, the exception propagates until it reaches the �rst surrounding catch
block, which passes it to the exception handler in order to recover from the
failure. Section 5.1 formalizes the semantics of these primitives and Section 5.2
discusses some subtleties in the interaction between exceptions and join .
5.1 Calculus

Figure 10 adds the exception type χ and extends the category of terms with the
exception value ξ, and exception handling primitives throw t , and catch t1 t2.11

Rule [Bindχ] aborts a program whenever the �rst part of the computation
raises an exception (throw t), which simply propagates. Then, term catch t1 t2
executes the computation t1 via rule [Catch1], and returns the result via rule
[Catch2], if the computation succeeds , or executes the exception handler t2
via rule [Catch3], if the computation fails with an exception.
5.2 Exceptions and Join

The interplay between exceptions and join is delicate and security might be at
stake if these two features were combined naively [59,143]. The type signatures
11 For simplicity, we consider a single exception value ξ :: χ.

40 6. REFERENCES

Values: v ::= · · · | Labeledχ t

(Joinχ)
〈Σ, t〉 ⇓ 〈Σ′, throw t ′〉

〈Σ, join t〉 −→ 〈Σ′, return (Labeledχ t ′)〉

(Unlabelχ)
unlabel (Labeledχ t) ; throw t

Fig. 11: Secure interaction between join and exceptions.

of the exception handling primitives show that exceptions can be thrown in
any context, but can only be caught in a computation at the same security
level for security reasons. Notice that it would insecure to propagate sensitive
exceptions, i.e., exceptions raised in a sensitive MAC computation, to public
computations. Intuitively, sensitive exceptions could a�ect the control �ow of
public computations and may leak through implicit �ows, e.g., by suppressing
an observable event.12 In our calculus, join is the only primitive that combines
computations with di�erent labels and thus is potentially vulnerable to this
attack. In order to close leaks via exceptions, MAC modi�es the semantics
of join to mask exceptions, preventing them to propagate to less sensitive
computations, similar to previous work [59, 143].

To implement this countermeasure, Figure 11 adds a new internal construc-
tor Labeledχ t that masks an exception t :: χ inside a labeled value of type
Labeled ` τ , for some label ` and type τ . Then, rule [Joinχ] masks the ex-
ception thrown in a nested computation using the new constructor, so that
the exception is not propagated further, but rather hidden inside a labeled
value. As a result, primitive join always returns a labeled value, regardless
of whether the nested computation has succeeded or failed. Since labeled val-
ues are opaque, the only way to detect if an exception was raised is to use
primitive unlabel , which rethrows it via rule [Unlabelχ]. Since unlabel is
subject to the no read-up rule, sensitive exceptions remain unobservable from
less sensitive computations and only sensitive computations can recover from
them. As a result, the program savePwd ′ from above prints "Password Saved"
even though passwdMAC might have actually failed: it would be insecure to
do otherwise! The only way to recover from a failure of passwdMAC without
compromising security requires adding an appropriate exception handler, e.g,
catch (passwdMAC pwd) handler , and then lifting the whole computation with
join .

6 References
Mutable references are an imperative feature often needed to boost the per-
formance of programs. Unsurprisingly, references represent yet another com-
munication channel that may lead to information leakage, therefore care is
needed when adding this feature to MAC. To track information �ows and en-
12 We refer interested readers to [123] for further details about this attack.

CHAPTER 2. MAC, A VERIFIED IFC LIBRARY 41

fetchDictMAC :: String → MAC L [String]
fetchDictMAC lang = readF ileTCB ("usr/share/dict-"++ lang)

fetchCacheDict :: Ref L (Map String [String])→ String
→ MAC L [String]

fetchCacheDict r lang = do
dicts ← read r
case lookup lang dicts of

Just dict → return dict
Nothing → do

dict ← fetchDictMAC lang
write (insert dict dicts) r
return dict

Fig. 12: fetchCacheDict is a cached version of fetchDictMAC.

force security, MAC assigns a �xed security label to references. For example,
a reference labeled with ` stores data at security level `. Then, MAC provides
the following monadic API to create, read, and write references securely.13

data Ref ` τ

new :: `L v `H ⇒ τ → MAC `L (Ref `H τ)
read :: `L v `H ⇒ Ref `L τ → MAC `H τ
write :: `L v `H ⇒ τ → Ref `H τ → MAC `L ()

The type signature of these operations constraints the labels of the compu-
tation and the reference according to the no write-down and no read-up rules,
like those of label and unlabel in Figure 1. In particular, with these API, com-
putations cannot create or write to less sensitive references and, conversely,
read from more sensitive references. The following example illustrates the use
of references in MAC.
Example. Consider extending the program isWeak to reject passwords that
are vulnerable to dictionary attacks. To do that, the function fetchDictMAC

in Figure 12 reads a list of words from a dictionary available in the system.
Since the content of a dictionary represents public information, MAC assigns
security level L to fetchDictMAC. The argument of the function speci�es the de-
sired language, so that, for example, fetchDictMAC "en" fetches English words
from the dictionary contained in the �le "usr/share/dict-en". To provide
even more robust results, function isWeak could test a password against multi-
ple dictionaries and thus call fetchDictMAC many times. However, dictionaries
rarely change: it would be pointless to read the same dictionary multiple times.
13 MAC implements labeled references and their operations as a simple wrapper around

standard Haskell references (IORef) and their corresponding primitives.

42 6. REFERENCES

Stores: Σ ∈ (` : Label)→ Memory `
Memory `: ts ::= [] | t : ts
Addresses: n ∈ N
Types: τ ::= · · · | Ref ` τ
Values: v ::= · · · | Ref n
Terms: t ::= · · · | new t | read t | write t1 t2

(New)
|Σ(`)| = n

〈Σ,new t〉 −→ 〈Σ(`)[n 7→ t], return (Ref n)〉

(Write1)
t1 ; t ′1

〈Σ,write t1 t2〉 −→ 〈Σ,write t ′1 t2〉

(Write2)
〈Σ,write (Ref n) t〉 −→ 〈Σ(`)[n 7→ t], return ()〉

(Read1)
t ; t ′

〈Σ, read t〉 −→ 〈Σ, read t ′〉

(Read2)
〈Σ, read (Ref n)〉 −→ 〈Σ, return Σ(`)[n]〉

Fig. 13: MAC with references.

To avoid the overhead, references enable a simple caching mechanism. In par-
ticular, function fetchCacheDict represents a memoized version of function
fetchDictMAC, which takes a public reference to a table of cached dictionaries
as an extra argument. When the language lang dictionary is needed, the func-
tion reads the cached table from the reference (dicts ← read r) and checks if
it has already been read before (lookup lang dicts). If the table contains the
dictionary (Just dict), then the function simply returns it without performing
any IO operation. Otherwise, it reads it from �le (dict ← fetchDictMAC lang),
caches the result, (write (insert dict dicts) r), and then returns it.

6.1 Semantics

Figure 13 adds mutable references and a memory store to the calculus. Memory
is compartmentalized into isolated labeled segments, one for each label of the
lattice, and accessed exclusively through the store Σ.14 For example, memory
Σ(`) belongs to the category Memory ` and contains terms at security level
`. For memories, we use the standard list interface: [] represents the empty
memory, t : ts denotes prepending term t to memory ts, and notation ts[n]

14 A split memory model simpli�es the proofs because allocation in one segment does
not a�ect allocation in another. We argue why this model is reasonable and discuss
alternatives in Section 7.

CHAPTER 2. MAC, A VERIFIED IFC LIBRARY 43

t t ′

ε`A (t) ε`A (t ′)

ε`A
ε`A

Fig. 14: Single-step simulation.

extracts the nth-element from memory ts. We writeΣ(`)[n] to retrieve the nth-
cell in the `-memory and Σ(`)[n 7→ t] for store obtained by updating the n-th
cell of memoryΣ(`) with term t . A reference value is written Ref n ::Ref ` τ
where n is an address, pointing to the n-th cell of the `-memory, which contains
a term of type τ .15

Dynamics. Secure computations create, write and read references using prim-
itives new , write and read , respectively. Rule [New] extends the `-labeled
memory with the new term and returns a reference to it.16 The notation |ts| de-
notes the length of a list and is used to compute the address of a new reference
(memories are zero-indexed). Rule [Write1] evaluates the reference and rule
[Write2] overwrites the content of the memory cell pointed by the reference
and returns unit. Similarly, [Read1] evaluates the reference and �nally rule
[Read2] retrieves the corresponding term from the store.

7 Soundness
This section formally presents the security guarantees of the sequential calcu-
lus. Section 7.1 gives an overview of the proof technique (term erasure), Sec-
tion 7.2 describes two-steps erasure, a novel technique that overcomes some
shortcomings of vanilla term erasure, Section 7.3 de�nes the erasure function
and Section 7.5 concludes with the progress-insensitive noninterference theorem
(PINI).

7.1 Term Erasure

Term erasure is a proof technique to prove noninterference in functional pro-
grams. It was �rstly introduced by Li and Zdancewic [76] and then used in a
subsequent series of work on information-�ow libraries [55, 124, 141, 143, 145].
The technique relies on an erasure function, written ε`A , which rewrites data
above the attacker’s security level `A to the special syntax node •. Once ε`A is

15 Even though MAC implements labeled reference as a wrapper around Haskell
IORef , we model references as a simple index into a labeled memory. This design
choice does not a�ect our results.

16 The labels used in the rules of memory operations (e.g., new , read , write), come
from their typing rules. In our machine-checked proof scripts, terms are annotated
with these labels, e.g., Ref H 0 denotes that Ref 0 has type Ref H τ , which are
use in the evaluation rules, e.g., to select the appropriate memory, in which to read a
reference.

44 7. SOUNDNESS

ε`A(Labeled t :: Labeled `H τ) =

{
Labeled • if `H 6v `A

Labeled ε`A(t) otherwise

ε`A(label t :: MAC `L (Labeled `H τ)) =

{
label • if `H 6v `A

label ε`A(t) otherwise

Fig. 15: Term erasure for labeled values.

de�ned, the core of the proof technique consists of proving an essential rela-
tionship between the erasure function and the stepping relation. The diagram
in Figure 14 highlights this intuition. The diagram shows that erasing sensitive
data from a term t and then taking a step (orange path) leads to the same term
obtained by �rstly taking a step and then erasing sensitive data (cyan path), i.e.,
the diagram commutes. Intuitively, if term t leaks sensitive data above `A, then
performing erasure �rst and then taking a step would not give the same term
obtained from �rst taking a step and then performing erasure—the sensitive
data leaked into t ′ would remain in ε`A(t

′). From now on, we refer to this
relationship as the single-step simulation between regular and erased terms.

7.2 Two Steps Erasure

For certain primitives of MAC, the simulation property described above is
too strict and does not hold for any de�nition of the erasure function. Even
though these primitives (e.g., new , write , join) are arguably secure, the erasure
function always removes too much or too little information and breaks the
commutativity of the simulation diagram. To formally prove security, we have
then devised a technique called two-steps erasure, which performs erasure in
two steps—a novel approach if compared with previous work [145]. Rather
than being a pure syntactic procedure, erasure introduces special constructs,
which perform erasure through additional evaluation rules. As a result, erasure
occurs in two stages along the orange path in Figure 14. In particular, erasure
rewrites a problematic primitive to an ad hoc construct, along the vertical
solid arrow, and then removes sensitive data through the reduction step of that
construct, along the horizontal curly arrow. This section and Section 10.1 later
apply two-steps erasure systematically to recover the single-step simulation
and then prove noninterference.

7.3 Erasure Function

We proceed to de�ne the erasure function for the pure calculus. Since security
labels are given as type annotations, the erasure function is type-driven. We
write ε`A(t :: τ) for the term obtained by erasing data above the attacker’s se-
curity level `A from term t with type τ . In the following, we omit the type anno-
tation when it is either irrelevant or clear from the context. Ground values (e.g.,
True) are una�ected by the erasure function and, for most terms, the function is

CHAPTER 2. MAC, A VERIFIED IFC LIBRARY 45

ε`A(〈Σ, t :: MAC `H τ〉) =

{
〈ε`A(Σ), •〉 if `H 6v `A

〈ε`A(Σ), ε`A(t)〉 otherwise

(a) Erasure for con�gurations.

ε`A(ts :: Memory `H) =

{
• if `H 6v `A

map ε`A ts otherwise

(b) Erasure for memory.

ε`A(Ref n :: Ref `H τ) =

{
Ref • if `H 6v `A

Ref n otherwise

ε`A(new t :: MAC `L (Ref `H τ)) =

{
new• ε`A(t) if `H 6v `A

new ε`A(t) otherwise

ε`A(write t1 t2) =

{
write• ε`A(t1) ε`A(t2 :: Ref `H τ) if `H 6v `A

write ε`A(t1) ε`A(t2) otherwise

(c) Erasure for references and memory primitives.

Fig. 16: Erasure for con�gurations, stores and memory primitives.

applied homomorphically, e.g., ε`A(t1 t2 :: τ) = ε`A(t1 :: τ ′ → τ) ε`A(t2 :: τ ′).
Figure 15 shows the de�nition of the erasure functions for the interesting cases.
The content of a resource of type Labeled `H τ is rewritten to • if the label
is above the attacker’s label, i.e., `H 6v `A, otherwise it is erased homomor-
phically.17 Similarly, the erasure function rewrites the argument of label to •,
if it gets labeled above the attacker’s level, or erased homomorphically other-
wise. Observe that this de�nition respects the commutativity of the diagram
in Figure 14 for rule [Label].

Figure 16 shows the erasure function for con�gurations, stores and memory
primitives. Figure 16a presents the erasure for con�gurations of the form 〈Σ, t〉,
which erases the store Σ pointwise, i.e., ε`A(Σ) = λ`.ε`A(Σ(`)), and the term
t to •, if it represents a sensitive computation, i.e., if term t has type MAC `H τ ,
where (`H 6v `A), and homomorphically otherwise. It is worth pointing
out that the erasure of sensitive computations aggressively replaces the whole
term with • only when considered inside a con�guration. When these terms

17 The special term • can have any type τ . We give the typing rules for the extended
calculus in Figure 34 in C.

46 7. SOUNDNESS

Address: a ::= · · · | •
Terms: t ::= · · · | new• t | write• t1 t2 | •

New•
〈Σ,new• t〉 −→ 〈Σ, return (Ref •)〉

Write•1
t2 ; t ′2

〈Σ,write• t1 t2〉 −→ 〈Σ,write• t1 t ′2〉

Write•2
〈Σ,write• t1 (Ref t2)〉 −→ 〈Σ, return ()〉

(Hole)
•; •

Fig. 17: Semantics of •, new• and write•.

are considered in isolation, erasure is applied homomorphically.18 Intuitively
the term alone only describes a computation, which executes and performs
side-e�ects only if paired with a store inside a con�guration.19

References. In Figure 16b, the erasure function rewrites sensitive memories to
• and public memories homomorphically. In Figure 16c erasures replaces the
address of sensitive references with • and leaves those of public references
untouched. The erasure of primitives new and write is non-standard. These
primitives perform a write e�ect and only a�ect memories at least as sensitive
as the current computation due to the no write-down rule. When these opera-
tions change sensitive memories (`H 6v `A), we apply our two-steps erasure
technique to guarantee lock-step simulation. To do that, the erasure function
replaces the constructs new and write with the constructs new• and write•.
These new terms execute according to the rules in Figure 17, which reduce
similarly to the original terms, but without performing any write operation.
For example, rule [New•] leaves the storeΣ unchanged (the argument to new•
is ignored), and simply returns a dummy reference with address •. The same
principle applies to write•. Rule [Write•1] evaluates the reference and simu-
lates rule [Write1], and rule [Write•2] skips the write operation and simply
returns unit to simulate [Write2]. Intuitively, the erased terms leave the mem-
ory store unchanged because the original reductions change only parts of the
memory above the attacker’s security level. We remark that terms •, new• and
write• and their semantics rules are introduced in the calculus due to mere
18 This is di�erent from the conference version of this work [153], where
ε`A(MAC `H τ :: t) = • if `H 6v `A. Erasing these terms homomorphically
simpli�es the formalization.

19 Observe that in [153] this was not the case, because rule [Unlabel2] and [Bind2]
were given as pure reductions (;). By separating the pure semantics from the top-
level monadic semantics, we simplify also the formalization of applicative functors
in Section 10.1.

CHAPTER 2. MAC, A VERIFIED IFC LIBRARY 47

Terms: t ::= · · · | join• t

ε`A(join t :: MAC `L (Labeled `H τ)) =

{
join• ε`A(t) if `H 6v `A

join ε`A(t) otherwise

ε`A(Labeledχ t :: Labeled `H τ) =

{
Labeled • if `H 6v `A

Labeledχ ε`A(t) otherwise

(Join•)
〈Σ, join• t〉 −→ 〈Σ, return (Labeled •)〉

Fig. 18: Erasure of join and Labeledχ and semantics of join•.

technical reasons (as explained above)—they are not part of the surface syntax
nor MAC.

Join and Exceptions. Using the erasure function, we now study the security
guarantees of primitive join and the exception handling primitives, see Figure
18. Primitive join represents a write operation because it creates a separate
context where a nested computation executes, thus we apply two-steps erasure.
The interesting case is when the nested computation is sensitive (`H 6v `A)
and the erasure function replaces join with the special term join•. Then, era-
sure is performed by rule [Join•], which immediately returns a dummy labeled
value (Labeled •) and the store unchanged. Intuitively, a sensitive computation
cannot change public memories (no write-down), and join protects the �nal
result inside a labeled value, which the attacker cannot unlabel (no read-up). As
a result, this rule captures the observational power of an attacker that runs a
terminating sensitive computation. What about nested sensitive computations
that fail with an exception? Since primitive join hides these exceptions inside a
sensitive labeled value as well (rule [Joinχ] in Figure 11), also this condition re-
mains unobservable to the attacker. Formally, the erasure function rewrites the
exception t inside a sensitive labeled value Labeledχ t to • and then masks its
exceptional nature, by replacing the constructor Labeledχ with Labeled , thus
ensuring that rule [Join•] simulates rule [Joinχ] as well. Crucially, we have
the freedom of choosing this de�nition without breaking simulation, because
no other construct can detect, either explicitly or implicitly, the di�erence. For
instance, consider rule [Unlabelχ] from Figure 11, which rethrows exceptions
hidden inside a labeled value. If the labeled value is above the attacker, then
the computation that executes unlabel must also be at least as sensitive as the
labeled value due to the typing rules (no read-up). Then, primitive unlabel gets
rewritten to • and the step is simulated by rule [Hole] instead. As a result
of that, and unlike the approach taken by Stefan et al. in [143], there are no
sensitive labeled exceptions in erased terms.

48 7. SOUNDNESS

7.4 Discussion

Term Erasure. In this work, we prove single-step simulation directly over the
small-step reduction relation using our novel two-steps erasure technique.
In contrast, previous works have proved simulation by relating the small-
step relation (upper part in Figure 14) with an `A-indexed small-step rela-
tion of the form c −→`A ε`A(c

′), which applies erasure at every reduction
step [55, 76, 124, 141, 143, 145]. These works reason about dynamic IFC lan-
guages featuring dynamic security policies (e.g., labels are run-time terms),
which complicate reasoning about sensitive data statically, and thus require a
di�erent simulation relation. In contrast, MAC does not need such an auxiliary
construction because it enforces security statically, i.e., labels are not terms but
type-level annotations, and therefore known before execution. In this light, our
erasure function can safely erase sensitive data from labeled values based on
their type. Our small-step semantics satis�es type-preservation, thus execution
does not change the type-level label annotations and we can prove single-step
simulation without the need of a special indexed small-step relation.

Masking Sensitive Exceptions. Previous work also studied the security guaran-
tees of exception handling primitives using the erasure function [143]. How-
ever, the approach proposed there preserves the exceptional state of labeled
exceptions and only removes their sensitive content. In contrast, our approach
fully masks sensitive exceptions in erased programs. Intuitively, sensitive ex-
ceptions never arise in erased programs because our erasure function always
replaces them with unexceptional labeled values. The single-step simulation
property guarantees the soundness of our rewriting approach. In particular,
primitive unlabel—the only construct that can distinguish between exceptional
and unexceptional labeled values—gets also erased as explained above.

Memory. It is known that dealing with dynamic memory allocation compli-
cates noninterference proofs [15,53]. Banerjee et al. employ a non-split memory
model, where computations at di�erent security levels share the same mem-
ory address space [15]. In that model, sensitive allocations do a�ect the global
memory layout, which in turn a�ects the address of public references. Proving
noninterference with this memory model requires establishing a bijection be-
tween public memory addresses of two executions and considering equality of
public references up to such notion [15]. Unsurprisingly, proving noninterfer-
ence with a non split-memory model requires special attention: for instance,
we have identi�ed problems with the proofs in manuscripts and articles related
to LIO [143,145]. (We refer interested readers to Appendix B of our conference
version [153] for details.) To avoid this inconvenience, our model compartmen-
talizes the memory into isolated labeled segments, so that allocations in one
segment does not a�ect the others, similar to other works [55, 145]. The fact
that GHC’s memory is non-split does not compromise our security guarantees,
because references are part of MAC’s internals and they cannot be inspected or
deallocated explicitly. However, this memory model assumes in�nite memory,

CHAPTER 2. MAC, A VERIFIED IFC LIBRARY 49

e.g., reference allocation never fails. This assumption is unrealistic: physical
resources such as memory are �nite.20 As a result, MAC is vulnerable to the
memory-exhaustion covert channel, which leaks secret information with the
same bandwidth of the termination covert channel [4].

In the conference version of this work [153], we have explored an alter-
native way to prove single-step simulation for terms new and write consists
in extending the semantics of memory operations to node •, i.e., by de�ning
| • | = • and •[• 7→ t] = •. Thanks to two-steps erasure, we can prove simula-
tion as we did here, without recurring to a non-standard memory semantics.
7.5 Progress-Insensitive Non-interference

The sequential calculus that we have presented satis�es progress-insensitive
noninterference. The proof of this result is based on two fundamental properties:
single-step simulation and determinancy of the small step semantics. In the
following, we assume well-typed terms.

Proposition 1 (Single-step Simulation)
Given two con�gurations c1 and c2, if c1 −→ c2, then ε`A(c1) −→ ε`A(c2).

Proof (Sketch). By induction on the reduction steps and typing judgment. Sen-
sitive computations are simulated by transition 〈Σ, •〉 −→ 〈Σ, •〉, obtained
by lifting rule [Hole] with [Pure]. Non-sensitive computations are simulated
by the same rule that performs the non-erased transition, except when it in-
volves some sensitive write operations, e.g., in rules [New, Write1, Write2,
Join, Joinχ], which are simulated by rules [New•, Write•1, Write•2, Join•].

Proposition 2 (Determinancy) If c1 −→ c2 and c1 −→ c3 then c2 ≡ c3.

Proof. By standard structural induction on the reductions.21

Before proving progress-insensitive noninterference, we de�ne `A-equivalence
for con�gurations.

De�nition 1 (`A-equivalence). Two con�gurations c1 and c2 are indistin-
guishable from an attacker at security level `A, written c1 ≈`A c2, if and only if
ε`A(c1) ≡ ε`A(c2).

Using Propositions 1 and 2, we show that our semantics preserves `A-equivalence.
20 Unrestricted access to shared resources often constitutes a covert channel in concur-

rent systems. The resources can be either hardware (e.g., physical memory, caches
[140] and multi-core processors) or software, such as components of the run-time sys-
tem of a high-level language. These include the scheduler [125, 126] and the garbage
collector [107] or the language evaluation strategy such as lazy evaluation [31, 151].

21 Symbol ≡ denotes equivalence up to alpha equivalence in the calculus with named
variables. In our mechanized proofs we use Bruijn indexes and we obtain syntactic
equality.

50 8. CONCURRENCY

Proposition 3 (≈`A Preservation)
If c1 ≈`A c2, c1 −→ c′1, and c2 −→ c′2, then c′1 ≈`A c′2.

By repeatedly applying Proposition 3, we prove progress-insensitive noninter-
ference.

Theorem 1 (PINI) If c1 ≈`A c2, c1 ⇓ c′1 and c2 ⇓ c′2, then c′1 ≈`A c′2.

8 Concurrency
Real world software relies on concurrency for scaling and reacting to external
inputs. Examples of concurrent applications abound, including graphical user
interfaces, web servers, chat rooms and distributed databases. Unfortunately,
extending MAC with concurrency is not trivial. In the following, we show that
running several computations simultaneously give attackers new means to
break the security guarantees of MAC. The rest of this section extends MAC
with concurrency and adds secure thread synchronization primitives, which
allow developers to write secure-by-construction concurrent programs.
8.1 Termination Attack

The previous section shows that MAC guarantees security only for terminat-
ing programs. The key observation is that primitive join leaks information via
non-termination. Intuitively, a secret computation embedded in a public com-
putation via join may loop and thus suppress public side-e�ects of the outer
computation.22 In particular, if the embedded computation loops depending on
secret information, then the control �ow of the program never returns back to
the public computation and the absence of subsequent public side-e�ects leaks
information. To illustrate this point, consider the program leak n secret in
Figure 19, which leaks the value of the nth bit of the secret through a termina-
tion attack. Intuitively, the public program starts a secret computation, which
extracts the secret (bits ← unlabel secret), and then loops if the nth bit of the
secret is 1 (when (bits !! n) loop), or otherwise returns to the public computa-
tion, which then prints the integer n on the screen.23 As a result, the program
leak 0 secret prints 0 only if the �rst bit of secret is 0; otherwise it loops and
it does not produce any public e�ect. Similarly, program leak 1 secret leaks
the second bit of secret , program leak 2 secret leaks the third bit of it and so
on.

Even though guaranteeing security only for terminating programs might
be acceptable for sequential programs, the next example demonstrates that this
security condition is too weak for concurrent systems.
22 If the physical execution time of a program depends on the value of the secret, then an

attacker with an arbitrary precise stopwatch can deduce information about the secret
by timing the program. This covert channel is known as the external timing covert
channel [24, 41]. This article does not address the external timing covert channel,
which is a harder problem and for which mitigation techniques exist [5, 168, 169].

23 MAC considers printing on the screen a public side-e�ect, i.e., printMAC :: Int →
MAC L ().

CHAPTER 2. MAC, A VERIFIED IFC LIBRARY 51

leak :: Int → Labeled H Secret → MAC L ()
leak n secret = do

joinMAC (do bits ← unlabel secret
when (bits !! n) loop
return ())

printMAC n

Fig. 19: Termination leak.

magnify :: Labeled H Secret → MAC L ()
magnify secret = for [0 . . |secret |] (λn → fork (leak n secret))

Function magnify leaks the whole secret by spawning as many threads
as bits in the secret, i.e., |secret |, where each thread runs the one-bit attack
described above and n matches the bit being leaked (e.g., n = 0 for the �rst
bit, n = 1 for the second one, etc.). This example shows that concurrency
magni�es the bandwidth of the termination covert channel to be linear in the
size (of bits) of secrets [141], which permits to leak any secret e�ciently.24

To securely support concurrency, MAC forces programmers to decouple
MAC computations with sensitive labels from those performing observable
side-e�ects—an approach also taken in LIO [141]. As a result, non-terminating
computations based on secrets cannot a�ect the outcome of public events. To
enforce this separation, MAC replaces join by fork :

fork :: `L v `H ⇒ MAC `H ()→ MAC `L ()

Informally, it is secure to spawn sensitive computations (of type MAC `H ())
from less sensitive ones (of type MAC `L ()) because that decision depends
on data at level `L, which is no more sensitive (`L v `H). From now on, we
call sensitive (non-sensitive) threads those executing MAC computations with
a label non-observable (observable) to the attacker. In the two-point lattice, for
example, threads running MAC H () computations are sensitive, while those
running MAC L () are observable by the attacker. In order to prove that the
API above is secure, the next section formalizes the semantics of concurrent
MAC.
8.2 Semantics

This section extends the sequential calculus from Section 3 with concurrency,
see Figure 20. Figure 20a introduces global con�gurations of the form 〈ω,Σ, Φ〉
24 Furthermore, the presence of threads introduce the internal timing covert channel

[138], a channel that gets exploited when, depending on secrets, the timing behavior
of threads a�ect the order of events performed on public-shared resources. Since
the same countermeasure closes both the internal timing and termination covert
channels, we focus on the latter.

52 8. CONCURRENCY

Scheduler State: ω
Pool Map : Φ ∈ (` : Label)→ (Pool `)
Thread Pool `: ts ::= [] | t : ts
Con�guration: c ::= 〈ω,Σ,Φ〉
Sequential Event `: s ::= ∅ | fork(t :: τ)
Concurrent Event `: e ::= Step | Stuck | Done | Fork ` n
Terms: t ::= · · · | fork t

(a) Syntax of concurrent calculus.

Φ(`)[n] = t1 〈Σ1, t1〉 −→s 〈Σ2, t2〉 ω1
(`,n,e)−−−−→ ω2

〈ω1, Σ1, Φ〉 ↪→ 〈ω2, Σ2, Φ(`)[n 7→ t2]〉

(b) Scheme rule for concurrent semantics.

(SFork)
〈Σ, fork t〉 −→fork(t) 〈Σ, return ()〉

(Bind1)
〈Σ, t1〉 −→s 〈Σ′, t ′1〉

〈Σ, t1 >>= t2〉 −→s 〈Σ′, t ′1 >>= t2〉

(Catch1)
〈Σ, t1〉 −→s 〈Σ′, t ′1〉

〈Σ, catch t1 t2〉 −→s 〈Σ′, catch t ′1 t2〉

(c) Decorated Sequential Semantics (interesting rules).

Fig. 20: Calculus with concurrency.

composed by an abstract scheduler stateω, a storeΣ and a pool mapΦ. Threads
are secure computations of type MAC ` () and are organized in isolated thread
pools according to their security label. A pool ts in the category Pool ` contains
threads at security level ` and is accessed exclusively through the pool map. For
manipulating thread pools and pool maps, we use the same notation de�ned
for stores and memories. Term fork t spawns thread t and replaces join in the
calculus. Without join , constructor Labeledχ becomes redundant and is also
removed. The concurrent calculus includes also synchronization primitives
[123], which are formalized in Appendix B.

Dynamics. Relation c1 ↪→ c2 denotes a concurrent reduction step, where con-
�guration c1 reduces to con�guration c2. Figure 20b shows the scheme rule
for c1 ↪→ c2 (all concurrent reductions follow this pattern), the concrete rules

CHAPTER 2. MAC, A VERIFIED IFC LIBRARY 53

(Step)
ω

(`,n,Step)−−−−−−→ ω′ 〈Σ,Φ(`)[n]〉 −→∅ 〈Σ′, t ′〉
〈ω,Σ,Φ〉 ↪→ 〈ω′, Σ′, Φ(`)[n 7→ t ′]〉

(CFork)
ω

(`L,n,Fork `H m)−−−−−−−−−−→ ω′ m = |Φ(`H)|
〈Σ,Φ(`L)[n]〉 −→fork(t::MAC `H ()) 〈Σ, t ′〉 Φ′ = Φ(`H)[m 7→ t]

〈ω,Σ,Φ〉 ↪→ 〈ω′, Σ, Φ′(`L)[n 7→ t ′]〉

(Done)
ω

(`,n,Done)−−−−−−−→ ω′ Φ(`)[n] = v

〈ω,Σ,Φ〉 ↪→ 〈ω′, Σ, Φ〉

(Stuck)
ω

(`,n,Stuck)−−−−−−−→ ω′ 〈Σ,Φ(`)[n]〉 6−→
〈ω,Σ,Φ〉 ↪→ 〈ω′, Σ, Φ〉

Fig. 21: Concurrent Semantics.

are presented later in Figure 21. In the scheme rule, the relation ω1
(`,n,e)−−−−→ ω2

represents a transition in the scheduler, which decides to run thread identi-
�ed by (`,n), based on the initial state ω1. Then, the scheme rule retrieves
that thread from the con�guration (Φ(`)[n] = t1) and runs it through the deco-
rated sequential semantics (explained below). The scheme rules uses concurrent
events to inform the abstract scheduler about the evolution of the global con-
�guration, so that it can realize concrete scheduling policies and update its
state accordingly. Speci�cally, event Step signals that the running thread has
stepped, event Fork ` n informs the scheduler that the running thread has
forked a new thread identi�ed by (`,n), and event Done and Stuck signal that
the running thread has terminated and got stuck (e.g., on a synchronization
variable), respectively. In the concrete rules, the sequential event s from the dec-
orated semantics, i.e., 〈Σ, t1〉 −→s 〈Σ, t2〉, determines what concurrent event
(Step or Fork) gets passed to the scheduler. Lastly, the scheme rule updates
the con�guration with the resulting scheduler state, memory and thread pool,
i.e., 〈ω2, Σ2, Φ(`)[n 7→ t2]〉.

Decorated Semantics. Figure 20c shows the interesting rules of the decorated
semantics. Rule [SFork] is the only rule that explicitly generates event fork(t),
rules [Bind1,Catch1] simply propagate the event generated in the premise,
and all the other rules generate the empty event ∅.

Concurrent Semantics. Figure 21 shows the concrete concurrent semantics,
wherein each rule generates the appropriate concurrent event for the scheduler
based on the state of the running thread and the sequential event. Rule [Step]
sends event Step to the scheduler, because the thread generates sequential
event ∅. In rule [CFork], the running thread forks a child thread (event fork(t ::
MAC `H ()), which is placed in the thread pool Φ(`H) in the free position
m = |Φ(`H)|. Then, the rule sends event Fork `H m to the scheduler and

54 8. CONCURRENCY

Scheduler State: ω ::= (`,n) : ω | []

(`,n) : ω
(`,n,Step)−−−−−−→RR ω ++ [(`,n)] (`,n) : ω

(`,n,Stuck)−−−−−−−→RR ω ++ [(`,n)]

(`L,n1) : ω
(`L,n1,Fork `H n2)−−−−−−−−−−−→RR ω ++ [(`H,n2), (`L,n1)]

(`,n) : ω
(`,n,Done)−−−−−−−→RR ω

Fig. 22: Round-robin scheduler.

updates the thread pool with the child and the parent thread. Rule [Done] sends
event Done to the scheduler because the scheduled thread has terminated, i.e.,
term Φ(`)[n] = v is a value, and leaves the store and the pool map unchanged
(the semantics does not remove terminated threads from the thread pool). In
rule [Stuck], the notation Φ(`)[n]〉 6−→means that the thread is stuck, i.e., it is
not a value and cannot reduce, thus the rule sends event Stuck to the scheduler.

The concurrent semantics presented above features an abstract scheduler,
which allows to study the security guarantees of MAC in isolation from the
concrete scheduling policy. Since the implementation of MAC relies on GHC’s
round-robin scheduler for scheduling threads [86], the next section instantiates
the abstract scheduler with a concrete round-robin scheduler.
8.3 Round Robin Scheduler

Figure 22 presents a model of a round-robin scheduler with time-slot of one step
and state consisting of a queue of thread identi�ers to be scheduled. The queue
ω consists concretely of a list of thread identi�ers, where the �rst element in the
list identi�es the next thread in the schedule. The reduction rules formalize the
round-robin scheduling policy. The rules have formω1

(`,n,e)−−−−→ ω2, where (`,n)
identi�es the next running thread and concurrent event e informs the scheduler
about its execution, similar to the abstract relation used in the concurrent
semantics above. The rules reduce only with a non-empty queue so that the
scheduler steps only if there is a thread to schedule. Then, the scheduler state
determines the running thread, i.e., the next thread in the queue, and the rules
update the state uniquely based on the event. This design choice allows de�ning
the scheduling policy in isolation from the concurrent semantics. Event Step
and Stuck inform the round robin scheduler that the running thread has used
up its time slot, thus the scheduler moves it to the back of the queue. Similarly,
event Fork `H n2 informs the scheduler that the running thread (`L,n1) has
spawned child thread (`H,n2), which is added to the back of the queue with
its parent. If the running thread terminates, event Done , the scheduler simply
removes it from the queue, which then contains only alive threads.

Before proving security for the concurrent calculus, we add a functor alge-
braic structure to labeled data, in a way that it can be processed through classic
functional programming patterns that do not incur in security checks.

CHAPTER 2. MAC, A VERIFIED IFC LIBRARY 55

9 Flexible Labeled Values
This section extends the API of labeled values with new operations that al-
low to perform pure (side-e�ect free) computations with labeled data. These
primitives make labeled data �exible because they allow programs to process
sensitive data without using unlabel and label , and thus avoid the correspond-
ing no read-up and no write-down restrictions. Furthermore, these primitives
foster a functional programming style—they also avoid the use of other im-
perative operations, such as join or fork in sequential and concurrent MAC,
respectively. Section 9.1 gives a broad description of the API of �exible labeled
data and Section 9.2 argues for its �exibility with several examples. Lastly, Sec-
tion 9.3 adds these primitives to our calculus and discusses some subtleties
when adding these features to languages with di�erent evaluation strategies,
wherein a naive implementation could open the termination channel.
9.1 Functors and Relabeling

Intuitively, a functor is a container-like data structure which provides a method
called fmap that applies (maps) a function over its contents, while preserving
its structure. Lists are the most canonical example of a functor data structure.
For lists, method fmap corresponds to the standard function map, which ap-
plies a function to each element of a list, e.g., fmap (+1) [1, 2, 3] ≡ [2, 3, 4].
Adding a functor structure to labeled data simply requires implementing a sim-
ilar method fmap, so that, for example, executing fmap (+1) (Labeled 42)
produces Labeled 43. Together with fmap, MAC’s API for �exible labeled data
includes the following methods:

fmap :: (a → b)→ Labeled ` a → Labeled ` b
〈∗〉 :: Labeled ` (a → b)→ Labeled ` a → Labeled ` b
relabel :: `L v `H ⇒ Labeled `L a → Labeled `H a

Notice the type-signature of fmap, which allows processing labeled data at
any security level ` with an arbitrary pure function. Intuitively, this primitive
is secure because Haskell’s type system ensures that the function is side-e�ect
free and the result remains labeled at the same security level `. To aggregate
data at possibly di�erent security levels MAC provides primitives 〈∗〉 and
relabel . In�x operator 〈∗〉 supports function application within labeled values.
It allows applying a function wrapped in a labeled value (Labeled ` (a → b))
to a labeled argument (Labeled ` a) to produce a labeled value that contains the
result of the function application (Labeled ` b). Primitive relabel upgrades the
security level of labeled data—a feature useful to “lift” data at di�erent security
levels to a common upper bound label and then combine it through operator
〈∗〉.
Discussion. In functional programming, operator 〈∗〉 is part of the applicative
functor [89] interface, which in combination with fmap, is used to map func-
tions over functors. Note that if labeled values were full-�edged applicative

56 9. FLEXIBLE LABELED VALUES

isShort :: Labeled H String → MAC L (Labeled H Bool)
isShort lpwd = do

join (do
pwd ← unlabel lpwd
return (|pwd | 6 5))

Fig. 23: The program isShort “simply” checks if the password is short.

functors, our API would also include the primitive pure :: a → Labeled ` a .
This primitive brings arbitrary values into labeled values, which might break
the security principles enforced by MAC. Instead of pure , MAC centralizes the
creation of labeled values in the primitive label . Observe that, by using pure ,
a programmer could write a program of type MAC H (Labeled L a), where
the resulting labeled data is sensitive rather than public. We argue that this
situation ignores the no-write down principle, which might bring confusion
among users of the library. More importantly, freely creating labeled values is
not compatible with the security notion of cleareance, where secure computa-
tions have an upper bound on the kind of sensitive data they can observe and
generate. This notion becomes useful to address certain covert channels [166]
as well as poison-pill attacks [59]. While MAC does not yet currently support
cleareance, it is an interesting direction for future work.
9.2 Examples

The API of �exible labeled values (i.e., functions fmap, 〈∗〉, and relabel) al-
lows functional programmers to manipulate sensitive data concisely. Without
primitives such as fmap, writing even simple functions over labeled data be-
comes cumbersome. For example, consider the program isShort in Figure 23,
which simply checks if a secret password is less than 5 characters long. Without
fmap, the program has to use join just to lift a secret computation that unla-
bels the password and computes its length. Because of the security restrictions
of MAC, the program is longer than it should and carries an imprecise type.
In fact, isShort lpwd has a monadic type, i.e., MAC L (Labeled H Bool),
even though the program does not perform any IO, but just because it relies
on join to convert a secret computation into labeled data. Even worse, concur-
rent MAC does not feature the primitive join and the whole program must
be completely restructured.25 Compare the program from Figure 23 with the
following program that uses fmap instead:

isShort ′ :: Labeled H String → Labeled H Bool
isShort ′ lpwd = fmap (λpwd → |pwd | 6 5) lpwd

25 Forking a thread does not help because threads cannot return their result directly for
security reasons—doing so would reintroduce the termination channel!

CHAPTER 2. MAC, A VERIFIED IFC LIBRARY 57

The function isShort ′ computes the same result of isShort , but it does so
in only one line of code and it carries an accurate type (it does not involve any
MAC computation). Furthermore, this program works for both sequential and
concurrent MAC. Notice that isShort ′ does not rely on any security primitive
other than fmap. In particular, the lambda expression does not need to unlabel
the password—it has free access to the unlabeled password (pwd)—nor it needs
to label the result explicitly—the type signature of fmap ensures that the result
remains at the same security level.

The strength of a password is often measured by combining various metrics,
such as the length and the presence of special characters and digits. Suppose
now that some third-party API function provides such syntactic checks in the
form of the following MAC labeled function isWeak:

isWeak :: Labeled L′ (String → Bool)

Haskell type system guarantees that the function inside the labeled value can-
not leak data: it has pure type String → Bool . However the third party has
labeled the function with its own label L′ in order to restrict access to it. To keep
the code of our password-checker isolated from the third-party code, while still
being able to make use of it, we incorporate the new label L′ into the system
and modify the security lattice as follows:

L

H

L′

v

w

The lattice re�ects our mistrust over the third-party code by making L and L′

incomparable elements. Thanks to MAC’s security guarantees, we can safely
run the third-party mistrusted code with our user’s secret password:

secure :: Labeled H String → Labeled H Bool
secure lpwd = (relabel isWeak) 〈∗〉 lpwd

In the code above, primitive relabel upgrades the function isWeak to secu-
rity level H (observe that L′ v H in the lattice). Then, the applicative functor
operator 〈∗〉 applies the relabeled function to the secret password (lpwd) and
gives the result, protected at security level H .
9.3 Semantics

In order to study the security guarantees of the API of �exible labeled data, we
incorporate these primitives in our calculus. Figure 24 adds nodes fmap t1 t2,
t1 〈∗〉 t2 and relabel t to the category of terms. Rule [Fmap] relies on the fact

58 9. FLEXIBLE LABELED VALUES

Terms: t ::= · · · | fmap t1 t2 | t1 〈∗〉 t2 | relabel t

(Fmap)
fmap t1 t2 ; (Labeled t1) 〈∗〉 t2

(〈∗〉1)
t1 ; t ′1

t1 〈∗〉 t2 ; t ′1 〈∗〉 t2

(〈∗〉2)
t2 ; t ′2

(Labeled t1) 〈∗〉 t2 ; (Labeled t1) 〈∗〉 t ′2

(〈∗〉3)
(Labeled t1) 〈∗〉 (Labeled t2) ; Labeled (t1 t2)

(Relabel1)
t ; t ′

relabel t ; relabel t ′

(Relabel2)
relabel (Labeled t) ; Labeled t

Fig. 24: Calculus with �exible labeled values.

that applicative functors generalize simple functors and reduces fmap t1 t2
to (Labeled t1) 〈∗〉 t2, by simply lifting the function to labeled value. Then,
rule [〈∗〉1] and [〈∗〉2] evaluate the function and the argument to a labeled
value, respectively. Lastly, rule [〈∗〉3] applies the function to the argument and
wraps the result in a labeled value. Rule [Relabel1] evaluates the argument
to a labeled value and then rule [Relabel2] upgrades its label. Since labels are
only static type-annotations, relabel leaves the content of the labeled value
unchanged. We remark that these primitives are secure both in the concur-
rent and sequential calculus. Appendix A presents additional evaluation rules
that deal with exceptional labeled values, i.e., constructor Labeledχ, which is
present only in the sequential calculus.

Discussion. Extending MAC with the API of �exible labeled values presented
above might seem insecure at �rst sight. After all, these primitives (e.g., fmap
and 〈∗〉) allow arbitrary pure functions to freely access secret data from public
contexts as well. Crucially, even functions deemed “pure” by Haskell type-
system can exhibit certain e�ects, such as non-termination. Then, it is reason-
able to study whether these primitives are vulnerable to termination attacks.
Consider the following variant of the termination attack from Figure 19, which
attempts to leak the n-th bit of the secret through fmap.

leak :: Int → Labeled H Secret → MAC L ()
leak n secret =
let result = fmap loopOn secret in

printMAC n
where loopOn = λbits → if (bits !! n) then loop else bits

CHAPTER 2. MAC, A VERIFIED IFC LIBRARY 59

Function leak applies function loopOn on the secret using fmap and then
performs a public side-e�ect, i.e., printMAC n , which prints the number n on
the screen. As seen previously, the code leaks information if it can suppress the
public side-e�ect based on sensitive information, i.e., the value of the nth bit of
the secret. Interestingly, the evaluation strategy of the language determines the
outcome of the attack. With call-by-value, the attack succeeds: primitive fmap
applies function loopOn to the secret eagerly, and thus might trigger the loop
and suppress the public print. However, with call-by-name, the attack fails: the
function application, i.e., fmap loopOn secret , is delayed—the result is not
needed in the rest of the program—and the program always prints number n
on the screen. In call-by-name languages, forcing the loop requires unlabeling
the result: something that only a secret computation at security level H can do!
Nevertheless, also call-by-value languages can support the �exible labeled value
API securely, but the implementation requires more care to avoid introducing
the termination channel from above. To avoid leaking, the key insight is to
make the Labeled data-type non-strict, by means of explicit suspension and
forcing functions. For example, the following de�nition of Labeled is secure
even in strict languages with fmap.

data Labeled ` a = Labeled (()→ a)

With this de�nition, a labeled value does not store a piece of data directly, but
hides it behind a suspension function of type () → a , which must be forced,
i.e., applied to unit, in order to extract the data. Thanks to the the suspen-
sion, labeled values and fmap behave non-strictly and do not leak information
through the termination channel.

After extending our calculus with concurrency and �exible labeled data,
we now proceed to study the security guarantees of our concurrent model.

10 Soundness of Concurrent Calculus
This section presents a scheduler-parametric progress-sensitive noninterfer-
ence proof for the concurrent calculus. Firstly, Section 10.1 extends the erasure
function for the new features (i.e., concurrency and �exible labeled values).
Then, to obtain a scheduler-parametric noninterference proof, Section 10.2
formalizes the properties that concrete schedulers must satisfy to preserve se-
curity of the whole model. In particular, the noninterference proof is valid for
deterministic schedulers which ful�ll progress and noninterference themselves,
i.e., schedulers cannot leverage sensitive information in threads to determine
what to schedule next. Section 10.3 proves the scheduler-parametric progress-
sensitive noninterference theorem and derives security for MAC by simply
instantiating the main theorem with the round-robin scheduler.
10.1 Erasure Function

Figure 25 shows the erasure function for the concurrent calculus. The erasure
function for concurrent con�gurations of the form 〈ω,Σ, Φ〉 is per component

60 10. SOUNDNESS OF CONCURRENT CALCULUS

ε`A(〈ω,Σ,Φ〉) = 〈ε`A(ω), ε`A(Σ), ε`A(Φ)〉

(a) Erasure for concurrent con�guration.

ε`A(ts :: Pool `H) =

{
• if `H 6v `A

map ε`A ts otherwise

(b) Erasure for thread pool.

ε`A(fork t) =

{
fork• ε`A(t :: MAC `H ()) if `H 6v `A

fork ε`A(t) otherwise

(c) Erasure of fork.

ε`A(fork(t :: MAC `H ())) =

{
fork•(ε`A(t)) if `H 6v `A

fork(ε`A(t)) otherwise

(d) Erasure for sequential fork event.

ε`A(Fork `H n) =

{
Step if `H 6v `A

Fork `H n otherwise

(e) Erasure for concurrent fork event.

Fig. 25: Erasure function for concurrent calculus.

(Figure 25a). The erasure of the abstract scheduler state ω is scheduler-speci�c
and the erasure of the pool map Φ is pointwise, i.e., ε`A(Φ) = λ`.ε`A(Φ(`)),
just like for the storeΣ. Then, the erasure function rewrites secret thread pools
to node • and is applied homomorphically for public thread pools, just like for
memories (Figure 25b). Since primitive fork performs a write e�ect (it adds a
new thread to a thread pool), Figure 25c applies the two-steps erasure technique.
In particular, the erasure function replaces fork with a new primitive fork•,
when it forks a secret thread (`H 6v `A), or is applied homomorphically to the
child thread otherwise. Similarly, the erasure function rewrites the sequential
event fork(t) to fork•(ε`A(t)), if the child thread is secret (25d), or follows ho-
momorphically as well otherwise. The empty event ∅ is instead left unchanged
by the erasure function, i.e., ε`A(∅) = ∅. Erasure for concurrent events is in-

CHAPTER 2. MAC, A VERIFIED IFC LIBRARY 61

Sequential Events: s ::= · · · | fork•(t)
Terms: t ::= · · · | fork• t

(SFork•)
〈Σ, fork• t〉 −→fork•(t) 〈Σ, return ()〉

(CFork•)
ω

(`L,n,Step)−−−−−−−→ ω′ 〈Σ,Φ(`L)[n]〉 −→fork•(t) 〈Σ, t
′〉

〈ω,Σ,Φ〉 ↪→ 〈ω′, Σ, Φ(`L)[n 7→ t ′]〉

Fig. 26: Sequential and concurrent semantics of fork•.

teresting. In particular, in order to hide the number of secret threads from the
scheduler, the erasure function masks secret fork events, e.g., event Fork `H n
where `H 6v `A, and replaces them with event Step (Figure 25e). All the other
concurrent events are not a�ected by the erasure function.

Dynamics. In the sequential calculus, decorated rule [SFork•] evaluates prim-
itive fork• and generates event fork•(t) (Figure 26), so that it simulates rule
[SFork] from Figure 20c when forking a secret thread. Similarly, the new con-
current rule [CFork•] detects when a public thread forks a secret thread (event
fork•(t)) and simulates rule [CFork] from Figure 21. The rule ignores the
child thread, which is not added to the thread pool, and sends event Step to
the scheduler instead.

Context-Aware Erasure. A common challenge when reasoning about secu-
rity of IFC libraries is that the sensitivity of a term may depend on context
where it gets used. For example, consider the primitive relabel , which up-
grades the security level of a labeled term. A public number, e.g., Labeled 42 ::
Labeled L Int , should be treated as secret when it appears in the context
of relabel , e.g., relabel (Labeled 42) :: Labeled H Int . Doing otherwise, i.e.,
erasing the term homomorphically, breaks the single-step simulation property
because sensitive data produced by relabel remains after erasure. For example,
with homomorphic erasure, εL(relabel (Labeled 42) :: Labeled H Int) =
relabel εL(Labeled 42 :: Labeled L Int), which reduces along the orange
path in the simulation diagram from Figure 14 to Labeled 42 6≡ Labeled •, ob-
tained along the cyan path by εL(Labeled 42 :: Labeled H Int), thus breaking
commutativity of rule [Relabel2]. Then, one might be tempted to stretch the
de�nition of the erasure function to accommodate the problematic cases above.
Unfortunately, this approach does not scale: the new erasure function will
necessarily break the simulation diagram of some other rule. We support this
statement by showing that this is the case for an arbitrary erasure function ε′L
that satis�es the simulation diagram for rule [Relabe2] Observe that the new
erasure function should behave di�erently for public labeled values embedded
in relabel , including relabel t :: Labeled H τ , where t :: Labeled L τ . Suppose

62 10. SOUNDNESS OF CONCURRENT CALCULUS

ε`A(relabel t :: Labeled `H τ) =

{
relabel• ε`A(t) if `H 6v `A

relabel ε`A(t) otherwise

ε`A(t1 〈∗〉 t2 :: Labeled `H τ) =

{
ε`A(t1) 〈∗〉• ε`A(t2) if `H 6v `A

ε`A(t1) 〈∗〉 ε`A(t2) otherwise

ε`A(fmap t1 t2 :: Labeled `H τ) =

{
fmap• ε`A(t1) ε`A(t2) if `H 6v `A

fmap ε`A(t1) ε`A(t2) otherwise

(a) Erasure for �exible labeled values.

Terms: t ::= · · · | relabel• t | t1 〈∗〉• t2 | fmap• t1 t2

(Relabel•1)
t ; t ′

relabel• t ; relabel• t ′

(Relabel•2)
relabel• (Labeled t) ; Labeled •

(〈∗〉•1)
t1 ; t ′1

t1 〈∗〉• t2 ; t ′1 〈∗〉• t2

(〈∗〉•2)
t2 ; t ′2

(Labeled t1) 〈∗〉• t2 ; (Labeled t1) 〈∗〉• t ′2

(〈∗〉•3)
(Labeled t1) 〈∗〉• (Labeled t2) ; Labeled •

(Fmap•)
fmap• t1 t2 ; (Labeled •) 〈∗〉• t2

(b) Semantics of fmap•, 〈∗〉• and relabel•.

Fig. 27: Security of �exible labeled values.

we de�ned εL(relabel t :: Labeled H τ) = relabel ε′L(t :: Labeled L τ),
for some suitable ε′L that exhibits the desired behavior, e.g., ε′L(Labeled 42 ::
Labeled L Int) = Labeled •. Even though this de�nition respects the simula-
tion diagram of rule [Relabel2], introducing a di�erent erasure function in a
context-sensitive way is fatal for simulation of beta reductions. More precisely,
the original erasure function is no longer homomorphic over substitution, i.e.,
ε`A([t1/x] t2) 6≡ [ε`A(t1)/x] ε`A(t2), a fundamental property for proving sim-
ulation of rule [Beta] [55,76,124,143,145]. As a counterexample, consider term
(λx .relabel x) t , which is erased homomorphically, that is (λx .relabel x) εL(t),
and then beta-reduces along the orange path to relabel εL(t). On the cyan path
term (λx .relabel x) t beta-reduces to relabel t and then is context-sensitively

CHAPTER 2. MAC, A VERIFIED IFC LIBRARY 63

erased to relabel ε′L(t). Observe that relabel εL(t) 6≡ relabel ε′L(t), because
we chose ε′L so that it behaves di�erently from εL, speci�cally for public la-
beled values, i.e., when t = Labeled 42 :: Labeled L Int . Intuitively, function
ε`A should be oblivious to the context because terms can change context arbi-
trarily through beta reductions. To the best of our knowledge, this is the �rst
work that points out this issue. This insight led us to uncover problems in the
proof of single-step simulation in previous work on LIO [141, 145]. We refer
the interested reader to Appendix A of [153] for details.

To recover single-step simulation for context-sensitive primitives such as
relabel , we apply our two-step erasure technique and obtain an erasure function
that is homomorphic over substitution and context-aware at the same time.
Figure 27a de�nes the erasure function for relabel , which is replaced with
relabel•, when it upgrades labeled data above the attacker’s security level
(`H 6v `A). Then, primitive relabel• simulates primitive relabel for secret data
by means of the rules in Figure 27b. In particular, rule [Relabel1] is simulated
by rule [Relabel•1] and rule [Relabel2] by rule [Relabel•2], which simply
produces Labeled •. Even though secret data is actually erased in [Relabel•2],
the simulation property still requires to apply erasure homomorphically to
the argument of relabel•, so that the erasure function is homomorphic over
substitution and rule [Relabel•1] simulates rule [Relabel]. Intuitively, the
erasure function should not remove public data until it gets upgraded to a
secret security level, which happens exactly at the [Relabel2] ([Relabel•2])
reduction.

Similar issues arise in the simulation diagram of the applicative functor
operator 〈∗〉, which also requires a context-sensitive erasure function when
applied to secret data. Consider the term (Labeled t1) 〈∗〉 (Labeled t2) ::
Labeled H Int , which reduces to Labeled (t1 t2), according to rule [〈∗〉3] from
Figure 24. If we homomorphically apply the erasure function to this term, i.e.,
εL(Labeled t1) 〈∗〉 εL(Labeled t2) = (Labeled •) 〈∗〉 (Labeled •), then the
term reduces along the orange path to term Labeled (• •) 6≡ Labeled •, which
we obtain instead, if we erase the term Labeled (t1 t2) along the cyan path.
Observe that rule [〈∗〉3] produces a function application within a Labeled con-
structor, therefore it cannot possibly commute with erasure for secret labeled
values, which always rewrites their content to •.26 To recover the single-step
simulation property, we apply our two-steps erasure technique again. For secret
labeled values, the erasure function replaces 〈∗〉 with a new term 〈∗〉• (Figure
27a). Then, erasure is performed by means of rules [〈∗〉•1,〈∗〉•2, 〈∗〉•3] (Fig-
26 In our conference version [152], rule [〈∗〉3] raises a problem also for public la-

beled values, because the erasure function is not homomorphic over function ap-
plication, in particular εL(t1 t2 :: MAC H τ) = • 6≡ εL(t1) εL(t2). In
that work, we replace function application with substitution in rule [〈∗〉3], i.e.
(Labeled (λx .t1)) 〈∗〉 (Labeled t2) ; Labeled (t1 [x / t2]), which solves the
problem at the price of having a non-standard stricter semantics for 〈∗〉. The erasure
function presented here is homomorphic over function application and the semantics
of 〈∗〉 is standard.

64 10. SOUNDNESS OF CONCURRENT CALCULUS

ure 27b), which simulate rules [〈∗〉1,〈∗〉2, 〈∗〉3] from Figure 24, respectively. In
particular, to respect the single step-simulation property, rule [〈∗〉•3] ignores
the content of the labeled values and simply reduces to Labeled •. Since fmap
is de�ned in terms of 〈∗〉, the erasure function replaces it with a new node
fmap• (when applied to secret data), which reduces to 〈∗〉•, by means of rule
[Fmap•], similar to rule [Fmap]. Terms fmap•, 〈∗〉• and relabel• and their se-
mantics rules are introduced in the calculus as a device to prove the single-step
simulation property (they occur only in erased programs), just like nodes join•,
new•, and write•.

Before proving noninterference for our concurrent model, we study the
formal security requirements that concrete schedulers must satisfy to preserve
security.

10.2 Scheduler Requirements

In this section, we take advantage of our general concurrent model featuring
abstract scheduler state and semantics to prove a scheduler-parametric secu-
rity condition. For this reason, we study what scheduling properties su�ce to
prove progress-sensitive noninterference in our model. Then, we show that the
round-robin scheduler model (§8.3) satis�es these conditions and derive non-
interference for our model of MAC by simply instantiating our main theorem.
More precisely, the proofs hold for i) deterministic schedulers, that additionally
ii) ful�ll a restricted variant of single-step simulation (Figure 14), iii) do not
leak secret information when scheduling sensitive threads, and iv) guarantee
progress of observable threads i.e., schedulers may not allow secret threads to
defer the execution of observable threads inde�nitely.

We now formally characterize these scheduler requirements. In the follow-
ing, labels `L and `H denote security levels that are respectively below and
above the attacker’s level, i.e., `L v `A and `H 6v `A.

Requirement 1

i) Determinancy:

If ω1
(`,n,e)−−−−→ ω2 and ω1

(`′,n′,e)−−−−−→ ω′2, then ` ≡ `′, n ≡ n ′ and ω2 ≡ ω′2.

ii) Restricted simulation:

If ω1
(`L,n,e)−−−−−→ ω2, then ε`A(ω1)

(`L,n,ε`A (e))
−−−−−−−−→ ε`A(ω2).

iii) No observable e�ect:

If ω1
(`H,n,e)−−−−−→ ω2, then ω1 ≈`A ω2.

iv) Progress:

If ω1
(`L,n,e)−−−−−→ ω′1 and ω1 ≈`A ω2, then ω2 eventually schedules (`L,n).

CHAPTER 2. MAC, A VERIFIED IFC LIBRARY 65

Requirement i) (determinancy) ensures that the concurrent semantics is also
deterministic and excludes re�nement attacks [90]. Intuitively, Requirement
ii) (restricted simulation) rules out schedulers that leverage sensitive informa-
tion to make scheduling decisions about public threads.27. Requirement iii)
(no observable e�ect) ensures that secret steps do not leak sensitive informa-
tion to the scheduler state. The requirement expresses this formally by means
of `A-equivalence for scheduler states, de�ned as ω1 ≈`A ω2 if and only if
ε`A(ω1) ≡ ε`A(ω2), where the erasure function of the scheduler state is sched-
uler speci�c and thus left unspeci�ed. Requirement iv) (progress) avoids re-
vealing secret data by observing the progress of public threads. Intuitively, a
program could reveal sensitive information by forcing a secret thread to in-
duce starvation of a public thread and thus suppressing a public event. This
requirement excludes schedulers that enable starvation-based attacks, because
it ensures that the same public thread will eventually get scheduled. The formal
de�nition of “eventually” is technically interesting. Since we wish to make our
proof modular, our model is parametric in the scheduler, which is considered
in isolation from the thread pool. In this situation, we cannot predict how long
the high threads are going to run, because the scheduler is decoupled from
the thread pool. We overcome this technicality by indexing the `A-equivalence
relation between scheduler states, which encode a single-step progress princi-
ple, i.e., Requirement 2 (explained below). Then, we use the indexes to exclude
starvation by making the progress principle a well-founded induction principle,
i.e., Requirement 3 (explained below).

De�nition 2 (Annotated Scheduler `A-equivalence). Two states are (i, j)-
`A-equivalent, written ω1 ≈(i,j)

`A
ω2 if and only if ω1 ≈`A ω2 and i and j are

upper bounds over the number of secret threads scheduled before the next common
public thread in ω1 and ω2, respectively.

The relation ω1 ≈(i,j)
`A

ω2 captures an alignment measure of two `A-equivalent
states and how close they are to schedule the next common public thread. In-
formally, our noninterference proof excludes starvation of public threads by
ensuring that two `A-equivalent schedulers will eventually align and schedule
the same public thread, regardless of how the global con�guration evolves.
We capture the interplay between the (i, j)-`A-equivalent relationship and the
evolution of schedulers in an unwinding-like condition [48]. Firstly, Require-
ment 2 ensures that if a scheduler runs a public thread, then any `A-equivalent
scheduler can also make progress and run some thread, either a secret thread
or the same public thread. Then, to eliminate starvation of the public thread,

27 This condition is weaker from the corresponding requirement of the conference
version of this paper [153], which additionally requires lock-step simulation for secret
steps as well (`H 6v `A). For secret steps, Requirement iii) (no observable e�ect) is
su�cient. This weaker condition gives the same security guarantees and simpli�es
the formalization of a secure scheduler.

66 10. SOUNDNESS OF CONCURRENT CALCULUS

ω ω′

ω0 ω1 · · · ωj ω′j1 2 j

Fig. 28: Two (i, j)-`A-equivalent schedulers align in at most j steps.

Requirement 3 demands that the indexes of the (i, j)-`A-equivalence relation
decrease strictly after every reduction.

Requirement 2 (Progress) Given ω1
(`L,n,e)−−−−−→ ω′1, and ω1 ≈(i,j)

`A
ω2 then:

– If j = 0, then ∀ e ′ ∃ ω′2: ω2
(`L,n,e

′)−−−−−→ ω′2.

– If j > 0, then there exists `H, n ′ such that ∀ e ′ ∃ ω′2: ω2
(`H,n

′,e′)−−−−−−→ ω′2.

In the requirement, the (i, j)-`A-equivalence relation between the sched-
ulers ensures that the second scheduler runs at most j secret threads before the
same public thread. If the schedulers are aligned (j = 0), the second scheduler
runs the public thread (`L,n) with any event e ′.28 If the schedulers are not
aligned (j > 0), the second scheduler cannot predict what event the thread
(`H,n

′) will trigger, therefore, as a conservative approximation, the step may
involve any possible event e ′, which in turn determines the �nal state ω′2. In
principle, by repeatedly applying progress (Requirement 2), no observable e�ect
(Requirement 1.iii) and transitivity of `A-equivalence, we could build a chain
of secret steps that leads to the common public step and thus eventually align.
Such a chain of steps is sketched in Figure 28, where the color of the scheduler
steps denote running a secret (red for `H) or a public (blue for `L) thread and
the dashed lines link `A-equivalent states. Unfortunately, the requirements
and properties mentioned above are not enough. Intuitively, these propositions
form a recursive argument, which is not well founded and allows secret threads
to starve public threads, e.g., if scheduled non-preemptively [55]. The following
requirement ensures that the chain of scheduler steps is �nite and thus that
public threads cannot starve inde�nitely due to secret threads.

Requirement 3 (No Starvation) Given ω1
(`L,n,e)−−−−−→ ω′1, ω2

(`H,n
′,e′)−−−−−−→ ω′2,

such that ω1 ≈(i,j)
`A

ω2, then there exist j ′ such that j′ < j and ω′1 ≈
(i,j ′)
`A

ω′2.

28 Requirement 1.ii) (restricted simulation) ensures that events e and e ′ are `A-
equivalent, i.e., e ≈`A e ′ i� ε`A(e) ≡ ε`A(e

′). In our conference version [153], the
requirement demands exactly the same event e , which is too strict for fork events. A
public event Fork `H n contains secret information, namely the number n of secret
threads, which might di�er in the other run, e.g., Fork `H n ′ 6≡ Fork `H n . The `A-
equivalence relation for events handles this case as well: Fork `H n ≈`A Fork `H n ′,
because ε`A(Fork `H n) ≡ ε`A(Fork `H n ′) ≡ Step.

CHAPTER 2. MAC, A VERIFIED IFC LIBRARY 67

Now, using progress (Requirement 2), no observable e�ect (Requirement
1.iii), transitivity of `A-equivalence together with no starvation (Requirement
3), we can show that two `A-equivalent schedulers eventually align, see Figure
28.29 Given two `A-equivalent scheduler states, i.e., ω ≈(i,j)

`A
ω0, such that

j > 0, ω runs a public thread, i.e., ω −→ ω′, we apply progress (Requirement
2) and obtain a secret scheduler step from ω0 to some scheduler state ω1, i.e.,
ω0 −→ ω1. Then, we apply no observable e�ect (Requirement 1.iii) to the secret
step ω0 −→ ω1 and derive `A-equivalence of these states, i.e., ω0 ≈`A ω1.
By transitivity of the `A-equivalence relation for scheduler states, applied to
ω ≈`A ω0 and ω0 ≈`A ω1, we derive ω ≈`A ω1. Then we lift `A-equivalence to
annotated `A-equivalence, i.e., there exists some index j ′, such that ω ≈(i,j ′)

`A
ω0. Lastly, no starvation (Requirement 3) ensures that j′ < j, which gives
us a well-founded inductive principle. After repeating this process at most j

times (j is strictly smaller after each step), we obtain ωj ≈(i,0)
`A

ω, we apply
progress (Requirement 2) one last time. Then, since j = 0, the two schedulers
are aligned andωj runs the public thread, stepping toω′j , i.e.,ωj −→ω′j . Finally,
we combine restricted simulation (Requirement (i)) and scheduler determinancy
(ii)) (Requirement i) and derive `A-equivalence of the �nal scheduler states, i.e.,
ω ≈`A ω′j . The proof sketch above highlights the reasoning behind our proof
technique—to avoid clutter, we have omitted details about scheduler events,
which come from the concurrent semantics—we refer to our mechanized proof
for more details. The requirements presented in this section capture a class of
secure schedulers that are compatible with our concurrent calculus.

De�nition 3 (Non-Interfering Scheduler).
A scheduler is non-interfering if it is satis�es requirements 1,2, and 3.

Before proving noninterference, we show that the round-robin scheduler is
non-interfering.
Round Robin. We show that the round-robin scheduler from Section 8.3 ful-
�lls all the requirements of a non-interfering scheduler and thus is a suitable
candidate scheduler for our calculus. Firstly, we de�ne erasure for the con-
crete scheduler state to simply remove secret threads from the queue, i.e.,
ε`A(ω) = filter (λ(`,n) → ` v `A) ω. Then, Figure 29 de�nes anno-
tated `A-equivalence as an inductive relation. If both queues are empty, then
no public thread is scheduled and rule [Empty] set both indexes to 0. If the next
thread scheduled in the �rst or in the second queue is secret, rules [Secret1]
and [Secret2] increase the corresponding index. Lastly, if the same public
thread is scheduled next in both queues, rule [Public] sets both indexes to 0.

Proposition 4 The round-robin scheduler is non-interfering.
29 In our conference version [153], progress (Requirement 2) and no starvation (Re-

quirement 3) are combined, but technically we need to split these two requirements.
Progress of the concurrent con�guration requires no starvation, while no starvation
ensures a well-founded inductive principle.

68 10. SOUNDNESS OF CONCURRENT CALCULUS

(Empty)
[] ≈(0,0)

`A
[]

(Secret1)
ω1 ≈(i,j)

`A
ω2

(`H,n) : ω1 ≈(1+i,j)
`A

ω2

(Secret2)
ω1 ≈(i,j)

`A
ω2

ω1 ≈(i,1+j)
`A

(`H,n) : ω2

(Public)
ω1 ≈(i,j)

`A
ω2

(`L,n) : ω1 ≈(0,0)
`A

(`L,n) : ω2

Fig. 29: Annotated `A-equivalence (round robin).

Proof (Sketch). Firstly, the round-robin scheduler reductions in Figure 22 are
clearly deterministic (Requirement i). Secondly, we show that the round-robin
scheduler satis�es restricted simulation (Requirement ii) and no observable e�ect,
(Requirement iii), by case analysis on the concurrent event and using simple
properties over lists. Thirdly, we show progress (Requirement 2) by straightfor-
ward case split on the second index j, followed by case analysis on the sched-
uler step and the annotated `A-equivalence relation from Figure 29. Lastly, the
round robin scheduler is starvation-free (Requirement 3), informally because it
has a �nite time-slot and is preemptive.
10.3 Progress-sensitive Non-interference

The proof of progress-sensitive noninterference relies on lemmas and proposi-
tions similar to the scheduler requirements from above. In the following, we
write c1 ↪→(`,n) c2 for a concurrent step c1 ↪→ c2 that runs thread (`,n). As
before, labels `L and `H imply that `L v `A and `H 6v `A, and notation
↪→? denotes the re�exive transitive closure of the concurrent stepping relation
↪→. Finally, we extend `A equivalence to con�gurations, i.e., c1 ≈`A c2 if and
only if ε`A(c1) ≡ ε`A(c2), and lift the indexes from the scheduler annotated
`A-equivalence relation to it, i.e., if c1 = 〈ω1, Σ1, Φ1〉, c2 = 〈ω2, Σ2, Φ2〉, then
c1 ≈(i,j)

`A
c2 if and only if c1 ≈`A c2 and ω1 ≈(i,j)

`A
ω2.

Proposition 5

i) Determinancy: if c1 ↪→ c2 and c1 ↪→ c3 then c2 ≡ c3.
ii) Restricted simulation: if c1 ↪→(`L,n) c2 then ε`A(c1) ↪→(`L,n) ε`A(c2).
iii) No observable e�ect: if c1 ↪→(`H,n) c2 then c1 ≈`A c2.

Using Proposition 5, we show that the concurrent semantics preserves `A-
equivalence.

Proposition 6 (≈`A Preservation) If c1 ≈`A c2 and c1 ↪→(`,n) c′1, then

– If ` 6v `A, then c′1 ≈`A c2.
– If ` v `A and c2 ↪→(`,n) c′2, then c′1 ≈`A c′2.

CHAPTER 2. MAC, A VERIFIED IFC LIBRARY 69

c1 c′1

ε`A(c1) ε`A(c
′
1)

ε`A(c2) ε`A(c
′
2)

c2 c′2

(`L,n)

≡ ≡

(`L,n)

Fig. 30: 1-Step Progress.

The theorem of progress-sensitive noninterference requires to prove that
two `A-equivalent con�gurations remain related, even if only one con�gura-
tion steps. When the step involves a secret thread, the theorem follows easily
by preservation of `A-equivalence (Proposition 6) and transitivity of the `A-
equivalence relation. The challenging part of the proof consists in showing
progress of a public thread, which requires reconstructing the execution of a
certain number of secret threads until the same public thread takes over, sim-
ilar to the diagram for scheduler progress in Figure 28. The proof of progress
consists of two parts. The �rst part reconstructs the execution of the secret
threads that precede the public thread in the schedule (scheduler progress). In
this part, the reconstruction of the secret steps is facilitated by the fact that the
concurrent semantics always steps and that no observable event (Proposition
5.iii) ensures that secret steps preserve `A-equivalence. Then, in the second
step, restricted simulation (Proposition 5.ii) simulates the execution of the pub-
lic thread under erasure. Lastly, the corresponding public step in the second
con�guration has to be reconstructed using the erased step and some valid
side-conditions that we proceed to formalize (we motivate the need for these
standard assumptions below).

De�nition 4 (Valid Con�guration). A concurrent con�guration is valid if
and only if contains valid memory references, and it does not contain terms •,
new•, write•, fork•, fmap•, 〈∗〉•, and relabel•.

Assuming valid con�gurations, we can prove 1-step progress, i.e., the recon-
struction of the public step.

Proposition 7 (1-Step Progress) If c1 ≈(i,0)
`A

c2, c1 ↪→(`L,n) c′1 and c2 is
valid, then there exists c′2 such that c2 ↪→(`L,n) c′2.

Proof (Sketch). The diagram in Figure 30 gives an overview of this proposition,
which requires reconstructing the dashed horizontal line. Since c1 ≈(i,0)

`A
c2

and the scheduler in c1 runs a public thread, then the scheduler in c2 is aligned
(the second index in the `A-equivalence relation is 0) and thus runs the same

70 10. SOUNDNESS OF CONCURRENT CALCULUS

thread by scheduler progress (Proposition 2). Then, restricted simulation (Propo-
sition 5.ii) applied to step c1 ↪→(`L,n) c′1 gives the erased step ε`A(c1) ↪→(`L,m)

ε`A(c
′
1). Lastly, using the erased step, the assumption that c1 and c2 are valid

(De�nition 4), and `A-equivalent, i.e., ε`A(c1) ≡ ε`A(c2), it is possible to recon-
struct c′2 together with step c2 ↪→(`L,n) c′2 (the dashed horizontal path in the
diagram).
Validity. The following example motivates why the reconstruction of the pub-
lic step in 1-step progress (Proposition 7) requires the extra assumptions about
valid con�gurations. Informally, the fact that public threads can write to se-
cret resources (e.g., memories and thread pools) complicates the reconstruc-
tion of the step: the erasure function removes these resources in the erased
step. For example, the erasure function replaces secret memories and addresses
with •, which makes it impossible to replay secret write operations. Con-
cretely, consider a step in which a public thread writes to a secret memory,
e.g., 〈Σ,write (Ref n) t〉 −→ 〈Σ(`H)[n 7→ t], return ()〉. A low-equivalent
program could be 〈Σ′,write (Ref n ′) t ′〉, for some store Σ′, address n ′ and
term t ′ such that Σ ≈`A Σ′, Ref n ≈`A Ref n ′ and t ≈`A t ′. Unfortunately,
there is no guarantee that address n ′ points within the bounds of the secret
memoryΣ′(`H). In particular, the erasure function maps both valid and invalid
references to Ref •, therefore knowing that n points within the bounds of
Σ(`H) does not guarantee that n ′ is valid forΣ′(`H). Since term reduction gets
stuck for out-of-bounds memory operations, the reconstruction of this step is
impossible, unless the address n ′ is known to be valid. The assumptions about
valid con�guration serve to solve exactly these technicalities. We conclude
this remark with the proof that validity is an invariant of the semantics of the
calculus.

Proposition 8 (Valid Invariant) If c1 is valid and c1 ↪→ c2 then c2 is valid.

Using the invariant, we now extend 1-step progress to multi-step progress.

Proposition 9 (Progress) If c1 ≈(i,j)
`A

c2, c1 ↪→(`L,n) c′1, and c1, c2 are valid
con�gurations, then there exists c′2 and c′′2 such that c2 ↪→? c′2 ↪→(`L,n) c′′2 .

Proof (Sketch). Scheduler progress (Requirement 2) determines which is the next
thread in the schedule and drives the proof by case analysis on j :
– If j = 0, then the scheduler in c2 runs the same public thread (Requirement

2) and the proof follows from 1-step progress (Proposition 7);
– If j > 0, then the scheduler runs a secret thread (Requirement 2), which

reduces to some intermediate con�guration c′2, i.e., c2 ↪→(`H,n′) c′2 where
c2 ≈`A c′2 by no observable e�ect (Proposition 5.iii). Then, by transitivity
of the `A-equivalence relation for con�gurations applied to c1 ≈`A c2
and c2 ≈`A c′2, we obtain c1 ≈`A c′2 and lift the relation to indexed `A-
equivalence, i.e., c1 ≈(i,j ′)

`A
c2 for some index j ′. Lastly, no starvation (Re-

quirement 3) ensures that j′ < j and the proof follows by well-founded
induction.

CHAPTER 2. MAC, A VERIFIED IFC LIBRARY 71

Finally, we prove progress-sensitive noninterference by combining progress,
(Proposition 9) and `A-equivalence preservation (Proposition 6).

Theorem 2 (Progress-sensitive noninterference) Given valid global con-
�gurations c1, c′1, c2, and a non-interfering scheduler, if c1 ≈`A c2 and c1 ↪→ c′1,
then there exists c′2 such that c2 ↪→? c′2 and c2 ≈`A c′2.

To conclude, we instantiate scheduler-parametric progress-sensitive noninter-
ference (Theorem 2) with the proof that the round-robin scheduler is non-
interfering (Proposition 4) and derive security for our model of MAC.

Corollary 1 MAC satis�es progress-sensitive noninterference.

11 Related work
Mechanized Proofs. Russo presents the library MAC as a functional pearl and
relies on its simplicity to convince readers about its correctness [123]. This work
bridges the gap on MAC’s lack of formal guarantees and exhibits interesting
insights on the proofs of its soundness. LIO is a library structurally similar to
MAC but dynamically enforcing IFC [145]. The core calculus of LIO, i.e., side-
e�ect free computations together with exception handling, has been modeled in
the Coq proof assistant [143]. Di�erent from our work, these mechanized proofs
do not simplify the treatment of sensitive exceptions by masking them in erased
programs. In parallel to [143], Breeze [59] is a pure programming language
that explores the design space of IFC and exceptions, which is accompanied
with mechanized proofs in Coq. Bichhawat et al. develop an intra-procedural
analysis for Javascript bytecode, which prevents implict leaks in presence of
exceptions and unstructured control �ow constructs [21].
Parametricity. Parametric polymorphism prevents a polymorphic function
from inspecting its argument. In a similar manner, a non-interferent program
cannot change its observable behaviour depending on the secret. Researchers
have explored further this deep and subtle connection by obtaining a trans-
lation from DCC [1] to System F in order to leverage on parametricity [150].
Shikuma and Igarashi [136] points out an error on such translation and gives
a counterexample of a leaked translation. Recently, Bowman and Ahmed [25]
provide a sound translation from DCC into System F.
Concurrency. Considering IFC for a general scheduler could lead to re�nements
attacks. In this light, Russo and Sabelfeld provide termination-insensitive non-
interference for a wide-class of deterministic schedulers [126]. Barthe et al.
adopt this idea for Java-like bytecode [17]. Although we also consider deter-
ministic schedulers, our security guarantees are stronger by considering leaks
of information via abnormal termination. Heule et al. describe how to retro�t
IFC in a programming language with sandboxes [55]. Similar to our work,
their soundness proofs are parametric on deterministic schedulers and pro-
vide progress-sensitive noninterference with informal arguments regarding

72 11. RELATED WORK

thread progress—in this work, we spell out formal requirements on sched-
ulers capable to guarantee thread progress. A series of work for π-calculus
consider non-deterministic schedulers while providing progress-sensitive non-
interference [57, 58, 66, 115]. Mantel and Sudbrock propose a novel scheduler-
independent trace-based information-�ow control property for multi-threaded
programs and identify the class of robust scheduler, which satisfy that condi-
tion [85]. While there are some similarities between the requirements of those
robust schedulers and those discussed here in Section 10.2, that work assumes
terminating threads, while our progress-sensitive noninterference theorem
does not.

Security Libraries. Li and Zdancewic’s seminal work [75] shows how the struc-
ture arrows can provide IFC as a library in Haskell. Tsai et al. extend that
work to support concurrency and data with heterogeneous labels [149]. Russo
et al. implement the security library SecLib using a simpler structure than
arrows [124], i.e. monads—rather than labeled values, this work introduces
a monad which statically label side-e�ect free values. The security library
LIO [141, 145] enforces IFC for both sequential and concurrent settings dy-
namically. LIO presents operations similar to fmap and 〈∗〉 for labeled values
with di�erences in the returning type due to LIO’s checks for clearence—this
work provides a foundation to analyze the security implications of such primi-
tives. Mechanized proofs for LIO are given only for its core sequential calcu-
lus [145]. Inspired by SecLib and LIO’s designs, MAC leverages Haskell’s type
system to enforce IFC [123] statically. Unlike LIO, data-dependent security
policies cannot be expressed in MAC, due to its static nature. This limitation
is addressed by HLIO, which provides a hybrid approach by means of some
advanced Haskell’s type-system features: IFC is statically enforced while al-
lowing the programmers to defer selected security checks until run-time [30].
Several works have also investigated the use of dependent types to precisely
capture the nature of data-dependent security policies [82, 94, 97, 102].

Our work studies the security implications of extending LIO, MAC, and
HLIO with a rich structure for labeled values. Devriese and Piessens provide
a monad transformer to extend imperative-like APIs with support for IFC in
Haskell [38]. Jaskelio� and Russo implements a library which dynamically
enforces IFC using secure multi-execution (SME) [63]—a technique that runs
programs multiple times (once per security level) and varies the semantics of
inputs and outputs to protect con�dentiality. Rather than running multiple
copies of a program, Schmitz et al. provide a library with faceted values [132],
where values present di�erent behavior according to the privilege of the ob-
server. Di�erent from the work above, we present a fully-�edged mechanized
proof for our sequential and concurrent calculus which includes references,
synchronization variables, and exceptions.

IFC Tools. IFC research has produced compilers capable of preserving con�den-
tiality of data: Jif [100] and Paragon [28] (based on Java), and �owcaml [137]
(based on Caml). The SPARK language presents a IFC analysis which has been

CHAPTER 2. MAC, A VERIFIED IFC LIBRARY 73

extended to guarantee progress-sensitive non-inference [117]. JSFlow [51] is
one of the state-of-the-art IFC system for the web (based on JavaScript). These
tools preserve con�dentiality in a �ne-grained fashion where every piece of
data is explicitly label. Speci�cally, there is no abstract data type to label data,
so our results cannot directly apply to them.
Operating Systems. MAC borrows ideas from Mandatory Access Control (MAC)
[19,20] and phrases them into a programming language setting. Although orig-
inated in the 70s, there are modern manifestations of this idea [69, 96, 166],
applied to diverse scenarios, like the web [18, 146] and mobile devices [29, 64].
Due to its complexity, it is not surprising that OS-based MAC systems lack
accompanying soundness guarantees or mechanized proofs—seL4 being the
exception [96]. The level of abstractions handled by MAC and OSes are quite
di�erent, thus making uncertain how our insights could help to formalize
OS-based MAC systems. MAC systems [19] assign a label with an entire OS
process—settling a single policy for all the data handled by it. In principle, it
would be possible to extend such MAC-like systems to include a notion of
labeled values with the functor structure as well as the relabeling primitive
proposed by this work. For instance, COWL [146] presents the notion of la-
beled blob and labeled XHR which is isomorphic to the notion of labeled values,
thus making possible to apply our results. Furthermore, because many MAC-
like system often ignore termination leaks [39, 166], there is no need to use
call-by-name evaluation to obtain security guarantees.

12 Conclusion
We have presented the �rst fully-�edged formalization of MAC and proved that
our model satis�es progress-insensitive noninterference through term erasure.
Using our scheduler-parametric model, we have characterized a large class of
deterministic schedulers which preserve security—something that has been
only treated informally before [55, 141]. In particular, we present a scheduler-
parametric noninterference proof and establish security for MAC’s model by
simply instantiating our main theorem with the round-robin scheduler. To the
best of our knowledge, this is the �rst work of its kind for IFC libraries in
Haskell, both for completeness and number of features included in the model.

This work extends MAC with a �exible labeled data API, which gives a
functor algebraic structure to sensitive data, in a way that it can be processed
through classic functional programming patterns that do not incur in secu-
rity checks. We support our results with 4,000 LOC of machine-checked proof
scripts, that we have developed in the Agda proof assistant and have made
available online. This e�ort led us to identify challenges in the security proofs
involving context-sensitive security primitives and devise the two-steps era-
sure technique to address them. We hope that the insights of this work will be
helpful in the veri�cation of future IFC libraries and programming languages.

74 12. CONCLUSION

References
1. Martín Abadi, Anindya Banerjee, Nevin Heintze, Nevin Heintze, and Jon G. Riecke.

A core calculus of dependency. In Proceedings of the 26th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL ’99, pages 147–160, New
York, NY, USA, 1999. ACM.

2. Aslan Askarov, Sebastian Hunt, Andrei Sabelfeld, and David Sands. Termination-
insensitive noninterference leaks more than just a bit. In Proceedings of the 13th
European Symposium on Research in Computer Security: Computer Security, ESORICS
’08, pages 333–348, Berlin, Heidelberg, 2008. Springer-Verlag.

3. Aslan Askarov, Danfeng Zhang, and Andrew C. Myers. Predictive black-box miti-
gation of timing channels. In Proceedings of the 17th ACM Conference on Computer
and Communications Security, CCS ’10, pages 297–307, New York, NY, USA, 2010.
ACM.

4. Anindya Banerjee and David A. Naumann. Stack-based access control and secure
information �ow. J. Funct. Program., 15(2):131–177, March 2005.

5. Gilles Barthe, Tamara Rezk, Alejandro Russo, and Andrei Sabelfeld. Security of
multithreaded programs by compilation. Special issue of ACM Transactions on In-
formation and System Security (TISSEC), 2009.

6. Lujo Bauer, Shaoying Cai, Limin Jia, Timothy Passaro, Michael Stroucken, and Yuan
Tian. Run-time monitoring and formal analysis of information �ows in Chromium.
In Annual Network & Distributed System Security Symposium. Internet Society, 2015.

7. David E. Bell and L. La Padula. Secure computer system: Uni�ed exposition and
multics interpretation. Technical Report MTR-2997, Rev. 1, MITRE Corporation,
Bedford, MA, 1976.

8. K. J. Biba. Integrity considerations for secure computer systems. ESD-TR-76-372,
1977.

9. Abhishek Bichhawat, Vineet Rajani, Deepak Garg, and Christian Hammer. Infor-
mation �ow control in webkit’s javascript bytecode. In Martín Abadi and Steve
Kremer, editors, Principles of Security and Trust, pages 159–178, Berlin, Heidelberg,
2014. Springer Berlin Heidelberg.

10. Andrew Bortz and Dan Boneh. Exposing private information by timing web appli-
cations. In World Wide Web. ACM, 2007.

11. William J. Bowman and Amal Ahmed. Noninterference for free. In Proceedings of
the 20th ACM SIGPLAN International Conference on Functional Programming, ICFP
2015, Vancouver, BC, Canada, September 1-3, 2015, pages 101–113, 2015.

12. Niklas Broberg, Bart Delft, and David Sands. Paragon for practical programming
with information-�ow control. In Proceedings of the 11th Asian Symposium on Pro-
gramming Languages and Systems - Volume 8301, pages 217–232, Berlin, Heidelberg,
2013. Springer-Verlag.

13. Sven Bugiel, Stephan Heuser, and Ahmad-Reza Sadeghi. Flexible and Fine-grained
Mandatory Access Control on Android for Diverse Security and Privacy Policies.
In USENIX Conference on Security, SEC. USENIX Association, 2013.

14. P. Buiras, D. Vytiniotis, and A. Russo. HLIO: Mixing static and dynamic typing for
information-�ow control in Haskell. In ACM SIGPLAN International Conference on
Functional Programming. ACM, 2015.

15. Pablo Buiras and Alejandro Russo. Lazy programs leak secrets. In Proceedings of
the 18th Nordic Conference on Secure IT Systems - Volume 8208, NordSec 2013, pages
116–122, New York, NY, USA, 2013. Springer-Verlag New York, Inc.

CHAPTER 2. MAC, A VERIFIED IFC LIBRARY 75

16. Pablo Buiras, Deian Stefan, and Alejandro Russo. On dynamic �ow-sensitive
�oating-label systems. In Proceedings of the 2014 IEEE 27th Computer Security
Foundations Symposium, CSF ’14, pages 65–79, Washington, DC, USA, 2014. IEEE
Computer Society.

17. Dorothy E. Denning and Peter J. Denning. Certi�cation of programs for secure
information �ow. Communication of the ACM, 20(7):504–513, July 1977.

18. D. Devriese and F. Piessens. Information �ow enforcement in monadic libraries. In
ACM SIGPLAN Workshop on Types in Language Design and Implementation. ACM,
2011.

19. Petros Efstathopoulos, Maxwell Krohn, Steve VanDeBogart, Cli� Frey, David Ziegler,
Eddie Kohler, David Mazières, Frans Kaashoek, and Robert Morris. Labels and
event processes in the Asbestos operating system. In ACM Symposium on Operating
Systems Principles, SOSP. ACM, 2005.

20. Edward W. Felten and Michael A. Schneider. Timing attacks on web privacy. In
Proceedings of the 7th ACM Conference on Computer and Communications Security,
CCS ’00, pages 25–32, New York, NY, USA, 2000. ACM.

21. J. A. Goguen and J. Meseguer. Security policies and security models. In 1982 IEEE
Symposium on Security and Privacy, pages 11–11, April 1982.

22. J. A. Goguen and J. Meseguer. Unwinding and inference control. In 1984 IEEE
Symposium on Security and Privacy, pages 75–75, April 1984.

23. D. Hedin, A. Birgisson, L. Bello, and A. Sabelfeld. JSFlow: Tracking information
�ow in JavaScript and its APIs. In ACM Symposium on Applied Computing. ACM,
2014.

24. Daniel Hedin and David Sands. Noninterference in the presence of non-opaque
pointers. In IEEE Computer Security Foundations Workshop. IEEE Computer Society
Press, 2006.

25. Stefan Heule, Deian Stefan, Edward Z. Yang, John C. Mitchell, and Alejandro Russo.
Ifc inside: Retro�tting languages with dynamic information �ow control. In Proceed-
ings of the 4th International Conference on Principles of Security and Trust - Volume
9036, pages 11–31, New York, NY, USA, 2015. Springer-Verlag New York, Inc.

26. Kohei Honda, Vasco Thudichum Vasconcelos, and Nobuko Yoshida. Secure Infor-
mation Flow as Typed Process Behaviour. In European Symposium on Programming
Languages and Systems. Springer-Verlag, 2000.

27. Kohei Honda and Nobuko Yoshida. A uniform type structure for secure information
�ow. In Proceedings of the 29th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL ’02, pages 81–92, New York, NY, USA, 2002. ACM.

28. C. Hritcu, M. Greenberg, B. Karel, B. C. Peirce, and G. Morrisett. All your IFCexcep-
tion are belong to us. In IEEE Symposium on Security and Privacy. IEEE Computer
Society, 2013.

29. J. Hughes. Why functional programming matters. The Computer Journal, 32(2):98–
107, April 1989.

30. Mauro Jaskelio� and Alejandro Russo. Secure multi-execution in haskell. In Pro-
ceedings of the 8th International Conference on Perspectives of System Informatics,
PSI’11, pages 170–178, Berlin, Heidelberg, 2012. Springer-Verlag.

31. Limin Jia, Jassim Aljuraidan, Elli Fragkaki, Lujo Bauer, Michael Stroucken, Kazuhide
Fukushima, Shinsaku Kiyomoto, and Yutaka Miyake. Run-time enforcement of
information-�ow properties on android. In Computer Security – ESORICS 2013,
pages 775–792, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.

32. Naoki Kobayashi. Type-based information �ow analysis for the π-calculus. Acta
Inf., 42(4):291–347, December 2005.

76 12. CONCLUSION

33. Maxwell Krohn, Alexander Yip, Micah Brodsky, Natan Cli�er, M. Frans Kaashoek,
Eddie Kohler, and Robert Morris. Information �ow control for standard OS abstrac-
tions. In ACM SIGOPS Symposium on Operating Systems Principles, SOSP. ACM,
2007.

34. Peng Li and Steve Zdancewic. Encoding information �ow in haskell. In Proceedings
of the 19th IEEE Workshop on Computer Security Foundations, CSFW ’06, pages 16–,
Washington, DC, USA, 2006. IEEE Computer Society.

35. Peng Li and Steve Zdancewic. Arrows for secure information �ow. Theor. Comput.
Sci., 411(19):1974–1994, April 2010.

36. Luísa Lourenço and Luís Caires. Dependent information �ow types. In Proceedings
of the 42Nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL ’15, pages 317–328, New York, NY, USA, 2015. ACM.

37. Heiko Mantel and Henning Sudbrock. Flexible scheduler-independent security.
In Proceedings of the 15th European Conference on Research in Computer Security,
ESORICS’10, pages 116–133, Berlin, Heidelberg, 2010. Springer-Verlag.

38. Simon Marlow. Parallel and concurrent programming in Haskell. O’Reilly, July 2013.
39. Conor Mcbride and Ross Paterson. Applicative programming with e�ects. J. Funct.

Program., 18(1):1–13, January 2008.
40. D. McCullough. Speci�cations for multi-level security and a hook-up. In 1987 IEEE

Symposium on Security and Privacy(SP), volume 00, page 161, April 1987.
41. Simon Meurer and Roland Wismüller. Apefs: An infrastructure for permission-

based �ltering of android apps. In AndreasU. Schmidt, Giovanni Russello, Ioannis
Krontiris, and Shiguo Lian, editors, Security and Privacy in Mobile Information and
Communication Systems, volume 107. Springer Berlin Heidelberg, 2012.

42. Eugenio Moggi. Notions of computation and monads. Inf. Comput., 93(1):55–92,
July 1991.

43. Jamie Morgenstern and Daniel R. Licata. Security-typed programming within de-
pendently typed programming. In ACM SIGPLAN International Conference on Func-
tional Programming. ACM, 2010.

44. Toby Murray, Daniel Matichuk, Matthew Brassil, Peter Gammie, Timothy Bourke,
Sean Seefried, Corey Lewis, Xin Gao, and Gerwin Klein. sel4: From general purpose
to a proof of information �ow enforcement. 2012 IEEE Symposium on Security and
Privacy, 0, 2013.

45. Toby Murray, Robert Sison, Edward Pierzchalski, and Christine Rizkallah. Composi-
tional veri�cation and re�nement of concurrent value-dependent noninterference.
In IEEE Computer Security Foundations Symposium, pages 417–431, Lisbon, Portugal,
June 2016.

46. Andrew C. Myers and Andrew C. Myers. J�ow: Practical mostly-static information
�ow control. In Proceedings of the 26th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL ’99, pages 228–241, New York, NY,
USA, 1999. ACM.

47. Andrew C. Myers, Lantian Zheng, Steve Zdancewic, Stephen Chong, and Nathaniel
Nystrom. Jif 3.0: Java information �ow, July 2006.

48. Aleksandar Nanevski, Anindya Banerjee, and Deepak Garg. Veri�cation of infor-
mation �ow and access control policies with dependent types. In IEEE Symposium
on Security and Privacy, SP. IEEE Computer Society, 2011.

49. Mathias V. Pedersen and Aslan Askarov. From trash to treasure: Timing-sensitive
garbage collection. In 2017 IEEE Symposium on Security and Privacy, SP 2017, San
Jose, CA, USA, May 22-26, 2017, pages 693–709, 2017.

CHAPTER 2. MAC, A VERIFIED IFC LIBRARY 77

50. François Pottier. A Simple View of Type-Secure Information Flow in the π-Calculus.
In IEEE Computer Security Foundations Workshop, pages 320–330, 2002.

51. François Pottier and Vincent Simonet. Information �ow inference for ML. ACM
Trans. Program. Lang. Syst., 25(1):117–158, January 2003.

52. Willard Rafnsson, Deepak Garg, and Andrei Sabelfeld. Progress-sensitive security
for spark. In Proceedings of the 8th International Symposium on Engineering Secure
Software and Systems - Volume 9639, ESSoS 2016, pages 20–37, Berlin, Heidelberg,
2016. Springer-Verlag.

53. Indrajit Roy, Donald E. Porter, Michael D. Bond, Kathryn S. McKinley, and Emmett
Witchel. Laminar: Practical �ne-grained decentralized information �ow control. In
ACM SIGPLAN Conference on Programming Language Design and Implementation,
PLDI. ACM, 2009.

54. Alejandro Russo. Functional Pearl: Two Can Keep a Secret, if One of Them Uses
Haskell. In Proceedings of the 20th ACM SIGPLAN International Conference on Func-
tional Programming, ICFP 2015, pages 280–288, New York, NY, USA, 2015. ACM.

55. Alejandro Russo, Koen Claessen, and John Hughes. A library for light-weight
information-�ow security in haskell. In Proceedings of the First ACM SIGPLAN
Symposium on Haskell, Haskell ’08, pages 13–24, New York, NY, USA, 2008. ACM.

56. Alejandro Russo and Andrei Sabelfeld. Security for multithreaded programs under
cooperative scheduling. In Irina Virbitskaite and Andrei Voronkov, editors, Per-
spectives of Systems Informatics, pages 474–480, Berlin, Heidelberg, 2007. Springer
Berlin Heidelberg.

57. Alejandro Russo and Andrei Sabelfeld. Securing interaction between threads and
the scheduler in the presence of synchronization. The Journal of Logic and Algebraic
Programming, 78(7):593 – 618, 2009. The 19th Nordic Workshop on Programming
Theory (NWPT 2007).

58. A. Sabelfeld and A. C. Myers. Language-based information-�ow security. IEEE
Journal on Selected Areas in Communications, 21(1):5–19, Jan 2003.

59. Thomas Schmitz, Dustin Rhodes, Thomas H. Austin, Kenneth Knowles, and Cormac
Flanagan. Faceted dynamic information �ow via control and data monads. In Frank
Piessens and Luca Viganò, editors, POST, volume 9635 of LNCS. Springer, 2016.

60. Naokata Shikuma and Atsushi Igarashi. Proving noninterference by a fully com-
plete translation to the simply typed λ-calculus. In Proceedings of the 11th Asian
Computing Science Conference on Advances in Computer Science: Secure Software and
Related Issues, ASIAN’06, pages 301–315, Berlin, Heidelberg, 2007. Springer-Verlag.

61. V. Simonet. The Flow Caml system. Software release at http://cristal.inria.fr/ si-
monet/soft/�owcaml/, 2003.

62. Geo�rey Smith and Dennis Volpano. Secure information �ow in a multi-threaded
imperative language. In Proceedings of the 25th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL ’98, pages 355–364, New York, NY,
USA, 1998. ACM.

63. Deian Stefan, Pablo Buiras, Edward Z. Yang, Amit Levy, David Terei, Alejan-
dro Russo, and David Mazières. Eliminating cache-based timing attacks with
instruction-based scheduling. In Jason Crampton, Sushil Jajodia, and Keith Mayes,
editors, Computer Security – ESORICS 2013, pages 718–735, Berlin, Heidelberg, 2013.
Springer Berlin Heidelberg.

64. Deian Stefan, Alejandro Russo, Pablo Buiras, Amit Levy, John C. Mitchell, and
David Maziéres. Addressing covert termination and timing channels in concurrent
information �ow systems. In Proceedings of the 17th ACM SIGPLAN International

78 12. CONCLUSION

Conference on Functional Programming, ICFP ’12, pages 201–214, New York, NY,
USA, 2012. ACM.

65. Deian Stefan, Alejandro Russo, David Mazières, and John C. Mitchell. Flexible
dynamic information �ow control in the presence of exceptions. Arxiv preprint
arXiv:1207.1457, to appear in Journal of Functional Programming, 2012.

66. Deian Stefan, Alejandro Russo, John C. Mitchell, and David Mazières. Flexible dy-
namic information �ow control in Haskell. In Proceedings of the 4th ACM Symposium
on Haskell, Haskell ’11, pages 95–106, New York, NY, USA, 2011. ACM.

67. Deian Stefan, Edward Z. Yang, Petr Marchenko, Alejandro Russo, Dave Herman,
Brad Karp, and David Mazières. Protecting users by con�ning JavaScript with
COWL. In USENIX Symposium on Operating Systems Design and Implementation.
USENIX Association, 2014.

68. Ta-chung Tsai, Alejandro Russo, and John Hughes. A library for secure multi-
threaded information �ow in haskell. In Proceedings of the 20th IEEE Computer
Security Foundations Symposium, CSF ’07, pages 187–202, Washington, DC, USA,
2007. IEEE Computer Society.

69. Stephen Tse and Steve Zdancewic. Translating dependency into parametricity.
In Proceedings of the Ninth ACM SIGPLAN International Conference on Functional
Programming, ICFP ’04, pages 115–125, New York, NY, USA, 2004. ACM.

70. Marco Vassena, Joachim Breitner, and Alejandro Russo. Securing concurrent lazy
programs against information leakage. In 30th IEEE Computer Security Foundations
Symposium, CSF 2017, Santa Barbara, CA, USA, August 21-25, 2017, pages 37–52,
2017.

71. Marco Vassena, Pablo Buiras, Lucas Waye, and Alejandro Russo. Flexible manipu-
lation of labeled values for information-�ow control libraries. In Computer Security
- ESORICS 2016 - 21st European Symposium on Research in Computer Security, Her-
aklion, Greece, September 26-30, 2016, Proceedings, Part I, pages 538–557, 2016.

72. Marco Vassena and Alejandro Russo. On formalizing information-�ow control
libraries. In Proceedings of the 2016 ACM Workshop on Programming Languages and
Analysis for Security, PLAS ’16, pages 15–28, New York, NY, USA, 2016. ACM.

73. P. Wadler and S. Blott. How to make ad-hoc polymorphism less ad hoc. In Proceed-
ings of the 16th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL ’89, pages 60–76, New York, NY, USA, 1989. ACM.

74. Nickolai Zeldovich, Silas Boyd-Wickizer, Eddie Kohler, and David Mazières. Making
information �ow explicit in HiStar. In USENIX Symp. on Operating Systems Design
and Implementation. USENIX, 2006.

75. Danfeng Zhang, Aslan Askarov, and Andrew C. Myers. Predictive mitigation of
timing channels in interactive systems. In Proceedings of the 18th ACM Conference
on Computer and Communications Security, CCS ’11, pages 563–574, New York, NY,
USA, 2011. ACM.

76. Danfeng Zhang, Aslan Askarov, and Andrew C. Myers. Language-based Control
and Mitigation of Timing Channels. In ACM Conference on Programming Language
Design and Implementation. ACM, 2012.

CHAPTER 2. MAC, A VERIFIED IFC LIBRARY 79

(Relabelχ)
relabel (Labeledχ t) ; Labeledχ t

(Relabel•χ)
relabel• (Labeledχ t) ; Labeled •

(〈∗〉χ1)
t2 ; t ′2

(Labeledχ t1) 〈∗〉 t2 ; (Labeledχ t1) 〈∗〉 t ′2

(〈∗〉χ2)
(Labeledχ t1) 〈∗〉 (Labeled t2) ; Labeledχ t1

(〈∗〉χ3)
(Labeledχ t1) 〈∗〉 (Labeledχ t2) ; Labeledχ t1

(〈∗〉χ4)
(Labeled t1) 〈∗〉 (Labeledχ t2) ; Labeledχ t2

Fig. 31: Semantics of �exible labeled values with exceptions.

Appendix

A Flexible Labeled Values in Sequential MAC

This section adjusts the semantics of �exible labeled values described in Section
9 for the sequential setting, in which labeled values have an additional construc-
tor for exceptional labeled values. This constructor (Labeledχ) masks sensitive
exceptions raised in a secret context embedded through join from leaking into
an outer public context. Figure 31 shows the new reduction rules for sequen-
tial primitives relabel and 〈∗〉, which simply propagate exceptional values by
means of rules [Relabelχ, 〈∗〉χ1, 〈∗〉χ2, 〈∗〉χ3, 〈∗〉χ4]. Rule [Relabel•χ] simu-
lates rule [Relabelχ] when relabel upgrades a public exceptional labeled value
to a label above the attacker’s level. In order to mask the sensitive exception,
the rule produces a non-exceptional value, i.e., Labeled •. Rules [〈∗〉χ1, 〈∗〉χ2,
〈∗〉χ3] are somewhat unusual: even though they propagate the �rst exception
observed during evaluation, they still evaluate the second argument. For ex-
ample, rule [〈∗〉χ1] reduces the second argument unnecessarily—it is going to
return the exception from the �rst argument anyway in rules [〈∗〉χ2, 〈∗〉χ3].
Since the calculus is non-strict, it would have been more natural to replace
all these rules (i.e., [〈∗〉χ1, 〈∗〉χ2, 〈∗〉χ3]) with a more general rule [〈∗〉χ123],
which avoids evaluating the second argument when the �rst is exceptional,
i.e., Labeledχ t1 〈∗〉 t2 ; Labeledχ t1. The semantics of 〈∗〉 in Figure 31 ap-
pears unnecessarily strict in the second argument. Intuitively, the strict rules
are equivalent to the non-strict rules, except for non-terminating terms. For
example, consider the program (Labeledχ t1) 〈∗〉 ⊥, where ⊥ indicates a non-
terminating term. With the strict semantics, the program fails to terminate—
it loops due to rule [〈∗〉χ1] and thus it is indistinguishable from ⊥. Instead,

80 B. THREAD SYNCHRONIZATION

with the non-strict semantics, the program terminates via rule [〈∗〉χ123], i.e.,
(Labeledχ t1) 〈∗〉 ⊥ ; (Labeledχ t1). In the sequential calculus, the se-
mantics of the applicative functor operator 〈∗〉 is strict in the second term,
because this choice simpli�es the security proofs. More precisely, the non-
strict semantics of the alternative rule [〈∗〉χ123] does not respect the simula-
tion diagram from Figure 14 for secret exceptional labeled values. Remember
that the erasure function replaces sensitive exceptions with non-exceptional
values, i.e., εL(Labeledχ t1 :: Labeled H τ) = Labeled •. Then, the sim-
ulation diagram for rule [〈∗〉χ123], i.e., Labeledχ t1 〈∗〉 t2 ; Labeledχ t1
requires producing a step (Labeled •) 〈∗〉• εL(t2) ; Labeled •, obtained
from erasing the result, i.e., εL(Labeledχ t2 :: Labeled H τ) = Labeled •. Un-
fortunately, none of the reduction rules of 〈∗〉• (i.e., rules [〈∗〉•1,〈∗〉•2,〈∗〉•3]
from Figure 27b) can reproduce that step. (Notice that rule [〈∗〉•3] works only
if the second argument is a labeled value, but not in the general case.) Intu-
itively, when using the non-strict version of the applicative functor operator,
the erasure function should not mask sensitive exceptions: rule [〈∗〉χ123] is
sensitive to exceptions! To recover the simulation property for that rule, the
erasure function should be changed so that sensitive exceptions get preserved,
i.e., εL(Labeledχ t :: Labeled H τ) = Labeledχ •. However, this de�ni-
tion breaks the simulation diagram of rules [Join,Joinχ]. Then, since the strict
and non-strict semantics are equivalent for terminating programs, the calculus
adopts the strict variant. Notice that this choice does not weaken the security
condition: the sequential calculus is already termination insensitive due to join .

B Thread Synchronization
This section extends MAC with thread synchronization primitives, which al-
lows threads to coordinate in concurrent programs. Using synchronized muta-
ble variables (MVar),MAC provide simple thread communication mechanisms
such as binary semaphores and message queues. However, thread synchroniza-
tion may also introduce covert channels: synchronous operations can suppress
(e.g., due to a deadlock) or delay public side-e�ects and thus leak information.
In order to avoid leaking information, MAC provides the following API for
thread synchronization primitives.

data MVar ` τ

newMVar :: `L v `H ⇒ MAC `L (MVar `H τ)
takeMVar :: MVar ` τ → MAC ` τ
putMVar :: MVar ` τ → τ → MAC ` ()

To track information �ows and enforce security, MAC associates labels with
mutable synchronization variables, i.e., abstract data type MVar ` τ . These
variables are either empty or full with a term of type τ at security level `. Func-
tion newMVar creates an empty synchronization variable at the same security
level of the current thread, or above. Similarly to primitive new over references,

CHAPTER 2. MAC, A VERIFIED IFC LIBRARY 81

creating a synchronization variable constitutes a write operation, subject to
the no write-down security policy. With function takeMVar , a thread reads
synchronously from a a variable. If the variable is empty, the thread blocks,
otherwise it returns the content and leaves the variable empty. Conversely, with
function putMVar , a thread writes synchronously to a variable. If the variable
is full, the thread blocks, otherwise it �lls it with the argument. Observe the
type signature of takeMVar and putMVar . In contrast to the operations that
read and write plain references (Section 6, primitives takeMVar and putMVar
work within one security level. Intuitively, whenever a thread executes any of
these operations is performing both read and write side-e�ects at the same time.
For example, operation putMVar writes to a variable only after reading the
empty state and conversely for takeMVar . Then, the no read-up and no write-
down security policies guarantee that these operations are secure only when
the thread and the variable are at the same security level. The following exam-
ple motivates this design decision. Consider a thread and a synchronization
variables at arbitrary security levels `1 and `2, respectively. Primitive putMVar ,
allows the thread labeled with `1 to write to the variable at security level `2.
Then, the no write-down policy demands that that the variable is at least as
sensitive as the thread, i.e., `1 v `2. However, primitive putMVar also reads
the state of the variable (it has to block the thread if the variable is already full).
Then, the no read-up policy demands that the variable is no more sensitive
than the thread, i.e., `2 v `1. As a result, it follows that primitive putMVar
is secure only when the both constraints (i.e., `1 v `2 and `2 v `1) are
satis�ed, i.e., when `1 ≡ `2 and the thread and the variable are at the same
security level. Using the same line of though, we argue for security of the API
of primitive takeMVar .

To formally prove security for these operations, we add synchronization
variables and primitives to the concurrent calculus.
B.1 Semantics

To support thread synchronization primitives, Figure 32 adjusts the memory
model to work with synchronization variables. A memory segment contains
cells, which can be either empty, i.e.,⊗, or full with a term, i.e., JtK.30 A synchro-
nization variable is represented as a value MVar n :: MVar ` τ where n is an
address, pointing to the n-th cell of the `-memory, containing a slot for a term
of type τ .31 Rule [NewMVar] creates an empty memory cell in the `-labeled
memory, i.e., Σ(`)[n 7→ ⊗], at fresh address n = |Σ(`)| and returns the vari-
able MVar n . Rule [PutMVar1] evaluates the variable and rule [PutMVar2]
�lls the empty cell with the term, i.e., Σ(`)[n 7→ JtK], and returns unit. The
30 This memory model is more general than the model used for mutable references,

which are then encoded as synchronization variables that are always full.
31 MAC implements labeled synchronization variables (MVar) as a simple wrapper

around the unlabeled synchronization variable from the standard library. For sim-
plicity. we represent synchronization variables as a plain index, just like we did for
plain references.

82 B. THREAD SYNCHRONIZATION

Memory `: ts ::= [] | c : ts
Cells: c ::= ⊗ | JtK
Types: τ ::= · · · | MVar ` τ
Values: v ::= · · · | MVar n
Terms: t ::= · · · | newMVar | takeMVar t | putMVar t1 t2

(NewMvar)
|Σ(`)| = n

〈Σ,newMVar〉 −→ 〈Σ(`)[n 7→ ⊗], return (MVar n)〉

(PutMVar1)
t1 ; t ′1

〈Σ, putMVar t1 t2〉 −→ 〈Σ, putMVar t ′1 t2〉

(PutMVar2)
Σ(`)[n] ≡ ⊗

〈Σ, putMVar (MVar n) t〉 −→ 〈Σ(`)[n 7→ JtK], return ()〉

(TakeMVar1)
t ; t ′

〈Σ, takeMVar t〉 −→ 〈Σ, takeMVar t ′〉

(TakeMVar2)
Σ(`)[n] ≡ JtK

〈Σ, takeMVar (MVar n)〉 −→ 〈Σ(`)[n 7→ ⊗], return t〉

Fig. 32: MAC with synchronization primitives.

premise of rule [PutMVar2] determines the blocking behavior of putMVar .
For example, a thread that attempts to execute putMVar on a full cell cannot
reduce via [PutMVar2] (it does not satisfy the premiseΣ(`)[n] ≡ ⊗). Since the
thread cannot execute through any other rule, it gets stuck. Rule [TakeMVar1]
evaluates the reference and rule [TakeMVar2] returns the content of the cor-
responding non-empty cell, i.e., Σ(`)[n] = JtK for some term t , and empties it,
i.e., Σ(`)[n 7→ ⊗]. If the cell is empty, then the thread gets stuck and blocks,
as explained above.

B.2 Erasure Function

Proving security for the synchronization primitives presented above is straight-
forward. The primitives are clearly deterministic and showing single-step sim-
ulation is even simpler than for references because primitives putMVar and
takeMVar work within the same security level. The erasure function is ho-
momorphic over memory cells (Figure 33a), rewrites the address of a secret
reference to •, and replaces term newMVar with newMVar•, when it creates
a sensitive synchronization variable (Figure 33b). Figure 33c shows the only

CHAPTER 2. MAC, A VERIFIED IFC LIBRARY 83

ε`A(⊗) = ⊗ ε`A(JtK) = Jε`A(t)K

(a) Erasure for memory cells.

ε`A(newMVar :: MAC `L (MVar `H τ)) =

{
newMVar• if `H 6v `A

newMVar otherwise

ε`A(MVar n :: MVar `H τ) =

{
MVar • if `H 6v `A

MVar n otherwise

(b) Erasure for newMVar and MVar .

Terms: t ::= · · · | newMVar•

(NewMvar•)
〈Σ,newMVar•〉 −→ 〈Σ, return (MVar •)〉

(c) Semantics of newMVar•.

Fig. 33: Erasure function for memory cells and synchronization primitives.

reduction rule [NewMVar•] for newMVar•, which simply returns a dummy
reference, i.e., MVar •, and leaves the store Σ unchanged. We do not need
to apply two-steps erasure for primitives putMVar and takeMVar , because a
thread can only use them to read/write to a memory cell at the same security
level. Thus either both the thread and the variable are secret and the whole
computation collapses to •, or both are public and erased homomorphically.

84 C. TYPING RULES

(Hole)
Γ ` • : τ

(New•)
`L v `H Γ ` t : τ

Γ ` new• t : MAC `L (Ref `H τ)

(Write•)
`L v `H Γ ` t1 : τ Γ ` t2 : Ref `H τ

Γ ` write• t1 t2 : MAC `L ()

(Join•)
`L v `H Γ ` t : MAC `H τ

Γ ` join• t : MAC `L (Labeled `H τ)

(Fork•)
`L v `H Γ ` t : MAC `H ()

Γ ` fork• t : MAC `L ()

(Fmap•)
Γ ` t1 : τ1 → τ2 Γ ` t2 : (Labeled ` τ1)

Γ ` fmap• t1 t2 : Labeled ` τ2

(〈∗〉•)
Γ ` t1 : Labeled ` (τ1 → τ2) Γ ` t2 : (Labeled ` τ1)

Γ ` t1 〈∗〉• t2 : Labeled ` τ2

(Relabel•)
`L v `H Γ ` t : (Labeled `L τ)

Γ ` relabel• t : Labeled `H τ

(NewMVar•)
`L v `H

Γ ` newMVar• : MAC `L (MVar `H τ)

Fig. 34: Typing rules for the extended calculus.

C Typing Rules
Figure 34 gives the typing rules for the extended calculus, i.e., term • and the
other •-annotated terms introduced to apply erasure in two steps. The typing
rule [Hole] assigns an arbitrary type τ to the special term •, and the typing
rules of the •-annotated terms correspond to the rules of the corresponding
vanilla terms, which we have given in the form of type-signatures throughout
the article. Then, it is straightforward to prove that the erasure function is
type-preserving, i.e., if Γ ` t : τ then Γ ` ε`A(t) : τ . In our machine-checked
proof scripts, terms are encoded using a well-typed syntax, which merges the
syntax of terms and the typing judgments in a single object.

Paper IV

Based on

Securing Concurrent Lazy Programs Against Information Leakage,

by Marco Vassena, Joachim Breitner and Alejandro Russo,

30th IEEE Computer Security Foundations Symposium.

CHAPTER

THREE

SECURING CONCURRENT LAZY PROGRAMS
AGAINST INFORMATION LEAKAGE

Abstract. Many state-of-the-art information-�ow control (IFC) tools
are implemented as Haskell libraries. A distinctive feature of this lan-
guage is lazy evaluation. In his in�uencal paper on why functional pro-
gramming matters [62], John Hughes proclaims:

Lazy evaluation is perhaps the most powerful tool for modular-
ization in the functional programmer’s repertoire.

Unfortunately, lazy evaluation makes IFC libraries vulnerable to leaks
via the internal timing covert channel. The problem arises due to sharing,
the distinguishing feature of lazy evaluation, which ensures that results
of evaluated terms are stored for subsequent re-utilization. In this sense,
the evaluation of a term in a high context represents a side-e�ect that
eludes the security mechanisms of the libraries. A naïve approach to
prevent that consists in forcing the evaluation of terms before entering
a high context. However, this is not always possible in lazy languages,
where terms often denote in�nite data structures. Instead, we propose
a new language primitive, lazyDup, which duplicates terms lazily. We
make the security library MAC robust against internal timing leaks via
lazy evaluation, by using lazyDup to duplicate terms manipulated in
high contexts, as they are evaluated. We show that well-typed programs
satisfy progress-sensitive non-interference in our lazy calculus with non-
strict references. Our security guarantees are supported by mechanized
proofs in the Agda proof assistant.

1 Introduction
Information-Flow Control [128] (IFC) scrutinizes source code to track how
data of di�erent sensitivity levels (e.g., public or sensitive) �ows within a pro-
gram, and raises alarms when con�dentiality might be at stake. There are

90 1. INTRODUCTION

several special-purpose compilers and interpreters which apply this technol-
ogy: Jif [99] (based on Java), �owcaml [116] (based on Caml and not developed
anymore), Paragon [28] (based on Java), and JSFlow [51] (based on JavaScript).
Rather than writing compilers/interpreters, IFC can also be provided as a li-
brary in the functional programming language Haskell [75].

Haskell’s type system enforces a disciplined separation of side-e�ect free
from side-e�ectful code, which makes it possible to introduce input and out-
put (I/O) to the language without compromising on its purity. Computations
performing side-e�ects are encoded as values of abstract types which have
the structure of monads [92]. This distinctive feature of Haskell is exploited
by state-of-the-art IFC libraries (e.g., LIO [145] and MAC [123]) to identify
and restrict “leaky” side-e�ects without requiring changes to the language or
runtime.

Another distinctive feature of Haskell is its lazy evaluation strategy. This
evaluation is non-strict, as function arguments are not evaluated until required
by the function, and it performs sharing, as the values of such arguments are
stored for subsequent uses. In contrast, eager evaluation, also known as strict
evaluation, reduces function arguments to their denoted values before execut-
ing the function.

From a security point of view, it is unclear which evaluation strategy—lazy
or strict—is more suitable to preserve secrets. To start addressing this subtlety,
we need to consider the interaction between evaluation strategies and covert
channels.

Sabelfeld and Sands [130] suggest that lazy evaluation might be intrinsically
safer than eager evaluation for leaks produced by termination—as lazy evalua-
tion could skip the execution of unneeded non-terminating computations that
might involve secrets. In multi-threaded systems, where termination leaks are
harmful [141], a lazy evaluation strategy seems to be the appropriate choice.

Unfortunately, although lazy evaluation could “save the day” when it comes
to termination leaks, it is also vulnerable to leaks via another covert channel
due to sharing. Buiras and Russo [31] described an attack against the LIO
library [141] where lazy evaluation is exploited to leak information via the
internal timing covert channel [138]. This covert channel manifests by the mere
presence of concurrency and shared resources. It gets exploited by setting
up threads to race for a public shared resource in such a way that the secret
value a�ects their timing and hence the winner of the race. LIO removes such
leaks for public shared-resources which can be identi�ed by the library (e.g.,
references). Due to lazy evaluation, variables introduced by let-bindings and
function applications—which are beyond LIO’s control1—become shared re-
sources and their evaluation a�ects the threads’ timing behavior. Note that
the internal timing channel leverages the order with which threads access the

1 As a shallow EDSL, LIO reuses much of the host language features to provide security
(e.g., type-system and variable bindings). This design choice makes the code base
small at the price of not fully controlling the features provided by the host language.

CHAPTER 3. SECURING CONCURRENT LAZY PROGRAMS 91

let ` = [1 . . 10000000]
r = sum `

in do fork LIO -- Secret thread
(do s← unlabel secret

when (s ≡ 1 ∧ r > 10) return ())
no_ops;no_ops

-- Public threads
fork LIO (do sendPublicMsg (r − r))
fork LIO (do no_ops; sendPublicMsg 1)

Fig. 1: Lazy evaluation attack.

shared resource, not their execution time, which constitutes a di�erent covert
channel, known as the external timing covert channel [24, 41]. The attacker
model for the external timing covert channel assumes that the attacker has
access to an arbitrarily precise stopwatch to measure the wall-clock execution
time of instructions and thereby deduce information about secrets. This paper
does not address the external timing covert channel, which is a harder problem
and for which mitigation techniques exist [5, 168, 169].

Figure 1 shows the lazy evaluation attack. In LIO, every thread has a current
label which serves a role similar to the program counter in traditional IFC
systems [157]. The �rst thread inspects a secret value (s ← unlabel secret),
which sets the current label to secret. We refer to threads with such current
label as secret threads. The other spawned threads have their current label set to
public, therefore we call them public threads. Observe that the variable r hosts
an expression that is somewhat expensive to calculate, as it �rst builds a list
with ten million numbers (` = [1 . . 10000000]) before summing up its elements
(r = sum `). Importantly, the variable r is referenced by both the secret and
the public threads. Observe that every thread is secure in isolation—the secret
thread always returns () and the public threads read no secret. Assume that the
expression no_ops is some irrelevant computation that takes slightly longer
than half the time it takes to sum up the ten million numbers. Then the public
threads race to send a message on a shared-public channel using the function
sendPublicMsg :

. If s ≡ 1, then the secret thread has by now evaluated the expression refer-
enced by r , in order to check if r > 10 holds. Due to sharing, the �rst public
thread will not have to re-calculate r and can output 0 almost imediately, while
the other public thread is still occupied with no_ops .
. If s ≡ 0, then the secret thread did not touch r . While the �rst public thread

now has to evaluate r , the second public thread has enough time to perform
no_ops and output 1 �rst.

As a result, the last message on the public channel reveals the secret s. This
attack can be magni�ed to a point where whole secrets are leaked systemati-

92 1. INTRODUCTION

cally and e�ciently [141]. Similar to LIO, other state-of-the-art concurrent IFC
Haskell libraries [30, 123] su�er from this attack.

A naïve �x is to force variable r to be fully evaluated before any public
threads begin their execution. This works, but it defeats the main purpose
of lazy evaluation, namely to avoid evaluating unneeded expressions. Fur-
thermore, it is not always possible to evaluate expressions to their denoted
value. Haskell programmers like to work with in�nite structures, even though
only �nite approximation of them are actually used by programs. For exam-
ple, if variable ` in Figure 1 were the list [1 / n | n ← [1 . .]] of recipro-
cals of all natural numbers and r the sum of those bigger than one millionth
(r = sum (takeWhile (> 1e−6) `)). The evaluation of r uses only a �nite
portion of `, so the modi�ed program still terminates. But naïvely forcing ` to
normal form would hang the program. This demonstrates that simply forcing
evaluation as a security measure is unsatisfying, as it can introduce divergence
and thus change the meaning of a program.

Instead, we present a novel approach to explicitly control sharing at the
language level. We design a new primitive called lazyDup which lazily dupli-
cates unevaluated expressions. The attack in Figure 1 can then be neutralized
by replacing r with lazyDup r in the secret thread, which will then evaluate
its own copy of r , without a�ecting the public threads.

To the best of our knowledge, this work is the �rst one to formally ad-
dress the problem of internal timing leaks via lazy evaluation. In summary, our
contributions are:
I We present lazyDup, a primitive to restrict sharing in lazy languages with

mutuable references.
I By injecting lazyDup when spawning threads, we demonstrate that inter-

nal timing leaks via lazy evaluation are closed. The primitive lazyDup is not
only capable to secure MAC against lazy leaks, but also a wide range of other
security Haskell libraries (e.g., LIO and HLIO).
I We prove that well-typed programs satisfy progress-sensitive noninterfer-

ence (PSNI) for a wide-range of deterministic schedulers. However, for ease
of exposition in this article, we focus only on a round-robin scheduler—the
same scheduler used in GHC’s runtime system.2 Our non-interference claims
are supported by mechanized proofs in the Agda proof assistant [103] and are
parametric on the chosen (deterministic) scheduler.
I As a by-product of interest for the programming language community, we

provide—to the best of our knowledge—the �rst operational semantics for lazy
evaluation with mutable references.

This paper is organized as follows. Section 2 provides a brief overview on
MAC. Section 3 describes our formalization for a concurrent non-strict calculus
with sharing that also includes references. Primitive lazyDup is described in

2 The Glasgow Haskell Compiler (GHC) is a state-of-the-art, industrial-strength, open
source Haskell compiler.

CHAPTER 3. SECURING CONCURRENT LAZY PROGRAMS 93

-- Abstract types
data Labeled ` τ
data MAC ` τ

-- Monadic structure for computations
instance Monad (MAC `)

-- Core operations
label :: `L v `H ⇒ τ → MAC `L (Labeled `H τ)
unlabel :: `L v `H ⇒ Labeled `L τ → MAC `H τ

forkMAC :: `L v `H ⇒ MAC `H ()→ MAC `L ()

Fig. 2: Core API for MAC

Section 4. Section 5 shows how lazyDup can remove leaks via lazy evaluation
and Section 6 provides the corresponding security guarantees. Related work is
given in Section 7 and Section 8 concludes.

2 Overview of MAC
To set the stage of the work at hand, we brie�y introduce the relevant aspects
of the MAC IFC library [123].

Security lattice. The sensitivity of data is indicated by labels. These are partially
ordered byv and form a security lattice [37]. Concretely, `1 v `2 holds if data
labeled with label `1 is allowed to �ow to entities labeled with `2. Although
MAC is parameterized on the security lattice, for simplicity we focus on the
classic two-point lattice where the label H denotes secret (high) data, the label
L denotes public (low) data, and H 6v L is the only disallowed �ow. In
MAC, each label is represented as an abstract data type. To improve readability,
subscripts on label metavariables hint at their relationship, e.g., if `L and `H
appear together, then `L v `H holds.

Security Types. Figure 2 shows the core of MAC’s API. The abstract type
Labeled ` τ classi�es data of type τ with a security label `. For example
creditCard :: Labeled H Int represents a sensitive integer and weather ::
Labeled L String represents a public string. The abstract type MAC ` τ
denotes a (possibly) side-e�ectful secure computation which handles informa-
tion at sensitivity level ` and yields a value of type τ as a result. Importantly,
a MAC ` τ computation enjoys a monadic structure, i.e., it is built by the two
fundamental operations return ::τ → MAC ` τ and (>>=)::MAC ` τ → (τ →
MAC ` τ ′) → MAC ` τ ′ (called “bind”). The operation return x produces a
computation that returns the value denoted by x without causing side-e�ects.
The function (>>=) is used to sequence computations and their corresponding
side-e�ects. Speci�cally, m >>= f takes the result of running the computation
m and passes it to the function f , which then returns a second computation
to run. Haskell provides syntactic sugar for monadic computations known as

94 2. OVERVIEW OF MAC

impl :: Labeled H Bool → MAC H (Labeled L Bool)
impl secret = do

bool ← unlabel secret
if bool then label True

else label False

Fig. 3: Implicit �ows are ill-typed (H 6v L).

do-notation. For instance, the program m >>= λx → return (x + 1), which
adds 1 to the value produced by m, can be written as follows.

do x ← m
return (x + 1)

Flows of information. Abstractly, the side-e�ects of a MAC ` τ computation
involve either reading or writing data. We need to ensure that these actions
respect the �ows of information that are permitted by the security lattice. The
functions label and unlabel allow MAC ` τ computations to securely interact
with labeled expressions, which are the simplest kind of resources available
in MAC. If a MAC `L computation writes data into a sink, the computation
needs to have at most the sensitivity of the sink itself. This restriction, known
as no write-down [19], preserves the sensitivity of data handled by the MAC `L-
computation. The function label creates a fresh, labeled value. From the security
point of view, this action corresponds to allocating a fresh location in memory
and immediately writing a value into it—hence the no write-down principle
applies. The type signature of label has a type constraint before the symbol⇒,
which is a property that types must follow. The constraint `L v `H ensures
that, when calling label x , the level of the computation `L is no more con�-
dential than the sensitivity `H of the labeled value that it creates. In contrast, a
computation MAC `H τ is only allowed to read labeled values at most as sen-
sitive as `H. This restriction is known as no read-up [19] and gets enforced by
the constraint `L v `H in the type signature of unlabel . This paper focuses on
labeled expression, but MAC provides additional side-e�ecting primitives for
exception handling, network communication, references, and synchronization
primitives [123].
Implicit �ows. The interaction between the type of a MAC `-computation and
the no write-down restriction makes an implicit �ow ill-typed. Figure 3 shows
a program that attempts to implicitly leak a Boolean secret, which is correctly
rejected by the compiler. In order to branch on sensitive data, a program needs
�rst to unlabel it, which forces the computation to be of type MAC H τ , for
some type τ . Regardless of which branch is taken, the computation is at level H
and cannot therefore write into public data due to the no write-down restriction.
Trying to do so, as shown in Figure 3, incurs in a violation of the security policy
and a type error! Observe that the application of label is rejected since its type
constraint cannot be satis�ed, i.e., H 6v L.

CHAPTER 3. SECURING CONCURRENT LAZY PROGRAMS 95

Types: τ ::= () | τ1 → τ2
Values: v ::= () | λx .t
Terms: t ::= v | x | t1 t2
Stacks: S ::= [] | C : S
Continuations: C ::= x | #x

(App1)
fresh(x)

(∆, t1 t2,S) ; (∆[x 7→ t2], t1, x : S)

(App2)
(∆,λy .t , x : S) ; (∆, t [x / y],S)

(Var1)
(∆[x 7→ t], x ,S) ; (∆, t ,#x : S)

(Var2)
(∆, v ,#x : S) ; (∆[x 7→ v], v ,S)

Fig. 4: Syntax and semantics à la Sestoft

Concurrency. The mere possibility to run (conceptually) simultaneous MAC `
computations provides attackers with new tools to bypass security checks.
In particular, threads introduce the internal timing covert channel described
in the introduction. Furthermore, it considerably magni�es the bandwidth of
the termination covert channel, where secrets are learned by observing the
terminating behavior of threads [141]. To securely support concurrency, MAC
forces programmers to decouple computations which depend on sensitive data
from those performing public side-e�ects. In this manner, non-terminating
loops based on secrets cannot a�ect the outcome of public events. In this light,
the type signature of forkMAC in Figure 2 only allows spawning threads, i.e., a
secure computation with type MAC `H (), which are at least as sensitive as
the current computation, i.e., MAC `L (). It is secure to do so because that
decision depends on less sensitive data (`L v `H).

3 Lazy Calculus
In order to rigorously analyze the information leaks introduced by sharing, we
need to build on top of a formal semantics that is operationally precise enough
to make sharing observable. The default choice for such a semantics is Launch-
bury’s “Natural Semantics for lazy evaluation” [73], where the structure of the
heap is explicit and sharing, as well as cyclic data structures, are manifestly
visible. The heap is a partial map from names to terms. This representation
is still more abstract than other formalisations such as the Spineless Tagless
G-machine (STG) [109], which concerns itself with pointers and memory repre-
sentation, and is the basis of the Haskell implementation GHC [88]. That much
operational detail would only clutter this work, and in terms of lazy evaluation,
Launchbury’s semantics is a suitable model of the actual implementation.

This work will have to address concurrency, for which a big-step seman-
tics such as Launchbury’s is unsuitable for. Therefore, we build on Sestoft’s

96 3. LAZY CALCULUS

rendering of Launchbury’s semantics as an abstract machine with small-step
semantics [135]. Here, a judgement (∆, t ,S) ; (∆′, t ′,S ′) indicates that a
con�guration consisting of a current expression t , a heap ∆, and a stack S
takes one step to the con�guration on the right hand side of the arrow.

The rules in Figure 4 describe the transitions of the abstract machine for the
standard syntactical constructs. Rule (App1) initiates a function call. Since we
work in a lazy setting, the function argument t2 is not evaluated at this point.
Instead, it is stored on the heap as a thunk, i.e., an unevaluated expression, under
a fresh name x with regard to the whole con�guration—which corresponds to
allocating memory. The machine proceeds to evaluate the function expression
t1 to a lambda expression. Then, rule (App2) takes over and substitutes the name
of the argument x , which is found on the stack, into the body t of the lambda
expression. The argument x may, however, need to be evaluated at some point.
Rule (Var1) �nds the corresponding thunk t on the heap and, after leaving an
update marker #x on the stack, begins to evalute the thunk—intuitively, this
marker indicates that when the evaluation of the current term �nishes, the
denoted value gets stored in x . During evaluation, x is removed from the heap.
If the evaluation of t required the value of x , the machine would get stuck. This
e�ect is desired: if the binding for x were to remain on the heap, evaluation
would simply start to run in circles. Removing the variable from the heap, a
technique called blackholing, makes this error condition detectable. When the
machine reduces the thunk to a value v , rule (Var2) pops the update marker
from the stack and puts x back on the heap, but now referencing to the value
v . Every future use of x will use v directly instead of re-calculating it. This
updating operation is the crucial step to implement sharing behavior.

We simpli�ed Sestoft’s presentation of the semantics in a few ways to
remove aspects not relevant for the discussion at hand and to facilitate our
machine-checked proofs in Agda: i) our syntax does not include mutual re-
cursive let expressions; ii) in contrast to Sestoft and Launchbury, we allow
non-trivial arguments in function application, i.e., our terms are not necessar-
ily in Administrative Normal Form (ANF). In that manner, a non-recursive let
expression such as let x = t1 in t2 can be expressed as (λx .t2) t1; iii) al-
though omitted in this presentation, our formalism sports types with multiple
values (e.g., Boolean expressions) and the corresponding case-analysis clause
(e.g., if -then-else) by using the rules found in [27].

3.1 Security Primitives

We now extend this standard calculus with the security primitives of MAC
as shown in Figure 5. The new type Labeled ` τ consists of pure values t :: τ
wrapped in Labeled , and annotates them with the security level `. We call
Labeled 42 :: Labeled ` Int a pure, side-e�ect free labeled-` resource with
content 42. We introduce a further form of labeled resource, namely references,
in the next section. The semantics rules in Figure 5 are fairly straight-forward
and follow the pattern seen in Figure 4. It is worth noting that thanks to the
static nature of MAC, no run-time checks are needed to prevent insecure �ows

CHAPTER 3. SECURING CONCURRENT LAZY PROGRAMS 97

Labels: `
Types: τ ::= · · · | MAC ` τ | Labeled ` τ
Values: v ::= · · · | return t | Labeled t
Terms: t ::= · · · | t1 �= t2 | label t | unlabel t
Continuations: C ::= · · · | >>=t | unlabel

(label)
(∆, label t ,S) ; (∆, return (Labeled t),S)

(unlabel1)
(∆, unlabel t ,S) ; (∆, t , unlabel : S)

(unlabel2)
(∆,Labeled t , unlabel : S) ; (∆, return t ,S)

(bind1)
(∆, t1 >>= t2,S) ; (∆, t1, >>=t2 : S)

(bind2)
(∆, return t , >>=t2 : S) ; (∆, t2 t ,S)

Fig. 5: Security primitives

of information in these rules. We remark that the constructor Labeled is not
available to the user, who can only use label (unlabel) to create (inspect) labeled
resources. Besides these primitives, the user can create computations using the
standard monad operations return and >>=.

The actual MAC implementation knows even more labeled resources (e.g.,
network) [123]. MAC requires no modi�cation to Haskell’s type system in
order to handle labels: each label is de�ned as an empty type, i.e., a type that
has no value, and labeled resources (type Labeled) use labels as phantom types,
i.e., a type parameter that only carries the sensitivity of data at the type-level.

3.2 References

We now extend the abstract machine with mutable references, a feature avail-
able in MAC to boost the performance of secure programs [123]. References
live in the memory M , which is simply a list of variables, added as a component
of the program con�guration—see Figure 6. The address of a memory cell is its
index in this list. The memory M [n 7→ x] is M with its n-th cell changed to
refer to x . Observe that the memory M and the heap ∆ are two distinct syn-
tactic categories and that, while the latter contains arbitrary terms and enjoys
sharing, the former merely contains pointers to the heap. A labeled reference
is represented as a value Ref n :: Ref ` τ where n is the address of the n-th
memory cell, which contains a variable (a “pointer”) to some term t :: τ on
the heap3. Only secure computations can manipulate these labeled references
using the following secure primitives. Observe that the types are restricted

3 MAC’s implementation of labeled reference is a simple wrapper around Haskell’s
type IORef . However, we denote references as a simple index into the labeled mem-
ory. This design choice does not a�ect our results.

98 3. LAZY CALCULUS

Con�guration: c ::= 〈M ,∆, t ,S〉
Memory: M ::= [] | x : M
Addresses: n ∈ N
Types: τ ::= · · · | Ref ` τ
Values: v ::= · · · | Ref n
Terms: t ::= · · · | new t | read t | write t1 t2
Continuations: C ::= · · · | read | write t

(Lift)
(∆, t ,S) ; (∆′, t ′,S ′)

〈M ,∆, t ,S〉 −→ 〈M ,∆′, t ′,S ′〉

(New)
n = |M | fresh(x) M ′ = M [n 7→ x] ∆′ = ∆[x 7→ t]

〈M ,∆,new t ,S〉 −→ 〈M ′,∆′, return (Ref n),S〉

(Write1)
〈M ,∆,write t1 t2,S〉 −→ 〈M ,∆, t1,write t2 : S〉

(Write2)
fresh(x) M ′ = M [n 7→ x] ∆′ = ∆[x 7→ t]

〈M ,∆,Ref n,write t : S〉 −→ 〈M ′,∆′, return (),S〉

(Read1)
〈M ,∆, read t ,S〉 −→ 〈M ,∆, t , read : S〉

(Read2)
〈M ,∆,Ref n, read : S〉 −→ 〈M ,∆, return M [n],S〉

Fig. 6: Syntax and semantics for references.

according to the no read-up and no write-down restrictions—like those of label
and unlabel .

The extended semantics is represented as the relation c −→ c′ which
extends ; via [Lift]—see Figure 6. Rule [New] allocates the second argument
on the heap with a fresh name x , extends the memory with a new pointer to
x and returns a reference to it. Rule [Write1] evaluates its �rst argument to
a reference and rule [Write2] overrides the memory cell with a pointer to
a newly allocated heap entry, just like new . The two [Read]-rules retrieve a
pointer from memory. To the best of our knowledge, this is the �rst published
operational semantics that models both lazy evaluation and mutable references,
and although we constructed it using standard techniques, we would like to
point out a crucial subtlety.

A naïve model might omit the extra memory M , let a reference simply
contain a variable on the heap (t ::= · · · | Ref x), and use the transition rule

CHAPTER 3. SECURING CONCURRENT LAZY PROGRAMS 99

new :: `L v `H ⇒ τ → MAC `L (Ref `H τ)
read :: `L v `H ⇒ Ref `L τ → MAC `H τ
write :: `L v `H ⇒ τ → Ref `H τ → MAC `L ()

Fig. 7: API of memory operations.

〈∆,Ref x ,write t :S 〉 −→ 〈∆[x 7→ t], return (),S 〉. This transition interacts
badly with sharing, as shown by the following program.

do r ← new (1 + 1)
x ← read r
write r 1
if (x ≡ 2) then return ","

else return "/"

Clearly, we expect the program to return ",", but it returns "/"with the naïve
semantics! The new statement allocates a new variable x , binds it to 1+1, and
returns the reference Ref x . The next read statement brings variable x into
scope, which is pure and we expect its denoted value to stay the same. However,
under the naïve semantics, the following write statement changes x to 1 and
therefore chaos ensues.

The solution is to add an extra layer of indirection, and distinguish between
the mutable memory cells that make up a reference, and the heap locations
that—although changed in [Var2]—are conceptually constant. We chose to keep
track of them separately in the memory M and the heap∆ since we found that
it makes formal reasoning easier. It is also viable to keep both on the heap, and
just be disciplined as to which variables denote references and which denote
values and thunks—this design choice would be closer to GHC’s runtime, where
both pure data and mutable references are addressed by pointers into a single
heap.
3.3 Concurrency

Finally, we extend our language with concurrency in the form of threads whose
execution interleave.4 We consider global con�gurations of the form 〈M , ∆, Ts〉,
where thread pool Ts consists of a list of threads—see Figure 8. A thread (t ,S)
is an interrupted secure computation, consisting of a control term t and a stack
S. Within a global con�guration, threads are identi�ed by their position in
the thread pool. For simplicity and brevity, the concurrent calculus features a
Round Robin scheduler, the same kind of scheduler used by GHC’s run-time
system5—however, our results and semantics generalize to a wide range of
deterministic schedulers. In the following, we omit the scheduler from the
con�guration and from the semantics rules for space reasons.

4 MAC provides also synchronization variables [123], which we omit here.
5 https://ghc.haskell.org/trac/ghc/wiki/Commentary/Rts/Scheduler

https://ghc.haskell.org/trac/ghc/wiki/Commentary/Rts/Scheduler

100 4. DUPLICATING THUNKS

Thread pool: Ts ::= [] | (t ,S) : Ts
Con�guration: c ::= 〈M ,∆, Ts〉
Terms: t ::= · · · | fork t

(Seq)
〈M1,∆1, t1,S1〉 −→ 〈M2,∆2, t2,S2〉 T ′s = Ts[n 7→ (t2,S2)]

〈M1,∆1, Ts[n 7→ (t1,S1)]〉 ↪→ 〈M2,∆2, T
′
s〉

(Fork)
m = |Ts| T ′s = Ts[n 7→ (return (),S)]

〈M ,∆, Ts[n 7→ (fork t ,S)]〉 ↪→ 〈M ,∆, T ′s[m 7→ (t , [])]〉

Fig. 8: Syntax and Semantics of the concurrent calculus.

Figure 8 describes the two rules under which a global con�guration c1
steps to c2 (written c1 ↪→ c2). In both rules ([Seq] and [Fork]), thread n is
executed—the scheduler actually deterministically chooses which thread to run,
which is retrieved from the thread pool Ts. In rule [Seq], the selected thread,
i.e., (t1,S1), takes a sequential step that is paired with the current memory
and heap: (〈M1, ∆1, t1,S1〉 −→ 〈M2, ∆2, t2,S2〉). The global con�guration is
then updated accordingly to the �nal sequential con�guration; in particular,
the thread pool is updated with the reduced thread, i.e., Ts[n 7→ (t2,S2)]. In
rule [Fork], the selected thread spawns a thread—note that term fork t is stuck
in the sequential semantics and rule [Seq] does not apply. The new thread is
assigned the fresh identi�er m = |Ts|—thread pool Ts contains threads 0 ...
|Ts|−1. Lastly, the thread pool is updated with the parent thread, appropriately
reduced to (return (),S), and by inserting the new thread initialized with an
empty stack, i.e., (t , []), at position m .

Note that a thread that tries to evaluate a variable x that is already under
evaluation by another thread will not �nd this variable on the heap, due to the
blackholing mechanism explained earlier. The thread is now blocked, guaran-
teeing that, even in the concurrent setting, every thunk will only be evaluated
at most once. This mechanism is consistent with the operational semantics
used by Finch et al. [12].

4 Duplicating Thunks

This section presents one of our main contributions: a primitive, called lazyDup,
to prevent sharing. Given a term t , evaluating lazyDup t will lazily create a
copy of t . The laziness is necessary in order to duplicate cyclic or in�nite data
structures without sending the program into a loop. We �rst present the basic
semantics of lazyDup and then describe how we handle references.

CHAPTER 3. SECURING CONCURRENT LAZY PROGRAMS 101

Terms: t ::= · · · | lazyDup t

(LazyDup1)
¬ isVar (t) fresh(x)

〈∆, lazyDup t ,S〉; 〈∆[x 7→ t], lazyDup x ,S〉

(LazyDup2)
x 7→ t ∈ ∆ fresh(x ′)

〈∆, lazyDup x ,S〉; 〈∆[x ′ 7→ JtK∅], x ′,S〉

Jt1 t2KB = Jt1KB Jt2KB

Jλx .tKB = λx .JtKB∪{x }

J()KB = ()

JxKB =

{
x if x ∈ B

lazyDup x if x 6∈ B

JlazyDup tKB = lazyDup t

Fig. 9: Syntax and semantics of lazyDup.

4.1 Semantics

Figure 9 extends the syntax and the semantics of the calculus with lazyDup.
The rule [LazyDup1] ensures that the argument of lazyDup is a variable, if that
is not already the case. The interesting rule is [LazyDup2], which evaluates
lazyDup x and copies the expression t referenced by x . This closes the covert
channel represented by x , but it is insu�cient, as t might mention further
variables. Therefore, lazyDup has to descent into t , and handle these as well.
But instead of immediately duplicating the terms referenced by those variables,
we simply wrap them in a call to lazyDup—this is the eponymous laziness.

Figure 9 shows (some of) the equations of the function JtKB which imple-
ments this. It homomorphically traverses the tree t , while keeping track of the
set of bound variables in its parameter B . Ground values and bound variables
are left alone. When lazyDup �nds a free variable, i.e., one not in B , it wraps
it with a call to lazyDup as intended. In the following, we omit the superscript
B when irrelevant. Finally, if J·K comes across a call to lazyDup, it does not tra-
verse further, as the existing lazyDup already takes care of the duplication. In
fact, without this case, evaluating expression lazyDup (lazyDup t) would send
the program into an in�nite loop. We conjecture that introducting lazyDup
does not change the termination behavior of programs. Note that the term JtK
has at most one call to lazyDup wrapped around each free variable.

102 5. SECURING MAC

Values: v ::= · · · | DRef m
JRef nKB = DRef n

JDRef nKB = DRef n

(ReadD)
〈M ,∆,DRef n, read : S〉 −→ 〈M ,∆, return (lazyDup M [n],S)〉

(WriteD)
fresh(x) M ′ = M [n 7→ x] ∆′ = ∆[x 7→ t]

〈M ,∆,DRef n,write t : S〉 −→ 〈M ′,∆′, return (),S〉

Fig. 10: Duplicate-on-read memory operations.

4.2 References

Duplicating references requires particular care. To illustrate this, consider what
does not work. We cannot leave references alone (JRef nK = Ref n) because
thunks can be passed through the reference and open a new leaking channel.
We cannot either duplicate the reference and the term it currently references
since this would change the semantics of mutable references. More concretely,
consider a Ref n with M [n] = x and ∆(x) = t . Assume we duplicate t to
∆(y) = JtK for a fresh name y and let JRef nK = Ref n ′ for a fresh memory
cell n ′, such that M [n ′ 7→ y]. If later Ref n gets updated with the value 42,
i.e., M [n 7→ z] with ∆(z) = 42, then this change would be invisible to Ref n ′,
which would still refer to JtK through variable y . This is bad, as lazyDup is not
supposed to change the observable semantics of the program!

Crucially, we need to propagate any write operation on the original refer-
ence to the duplicated reference. One manner to achieve that is to have both
references pointing to the same memory location but carefully preventing leaks
from reading this shared resource. In this light, we introduce a new variant of
reference, called duplicate-on-read reference, which is represented by DRef n .6
When reading from a DRef n , we wrap the read value in a call to lazyDup, as
shown in Figure 10, while write operations on a duplicate-on-read reference
are executed as usual. Function J·K does not need to follow references and dupli-
cate their content, but simply turns them into duplicate-on-read-references. In
this sense, we apply lazyDup lazily to reference: the duplication is suspended
and continues when the reference is read.

5 Securing MAC
We now pinpoint the vulnerability leveraged by the attack sketched in the in-
troduction and show how to modify MAC to close it using lazyDup. It turns
out that one careful modi�cation to the [Fork] rule su�ces. This change, high-
lighted in greeen in Figure 11, ensures that when we create a new thread to

6 The same approach applies to synchronization variables.

CHAPTER 3. SECURING CONCURRENT LAZY PROGRAMS 103

(Fork)
|Ts| = m T ′s = Ts[n 7→ (return (),S)]

〈M ,∆, Ts[n 7→ (fork t ,S)]〉 ↪→ 〈M ,∆, T ′s[m 7→ (lazyDup t , [])]〉

Fig. 11: The green patch secures MAC.

evaluate t , it will work on a lazily duplicated copy of t , i.e., lazyDup t . As a
result, each thunk shared between the parent and the child thread gets lazily du-
plicated: the parent thread works on the original thunk, while the child thread
works on a copy.7

Let us trace how our proposal �xes the leak shown in Figure 1. Let t be the
code of the secret thread. When it is spawned, lazyDup t is added to the thread
pool. Note that the critical resource that causes the leak, namely variable r , is a
free variable of t . As the secret thread executes lazyDup t , the occurrence of r
in the code is replaced by lazyDup r (rule [lazyDup2]). Therefore, if s ≡ 1, the
thread duplicates r before evaluating it, leaving r itself alone, just like when
s ≡ 0 and the secret thread does not touch r at all. As a result, the timing
behavior of public threads, i.e., the order with which they output a message on
the public channel, is una�ected by the value of the secret s and the internal
timing leak is closed.

Observe that lazyDup conservatively avoids sharing between secret and
public threads. In principle, it is acceptable for a secret thread to evaluate and
update a thunk if that action does not depend on the secret—for example if that
happens before any sensitive command such as unlabel . Assessing whether
this is the case requires sophisticated program analysis techniques, which are
beyond the scope of this paper. On the other hand, sharing from public to
secret threads is always secure, and in fact lazyDup allows for this “write-up”
behavior: if, due to lucky scheduling, the public thread �nishes evaluating r
before the secret thread looks at it, then the latter will see the fully evaluated
term and securily enjoy the bene�ts of sharing.

The primitive lazyDup is capable of securing LIO as well even though it
has to be used di�erently—see Appendix A for more details.

6 Security Guarantees
In this section, we show that our calculus satis�es progress sensitive noninterfer-
ence (PSNI). We start by describing our proof technique, based on term erasure.
To facilitate reasoning, we proceed to decorate our calculus with labels that
keep track of the security level of terms stored in memory, heaps and con�gu-
rations. We then prove PSNI for the decorated calculus and conclude that MAC

7 It is secure to avoid duplication whenever the parent and the child thread share the
same security level, which are both statically known in MAC, see Figure 2. Since the
label of the child thread (`H) is at least as sensitive as that of the parent, i.e., `L v `H,
we only have to use lazyDup if `L < `H.

104 6. SECURITY GUARANTEES

c c′

ε`A (c) ε`A (c′)

ε`A
ε`A

Fig. 12: Single-step simulation.

is likewise secure by establishing a mutual simulation relation with the vanilla
(undecorated) calculus.

6.1 Term Erasure

Term erasure is a technique to prove noninterference in functional programs
[76] and IFC libraries (e.g., [30,55,141,145,153]). It relies on an erasure function,
which we denote by ε`A . This function rewrites data above the attacker’s secu-
rity level, denoted by label `A, to the special syntactic construct •. At the core,
this technique establishes a simulation between reductions of con�gurations
and reductions of their erased counterparts. Figure 12 shows that erasing sensi-
tive data from a con�guration c and then taking a step (orange path) yields the
same con�guration as �rst taking a step and then erasing sensitive data (cyan
path), i.e., the diagram commutes. If the con�guration c were to leak sensitive
data into a non-sensitive resource, then it will remain in ε`A(c′). The same data
would be erased in ε`A(c) and the diagram would not commute.

6.2 Decorated Calculus

The erasure proof technique was conceived to work on dynamic IFC approaches
[76], where security labels are attached to terms. Applying term erasure to
MAC, where labels are parts of the types instead of the terms, demands to
extend our calculus with extra information about the sensitivity nature of
terms. As in similar work [152, 153], we annotate terms with their type and
make the erasure function type-driven. The annotated term t :: τ denotes that
the term t has type τ . We likewise decorate con�gurations, heaps, memories,
stacks, and continuations with labels.

Figure 13 summarizes the main changes required to decorate our calculus. A
pure con�guration 〈∆`, t ,S `〉, labeled with `, consists of a labeled heap∆`, and
a labeled stack S `. An `-labeled heap∆` can be accessed by `-labeled variables,
e.g., x `. An `-labeled stack contains exclusively `-labeled continuations, which
involve only `-labeled variables, i.e., continuations x ` and #x `. Furthermore
an `-labeled heap contains terms that can be evaluated only by threads at level
`. A sequential con�guration 〈Σ,Γ, t ,S `〉 labeled with `, consists of a store
Σ, a current term t , an heap map Γ , and a labeled stack S `. An `-labeled
con�guration denotes a computation of type MAC ` τ , for some type τ . Note
that this does not necessarily mean that term t is a MAC computation—when
the con�guration steps the current term is changed with the next redex, which
might have a completely di�erent type. Instead, the combination of current

CHAPTER 3. SECURING CONCURRENT LAZY PROGRAMS 105

Pure conf. `: c ::= (∆`, t ,S `)

Seq. conf. `: c ::= 〈Σ,Γ, t ,S `〉
Heap map: Γ ∈ (` : Label)→ Heap `
Store: Σ ∈ (` : Label)→ Memory `

Memory `H: M ::= · · · | x `L : M

Terms τ : t ::= · · · | x `

Cont. `: C ::= · · · | x ` | #x `

Conc. conf.: c ::= 〈Σ,Γ, Φ〉
Pool map: Φ ∈ (` : Label)→ Pool `

Fig. 13: Decorated Calculus.

term and stack guarantees that the whole con�guration represents a MAC `
computation.

It is known that dealing with dynamic allocation of memory makes it chal-
lenging to prove noninterference (e.g., [15, 53]). One manner to tackle this
technicality is by establishing a bijection between public memory addresses of
the two executions we want to relate and considering equality of public terms
up to such notion [15]. Instead, and similar to other work [55,145,152,153], we
compartmentalize the memory into isolated labeled segments, one for each la-
bel of the lattice. This way, allocation in one segment does not a�ect the others.
A similar argument holds for the heap and the thread pool, which we therefore
also organize in partitions, accessed through the heap map Γ respectively the
pool map Φ. Since we now have multiple heaps in one con�guration, we need
to annotate the free variables with the label of the heap in which they are bound.
So a variable x ` denotes that x is bound in the heap Γ (`). Variables bound in-
side a term remain unlabeled, e.g., λx .x . A variable x `L in a `H-labeled memory
will have a label of at most the memory’s sensitivity, `L v `H. Unlike variables,
we do not need to annotate memory cells n , as they only occur in a Ref n
expression, which carries a label in its type. So a reference Ref n :: Ref ` τ
points to the n-th entry in the `-labeled memory. In the following, we write
fresh(x `) to denote that variable x is fresh with respect to heap Γ (`) = ∆`

and stack S `. We write Γ [`][x `] := t for the heap map obtained by performing
the update Γ (`)[x ` 7→ t], and likewise for stores and pool maps.

6.3 Decorated Semantics

The interesting rules of the annotated semantics are shown in Figure 14. The
rules for the pure fragment of the calculus are adapted to work with labeled
variables. Note that rule [App2] replaces the bound, hence unlabeled, variable y
with the labeled variable x ` and thus maintains the invariant that free variables
are labeled.

Why do we get away with giving the pure fragment of the annotated cal-
culus only access to the heap Γ (`) in a con�guration at level `? What if the
program accesses a variable at a di�erent level `′? Because that cannot happen

106 6. SECURITY GUARANTEES

(App1)
fresh(x `)

(∆`, t1 t2,S
`) ; (∆`[x ` 7→ t2], t1, x

` : S `)

(App2)
(∆`, λy .t , x ` : S `) ; (∆`, t [x ` / y],S `)

(Var1)
(∆`[x ` 7→ t], x `,S `) ; (∆`, t ,#x ` : S `)

(Var2)
(∆`, v ,#x ` : S) ; (∆`[x ` 7→ v], v ,S `)

(Lift)
(Γ (`), t1,S

`
1) ; (∆`, t2,S

`
2)

〈Σ,Γ, t1,S `1〉 −→ 〈Σ,Γ [` 7→ ∆`], t2,S
`
2〉

(LazyDup1)
¬ isVar (t) fresh(x `)

〈Σ,Γ, lazyDup t ,S `〉 −→ 〈Σ,Γ [`][x `] := t , lazyDup x `,S `〉

(LazyDup2)
x `L 7→ t ∈ Σ(`L) fresh(y`H)

〈Σ,Γ, lazyDup x `L ,S `H〉 −→ 〈Σ,Γ [`H][y
`H] := JtK∅, y`H ,S `H〉

(New)
|Σ(`H)| = n fresh(x `L)

〈Σ,Γ,new t ,S `L〉 −→ 〈Σ[`H][n] := x `L ,∆[`L][x
`L] := t , return (Ref n),S `L〉

(Write2)
fresh(x `L)

〈Σ,Γ,Ref n,write t : S `L〉 −→ 〈Σ[`H][n] := x `L , Γ [`L][x
`L] := t , return (),S `L〉

(Read2)
Σ(`)[n] = x `

〈Σ,Γ,Ref n, read : S `〉 −→ 〈Σ,Γ, return x `,S `〉

(ReadD)
〈Σ,Γ,DRef n, read : S `H〉 −→ 〈Σ,Γ, return (lazyDup Σ(`L)[n]),S

`H〉

Fig. 14: Decorated Semantics

CHAPTER 3. SECURING CONCURRENT LAZY PROGRAMS 107

in a safe program, as the following example shows. Consider the following
reduction sequence:

([x `
′ 7→ t], x `

′
, [])

; ([], t , # x `
′
: []) -- rule [Var1]

;∗ ([], v , # x `
′
: [])

; ([x `
′ 7→ v], v , []) -- rule [Var2]

In the �rst step, the `-labeled con�guration reads the variable x `
′ . According

to the no read-up security policy, this is only safe if `′ v `. In the last step,
the `′-labeled heap entry is updated with the value v . This constitutes a write
operation, so accoring to the no write-down policy, this requires ` v `′. By
the antisymmetry of the security lattice, it follows that ` ≡ `′ must hold. So in
the presence of sharing, a con�guration complies with the no write-down and
no read-up security policies only if it interacts soley with the `-labeled heap.

Rule [Lift] executes a pure reduction step, giving it access to the appropri-
ate heap Γ (`) and updating the heap map afterwards. Rules [LazyDup1] and
[LazyDup2] adapt the semantics of lazyDup to label-partitioned heaps. The
�rst rule takes care of allocating a non-trivial argument on the heap labeled
as the current con�guration. The second rule is the heart of our security leak
�x: it handles the case where a high thread reads a thunk from a lower con-
text. The rule fetches the thunk t from the lower heap, i.e., t 7→ Σ(`L), and
extends the heap labeled as the con�guration with a copy of the thunk, i.e.,
Σ[`H][y

`H] := JtK∅. Observe that this operation relabels the original thunk t
from `L to `H securely because t is duplicated, ensuring that the free variables
in t will, by the time they are about to be evaluated, be wrapped in lazyDup, so
that [LazyDup2] kicks in again. In rule [New], a computation at level `L creates
a reference labeled with `H. The thunk t is allocated on the `L heap under the
name x `L , which is written to the fresh cell in memoryΣ(`H). This ensures the
invariant that in well-typed con�gurations a memory holds references to lower
heaps. The same applies to rule [Write2]. Rule [Read2] enforces that a compu-
tation at level ` can only read from a non-duplicated reference if the referenced
variable is at the same level `. Relaxing this would allow a high thread to read
a thunk from a low level and thus open another leaky channel. But the inter-
play of rule [Fork] (in its annotated variant in Figure 16a in Appendix D), rule
[LazyDup2] and lazyDup rewriting of references to duplicate-on-read refer-
ences precludes this scenario. Rule [ReadD] then allows a `H high computation
to read a low variable from a duplicate-on-read reference, by duplicating it to
ensure security.
6.4 Erasure Function

The term ε`A(t :: τ) is obtained from a term t with type τ by erasing data not
observable by an attacker at level `A. For clarity, we omit the type annotation
when irrelevant or obvious. Ground values (e.g., (), True) are una�ected by the

108 6. SECURITY GUARANTEES

erasure function. For most syntactic forms, the function recurses homomor-
phically as in ε`A(lazyDup t :: τ) = lazyDup (ε`A(t :: τ)). The interesting
cases are terms of type Labeled ` τ and Ref ` τ . For such cases, the erasure
function recurses as usual if ` v `A. If, however, ` 6v `A, and the re-
source is above the attacker’s level, then it is erased and replaced by •, e.g.,
ε`A(Labeled t :: Labeled ` τ) = Labeled (ε`A(t :: τ)) if `A v ` or Labeled •
otherwise. The erasure function is described with more detail in Appendix D.
6.5 Decorated Progress-Sensitive Non-interference

The noninterference proof relies on the two main properties determinancy and
simulation. Determinancy simply states that transitions are deterministic:

Proposition 10 (Determinancy) If c1 ↪→ c2 and c1 ↪→ c3 then c2 ≡ c3.

The equality in this statement is alpha-equality, i.e., up to the choice of variables.
In the machine-checked proofs all variables are De Bruijn indexes, and we
indeed obtain structural equality.

The choice of determinism makes the concurrent model robust against
scheduler re�nement attacks. The second property, i.e., simulation, says that if
a thread steps in a global con�guration, then, either the same thread steps in
the erased con�guration, when the thread’s level is visible to the attacker, i.e.,
` v `A, or otherwise, the initial and resulting con�guration are indistinguish-
able to the attacker. We call such indistinguishability relation `A-equivalence,
written c1 ≈`A c2 and de�ned as ε`A(c1) ≡ ε`A(c2). Observe that two `A-
equivalent con�gurations contain exactly the same number of `A-equivalent
public threads, but possibly a di�erent number of secret threads. The nota-
tion c1 ↪→(`,n) c2 expresses that the con�guration c1 runs the n-th thread at
security level `—threads are identi�ed by label and number in the decorated
semantics.

Proposition 11 (Simulation) Given a global reduction step c1 ↪→(`,n) c′1 then

– ε`A(c1) ↪→(`,n) ε`A(c
′
1), if ` v `A, or

– c1 ≈`A c′1, if ` 6v `A

From Propositions 10 and 11, we prove progress-sensitive noninterference.
Note that, unlike our previous work [153], Proposition 11 does not simulate
sensitive threads, because `A-equivalence su�ces for PSNI. For more details,
please refer to our Agda formalization8.

Theorem 1 (PSNI) Given two con�gurations c1 and c2, such that c1 ≈`A c2
and a reduction c1 ↪→(`,n) c′1, then there exists a con�guration c′2 such that
c′1 ≈`A c′2 and c2 ↪→∗ c′2.

As usual, ↪→∗ denotes the transitive re�exive closure of ↪→.
8 Available at https://github.com/marco-vassena/lazy-mac

https://github.com/marco-vassena/lazy-mac

CHAPTER 3. SECURING CONCURRENT LAZY PROGRAMS 109

Proof 1 We have two cases depending on whether the label ` is below or above
the attacker’s level.
If ` 6v `A, then we apply simulation (Proposition 11) to the step c1 ↪→(`,n) c′1
and obtain c1 ≈`A c′1. Then, we pick c′2 ≡ c2 (c2 ↪→∗ c′2 in 0 steps) and derive
c′1 ≈`A c2 from symmetry and transitivity of the `A-equivalence relation applied
to c′1 ≈`A c1 and c1 ≈`A c2.
If ` v `A, by `A-equivalence, con�guration c2 contains a thread identi�ed by
(`,n), that is `A-equivalent to the thread (`,n) run by c1. However, con�guration
c2 might contain a �nite number of high threads, which are scheduled before that.
After running those high threads, i.e., c2 ↪→∗ c′′2 , for some con�guration c′′2 , the
same low thread is scheduled, i.e., c′′2 ↪→(`,n) c′2, for some other con�guration
c′2. Then, we apply simulation (Proposition 11) to the �rst series of steps and
obtain c2 ≈`A c′′2 (they are all above the attackers level). From transitivity of
the `A-equivalence relation applied to c1 ≈`A c2 and c2 ≈`A c′′2 , we then obtain
c1 ≈`A c′′2 , i.e., ε`A(c1) ≡ ε`A(c

′′
2). Then, we apply simulation again to the low

steps (` v `A) and derive the corresponding erased step, i.e., ε`A(c1) ↪→(`,n)

ε`A(c
′
1) from c1 ↪→(`,n) c′1 and ε`A(c

′′
2) ↪→(`,n) ε`A(c

′
2) from c′′2 ↪→(`,n) c′2.

Lastly, we apply determinancy (Proposition 10) to the erased steps and obtain
ε`A(c

′
1) ≡ ε`A(c′2), which implies c′1 ≈`A c′2.

6.6 Simulation between Vanilla and Decorated semantics

To conclude the proofs of the security guarantees, we have to relate the deco-
rated semantics with the vanilla semantics. On the one hand, we show that we
can strip o� the annotations from a decorated program, run it in the vanilla
semantics, and get the same behaviour as running the decorated program in the
decorated semantics. On the other hand, we show that we can annotate a well-
typed vanilla program, based on the type derivations, and obtain a decorated
program that executes correspondingly.

The main challenge is to map the partitioned heap, memory, and stack in
the annotated calculus into a single heap, memory, and stack and vice versa. We
apply techniques inspired by other IFC works on dynamic allocation [15] and
partitioned heaps [55] and show that con�gurations in the annotated calculus
are equal to those in the vanilla calculus up to bijection on variables names
and memory addresses. These bijections describe how to �atten the partitioned
memories and heaps into single entities without changing the results produced
by programs—of course, modulo variable names and memory addresses. Note
that our references are opaque to programs, i.e., there is no pointer arithmetic,
equality, etc., which makes the proof easier.

We work with the two bijections, Ψ1 ∈ (Label × Var) → Var
for heap variables and Ψ2 ∈ (Label × N) → N for memory addresses,
where Var is the set of variables and N the set of memory addresses. When
we refer to both bijections, we simply write Ψ . As one expects, we consider
an annotated con�guration equivalent up to bjections to a vanilla con�gura-
tion, written 〈Σ,Γ, t ,S `〉 ∼=Ψ 〈M , ∆, t ′,S 〉, if and only if their components
are related, i.e., Σ ∼=Ψ M , Γ ∼=Ψ ∆, S ` ∼=Ψ S , and t ∼=Ψ t ′. The equiv-

110 6. SECURITY GUARANTEES

alences on memories (Σ ∼=Ψ M), heap (Γ ∼=Ψ ∆), and stack (S ` ∼=Ψ S)
are de�ned point-wise. Equivalence of terms is a congruence relation with
x ` ∼=Ψ y if and only if Ψ1 (`, x) = y and Ref n :: Ref ` τ ∼=Ψ Ref m and
DRef n ::Ref ` τ ∼=Ψ DRef m if and only if Ψ2 (`,n) = m . Using this notion
of equivalence modulo Ψ , we can state the simulation results:

Proposition 12 (Decorated to vanilla) Given two well-typed con�gurations
〈Σ,Γ, t1,S `〉 and 〈M , ∆, t2,S 〉 that denote a computation of type MAC ` τ , if
we have that:

– 〈Σ,Γ, t1,S `〉 −→ 〈Σ′, Γ ′, t ′1,S ′
`〉 and

– 〈Σ,Γ, t1,S `〉 ∼=Ψ 〈M , ∆, t2,S 〉

then there exist M ′,∆′, t ′2, S ′ and Ψ ′ such that:

– 〈M , ∆, t2,S 〉 −→ 〈M ′, ∆′, t ′2,S
′〉

– 〈Σ′, Γ ′, t ′1,S ′
`〉 ∼=Ψ ′ 〈M ′, ∆′, t ′2,S

′〉

Note that the resulting con�gurations are in relation according to some
new bijection Ψ ′, rather than Ψ , as the bijection has to be extended with new
memory or heap allocations. Dually, we show that con�gurations in the vanilla
calculus can be simulated in the annotated one.

Proposition 13 (Vanilla to decorated) Given two well-typed con�gurations
〈Σ,Γ, t1,S `〉 and 〈M , ∆, t2,S 〉 that denote a computation of type MAC ` τ , if
we have that:

– 〈M , ∆, t2,S 〉 −→ 〈M ′, ∆′, t ′2,S
′〉

– 〈Σ,Γ, t1,S `〉 ∼=Ψ 〈M , ∆, t2,S 〉

then there exist Σ′, Γ ′, t ′1, S ′
` and Ψ ′ such that:

– 〈Σ,Γ, t1,S `〉 −→ 〈Σ′, Γ ′, t ′1,S ′
`〉 and

– 〈Σ′, Γ ′, t ′1,S ′
`〉 ∼=Ψ ′ 〈M ′, ∆′, t ′2,S

′〉

We omit the typing rules, which are rather standard—the important bits are
present in the type signatures given in Figures 2 and 7. For the decorated
calculus, the typing rules correspond to those of the vanilla calculus, but in
addition ensure that the security labels appearing in the type conincide with
those in the decorations. The proof is rather standard including references and
variables allocation, where we keep some invariant regarding the lengths of
heap and memories to connect the notion of “freshness” of variables on both
calculi. Detailed proofs of these simulations are in Appendix B.

CHAPTER 3. SECURING CONCURRENT LAZY PROGRAMS 111

6.7 Vanilla Progress-Sensitive Non-interference

We prove that well-typed programs in the vanilla lazy calculus satisfy progress-
sensitive noninterference. This result relies on the PSNI proof for the decorated
calculus and the simulations described above. We �rst de�ne that two global
con�gurations are `A-equivalence up to a bijectionΩ, written 〈M1, ∆1, Ts1〉 ≈Ω`A
〈M2, ∆2, Ts2〉, if and only if they are well-typed and their components are `A-
equivalent up to bijectionΩ, where `A-equivalence between terms is also type-
driven and follows a structure similar to the one for the decorated calculus—the
main di�erence being that it inspects the type-derivation of term and use the
bijection Ω to relate memory addresses and heap variables. In the vanilla cal-
culus we need to consider low-equivalence up to a bijection as in [15] to relate
executions which might allocate a di�erent amount of high entities, thus af-
fecting the addresses and names of public references and variables respectively.
Observe that bijectionΩ connects heap variables and memory addresses of the
vanilla calculus, that is Ω is a pair of bijections of type:

Ω1 :: Var → Var
Ω2 :: N→ N

Con�gurations of the form 〈[],∅, [(t , [])]〉 are initial con�gurations in the
vanilla calculus, where the memory and thread’s stacks are empty ([]), and the
heap consists of an empty mapping (∅).

Theorem 2 (Vanilla PSNI) Given closed terms t1::MAC ` τ and t2::MAC ` τ
written with the surface syntax (i.e., they do not contain constructors Labeled and
Ref), we have that if:

– t1 ≈∅
`A

t2, and
– 〈[],∅, [(t1, [])]〉 ↪→∗ c1, then

there exists c2 and bijection Ω such that:

– 〈[],∅, [(t2, [])]〉 ↪→∗ c2, and
– c1 ≈Ω`A c2

Proof 2 (Sketch). De�ne i1 = 〈[],∅, [(t1, [])]〉 and i2 = 〈[],∅, [(t2, [])]〉.
Since t1 and t2 are closed and well-typed terms in the surface syntax, we can
lift them in the decorated calculus, as decorated terms tD1 , tD2 , and their corre-
sponding initial annotated con�gurations iD1 and iD2 . Con�gurations i1 and i2
are equivalent up to the empty bijection ∅, i.e., iD1 ∼=∅ i1 and iD2 ∼=∅ i2 and
iD1 ≈`A iD2 . By lifting Proposition 13 to thread pools and repetitively applying
it, there exists a bijection Ψa and a con�guration cD

1 , such that iD1 ↪→∗ cD
1 and

cD
1
∼=Ψa c1. By Theorem 1, there exists a decorated con�guration cD

2 such that
iD2 ↪→∗ cD

2 and cD
1 ≈`A cD

2 . By lifting Proposition 12 to thread pools and repet-
itively applying it, we have that there exists a bijection Ψb and con�guration c2
such that i2 ↪→∗ c2 where cD

2
∼=Ψb c2. We then conclude that c1 and c2 are `A-

equivalent up to bijection Ω, obtained composing Ψa (from vanilla to decorated),
and Ψ−1b (from decorated to vanilla), i.e., c1 ≈Ω`A c2, where Ω = Ψa ◦ Ψ−1b .

112 7. RELATED WORK

7 Related Work
Mutable references and lazyness. In Section 3.2 we present an operational se-
mantics that features both mutable references and lazyness. It is a straight-
forward combination of Sestoft’s semantics with the standard approach to
model references using a store, as described by Pierce et al. in the context of
call-by-value [112, 113]. To the best of our knowledge, this is the �rst work
that presents this combination. The “Awkward Squad” paper [110], which de-
scribes the implementation of I/O in Haskell, and addresses both references
and concurrency, remarkably avoids dealing with sharing in its operational
semantics.

deepDup. Our primitive lazyDup was inspired by the related primitive deepDup
proposed by the second author [26], with the aim to limit sharing in cases where
it is actually detrimental to program performance. Because the terms in that
work are in Administrative Normal Form (ANF), the rules for deepDup look
di�erent from our [lazyDup2], but this di�erence is inconsequential. We sig-
ni�cantly improve over that work with the support to handle references, via
the duplicate-on-read references introduced in Section 4.2. The Haskell library
ghc-dup implements deepDup without changes to the compiler or runtime,
therefore we are optimistic that an implementation of lazyDup is feasible.

Evaluation strategies and IFC. Sabelfeld and Sands suggest that lazy evaluation
might be safer than eager evaluation for termination leaks [130]. Buiras and
Russo identify the risk imposed by internal timing leaks via lazy evaluation [31].
Vassena et al. enrich MAC’s API for labeled expressions by considering them as
(applicative-like) functors [152] and show that their extension is vulnerable to
termination leaks under eager evaluation, but secure under lazy evaluation. In
a imperative sequential setting, Rafnsson et al. describe how Java’s on-demand
(lazy) class initialization process can be exploit to reveal secrets [119]. Strictness
analysis detects functions that always evaluate their arguments, which can
then be eagerly evaluated to boost performance of lazy evaluation [98]. In
this context, this technique could be used to safely force the evaluation of
shared thunks upfront. However, the analysis must necessarily be conservative,
especially when it comes to in�nite data structures and advanced features
such as references and concurrency, therefore it is unlikely that all leaks could
be closed by the analysis alone. Nevertheless, strictness analysis could avoid
unnecessary duplication: the thunks, which are guaranteed by the analysis to
be evaluated anyway, could be eagerly forced, and lazy duplication could be
applied otherwise.

IFC libraries. LIO dynamically enforces IFC applying similar concepts to MAC
(i.e., labeled expressions, secure computations, etc.). We argue that LIO can be
secure against the attack presented in this work by applying lazyDup to the
“rest of the computation” every time that the current label gets raised. For that,
LIO needs to be reimplemented to work in a continuation passing style (CPS)—
we leave this direction as future work.HLIO (hybrid-LIO) works asLIO, except

CHAPTER 3. SECURING CONCURRENT LAZY PROGRAMS 113

it enforces IFC by combining type-level enforcement with dynamic checks [30].
To secure HLIO, lazyDup needs to be inserted when forking threads if IFC gets
enforced statically and when raising the current label if dynamic checks are
involved. HLIO also needs to be reimplemented using CPS. In MAC, the type
signature for the bind operator restricts computations to maintain the same
security level. Its type could be relaxed to involve di�erent increasing labels,
along the lines of the “is protected” relation used in the typing rule of bind
in the Dependency Core Calculus (DCC) [1]. However, in that case, a secure
computation would not enjoy a standard monadic structure, but it would rather
incorporate multiple monads.

Devriese and Piessens provide a monad transformer to extend imperative-
like APIs with support for IFC [38]. Jaskelio� and Russo implement a library
which dynamically enforces IFC using secure multi-execution (SME) [63].
Schmitz et al. provide a library with faceted values, where values present dif-
ferent behavior according to the privilege of the observer [132]. While these
libraries do not support concurrency yet, we believe that, this work could secure
them against lazy evaluation attacks, if they were extended with concurrency.

Programming languages. Besides the already mentioned tools Jif, Paragon,
�owcaml, and JSFlow, we can remark the SPARK language and its IFC analysis,
which has been extended to guarantee progress-sensitive non-inference [117]
and JOANA [139], which stretches the scalability of static analyzes, in this case
of Java programs. Some tools apply dependent-types to protect con�dentiality
(e.g., [82,94,102]). In such languages, type-checking triggers evaluation, poten-
tially opening up possibilities to leak sensitive data via covert channels (e.g.,
lazy evaluation). In this light, it would be possible to learn something about a
static secret when type-checking the program—an interesting direction for fu-
ture work. Laminar combines programming languages and operating systems
techniques to provide decentralized information �ow control [122]. While sup-
porting concurrency, Laminar does not handle covert channels like termination
or internal timing leaks.

8 Conclusions
We present a solution to internal timing leaks via lazy evaluation, an open
problem for security libraries written in Haskell. We believe that repairing
existing libraries with lazyDup would be reasonably a painless experience.
The utilization of lazyDup would make past and future systems built with
security libraries more secure (e.g., Hails [45]). Even though it is still not clear
which evaluation strategy is more bene�cial for security, this work shows that
the risks of lazy evaluation in concurrent settings can be successfully avoided.

Generally speaking, functional languages (and Haskell in particular) rely
on their runtime (e.g., lazy evaluation, garbage collector, etc.) to provide essen-
tial features. Unfortunately, besides providing their functionality, they could
also be misused to jeopardize security. This work shows that a program can
control parts of the complex runtime system (e.g., sharing) via a safe interface

114 8. CONCLUSIONS

(lazyDup). Then, the obvious question is which other features of the runtime
system could jeopardize security and how to safely control them—an intriguing
thought to drive our future work.

References
1. Martín Abadi, Anindya Banerjee, Nevin Heintze, Nevin Heintze, and Jon G. Riecke.

A core calculus of dependency. In Proceedings of the 26th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL ’99, pages 147–160, New
York, NY, USA, 1999. ACM.

2. Aslan Askarov, Danfeng Zhang, and Andrew C. Myers. Predictive black-box miti-
gation of timing channels. In Proceedings of the 17th ACM Conference on Computer
and Communications Security, CCS ’10, pages 297–307, New York, NY, USA, 2010.
ACM.

3. Clem Baker-Finch, David J. King, and Phil Trinder. An operational semantics for
parallel lazy evaluation. In Proceedings of the Fifth ACM SIGPLAN International
Conference on Functional Programming, ICFP ’00, pages 162–173, New York, NY,
USA, 2000. ACM.

4. Anindya Banerjee and David A. Naumann. Stack-based access control and secure
information �ow. J. Funct. Program., 15(2):131–177, March 2005.

5. David E. Bell and L. La Padula. Secure computer system: Uni�ed exposition and
multics interpretation. Technical Report MTR-2997, Rev. 1, MITRE Corporation,
Bedford, MA, 1976.

6. Andrew Bortz and Dan Boneh. Exposing private information by timing web appli-
cations. In World Wide Web. ACM, 2007.

7. Joachim Breitner. dup – explicit un-sharing in haskell. CoRR, abs/1207.2017, 2012.
8. Joachim Breitner. Formally proving a compiler transformation safe. In Proceedings

of the 2015 ACM SIGPLAN Symposium on Haskell, Haskell ’15, pages 35–46, New
York, NY, USA, 2015. ACM.

9. Niklas Broberg, Bart Delft, and David Sands. Paragon for practical programming
with information-�ow control. In Proceedings of the 11th Asian Symposium on Pro-
gramming Languages and Systems - Volume 8301, pages 217–232, Berlin, Heidelberg,
2013. Springer-Verlag.

10. P. Buiras, D. Vytiniotis, and A. Russo. HLIO: Mixing static and dynamic typing for
information-�ow control in Haskell. In ACM SIGPLAN International Conference on
Functional Programming. ACM, 2015.

11. Pablo Buiras and Alejandro Russo. Lazy programs leak secrets. In Proceedings of
the 18th Nordic Conference on Secure IT Systems - Volume 8208, NordSec 2013, pages
116–122, New York, NY, USA, 2013. Springer-Verlag New York, Inc.

12. Dorothy E. Denning and Peter J. Denning. Certi�cation of programs for secure
information �ow. Communication of the ACM, 20(7):504–513, July 1977.

13. D. Devriese and F. Piessens. Information �ow enforcement in monadic libraries. In
ACM SIGPLAN Workshop on Types in Language Design and Implementation. ACM,
2011.

14. Edward W. Felten and Michael A. Schneider. Timing attacks on web privacy. In
Proceedings of the 7th ACM Conference on Computer and Communications Security,
CCS ’00, pages 25–32, New York, NY, USA, 2000. ACM.

15. Daniel B. Gi�n, Amit Levy, Deian Stefan, David Terei, David Mazières, John
Mitchell, and Alejandro Russo. Hails: Protecting data privacy in untrusted web

CHAPTER 3. SECURING CONCURRENT LAZY PROGRAMS 115

applications. In Proc. of the 10th Symposium on Operating Systems Design and Im-
plementation, October 2012.

16. D. Hedin, A. Birgisson, L. Bello, and A. Sabelfeld. JSFlow: Tracking information
�ow in JavaScript and its APIs. In ACM Symposium on Applied Computing. ACM,
2014.

17. Daniel Hedin and David Sands. Noninterference in the presence of non-opaque
pointers. In IEEE Computer Security Foundations Workshop. IEEE Computer Society
Press, 2006.

18. Stefan Heule, Deian Stefan, Edward Z. Yang, John C. Mitchell, and Alejandro Russo.
Ifc inside: Retro�tting languages with dynamic information �ow control. In Proceed-
ings of the 4th International Conference on Principles of Security and Trust - Volume
9036, pages 11–31, New York, NY, USA, 2015. Springer-Verlag New York, Inc.

19. J. Hughes. Why functional programming matters. The Computer Journal, 32(2):98–
107, April 1989.

20. Mauro Jaskelio� and Alejandro Russo. Secure multi-execution in haskell. In Pro-
ceedings of the 8th International Conference on Perspectives of System Informatics,
PSI’11, pages 170–178, Berlin, Heidelberg, 2012. Springer-Verlag.

21. John Launchbury. A natural semantics for lazy evaluation. In Proceedings of the
20th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL ’93, pages 144–154, New York, NY, USA, 1993. ACM.

22. Peng Li and Steve Zdancewic. Encoding information �ow in haskell. In Proceedings
of the 19th IEEE Workshop on Computer Security Foundations, CSFW ’06, pages 16–,
Washington, DC, USA, 2006. IEEE Computer Society.

23. Peng Li and Steve Zdancewic. Arrows for secure information �ow. Theor. Comput.
Sci., 411(19):1974–1994, April 2010.

24. Luísa Lourenço and Luís Caires. Dependent information �ow types. In Proceedings
of the 42Nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL ’15, pages 317–328, New York, NY, USA, 2015. ACM.

25. Simon Marlow and Simon Peyton Jones. Making a fast curry: push/enter vs. eval/ap-
ply for higher-order languages. Journal of Functional Programming, 16(4-5):415–449,
2006.

26. Eugenio Moggi. Notions of computation and monads. Inf. Comput., 93(1):55–92,
July 1991.

27. Jamie Morgenstern and Daniel R. Licata. Security-typed programming within de-
pendently typed programming. In ACM SIGPLAN International Conference on Func-
tional Programming. ACM, 2010.

28. Alan Mycroft. The theory and practice of transforming call-by-need into call-by-
value. In Bernard Robinet, editor, International Symposium on Programming, pages
269–281, Berlin, Heidelberg, 1980. Springer Berlin Heidelberg.

29. Andrew C. Myers and Andrew C. Myers. J�ow: Practical mostly-static information
�ow control. In Proceedings of the 26th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL ’99, pages 228–241, New York, NY,
USA, 1999. ACM.

30. Aleksandar Nanevski, Anindya Banerjee, and Deepak Garg. Veri�cation of infor-
mation �ow and access control policies with dependent types. In IEEE Symposium
on Security and Privacy, SP. IEEE Computer Society, 2011.

31. Ulf Norell. Dependently typed programming in Agda. In Andrew Kennedy and
Amal Ahmed, editors, Proceedings of TLDI’09: 2009 ACM SIGPLAN International
Workshop on Types in Languages Design and Implementation, Savannah, GA, USA,
January 24, 2009, pages 1–2. ACM, 2009.

116 8. CONCLUSIONS

32. Simon Peyton Jones. Implementing lazy functional languages on stock hardware:
The spineless tagless G-machine. Journal of Functional Programming, 2(2):127–202,
1992.

33. Simon Peyton Jones. Tackling the awkward squad:monadic input/output, concurrency,
exceptions, and foreign-language calls in Haskell, pages 47–96. IOS Press, January
2001.

34. Benjamin C. Pierce. Types and Programming Languages. MIT Press, 2002.
35. Benjamin C. Pierce, Arthur Azevedo de Amorim, Chris Casinghino, Marco

Gaboardi, Michael Greenberg, Cǎtǎlin Hriţcu, Vilhelm Sjöberg, and Brent
Yorgey. Software Foundations. Electronic textbook, 2016. Version 4.0.
http://www.cis.upenn.edu/ bcpierce/sf.

36. François Pottier and Vincent Simonet. Information �ow inference for ML. ACM
Trans. Program. Lang. Syst., 25(1):117–158, January 2003.

37. Willard Rafnsson, Deepak Garg, and Andrei Sabelfeld. Progress-sensitive security
for spark. In Proceedings of the 8th International Symposium on Engineering Secure
Software and Systems - Volume 9639, ESSoS 2016, pages 20–37, Berlin, Heidelberg,
2016. Springer-Verlag.

38. Willard Rafnsson, Keiko Nakata, and Andrei Sabelfeld. Securing class initialization
in Java-like languages. IEEE Transactions on Dependable and Secure Computing,
10(1), January 2013.

39. Indrajit Roy, Donald E. Porter, Michael D. Bond, Kathryn S. McKinley, and Emmett
Witchel. Laminar: Practical �ne-grained decentralized information �ow control. In
ACM SIGPLAN Conference on Programming Language Design and Implementation,
PLDI. ACM, 2009.

40. Alejandro Russo. Functional Pearl: Two Can Keep a Secret, if One of Them Uses
Haskell. In Proceedings of the 20th ACM SIGPLAN International Conference on Func-
tional Programming, ICFP 2015, pages 280–288, New York, NY, USA, 2015. ACM.

41. A. Sabelfeld and A. C. Myers. Language-based information-�ow security. IEEE
Journal on Selected Areas in Communications, 21(1):5–19, Jan 2003.

42. Andrei Sabelfeld and David Sands. A per model of secure information �ow in
sequential programs. Higher-Order and Symbolic Computation, 14(1):59–91, Mar
2001.

43. Thomas Schmitz, Dustin Rhodes, Thomas H. Austin, Kenneth Knowles, and Cormac
Flanagan. Faceted dynamic information �ow via control and data monads. In Frank
Piessens and Luca Viganò, editors, POST, volume 9635 of LNCS. Springer, 2016.

44. Peter Sestoft. Deriving a lazy abstract machine. J. Funct. Program., 7(3):231–264,
May 1997.

45. Geo�rey Smith and Dennis Volpano. Secure information �ow in a multi-threaded
imperative language. In Proceedings of the 25th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL ’98, pages 355–364, New York, NY,
USA, 1998. ACM.

46. Gregor Snelting, Dennis Gi�horn, Jürgen Graf, Christian Hammer, Martin Hecker,
Martin Mohr, and Daniel Wasserrab. Checking probabilistic noninterference using
JOANA. it - Information Technology, 56(6):280–287, 2014.

47. Deian Stefan, Alejandro Russo, Pablo Buiras, Amit Levy, John C. Mitchell, and
David Maziéres. Addressing covert termination and timing channels in concurrent
information �ow systems. In Proceedings of the 17th ACM SIGPLAN International
Conference on Functional Programming, ICFP ’12, pages 201–214, New York, NY,
USA, 2012. ACM.

CHAPTER 3. SECURING CONCURRENT LAZY PROGRAMS 117

48. Deian Stefan, Alejandro Russo, John C. Mitchell, and David Mazières. Flexible dy-
namic information �ow control in Haskell. In Proceedings of the 4th ACM Symposium
on Haskell, Haskell ’11, pages 95–106, New York, NY, USA, 2011. ACM.

49. Marco Vassena, Pablo Buiras, Lucas Waye, and Alejandro Russo. Flexible manipu-
lation of labeled values for information-�ow control libraries. In Computer Security
- ESORICS 2016 - 21st European Symposium on Research in Computer Security, Her-
aklion, Greece, September 26-30, 2016, Proceedings, Part I, pages 538–557, 2016.

50. Marco Vassena and Alejandro Russo. On formalizing information-�ow control
libraries. In Proceedings of the 2016 ACM Workshop on Programming Languages and
Analysis for Security, PLAS ’16, pages 15–28, New York, NY, USA, 2016. ACM.

51. Dennis Volpano, Cynthia Irvine, and Geo�rey Smith. A sound type system for
secure �ow analysis. J. Comput. Secur., 4(2-3):167–187, January 1996.

52. Danfeng Zhang, Aslan Askarov, and Andrew C. Myers. Predictive mitigation of
timing channels in interactive systems. In Proceedings of the 18th ACM Conference
on Computer and Communications Security, CCS ’11, pages 563–574, New York, NY,
USA, 2011. ACM.

53. Danfeng Zhang, Aslan Askarov, and Andrew C. Myers. Language-based Control
and Mitigation of Timing Channels. In ACM Conference on Programming Language
Design and Implementation. ACM, 2012.

118 A. SECURING LIO

Var
x ∈ Dom(Γ (`)) y ∈ Dom(∆) ΨΓ,∆(`, x) = y Ψ−1

Γ,∆(y) = (`, x)

x ` ∼=ΨΓ,∆ y

Heap
∀ ` x y x ` ∼=ΨΓ,∆ y Γ (`)(x) ∼=ΨΓ,∆ ∆(y)

Γ ∼=ΨΓ,∆ ∆

Ref
n < |Σ(`)| m < |∆| ΨΣ,M (`,n) = m Ψ−1

Σ,M (m) = (`,n)

Ref ` n ∼=ΨΣ,M Ref m

Memory
∀ ` n m Ref ` n ∼=ΨΣ,M Ref m Σ(`)[n] ∼=ΨΣ,M M [m]

Σ ∼=ΨΣ,M M

Stack1

[]` ∼=Ψ []

Stack2

C ` ∼=Ψ C S ` ∼=Ψ S

C ` : S ` ∼=Ψ C : S

Var#
x 6∈ Dom(Γ (`)) y 6∈ Dom(∆)

#x ` ∼=ΨΓ,∆ #y

Fig. 15: De�nition of ∼=ΨΓ,∆ and ∼=ΨΣ,M .

Appendix
A Securing LIO
In LIO, it is not possible to know, at the time of forking, if the parent or
the spawned thread will become sensitive, because threads get dynamically
“tainted” when they observe a piece of sensitive information, e.g., by means
of unlabel—an approach known as �oating-label system. One could follow the
same idea used in MAC and conservatively apply lazyDup to all spawned
threads. However, such approach would overly restrict sharing, e.g., if the
thread never observes secrets. Instead, lazyDup should be applied to the “rest
of the computation” whenever the thread gets tainted—only then the evaluation
of thunks can leak information! Implementing this idea requires to refactor the
full implementation of LIO to work in a continuation-passing style, where the
continuation represents the “rest of the computation”. Then, when the thread
gets tainted, lazyDup can be applied to the continuation, thus disabling sharing
with the parent thread from that point on.

B Simulation Proof
In this section, we prove simulation between the decorated and vanilla calculi
(i.e., Propositions 12 and 13 from Section 6) for the interesting cases, i.e., rules
[Var1,Var2,LazyDup1, LazyDup2,New]. Firstly, we re�ne the type for bijection
on heap variables with a heap map Γ and a heap ∆. In particular we write
Var∆ to restrict the type of heap variables to those in the domain of ∆, i.e.,

CHAPTER 3. SECURING CONCURRENT LAZY PROGRAMS 119

Var∆ = {x | x ∈ Dom(∆)}. Similarly, we write NM , to restrict the type
of memory addresses to those in the domain of memory M , i.e., NM = {n |
n < |M |}. We then write (` : Label × P(`)), for the dependent pair type
(also known as Sigma-type) Σ(`:Label)P (`). We then give the following more
precise type to heap variables and memory addresses bijections:

ΨΓ,∆ :: (` : Label × VarΓ (`))→ Var∆

ΨΣ,M :: (` : Label × NΣ(`))→ NM

In particular heap-indexed and memory-indexed bijections relate only vari-
ables and addresses in their domains. In the following we abbreviate the pair
of bijection (ΨΓ,∆, ΨΣ,M) with Ψ , and sometimes we specify only the relevant
component of the pair to avoid clutter. Figure 15 shows the de�nition of equiv-
alence up to heap-bijection (∼=ΨΓ,∆) and equivalence up to memory-bijection
(∼=ΨΣ,M) for the interesting cases. Rule [Var] relates the variables in the do-
main of Γ (`) and∆ respectively, using the bijection ΨΓ,∆. Rule [Heap] de�nes
equivalence of heaps up to bijection pointwise for the variables in their domain,
i.e., a store and a heap are equivalent up to bijection, if and only if they map
related variables into related terms. Rules [Ref,Memory] apply the same prin-
ciples to memory addresses. In decorated calculus we write Ref ` n , to denote
that the reference has type Ref ` τ , for some type τ—the vanilla reference
Ref m has the same type. Note that related stacks share the same structure,
i.e., all their continuations are related, where the only interesting case involve
the update marker continuation, i.e., #x . Rule [Var#] states that a decorated
continuation #x ` and a vanilla continuation #y are related if and only if both
variables are free in their respective heaps. Term-equivalence up to bijection is
de�ned inductively on their structures, e.g., lazyDup tD ∼=Ψ lazyDup t if and
only if tD ∼=Ψ t . We remark that these relations are de�ned over well-typed
terms of the same type, that is tD ∼=Ψ t , assumes typing judgment π ` t : τ ,
for some typing context π, and that tD has type τ in the same typing context—
we distinguish decorated terms (e.g., tD), from vanilla terms (e.g., t), with a
superscript. The typing rules for the vanilla calculus are standard and thus
omitted—they corresponds to the type signatures given in Figures 2 and 7.
Weakening. If two con�gurations are equivalent up to bijection Ψ , i.e., cD ∼=Ψ
c, then they are equivalent up to any bijection Ψ ∪ {x ` ↔ y}, for any pair of
variables x ` and y , that are fresh in the respective con�gurations.
Strengthening. If two con�gurations are equivalent via an extended bijection,
e.g., cD ∼=Ψ∪{x`↔y} c, then they are also equivalent in a reduced bijection, e.g.,
cD ∼=Ψ c, if and only if they occur in their respective stack under an update
marker, e.g., #x ` and #y .

We conclude with the proofs of the simulation propositions between
the annotated and vanilla calculi (Propositions 12 and 13) for rules
[Var1,Var2,LazyDup1, LazyDup2, New].

120 B. SIMULATION PROOF

– Rule [Var1].
• Decorated to Vanilla: Given a decorated step (∆`[x ` 7→ tD], x `,S `) ;
(∆`, tD ,#x ` : S `), a vanilla con�guration (∆, t ,S) and a bijection
Ψ , such that (∆`[x ` 7→ tD], x `,S `) ∼=Ψ (∆, t ,S), show that there
exists a con�guration (∆′, t ′,S ′) such that (∆, t ,S) ; (∆′, t ′,S ′)
and a bijection Ψ ′ such that (∆`, t ,#x ` : S `) ∼=Ψ ′ (∆′, t ′,S ′). Since
the initial con�gurations are in relation, then so are their heaps (re-
call ∆` = Σ(`)), current terms and stacks. Therefore the term t is a
variable y , such that x ` ∼=ΨΓ,∆∪{x`↔y} y and the heap ∆ contains
a binding for y , that is ∆`[x ` 7→ tD] ∼=ΨΓ,∆∪{x`↔y} ∆[y 7→ t].
The vanilla con�guration then steps according to rule [Var1], i.e.,
(∆[y 7→ t], y ,S) ; (∆, t ,#y : S), which is equivalent to the deco-
rated con�guration up to the bijection ΨΓ,∆, i.e., the bijection obtained
by removing mapping x ` ↔ y . Note that tD ∼=Ψ t , since they are the
image of related variables in related heaps and #x ` :S ` ∼=ΨΓ,∆ #y :S ,
since the stacks are related and the variables are both free in Γ and
∆ respectively—rule [Var1] removes them to achieve the blackholing
e�ect.
• Vanilla to Decorated: The proof is symmetric. In this case we have a

vanilla [Var1] step, i.e., (∆[y 7→ t], y ,S) ; (∆, t ,#y : S). Since the
vanilla con�guration denotes a secure computation of type MAC ` τ ,
for some label ` and some type τ , then the equivalent decorated con-
�guration is labeled with `, i.e., (∆`[x ` 7→ tD], x `,S `). The proof then
follows similarly, by making the same considerations about the vanilla
con�guration to draw the same conclusions about the decorated con-
�guration.

– Rule [Var2].
• Vanilla to Decorated: Consider a vanilla step [Var2], i.e., (∆, v ,#x :

S) ; (∆[x 7→ v], v ,S). Since the con�guration denotes a secure com-
putation of type MAC ` τ , the Ψ -equivalent decorated con�guration
is labeled with ` and has the same shape, i.e., (∆`, vD ,#x ` : S `)—if a
vanilla term v is a value then vD is also a value and if the top of a vanilla
stack has an update marker, so does the equivalent decorated stack, by
rules [Stack2, Var#]. The decorated con�guration then steps accord-
ing to rule [Var2], to the con�guration (∆`[x ` 7→ vD], vD ,S `), which
is equivalent to the vanilla con�guration up to bijectionΨ∪{x ` ↔ x}—
we extend related heaps with related terms, i.e., vD ∼=Ψ v . Note that
from #x ` ∼=ΨΓ,∆ #x , we have that x ` and x are free in∆` = Γ (`) and
∆ respectively. By popping related continuations from related stacks
we obtain related stacks, i.e., S ` ∼=Ψ S .
• Decorated to Vanilla: The proof follows symmetrically. In this case the

label ` is explicitly available in the decorated con�guration.
– Rule [LazyDup1].
• Vanilla to Decorated: Given a vanilla step 〈M , ∆, lazyDup t ,S 〉 −→
〈M , ∆[x 7→ t], lazyDup x ,S 〉, i.e., rule [LazyDup2], lifted by rule

CHAPTER 3. SECURING CONCURRENT LAZY PROGRAMS 121

[Lift], where x is fresh in ∆ and t is not a variable. Observe that,
since the con�guration denotes a secure computation of type MAC ` τ
for some label ` and some type τ , then the equivalent decorated ini-
tial con�guration is labeled with `, and it has lazyDup tD as the
current term, where tD ∼=Ψ t and ¬ (isVar tD). Then, the deco-
rated con�guration 〈Σ,Γ, lazyDup tD ,S `〉 steps according to rule
[LazyDup1] to 〈Σ,Γ [`][x `] := tD , lazyDup x `,S `〉, for some fresh
variable x ` in Γ (`). The �nal con�gurations are then equivalent up
to the bijection Ψ ∪ {x ` ↔ x}—note that this is a bijection because
x ` and x are fresh in Γ (`) and ∆ respectively, hence they are not
mapped in Ψ . Speci�cally the heaps are extended with related terms
and hence are related by the extended bijection Ψ ∪ {x ` ↔ x}, and
lazyDup tD ∼=Ψ∪{x`↔x} lazyDup t .
• Decorated to Vanilla: The proof follows symmetrically. In this case the

label ` is explicitly available in the decorated con�guration and the
step is simulated in the vanilla calculus by rule [LazyDup1] lifted to
vanilla sequential con�guration by rule [Lift].

– Rule [LazyDup2].
• Vanilla to Decorated Given a vanilla step 〈M , ∆, lazyDup x ,S 〉 −→
〈M , ∆[y 7→ JtK∅], y ,S 〉, i.e., rule [LazyDup2], lifted by rule [Lift],
where variable y is fresh and variable x is bound to term t in the heap
∆, the Ψ -equivalent decorated con�guration contains a Ψ -equivalent
heap map Γ , i.e. Γ ∼=Ψ ∆, a Ψ -equivalent stack S `H , i.e. S `H ∼=Ψ S ,
and a Ψ -equivalent current term lazyDup x `L , i.e. lazyDup x `L ∼=Ψ
lazyDup x , from which it follows that x `L ∼=Ψ x . Since variables and
heaps are related, we have that the corresponding thunks are also re-
lated, i.e. there exists tD , such that Γ (`L)(x

`L) = tD and tD ∼=Ψ t . The
decorated con�guration then steps according to rule [LazyDup2], giv-
ing heap map Γ [`H][y

`H]:=JtDK∅ and current term y`H , for some fresh
variable y`H . The resulting decorated con�guration is then equivalent
to the vanilla con�guration up to the bijection Ψ ′ = Ψ∪{y`H ↔ y}—it
is a bijection because the variables are fresh. The heaps are related, i.e.
Γ [`H][y

`H] := JtDK∅ ∼=Ψ ′ ∆[y 7→ JtK∅], because we extend related
heaps with related terms—function JK∅ preserves equivalence up to
bijection, i.e. if tD ∼=Ψ t then JtDK∅ ∼=Ψ JtK∅. The current terms are
related by de�nition, i.e. y`H ∼=Ψ ′ y , because (y`H ↔ y) ∈ Ψ ′.

• Decorated to Vanilla: The proof follows symmetrically. In this case the
label ` is explicitly available in the decorated con�guration and the
step is simulated in the vanilla calculus by rule [LazyDup2] lifted to
vanilla sequential con�guration by rule [Lift].

– Rule [New]
• Vanilla to Decorated: Consider a vanilla step 〈M [n 7→ x], ∆[x 7→

t], return (Ref n),S 〉, where |M | = n and x is fresh. The Ψ -
equivalent con�guration, consists of aΨ -equivalent storeΣ, i.e.,Σ ∼=Ψ

122 C. SHARING AND REFERENCES

M , a Ψ -equivalent heap map Γ , i.e., Γ ∼=Ψ ∆, a Ψ -equivalent cur-
rent term new tD , i.e., new tD ∼=Ψ new t , from which we have
tD ∼=Ψ t . From the type derivation of the well-typed vanilla con�g-
uration, we know that term new t has type MAC `L (Ref `H τ),
for some type τ and some labels `L and `H, such that `L v `H.
The decorated con�guration steps according to rule [New], giving
for a fresh variable x `L and m = |Σ(`H)|, the store Σ[`H][m] := x `L ,
heap map ∆[`L][x

`L] := tD and current term return (Ref `L m).
The resulting con�gurations are equivalent up to the bijection Ψ ′ =
(ΨΓ,∆ ∪ {x `L ↔ x}, ΨΣ,M ∪ {(`H,m) ↔ n}), i.e., the bijection ob-
tained by extending the heap variables and memory addresses bijec-
tions with the new mappings x `L ↔ x and (`H,m) ↔ n respec-
tively. The heaps are equivalent up to the bijection ΨΓ,∆ ∪ {x `L ↔ x}
since we extend ΨΓ,∆-equivalent heaps variables with respectively
fresh variables x `L and x , which are bound to Ψ -equivalent terms, i.e.,
tD ∼=Ψ t . Similarly, the memories are equivalent up to the bijection
ΨΣ,M ∪ {(`H,m)↔ n}, since we extend ΨΣ,M -equivalent memories,
by assigning equivalent references i.e., x `L ∼=ΨΓ,∆∪{x`L↔x} x to fresh
addresses. Observe that the current terms in the �nal con�gurations
are related, i.e., return (Ref `L m) ∼=Ψ ′ return (Ref n), because the
addresses are related by the bijection Ψ ′, i.e., m ∼=ΨΣ,M∪{(`H,m)↔n} n .
• Decorated to Vanilla: The proof follows symmetrically. In this case

the labels `L and `H are explicitly available in the decorated con�gu-
rations, i.e., 〈Σ,Γ,new tD ,S `L〉 ; 〈Σ[`H][m] := x `L , Γ [`L][x

`L] :=
tD , return (Ref `H m),S `L〉.

C Sharing and References
Our calculus captures sharing precisely, even in presence of references, and
despite the extra-indirection between the memory and heap. We provide two
examples showing the interaction among references, sharing, and thunks.

Example 1. Consider the following program, which creates a reference, imme-
diately overwrites it with 1, and �nally returns 0:

let x = 0 in
do r ← new x

write r 1
return x

If reference r pointed directly to x (no extra-indirection), the next write
operation would actually rewrite x to 1 in the immutable heap and the program
would return 1, instead of 0.

Example 2. Consider the following program, which writes a thunk in a refer-
ence, reads it and evaluates its content twice.

CHAPTER 3. SECURING CONCURRENT LAZY PROGRAMS 123

let x = id 1 in
do r ← new x

y ← read r
when (y 6 0) return ()
z ← read r
when (z > 0) return ()

This program demands the value of y to evaluate y 6 0 and the value to z to
evaluate z > 0, but, surprisingly enough, the value of z is already computed.
This sounds counter-intuitive because we expect y and z to be bound to the
same expression id 1, since the program does not overwrite reference r be-
tween the �rst and the second read. In fact, variables y and z are aliases of the
same variable x , whose thunk id 1 is updated with 1 after checking y 6 0,
thanks to sharing, and used to check z > 0. Observe that, while this program
does not contain an explicit write operation, it still does perform one subtly, in
the heap, since it indirectly updates x .

124 D. ERASURE FUNCTION

D Erasure Function
Figure 16b shows the de�nition of the erasure functions for the interesting
cases. Con�gurations, whose label is above that of the attacker, i.e., ` 6v `A
are rewritten to •, otherwise they are erased by erasing each component. Steps
involving sensitive con�gurations are then simulated by rules [Hole1, Hole2]
from Figure 16a. Memories, heaps, stacks and thread pools labeled with ` are
also collapsed to •, if their label is not visible to the attacker, i.e., ` 6v `A,
otherwise they are erased homomorphically. Label partitioned data structures,
i.e., heap maps, stores and pool maps, are erased pointwise, e.g. ε`A(Γ) =
` 7→ ε`A(Γ (`)). The term label t :: MAC `L (Labeled `H τ) is erased to
label •, if `H 6v `A, so that rule [Label] commutes. The terms new , write ,
fork are interesting. Observe that all these terms perform a write-e�ect, to
a non-lower security level, due to the no write-down policy, which allows
a computation visible to the attacker (`L v `A) to write to a non-visible
resource (`H 6v `A). Simulating such steps, i.e., the label-decorated version
of rules [New, Write, Fork], is challenging and requires two-steps erasure
[153], a technique that performs erasure in two-stages, by �rstly rewriting the
problematic constructs, such as new , write and fork to special constructs, i.e.,
new•, write• and fork•, whose special semantics rule guarantees simulation.
We remark that such special constructs are introduced due to mere technical
reasons and they are not part of the plain calculus. We use fork• as an example
to illustrate this technique. Figure 16a shows rules [Fork] and [Fork•], that is
the label annotated rules for fork and fork• respectively. Rule [Fork] is similar
to its annotated counterpart shown in Figure 11, save for the extra look-up and
update through the thread pool map Φ. Rule [Fork•] mimics rule [Fork] for
what concerns the parent thread, but it ignores thread t , which is not added
to the thread pool. Observe that rule [Fork] does not correctly simulate fork
operations that occur in high threads. In particular, the high thread pool Ts2 is
rewritten by the erasure function to •, since `H 6v `A, however | • | 6≡ m .

On the other hand by rewriting fork to a new term, i.e., fork•, we are free
to adjust its semantics, to correctly simulate a low thread forking a high one in
erased con�gurations. Speci�cally, we can show that [Fork] commutes with
[Fork•], by proving that for all thread pool maps Φ, Φ′, such that Φ′ = Φ[`H 7→
(t ,S `H)] and `H 6v `A, then ε`A(Φ) ≡ ε`A(Φ′), i.e., the attacker is oblivious to
writes in thread pools above its security level.

CHAPTER 3. SECURING CONCURRENT LAZY PROGRAMS 125

(Hole1)
•; •

(Hole2)
• −→ •

(Fork)
Φ(`L) = Ts1 [n 7→ (fork t ,S `L)] Φ(`H) = Ts2 |Ts2 | = m

T ′s1 = Ts1 [n 7→ (return (),S `L)] T ′s2 = Ts2 [m 7→ (lazyDup t , []`H)]

〈Σ,Γ, Φ〉 ↪→ 〈Σ,Γ, Φ[`L 7→ T ′s1][`H 7→ T ′s2]〉

(Fork•)
Φ(`L) = Ts[n 7→ (fork• t ,S `L)] T ′s = Ts[n 7→ (return (),S `L)]

〈Σ,Γ, Φ〉 ↪→ 〈Σ,Γ, Φ[`L 7→ T ′s]〉

(a) Semantics rules for extended calculus.

ε`A(〈∆
`, t ,S `〉) =

{
〈ε`A(∆

`), ε`A(t), ε`A(S
`)〉 if ` v `A

• otherwise

ε`A(〈Σ,Γ, t ,S
`〉) =

{
〈ε`A(Σ), ε`A(Γ), ε`A(t), ε`A(S

`)〉 if ` v `A

• otherwise

ε`A(Ref t :: Ref `H n) =

{
Ref • if `H 6v `A

Ref n otherwise

ε`A(label t :: Mac `L (Labeled `H τ)) =

{
label • if `H 6v `A

label (ε`A(t :: τ)) otherwise

ε`A(fork t :: Mac `L ()) =

{
fork• (ε`A(t :: Mac `H ())) if `H 6v `A

fork ε`A(t) otherwise

ε`A(•) = •

(b) Erasure function.

Fig. 16: Extended calculus and erasure function.

Paper V

Based on

From Fine- to Coarse-Grained Dynamic Information Flow Control and Back,

by Marco Vassena, Alejandro Russo, Deepak Garg,

Vineet Rajani and Deian Stefan,

46th ACM SIGPLAN Symposium on Principles of Programming Languages.

CHAPTER

FOUR

FROM FINE- TO COARSE-GRAINED DYNAMIC
INFORMATION FLOW CONTROL AND BACK

Abstract. We show that �ne-grained and coarse-grained dynamic in-
formation �ow control (IFC) systems are equally expressive. To this end,
we mechanize two mostly standard languages, one with a �ne-grained
dynamic IFC system and the other with a coarse-grained dynamic IFC
system, and prove a semantics-preserving translation from each lan-
guage to the other. In addition, we derive the standard security property
of non-interference of each language from that of the other, via our ver-
i�ed translation. This result addresses a longstanding open problem in
IFC: whether coarse-grained dynamic IFC techniques are less expressive
than �ne-grained dynamic IFC techniques (they are not!). The trans-
lations also stand to have important implications on the usability of
IFC approaches. The coarse- to �ne-grained direction can be used to
remove the label annotation burden that �ne-grained systems impose
on developers, while the �ne- to coarse-grained translation shows that
coarse-grained systems—which are easier to design and implement—can
track information as precisely as �ne-grained systems and provides an
algorithm for automatically retro�tting legacy applications to run on
existing coarse-grained systems.

1 Introduction
Dynamic information-�ow control (IFC) is a principled approach to protecting
the con�dentiality and integrity of data in software systems. Conceptually,
dynamic IFC systems are very simple—they associate security levels or labels
with every bit of data in the system to subsequently track and restrict the
�ow of labeled data throughout the system, e.g., to enforce a security property
such as non-interference [47]. In practice, dynamic IFC implementations are
considerably more complex—the granularity of the tracking system alone has
important implications for the usage of IFC technology. Indeed, until somewhat

130 1. INTRODUCTION

recently [122,144], granularity was the main distinguishing factor between dy-
namic IFC operating systems and programming languages. Most IFC operating
systems (e.g., [39, 69, 166]) are coarse-grained, i.e., they track and enforce in-
formation �ow at the granularity of a process or thread. Conversely, most
programming languages with dynamic IFC (e.g., [7, 51, 59, 164, 165]) track the
�ow of information in a more �ne-grained fashion, e.g., at the granularity of
program variables and references.

Dynamic coarse-grained IFC systems in the style of LIO [30, 55, 123, 141,
144,145] have several advantages over dynamic �ne-grained IFC systems. Such
coarse-grained systems are often easier to design and implement—they in-
herently track less information. For example, LIO protects against control-
�ow-based implicit �ows by tracking information at a coarse-grained level—to
branch on secrets, LIO programs must �rst taint the context where secrets are
going to be observed. Finally, coarse-grained systems often require consider-
ably fewer programmer annotations—unlike �ne-grained ones. More speci�-
cally, developers often only need a single label-annotation to protect everything
in the scope of a thread or process responsible to handle sensitive data.

Unfortunately, these advantages of coarse-grained systems give up on the
many bene�ts of �ne-grained ones. For instance, one main drawback of coarse-
grained systems is that it requires developers to compartmentalize their ap-
plication in order to avoid both false alarms and the label creep problem, i.e.,
wherein the program gets too “tainted” to do anything useful. To this end, �ne-
grained systems often create special abstractions (e.g., event processes [39],
gates [166], and security regions [122]) that compensate for the conservative
approximations of the coarse-grained tracking approach. Furthermore, �ne-
grained systems do not impose the burden of focusing on avoiding the label
creep problem on developers. By tracking information at �ne granularity, such
systems are seemingly more �exible and do not su�er from false alarms and la-
bel creep issues [7] as coarse-grained systems do. Indeed, �ne-grained systems
such as JSFlow [51] can often be used to secure existing, legacy applications;
they only require developers to properly annotate the application.

This paper removes the division between �ne- and coarse-grained dynamic
IFC systems and the belief that they are fundamentally di�erent. In particular,
we show that dynamic �ne-grained and coarse-grained IFC are equally expres-
sive. Our work is inspired by the recent work of [120, 121], who prove similar
results for static �ne-grained and coarse-grained IFC systems. Speci�cally, they
establish a semantics- and type-preserving translation from a coarse-grained
IFC type system to a �ne-grained one and vice-versa. We complete the picture
by showing a similar result for dynamic IFC systems that additionally allow
introspection on labels at run-time. While label introspection is meaningless in
a static IFC system, in a dynamic IFC system this feature is key to both writing
practical applications and mitigating the label creep problem [144].

Using Agda, we formalize a traditional �ne-grained system (in the style
of [7]) extended with label introspection primitives, as well as a coarse-grained

CHAPTER 4. ON THE GRANULARITY OF DYNAMIC IFC 131

system (in the style of [144]). We then de�ne and formalize modular semantics-
preserving translations between them. Our translations are macro-expressible
in the sense of [40].

We show that a translation from �ne- to coarse-grained is possible when
the coarse-grained system is equipped with a primitive that limits the scope
of tainting (e.g., when reading sensitive data). In practice, this is not an im-
posing requirement since most coarse-grained systems rely on such primitives
for compartmentalization. For example, [141, 144], provide toLabeled blocks
and threads for precisely this purpose. Dually, we show that the translation
from coarse- to �ne-grained is possible when the �ne-grained system has a
primitive taint(·) that relaxes precision to keep the program counter label syn-
chronized when translating a program to the coarse-grained language. While
this primitive is largely necessary for us to establish the coarse- to �ne-grained
translation, extending existing �ne-grained systems with it is both secure and
trivial.

The implications of our results are multi-fold. The �ne- to coarse-grained
translation formally con�rms an old OS-community hypothesis that it is pos-
sible to restructure a system into smaller compartments to address the label
creep problem—indeed our translation is a (naive) algorithm for doing so. This
translation also allows running legacy �ne-grained IFC compatible applications
atop coarse-grained systems like LIO. Dually, the coarse- to �ne-grained trans-
lation allows developers building new applications in a �ne-grained system
to avoid the annotation burden of the �ne-grained system by writing some of
the code in the coarse-grained system and compiling it automatically to the
�ne-grained system with our translation. The technical contributions of this
paper are:

– A pair of semantics-preserving translations between traditional dynamic
�ne-grained and coarse-grained IFC systems equipped with label intro-
spection (Theorems 3 and 5).

– Two di�erent proofs of termination-insensitive non-interference (TINI) for
each calculus: one is derived directly in the usual way (Theorems 1 and 2),
while the other is recovered via our veri�ed translation (Theorems 4 and
6).

– Mechanized Agda proofs of our results (~4,000 LOC).1

The rest of this paper is organized as follows. Our dynamic �ne- and
coarse-grained IFC calculi are introduced in Sections 2 and 3, respectively.
We also prove their soundness guarantees (i.e., termination-insensitive non-
interference). Section 4 presents the translation from the �ne- to the coarse-
grained calculus and recovers the non-interference of the former from the
non-interference theorem of the latter. Section 5 has similar results in the other
direction. Related work is described in Section 6 and Section 7 concludes the
paper.

1 Artifact available at https://hub.docker.com/r/marcovassena/granularity/

https://hub.docker.com/r/marcovassena/granularity/

132 2. FINE-GRAINED CALCULUS

Type: τ ::= unit | τ1 → τ2 | τ1 + τ2 | τ1 × τ2 | L | Ref τ
Labels: `, pc ∈ L
Address: n ∈ N
Environment: θ ∈ Var ⇀ Value
Raw Value: r ::= () | (x .e, θ) | inl(v) | inr(v) | (v1, v2) | ` | n`
Value v ::= r`

Expression: e ::= x |λx .e | e1 e2 | () | ` | inl(e) | inr(e)
| case(e, x .e1, x .e2) | (e1, e2) | fst(e) | snd(e)
| getLabel | labelOf(e) | taint(e1, e2) | new(e)

| ! e | e1 := e2 | labelOfRef(e) | e1 v? e2
Type System: Γ ` e : τ
Con�guration: c ::= 〈Σ, e〉
Store: Σ ∈ (` : Label)→ Memory `
Memory `: M ::= [] | r : M

Fig. 1: Syntax of λdFG.

2 Fine-Grained Calculus
In order to compare in a rigorous way �ne- and coarse-grained dynamic IFC
techniques, we formally de�ne the operational semantics of two λ-calculi that
respectively perform �ne- and coarse-grained IFC dynamically. Figure 1 shows
the syntax of the dynamic �ne-grained IFC calculus λdFG, which is inspired
by [7] and extended with a standard (security unaware) type system Γ ` e : τ
(omitted), sum and product data types and security labels ` ∈ L that form a
lattice (L ,v).2 In order to capture �ows of information precisely at run-time,
the λdFG-calculus features intrinsically labeled values, written r`, meaning
that raw value r has security level `. Compound values, e.g., pairs and sums,
carry labels to tag the security level of each component, for example a pair
containing a secret and a public boolean would be written (trueH , falseL).3
Functional values are closures (x .e, θ), where x is the variable that binds the
argument in the body of the function e and all other free variables are mapped
to some labeled value in the environment θ. The λdFG-calculus features a
labeled partitioned stored, i.e., Σ ∈ (` : L)→ Memory `, where Memory `
is the memory that contains values at security level `. Each reference carries an
additional label annotation that records the label of the memory it refers to—
reference n` points to the n-th cell of the `-labeled memory, i.e., Σ(`). Notice
that this label has nothing to do with the intrinsic label that decorates the
reference itself. For example, a reference (nH)

L represents a secret reference
in a public context, whereas (nL)

H represents a public reference in a secret
context. Notice that there is no order invariant between those labels—in the
latter case, the IFC runtime monitor prevents writing data to the reference to

2 The lattice is arbitrary and �xed. In examples we will often use the two point lattice
{L,H }, which only disallows secret to public �ow of information, i.e., H 6v L.

3 We de�ne the boolean type bool = unit+unit, boolean values as raw values, i.e.,
true = inl(()L), false = inr(()L) and if e then e1 else e2 = case e .e1 .e2.

CHAPTER 4. ON THE GRANULARITY OF DYNAMIC IFC 133

(Var)
〈Σ, x 〉 ⇓θpc 〈Σ, θ(x) t pc〉

(Unit)
〈Σ, ()〉 ⇓θpc 〈Σ, ()pc〉

(Label)
〈Σ, `〉 ⇓θpc 〈Σ, `pc〉

(Fun)
〈Σ,λx .e〉 ⇓θpc 〈Σ, (x .e, θ)pc〉

(App)
〈Σ, e1〉 ⇓θpc 〈Σ′, (x .e, θ′)

`〉
〈Σ′, e2〉 ⇓θpc 〈Σ′′, v2〉 〈Σ′′, e〉 ⇓θ

′[x 7→v2]
pc t ` 〈Σ′′′, v〉

〈Σ, e1 e2〉 ⇓θpc 〈Σ′′′, v〉

(Inl)
〈Σ, e〉 ⇓θpc 〈Σ′, v〉

〈Σ, inl(e)〉 ⇓θpc 〈Σ′, inl(v)pc〉

(Inr)
〈Σ, e〉 ⇓θpc 〈Σ′, v〉

〈Σ, inr(e)〉 ⇓θpc 〈Σ′, inr(v)pc〉

(Case1)
〈Σ, e〉 ⇓θpc 〈Σ′, inl(v1)`〉 〈Σ′, e1〉 ⇓θ[x 7→v1]pc t ` 〈Σ′′, v〉

〈Σ, case(e, x .e1, x .e2)〉 ⇓θpc 〈Σ′′, v〉

(Case2)
〈Σ, e〉 ⇓θpc 〈Σ′, inr(v2)`〉 〈Σ′, e2〉 ⇓θ[x 7→v2]pc t ` 〈Σ′′, v〉

〈Σ, case(e, x .e1, x .e2)〉 ⇓θpc 〈Σ′′, v〉

(Pair)
〈Σ, e1〉 ⇓θpc 〈Σ′, v1〉 〈Σ′, e2〉 ⇓θpc 〈Σ′′, v2〉

〈Σ, (e1, e2)〉 ⇓θpc 〈Σ′′, (v1, v2)pc〉

(Fst)
〈Σ, e〉 ⇓θpc 〈Σ′, (v1, v2)`〉
〈Σ, fst(e)〉 ⇓θpc 〈Σ′, v1 t `〉

(Snd)
〈Σ, e〉 ⇓θpc 〈Σ′, (v1, v2)`〉

〈Σ, snd(e)〉 ⇓θpc 〈Σ′, v2 t `〉

(Taint)
〈Σ, e1〉 ⇓θpc 〈Σ′, ``

′
〉 `′ v ` 〈Σ′, e2〉 ⇓θ` 〈Σ′′, v〉

〈Σ, taint(e1, e2)〉 ⇓θpc 〈Σ′′, v〉

Fig. 2: Big-step semantics for λdFG (part I).

avoid implicit �ows. A program can create, read and write a labeled reference
via constructs new(e), !e and e1 := e2 and inspect its subscripted label with
the primitive labelOfRef(·).

2.1 Dynamics

The operational semantics of λdFG includes a security monitor that propagates
the label annotations of input values during program execution and assigns

134 2. FINE-GRAINED CALCULUS

(LabelOf)
〈Σ, e〉 ⇓θpc 〈Σ′, r`〉

〈Σ, labelOf(e)〉 ⇓θpc 〈Σ′, ``〉

(GetLabel)
〈Σ,getLabel〉 ⇓θpc 〈Σ′′, pcpc〉

(v?-T)
〈Σ, e1〉 ⇓θpc 〈Σ′, `1`

′
1〉 〈Σ′, e2〉 ⇓θpc 〈Σ′′, `2`

′
2〉 `1 v `2

〈Σ, e1 v? e2〉 ⇓θpc 〈Σ′′, inl(()pc)`
′
1 t `

′
2〉

(v?-F)
〈Σ, e1〉 ⇓θpc 〈Σ′, `1`

′
1〉 〈Σ′, e2〉 ⇓θpc 〈Σ′′, `2`

′
2〉 `1 6v `2

〈Σ, e1 v? e2〉 ⇓θpc 〈Σ′′, inr(()pc)`
′
1 t `

′
2〉

Fig. 3: Big-step semantics for λdFG (part II).

security labels to the result accordingly. The monitor prevents information
leakage by stopping the execution of potentially leaky programs, which is
re�ected in the semantics by not providing reduction rules for the cases that
may cause insecure information �ow.4 The relation 〈Σ, e〉 ⇓θpc 〈Σ′, v〉 denotes
the evaluation of program e with initial store Σ that terminates with labeled
value v and �nal store Σ′. The environment θ stores the input values of the
program and is extended with intermediate results during function application
and case analysis. The subscript pc is the program counter label [128]— it is a
label that represents the security level of the context in which the expression
is evaluated. The semantics employs the program counter label to (i) propagate
and assign labels to values computed by a program and (ii) prevent implicit
�ow leaks that exploit the control �ow and the store (explained below).

In particular, when a program produces a value, the monitor tags the raw
value with the program counter label in order to record the security level of the
context in which it was computed. For this reason all the introduction rules for
ground and compound types ([Unit,Label,Fun,Inl,Inr,Pair]) assign security
level pc to the result. Other than that, these rules are fairly standard—we simply
note that rule [Fun] creates a closure by capturing the current environment θ.

When the control �ow of a program depends on some intermediate value,
the program counter label is joined with the value’s label so that the label of the
�nal result will be tainted with the result of the intermediate value. For instance,
consider case analysis, i.e., case e x .e1 x .e2. Rules [Case1] and [Case2] eval-
uate the scrutinee e to a value (either inl(v)` or inr(v)`), add the value to the
environment, i.e., θ[x 7→ v], and then execute the appropriate branch with a
program counter label tainted with v’s security label, i.e., pc t `. As a result,
the monitor tracks data dependencies across control �ow constructs through

4 In this work, we ignore leaks that exploit program termination and prove termination
insensitive non-interference for λdFG (Theorem 1).

CHAPTER 4. ON THE GRANULARITY OF DYNAMIC IFC 135

the label of the result. Function application follows the same principle. In rule
[App], since the �rst premise evaluates the function to some closure (x .e, θ′)
at security level `, the third premise evaluates the body with program counter
label raised to pc t `. The evaluation strategy is call-by-value: it evaluates the
argument before the body in the second premise and binds the corresponding
variable to its value in the environment of the closure, i.e., θ′[x 7→ v2]. Notice
that the security level of the argument is irrelevant at this stage and that this is
bene�cial to not over-tainting the result: if the function never uses its argument
then the label of the result depends exclusively on the program counter label,
e.g., (λx .()) y ⇓y 7→42H

L ()
L. The elimination rules for variables and pairs

taint the label of the corresponding value with the program counter label for
security reasons. In rules [Var,Fst,Snd] the notation, v t `′ upgrades the label
of v with `′—it is a shorthand for r` t `′ with v = r`. Intuitively, public values
must be considered secret when the program counter is secret, for example
x ⇓x 7→()L

H ()
H .

Label Introspection. The λdFG-calculus features primitives for label introspec-
tion, namely getLabel, labelOf(·) and v?—see Figure 3. These operations
allow to respectively retrieve the current program counter label, obtain the la-
bel annotations of values, and compare two labels (inspecting labels at run-time
is useful for controlling and mitigating the label creep problem).

Enabling label introspection raises the question of what label should be
assigned to the label itself (in λdFG every value, including all label values, must
be annotated with a label). As a matter of fact, labels can be used to encode
secret information and thus careless label introspection may open the doors
to information leakage [144]. Notice that in λdFG, the label annotation on the
result is computed by the semantics together with the result and thus it is as
sensitive as the result itself (the label annotation on a value depends on the
sensitivity of all values a�ecting the control-�ow of the program up to the point
where the result is computed). This motivates the design choice to protect each
projected label with the label itself, i.e., `` and pcpc in rules [GetLabel] and
[LabelOf] in Figure 2. We remark that this choice is consistent with previous
work on coarse-grained IFC languages [32,144], but novel in the context of �ne
grained IFC.

Finally, primitive taint(e1, e2) temporarily raises the program counter la-
bel to the label given by the �rst argument in order to evaluate the second
argument. The �ne-to-coarse translation in Section 4 uses taint(·) to loosen
the precision of λdFG in a controlled way and match the coarse approximation
of our coarse-grained IFC calculus (λdCG) by upgrading the labels of interme-
diate values systematically. In rule [Taint], the constraint `′ v ` ensures that
the label of the nested context ` is at least as sensitive as the program counter
label pc. In particular, this constraint ensures that the operational semantics
have Property 1 (“the label of the result is at least as sensitive as the program
counter label”) even with rule [Taint].

136 2. FINE-GRAINED CALCULUS

(New)
〈Σ, e〉 ⇓θpc 〈Σ′, r`〉 n = |Σ′(`)|

〈Σ,new(e)〉 ⇓θpc 〈Σ′[` 7→ Σ′(`)[n 7→ r]], (n`)
pc〉

(Read)
〈Σ, e〉 ⇓θpc 〈Σ′,n``

′
〉 Σ′(`)[n] = r

〈Σ, !e〉 ⇓θpc 〈Σ′, r` t `
′
〉

(Write)
〈Σ, e1〉 ⇓θpc 〈Σ′,n``1〉 `1 v ` 〈Σ′, e2〉 ⇓θpc 〈Σ′′, r`2〉 `2 v `

〈Σ, e1 := e2〉 ⇓θpc 〈Σ′′[` 7→ Σ′′(`)[n 7→ r]], pc〉

(LabelOfRef)
〈Σ, e〉 ⇓θpc 〈Σ′,n``

′
〉

〈Σ, labelOfRef(e)〉 ⇓θpc 〈Σ′, `` t `
′
〉

Fig. 4: Big-step semantics for λdFG (references).

Property 1 If 〈Σ, e〉 ⇓θpc 〈Σ′, r`〉 then pc v `.

Proof. By induction on the given evaluation derivation.
References. We now extend the semantics presented earlier with primitives that
inspect, access and modify the labeled store via labeled references. See Figure 4.
Rule [New] creates a reference n`, labeled with the security level of the initial
content, i.e., label `, in the `-labeled memory Σ(`) and updates the memory
store accordingly.5 Since the security level of the reference is as sensitive as the
content, which is at least as sensitive as the program counter label by Property
1 (pc v `) this operation does not leak information via implicit �ows. When
reading the content of reference n` at security level `′, rule [Read] retrieves
the corresponding raw value from the n-th cell of the `-labeled memory, i.e.,
Σ′(`)[n] = r and upgrades its label to ` t `′ since the decision to read from
that particular reference depends on information at security level `′. When
writing to a reference the monitor performs security checks to avoid leaks
via explicit or implicit �ows. Rule [Write] achieves this by evaluating the
reference, i.e., (n`)`1 and replacing its content with the value of the second
argument, i.e., r`2 , under the conditions that the decision of “which” reference
to update does not depend on data more sensitive than the reference itself,
i.e., `1 v ` (not checking this would leak via an implicit �ow)6, and that the
new content is no more sensitive than the reference itself, i.e., `2 v ` (not

5 |M | denotes the length of memory M —memory indices start at 0.
6 Notice that pc v `1 by Property 1, thus pc v `1 v ` by transitivity. An implicit
�ow would occur if a reference is updated in a high branch, i.e., depending on the
secret, e.g., let x = new(0) in if secret then x := 1 else ().

CHAPTER 4. ON THE GRANULARITY OF DYNAMIC IFC 137

(ValueL)
` v L r1 ≈L r2

r1
` ≈L r2

`

(ValueH)
`1 6v L `2 6v L

r1
`1 ≈L r2

`2

(Unit)
() ≈L ()

(Label)
` ≈L `

(Closure)
e1 ≡α e2 θ1 ≈L θ2

(e1, θ1) ≈L (e2, θ2)

(Inl)
v1 ≈L v2

inl(v1) ≈L inl(v2)

(Inr)
v1 ≈L v2

inr(v1) ≈L inr(v2)

(Pair)
v1 ≈L v

′
1 v2 ≈L v

′
2

(v1, v2) ≈L (v′1, v
′
2)

(RefL)
` v L

n` ≈L n`

(RefH)
`1 6v L `2 6v L

n1`1 ≈L n2`2

Fig. 5: L-equivalence for λdFG values and raw values.

checking this would leak sensitive information to a less sensitive reference via
an explicit �ow). Lastly, rule [LabelOfRef] retrieves the label of the reference
and protects it with the label itself (as explained before) and taints it with the
security level of the reference, i.e., `` t `′ to avoid leaks. Intuitively, the label
of the reference, i.e., `, depends also on data at security level `′ as seen in the
premise.

Other Extensions. We consider λdFG equipped with references as su�cient
foundation to study the relationship between �ne-grained and coarse-grained
IFC. We remark that extending it with other side-e�ects such as �le operations,
or other IO-operations would not change our claims in Section 4 and 5. The
main reason for this is that, typically, handling such e�ects would be done
at the same granularity in both IFC enforcements. For instance, when adding
�le operations, both �ne- (e.g., [28]) and coarse-grained (e.g., [39, 69, 124, 145])
enforcements are likely to assign a single �ow-insensitive label to each �le
in order to denote the sensitivity of its content. Then, those features could be
handled �ow-insensitively in both systems (e.g., [100,116,145,153]), in a manner
similar to what we have just shown for references in λdFG.

2.2 Security

We now prove that λdFG is secure, i.e., it satis�es termination insensitive non-
interference (TINI) [47, 158]. Intuitively, the security condition says that no
terminating λdFG program leaks information, i.e., changing secret inputs does
not produce any publicly visible e�ect. The proof technique is standard and
based on the notion of L-equivalence, written v1 ≈L v2, which relates values
(and similarly raw values, environments, stores and con�gurations) that are
indistinguishable for an attacker at security level L. For clarity we use the 2-
points lattice, assume that secret data is labeled with H and that the attacker can
only observe data at security level L. Our mechanized proofs are parametric in
the lattice and in the security level of the attacker. L-equivalence for values and

138 3. COARSE-GRAINED CALCULUS

raw-values is de�ned formally by mutual induction in Figure 5. Rule [ValueL]
relates observable values, i.e., raw values labeled below the security level of
the attacker. These values have the same observable label (` v L) and related
raw values, i.e., r1 ≈L r2. Rule [ValueH] relates non-observable values, which
may have di�erent labels not below the attacker level, i.e., `1 6v L and
`2 6v L. In this case, the raw values can be arbitrary. Raw values are L-
equivalent when they consist of the same ground value ([Unit,Label]), or
are homomorphically related for compound values. For example, for the sum
type the relation requires that both values are either a left or a right injection
([Inl,Inr]). In particular, closures are related if they contain the same function
(up to α-renaming)7 and L-equivalent environments, i.e., the environments
are L-equivalent pointwise. Formally, θ1 ≈L θ2 i� Dom(θ1) ≡ Dom(θ2) and
∀x .θ1(x) ≈L θ2(x).

We de�ne L-equivalence for stores pointwise, i.e., Σ1 ≈L Σ2 i� for all
labels ` ∈ L , Σ1(`) ≈L Σ2(`). Memory L-equivalence relates arbitrary
`-labeled memories if ` 6v L, and pointwise otherwise, i.e., M1 ≈L M2 i�
M1 and M2 are memories labeled with ` v L, |M1| = |M2| and for all
n ∈ {0 . . |M1| − 1}, M1[n] ≈L M2[n]. Similarly, L-equivalence relates any
two secret references (rule [RefH]) but requires the same label and address
for public references (rule [RefL]). We naturally lift L-equivalence to initial
con�gurations, i.e., c1 ≈L c2 i� c1 = 〈Σ1, e1〉, c2 = 〈Σ2, e2〉, Σ1 ≈L Σ2

and e1 ≡α e2, and �nal con�gurations, i.e., c′1 ≈L c′2 i� c′1 = 〈Σ′1, v1〉, c′2 =
〈Σ′2, v2〉 and Σ′1 ≈L Σ

′
2 and v1 ≈L v2.

We now formally state and prove that λdFG semantics preserves L-equivalence
of con�gurations under L-equivalent environments, i.e., termination-insensitive
non-interference (TINI).

Theorem 1 (λdFG-TINI)
If c1 ⇓θ1pc c′1, c2 ⇓θ2pc c′2, θ1 ≈L θ2 and c1 ≈L c2 then c′1 ≈L c′2.

Proof. By induction on the derivations.

Dynamic language-based �ne-grained IFC, of which λdFG is just a par-
ticular instance, represents an intuitive approach to tracking information �ows
in programs. Programmers annotate input values with labels that represent
their sensitivity and a label-aware instrumented security monitor propagates
those labels during execution and computes the result of the program together
with a conservative approximation of its sensitivity. The next section describes
an IFC monitor that tracks information �ows at coarse granularity.

3 Coarse-Grained Calculus
One of the drawbacks of dynamic �ne-grained IFC is that the programming
model requires all input values to be explicitly and fully annotated with their

7 Symbol ≡α denotes α-equivalence. In our mechanized proofs we use De Bruijn
indexes and syntactic equivalence.

CHAPTER 4. ON THE GRANULARITY OF DYNAMIC IFC 139

Type: τ ::= unit | τ1 → τ2 | τ1 + τ2 | τ1 × τ2 | L
| LIO τ | Labeled τ | Ref τ

Labels: `, pc ∈ L
Address: n ∈ N
Environment: θ ∈ Var ⇀ Value
Value: v ::= () | (x .e, θ) | inl(v) | inr(v) | (v1, v2) | `

| (t , θ) | Labeled ` v | n`
Expression: e ::= x |λx .e | e1 e2 | () | ` | e1 v? e2 | inl(e1) | inr(e2)

| case(e, x .e1, x .e2) | (e1, e2) | fst(e) | snd(e) | t
Thunk t ::= return(e) | bind(e, x .e) | unlabel(e)

| toLabeled(e) | labelOf(e) | getLabel | taint(e)
| new(e) | ! e | e1 := e2 | labelOfRef(e)

Type System: Γ ` e : τ
Con�guration: c ::= 〈Σ, pc, e〉
Store: Σ ∈ (` : Label)→ Memory `
Memory `: M ::= [] | v : M

Fig. 6: Syntax of λdCG.

security labels. Imagine a program with many inputs and highly structured
data: it quickly becomes cumbersome, if not impossible, for the programmer
to specify all the labels. The label of some inputs may be sensitive (e.g., pass-
words, pin codes, etc.), but the sensitivity of the rest may probably be irrelevant
for the computation, yet a programmer must come up with appropriate labels
for them as well. The programmer is then torn between two opposing risks:
over-approximating the actual sensitivity can negatively a�ect execution (the
monitor might stop secure programs), under-approximating the sensitivity
can endanger security. Even worse, specifying many labels manually is error-
prone and assigning the wrong security label to a piece of sensitive data can be
catastrophic for security and completely defeat the purpose of IFC. Dynamic
coarse-grained IFC represents an attractive alternative that requires fewer an-
notations, in particular it allows the programmer to label only the inputs that
need to be protected.

Figure 6 shows the syntax of λdCG, a standard simply-typed λ-calculus
extended with security primitives for dynamic coarse-grained IFC, inspired
by [145] and adapted to use call-by-value instead of call-by-name to match
λdFG. The λdCG-calculus features both standard (unlabeled) values and explic-
itly labeled values. For example, Labeled H true represents a secret boolean
value of type Labeled bool.8 The type constructor LIO encapsulates a se-
curity state monad, whose state consists of a labeled store and the program
counter label. In addition to standard return(·) and bind(·) constructs, the
monad provides primitives that regulate the creation and the inspection of

8 As in λdFG, we de�ne bool = unit + unit and if e then e1 else e2 =
case e .e1 .e2. Unlike λdFG values, λdCG values are not intrinsically labeled,
thus we encode boolean constants simply as true = inl() and false = inr().

140 3. COARSE-GRAINED CALCULUS

labeled values, i.e., toLabeled(·), unlabel(·) and labelOf(·), and the inter-
action with the labeled store, allowing the creation, reading and writing of
labeled references n` through the constructs new(e), !e , e1 := e2, respectively.
The primitives of the LIO monad are listed in a separate sub-category of ex-
pressions called thunk. Intuitively, a thunk is just a description of a stateful
computation, which only the top-level security monitor can execute—a thunk
closure, i.e., (t , θ), provides a way to suspend computations.

3.1 Dynamics

In order to track information �ows dynamically at coarse granularity, λdCG
employs a technique called �oating-label, which was originally developed for
IFC operating systems (e.g., [166,167]) and that was later applied in a language-
based setting. In this technique, throughout a program’s execution, the program
counter �oats above the label of any value observed during program execution
and thus represents (an upper-bound on) the sensitivity of all the values that are
not explicitly labeled. For this reason, λdCG stores the program counter label
in the program con�guration, so that the primitives of the LIO monad can
control it explicitly (in technical terms the program counter is �ow-sensitive,
i.e., it may assume di�erent values in the �nal con�guration depending on the
control �ow of the program).9

Like λdFG, the operational semantics of λdCG consists of a security moni-
tor that fully evaluates secure programs but prevents the execution of insecure
programs and similarly enforces termination-insensitive non-interference (The-
orem 2). Figure 7 shows the big-step operational semantics of λdCG in two parts:
(i) a top-level security monitor for monadic programs and (ii) a straightforward
call-by-value side-e�ect-free semantics for pure expressions. The semantics of
the security monitor is further split into two mutually recursive reduction rela-
tions, one for arbitrary expressions (Fig. 7a) and one speci�c to thunks (Fig. 7c).
These constitute the forcing semantics of the monad, which reduce a thunk to a
pure value and perform side-e�ects. In particular, given the initial storeΣ, pro-
gram counter label pc, expression e of type LIO τ for some type τ and input
values θ (which may or may not be labeled), the monitor executes the program,
i.e., 〈Σ, pc, e〉 ⇓θ 〈Σ′, pc′, v〉 and gives an updated store Σ′, updated program
counter pc′ and a �nal value v of type τ , which also might not be labeled. The
execution starts with rule [Force], which reduces the pure expression to a
thunk closure, i.e., (t , θ′) and then forces the thunk t in its environment θ′
with the thunk semantics. The pure semantics is fairly standard—we report
some selected rules in Fig. 7b for comparison with λdFG. A pure reduction,
written e ⇓θ v, evaluates an expression e with an appropriate environment
θ to a pure value v. Notice that, unlike λdFG, all reduction rules of the pure
semantics ignore security, even those that a�ect the control �ow of the pro-
gram, e.g., rule [App]: they do not feature the program counter label or label

9 In contrast, we consider λdFG’s program counter �ow-insensitive because it is part
of the evaluation judgment and its value changes only inside nested judgments.

CHAPTER 4. ON THE GRANULARITY OF DYNAMIC IFC 141

(Force)
e ⇓θ (t , θ′) 〈Σ, pc, t〉 ⇓θ

′
〈Σ′, pc′, v〉

〈Σ, pc, e〉 ⇓θ 〈Σ′, pc′, v〉

(a) Forcing semantics: 〈Σ, pc, e〉 ⇓θ 〈Σ′, pc′, v〉.

(Thunk)
t ⇓θ (t , θ)

(Fun)
λx .e ⇓θ (x .e, θ)

(Var)
x ⇓θ θ(x)

(App)
e1 ⇓θ (x .e, θ′) e2 ⇓θ v2 e ⇓θ

′[x 7→v2] v

e1 e2 ⇓θ v

(b) Pure semantics: e ⇓θ v (selected rules).

(Return)
e ⇓θ v

〈Σ, pc, return(e)〉 ⇓θ 〈Σ, pc, v〉

(Bind)
〈Σ, pc, e1〉 ⇓θ 〈Σ′, pc′, v1〉 〈Σ′, pc′, e2〉 ⇓θ[x 7→v1] 〈Σ′′, pc′′, v〉

〈Σ, pc,bind(e1, x .e2)〉 ⇓θ 〈Σ′′, pc′′, v〉

(ToLabeled)
〈Σ, pc, e〉 ⇓θ 〈Σ′, pc′, v〉

〈Σ, pc, toLabeled(e)〉 ⇓θ 〈Σ′, pc,Labeled pc′ v〉

(Unlabel)
e ⇓θ Labeled ` v

〈Σ, pc,unlabel(e)〉 ⇓θ 〈Σ′, pc t `, v〉

(LabelOf)
e ⇓θ Labeled ` v

〈Σ, pc, labelOf(e)〉 ⇓θ 〈Σ, pc t `, `〉

(GetLabel)
〈Σ, pc,getLabel〉 ⇓θ 〈Σ, pc, pc〉

(Taint)
e ⇓θ `

〈Σ, pc, taint(e)〉 ⇓θ 〈Σ, pc t `, ()〉

(c) Thunk semantics: 〈Σ, pc, t〉 ⇓θ 〈Σ′, pc′, v〉.

Fig. 7: Big-step semantics for λdCG.

142 3. COARSE-GRAINED CALCULUS

(New)
e ⇓θ Labeled ` v pc v ` n = |Σ(`)|
〈Σ, pc,new(e)〉 ⇓θ 〈Σ[` 7→ Σ(`)[n 7→ v]], pc,n`〉

(Read)
e ⇓θ n` Σ(`)[n] = v

〈Σ, pc, !e〉 ⇓θ 〈Σ, pc t `, v〉

(Write)
e1 ⇓θ n`1 e2 ⇓θ Labeled `2 v `2 v `1 pc v `1

〈Σ, pc, e1 := e2〉 ⇓θ 〈Σ[`1 7→ Σ(`1)[n 7→ v]], pc, ()〉

(LabelOfRef)
e ⇓θ n`

〈Σ, pc, labelOfRef(e)〉 ⇓θ 〈Σ, pc t `, `〉

Fig. 8: Big-step semantics for λdCG (references).

annotations. They are also pure—they do not have access to the store, thus only
the security monitor needs to protect against implicit �ows.

If the pure evaluation reaches a side-e�ectful computation, i.e., thunk t , it
suspends the computation by creating a thunk closure that captures the cur-
rent environment θ (see rule [Thunk]). Notice that thunk closures and function
closures are distinct values created by di�erent rules, [Thunk] and [Fun] re-
spectively.10 Function application succeeds only when the function evaluates
to a function closure (rule [App]). In the thunk semantics, rule [Return] eval-
uates a pure value embedded in the monad via return(·) and leaves the state
unchanged, while rule [Bind] executes the �rst computation with the forcing
semantics, binds the result in the environment i.e., θ[x 7→ v1], passes it on
to the second computation together with the updated state and returns the
�nal result and state. Rule [Unlabel] is interesting. Following the �oating-
label principle, it returns the value wrapped inside the labeled value, i.e., v, and
raises the program counter with its label, i.e., pc t `, to re�ect the fact that
new data at security level ` is now in scope.

Floating-label based coarse-grained IFC systems like LIO su�er from the
label creep problem, which occurs when the program counter gets over-tainted,
e.g., because too many secrets have unlabeled, to the point that no useful further
computation can be performed. Primitive toLabeled(·) provides a mechanism
to address this problem by (i) creating a separate context where some sensitive
computation can take place and (ii) restoring the original program counter la-
bel afterwards. Rule [ToLabeled] formalizes this idea. Notice that the result of
10 It would have also been possible to de�ne thunk values in terms of function closures

using explicit suspension and an opaque wrapper, e.g., LIO (.t , θ).

CHAPTER 4. ON THE GRANULARITY OF DYNAMIC IFC 143

the nested sensitive computation, i.e., v, cannot be simply returned to the lower
context—that would be a leak, so toLabeled(·) wraps that piece of informa-
tion in a labeled value protected by the �nal program counter of the sensitive
computation, i.e., Labeled pc′ v.11 Furthermore, notice that pc′, the label that
tags the result v, is as sensitive as the result itself because the �nal program
counter depends on all the unlabel(·) operations performed to compute the
result. This motivates why primitive labelOf(·) does not simply project the
label from a labeled value, but additionally taints the program counter with the
label itself in rule [LabelOf]–a label in a labeled value has sensitivity equal to
the label itself, thus the program counter label rises to accommodate reading
new sensitive data.

Lastly, rule [GetLabel] returns the value of the program counter, which
does not rise (because pc t pc = pc), and rule [Taint] simply taints the
program counter with the given label and returns unit (this primitive matches
the functionality of taint(·) in λdFG). Note that, in λdCG, taint(·) takes only
the label with which the program counter must be tainted whereas, in λdFG, it
additionally requires the expression that must be evaluated in the tainted en-
vironment. This di�erence highlights the �ow-sensitive nature of the program
counter label in λdCG.
References. λdCG features �ow-insensitive labeled references similar to λdFG
and allows programs to create, read, update and inspect the label inside the
LIO monad (see Figure 8). The API of these primitives takes explicitly labeled
values as arguments, by making explicit at the type level, the tagging that
occurs in memory, which was left implicit in previous work [144]. Rule [New]
creates a reference labeled with the same label annotation as that of the labeled
value it receives as an argument, and checks that pc v ` in order to avoid
implicit �ows. Rule [Read] retrieves the content of the reference from the `-
labeled memory and returns it. Since this brings data at security level ` in scope,
the program counter is tainted accordingly, i.e., pc t `. Rule [Write] performs
security checks analogous to those in λdFG and updates the content of a given
reference and rule [LabelOfRef] returns the label on a reference and taints
the context accordingly.

We conclude this section by noting that the forcing and the thunk semantics
of λdCG satisfy Property 2 (“the �nal value of the program counter is at least as
sensitive as the initial value”).

Property 2

– If 〈Σ, pc, e〉 ⇓θ 〈Σ′, pc′, v〉 then pc v pc′.
– If 〈Σ, pc, t〉 ⇓θ 〈Σ′, pc′, v〉 then pc v pc′.

Proof. By mutual induction on the given evaluation derivations.
11 [144] have proposed an alternative �ow-insensitive primitive, i.e., toLabeled(`, e),

which labels the result with the user-assigned label `. The semantics of λdFG forced
us to use toLabeled(e).

144 3. COARSE-GRAINED CALCULUS

(LabeledL)
` v L v1 ≈L v2

Labeled ` v1 ≈L Labeled ` v2

(LabeledH)
`1 6v L `2 6v L

Labeled `1 v1 ≈L Labeled `2 v2

(Closure)
e1 ≡α e2 θ1 ≈L θ2

(e1, θ1) ≈L (e2, θ2)

(Thunk)
t1 ≡α t2 θ1 ≈L θ2

(t1, θ1) ≈L (t2, θ2)

(RefL)
` v L

n` ≈L n`

(RefH)
`1 6v L `2 6v L

n1
`1 ≈L n2

`2

(PcH)
Σ1 ≈L Σ2 pc1 6v L pc2 6v L

〈Σ1, pc1, v1〉 ≈L 〈Σ2, pc2, v2〉

(PcL)
Σ1 ≈L Σ2 pc v L v1 ≈L v2

〈Σ1, pc, v1〉 ≈L 〈Σ2, pc, v2〉

Fig. 9: L-equivalence for λdCG values (selected rules) and con�gurations.

3.2 Security

We now prove that λdCG is secure, i.e., it satis�es termination-insensitive non-
interference. The meaning of the security condition is intuitively similar to
that presented in Section 2.2 for λdFG— when secret inputs are changed, ter-
minating programs do not produce any publicly observable e�ect—and based
on a similar indistinguishability relation. Figure 9 presents the de�nition of
L-equivalence for the interesting cases only. Firstly, L-equivalence for λdCG
labeled values relates public and secret values analogously to λdFG values.
Speci�cally, rule [LabeledL] relates public labeled values that share the same
observable label (` v L) and contain related values, i.e., v1 ≈L v2, while
rule [LabeledH] relates secret labeled values, with arbitrary sensitivity labels
not below L (`1 6v L and `2 6v L) and contents. Secondly, L-equivalence
relates standard (unlabeled) values homomorphically. For example, values of
the sum type are related only as follows: inl(v1) ≈L inl(v′1) i� v1 ≈L v

′
1 and

inr(v2) ≈L inr(v′2) i� v2 ≈L v
′
2. Closures and thunks are related if the func-

tion and the monadic computations are α-equivalent and their environments
are related, i.e., θ1 ≈L θ2 i� Dom(θ1) ≡ Dom(θ2) and ∀x .θ1(x) ≈L θ2(x).
Labeled references, memories and stores are related by L-equivalence analo-
gously to λdFG. Lastly, L-equivalence relates initial con�gurations with related
stores, equal program counters and α-equivalent expressions (resp. thunks),
i.e., c1 ≈L c2 i� c1 = 〈Σ1, pc1, e1〉, c2 = 〈Σ2, pc2, e2〉, Σ1 ≈L Σ2, pc1 ≡ pc2,
and e1 ≡α e2 (resp. t1 ≡α t2 for thunks t1 and t2), and �nal con�gurations
with related stores and (i) equal public program counter, i.e., pc v L, and
related values [PcL], or (ii) arbitrary secret public counters, i.e., pc1 6v L and
pc2 6v L, and arbitrary values [PcH].

CHAPTER 4. ON THE GRANULARITY OF DYNAMIC IFC 145

We now formally state and prove that λdCG semantics preserves L-equivalence
under L-equivalent environments, i.e., termination-insensitive non-interference
(TINI).

Theorem 2 (λdCG-TINI)
If c1 ⇓θ1 c′1, c2 ⇓θ2 c′2, θ1 ≈L θ2 and c1 ≈L c2 then c′1 ≈L c′2.

Proof. By induction on the derivations.

At this point, we have formalized two calculi—λdFG and λdCG—that
perform dynamic IFC at �ne and coarse granularity, respectively. While
they have some similarities, i.e., they are both functional languages that
feature labeled annotated data, references and label introspection primitives,
and ensure a termination-insensitive security condition, they also have
striking di�erences. First and foremost, they di�er in the number of label
annotations—pervasive in λdFG and optional in λdCG—with signi�cant
implications for the programming model and usability. Second, they di�er in
the nature of the program counter, �ow-insensitive in λdFG and �ow-sensitive
in λdCG. Third, they di�er in the way they deal with side-e�ects—λdCG
allows side-e�ectful computations exclusively inside the monad, while λdFG is
impure, i.e., any λdFG expression can modify the state. This di�erence a�ects
the e�ort required to implement a system that performs language-based
�ne- and coarse-grained dynamic IFC. In fact, several coarse-grained IFC
languages [30, 63, 123, 124, 131, 149] have been implemented as an embedded
domain speci�c language (EDSL) in a Haskell library with little e�ort,
exploiting the strict control that the host language provides on side-e�ects.
Adapting an existing language to perform �ne-grained IFC requires major
engineering e�ort, because several components (all the way from the parser
to the runtime system) must be adapted to be label-aware.

In the next two sections we show that—despite their di�erences—these two
calculi are, in fact, equally expressive.

4 Fine- to Coarse-Grained Program Translation
This section presents a provably semantics-preserving program translation
from the �ne-grained dynamic IFC calculusλdFG to the coarse-grained calculus
λdCG. At a high level, the translation performs two tasks (i) it embeds the
intrinsic label annotation of λdFG values into an explicitly labeled λdCG value
via the Labeled type constructor and (ii) it restructures λdFG side-e�ectful
expressions into monadic operations inside the LIO monad. Our type-driven
approach starts by formalizing this intuition in the function 〈〈 · 〉〉, which maps
the λdFG type τ to the corresponding λdCG type 〈〈τ〉〉 (see Figure 10a). The
function is de�ned by induction on types and recursively adds the Labeled
type constructor to each existing λdFG type constructor. For the function type
τ1 → τ2, the result is additionally monadic, i.e., 〈〈τ1〉〉 → LIO〈〈τ2〉〉. This is
because the function’s body in λdFG may have side-e�ects. The translation

146 4. FINE- TO COARSE-GRAINED PROGRAM TRANSLATION

〈〈unit〉〉 = Labeled unit
〈〈L 〉〉 = Labeled L
〈〈τ1 × τ2〉〉 = Labeled (〈〈τ1〉〉 × 〈〈τ2〉〉)
〈〈τ1 + τ2〉〉 = Labeled (〈〈τ1〉〉+ 〈〈τ2〉〉)
〈〈τ1 → τ2〉〉 = Labeled (〈〈τ1〉〉 → LIO〈〈τ2〉〉)
〈〈Ref τ〉〉 = Labeled (Ref〈〈τ〉〉)

(a) Types.

〈〈r`〉〉 = Labeled `〈〈r〉〉
〈〈()〉〉 = ()
〈〈`〉〉 = `
〈〈(v1, v2)〉〉 = (〈〈v1〉〉, 〈〈v2〉〉)
〈〈inl(v)〉〉 = inl(〈〈v〉〉)
〈〈inr(v)〉〉 = inr(〈〈v〉〉)
〈〈(x .e, θ)〉〉 = (x .〈〈e〉〉, 〈〈θ〉〉)
〈〈n`〉〉 = n`

(b) Values.

Fig. 10: Translation from λdFG to λdCG.

for values (Figure 10b) is straightforward. Each λdFG label tag becomes the
label annotation in a λdCG labeled value. The translation is homomorphic
in the constructors on raw values. The translation converts a λdFG function
closure into a λdCG thunk closure by translating the body of the function to
a thunk, i.e., 〈〈e〉〉 (see below), and translating the environment pointwise, i.e.,
〈〈θ〉〉 = λx .〈〈θ(x)〉〉.

Expressions. We show the translation of λdFG expressions to λdCG monadic
thunks in Figure 11. We use the standard do notation for readability.12 First,
notice that the translation of all constructs occurs inside a toLabeled(·) block.
This achieves two goals, (i) it ensures that the value that results from a trans-
lated expression is explicitly labeled and (ii) it creates an isolated nested context
where the translated thunk can execute without raising the program counter
label at the top level. Inside the toLabeled(·) block, the program counter
label may rise, e.g., when some intermediate result is unlabeled, and the trans-
lation relies on LIO’s �oating-label mechanism to track dependencies between
data of di�erent security levels. In particular, we will show later that the value
of the program counter label at the end of each nested block coincides with
the label annotation of the λdFG value that the original expression evaluates
to. For example, introduction forms of ground values (unit, labels, and func-
tions) are simply returned inside the toLabeled(·) block so that they get
tagged with the current value of the program counter label just as in the cor-
responding λdFG introduction rules ([Label,Unit,Fun]). Introduction forms
of compounds values such as inl(e), inr(e) and (e1, e2) follow the same prin-
ciple. The translation simply nests the translations of the nested expressions
inside the same constructor, without raising the program counter label. This
matches the behavior of the corresponding λdFG rules [Inl,Inr,Pair].13 For ex-

12 Syntax do x ← e1; e2 desugars to bind(e1, x .e2) and syntax e1; e2 to
bind(e1, .e2).

13 We name a variable lv if it gets bound to a labeled value, i.e., to indicate that the
variable has type Labeled τ .

CHAPTER 4. ON THE GRANULARITY OF DYNAMIC IFC 147

〈〈()〉〉 = toLabeled(return(()))

〈〈`〉〉 = toLabeled(return(`))

〈〈(λx .e)〉〉 = toLabeled(do
return(λx .〈〈e〉〉))
〈〈inl(e)〉〉 = toLabeled(do

le ← 〈〈e〉〉
return(inl(lv)))

〈〈inr(e)〉〉 = toLabeled(do
le ← 〈〈e〉〉
return(inr(lv)))

〈〈(e1, e2)〉〉 = toLabeled(do
lv1 ← 〈〈e1〉〉
lv2 ← 〈〈e2〉〉
return(lv1, lv2))

〈〈x 〉〉 = toLabeled(unlabel(x))

〈〈e1 e2〉〉 = toLabeled(do
lv1 ← 〈〈e1〉〉
lv2 ← 〈〈e2〉〉
v1 ← unlabel(lv1)
lv ← v1 lv2

unlabel(lv))

〈〈case(e, x .e1, x .e2)〉〉 = toLabeled(do
lv ← 〈〈e〉〉
v ← unlabel(lv)
lv ′ ← case(v, x .〈〈e1〉〉, x .〈〈e2〉〉)
unlabel(lv ′))

〈〈fst(e)〉〉 = toLabeled(do
lv ← 〈〈e〉〉
v ← unlabel(lv)
unlabel(fst(v)))

〈〈snd(e)〉〉 = toLabeled(do
lv ← 〈〈e〉〉
v ← unlabel(lv)
unlabel(snd(v)))

〈〈taint(e1, e2)〉〉 = toLabeled(do
lv1 ← 〈〈e1〉〉
v1 ← unlabel(lv1)
taint(v1)
lv2 ← 〈〈e2〉〉
unlabel(lv2))

〈〈labelOf(e)〉〉 = toLabeled(do
lv ← 〈〈e〉〉
labelOf(lv))

〈〈getLabel〉〉 = toLabeled(getLabel)

Fig. 11: Translation from λdFG to λdCG (expressions).

ample, the λdFG reduction ((), ()) ⇓∅L (()
L
, ()

L
)
L

maps to a λdCG reduction
that yields Labeled L (Labeled L (),Labeled L ()) when started with
program counter label L.

The translation of variables gives some insight into how the λdCG �oating-
label mechanism can simulate λdFG’s tainting approach. First, the type-driven
approach set out in Figure 10a demands that functions take only labeled val-
ues as arguments, so the variables in the source program are always associ-
ated to a labeled value in the translated program. The values that correspond
to these variables are stored in the environment θ and translated separately,
e.g., if θ(x) = r` in λdFG, then x gets bound to 〈〈r`〉〉 = Labeled `〈〈r〉〉
when translated to λdCG. Thus, the translation converts a variable, say x , to
toLabeled(unlabel(x)), so that its label gets tainted with the current pro-
gram counter label. More precisely, unlabel(x) retrieves the labeled value
associated with the variable, i.e., Labeled `〈〈r〉〉, taints the program counter
with its label to make it pc t `, and returns the content, i.e., 〈〈r〉〉. Since
unlabel(x) occurs inside a toLabeled(·) block, the code above results in

148 4. FINE- TO COARSE-GRAINED PROGRAM TRANSLATION

(WkenType)
Γ \ x ` e : τ

Γ ` wken x e : τ

(Wken)
e ⇓θ \ x v

wken x e ⇓θ v

Fig. 12: Typing and semantics rules of wken for λdCG.

Labeled (pc t `)〈〈r〉〉 when evaluated, matching precisely the tainting be-
havior of λdFG rule [Var], i.e., x ⇓θ[x 7→r

`]
pc rpc t `.

The elimination forms for other types (function application, pair projec-
tions and case analysis) follow the same approach. For example, the code that
translates a function application e1 e2 �rst executes the code that computes
the translated function, i.e., lv1 ← 〈〈e1〉〉, then the code that computes the
argument, i.e., lv2 ← 〈〈e2〉〉 and then retrieves the function from the �rst
labeled value, i.e., v1 ← unlabel(lv1).14 The function v1 applied to the la-
beled argument lv2 gives a computation that gets executed and returns a la-
beled value lv that gets unlabeled to expose the �nal result (the surround-
ing toLabeled(·) wraps it again right away). The translation of case analy-
sis is analogous. The translation of pair projections �rst converts the λdFG
pair into a computation that gives a λdCG labeled pair of labeled values, say
Labeled ` (Labeled `1〈〈r1〉〉,Labeled `2〈〈r2〉〉) and removes the label tag on
the pair via unlabel, thus raising the program counter label to pc t `. Then,
it projects the appropriate component and unlabels it, thus tainting the pro-
gram counter label even further with the label of either the �rst or the second
component. This coincides with the tainting mechanism of λdFG for projection
rules, e.g., in rule [Fst] where fst(e) ⇓θpc r1

pc t ` t `1 if e ⇓θpc (r1
`1 , r2

`2)
`.

Lastly, translating taint(e1, e2) requires (i) translating the expression e1
that gives the label, (ii) using taint(·) from λdCG to explicitly taint the pro-
gram counter label with the label that e1 gives, and (iii) translating the second
argument e2 to execute in the tainted context and unlabeling the result. The
construct labelOf(e) of λdFG uses the corresponding λdCG primitive applied
on the corresponding labeled value, say Labeled `〈〈r〉〉, obtained from the
translated expression. Notice that labelOf(·) taints the program counter la-
bel in λdCG, which rises to pc t `, so the code just described results in
Labeled (pc t `) `, which corresponds to the translation of the result in
λdFG, i.e., 〈〈``〉〉 = Labeled ` ` because pc t ` ≡ `, since pc v ` from
Property 1. The translation of getLabel follows naturally by simply wrap-

14 Notice that it is incorrect to unlabel the function before translating the argument,
because that would taint the program counter label, which would raise at level, say
pc t `, and a�ect the code that translates the argument, which was to be evaluated
with program counter label equal to pc by the original �ow-insensitive λdFG rule
[App] for function application.

CHAPTER 4. ON THE GRANULARITY OF DYNAMIC IFC 149

〈〈new(e)〉〉 =
toLabeled(do

lv ← 〈〈e〉〉
new(lv))

〈〈 ! e〉〉 =
toLabeled(do

lr ← 〈〈e〉〉
r ← unlabel(lv)
! r)

〈〈e1 := e2〉〉 =
toLabeled(do

lr ← 〈〈e1〉〉
lv ← 〈〈e2〉〉
r ← unlabel(lr)
r := lv)

toLabeled(return())

〈〈labelOfRef(e)〉〉 =
toLabeled(do

lr ← 〈〈e〉〉
r ← unlabel(lv)
labelOfRef(r))

Fig. 13: Translation λdFG to λdCG (references).

ping λdCG’s getLabel inside a toLabeled(·), which correctly returns the
program counter label labeled with itself, i.e., Labeled pc pc.
Note on Environments. The semantics rules of λdFG and λdCG feature an envi-
ronment θ for input values that gets extended with intermediate values during
program evaluation and that may be captured inside a closure. Unfortunately,
this capturing behavior is undesirable for our program translation. The pro-
gram translation de�ned above introduces temporary auxiliary variables that
carry the value of intermediate results, e.g., the labeled value obtained from
running a computation that translates some λdFG expression. When the trans-
lated program is executed, these values end up in the environment, e.g., by
means of rules [App] and [Bind], and mix with the input values of the source
program and output values as well, thus complicating the correctness state-
ment of the translation, which now has to account for those extra variables
as well. In order to avoid this nuisance, we employ a special form of weaken-
ing that allows shrinking the environment at run-time and removing spurious
values that are not needed in the rest of the program. In particular, expression
wken x e has the same type as e if variables x are not free in e , see the formal
typing rule [WkenType] in Figure 12. At run-time, the expression wken x e
evaluates e in an environment from which variables x have been dropped, so
that they do not get captured in any closure created during the execution of
e . Rule [Wken] is part of the pure semantics of λdCG—the semantics of λdFG
includes an analogous rule (the issue of contaminated environments arises in
the translations in both directions, thus both calculi feature wken). We remark
that this expedient is not essential—we can avoid it by slightly complicating
the correctness statement to explicitly account for those extra variables. Nor
is this expedient particularly interesting. In fact, we omit wken from the code
of the program translations to avoid clutter (our mechanization includes wken
in the appropriate places).
References. Figure 13 shows the program translation of λdFG primitives that
access the store via references. The translation of λdFG values wraps references
in λdCG labeled values (Figure 10b), so the translations of Figure 13 take care
of boxing and unboxing references. The translation of new(e) has a top-level

150 4. FINE- TO COARSE-GRAINED PROGRAM TRANSLATION

toLabeled(·) block that simply translates the content (lv ← 〈〈e〉〉) and puts
it in a new reference (new(lv)). The λdCG rule [New] (Figure 8) assigns the
label of the translated content to the new reference, which also gets labeled
with the original program counter label15, just as in the λdFG rule [New] (Fig-
ure 4). In λdFG, rule [Read] reads from a reference n`

`′ at security level `′

that points to the `-labeled memory, and returns the content Σ(`)[n]
` t `′ at

level ` t `′. Similarly, the translation creates a toLabeled(·) block that exe-
cutes to get a labeled reference lr = Labeled `′ n`, extracts the reference n`
(r ← unlabel(lr)) tainting the program counter label with `′, and then reads
the reference’s content further tainting the program counter label with ` as well.
The code that translates and updates a reference consists of two toLabeled(·)
blocks. The �rst block is responsible for the update: it extracts the labeled refer-
ence and the labeled new content (lr and lv resp.), extracts the reference from
the labeled value (r ← unlabel(lr)) and updates it (r := lv). The second block,
toLabeled(return()), returns unit at security level pc, i.e., Labeled pc (),
similar to the λdFG rule [Write]. The translation of labelOfRef(e) extracts
the reference and projects its label via the λdCG primitive labelOfRef(·),
which additionally taints the program counter with the label itself, similar to
the λdFG rule [LabelOfRef].
4.1 Correctness

In this section, we establish some desirable properties of the λdFG-to-λdCG
translation de�ned above. These properties include type and semantics preser-
vation as well as recovery of non-interference—a meta criterion that rules out
a class of semantically correct (semantics preserving), yet elusive translations
that do not preserve the meaning of security labels [16, 121].

We start by showing that the program translation preserves typing. The
type translation for typing contexts Γ is pointwise, i.e., 〈〈Γ 〉〉 = λx .〈〈Γ (x)〉〉.

Lemma 1 (Type Preservation).
Given a well-typed λdFG expression, i.e., Γ ` e :τ , the translated λdCG expression
is also well-typed, i.e., 〈〈Γ 〉〉 ` 〈〈e〉〉 : LIO〈〈τ〉〉.

Proof 1 By induction on the given typing derivation.

The main correctness criterion for the translation is semantics preserva-
tion. Intuitively, proving this theorem ensures that the program translation
preserves the meaning of secure λdFG programs when translated and executed
with λdCG semantics (under a translated environment). In the theorem below16,
the translation of stores and memories is pointwise, i.e., 〈〈Σ〉〉 = λ`.〈〈Σ(`)〉〉,
and 〈〈[]〉〉 = [] and 〈〈r : M 〉〉 = 〈〈r〉〉 : 〈〈M 〉〉 for each `-labeled memory M . Fur-
thermore, notice that in the translation, the initial and �nal program counter
15 The nested block does not execute any unlabel(·) nor taint(·).
16 The proof of Theorem 3 requires the (often used) axiom of functional extensionality

in our mechanized proofs.

CHAPTER 4. ON THE GRANULARITY OF DYNAMIC IFC 151

labels are the same. This establishes that the program translation preserves
the �ow-insensitive program counter label of λdFG (by means of primitive
toLabeled(·)).

Theorem 3 (Semantics Preservation of 〈〈 · 〉〉 : λdFG → λdCG)
If 〈Σ, e〉 ⇓θpc 〈Σ′, v〉, then 〈〈〈Σ〉〉, pc, 〈〈e〉〉〉 ⇓〈〈θ〉〉 〈〈〈Σ′〉〉, pc, 〈〈v〉〉〉.

Proof. By induction on the given evaluation derivation using basic properties
of the security lattice and of the translation function.
Recovery of non-interference. We conclude this section by constructing a proof
of termination-insensitive non-interference for λdFG (Theorem 1) from the
corresponding theorem for λdCG (Theorem 2), using the semantics preserving
translation (Theorem 3), together with a property that the translation preserves
L-equivalence as well (Lemmas 2 and 3). Doing so ensures that the meaning
of labels is preserved by the translation [16, 121]. In the absence of such an
artifact, one could devise a semantics-preserving translation that simply does
not use the security features of the target language. While technically correct
(i.e., semantics preserving), the translation would not be meaningful from the
perspective of security.17 The following lemma shows that the translation of
λdFG initial con�gurations, de�ned as 〈〈c〉〉pc = 〈〈〈Σ〉〉, pc, 〈〈e〉〉〉 if c = 〈Σ, e〉,
preserves L-equivalence by lifting L-equivalence from source to target and
back.

Lemma 2. For all labels pc, c1 ≈L c2 if and only if 〈〈c1〉〉pc ≈L 〈〈c2〉〉pc .

Proof. By de�nition of L-equivalence for initial con�gurations in both direc-
tions (Sections 2.2 and 3.2), using injectivity of the translation function, i.e., if
〈〈e1〉〉 ≡α 〈〈e2〉〉 then e1 ≡α e2, in the if direction, and by mutually proving sim-
ilar lemmas for all categories: for stores, i.e., Σ1 ≈L Σ2 i� 〈〈Σ1〉〉 ≈L 〈〈Σ2〉〉, for
memories, i.e., M1 ≈L M2 i� 〈〈M1〉〉 ≈L 〈〈M2〉〉, for environments, i.e., θ1 ≈L θ2
i� 〈〈θ1〉〉 ≈L 〈〈θ2〉〉, for values, i.e., v1 ≈L v2 i� 〈〈v1〉〉 ≈L 〈〈v2〉〉, and for raw
values, i.e., r1 ≈L r2 i� 〈〈r1〉〉 ≈L 〈〈r2〉〉.

The following lemma recovers L-equivalence of source �nal con�gurations
by back-translating L-equivalence of target �nal con�gurations. We de�ne
the translation for λdFG �nal con�gurations as 〈〈c〉〉pc = 〈〈〈Σ〉〉, pc, 〈〈v〉〉〉 if
c = 〈Σ, v〉.

Lemma 3. Let c1 = 〈Σ1, r1
`1〉, c2 = 〈Σ2, r2

`2〉 be λdFG �nal con�gurations.
For all program counter label pc, such that pc v `1 and pc v `2, if 〈〈c1〉〉pc ≈L

〈〈c2〉〉pc then c1 ≈L c2.
17 Note that such bogus translations are also ruled out due to the need to preserve the

outcome of any label introspection. Nonetheless, building this proof artifact increases
our con�dence in the robustness of our translation. In contrast, if the enforcement of
IFC is static, then there is no label introspection, and this proof artifact is extremely
important, as argued in prior work [16, 121].

152 5. COARSE- TO FINE-GRAINED PROGRAM TRANSLATION

JL K = L
JunitK = unit
Jτ1 → τ2K = Jτ1K→ Jτ2K
Jτ1 + τ2K = Jτ1K+ Jτ2K
Jτ1 × τ2K = Jτ1K× Jτ2K
JRef τK = RefJτK
JLabeled τK = L × JτK
JLIO τK = unit→ JτK

(a) Types.

J()Kpc = ()pc

J`Kpc = `pc

Jinl(v)Kpc = inl(JvKpc)pc

Jinr(v)Kpc = inr(JvKpc)pc

J(v1, v2)Kpc = (Jv1Kpc , Jv2Kpc)pc

J(x .e, θ)Kpc = (x .JeK, JθKpc)pc

J(t , θ)Kpc = (.JtK, JθKpc)pc

JLabeled ` vKpc = (``, JvK`)
pc

Jn`Kpc = (n`)
pc

(b) Values.

Fig. 14: Translation from λdCG to λdFG (part I).

Proof By case analysis on the L-equivalence relation of the target �nal con-
�gurations, two cases follow. First, we recover L-equivalence of the source
stores, i.e., Σ1 ≈L Σ2, from that of the target stores, i.e., 〈〈Σ1〉〉 ≈L 〈〈Σ2〉〉 from
〈〈c1〉〉 ≈L 〈〈c2〉〉 in both cases. Then, the program counter in the target con�gura-
tions is either (i) above the attacker’s level [PcH], i.e., pc 6v L, and the source
values are L-equivalent, i.e., r1`1 ≈L r2

`2 by rule [ValueH] applied to `1 6v L
and `2 6v L (from pc 6v L and, respectively, pc v `1 and pc v `2), or (ii)
below the attacker’s level [PcL], i.e., pc v L, then 〈〈r1`1〉〉 ≈L 〈〈r2`2〉〉 and the
source values are L-equivalent, i.e., r1`1 ≈L r2

`2 , by Lemma 2 for values.

Theorem 4 (λdFG-TINI via 〈〈 · 〉〉)
If c1 ⇓θ1pc c′1, c2 ⇓θ2pc c′2, θ1 ≈L θ2 and c1 ≈L c2 then c′1 ≈L c′2.

Proof. We start by applying the �ne to coarse grained program translation to
the initial con�gurations and environments. By Theorem 3 (semantics preserva-
tion), we derive the corresponding λdCG reductions, i.e., 〈〈c1〉〉pc ⇓〈〈θ1〉〉 〈〈c′1〉〉

pc

and 〈〈c2〉〉pc ⇓〈〈θ2〉〉 〈〈c′2〉〉
pc . Then, we lift L-equivalence of the initial con-

�gurations and environments from source to target, i.e., from c1 ≈L c2 to
〈〈c1〉〉pc ≈L 〈〈c2〉〉pc and from θ1 ≈L θ2 to 〈〈θ1〉〉 ≈L 〈〈θ2〉〉 (Lemma 2), and apply
λdCG-TINI (Theorem 2) to obtain L-equivalence of the target �nal con�gura-
tions, i.e., 〈〈c′1〉〉

pc ≈L 〈〈c′2〉〉
pc . Finally, we recover L-equivalence of the �nal

con�gurations from target to source, i.e., from 〈〈c′1〉〉
pc ≈L 〈〈c′2〉〉

pc to c′1 ≈L c′2,
via Lemma 3, applied to c′1 = 〈Σ1, r1

`1〉 and c′2 = 〈Σ2, r2
`2〉, and where

pc v `1 and pc v `2 by Property 1 applied to the source reductions, i.e.,
c1 ⇓θ1pc c′1 and c2 ⇓θ2pc c′2.

5 Coarse- to Fine-Grained Program Translation
We now show a veri�ed program translation in the opposite direction—from
the coarse grained calculus λdCG to the �ne grained calculus λdFG. The trans-
lation in this direction is more involved—a program in λdFG contains strictly
more information than its counterpart in λdCG, namely the extra intrinsic label

CHAPTER 4. ON THE GRANULARITY OF DYNAMIC IFC 153

annotations that tag every value. The challenge in constructing this transla-
tion is two-fold. On one hand, the translation must come up with labels for
all values. However, it is not always possible to do this statically during the
translation: Often, the labels depend on input values and arise at run-time with
intermediate results since the λdFG calculus is designed to compute and attach
labels at run-time. On the other hand, the translation cannot conservatively
under-approximate the values of labels18—λdCG and λdFG have label intro-
spection so, in order to get semantics preservation, labels must be preserved
precisely. Intuitively, we solve this impasse by crafting a program translation
that (i) preserves the labels that can be inspected by λdCG and (ii) lets the
λdFG semantics compute the remaining label annotations automatically—we
account for those labels with a cross-language relation that represents semantic
equivalence between λdFG and λdCG modulo extra annotations (Section 5.1).
The fact that the source program in λdCG cannot inspect those labels—they
have no value counterpart in the source λdCG program—facilitates this aspect
of the translation. We elaborate more on the technical details later.

At a high level, an interesting aspect of the translation (that informally at-
tests that it is indeed semantics-preserving) is that it encodes the �ow-sensitive
program counter of the source λdCG program into the label annotation of the
λdFG value that results from executing the translated program. For example, if
a λdCG monadic expression starts with program counter label pc and results in
some value, say true, and �nal program counter pc′, then the translated λdFG
expression, starting with the same program counter label pc, computes the
same value (modulo extra label annotations) at the same security level pc′, i.e.,
the value truepc

′ . This encoding requires keeping the value of the program
counter label in the source program synchronized with the program counter
label in the target program, by loosening the �ne-grained precision of λdFG at
run-time in a controlled way.

Types. The λdCG-to-λdFG translation follows the same type-driven approach
used in the other direction, starting from the function J · K in Figure 14a, that
translates a λdFG type τ into the corresponding λdCG type JτK. The translation
is de�ned by induction on τ and preserves all the type constructors standard
types. Only the cases corresponding to λdCG-speci�c types are interesting. In
particular, it converts explicitly labeled types, i.e., Labeled τ , to a standard
pair type in λdFG, i.e., (L × JτK), where the �rst component is the label and
the second component the content of type τ . Type LIO τ becomes a suspension
in λdFG, i.e., the function type unit→ JτK that delays a computation and that
can be forced by simply applying it to the unit value ().

Values. The translation of values follows the type translation, as shown in
Figure 14b. Notice that the translation is indexed by the program counter

18 In contrast, previous work on static type-based �ne-to-coarse grained translation
safely under-approximates the label annotations in types with ⊥ [121]. The proof of
type preservation of the translation recovers the actual labels via subtyping.

154 5. COARSE- TO FINE-GRAINED PROGRAM TRANSLATION

J()K = ()
J`K = `
JxK = x
Jλx .eK = λx .JeK
Je1 e2K = Je1KJe2K
J(e1, e2)K = (Je1K, Je2K)
Jfst(e)K = fst(JeK)
Jsnd(e)K = snd(JeK)
Jinl(e)K = inl(JeK)
Jinr(e)K = inr(JeK)
Jcase (e, x .e1, x .e2)K

= case (JeK, x .Je1K, x .Je2K)
JtK = λ .JtK

(a) Expressions.

Jreturn(e)K = JeK
Jbind(e1, x .e2)K =

let x = Je1K() in
taint(labelOf(x), Je2K())

Junlabel(e)K =
let x = JeKin

taint(fst(x), snd(x))
JtoLabeled(e)K =

let x = JeK() in
(labelOf(x), x)

JlabelOf(e)K = fst(JeK)
JgetLabelK = getLabel
Jtaint(e)K = taint(JeK, ())

(b) Thunks.

Fig. 15: Translation from λdCG to λdFG (part II).

label (the translation is written JvKpc), which converts the λdCG value v in
scope of a computation protected by security level pc to the corresponding
fully label-annotated λdFG value. The translation is pretty straightforward
and uses the program counter label to tag each value, following the λdCG
principle that the program counter label protects every value in scope that is
not explicitly labeled. The translation converts a λdCG function closure into a
corresponding λdFG function closure by translating the body of the function
to a λdFG expression (see below) and translating the environment pointwise,
i.e., JθKpc = λx .Jθ(x)Kpc . A thunk value or a thunk closure, which denotes a
suspended side-e�ecful computation, is also converted into a λdFG function
closure. Technically, the translation would need to introduce a fresh variable
that would get bound to unit when the suspension gets forced. However, the ar-
gument to the suspension does not have any purpose, so we do not bother with
giving a name to it and write .JtK instead. (In our mechanized proofs we em-
ploy unnamed De Bruijn indexes and this issue does not arise.) The translation
converts an explicitly labeled value Labeled ` v, into a labeled pair at security
level pc, i.e., (``, JvK`)

pc
. The pair consists of the label ` tagged with itself, and

the value translated at a security level equal to the label annotation, i.e., JvK`.
Notice that tagging the label with itself allows us to translate the λdCG (label
introspection) primitive labelOf(·) by simply projecting the �rst component,
thus preserving the label and its security level across the translation.
Expressions and Thunks. The translation of pure expressions (Figure 15a) is
trivial: it is homomorphic in all constructs, mirroring the type translation. The
translation of a thunk expression t builds a suspension explicitly with a λ-
abstraction (the name of the variable is again irrelevant, thus we omit it as
explained above), and carries on by translating the thunk itself according to the

CHAPTER 4. ON THE GRANULARITY OF DYNAMIC IFC 155

Jnew(e)K =
let x = JeKin

new(taint(fst(x), snd(x)))

Je1 := e2K = Je1K := snd(Je2K)
J ! eK = !JeK
JlabelOfRef(e)K = labelOfRef(JeK)

Fig. 16: Translation from λdCG to λdFG (references).

de�nition in Figure 15b. The thunk return(e) becomes JeK, since return(·)
does not have any side-e�ect. When two monadic computations are combined
via bind(e1, x .e2), the translation (i) converts the �rst computation to a sus-
pension and forces it by applying unit (Je1K()), (ii) binds the result to x and
passes it to the second computation19, which is also converted, forced, and, im-
portantly, iii) executed with a program counter label tainted with the security
level of the result of the �rst computation (taint(labelOf(x), Je2K())). No-
tice that taint(·) is essential to ensure that the second computation executes
with the program counter label set to the correct value—the precision of the
�ne-grained system would otherwise retain the initial lower program counter
label according to rule [App] and the value of the program counter labels in
the source and target programs would di�er in the remaining execution.

Similarly, the translation of unlabel(e) �rst translates the labeled expres-
sion e (the translated expression does not need to be forced because it is not of
a monadic type), binds its result to x and then projects the content in a context
tainted with its label, as in taint(fst(x), snd(x)). This closely follows λdCG’s
[Unlabel] rule. The translation of toLabeled(e) forces the nested compu-
tation with JeK(), binds its result to x and creates the pair (labelOf(x), x),
which corresponds to the labeled value obtained in λdCG via rule [ToLabeled].
Intuitively, the translation guarantees that the value of the �nal program
counter label in the nested computation coincides with the security level of
the translated result (bound to x). Therefore, the �rst component contains
the correct label and it is furthermore at the right security level, because
labelOf(·) protects the projected label with the label itself in λdFG. Primi-
tive labelOf(e) simply projects the �rst component of the pair that encodes
the labeled value in λdFG as explained above. Lastly, getLabel in λdCG maps
directly to getLabel in λdFG—rule [GetLabel] in λdCG simply returns the
program counter label and does not raise its value, so it corresponds exactly
to rule [GetLabel] in λdFG, which returns label pc at security level pc. Sim-
ilarly, taint(e) translates to taint(JeK, ()), since rule [Taint] in λdCG taints
the program counter with the label that e evaluates to, say ` and returns unit
with program counter label equal to pc t `, which corresponds to the result
of the translated program, i.e., ()pc t `.
References. Figure 16 shows the translation of primitives that access the store
via references. Since λdCG’s rule [New] in Figure 8 creates a new reference
19 Syntax let x = e1 in e2 where x is free in e2 is a shorthand for (λx .e2) e1.

156 5. COARSE- TO FINE-GRAINED PROGRAM TRANSLATION

labeled with the label of the argument (which must be a labeled value), the
translation converts new(e) to an expression that �rst binds JeK to x and
then creates a new reference with the same content as the source, i.e., snd(x),
but tainted with the label in x , i.e., fst(x). Notice that the use of taint(·) is
essential to ensure that λdFG’s rule [New] in Figure 4 assigns the correct label
to the new reference. Due to its �ne-grained precision, λdFG might have labeled
the content with a di�erent label that is less sensitive than the explicit label
that coarsely approximates the security level in λdCG. In contrast, updating a
reference does not require any tainting—both λdFG and λdCG accept values
less sensitive than the reference in rule [Write]. Thus, the translation e1 := e2
simply updates the translated reference with the content of the labeled value
projected from the translated pair, hence Je1 := e2K is Je1K := snd(Je2K). The
translation of the primitives that read and query the label of a reference is
trivial.

5.1 Cross-Language Equivalence Relation

When a λdCG program is translated to λdFG via the program translation de-
scribed above, the λdFG result contains strictly more information than the orig-
inal λdCG result. This happens because the semantics of λdFG tracks �ows of
information at �ne granularity, in contrast with λdCG, which instead coarsely
approximates the security level of all values in scope of a computation with the
program counter label. When translating a λdCG program, we can capture this
condition precisely for input values θ by homogeneously tagging all standard
(unlabeled) values with the initial program counter label, i.e., JθKpc . However,
a λdCG program handles, creates and mixes unlabeled data that originated at
di�erent security levels at run-time, e.g., when a secret is unlabeled and com-
bined with previously public (unlabeled) data. Crucially, when the translated
program executes, the �ne-grained semantics of λdFG tracks those �ows of in-
formation precisely and thus new labels appear (these labels do not correspond
to the label of any labeled value in the source value nor to the program counter
label). Intuitively, this implies that the λdFG result will not be homogeneously
labeled with the �nal program counter label of the λdCG computation, i.e., if
a λdCG program terminates with value v and program counter label pc′, the
translated λdFG program does not necessarily result in JvKpc

′
.

Example. Consider the λdCG program 〈Σ,L, taint(H); return(x)〉 ⇓x 7→true

〈Σ,H , true〉, which returns true = inl() and the store Σ unchanged, after
tainting the program counter label with H . Let e be the expression obtained
by applying the program translation from Figure 15 to the example program:

e = λ .
let y = taint(H , ()) in
taint(labelOf(y), x)

CHAPTER 4. ON THE GRANULARITY OF DYNAMIC IFC 157

(Value)
`1 v pc r1 �≈pc v2

r1
`1 �≈pc v2

(Unit)
() �≈pc ()

(Label)
` �≈pc `

(Ref)
n` �≈pc n`

(Inl)
v1 �≈pc v

′
1

inl(v1) �≈pc inl(v′1)

(Inr)
v2 �≈pc v

′
2

inr(v2) �≈pc inr(v′2)

(Pair)
v1 �≈pc v

′
1 v2 �≈pc v

′
2

(v1, v2) �≈pc (v′1, v
′
2)

(Fun)
θ1 �≈pc θ2

(x .JeK, θ1) �≈pc (x .e, θ2)

(Thunk)
θ1 �≈pc θ2

(.JtK, θ1) �≈pc (t , θ2)

(Labeled)
v1 �≈` v2

(``, v1) �≈pc (Labeled ` v2)

Fig. 17: Cross-language value equivalence modulo label annotations.

Interestingly, when we force the program e and execute it starting from pro-
gram counter label equal to L, and an input environment translated accord-
ing to the initial program counter label (L in this case), i.e., x 7→JtrueKL =

inl(()
L
)
L

= trueL, we do not obtain the translated result homogeneously
labeled with H :

〈JΣK, e ()〉 ⇓x 7→trueL

L 〈JΣK, trueH 〉 =

〈JΣK, inl(()L)
H
〉 6=

〈JΣK, inl(()H)
H
〉 =

〈JΣK, JtrueKH 〉

In particular, λdFG preserves the public label tag on data nested inside the left
injection, i.e., ()L in inl(()

L
)
H

above. This happens because λdFG’s rule [Var]
taints only the outer label of the value trueL when it looks up variable x in
program counter label H .
Solution. In order to recover a notion of semantics preservation, we introduce
a key contribution of this work, a cross-language binary relation that associates
values of the two calculi that, in the scope of a computation at a given security
level, are semantically equivalent up to the extra annotations present in the
λdFG value.20 Technically, we use this equivalence in the semantics preserva-
tion theorem in Section 5.2, which existentially quanti�es over the result of the
20 This relation is conceptually similar to the logical relation developed by [121] for their

translations with static IFC enforcement, but technically di�erent in the treatment
of labeled values.

158 5. COARSE- TO FINE-GRAINED PROGRAM TRANSLATION

translated λdFG program, but guarantees that it is semantically equivalent to
the result obtained in the source program.

Concretely, for a λdFG value v1 and a λdCG value v2, we write v1 �≈pc

v2 if the label annotations (including those nested inside compound values)
of v1 are no more sensitive than label pc and its raw value corresponds to
v2. Figure 17 formalizes this intuition by means of two mutually inductive
relations, one for λdFG values and one for λdFG raw values. In particular, rule
[Value] relates λdFG value r1`1 and λdCG value v2 at security level pc if the
label annotation on the raw value r1 �ows to the program counter label, i.e.,
`1 v pc, and if the raw value is in relation with the standard value, i.e.,
r1 �≈pc v2. The relation between raw values and standard values relates only
semantically equivalent values, i.e., it is syntactic equality for ground types
([Unit,Label,Ref]), requires the same injection for values of the sum type
([Inl,Inr]) and requires the components to related for pairs ([Pair]).

Rules [Fun] (resp. [Thunk]) relates function (resp. thunk) closures only
when environments are related pointwise, i.e., θ1 �≈pc θ2 i� Dom(θ1) ≡
Dom(θ2) and ∀x .θ1(x) �≈pc θ2(x), and the λdFG function body x .JeK (resp.
thunk body .JtK) is obtained from the λdCG function body e (resp. thunk
t) via the program translation de�ned above. Lastly, rule [Labeled] relates a
λdCG labeled value Labeled ` v1 to a pair (``, v2), consisting of the label `
protected by itself in the �rst component and value v2 related with the content
v1 at security level ` (v1 �≈` v2) in the second component. This rule follows
the principle of LIO that for explicitly labeled values, the label annotation
represents an upper bound on the sensitivity of the content. Stores are related
pointwise, i.e., Σ1 �≈ Σ2 i� Σ1(`) �≈ Σ2(`) for ` ∈ L , and `-labeled
memories relate their contents respectively at security level `, i.e., [] �≈ []
and (r1 : M1) �≈ (r2 : M2) i� r1 �≈` r2 and M1 �≈ M2 for λdFG and λdCG
memories M1,M2 : Memory `. Lastly, we lift the relation to initial and �nal
con�gurations.

De�nition 1 (Equivalence of Con�gurations)
For all initial and �nal con�gurations:

– 〈Σ1, JeK()〉 �≈ 〈Σ2, pc, e〉 i� Σ1 �≈ Σ2,
– 〈Σ1, JtK〉 �≈ 〈Σ2, pc, t〉 i� Σ1 �≈ Σ2,
– 〈Σ1, r

pc〉 �≈ 〈Σ2, pc, v〉 i� Σ1 �≈ Σ2 and r �≈pc v.

For initial con�gurations, the relation requires the λdFG code to be ob-
tained from the λdCG expression (resp. thunk) via the program translation
function J · K de�ned above (similar to rules [Fun] and [Thunk] in Figure 17).
Furthermore, in the �rst case (expressions), the relation additionally forces the
translated suspension JeK by applying it to (), so that when the λdFG security
monitor executes the translated program, it obtains the result that corresponds
to the λdCG monadic program e . The third de�nition relates �nal con�gura-
tions whenever the stores are related and the security level of the �nal λdFG

CHAPTER 4. ON THE GRANULARITY OF DYNAMIC IFC 159

result corresponds to the program counter label pc of the �nal λdCG con�g-
uration, and the �nal λdCG result corresponds to the λdFG result up to extra
annotations at security level pc, i.e., r �≈pc v.

Before showing semantics preservation, we prove some basic properties of
the equivalence that will be useful later. The following property allows instan-
tiating the semantics preservation theorem with the λdCG initial con�guration.
The translation for initial con�gurations is per-component, i.e., J〈Σ, pc, t〉K =
〈JΣK, JtK〉 and forcing for suspensions, i.e., J〈Σ, pc, e〉K = 〈JΣK, JeK()〉, point-
wise for stores, i.e., JΣK = λ`.JΣ(`)K, and memories, i.e., J[]K = [] and
Jv : M K = JvK` : JM K for `-labeled memory M .

Property 3 (Re�exivity) For all λdCG initial con�gurations c, JcK �≈ c.

Proof. The proof is by induction and relies on analogous properties for all
syntactic categories: for stores, JΣK �≈ Σ, for memories, JM K �≈ M , for
environments JθKpc �≈pc θ, for values JvKpc �≈pc v, for any label pc.

The next property guarantees that values and environments remain in the
relation when the program counter label rises.

Property 4 (Weakening) For all labels pc and pc′ such that pc v pc′, and
for all λdFG raw values r1, values v1 and environments θ1, and λdCG values v2
and environments θ2:

– If r1 �≈pc v2 then r1 �≈pc′ v2
– If v1 �≈pc v2 then v1 �≈pc′ v2
– If θ1 �≈pc θ2 then θ1 �≈pc′ θ2

Proof. By mutual induction on the cross-language equivalence relation.

5.2 Correctness

With the help of the cross-language relation de�ned above, we can now
state and prove that the λdCG-to-λdFG translation is correct, i.e., it satis�es a
semantics-preservation theorem analogous to that proved for the translation in
the opposite direction. At a high level, the theorem ensures that the translation
preserves the meaning of a secure terminating λdCG program when executed
under λdFG semantics, with the same program counter label and translated
input values. Since the translated λdFG program computes strictly more in-
formation than the original λdCG program, the theorem existentially quantify
over the λdFG result, but insists that it is semantically equivalent to the original
λdCG result at a security level equal to the �nal value of the program counter
label, using the cross-language relation just de�ned.

We start by proving that the program translation preserves typing.

Lemma 4 (Type Preservation). If Γ ` e : τ then JΓ K ` JeK : JτK.

160 5. COARSE- TO FINE-GRAINED PROGRAM TRANSLATION

Proof. By straightforward induction on the typing judgment.
Next, we prove semantics preservation of λdCG pure reductions. Since these

reductions do not perform any security-relevant operation (they do not read
or write state), they can be executed with any program counter label in λdFG
and do not change the state in λdFG.

Lemma 5 (J · K : λdCG → λdFG preserves Pure Semantics).
If e ⇓θ v then for any program counter label pc, λdFG store Σ, environment θ′

such that θ′ �≈pc θ, there exists a raw value r, such that 〈Σ, JeK〉 ⇓θ′pc 〈Σ, rpc〉
and r �≈pc v.

Proof. By induction on the given evaluation derivation and using basic proper-
ties of the lattice.

Notice that the lemma holds for any input target environment θ′ in relation
with the source environment θ at security level pc rather than just for the
translated environment JθKpc . Intuitively, we needed to generalize the lemma
so that the induction principle is strong enough to discharge cases where (i) we
need to prove reductions that use an existentially quanti�ed environment, e.g.,
[App] and (ii) when some intermediate result at a security level other than pc
gets added to the environment, so the environment is no longer homogenously
labeled with pc. While the second condition does not arise in pure reductions, it
does occur in the reduction of monadic expressions considered in the following
theorem.

Theorem 5 (J · K : λdCG → λdFG preserves Impure Semantics)

– Let c2 = 〈Σ, pc, t〉 be an initial λdCG con�guration. If c2 ⇓θ2 c′2, then for
all λdFG environments θ1 and initial con�gurations c1 such that θ1 �≈pc θ2
and c1 �≈ c2, there exists a �nal con�guration c′1, such that c1 ⇓θ1pc c′1 and
c′1 �≈ c′2.

– Let c2 = 〈Σ, pc, e〉 be an initial λdCG con�guration. If c2 ⇓θ2 c′2, then for
all λdFG environments θ1 and initial con�gurations c1 such that θ1 �≈pc θ2
and c1 �≈ c2, there exists a �nal con�guration c′1, such that c1 ⇓θ1pc c′1 and
c′1 �≈ c′2.

Proof (Sketch). By mutual induction on the given derivations, using Lemma 5
for pure reductions and Properties 2 and 4 in cases [Bind, ToLabeled, Unla-
bel, Read], basic properties of the lattice and of the translation function (for
operations on the store).

We �nally instantiate the semantics-preservation theorem with the trans-
lation of the input values and the initial stores at security level pc.

Corollary 1 (Correctness)
Let c2 = 〈Σ, pc, e〉, if c2 ⇓θ c′2, then there exists a �nal λdFG con�guration c′1
such that Jc2K ⇓JθKpc

pc c′1 and c′1 �≈ c′2.

CHAPTER 4. ON THE GRANULARITY OF DYNAMIC IFC 161

Proof. By Property 3 and Theorem 5.
Notice that the �ow-sensitive program counter of the source λdCG program

gets encoded in the security level of the result of the λdFG translated program.
For example, if 〈Σ2, pc, e〉 ⇓θ 〈Σ′2, pc′, v〉 then, by Corollary 1 and unrolling
De�nition 1, there exists a raw value r at security level pc′ and a storeΣ′1, such
that 〈JΣ2K, JeK()〉 ⇓JθKpc

pc 〈Σ′1, rpc
′〉, r �≈pc′ v and Σ′1 �≈ Σ′2.

Recovery of non-interference. Similarly to our presentation of Theorem 4 for
the translation in the opposite direction, we conclude this section with a sanity
check—recovering a proof of termination-insensitive non-interference (TINI)
for λdCG through the program translation de�ned above, semantics preserva-
tion (Corollary 1),λdFG non-interference (Theorem 1), together with a property
that the translation preserves L-equivalence as well (Lemmas 6, 7 and 8). By
reproving non-interference of the source language from the target language,
we show that our program translation is authentic.

The following lemma ensures that the translation of initial con�gurations
preserves L-equivalence.

Lemma 6. If c1 ≈L c2, then Jc1K ≈L Jc2K.

Proof. By induction on the L-equivalence judgment and proving similar
lemmas for values, i.e., if v1 ≈L v2 then Jv1Kpc ≈L Jv2K

pc , for environments,
i.e., if θ1 ≈L θ2 then Jθ1K

pc ≈L Jθ2K
pc , for any label pc, for memories, i.e.,

if M1 ≈L M2 then JM1K ≈L JM2K, and for stores, i.e., if Σ1 ≈L Σ2 then
JΣ1K ≈L JΣ2K.

The following lemmas recovers λdCG L-equivalence from λdFG L-equivalence
using the cross-language equivalence relation for all the syntactic categories.
Lemma 7. For all public program counter labels pc v L, for all λdFG values
v1, v2, raw values r1, r2, environments θ1, θ2, memories M1, M2, stores Σ1, Σ2,
and corresponding λdCG values v′1, v

′
2 and environments θ′1, θ

′
2, memories M ′

1,
M ′

2, stores Σ
′
1, Σ

′
2:

– If v1 ≈L v2, v1 �≈pc v
′
1 and v2 �≈pc v

′
2, then v

′
1 ≈L v

′
2,

– If r1 ≈L r2, r1 �≈pc v
′
1 and r2 �≈pc v

′
2, then v

′
1 ≈L v

′
2,

– If θ1 ≈L θ2, θ1 �≈pc θ
′
1 and θ2 �≈pc θ

′
2, then θ

′
1 ≈L θ

′
2,

– If M1 ≈L M2, M1 �≈ M ′
1 and M2 �≈ M ′

2, then M ′
1 ≈L M ′

2,
– If Σ1 ≈L Σ2, Σ1 �≈ Σ′1 and Σ2 �≈ Σ′2, then Σ′1 ≈L Σ

′
2.

Proof. The lemmas are proved mutually, by induction on the L-equivalence
relation and the cross-language equivalence relations and using injectivity of
the translation function J · K for closure values.21

The next lemma lifts the previous lemma �nal con�gurations.
21 Technically, the function J · K presented in Section 5 is not injective. For example,

consider the type translation function from Figure 14a: JLabeled unitK = L ×
unit = JL × unitK but Labeled unit 6= L × unit, and JLIO unitK =

162 6. RELATED WORK

Lemma 8. Let c1 and c2 be λdFG �nal con�gurations, let c′1 and c′2 be λdCG

�nal con�gurations. If c1 ≈L c2, c1 �≈ c′1 and c2 �≈ c′2, then c′1 ≈L c′2.

Proof. Let c1 = 〈Σ1, v1〉, c2 = 〈Σ2, v2〉, c′1 = 〈Σ′1, pc1, v
′
1〉, c′2 = 〈Σ′2, pc2, v

′
2〉.

From L-equivalence of λdFG �nal con�gurations, it follows L-equivalence for
the stores and the values, i.e., Σ1 ≈L Σ2 and v1 ≈L v2 from c1 ≈L c2 (Sec-
tion 2.2). Similarly, from cross-language equivalence of �nal λdFG and λdCG
con�gurations, it follows cross-language equivalence of their components, i.e.,
respectively Σ1 �≈ Σ′1 and v1 �≈pc1

v′1 from c1 �≈ c2, and Σ2 �≈ Σ′2 and
v2 �≈pc2

v′2 from c2 �≈ c′2 (De�nition 1). First, we show that the λdCG stores
are L-equivalent, i.e., Σ′1 ≈L Σ

′
2 by Lemma 7 for stores, then two cases follow

by case split on v1 ≈L v2. Either (i) both label annotations on the values are
not observable ([ValueH]), then the program counter labels are also not ob-
servable (pc1 6v L and pc2 6v L from v1 �≈pc1

v′1 and v2 �≈pc2
v′2) and

c′1 ≈L c′2 by rule [PcH] or (ii) the label annotations are equal and observable
by the attacker ([ValueL]), i.e., pc1 ≡ pc2 v L, then v′1 ≈L v

′
2 by Lemma 7

for values and c′1 ≈L c′2 by rule [PcL].

Theorem 6 (λdCG-TINI via J · K)
If c1 ⇓θ1 c′1, c2 ⇓θ2 c′2, θ1 ≈L θ2 and c1 ≈L c2, then c′1 ≈L c′2.

Proof. First, we apply the translation J · K : λdCG → λdFG to the initial con-
�gurations c1 and c2 and the respective environments θ1 and θ2. Let pc be
the initial program counter label common to con�gurations c1 and c2 (it is the
same because c1 ≈L c2). Corollary 1 (Correctness) then ensures that there exist
two λdFG con�gurations c′′1 and c′′2 , such that Jc1K ⇓Jθ1Kpc

pc c′′1 and c′′1 �≈ c′1,
and Jc2K ⇓Jθ2Kpc

pc c′′2 and c′′2 �≈ c′2. We then lift L-equivalence of source con�g-
urations and environments to L-equivalence in the target language via Lemma
6, i.e., Jθ1Kpc ≈L Jθ2K

pc and Jc1K ≈L Jc2K, and apply Theorem 1 (λdFG-TINI)
to the reductions i.e., Jc1K ⇓Jθ1Kpc

pc c′′1 and Jc2K ⇓Jθ2Kpc
pc c′′2 , which gives L-

equivalence of the resulting con�gurations, i.e., c′′1 ≈L c′′2 . Then, we apply
Lemma 8 to c′′1 ≈L c′′2 , c′′1 �≈ c′1, and c′′2 �≈ c′2, and recover L-equivalence for
the source con�gurations, i.e., c′1 ≈L c′2.

6 Related work
Systematic study of the relative expressiveness of �ne- and coarse-grained
information �ow control (IFC) systems has started only recently. [120] initiated
this study in the context of static coarse- and �ne-grained IFC, enforced via type

unit → unit = Junit → unitK but LIO unit 6= unit → unit. We make
the translation injective by (i) adding a wrapper type Id τ to λdFG, together with
constructor Id(e), a deconstructor unId(e) and raw value Id(v), and (ii) tagging
security-relevant types and terms with the wrapper, i.e., JLabeled τK = Id (L ×
JτK) and LIO τ = Id unit→ JτK. Adapting the translations in both directions is
tedious but straightforward; we refer the interested reader to our mechanized proofs
for details.

CHAPTER 4. ON THE GRANULARITY OF DYNAMIC IFC 163

systems. In more recent work, [121] show that a �ne-grained IFC type system,
which they call FG, and two variants of a coarse-grained IFC type system,
which they call CG, are equally expressive. Their approach is based on type-
directed translations, which are type- and semantics-preserving. For proofs,
they develop logical relations models of FG and the two variants of CG, as well
as cross-language logical relations. Our work and some of our techniques are
directly inspired by their work, but we examine dynamic IFC systems based
on runtime monitors. As a result, our technical development is completely
di�erent. In particular, in our work we handle label introspection, which has no
counterpart in the earlier work on static IFC systems, and which also requires
signi�cant care in translations. Our dynamic setting also necessitated the use
of tainting operators in both the �ne-grained and the coarse-grained systems.

Our coarse-grained system λdCG is the dynamic analogue of the second
variant of [121]’s CG type system. This variant is described only brie�y in their
paper (in Section 4, paragraph “Original HLIO”) but covered extensively in
Part-II of the paper’s appendix. [121] argue that translating their �ne-grained
system FG to this variant of CG is very di�cult and requires signi�cant use of
parametric label polymorphism. The astute reader may wonder why we do not
encounter the same di�culty in translating our �ne-grained system λdFG to
λdCG. The reason for this is that our �ne-grained system λdFG is not a direct
dynamic analogue of [121]’s FG. In λdFG, a value constructed in a context
with program counter label pc automatically receives the security label pc. In
contrast, in [121]’s FG, all introduction rules create values (statically) labeled
⊥. Hence, leaving aside the static-vs-dynamic di�erence, FG’s labels are more
precise than λdFG’s, and this makes [121]’s FG to CG translation more di�cult
than our λdFG to λdCG translation. In fact, in earlier work, [120] introduced
a di�erent type system called FG−, a static analogue of λdFG that labels all
constructed values with pc (statically), and noted that translating it to the
second variant of CG is much easier (in the static setting).

Coarse-grained dynamic IFC systems are prevalent in security research in
operating systems [39,69,166]. These ideas have also been successfully applied
to other domains, e.g., the web [18,45,69,146], mobile applications [64,101], and
IoT [43]. LIO is a domain-speci�c language embedded in Haskell that rephrases
OS-like IFC enforcement into a language-based setting [141,145]. [55] introduce
a general framework for coarse-grained IFC in any programming language in
which external e�ects can be controlled. Laminar [122] uni�es mechanisms for
IFC in programming languages and operating systems, resulting in a mix of
dynamic �ne- and coarse-grained enforcement.

In general, dynamic �ne-grained IFC systems often do not support label
introspection. LIO [144, 145] and Breeze [59] are notable exceptions. Breeze is
conceptually similar to our λdFG except for the taint(·) primitive. Di�erent
from our λdFG, there are dynamic �ne-grained IFC systems in which labels of
references are �ow-sensitive [7, 8, 22, 51]. This design choice, however, allows
label changes to be exploited as a covert channel for information leaks [7,8,127].

164 7. CONCLUSION

There are many approaches to preventing such leaks—from using static anal-
ysis techniques [128], to disallowing label upgrades depending on sensitive
data (i.e., no-sensitive-upgrades [7,165]), to avoiding branching on data whose
labels have been upgraded (i.e., permissive-upgrades [8]). Extending our re-
sults to a �ne-grained dynamic IFC system with �ow-sensitive references is an
interesting direction for future work.

7 Conclusion
We formally established a connection between dynamic �ne- and coarse-
grained enforcement for IFC, showing that both are equally expressive under
reasonable assumptions. Indeed, this work provides a systematic way to bridg-
ing the gap between a wide range of dynamic IFC techniques often proposed
by the programming languages (�ne-grained) and operating systems (coarse-
grained) communities. As consequence, this allows future designs of dynamic
IFC to choose a coarse-grained approach, which is easier to implement and use,
without giving up on the precision of �ne-grained IFC.

References
1. Thomas H. Austin and Cormac Flanagan. E�cient purely-dynamic information

�ow analysis. In Proceedings of the ACM SIGPLAN FourthWorkshop on Programming
Languages and Analysis for Security, PLAS ’09, pages 113–124, New York, NY, USA,
2009. ACM.

2. Thomas H. Austin and Cormac Flanagan. Permissive dynamic information �ow
analysis. In Proceedings of the 5th ACM SIGPLAN Workshop on Programming Lan-
guages and Analysis for Security, PLAS ’10, pages 3:1–3:12, New York, NY, USA, 2010.
ACM.

3. Gilles Barthe, Tamara Rezk, and Amitabh Basu. Security types preserving compila-
tion. Computer Languages, Systems & Structures, 33(2):35–59, 2007.

4. Lujo Bauer, Shaoying Cai, Limin Jia, Timothy Passaro, Michael Stroucken, and Yuan
Tian. Run-time monitoring and formal analysis of information �ows in Chromium.
In Annual Network & Distributed System Security Symposium. Internet Society, 2015.

5. Abhishek Bichhawat, Vineet Rajani, Deepak Garg, and Christian Hammer. Infor-
mation �ow control in webkit’s javascript bytecode. In Martín Abadi and Steve
Kremer, editors, Principles of Security and Trust, pages 159–178, Berlin, Heidelberg,
2014. Springer Berlin Heidelberg.

6. Niklas Broberg, Bart Delft, and David Sands. Paragon for practical programming
with information-�ow control. In Proceedings of the 11th Asian Symposium on Pro-
gramming Languages and Systems - Volume 8301, pages 217–232, Berlin, Heidelberg,
2013. Springer-Verlag.

7. P. Buiras, D. Vytiniotis, and A. Russo. HLIO: Mixing static and dynamic typing for
information-�ow control in Haskell. In ACM SIGPLAN International Conference on
Functional Programming. ACM, 2015.

8. Pablo Buiras, Deian Stefan, and Alejandro Russo. On dynamic �ow-sensitive
�oating-label systems. In Proceedings of the 2014 IEEE 27th Computer Security
Foundations Symposium, CSF ’14, pages 65–79, Washington, DC, USA, 2014. IEEE
Computer Society.

9. Petros Efstathopoulos, Maxwell Krohn, Steve VanDeBogart, Cli� Frey, David Ziegler,
Eddie Kohler, David Mazières, Frans Kaashoek, and Robert Morris. Labels and

CHAPTER 4. ON THE GRANULARITY OF DYNAMIC IFC 165

event processes in the Asbestos operating system. In ACM Symposium on Operating
Systems Principles, SOSP. ACM, 2005.

10. Matthias Felleisen. On the expressive power of programming languages. Sci. Com-
put. Program., 17(1-3):35–75, December 1991.

11. Earlence Fernandes, Justin Paupore, Amir Rahmati, Daniel Simionato, Mauro Conti,
and Atul Prakash. FlowFence: Practical data protection for emerging IoT application
frameworks. In USENIX Security Symposium, pages 531–548, 2016.

12. Daniel B. Gi�n, Amit Levy, Deian Stefan, David Terei, David Mazières, John
Mitchell, and Alejandro Russo. Hails: Protecting data privacy in untrusted web
applications. In Proc. of the 10th Symposium on Operating Systems Design and Im-
plementation, October 2012.

13. J. A. Goguen and J. Meseguer. Security policies and security models. In 1982 IEEE
Symposium on Security and Privacy, pages 11–11, April 1982.

14. D. Hedin, A. Birgisson, L. Bello, and A. Sabelfeld. JSFlow: Tracking information
�ow in JavaScript and its APIs. In ACM Symposium on Applied Computing. ACM,
2014.

15. Stefan Heule, Deian Stefan, Edward Z. Yang, John C. Mitchell, and Alejandro Russo.
Ifc inside: Retro�tting languages with dynamic information �ow control. In Proceed-
ings of the 4th International Conference on Principles of Security and Trust - Volume
9036, pages 11–31, New York, NY, USA, 2015. Springer-Verlag New York, Inc.

16. C. Hritcu, M. Greenberg, B. Karel, B. C. Peirce, and G. Morrisett. All your IFCexcep-
tion are belong to us. In IEEE Symposium on Security and Privacy. IEEE Computer
Society, 2013.

17. Mauro Jaskelio� and Alejandro Russo. Secure multi-execution in haskell. In Pro-
ceedings of the 8th International Conference on Perspectives of System Informatics,
PSI’11, pages 170–178, Berlin, Heidelberg, 2012. Springer-Verlag.

18. Limin Jia, Jassim Aljuraidan, Elli Fragkaki, Lujo Bauer, Michael Stroucken, Kazuhide
Fukushima, Shinsaku Kiyomoto, and Yutaka Miyake. Run-time enforcement of
information-�ow properties on android. In Computer Security – ESORICS 2013,
pages 775–792, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.

19. Maxwell Krohn, Alexander Yip, Micah Brodsky, Natan Cli�er, M. Frans Kaashoek,
Eddie Kohler, and Robert Morris. Information �ow control for standard OS abstrac-
tions. In ACM SIGOPS Symposium on Operating Systems Principles, SOSP. ACM,
2007.

20. Andrew C. Myers, Lantian Zheng, Steve Zdancewic, Stephen Chong, and Nathaniel
Nystrom. Jif 3.0: Java information �ow, July 2006.

21. Adwait Nadkarni, Benjamin Andow, William Enck, and Somesh Jha. Practical DIFC
enforcement on android. In USENIX Security Symposium, pages 1119–1136, 2016.

22. François Pottier and Vincent Simonet. Information �ow inference for ML. ACM
Trans. Program. Lang. Syst., 25(1):117–158, January 2003.

23. Vineet Rajani, Iulia Bastys, Willard Rafnsson, and Deepak Garg. Type systems
for information �ow control: The question of granularity. ACM SIGLOG News,
4(1):6–21, February 2017.

24. Vineet Rajani and Deepak Garg. Types for Information Flow Control: Labeling
Granularity and Semantic Models. In Proc. of the IEEE Computer Security Foundations
Symp., CSF ’18. IEEE Computer Society, 2018.

25. Indrajit Roy, Donald E. Porter, Michael D. Bond, Kathryn S. McKinley, and Emmett
Witchel. Laminar: Practical �ne-grained decentralized information �ow control. In
ACM SIGPLAN Conference on Programming Language Design and Implementation,
PLDI. ACM, 2009.

166 7. CONCLUSION

26. Alejandro Russo. Functional Pearl: Two Can Keep a Secret, if One of Them Uses
Haskell. In Proceedings of the 20th ACM SIGPLAN International Conference on Func-
tional Programming, ICFP 2015, pages 280–288, New York, NY, USA, 2015. ACM.

27. Alejandro Russo, Koen Claessen, and John Hughes. A library for light-weight
information-�ow security in haskell. In Proceedings of the First ACM SIGPLAN
Symposium on Haskell, Haskell ’08, pages 13–24, New York, NY, USA, 2008. ACM.

28. Alejandro Russo and Andrei Sabelfeld. Dynamic vs. static �ow-sensitive security
analysis. In Proceedings of the 2010 23rd IEEE Computer Security Foundations Sympo-
sium, CSF ’10, pages 186–199, Washington, DC, USA, 2010. IEEE Computer Society.

29. A. Sabelfeld and A. C. Myers. Language-based information-�ow security. IEEE
Journal on Selected Areas in Communications, 21(1):5–19, Jan 2003.

30. Thomas Schmitz, Maximilian Algehed, Cormac Flanagan, and Alejandro Russo.
Faceted secure multi execution. In Proc. of the 2018 ACM SIGSAC Conference on
Computer and Communications Security, CCS ’18, pages 1617–1634, New York, NY,
USA, 2018. ACM.

31. Deian Stefan, Alejandro Russo, Pablo Buiras, Amit Levy, John C. Mitchell, and
David Maziéres. Addressing covert termination and timing channels in concurrent
information �ow systems. In Proceedings of the 17th ACM SIGPLAN International
Conference on Functional Programming, ICFP ’12, pages 201–214, New York, NY,
USA, 2012. ACM.

32. Deian Stefan, Alejandro Russo, David Mazières, and John C. Mitchell. Flexible dy-
namic information �ow control in the presence of exceptions. Journal of Functional
Programming, 27, 2017.

33. Deian Stefan, Alejandro Russo, John C. Mitchell, and David Mazières. Flexible dy-
namic information �ow control in Haskell. In Proceedings of the 4th ACM Symposium
on Haskell, Haskell ’11, pages 95–106, New York, NY, USA, 2011. ACM.

34. Deian Stefan, Edward Z. Yang, Petr Marchenko, Alejandro Russo, Dave Herman,
Brad Karp, and David Mazières. Protecting users by con�ning JavaScript with
COWL. In USENIX Symposium on Operating Systems Design and Implementation.
USENIX Association, 2014.

35. Ta-chung Tsai, Alejandro Russo, and John Hughes. A library for secure multi-
threaded information �ow in haskell. In Proceedings of the 20th IEEE Computer
Security Foundations Symposium, CSF ’07, pages 187–202, Washington, DC, USA,
2007. IEEE Computer Society.

36. Marco Vassena and Alejandro Russo. On formalizing information-�ow control
libraries. In Proceedings of the 2016 ACM Workshop on Programming Languages and
Analysis for Security, PLAS ’16, pages 15–28, New York, NY, USA, 2016. ACM.

37. Dennis Volpano and Geo�rey Smith. Eliminating covert �ows with minimum
typings. In Proceedings of the 10th IEEE Workshop on Computer Security Foundations,
CSFW ’97, pages 156–, Washington, DC, USA, 1997. IEEE Computer Society.

38. Jean Yang, Kuat Yessenov, and Armando Solar-Lezama. A language for automati-
cally enforcing privacy policies. In Proceedings of the 39th Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL ’12, pages 85–96,
New York, NY, USA, 2012. ACM.

39. Stephan Arthur Zdancewic. Programming Languages for Information Security. PhD
thesis, Cornell University, Ithaca, NY, USA, 2002. AAI3063751.

40. Nickolai Zeldovich, Silas Boyd-Wickizer, Eddie Kohler, and David Mazières. Making
information �ow explicit in HiStar. In USENIX Symp. on Operating Systems Design
and Implementation. USENIX, 2006.

CHAPTER 4. ON THE GRANULARITY OF DYNAMIC IFC 167

41. Nickolai Zeldovich, Silas Boyd-Wickizer, and David Mazières. Securing distributed
systems with information �ow control. In Proceedings of the 5th USENIX Symposium
onNetworked Systems Design and Implementation, NSDI’08, pages 293–308, Berkeley,
CA, USA, 2008. USENIX Association.

Paper VI

Based on

Towards Foundations for Parallel Information Flow Control Runtime Systems,

by Marco Vassena, Gary Soeller, Peter Amidon,

Matthew Chan, John Renner and Deian Stefan,

8th International Conference on Principles of Security and Trust.

CHAPTER

FIVE

TOWARDS FOUNDATIONS FOR PARALLEL IFC
RUNTIME SYSTEMS

Abstract. We present the foundations for a new dynamic information
�ow control (IFC) parallel runtime system, LIOPAR. To our knowledge,
LIOPAR is the �rst dynamic language-level IFC system to (1) support
deterministic parallel thread execution and (2) eliminate both internal-
and external-timing covert channels that exploit the runtime system.
Most existing IFC systems are vulnerable to external timing attacks be-
cause they are built atop vanilla runtime systems that do not account for
security—these runtime systems allocate and reclaim shared resources,
e.g., CPU-time and memory, fairly between threads at di�erent secu-
rity levels. While such attacks have largely been ignored—or, at best,
mitigated—we demonstrate that extending IFC systems with parallelism
leads to the internalization of these attacks. Our IFC runtime system
design addresses these concerns by hierarchically managing resources—
both CPU-time and memory—and making resource allocation and recla-
mation explicit at the language-level. We prove that LIOPAR is secure,
i.e., it satis�es timing-sensitive non-interference, even when exposing
clock and heap-statistics APIs.

1 Introduction
Language-level dynamic information �ow control (IFC) is a promising approach
to building secure software systems. With IFC, developers specify application-
speci�c, data-dependent security policies. The language-level IFC system—
often implemented as a library or as part of a language runtime system—then
enforces these policies automatically, by tracking and restricting the �ow of
information throughout the application. In doing so, IFC can ensure that di�er-
ent application components—even when buggy or malicious—cannot violate
data con�dentiality or integrity.

172 1. INTRODUCTION

The key to making language-level IFC practical lies in designing real-world
programming language features and abstractions without giving up on secu-
rity. Unfortunately, many practical language features are at odds with secu-
rity. For example, even exposing language features as simple as if-statements
can expose users to timing attacks [100, 158]. Researchers have made signi�-
cant strides towards addressing these challenges—many IFC systems now sup-
port real-world features and abstractions safely [43, 51, 59, 80, 101, 122, 123, 141,
144, 151, 152, 154, 163, 164]. To the best of our knowledge, though, no existing
language-level dynamic IFC supports parallelism. Yet, many applications rely
on parallel thread execution. For example, modern Web applications typically
handle user requests in parallel, on multiple CPU cores, taking advantage of
modern hardware. Web applications built atop state-of-the-art dynamic IFC
Web frameworks (e.g., Jacqueline [163], Hails [45, 46], and LMonad [106]), un-
fortunately, do not handle user requests in parallel—the language-level IFC
systems that underlie them (e.g., Jeeves [164] and LIO [141]) do not support
parallel thread execution.

In this paper we show that extending most existing IFC systems—even
concurrent IFC systems such as LIO—with parallelism is unsafe. The key insight
is that most IFC systems do not prevent sensitive computations from a�ecting
public computations; they simply prevent public computations from observing
such sensitive e�ects. In the sequential and concurrent setting, such e�ects are
only observable to attackers external to the program and thus outside the scope
of most IFC systems. However, when computations execute in parallel, they
are essentially external to one another and thus do not require an observer
external to the system—they can observe such e�ects internally.

Consider a program consisting of three concurrent threads: two public
threads—p0 and p1—and a secret thread—s0. On a single core, language-level
IFC can ensure that p0 and p1 do not learn anything secret by, for example,
disallowing them from observing the return values (or lack thereof) of the
secret thread. Systems such as LIO are careful to ensure that public threads
cannot learn secrets even indirectly, e.g., via covert channels that abuse the
runtime system scheduler. In contrast, secret threads can leak information to
an external observer that monitors public events (e.g., messages from public
threads) by in�uencing the behavior of the public threads. For example, s0 can
terminate (or not) based on a secret and thus a�ect the amount of time p0 and
p1 spend executing on the CPU—if s0 terminated, the runtime allots the whole
CPU to public threads, otherwise it only allots, say, two thirds of the CPU to the
public threads; this allows an external attacker to trivially infer the secret (e.g.,
by measuring the rate of messages written to a public channel). Unfortunately,
such external timing attacks manifest internally to the program when threads
execute in parallel, on multiple cores. Suppose, for example, that p0 and s0 are
co-located on a core and run in parallel to p1. By terminating early (or not)
based on a secret, s0 a�ects the CPU time allotted to p0, which can be measured
by p1. For example, p1 can count the number of messages sent from p0 on a

CHAPTER 5. PARALLEL IFC RUNTIME SYSTEMS 173

public channel—the number of p0 writes indirectly leaks whether or not s0
terminated.

We demonstrate that such attacks are feasible by building several proof-of-
concept programs that exploit the way the runtime system allocate and reclaim
shared resources to violate LIO’s security guarantees. Then, we design a new
dynamic parallel language-level IFC runtime system called LIOPAR, which
extends LIO to the parallel setting by changing how shared runtime system
resources—namely CPU-time and memory—are managed. Ordinary runtime
systems (e.g., GHC for LIO) fairly balance resources between threads; this
means that allocations or reclamations for secret LIO threads directly a�ect
resources available for public LIO threads. In contrast, LIOPAR makes resource
management explicit and hierarchical. When allocating new resources on behalf
of a thread, the LIOPAR runtime does not “fairly” steal resources from all
threads. Instead, LIOPAR demands that the thread requesting the allocation
explicitly gives up a portion of its own resources. Similarly, the runtime does
not automatically relinquish the resources of a terminated thread—it requires
the parent thread to explicitly reclaim them.

Nevertheless, automatic memory management is an integral component of
modern language runtimes—high-level languages (e.g., Haskell and thus LIO)
are typically garbage collected, relieving developers from manually reclaiming
unused memory. Unfortunately, even if memory is hierarchically partitioned,
some garbage collection (GC) algorithms, such as GHC’s stop-the-world, may
introduce timing covert channels [107]. Inspired by previous work on real-
time GCs (e.g., [6, 13, 23, 54, 104, 114]), we equip LIOPAR with a per-thread,
interruptible garbage collector. This strategy is agnostic to the particular GC
algorithm used: our hierarchical runtime system only demands that the GC
runs within the memory con�nes of individual threads and their time budget.

In sum, this paper makes three contributions:
. We observe that several external timing attacks manifest internally in the

presence of parallelism and demonstrate that LIO, when compiled to run on
multiple cores, is vulnerable to such attacks (§2).
. In response to these attacks, we propose a novel parallel runtime system

design that safely manages shared resources by enforcing explicit and hierar-
chical resource allocation and reclamation (§3). To our knowledge, LIOPAR is
the �rst parallel language-level dynamic IFC runtime system to address both
internal and external timing attacks that abuse the runtime system scheduler,
memory allocator, and GC.
. We formalize the LIOPAR hierarchical runtime system (§4) and prove that

it satis�es timing-sensitive non-interference (§5); we believe that this is the �rst
general purpose dynamic IFC runtime system to provide such strong guaran-
tees in the parallel setting [158].

We remark that neither our attack nor our defense is tied to LIO or GHC—
we focus on LIO because it already supports concurrency. We believe that
extending any existing language-level IFC system with parallelism will pose

174 2. INTERNAL MANIFESTATION OF EXTERNAL TIMING ATTACKS

the same set of challenges—challenges that can be addressed using explicit and
hierarchical resource management. Supplemental materials (detailed formal
de�nitions and proofs) can be found in Appendixes A and B while the source
code for our attacks can be found in Appendix C.

2 Internal Manifestation of External Timing Attacks
In this section we give a brief overview of LIO and discuss the implications of
shared, �nite runtime system resources on security. We demonstrate several
external timing attacks against LIO that abuse two such resources—the thread
scheduler and garbage collector—and show how running LIO threads in parallel
internalizes these attacks.

2.1 Overview of Concurrent LIO

At a high level, the goal of an IFC system is to track and restrict the �ow
of information according to a security policy—almost always a form of non-
interference [48]. Informally, this policy ensures con�dentiality, i.e., secret data
should not leak to public entities, and integrity, i.e., untrusted data should not
a�ect trusted entities.

To this end, LIO tracks the �ow of information at a coarse-granularity, by
associating labels with threads. Implicitly, the thread label classi�es all the
values in its scope and re�ects the sensitivity of the data that it has inspected.
Indeed, LIO “raises” the label of a thread to accommodate for reading yet more
sensitive data. For example, when a public thread reads secret data, its label is
raised to secret—this re�ects the fact that the rest of the thread computation
may depend on sensitive data. Accordingly, LIO uses the thread’s current label
or program counter label to restrict its communication. For example, a secret
thread can only communicate with other secret threads.

In LIO, developers can express programs that manipulate data of varying
sensitivity—for example programs that handle both public and secret data—by
forking multiple threads, at run-time, as necessary. However, naively imple-
menting concurrency in an IFC setting is dangerous: concurrency can amplify
and internalize the termination covert channel [4,149], for example, by allowing
public threads to observe whether or not secret threads terminated. More-
over, concurrency often introduces internal timing covert channels wherein
secret threads leak information by in�uencing the scheduling behavior of pub-
lic threads. Both classes of covert channels are high-bandwidth and easy to
exploit.

Stefan et al. [141] were careful to ensure that LIO does not expose these
termination and timing covert channels internally. LIO ensures that even if
secret threads terminate early, loop forever, or otherwise in�uence the runtime
system scheduler, they cannot leak information to public threads. But, secret
threads do a�ect public threads with those actions and thus expose timing
covert channels externally—public threads just cannot detect it. In particular,
LIO disallows public threads from (1) directly inspecting the return values (and
thus timing and termination behavior) of secret threads, without �rst raising

CHAPTER 5. PARALLEL IFC RUNTIME SYSTEMS 175

their program counter label, and (2) observing runtime system resource usage
(e.g., elapsed time or memory availability) that would indirectly leak secrets.

LIO prevents public threads from measuring CPU-time usage directly—
LIO does not expose a clock API—and indirectly—threads are scheduled fairly
in a round-robin fashion [141]. Similarly, LIO prevents threads from mea-
suring memory usage directly—LIO does not expose APIs for querying heap
statistics—and indirectly, through garbage collection cycles (e.g., induced by
secret threads) [107]—GHC’s stop-the-world GC stops all threads. Like other
IFC systems, the security guarantees of LIO are weaker in practice because
its formal model does not account for the GC and assumes memory to be in�-
nite [141, 144].

2.2 External Timing Attacks to Runtime Systems

Since secret threads can still in�uence public threads by abusing the scheduler
and GC, LIO is vulnerable to external timing and termination attacks, i.e., attacks
that leak information to external observers.To illustrate this, we craft several
LIO programs consisting of two threads: a public thread p that writes to the
external channel observed by the attacker and a secret thread s, which abuses
the runtime to in�uence the throughput of the public thread. The secret thread
can leak in many ways, for example, thread s can:

1. fork bomb, i.e., fork thousands of secret threads that will be interleaved
with p and thus decrease its write throughput;

2. terminate early to relinquish the CPU to p and thus double its write
throughput;

3. exhaust all memory to crash the program, and thus stop p from further
writing to the channel;

4. force a garbage collection which, because of GHC’s stop-the-world GC,
will intermittently stop p from writing to the channel.

These attacks abuse the runtime’s automatic allocation and reclamation of
shared resources, i.e., CPU time and memory. In particular, attack 1 hinges
on the runtime allocating CPU time for the new secret threads, thus reducing
the CPU time allotted to the public thread. Dually, attack 2 relies on it re-
claiming the CPU time of terminated threads—it reassigns it to public threads.
Similarly, attacks 3 and 4 force the runtime to allocate all the available memory
and preemptively reassign CPU time to the GC, respectively.

These attacks are not surprising, but, with the exception of the GC-
based attack [107], they are novel in the IFC context. Moreover these at-
tacks are not exhaustive—there are other ways to exploit the runtime system—
nor optimized—our implementation leaks sensitive data at a rate of roughly
2bits/second1. Nevertheless, they are feasible and—because they abuse the
runtime—they are e�ective against language-level external-timing mitigation

1 A more assiduous attacker could craft similar attacks that leak at higher bit-rates.

176 2. INTERNAL MANIFESTATION OF EXTERNAL TIMING ATTACKS

Core c0 Core c1

Secret Thread (s0) Public Thread (p0) Public Thread (p1)

if secret

then terminate

else forever skip

forever

(write chan p0)

for [1..n]
write chan p1

ws ← read chan

w0 ← count p0 ws
w1 ← count p1 ws
return (w0 < w1)

Fig. 1: In this attack three threads run in parallel, colluding to leak secret secret. The
two public threads write to a public output channel; the relative number of messages
written on the channel by each thread directly leaks the secret (as inferred by p1). To
a�ect the rate that p0 can write, s0 conditionally terminates—which will free up time
on core c0 for p0 to execute.

techniques, including [141,168]. The attacks are also feasible on other systems—
similar attacks that abuse the GC have been demonstrated for both the V8 and
JVM runtimes [107].

2.3 Internalizing External Timing Attacks

LIO, like almost all IFC systems, considers external timing out of scope for its
attacker model. Unfortunately, when we run LIO threads on multiple cores, in
parallel, the allocation and reclamation of resources on behalf of secret threads
is indirectly observable by public threads. Unsurprisingly, some of the above
external timing attacks manifest internally—a thread running on a parallel core
acts as an “external” attacker. To demonstrate the feasibility of such attacks,
we describe two variants of the aforementioned scheduler-based attacks which
leak sensitive information internally to public threads.

Secret threads can leak information by relinquishing CPU time, which the
runtime reclaims and unsafely redistributes to public threads running on the
same core. Our attack program consists of three threads: two public threads—p0
and p1—and a secret thread—s0. Fig. 1 shows the pseudo-code for this attack.
Note that the threads are secure in isolation, but leak the value of secret when
executed in parallel, with a round robin scheduler. In particular, threads p0 and
s0 run concurrently on core c0 using half of the CPU time each, while p1 runs in
parallel alone on core c1 using all the CPU time. Both public threads repeatedly
write their respective thread IDs to a public channel. The secret thread, on the
other hand, loops forever or terminates depending on secret. Intuitively, when
the secret thread terminates, the runtime system redirects its CPU time to p0,
thus both p1 and p0 write at the same rate. In converse, when the secret thread
does not terminate early, p0 is scheduled in a round-robin fashion with s0 on
the same core and can thus only write half as fast as p1. More speci�cally:
. If secret = true, thread s0 terminates and the runtime system assigns

all the CPU time of core c0 to public thread p0, which then writes at the same

CHAPTER 5. PARALLEL IFC RUNTIME SYSTEMS 177

rate as thread p1 on core c1. Then, p0 writes as many times as p1, which then
returns true.
. If secret = false, secret thread s0 loops and public thread p0 shares the

CPU time on core c0 with it. Then, p0 writes messages at roughly half the rate
of thread p1, which writes more often—it has all the CPU time on c1—and thus
returns false.2

Secret LIO threads can also leak information by allocating many secret
threads on a core with public threads—this reduces the CPU-time available
to the public threads. For example, using the same setting with three threads
from before, the secret thread forks a spinning thread on core c1 by replacing
command terminate with command fork (forever skip) c1 in the code of
thread s0 in Fig. 1. Intuitively, if secret is false, then p1 writes more often
than p0 before, otherwise the write rate of p1 decreases—it shares core c1 with
the child thread of s0—and p0 writes as often as p1.

Not all external timing attacks can be internalized, however. In particu-
lar, GHC’s approach to reclaiming memory via a stop-the-world GC simulta-
neously stops all threads on all cores, thus the relative write rate of public
threads remain constant. Interestingly, though, implementing LIO on runtimes
(e.g., Node.js as proposed by Heule et al. [55]) with modern parallel garbage
collectors that do not always stop the world would internalize the GC-based
external timing attacks. Similarly, abusing GHC’s memory allocation to ex-
haust all memory crashes all the program threads and, even though it cannot
be internalized, it still results in information leakage.

3 Secure Parallel Runtime System
To address the external and internal timing attacks, we propose a new dynamic
IFC runtime system design. Fundamentally, today’s runtime systems are vulner-
able because they automatically allocate and reclaim resources that are shared
across threads of varying sensitivity. However, the automatic allocation and
reclamation is not in itself a problem—it is only a problem because the runtime
steals (and grants) resources from (and to) di�erently-labeled threads.

Our runtime system, LIOPAR, explicitly partitions CPU-time and memory
among threads—each thread has a �xed CPU-time and memory budget or quota.
This allows resource management decisions to be made locally, for each thread,
independent of the other threads in the system. For example, the runtime sched-
uler of LIOPAR relies on CPU-time partitioning to ensure that threads always
run for a �xed amount of time, irrespective of the other threads running on the
same core. Similarly, in LIOPAR, the memory allocator and garbage collector
rely on memory partitioning to be able to allocate and collect memory on behalf
of a thread without being in�uenced or otherwise in�uencing other threads in
the system. Furthermore, partitioning resources among threads enables �ne-

2 The attacker needs to empirically �nd parameter n, so that p1 writes roughly twice
as much as thread p0 with half CPU time on core c0.

178 4. HIERARCHICAL CALCULUS

grained control of resources: LIOPAR exposes secure primitives to (i) measure
resource usage (e.g., time and memory) and (ii) elicit garbage collection cycles.

The LIOPAR runtime does not automatically balance resources between
threads. Instead, LIOPAR makes resource management explicit at the language
level. When forking a new thread, for example, LIOPAR demands that the
parent thread give up part of its CPU-time and memory budgets to the children.
Indeed,LIOPAR even manages core ownership or capabilities that allow threads
to fork threads across cores. This approach ensures that allocating new threads
does not indirectly leak any information externally or to other threads. Dually,
the LIOPAR runtime does not re-purpose unused memory or CPU-time, even
when a thread terminates or “dies” abruptly—parent threads must explicitly
kill their children when they wish to reclaim their resources.

To ensure that CPU-time and memory can always be reclaimed, LIOPAR al-
lows threads to kill their children anytime. Unsurprisingly, this feature requires
restricting the LIOPAR �oating-label approach more than that of LIO—LIOPAR

threads cannot raise their current label if they have already forked other threads.
As a result, in LIOPAR threads form a hierarchy—children threads are always
at least as sensitive as their parent—and thus it is secure to expose an API to
allocate and reclaim resources.
Attacks Revisited. LIOPAR enforces security against reclamation-based at-
tacks because secret threads cannot automatically relinquish their resources.
For example, our hierarchical runtime system stops the attack in Fig. 1: even if
secret thread s0 terminates (secret = true), the throughput of public thread
p0 remains constant—LIOPAR does not reassign the CPU time of s0 to p0,
but keeps s0 spinning until it gets killed. Similarly, LIOPAR protects against
allocation-based attacks because secret threads cannot steal resources owned by
other public threads. For example, the fork-bomb variant of the previous attack
fails because LIOPAR aborts command fork (forever skip) c1—thread s0
does not own the core capability c1—and thus the throughput of p1 remains
the same. In order to substantiate these claims, we �rst formalize the design of
the hierarchical runtime system (§4) and establish its security guarantees (§5).
Trust model. This work addresses attacks that exploit runtime system re-
source management—in particular memory and CPU-time. We do not address
attacks that exploit other shared runtime system state (e.g., event loops [155],
lazy evaluation [31, 151]), shared operating system state (e.g., �le system locks
[65], events and I/O [61, 78]), or shared hardware (e.g., caches, buses, pipelines
and hardware threads [44, 108]) Though these are valid concerns, they are
orthogonal and outside the scope of this paper.

4 Hierarchical Calculus
In this section we present the formal semantics of LIOPAR. We model LIOPAR

as a security monitor that executes simply typed λ-calculus terms extended
with LIO security primitives on an abstract machine in the style of Sestoft [135].
The security monitor reduces secure programs and aborts the execution of
leaky programs.

CHAPTER 5. PARALLEL IFC RUNTIME SYSTEMS 179

Label `, pc, cl ∈ L
Cores k ∈ {1 . . κ}, K ∈ P({1 . . κ})
Thread Id n ∈ N, N ∈ P(N)
Stack S ::= [] | C : S

Params. µ ::= (h, cl)
Heap ∆ ∈ Var ⇀ Term
Budgets h, b ∈ N
State s ::= (∆, pc, N | t ,S)

Type τ ::= () | τ1 → τ2 | Bool | L | LIO τ | Labeled τ
| TId | Core | P({1 . . κ}) | N

Value v ::= () | λx .t | True | False | ` | return t | Labeled ` t °
| n | k | K

Term t ::= v | x | t1 t2 | if t1 then t2 else t3 | t1 >>= t2 | label t1 t2
| unlabel t | fork t1 t2 t3 t4 t5 | spawn t1 t2 t3 t4 t5 | kill t
| size | time | wait t | send t1 t2 | receive

CTerm t ° ::= t such that fv(t) = ∅
Cont. C ::= x | then t2 else t3 | >>=t2 | label t | unlabel

| fork t1 t2 t3 t4 | spawn t1 t2 t3 t4 | kill | send t

(App1)
|∆| < µ.h fresh(x)

(∆, pc, N | t1 t2,S) ;µ (∆[x 7→ t2], pc, N | t1, x : S)

(App2)
(∆, pc, N |λy .t , x : S) ;µ (∆, pc, N | t [x / y],S)

(Var)
x 7→ t ∈ ∆

(∆, pc, N | x ,S) ;µ (∆, pc, N | t ,S)

(Bind1)
(∆, pc, N | t1 >>= t2,S) ;µ (∆, pc, N | t1, >>=t2 : S)

(Bind2)
(∆, pc, N | return t1, >>=t2 : S) ;µ (∆, pc, N | t2 t1,S)

(Label1)
(∆, pc, N | label t1 t2,S) ;µ (∆, pc, N | t1, label t2 : S)

(Label2)
pc v ` v µ.cl t ° = ∆∗(t)

(∆, pc, N | `, label t : S) ;µ (∆, pc, N | return (Labeled ` t °),S)

(Unlabel1)
(∆, pc, N | unlabel t ,S) ;µ (∆, pc, N | t , unlabel : S)

(Unlabel2)
pc t ` v µ.cl

(∆, pc, N | Labeled ` t , unlabel : S) ;µ (∆, pc t `,N | return t ,S)

Fig. 2: Syntax and semantics of sequential LIOPAR.

180 4. HIERARCHICAL CALCULUS

Semantics. The state of the monitor, written (∆, pc, N | t ,S), stores the state
of a thread under execution and consists of a heap ∆ that maps variables to
terms, the thread’s program counter label pc, the set N containing the identi-
�ers of the thread’s children, the term currently under reduction t and a stack of
continuations S . Fig. 2 shows the interesting rules of the sequential small-step
operational semantics of the security monitor. The notation s ;µ s ′ denotes
a transition of the machine in state s that reduces to state s ′ in one step with
thread parameters µ = (h, cl).3 Since we are interested in modeling a system
with �nite resources, we parameterize the transition with the maximum heap
size h ∈ N. Additionally, the clearance label cl represents an upper bound
over the sensitivity of the thread’s �oating counter label pc. Rule [App1] begins
a function application. Since our calculus is call-by-need, the function argu-
ment is saved as a thunk (i.e., an unevaluated expression) on the heap at fresh
location x and the indirection is pushed on the stack for future lookups.4

Note that the rule allocates memory on the heap, thus the premise |∆| < h
forbids a heap over�ow, where the notation |∆| denotes the size of the heap ∆,
i.e., the number of bindings that it contains.5 To avoid over�ows, a thread can
measure the size of its own heap via primitive size (§4.2). If t1 evaluates to a
function, e.g., λy .t , rule [App2] starts evaluating the body, in which the bound
variable y is substituted with the heap-allocated argument x , i.e., t [x / y].
When the evaluation of the function body requires the value of the argument,
variable x is looked up in the heap (rule [Var]). In the next paragraph we
present the rules of the basic security primitives. The other sequential rules
are available in Appendix A.
Security Primitives. A labeled value Labeled ` t ° of type Labeled τ consists
of term t of type τ and a label `, which re�ects the sensitivity of the content.6
The annotation t ° denotes that term t is closed and does not contain any free
variable, i.e., fv(t) = ∅. We restrict the syntax of labeled values with closed
terms for security reasons. Intuitively, MAC allocates free variables inside a se-
cret labeled values on the heap, which then leaks information to public threads
with its size. For example, a public thread could distinguish between two secret
values, e.g., Labeled H x with heap ∆ = [x 7→ 42], and Labeled H 0 with
heap ∆ = ∅, by measuring the size of the heap. To avoid that, labeled values
are closed and the size of the heap of a thread at a certain security level, is not
a�ected by data labeled at di�erent security levels. A term of type LIO τ is a
secure computation that performs side e�ects and returns a result of type τ . Se-
cure computations are structured using standard monadic constructs return t ,

3 We use record notation, i.e., µ.h and µ.cl , to access the components of µ.
4 The calculus does not feature lazy evaluation. Sharing introduces the lazy covert

channel, which has already been considered in previous work [151].
5 To simplify reasoning, our generic memory model is basic and just counts the num-

ber of bindings in the heap. It would be possible to replicate our results with more
accurate memory models, e.g., GHC’s tagless G-machine (STG) [109] (the basis for
GHC’s runtime [88]), but that would complicate the formalism.

6 The typing rules are standard and omitted.

CHAPTER 5. PARALLEL IFC RUNTIME SYSTEMS 181

which embeds term t in the monad, and bind, written t1 >>= t2, which sequen-
tially composes two monadic actions, the second of which takes the result of
the �rst as an argument. Rule [Bind1] deconstructs a computation t1 >>= t2
into term t1 to be reduced �rst and pushes on the stack the continuation >>=t2
to be invoked after term t1. 7

Then, the second rule [Bind2] pops the topmost continuation placed on
the stack (i.e., >>=t2) and evaluates it with the result of the �rst computation
(i.e., t2 t1), which is considered complete when it evaluates to a monadic value,
i.e., to syntactic form return t1. The runtime monitor secures the interaction
between computations and labeled values. In particular, secure computations
can construct and inspect labeled values exclusively with monadic primitives
label and unlabel respectively. Rules [Label1] and [Unlabel1] are straightfor-
ward and follow the pattern seen in the other rules. Rule [Label2] generates
a labeled value at security level `, subject to the constraint pc v ` v cl ,
which prevents a computation from labeling values below the program counter
label pc or above the clearance label cl .8 The rule computes the closure of the
content, i.e., closed term t °, by recursively substituting every free variable in
term t with its value in the heap, written ∆∗(t). Rule [Unlabel2] extracts the
content of a labeled value and taints the program counter label with its label,
i.e., it rises it to pc t `, to re�ect the sensitivity of the data that is now in
scope. The premise pc t ` v cl ensures that the program counter label
does not �oat over the clearance cl . Thus, the run-time monitor prevents the
program counter label from �oating above the clearance label (i.e., pc v cl
always holds).

The calculus also includes concurrent primitives to allocate resources when
forking threads (fork and spawn in §4.1), reclaim resources and measure re-
source usage (kill , size , and time in §4.2), threads synchronization and com-
munication (wait , send and receive in Appendix A).

4.1 Core Scheduler

In this section, we extend LIOPAR with concurrency, which enables (i) inter-
leaved execution of threads on a single core and (ii) simultaneous execution
on κ cores. To protect against attacks that exploit the automatic management
of shared �nite resource (e.g., those in §2.3), LIOPAR maintains a resource
budget for each running thread and updates it as threads allocate and reclaim
resources. Since κ threads execute at the same time, those changes must be
coordinated in order to preserve the consistency of the resource budgets and
guarantee deterministic parallelism. For this reason, the hierarchical runtime
system is split in two components: (i) the core scheduler, which executes threads
on a single core, ensures that they respect their resource budgets and performs
security checks, and (ii) the top-level parallel scheduler, which synchronizes the

7 Even though the stack size is unbounded in this model, we could account for its
memory usage by explicitly allocating it on the heap, in the style of Yang et al. [162].

8 The labels form a security lattice (L ,t,v).

182 4. HIERARCHICAL CALCULUS

Thread Map T ∈ TId ⇀ State
Time Map B ∈ TId ⇀ N
Size Map H ∈ TId ⇀ N
Core Map θ ∈ TId ⇀ P({1 . . κ})
Clock ω ∈ N

Global State Σ ::= (T,B,H , θ, ω)

Core Queue Q ::= 〈nb〉 | 〈Q1 | Q2〉
Event e ::= ε | fork(∆,n, t , b, h)

| spawn(∆,n, t ,K)
| kill(n) | send(n, t)

(Step)
Σ.T (n) = s µ = (Σ .H (n),n.cl) s ;µ s ′

Q [〈n1+b〉] (n,s′,ε)−−−−−→Σ Q [〈nb〉]

(Fork)
Σ.T (n) = (∆, pc, N | b2, fork `L `H h2 t : S)

pc v `L n ′ ← freshTId(`L, `H,n.k)
s = (∆, pc, {n ′} ∪N | return n ′,S) ∆′ = {x 7→ ∆(x) | x ∈ fv∗(t ,∆)}

Σ .H (n) = h1 + h2 |∆| 6 h1 |∆′| 6 h2

Q [〈n1+b1+b2〉] (n,s,fork(∆′,n′,t,b2,h2))−−−−−−−−−−−−−−−−→Σ Q [〈〈nb1〉|〈n ′b2〉〉]

(Spawn)
Σ.T (n) = (∆, pc, N | k , spawn `L `H K1 t : S)

Σ.θ(n) = {k } ∪K1 ∪K2 pc v `L n ′ ← freshTId(`L, `H, k)
s = (∆, pc, {n ′} ∪N | return n ′,S) ∆′ = {x 7→ ∆(x) | x ∈ fv∗(t ,∆)}

Q [〈n1+b〉] (n,s,spawn(∆′,n′,t,K1))−−−−−−−−−−−−−−−−→Σ Q [〈nb〉]

(Stuck)
Σ.T (n) = s MaxHeapSize(s,Σ .H (n)) ∨UnlabelStuck(n, Σ.T) ∨
ForkStuck(n,Σ .H , Σ.T) ∨ SpawnStuck(s, θ(n)) ∨ValueStuck(s) ∨

WaitStuck(n, T) ∨ ReceiveStuck(s) ∨KillStuck(s)

Q [〈n1+b〉] (n,s,ε)−−−−→Σ Q [〈nb〉]

(ContextSwitch)
s◦ = ([],⊥,∅ | return (), [])

Q [〈n0〉] (◦,s◦,ε)−−−−−→Σ Q [〈nΣ.B(n1)
1 〉, ..., 〈nΣ.B(n|Q|)

|Q| 〉]

Fig. 3: Concurrent LIOPAR.

execution on multiple cores and reassigns resources by updating the resource
budgets according to the instructions of the core schedulers. We now introduce
the core scheduler and describe the top-level parallel scheduler in §4.3.
Syntax. Fig. 3 presents the core scheduler, which has access to the global
state Σ = (T,B,H , θ, ω), consisting of a thread pool map T , which maps
a thread id to the corresponding thread’s current state, the time budget map
B, a memory budget map H , core capabilities map θ, and the global clock ω.
Using these maps, the core scheduler ensures that thread n : (i) performs B(n)

CHAPTER 5. PARALLEL IFC RUNTIME SYSTEMS 183

uninterrupted steps until the next thread takes over, (ii) does not grow its heap
above its maximum heap size H (n), and (iii) has exclusive access to the free
core capabilities θ(n). Furthermore, each thread id n records the initial current
label when the thread was created (n.pc), its clearance (n.cl), and the core
where it runs (n.k), so that the runtime system can enforce security. Notice
that thread ids are opaque to threads—they cannot forge them nor access their
�elds.
Hierarchical Scheduling. The core scheduler performs deterministic and hi-
erarchical scheduling—threads lower in the hierarchy are scheduled �rst, i.e.,
parent threads are scheduled before their children. The scheduler manages a
core run queue Q , which is structured as a binary tree with leaves storing
thread ids and residual time budgets. The notation nb indicates that thread n
can run for b more steps before the next thread runs. When a new thread is
spawned, the scheduler creates a subtree with the parent thread on the left and
the child on the right. The scheduler can therefore �nd the thread with the
highest priority by following the left spine of the tree and backtracking to the
right if a thread has no residual budget.9 We write Q [〈nb〉] to mean the �rst
thread encountered via this traversal is n with budget b. As a result, given the
slice Q [〈n1+b〉], thread n is the next thread to run, and Q [〈n0〉] occurs only if
all threads in the queue have zero residual budget. We overload this notation
to represent tree updates: a rule Q [〈n1+b〉] → Q [〈nb〉] �nds the next thread
to run in queue Q and decreases its budget by one.
Semantics. Fig. 3 formally de�nes the transition Q

(n,s,e)−−−−→Σ Q ′, which
represents an execution step of the core scheduler that schedules thread n in
core queue Q , executes it with global state Σ = (T,B,H , θ, ω) and updates
the queue to Q ′. Additionally, the core scheduler informs the parallel scheduler
of the �nal state s of the thread and requests on its behalf to update the global
state by means of event message e . In rule [Step], the scheduler retrieves the
next thread in the schedule, i.e., Q [〈n1+b〉] and its state in the thread pool
from the global state, i.e., Σ.T (n) = s. Then, it executes the thread for one
sequential step with its memory budget and clearance, i.e., s ;µ s ′ with
µ = (Σ .H (n),n.cl), sends the empty event ε to the parallel scheduler, and
decrements the thread’s residual budget in the �nal queue, i.e., Q [〈nb〉]. In
rule [Fork], thread n creates a new thread t with initial label `L and clearance
`H, such that `L v `H and pc v `L. The child thread runs on the same
core of the parent thread, i.e., n.k , with fresh id n ′, which is then added to
the set of children, i.e., {n ′} ∪N . Since parent and child threads do not share
memory, the core scheduler must copy the portion of the parent’s private heap
reachable by the child’s thread, i.e., ∆′; we do this by copying the bindings

9 This procedure might reintroduce a timing channel that leaks the number of threads
running on the core. In practice, techniques from real time schedulers could be used
to protect against such timing channels. The model of LIOPAR does not capture the
execution time of the runtime system itself and thus this issue does not arise in the
security proofs.

184 4. HIERARCHICAL CALCULUS

of the variables that are transitively reachable from t , i.e., fv∗(t , ∆), from the
parent’s heap ∆. The parent thread gives h2 of its memory budget Σ .H (n) to
its child. The conditions |∆| 6 h1 and |∆′| 6 h2, ensure that the heaps do not
over�ow their new budgets. Similarly, the core scheduler splits the residual time
budget of the parent into b1 and b2 and informs the parallel scheduler about
the new thread and its resources with event fork(∆′,n ′, t , b2, h2), and lastly
updates the tree Q by replacing the leaf 〈n1+b1+b2〉 with the two-leaves tree
〈〈nb1〉|〈n ′b2〉〉, so that the child thread will be scheduled immediately after
the parent has consumed its remaining budget b1, as explained above. Rule
[Spawn] is similar to [Fork], but consumes core capability resources instead of
time and memory. In this case, the core scheduler checks that the parent thread
owns the core where the child is scheduled and the core capabilities assigned
to the child, i.e., θ(n) = {k } ∪ K1 ∪ K2 for some set K2, and informs the
parallel scheduler with event spawn(∆′,n ′, t ,K1). Rule [Stuck] performs
busy waiting by consuming the time budget of the scheduled thread, when it is
stuck and cannot make any progress—the premises of the rule enumerate the
conditions under which this can occur (see Fig. 7 in Appendix A for details).
Lastly, in rule [ContextSwitch] all the threads scheduled in the core queue
have consumed their time budget, i.e., Q [〈n0〉] and the core scheduler resets
their residual budget using the budget map Σ.B. In the rule, the notation
Q [〈nb

i 〉] selects the i-th leaf, where i ∈ {1 . . |Q |} and |Q | denotes the
number of leaves of tree Q and symbol ◦ denotes the thread identi�er of the
core scheduler, which updates a dummy thread that simply spins during a
context-switch or whenever the core is unused.

4.2 Resource Reclamation and Observations

The calculus presented so far enables threads to manage their time, memory
and core capabilities hierarchically, but does not provide any primitive to re-
claim their resources. This section recti�es this by introducing (i) a primitive
to kill a thread and return its resources back to the owner and (ii) a primitive to
elicit a garbage collection cycle and reclaim unused memory. Furthermore, we
demonstrate that the runtime system presented in this paper is robust against
timing attacks by exposing a timer API allowing threads to access a global
clock.10 Intuitively, it is secure to expose this feature because LIOPAR ensures
that the time spent executing high threads is �xed in advanced, so timing
measurements of low threads remain una�ected. Lastly, since memory is hi-
erarchically partitioned, each thread can securely query the current size of its
private heap, enabling �ne-grained control over the garbage collector.
Kill. A parent thread can reclaim the resources given to its child thread n ′, by
executing kill n ′. If the child thread has itself forked or spawned other threads,
they are transitively killed and their resources returned to the parent thread.

10 An external attacker can take timing measurements using network communications.
An attacker equipped with an internal clock is equally powerful but simpler to for-
malize [107].

CHAPTER 5. PARALLEL IFC RUNTIME SYSTEMS 185

(Kill2)
Σ.T (n) = (∆, pc, {n ′} ∪N | n ′, kill : S) s = (∆, pc, N | return (),S)

Q [〈n1+b〉] (n,s,kill(n′))−−−−−−−−→Σ Q [〈nb〉]

(Unlabel2)
pc t ` v µ.cl ∀ n ∈ N . pc t ` v n.pc

(∆, pc, N | Labeled ` t , unlabel : S) ;µ (∆, pc t `,N | return t ,S)

(GC)
R = fv∗(t ,∆) ∪ fv∗(S ,∆) ∆′ = {x 7→ ∆(x) | x ∈ R}

〈∆, pc, N | gc t ,S〉;µ 〈∆′, pc, N | t ,S〉

(App-GC)
|∆| ≡ µ.h

〈∆, pc, N | t1 t2,S〉;µ 〈∆, pc, N | gc (t1 t2),S〉

(Size)
〈∆, pc, N | size,S〉;µ 〈∆, pc, N | return |∆|,S〉

(Time)
Σ.T (n) = (∆, pc, N | time,S) s = (∆, pc, N | return Σ.ω,S)

Q [〈n1+b〉] (n,s,ε)−−−−→Σ Q [〈nb〉]

Fig. 4: LIOPAR with resource reclamation and observation primitives.

The concurrent rule [Kill2] in Fig. 4 initiates this process, which is completed
by the parallel scheduler via event kill(n ′). Note that the rule applies only
when the thread killed is a direct child of the parent thread—that is when the
parent’s children set has shape {n ′}∪N for some setN . Now that threads can
unrestrictedly reclaim resources by killing their children, we must revise the
primitive unlabel , since the naive combination of kill and unlabel can result in
information leakage. This will happen if a public thread forks another public
thread, then reads a secret value (raising its label to secret), and based on that
decides to kill the child. To close the leak, we modify the rule [Unlabel2] by
adding the highlighted premise, causing the primitive unlabel to fail whenever
the parent thread’s label would �oat above the initial current label of one of
its children.
Garbage Collection. Rule [GC] extends LIOPAR with a time-sensitive hier-
archical garbage collector via the primitive gc t . The rule elicits a garbage
collection cycle which drops entries that are no longer needed from the heap,
and then evaluates t . The sub-heap ∆′ includes the portion of the current
heap that is (transitively) reachable from the free variables in scope (i.e., those
present in the term, fv∗(t , ∆) or on the stack fv∗(S , ∆)). After collection, the

186 4. HIERARCHICAL CALCULUS

thread resumes and evaluates term t under compacted private heap ∆′.11 In
rule [App-GC], a collection is automatically triggered when the thread’s next
memory allocation would over�ow the heap.
Resource Observations. All threads in the system share a global �ne-grained
clock ω, which is incremented by the parallel scheduler at each cycle (see be-
low). Rule [Time] gives all threads unrestricted access to the clock via monadic
primitive time .

4.3 Parallel Scheduler

This section extends LIOPAR with deterministic parallelism, which allows to
execute κ threads simultaneously on as many cores. To this end, we introduce
the top-level parallel scheduler, which coordinates simultaneous changes to
the global state by updating the resource budgets of the threads in response
core events (e.g., fork, spawn, and kill) and ticks the global clock.
Semantics. Fig. 5 formalizes the operational semantics of the parallel sched-
uler, which reduces a con�guration c = 〈Σ,Φ〉 consisting of global state Σ
and core map Φ mapping each core to its run queue, to con�guration c′ in
one step, written c ↪→ c′, through rule [Parallel] only. The rule executes the
threads scheduled on each of the κ cores, which all step at once according to
the concurrent semantics presented in §4.1–4.2, with the same current global
state Σ. Since the execution of each thread can change Σ concurrently, the top-
level parallel scheduler reconciles those actions by updatingΣ sequentially and
deterministically.12 First, the scheduler updates the thread pool map T and core
map Φ with the �nal state obtained by running each thread in isolation, i.e.,
T ′ = Σ.T [ni 7→ si] and Φ′ = Φ[i 7→ Qi] for i ∈ {1 . . κ}. Then, it collects
all concurrent events generated by the κ threads together with their thread id,
sorts the events according to type, i.e., sort [(n1, e1), ..., (nκ, eκ)], and com-
putes the updated con�guration by processing the events in sequence.13 In
particular, new threads are created �rst (event spawn(·) and fork(·)), and
then killed (event kill(·))—the ordering between events of the same type is
arbitrary and assumed to be �xed. Trivial events (ε) do not a�ect the con�g-
uration and thus their ordering is irrelevant. The function 〈〈es〉〉c computes a
�nal con�guration by processing a list of events in order, accumulating con�g-
uration updates (next(·) updates the current con�guration by one event-step):
〈〈(n, e) : es〉〉c = 〈〈es〉〉next(n,e,c). When no more events need processing, the
con�guration is returned 〈〈[]〉〉c = c.

11 In practice a garbage collection cycle takes time that is proportional to the size of
the memory used by the thread. That does not hinder security as long as the garbage
collector runs on the thread’s time budget.

12 Non-deterministic updates would make the model vulnerable to re�nement attacks
[90].

13 Since the clock only needs to be incremented, we could have left it out from the
con�guration c = 〈T ′, B,H , θ, Σ.ω + 1, Φ′〉; function 〈〈es〉〉c does not use nor
change its value.

CHAPTER 5. PARALLEL IFC RUNTIME SYSTEMS 187

Queue Map Φ ∈ {1 . . κ} → Queue Con�guration c ::= 〈T,B,H , θ, ω, Φ〉

(Parallel)
∀ i ∈ {1 . . κ}.Φ(i) (ni,si,ei)−−−−−−→Σ Qi

T ′ = Σ.T [ni 7→ si] Φ′ = Φ[i 7→ Qi]
c = 〈T ′, B,H , θ, Σ.ω + 1, Φ′〉 〈Σ′, Φ′′〉 = 〈〈sort [(n1, e1), ..., (nκ, eκ)]〉〉c

〈Σ,Φ〉 ↪→ 〈Σ′, Φ′′〉

next(, ε, c) = c

next(n1, fork(∆,n2, t , b, h), c)
= 〈T ′,B ′[n2 7→ b],H ′[n2 7→ h], θ′, ω, Φ〉
where 〈T,B,H , θ, ω, Φ〉 = c

s = (∆,n2.pc,∅ | t , [])
T ′ = T [n2 7→ s]
B ′ = B[n1 7→ B(n1)− b]
H ′ = H [n1 7→ H (n1)− h]
θ′ = θ[n2 7→ ∅]

next(n1, spawn(∆,n2, t ,K), c)
= 〈T ′,B ′,H ′, θ′[n2 7→ K], ω, Φ′〉
where 〈T,B,H , θ, ω, Φ〉 = c

s = (∆,n2.pc,∅ | t , [])
T ′ = T [n2 7→ s]
B ′ = B[n2 7→ B0]
H ′ = H [n2 7→ H0]
θ′ = θ[n1 7→ θ(n1) \ {n2.k } ∪K]

Φ′ = Φ[n2.k 7→ 〈nB0
2 〉]

next(n,kill(n ′), 〈T,B,H , θ, ω, Φ〉)
| n 6∈ Dom(T) = 〈T,B,H , θ, ω, Φ〉
| n ∈ Dom(T) = 〈T \N,B ′ \N,H ′ \N, θ′ \N,ω, Φ′〉
where N = J{n ′}KT

B ′ = B[n 7→ B(n) +
∑
i ∈ N,i.k=n.k B(i)]

H ′ = H [n 7→ H (n) +
∑
i ∈ N,i.k=n.k H (i)]

K1 =
⋃
i ∈ N θ(i)

K2 = {i.k | i ∈ N, i.k 6= n.k }
θ′ = θ[n 7→ θ(n) ∪K1 ∪K2]
Φ′ = λk .Φ[k 7→ Φ(k) \N]

Fig. 5: Top-level parallel scheduler.

188 5. SECURITY GUARANTEES

Event Processing. Fig. 5 de�nes the function next(n, e, c), which updates the
current con�guration c according to event e from thread n . The empty event ε
is trivial and leaves the state unchanged. Event (n1, fork(∆,n2, t , b, h)) indi-
cates that thread n1 forks thread t with identi�er n2, sub-heap ∆, time budget
b and maximum heap size h. The scheduler deducts these resources from the
parent’s budgets, i.e., B ′ = B[n1 7→ B(n1)−b] and H ′ = H [n1 7→ H (n1)−h]
and assigns them to the child, i.e., B ′[n2 7→ b] and H ′[n2 7→ h].14 The new child
shares the core with the parent—it has no core capabilities i.e., θ′ = θ[n2 7→ ∅]—
and so the core map is left unchanged. Lastly, the scheduler adds the child to
the thread pool and initializes its state, i.e., T [n2 7→ (∆,n2.`L,∅ | t , [])]. The
scheduler handles event (n1, spawn(∆,n2, t ,K)) similarly. The new thread t
gets scheduled on core n2.k , i.e., Φ[n2.k 7→ 〈nB0

2 〉], where the thread takes all
the time and memory resources of the core, i.e.,B[n2 7→ B0] and H [n2 7→ H0],
and extra core capabilities K , i.e., θ′[n2 7→ K]. For simplicity, we assume that
all cores execute B0 steps per-cycle and feature a memory of size H0. Event
(n,kill(n ′)) informs the scheduler that thread n wishes to kill thread n ′. The
scheduler leaves the global state unchanged if the parent thread has already
been killed by the time this event is handled, i.e., when the guard n 6∈ Dom(T)
is true—the resources of the child n ′ will have been reclaimed by another an-
cestor. Otherwise, the scheduler collects the identi�ers of the descendants of
n ′ that are alive (N = J{n ′}KT)—they must be killed (and reclaimed) transi-
tively. The setN is computed recursively by JNKT , using the thread pool T , i.e.,
J∅KT = ∅, J{n }KT = {n }∪ JT (n).NKT and JN1 ∪N2KT = JN1KT ∪ JN2KT .
The scheduler then increases the time and memory budget of the parent with
the sum of the budget of all its descendants scheduled on the same core,
i.e.,

∑
i ∈ N,i.k=n.k B(i) (resp.

∑
i ∈ N,i.k=n.k H (i))—descendants running on

other cores do not share those resources. The scheduler reassigns to the parent
thread their core capabilities, which are split between capabilities explicitly
assigned but not in use, i.e.,

⋃
i ∈ N θ(i) and core capabilities assigned and in

use by running threads, i.e., {i.k | i ∈ N, i.k 6= n.k }. Lastly, the scheduler
removes the killed threads from each core, written Φ(i) \ N , by pruning the
leaves containing killed threads and reassigning their leftover time budget to
their parent, see Appendix A.2 for details.

5 Security Guarantees
In this section we show that LIOPAR satis�es a strong security condition that
ensures timing-agreement of threads and rules out timing covert channels. In
§5.1, we describe our proof technique based on term erasure, which has been
used to verify security guarantees of functional programming languages [76],
IFC libraries [30,55,141,145,153]), and an IFC runtime system [151]. In §5.2, we
formally prove security, i.e., timing-sensitive noninterference, a strong form of
noninterference [48], inspired by Volpano and Smith [158]—to our knowledge,
it is considered here for the �rst time in the context of parallel runtime systems.

14 Notice that |∆| < h by rule [Fork].

CHAPTER 5. PARALLEL IFC RUNTIME SYSTEMS 189

Works that do not address external timing channels [151, 154] normally prove
progress-sensitive noninterference, wherein the number of execution steps of a
program may di�er in two runs based on a secret. This condition is insu�cient
in the parallel setting: both public and secret threads may step simultaneously
on di�erent cores and any di�erence in the number of execution steps would
introduce external and internal timing attacks. Similar to previous works on
secure multi-threaded systems [84,129], we establish a strong low-bisimulation
property of the parallel scheduler, which guarantees that con�gurations that
are indistinguishable to the attacker remain such and execute in lock-step.
Theorem 1 and Corollary 1 use this property to ensure that any two related
parallel programs execute in exactly the same number of steps.

5.1 Erasure Function

The term erasure technique relies on an erasure function, written εL(·), which
rewrites secret data above the attacker’s level L to special term •, in all the
syntactic categories: values, terms, heaps, stacks, global states and con�gura-
tions.15 Once the erasure function is de�ned, the core of the proof technique
consists of proving an essential commutativity relationship between the erasure
function and reduction steps: given a step c ↪→ c′, there must exist a reduction
that simulates the original reduction between the erased con�gurations, i.e.,
εL(c) ↪→ εL(c

′). Intuitively, if the con�guration c leaked secret data while step-
ping to c′, that data would be classi�ed as public in c′ and thus would remain in
εL(c

′)— but such secret data would be erased by εL(c) and the property would
not hold. The erasure function leaves ground values, e.g., (), unchanged and
on most terms it acts homomorphically, e.g., εL(t1 t2) = εL(t1) εL(t2). The
interesting cases are for labeled values, thread con�gurations, and resource
maps. The erasure function removes the content of secret labeled values, i.e.,
εL(Labeled H t °) = Labeled H •, and erases the content recursively other-
wise, i.e., εL(Labeled L t °) = Labeled L εL(t)°. The state of a thread is erased
per-component, homomorphically if the program counter label is public, i.e.,
εL(∆,L, N, | t ,S) = (εL(∆),L, N | εL(t), εL(S)), and in full otherwise, i.e.,
εL(∆,H , N, | t ,S) = (•, •, • | •, •). We give the full de�nition in Appendix B.
Resource Erasure. Resources must also be appropriately erased in order to
satisfy the simulation property, as LIOPAR manages resources explicitly. The
erasure function should preserve information about the resources (e.g., time,
memory, and core capabilities) of public threads, since the attacker can explicitly
assign resources (e.g., with fork and swap) and measure them (e.g., with size).
But what about the resources of secret threads? One might think that such
information is secret and thus it should be erased—intuitively, a thread might
decide to assign, say, half of its time budget to its secret child depending on
secret information. However, public threads can also assign (public) resources
to a secret thread when forking: even though these resources currently belong

15 For ease of exposition, we use the two-point lattices {L,H }, where H 6v L is the
only disallowed �ow. Neither our proofs nor our model rely on this particular lattice.

190 5. SECURITY GUARANTEES

to the secret child, they are temporary—the public parent might reclaim them
later. Thus, we cannot associate the sensitivity of the resources of a thread
with its program counter label when resources are managed hierarchically, as
in LIOPAR. Instead, we associate the security level of the resources of a secret
thread with the sensitivity of its parent: the resources of a secret thread are
public information whenever the program counter label of the parent is public
and secret information otherwise. Furthermore, since resource reclamation is
transitive, the erasure function cannot discard secret resources, but must rather
redistribute them to the hierarchically closest set of public resources, as when
killing them.
Time Budget. First, we project the identi�ers of public threads from the thread
pool T : DomL(T) = {nL | n ∈ Dom(T) ∧ T (n).pc ≡ L}, where
notation nL indicates that the program counter label of thread n is public.
Then, the set P =

⋃
n ∈ DomL(T){n } ∪ T (n).N contains the identi�ers of all

the public threads and their immediate children.16 The resources of threads
n ∈ P are public information. However, the program counter label of a
thread n ∈ P is not necessarily public, as explained previously. Hence P
can be disjointly partitioned by program counter label: P = PL ∪ PH , where
PL = {nL | n ∈ P } and PH = {nH | n ∈ P }. Erasure of the
budget map then proceeds on this partition, leaving the budget of the public
threads untouched, and summing the budget of their secret children threads
to the budgets of their descendants, which are instead omitted. In symbols,
εL(B) = BL ∪ BH , where BL = {nL 7→ B(nL) | nL ∈ PL} and
BH = {nH 7→ B(nH) +

∑
i ∈ J{nH }KT B(i) | nH ∈ PH }.

Queue Erasure. The erasure of core queues follows the same intuition, pre-
serving public and secret threads n ∈ P and trimming all other secret threads
nH 6∈ P . Since queues annotate thread ids with their residual time budgets,
the erasure function must reassign the budgets of all secret threads n ′H 6∈ P
to their closest ancestor n ∈ P on the same core. The ancestor n ∈ P could
be either (i) another secret thread on the same core, i.e., nH ∈ P , or, (ii) the
spinning thread of that core, ◦ ∈ P if there is no other thread n ∈ P on
that core—the di�erence between these two cases lies on whether the origi-
nal thread n ′ was forked or spawned on that core. More formally, if the queue
contains no thread n ∈ P , then the function replaces the queue altogether
with the spinning thread and returns the residual budgets of the threads to it,
i.e., εL(Q) = 〈◦B〉 if ni 6∈ P and B =

∑
bi, for each leaf Q [〈nbi

i 〉] where
i ∈ {1 . . |Q |}. Otherwise, the core contains at least a thread nH ∈ P
and the erasure function returns the residual time budget of its secret descen-
dants, i.e., εL(Q) = Q ↓L by combining the e�ects of the following mutually
recursive functions:

16 The id of the spinning thread on each free core is also public, i.e., ◦k ∈ P for
k ∈ {1 . . κ}.

CHAPTER 5. PARALLEL IFC RUNTIME SYSTEMS 191

〈nb〉↓L= 〈nb〉
〈Q1,Q2〉↓L= (Q1 ↓L)g (Q2 ↓L)

〈nb1
1H〉g 〈n

b2
2H〉 = 〈n

b1+b2
1H 〉

Q1 g Q2 = 〈Q1,Q2〉

The interesting case is 〈nb1
1H〉g 〈n

b2
2H〉, which reassigns the budget of the child

(the right leaf 〈nb2
2H〉) to the parent (the left leaf 〈nb1

1H〉), by rewriting the subtree
into 〈nb1+b2

1H 〉.
5.2 Timing-Sensitive Non-interference

The proof of timing-sensitive noninterference relies on two fundamental prop-
erties, i.e., determinancy and simulation of parallel reductions. Determinancy
requires that the reduction relation is deterministic.

Proposition 1 (Determinism). If c1 ↪→ c2 and c1 ↪→ c3 then c2 ≡ c3.

The equivalence in the statement denotes alpha-equivalence, i.e., up to the
choice of variable names. We now show that the parallel scheduler preserves
L-equivalence of parallel con�gurations.

De�nition 1 (L-equivalence). Two con�gurations c1 and c2 are indistinguish-
able from an attacker at security level L, written c1 ≈L c2, if and only if
εL(c1) ≡ εL(c2).

Proposition 2 (Parallel Simulation). Given a parallel reduction step c ↪→ c′,
then εL(c) ↪→ εL(c

′).

By combining determinism (Proposition 1) and parallel simulation (Proposi-
tion 2), we prove progress-insensitive noninterference, which assumes progress
of both con�gurations.

Proposition 3 (Progress-Insensitive Non-interference).
If c1 ↪→ c′1, c2 ↪→ c′2 and c1 ≈L c2, then c′1 ≈L c′2.

In order to lift this result to be timing-sensitive, we �rst prove time sensitive
progress. Intuitively, if a valid 17 con�guration steps then any low equivalent
parallel con�guration also steps.

Proposition 4 (Time-Sensitive Progress). Given a valid con�guration c1
and a parallel reduction step c1 ↪→ c′1 and c1 ≈L c2, then there exists c′2, such
that c2 ↪→ c′2.

Using progress-insensitive noninterference, i.e., Proposition 3 and time-
sensitive progress, i.e., Proposition 4 in combination, we obtain a strong L-
bisimulation property between con�gurations and prove timing-sensitive non-
interference.
17 A con�guration is valid if satis�es several basic properties, e.g., it does not contain

special term •. See Appendix B for details

192 6. LIMITATIONS

Theorem 1 (Timing-Sensitive Non-interference). For all valid con�gura-
tions c1 and c2, if c1 ↪→ c′1 and c1 ≈L c2, then there exists a con�guration c′2,
such that c2 ↪→ c′2 and c′1 ≈L c′2.

The following corollary instantiates the timing-sensitive noninterference se-
curity theorem for a given LIOPAR parallel program, that explicitly rules out
leaks via timing channels. In the following, the notation ↪→u , denotes u parallel
reduction steps, as usual.

Corollary 1. Given a well-typed LIOPAR program t of type Labeled τ1 →
LIO τ2 and two secret closed terms t1°, t2° :: τ1, let i ∈ {1, 2}, j ∈ {1 . . κ},
nL be a thread identi�er such that n.k = 1 and n.cl = H , and
– si = ([],L,∅, | t (Labeled H ti°), [])
– Ti = [nL 7→ si, ◦j 7→ s◦]
– B = [nL 7→ B0, ◦j 7→ 0]
– H = [nL 7→ H0, ◦j 7→ H0]
– θ = [nL 7→ {2 . . κ}, ◦j 7→ ∅]
– Φi = [1 7→ 〈si〉, 2 7→ 〈◦2〉, ..., κ 7→ 〈◦κ〉]
– ci = (Ti, B,H , θ, 0, Φi)

If c1 ↪→u c′1, then there exists con�guration c′2, such that c2 ↪→u c′2 and
c′1 ≈L c′2.

To conclude, we show that the timing-sensitive security guarantees of LIOPAR

extend to concurrent single-core programs by instantiating Corollary 1 with
κ = 1.

6 Limitations
Implementation. Implementing LIOPAR is a serious undertaking that re-
quires a major redesign of GHC’s runtime system. Conventional runtime sys-
tems freely share resources among threads to boost performance and guaran-
tee fairness. For instance, in GHC, threads share heap objects to save memory
space and execution time (when evaluating expressions). In contrast, LIOPAR

strictly partitions resources to enforce security—threads at di�erent security
labels cannot share heap objects. As a result, the GHC memory allocator must
be adapted to isolate threads’ private heap, so that allocation and collection
can occur independently and in parallel. Similarly, the GHC “fair” round robin
scheduler must be heavily modi�ed to keep track of and manage threads’ time
budget, to preemptively perform a context switch when their time slice is up.
Programming model. Since resource management is explicit, building ap-
plications atop LIOPAR introduces new challenges—the programmer must ex-
plicitly choose resource bounds for each thread. If done poorly, threads can
spend excessive amounts of time sitting idle when given too much CPU time,
or garbage collecting when not given enough heap space. The problem of
tuning resource allocation parameters is not unique to LIOPAR—Yang and
Mazières’ [162] propose to use GHC pro�ling mechanisms to determine heap
size while the real-time garbage collector by Henriksson [54] required the

CHAPTER 5. PARALLEL IFC RUNTIME SYSTEMS 193

programmer to specify the worst case execution time, period, and worst-case
allocation of each high-priority thread. Das and Ho�mann [36] demonstrate
a more automatic approach—they apply machine learning techniques to stat-
ically determine upper bounds on execution time and heap usage of OCaml
programs. Similar techniques could be applied to LIOPAR in order to determine
the most e�cient resource partitions. We further remark that this challenge is
not unique to real-time systems or LIOPAR; choosing privacy parameters in
di�erential privacy shares many similarities [60,74]. Even though LIOPAR pro-
gramming model might seem overly restrictive, we consider it appropriate for
certain classes of applications (e.g., web applications and certain embedded sys-
tems). To further simplify programming with LIOPAR, we intend to introduce
privileges (and thus declassi�cation) similar to LIO [46, 145] or COWL [146].
Floating-label systems such as LIO and LIOPAR often su�er from label creep
issues, wherein the current label gets tainted to a point where the computation
cannot perform any useful side-e�ects [144]. Similar to concurrent LIO [145],
LIOPAR relies on primitive fork to address label creep18, but, at the cost of a
restricted �oating-label mechanisms, LIOPAR provides also parallel execution,
garbage collection, and APIs for heap statistics, elapsed time, and kill.

7 Related work
There is substantial work on language-level IFC systems [43, 51, 59, 80, 101,
122, 123, 141, 144, 163, 164]. Our work builds on these e�orts in several ways.
Firstly, LIOPAR extends the concurrent LIO IFC system [141] with parallelism—
to our knowledge, this is the �rst dynamic IFC system to support parallelism
and address the internalization of external timing channels. Previous static
IFC systems implicitly allow for parallelism, e.g., Muller and Chong’s [95],
several works on IFC π-calculi [57, 58, 66], and Rafnsson et al. [118] recent
foundations for composable timing-sensitive interactive systems. These e�orts,
howerver, do not model runtime system resource management. Volpano and
Smith [158] enforce a timing agreement condition, similar to ours, but for a
static concurrent IFC system. Mantel et al. [83] and Li et al. [77] prove non-
interference for static, concurrent systems, using rely-guarantee reasoning.

Unlike most of these previous e�orts, our hierarchical runtime system also
eliminates classes of resource-based external timing channels, such as memory
exhaustion and garbage collection. Pedersen and Askarov [107], however, were
the �rst to identify automatic memory management to be a source of covert
channels for IFC systems and demonstrate the feasibility of attacks against
both V8 and the JVM. They propose a sequential static IFC language with
labeled-partitioned memory and a label-aware timing-sensitive garbage collec-

18 Sequential LIO addresses label creep through primitive toLabeled(·), which exe-
cutes a computation (that may raise the current label) in a separate context and re-
stores the current label upon its termination. MAC does not feature toLabeled(·),
because the primitive opens the termination covert-channel and thus is not timing-
sensitive [141].

194 7. RELATED WORK

tor, which is vulnerable to external timing attacks and satis�es only termination-
insensitive non-interference.

Previous work on language-based systems—namely [81, 162]—identify
memory retention and memory exhaustion as a source of denial-of-service
(DOS) attacks. Memory retention and exhaustion can also be used as covert
channels. In addressing those covert channels, LIOPAR also addresses the DOS
attacks outlined by these e�orts. Indeed, our work generalizes Yang and Maz-
ières’ [162] region-based allocation framework with region-based garbage col-
lection and hierarchical scheduling.

Our LIOPAR design also borrows ideas from the secure operating system
community. Our explicit hierarchical memory management is conceptually
similar to HiStar’s container abstraction [166]. In HiStar, containers—subject
to quotas, i.e., space limits—are used to hierarchically allocate and deallocate
objects. LIOPAR adopts this idea at the language-level and automates the allo-
cation and reclamation. Moreover, we hierarchically partition CPU-time; Zel-
dovich et al. [166], however, did observe that their container abstraction can
be repurposed to enforce CPU quotas.

Deterland [161] splits time into ticks to address internal timing channels
and mitigate external timing ones. Deterland builds on Determinator [10], an
OS that executes parallel applications deterministically and e�ciently. LIOPAR

adopts many ideas from these systems—both the deterministic parallelism and
ticks (semantic steps)—to the language-level. Deterministic parallelism at the
language-level has also been explored previous to this work [70, 71, 87], but,
di�erent from these e�orts, LIOPAR also hierarchically manages resources to
eliminate classes of external timing channels.

Fabric [79, 80] and DStar [167] are distributed IFC systems. Though we
believe that our techniques would scale beyond multi-core systems (e.g., to data
centers), LIOPAR will likely not easily scale to large distributed systems like
Fabric and DStar. Di�erent from Fabric and DStar, however, LIOPAR addresses
both internal and external timing channels that result from running code in
parallel.

Our hierarchical resource management approach is not unique—other coun-
termeasures to external timing channels have been studied. Hu [61], for exam-
ple, mitigates both timing channels in the VAX/VMM system [78] using “fuzzy
time”—an idea recently adopted to browsers [68]. Askarov et al.’s [5] mitigate
external timing channels using predicative black-box mitigation, which delays
events and thus bound information leakage. Rather than using noise as in the
fuzzy time technique, however, they predict the schedule of future events. Some
of these approaches have also been adopted at the language-level [107,141,168].
We �nd these techniques largely orthogonal: they can be used alongside our
techniques to mitigate timing channels we do not eliminate.

Real-time systems—when developed with garbage collected languages [6,
13, 23, 54]—face similar challenges as this work. Blelloch and Cheng [23] de-
scribe a real-time garbage collector (RTGC) for multi-core programs with prov-

CHAPTER 5. PARALLEL IFC RUNTIME SYSTEMS 195

able resource bounds—LIOPAR enforces resource bounds instead. A more re-
cent RTGC created by Auerbach et al. [6] describes a technique to “tax” threads
into contributing to garbage collection as they utilize more resources. Henricks-
son [54] describes a RTGC capable of enforcing hard and soft deadlines, once
given upper bounds on space and time resources used by threads. Most simi-
larly to LIOPAR, Pizlo et al. [114] implement a hierarchical RTGC algorithm
that independently collects partitioned heaps.

8 Conclusion
Language-based IFC systems built atop o�-the-shelf runtime systems are vul-
nerable to resource-based external-timing attacks. When these systems are
extended with thread parallelism the attacks become yet more vicious—they
can be carried out internally. We presented LIOPAR, the design of the �rst dy-
namic IFC hierarchical runtime system that support deterministic parallelism
and eliminates both resource-based internal- and external-timing covert chan-
nels. To our knowledge, LIOPAR is the �rst parallel system to satisfy progress-
and time-sensitive non-interference.

References
1. Aslan Askarov, Sebastian Hunt, Andrei Sabelfeld, and David Sands. Termination-

insensitive noninterference leaks more than just a bit. In Proceedings of the 13th
European Symposium on Research in Computer Security: Computer Security, ESORICS
’08, pages 333–348, Berlin, Heidelberg, 2008. Springer-Verlag.

2. Aslan Askarov, Danfeng Zhang, and Andrew C. Myers. Predictive black-box miti-
gation of timing channels. In Proceedings of the 17th ACM Conference on Computer
and Communications Security, CCS ’10, pages 297–307, New York, NY, USA, 2010.
ACM.

3. Joshua Auerbach, David F Bacon, Perry Cheng, David Grove, Ben Biron, Charlie
Gracie, Bill McCloskey, Aleksandar Micic, and Ryan Sciampacone. Tax-and-spend:
democratic scheduling for real-time garbage collection. In Proceedings of the 8th
ACM international conference on Embedded software, pages 245–254. ACM, 2008.

4. Amittai Aviram, Shu-Chun Weng, Sen Hu, and Bryan Ford. E�cient system-
enforced deterministic parallelism. Communications of the ACM, 55(5):111–119,
2012.

5. Henry G Baker Jr. List processing in real time on a serial computer. Communications
of the ACM, 21(4):280–294, 1978.

6. Guy E Blelloch and Perry Cheng. On bounding time and space for multiprocessor
garbage collection. In ACM SIGPLAN Notices, volume 34, pages 104–117. ACM,
1999.

7. P. Buiras, D. Vytiniotis, and A. Russo. HLIO: Mixing static and dynamic typing for
information-�ow control in Haskell. In ACM SIGPLAN International Conference on
Functional Programming. ACM, 2015.

8. Pablo Buiras and Alejandro Russo. Lazy programs leak secrets. In Proceedings of
the 18th Nordic Conference on Secure IT Systems - Volume 8208, NordSec 2013, pages
116–122, New York, NY, USA, 2013. Springer-Verlag New York, Inc.

9. Ankush Das and Jan Ho�mann. ML for ML: Learning cost semantics by experiment.
In Axel Legay and Tiziana Margaria, editors, Tools and Algorithms for the Construc-

196 8. CONCLUSION

tion and Analysis of Systems, pages 190–207, Berlin, Heidelberg, 2017. Springer
Berlin Heidelberg.

10. Earlence Fernandes, Justin Paupore, Amir Rahmati, Daniel Simionato, Mauro Conti,
and Atul Prakash. FlowFence: Practical data protection for emerging IoT application
frameworks. In USENIX Security Symposium, pages 531–548, 2016.

11. Qian Ge, Yuval Yarom, David Cock, and Gernot Heiser. A survey of microarchitec-
tural timing attacks and countermeasures on contemporary hardware. Journal of
Cryptographic Engineering, pages 1–27, 2016.

12. Daniel B. Gi�n, Amit Levy, Deian Stefan, David Terei, David Mazières, John
Mitchell, and Alejandro Russo. Hails: Protecting data privacy in untrusted web
applications. In Proc. of the 10th Symposium on Operating Systems Design and Im-
plementation, October 2012.

13. Daniel B. Gi�n, Amit Levy, Deian Stefan, David Terei, David Mazières, John
Mitchell, and Alejandro Russo. Hails: Protecting data privacy in untrusted web
applications. Journal of Computer Security, 25, 2017.

14. J. A. Goguen and J. Meseguer. Unwinding and inference control. In 1984 IEEE
Symposium on Security and Privacy, pages 75–75, April 1984.

15. D. Hedin, A. Birgisson, L. Bello, and A. Sabelfeld. JSFlow: Tracking information
�ow in JavaScript and its APIs. In ACM Symposium on Applied Computing. ACM,
2014.

16. Roger Henriksson. Scheduling Garbage Collection in Embedded Systems. PhD thesis,
Department of Computer Science, 1998.

17. Stefan Heule, Deian Stefan, Edward Z. Yang, John C. Mitchell, and Alejandro Russo.
Ifc inside: Retro�tting languages with dynamic information �ow control. In Proceed-
ings of the 4th International Conference on Principles of Security and Trust - Volume
9036, pages 11–31, New York, NY, USA, 2015. Springer-Verlag New York, Inc.

18. Carl Hewitt, Peter Bishop, and Richard Steiger. A universal modular actor formalism
for arti�cial intelligence. In Proceedings of the 3rd International Joint Conference
on Arti�cial Intelligence, IJCAI’73, pages 235–245, San Francisco, CA, USA, 1973.
Morgan Kaufmann Publishers Inc.

19. Kohei Honda, Vasco Thudichum Vasconcelos, and Nobuko Yoshida. Secure Infor-
mation Flow as Typed Process Behaviour. In European Symposium on Programming
Languages and Systems. Springer-Verlag, 2000.

20. Kohei Honda and Nobuko Yoshida. A uniform type structure for secure information
�ow. In Proceedings of the 29th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL ’02, pages 81–92, New York, NY, USA, 2002. ACM.

21. C. Hritcu, M. Greenberg, B. Karel, B. C. Peirce, and G. Morrisett. All your IFCexcep-
tion are belong to us. In IEEE Symposium on Security and Privacy. IEEE Computer
Society, 2013.

22. Justin Hsu, Marco Gaboardi, Andreas Haeberlen, Sanjeev Khanna, Arjun Narayan,
Benjamin C. Pierce, and Aaron Roth. Di�erential privacy: An economic method for
choosing epsilon. In Proceedings of the 2014 IEEE 27th Computer Security Foundations
Symposium, CSF ’14, pages 398–410, Washington, DC, USA, 2014. IEEE Computer
Society.

23. Wei-Ming Hu. Reducing timing channels with fuzzy time. Journal of Computer
Security, 1(3-4):233–254, 1992.

24. Richard A Kemmerer. Shared resource matrix methodology: An approach to identi-
fying storage and timing channels. ACM Transactions on Computer Systems (TOCS),
1(3):256–277, 1983.

CHAPTER 5. PARALLEL IFC RUNTIME SYSTEMS 197

25. Naoki Kobayashi. Type-based information �ow analysis for the π-calculus. Acta
Inf., 42(4):291–347, December 2005.

26. David Kohlbrenner and Hovav Shacham. Trusted browsers for uncertain times. In
USENIX Security Symposium, pages 463–480, 2016.

27. Lindsey Kuper and Ryan R Newton. Lvars: lattice-based data structures for deter-
ministic parallelism. In Proceedings of the 2nd ACM SIGPLANworkshop on Functional
high-performance computing, pages 71–84. ACM, 2013.

28. Lindsey Kuper, Aaron Todd, Sam Tobin-Hochstadt, and Ryan R Newton. Taming the
parallel e�ect zoo: Extensible deterministic parallelism with lvish. ACM SIGPLAN
Notices, 49(6):2–14, 2014.

29. Jaewoo Lee and Chris Clifton. How much is enough? choosing ε for di�erential
privacy. In Proceedings of the 14th International Conference on Information Security,
ISC’11, pages 325–340, Berlin, Heidelberg, 2011. Springer-Verlag.

30. Peng Li and Steve Zdancewic. Arrows for secure information �ow. Theor. Comput.
Sci., 411(19):1974–1994, April 2010.

31. Ximeng Li, Heiko Mantel, and Markus Tasch. Taming message-passing communica-
tion in compositional reasoning about con�dentiality. In Programming Languages
and Systems - 15th Asian Symposium, APLAS 2017, Suzhou, China, November 27-29,
2017, Proceedings, pages 45–66, 2017.

32. S. Lipner, T. Jaeger, and M. E. Zurko. Lessons from vax/svs for high-assurance vm
systems. IEEE Security Privacy, 10(6):26–35, Nov 2012.

33. Jed Liu, Owen Arden, Michael D George, and Andrew C Myers. Fabric: Building
open distributed systems securely by construction. Journal of Computer Security,
25(4-5):367–426, 2017.

34. Jed Liu, Michael D George, Krishnaprasad Vikram, Xin Qi, Lucas Waye, and An-
drew C Myers. Fabric: A platform for secure distributed computation and storage.
In Proceedings of the ACM SIGOPS 22nd symposium on Operating systems principles.
ACM, 2009.

35. Jed Liu and Andrew C Myers. De�ning and enforcing referential security. In
International Conference on Principles of Security and Trust, pages 199–219. Springer,
2014.

36. H. Mantel, D. Sands, and H. Sudbrock. Assumptions and guarantees for composi-
tional noninterference. In 2011 IEEE 24th Computer Security Foundations Symposium,
pages 218–232, June 2011.

37. Heiko Mantel and Andrei Sabelfeld. A unifying approach to the security of dis-
tributed and multi-threaded programs. J. Comput. Secur., 11(4):615–676, July 2003.

38. Simon Marlow, Ryan Newton, and Simon Peyton Jones. A monad for deterministic
parallelism. ACM SIGPLAN Notices, 46(12):71–82, 2012.

39. Simon Marlow and Simon Peyton Jones. Making a fast curry: push/enter vs. eval/ap-
ply for higher-order languages. Journal of Functional Programming, 16(4-5):415–449,
2006.

40. D. McCullough. Speci�cations for multi-level security and a hook-up. In 1987 IEEE
Symposium on Security and Privacy(SP), volume 00, page 161, April 1987.

41. Stefan Muller and Stephen Chong. Towards a practical secure concurrent language.
In Proceedings of the 25th Annual ACM SIGPLAN Conference on Object-Oriented
Programming Languages, Systems, Languages, and Applications, pages 57–74, New
York, NY, USA, October 2012. ACM Press.

42. Andrew C. Myers, Lantian Zheng, Steve Zdancewic, Stephen Chong, and Nathaniel
Nystrom. Jif 3.0: Java information �ow, July 2006.

198 8. CONCLUSION

43. Adwait Nadkarni, Benjamin Andow, William Enck, and Somesh Jha. Practical DIFC
enforcement on android. In USENIX Security Symposium, pages 1119–1136, 2016.

44. Stephen C North and John H Reppy. Concurrent garbage collection on stock hard-
ware. In Conference on Functional Programming Languages and Computer Architec-
ture, pages 113–133. Springer, 1987.

45. James Lee Parker. LMonad: Information �ow control for haskell web applications.
PhD thesis, University of Maryland, College Park, 2014.

46. Mathias V. Pedersen and Aslan Askarov. From trash to treasure: Timing-sensitive
garbage collection. In 2017 IEEE Symposium on Security and Privacy, SP 2017, San
Jose, CA, USA, May 22-26, 2017, pages 693–709, 2017.

47. Colin Percival. Cache missing for fun and pro�t. In BSDCan, 2005.
48. Simon Peyton Jones. Implementing lazy functional languages on stock hardware:

The spineless tagless G-machine. Journal of Functional Programming, 2(2):127–202,
1992.

49. Filip Pizlo, Antony L. Hosking, and Jan Vitek. Hierarchical real-time garbage col-
lection. In Proceedings of the 2007 ACM SIGPLAN/SIGBED Conference on Languages,
Compilers, and Tools for Embedded Systems, LCTES ’07, pages 123–133, New York,
NY, USA, 2007. ACM.

50. Willard Rafnsson, Limin Jia, and Lujo Bauer. Timing-sensitive noninterference
through composition. In Matteo Ma�ei and Mark Ryan, editors, Principles of Security
and Trust, pages 3–25, Berlin, Heidelberg, 2017. Springer Berlin Heidelberg.

51. Indrajit Roy, Donald E. Porter, Michael D. Bond, Kathryn S. McKinley, and Emmett
Witchel. Laminar: Practical �ne-grained decentralized information �ow control. In
ACM SIGPLAN Conference on Programming Language Design and Implementation,
PLDI. ACM, 2009.

52. Alejandro Russo. Functional Pearl: Two Can Keep a Secret, if One of Them Uses
Haskell. In Proceedings of the 20th ACM SIGPLAN International Conference on Func-
tional Programming, ICFP 2015, pages 280–288, New York, NY, USA, 2015. ACM.

53. Andrei Sabelfeld and David Sands. Probabilistic noninterference for multi-threaded
programs. In Proceedings of the 13th IEEE Workshop on Computer Security Founda-
tions, CSFW ’00, pages 200–, Washington, DC, USA, 2000. IEEE Computer Society.

54. Peter Sestoft. Deriving a lazy abstract machine. J. Funct. Program., 7(3):231–264,
May 1997.

55. Deian Stefan, Alejandro Russo, Pablo Buiras, Amit Levy, John C. Mitchell, and
David Maziéres. Addressing covert termination and timing channels in concurrent
information �ow systems. In Proceedings of the 17th ACM SIGPLAN International
Conference on Functional Programming, ICFP ’12, pages 201–214, New York, NY,
USA, 2012. ACM.

56. Deian Stefan, Alejandro Russo, David Mazières, and John C. Mitchell. Disjunction
category labels. In Nordic Conference on Security IT Systems (NordSec). Springer,
October 2011.

57. Deian Stefan, Alejandro Russo, David Mazières, and John C. Mitchell. Flexible dy-
namic information �ow control in the presence of exceptions. Journal of Functional
Programming, 27, 2017.

58. Deian Stefan, Alejandro Russo, John C. Mitchell, and David Mazières. Flexible dy-
namic information �ow control in Haskell. In Proceedings of the 4th ACM Symposium
on Haskell, Haskell ’11, pages 95–106, New York, NY, USA, 2011. ACM.

59. Deian Stefan, Edward Z. Yang, Petr Marchenko, Alejandro Russo, Dave Herman,
Brad Karp, and David Mazières. Protecting users by con�ning JavaScript with

CHAPTER 5. PARALLEL IFC RUNTIME SYSTEMS 199

COWL. In USENIX Symposium on Operating Systems Design and Implementation.
USENIX Association, 2014.

60. Ta-chung Tsai, Alejandro Russo, and John Hughes. A library for secure multi-
threaded information �ow in haskell. In Proceedings of the 20th IEEE Computer
Security Foundations Symposium, CSF ’07, pages 187–202, Washington, DC, USA,
2007. IEEE Computer Society.

61. Marco Vassena, Joachim Breitner, and Alejandro Russo. Securing concurrent lazy
programs against information leakage. In 30th IEEE Computer Security Foundations
Symposium, CSF 2017, Santa Barbara, CA, USA, August 21-25, 2017, pages 37–52,
2017.

62. Marco Vassena, Pablo Buiras, Lucas Waye, and Alejandro Russo. Flexible manipu-
lation of labeled values for information-�ow control libraries. In Computer Security
- ESORICS 2016 - 21st European Symposium on Research in Computer Security, Her-
aklion, Greece, September 26-30, 2016, Proceedings, Part I, pages 538–557, 2016.

63. Marco Vassena and Alejandro Russo. On formalizing information-�ow control
libraries. In Proceedings of the 2016 ACM Workshop on Programming Languages and
Analysis for Security, PLAS ’16, pages 15–28, New York, NY, USA, 2016. ACM.

64. Marco Vassena, Alejandro Russo, Pablo Buiras, and Lucas Waye. Mac a veri�ed
static information-�ow control library. Journal of Logical and Algebraic Methods in
Programming, 2017.

65. Pepe Vila and Boris Kopf. Loophole: Timing attacks on shared event loops in
chrome. In 26th USENIX Security Symposium (USENIX Security 17), pages 849–864,
Vancouver, BC, 2017. USENIX Association.

66. Dennis Volpano and Geo�rey Smith. Eliminating covert �ows with minimum
typings. In Proceedings of the 10th IEEE Workshop on Computer Security Foundations,
CSFW ’97, pages 156–, Washington, DC, USA, 1997. IEEE Computer Society.

67. Weiyi Wu, Ennan Zhai, David Isaac Wolinsky, Bryan Ford, Liang Gu, and Daniel
Jackowitz. Warding o� timing attacks in deterland. In Conference on Timely Results
in Operating Systems, Monterey, CS, US, 2015.

68. Edward Z. Yang and David Mazières. Dynamic space limits for haskell. SIGPLAN
Not., 49(6):588–598, June 2014.

69. Jean Yang, Travis Hance, Thomas H Austin, Armando Solar-Lezama, Cormac Flana-
gan, and Stephen Chong. Precise, dynamic information �ow for database-backed
applications. In ACM SIGPLAN Notices, volume 51, pages 631–647. ACM, 2016.

70. Jean Yang, Kuat Yessenov, and Armando Solar-Lezama. A language for automati-
cally enforcing privacy policies. In Proceedings of the 39th Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL ’12, pages 85–96,
New York, NY, USA, 2012. ACM.

71. Nickolai Zeldovich, Silas Boyd-Wickizer, Eddie Kohler, and David Mazières. Making
information �ow explicit in HiStar. In USENIX Symp. on Operating Systems Design
and Implementation. USENIX, 2006.

72. Nickolai Zeldovich, Silas Boyd-Wickizer, and David Mazières. Securing distributed
systems with information �ow control. In Proceedings of the 5th USENIX Symposium
onNetworked Systems Design and Implementation, NSDI’08, pages 293–308, Berkeley,
CA, USA, 2008. USENIX Association.

73. Danfeng Zhang, Aslan Askarov, and Andrew C. Myers. Predictive mitigation of
timing channels in interactive systems. In Proceedings of the 18th ACM Conference
on Computer and Communications Security, CCS ’11, pages 563–574, New York, NY,
USA, 2011. ACM.

200 A. FULL CALCULUS

Appendix
A Full Calculus
Context Rules. In Fig. 6, for completeness, we report the remaining context
rules of sequential LIOPAR—they rules simply evaluate their arguments by
pushing (popping) the appropriate continuation on the stack.
Stuck Conditions. Fig. 7 formally de�nes the conditions used in rule [Stuck],
which identify a thread as stuck. When adding garbage collection, i.e., rule [App-
GC], we also remove the condition MaxHeapStuck(s) from rule [Stuck]—such
condition triggers an automatic garbage collection cycle that reduces via rule
[GC].
Reachable Variables and Term Closure. Fig. 8 presents two operations that
compute and substitute free variables. Fig. 8a formally de�nes the set of transi-
tively reachable free variables for all syntactic categories, i.e., stacks, continua-
tions and message queues. The function simply computes the free variables by
induction on the structure of terms, stacks, continuation and message queues
recursively. Notice that labeled values are closed and thus the function returns
the empty set for them, i.e., fv∗(Labeled ` t °, ∆) = ∅. Fig. 8b de�nes a closure
function, i.e., ∆∗B(t), which, given an open term t with bound variables B and
a heap ∆, computes the corresponding closed term t ° by recursively substi-
tuting free variables to close the term. When the function traverses a lambda
expression, i.e., λx .t , it recurs in the body and adds variable x to the set of
bound variables, i.e., ∆∗B∪{x }(t). When the function �nds a free variable x , it
looks it up in the heap and repeats the process by closing the corresponding
thunk, i.e., ∆∗(∆(x)). When omitted, the set of bound variables is empty, i.e.,
∆∗(t) = ∆∗∅(t). Notice that the recursion is well-funded because our heap
does not contain cyclic de�nitions (the syntax of the calculus does not feature
recursive let bindings and therefore every term can be closed).

CHAPTER 5. PARALLEL IFC RUNTIME SYSTEMS 201

(If1)
(∆, pc, N | if t1 then t2 else t3,S) ;µ (∆, pc, N | t1, then t2 else t3 : S)

(If2)
(∆, pc, N | True, then t2 else t3 : S) ;µ (∆, pc, N | t2,S)

(If3)
(∆, pc, N | False, then t2 else t3 : S) ;µ (∆, pc, N | t3,S)

(Fork1)
(∆, pc, N | fork t1 t2 t3 t4 t5,S) ;µ (∆, pc, N | t1, fork t2 t3 t4 t5 : S)

(Fork2)
(∆, pc, N | `, fork t2 t3 t4 t5 : S) ;µ (∆, pc, N | t2, fork ` t3 t4 t5 : S)

(Fork3)
(∆, pc, N | `2, fork `1 t3 t4 t5 : S) ;µ (∆, pc, N | t3, fork `1 `2 t4 t5 : S)

(Fork4)
(∆, pc, N | h, fork `1 `2 t4 t5 : S) ;µ (∆, pc, N | t4, fork `1 `2 h t5 : S)

(Spawn1)
(∆, pc, N | spawn t1 t2 t3 t4 t5,S) ;µ (∆, pc, N | t1, spawn t2 t3 t4 t5 : S)

(Spawn2)
(∆, pc, N | `, spawn t2 t3 t4 t5 : S) ;µ (∆, pc, N | t2, spawn ` t3 t4 t5 : S)

(Spawn3)
(∆, pc, N | `2, spawn `1 t3 t4 t5 : S) ;µ (∆, pc, N | t3, spawn `1 `2 t4 t5 : S)

(Spawn4)
(∆, pc, N | K , spawn `1 `2 t4 t5 : S) ;µ (∆, pc, N | t4, spawn `1 `2 K t5 : S)

(Wait1)
(∆, pc, N | wait t ,S) ;µ (∆, pc, N | t ,wait : S)

(Kill1)
(∆, pc, N | kill t ,S) ;µ (∆, pc, N | t , kill : S)

Fig. 6: Context rules of sequential LIOPAR.

202 A. FULL CALCULUS

(ForkStuck)
T (n) = (, pc, | `2, fork `1 t : S)

`1 6v `2 ∨ pc 6v `1 ∨H (n) = h1 + h2 |∆| > h1 ∨ |∆′| > h2

ForkStuck(n,H , T)

(UnlabelStuck)
T (n) = (, pc, N | Labeled ` t , unlabel : S)

pc t ` 6v n.cl ∨ ∃ n ∈ N . pc t ` 6v n.pc

UnlabelStuck(n, T)

(WaitStuck)
T (n) = (, pc, | n ′,wait : S)

n.cl 6v pc ∨ eval(T)(n′) = n ′ 67→ (, , | v, [])
WaitStuck(n, T)

(ValueStuck)
s = (, , | v, [])

ValueStuck(s)

(MaxHeapSize)
s = (∆, , | t1 t2,)

|∆| = h

MaxHeapSize(s, h)

(SpawnStuck)
s = (∆, pc, N | k , spawnK1

`1 `2 t : S)
pc 6v `1 ∨ `1 6v `2 ∨ k ∪K1 6⊆ K

SpawnStuck(s,K)

(KillStuck)
s = (∆, pc, N | n, kill : S) n 6∈ N

KillStuck(s)

(ReceiveStuck)
s = (∆, pc, N, [] | receive,S)

ReceiveStuck(s)

Fig. 7: Stuck conditions.

CHAPTER 5. PARALLEL IFC RUNTIME SYSTEMS 203

fv∗(x ,∆) = {x } ∪ fv∗(∆(x),∆)
fv∗(λx .t ,∆) = fv∗(t ,∆) \ {x }
fv∗(t1 t2,∆) = fv∗(t1,∆) ∪ fv∗(t2,∆)
fv∗(Labeled ` t °,∆) = ∅

fv∗([],∆) = ∅
fv∗(C : S ,∆) = fv∗(C ,∆) ∪ fv∗(S ,∆)

fv∗(x ,∆) = {x } ∪ fv∗(∆(x),∆)
fv∗(>>=t ,∆) = fv∗(t ,∆)
fv∗(label t ,∆) = fv∗(t ,∆)

fv∗([],∆) = ∅
fv∗(t / ts,∆) = fv∗(t ,∆) ∪ fv∗(ts,∆)

(a) Transitively-reachable free variables (excerpt).

∆∗B(x) =

{
x if x ∈ B

∆∗(∆(x)) if x 6∈ B

∆∗B(t1 t2) = ∆∗B(t1) ∆
∗
B(t2)

∆∗B(λx .t) = ∆∗B∪{x }(t)

(b) Term closure (excerpt).

Fig. 8: Free variables manipulation.

204 A. FULL CALCULUS

A.1 Thread Synchronization and Communication

LIOPAR features primitive wait n ′, which allows a thread to wait on the result
of some thread n ′, see Rule [Wait] in Fig. 9. If the thread has terminated, i.e.,
its term is a value and the stack of continuations is empty, its value is returned
to the waiting thread. The condition n ′.cl v pc ensures that the waited-
upon thread has an appropriate clearance (indicating that its label must be
low enough to observe its result) for security reasons. In all other cases, the
[Stuck] rule applies via the [WaitStuck] condition.

Furthermore, LIOPAR features also thread communication primitives,
which enable a programming model akin to the actor model [56]. In partic-
ular, primitive send n t enables asynchronous best-e�ort delivery of message
t to thread n—there are no guarantees that the message will be delivered. Note
that rule [Send2] simply generates an event that instructs the top-level parallel
scheduler to deliver a message, which then might get dropped for security rea-
sons or otherwise. Conversely, rule [Receive] executes synchronous primitive
receive , which inspects the thread’s messages queue ts and extracts the next
message—if the queue is empty, the thread gets stuck.19 The rule generates
event send(n2, t), so that the parallel scheduler delivers message t to thread
n2, by means of function next(·). The scheduler drops the message if the re-
ceiver is dead, i.e., n2 6∈ Dom(T), or if the sender is dead, i.e., n2 6∈ Dom(T).
If the receiver has su�cient memory budget, i.e., |∆′2| < H (n2) and is at least
as sensitive as the sender, i.e., pc1 v pc2, then the scheduler delivers and
enqueues the message in the message queue, i.e., ts2.t , or drops it otherwise.20

19 The receiver thread will also get stuck if the type of the message does not match
the expected type. We are not concerned with the type-safety of primitive receive ,
which could be recovered with dynamic typing.

20 This feature makes threads vulnerable to Denial of Service (DOS) attacks, in which
the attacker �oods a thread with messages until it runs out of memory. We could
restore security by adding message integrity or by pre-allocating a memory budget
for queue messages.

CHAPTER 5. PARALLEL IFC RUNTIME SYSTEMS 205

Message Queue ts ::= [] | t / ts
State s ::= (∆, pc, N, ts | t ,S)

(Wait)
T (n) = (∆, pc, N, ts | n ′,wait : S)

n ′.cl v pc T (n ′) = (, , , | return v, []) s = (∆, pc, N, ts | v,S)

Q [〈n1+b〉] (n,s,ε)−−−−→Σ Q [〈nb〉]

(Send1)
(∆, pc, N, ts | send t1 t2,S) ; (∆, pc, N, ts, | t1, send t2 : S)

(Send2)
n 7→ (∆, pc, N, ts | n ′, send t : S) ∈ Σ.T s = (∆, pc, N, ts | return (),S)

Q [〈n1+b〉] (n,s,send(n′,t))−−−−−−−−−−→Σ Q [〈nb〉]

(Receive)
n 7→ (∆, pc, N, t / ts | receive,S) ∈ Σ.T s = (∆, pc, N, ts | return t ,S)

Q [〈n1+b〉] (n,s,ε)−−−−→Σ Q [〈nb〉]

next(n1, send(n2, t), 〈T,B,H , θ, Φ〉)
| n1 6∈ Dom(T) ∨ n2 6∈ Dom(T) = 〈T,B,H , θ, Φ〉
| |∆′2| < H (n2) ∧ pc1 v pc2 = 〈T ′, B,H , θ, Φ〉
| otherwise = 〈T,B,H , θ, Φ〉
where (∆1, pc1, , | ,) = T (n1)

(∆2, pc2, N2, ts2 | t2,S2) = T (n2)
∆′2 = ∆2 ∪ {x 7→ ∆1(x) | x ∈ fv∗(t ,∆1)}
T ′ = T [n2 7→ (∆′2, pc2, N2, ts2 . t | t2,S2)]

Fig. 9: Thread synchronization and communication primitives.

206 A. FULL CALCULUS

Q \∅ = Q
Q \ ({n } ∪N) = delete(Q ,n) \N

(a) Q \N removes nodes N from the tree Q .

delete(〈nb〉,n) = 〈◦0〉

delete(〈〈nb〉| Q〉,n ′) =

{
add(Q , b) if n ≡ n ′

〈〈nb〉| delete(Q ,n ′)〉 otherwise

delete(〈Q |〈nb〉〉,n ′) =

{
add(Q , b) if n ≡ n ′

〈delete(Q ,n ′) |〈nb〉〉 otherwise

delete(〈Q1 | Q2〉,n) =

{
〈delete(Q1,n) | Q2〉 if n ∈ Q1

〈Q1,delete(Q2,n)〉 if n ∈ Q2

(b) delete(Q ,n) removes node n ∈ Q .

add(〈nb1〉, b2) = 〈nb1+b2〉

add(〈Q1 | Q2〉, b) = 〈add(Q1, b) | Q2〉

(c) add(Q , b) adds b to the budget of the leftmost thread.

Fig. 10: Functions that trim and readjust the budget in a queue tree.

A.2 Queue Pruning

When threads get killed, the parallel scheduler removes them from the core
queue where they are scheduled. We write Q \N , for the queue obtained by
removing threads N from queue Q , by repeated calls to function delete(·),
see Fig. 10. Function delete(Q ,n) locates thread n in the queue and trims
its leaf—if the thread is alone in the queue, it is replaced with the dummy
busy-waiting thread id, i.e., ◦, and the core becomes free. Note that the current
budget of a killed thread is not discarded, but it is reassigned to its closest
relative (either to the parent, the immediate child or the spinning thread), by
means of function add(·), for security reasons. Otherwise, a high thread could
in�uence the schedule on its own core by forking a thread and giving up, say,
half of its budget, and then killing it immediately afterwards. If the parent does
not regain the child’s current time budget, then nothing would run for the time
the child was originally given, which could lead to information leakage, when
executed in parallel with other cores.

CHAPTER 5. PARALLEL IFC RUNTIME SYSTEMS 207

Term t ::= · · · | • | labelL t1 t2 | unlabelL t | forkL t1 t2 t3 t4 t5
| spawnL t1 t2 t3 t4 t5

Cont. C ::= · · · | labelL t | unlabelL | forkL t1 t2 t3 t4 | spawnL t1 t2 t3 t4
Stack S ::= · · · | •
Queue ts ::= · · · | •
Event e ::= · · · | forkL(n, b, h) | spawnL(∆,n,K)

Fig. 11: Calculus with erased terms.

B Security Proofs
B.1 Two-Steps Erasure

During execution, a public thread might create secret data, often by elevating
low data. For example, primitive label ` t labels a piece of data t with label `
in rule [Label2] from Figure 2. Depending on the sensitivity of the label, the
erasure function needs to rewrite t to either •, if ` ≡ H or εL(t) if ` ≡ L,
in order to respect the simulation property for rule [Label2]. Unfortunately,
the label is a runtime value, thus it might not be known when we apply the
erasure function, e.g., in rule [Label1]. Two-steps erasure is a technique that
extends term erasure and simplify reasoning about such operations, especially
when the decision of erasing data depends on the context or on runtime values
[153]. In particular, this technique ensures that those operations commute
under the erasure function by rewriting problematic primitives with new ad-
hoc constructs, that erase terms at runtime, when su�cient information is
available. Figure 11 extends the calculus with erasure-aware primitives. Fig. 12
and 16 de�ne the erasure function for all the syntactic categories of LIOPAR,
which rewrites the problematic terms with the those extra primitives, which
are reduced according to the rules in Fig. 13 and 15. Equipped with those extra
primitives, we use term erasure with two-steps erasure to prove security of
LIOPAR in the next section.
Example. The erasure function rewrites label to new construct labelL, which
�rstly evaluates the label via rule [LabelL1] and then erase the second argu-
ment as needed, when the value of the label is known in rules [LabelL2] and
[LabelL3].

208 B. SECURITY PROOFS

εL(()) = () εL(`) = ` εL(λx .e) = λx .εL(e)

εL(return e) = return εL(e) εL(n) = n εL(k) = k

εL(Labeled ` t °) =
{
Labeled ` • if ` 6v L

Labeled ` εL(t)° otherwise

(a) Values.

εL(∆) = {x 7→ εL(∆(x)) | x ∈ Dom(∆)} εL(x) = x

εL(t1 t2) = εL(t1) εL(t2) εL(t1 >>= t2) = εL(t1)>>= εL(t2)

εL(label t1 t2) = labelL εL(t1) εL(t2) εL(unlabel t) = unlabelL εL(t)

εL(fork t1 t2 t3 t4 t5) = forkL εL(t1) εL(t2) εL(t3) εL(t4) εL(t5)

εL(spawn t1 t2 t3 t4 t5) = spawnL εL(t1) εL(t2) εL(t3) εL(t4) εL(t5)

εL(wait t) = wait εL(t)

(b) Heaps and terms.

εL([]) = [] εL(C : S) = εL(C) : εL(S) εL(x) = x

εL(>>=t) = >>=εL(t) εL(label t) = labelL εL(t)

εL(unlabel) = unlabelL

εL(fork t1 t2 t3 t4) = forkL εL(t1) εL(t2) εL(t3) εL(t4)

εL(spawn t1 t2 t3 t4) = spawnL εL(t1) εL(t2) εL(t3) εL(t4)

εL(wait) = wait

(c) Stacks and continuations.

Fig. 12: Erasure for sequential LIOPAR.

CHAPTER 5. PARALLEL IFC RUNTIME SYSTEMS 209

LabelL1

(∆, pc, N, ts | labelL t1 t2,S) ;µ (∆, pc, N, ts | t1, labelL t2 : S)

LabelL2

pc v H v µ.cl

(∆, pc, N, ts | H , labelL t : S) ;µ (∆, pc, N, ts | return (Labeled H •),S)

LabelL3

pc v L v µ.cl t ° = ∆∗(t)

(∆, pc, N, ts | L, labelL t : S) ;µ (∆, pc, N, ts | return (Labeled L t °),S)

(UnlabelL1)
(∆, pc, N, ts | unlabelL t ,S) ;µ (∆, pc, N, ts | t , unlabelL : S)

UnlabelL2

pc t L v µ.cl ∀ n ∈ N . pc t L v n.pc

(∆, pc, N, ts | Labeled L t , unlabelL : S) ;µ (∆, pc t `,N, ts | return(t),S)

UnlabelL3

pc t H v µ.cl ∀ n ∈ N . pc t L v n.pc

(∆, pc, N, ts | Labeled H t , unlabelL : S) ;µ (•, •, •, • | •, •)

Hole
(•, •, •, • | •, •) ;µ (•, •, •, • | •, •)

Fig. 13: Sequential semantics for erased terms (interesting rules).

210 B. SECURITY PROOFS

εL(nL, s, e) = (nL, εL(s), εL(e)) εL(nH , s, e) = (nH , εL(s), ε) εL(ε) = ε

εL(kill(n)) = kill(n) εL(send(n, t)) = send(n, εL(t))

εL(spawn(∆,n, t ,K)) =

{
spawn(εL(∆),n, εL(t),K) if n.pc v L

spawnL(εL(∆),n,K) otherwise

εL(fork(∆,n, t , b, h)) =

{
fork(εL(∆),n, εL(t), b, h) if n.pc v L

forkL(b, h) otherwise

εL(∆, pc, N, ts | t ,S) =

{
(•, •, •, • | •, •) if pc 6v L

(εL(∆), pc, N, εL(ts) | εL(t), εL(S)) otherwise

Fig. 14: Erasure for concurrent LIOPAR.

CHAPTER 5. PARALLEL IFC RUNTIME SYSTEMS 211

(ForkL5)
Σ.T (n) = (∆, pc, N, ts | b2, forkL L `H h2 t : S) pc v L

n ′ ← freshTId(L, `H,n.k) s = (∆, pc, {n ′} ∪N, ts | return n ′,S)
∆′ = {x 7→ ∆(x) | x ∈ fv∗(t ,∆)}

Σ .H (n) = h1 + h2 |∆| 6 h1 |∆′| 6 h2

Q [〈n1+b1+b2〉] (n,s,fork(∆′,n′,t,b2,h2))−−−−−−−−−−−−−−−−→Σ Q [〈〈nb1〉|〈n ′b2〉〉]

(ForkL6)
Σ.T (n) = (∆, pc, N, ts | b2 forkL H `H h2 t : S)

pc v H n ′ ← freshTId(H , `H,n.k)
s = (∆, pc, {n ′} ∪N, | return n ′,S) ∆′ = {x 7→ ∆(x) | x ∈ fv∗(t ,∆)}

Σ .H (n) = h1 + h2 |∆| 6 h1 |∆′| 6 h2

Q [〈n1+b1+b2〉] (n,s,forkL(n
′,b2,h2))−−−−−−−−−−−−−→Σ Q [〈〈nb1〉|〈n ′b2〉〉]

(SpawnL4)
Σ.T (n) = (∆, pc, N, ts | k , spawnL L `H K1 t : S)

Σ.θ(n) = {k } ∪K1 ∪K2 pc v L n ′ ← freshTId(L, `H, k)
s = (∆, pc, {n ′} ∪N | return n ′,S) ∆′ = {x 7→ ∆(x) | x ∈ fv∗(t ,∆)}

Q [〈n1+b〉] (n,s,spawn(∆′,n′,t,K1))−−−−−−−−−−−−−−−−→Σ Q [〈nb〉]

(SpawnL5)
Σ.T (n) = (∆, pc, N, ts | k spawnL H `H K1 t : S)

Σ.θ(n) = {k } ∪K1 ∪K2 pc v H n ′ ← freshTId(H , `H, k)
s = (∆, pc, {n ′} ∪N | return n ′,S) ∆′ = {x 7→ ∆(x) | x ∈ fv∗(t ,∆)}

Q [〈n1+b〉] (n,s,spawnL(∆
′,n′,K1))−−−−−−−−−−−−−−−−→Σ Q [〈nb〉]

Fig. 15: Concurrent semantics of erased terms.

212 B. SECURITY PROOFS

DomL(T) = {nL | n ∈ Dom(T) ∧ T (n).pc ≡ L}

P =
⋃

n ∈ DomL(T)

{n } ∪ T (n).N

εL(T) = {n 7→ εL(T (n)) | n ∈ P } εL(Φ) = λk .εL(Φ(k))

εL(〈T,B,H , θ, Φ, ω〉) = 〈εL(T), εL(B), εL(H), εL(θ), εL(Φ), ω〉

(a) Thread maps, core maps and parallel con�guration.

PL = {nL | n ∈ P } PH = {nH | n ∈ P }

εL(B) = BL ∪BH

where BL = {nL 7→ B(nL) | nL ∈ PL}
BH = {nH 7→ B(nH) +

∑
i ∈ J{nH }KT B(i) | nH ∈ PH }

εL(H) = HL ∪HH

where HL = {nL 7→ H (nL) | nL ∈ PL}
HH = {nH 7→

∑
i ∈ J{nH }KT ,nH .k=i.k

H (i) | nH ∈ PH }

εL(θ) = θL ∪ θH
where θL = {nL 7→ θ(nL) | nL ∈ PL}

θH = {nH 7→ θ(nH) ∪K1 ∪K2 | nH ∈ PH }
K1 =

⋃
i ∈ J{nH }KT

θ(i)

K2 = {i.k | i ∈ J{nH }KT , i.k 6= nH .k }

(b) Time, memory and core budget maps.

next(n1L, spawnL(∆,n2H ,K), 〈T,B,H , θ, ω, Φ〉) = 〈T ′,B ′,H ′, θ′, ω, Φ′〉
where T ′ = T [n2H 7→ (•, •, •, • | •, •)]

B ′ = B[n2H 7→ B0]
H ′ = H [n2H 7→ H0]
θ′ = θ[n1L 7→ θ(n1L) \ {n2H .k } ∪K][n2H 7→ K]

Φ′ = Φ[n2H .k 7→ 〈nB0
2H〉]

next(n1L, forkL(n2H , b, h), 〈T,B,H , θ, ω, Φ〉) = 〈T ′,B ′,H ′, θ′, ω, Φ〉
where T ′ = T [n2H 7→ (•, •, •, • | •, •)]

B ′ = B[n1L 7→ B(n1L)− b][n2H 7→ b]
H ′ = H [n1L 7→ H (n1L)− h][n2H 7→ h]
θ′ = θ[n2H 7→ ∅]

(c) Processing of erased events.

Fig. 16: Erasure for parallel LIOPAR.

CHAPTER 5. PARALLEL IFC RUNTIME SYSTEMS 213

Next1
〈nb〉[〈nb〉]

Next2
Q1[〈nb

1 〉] b > 0

〈Q1 | Q2〉[〈nb
1 〉]

Next3
Q1[〈n0

1 〉] Q2[〈nb
2 〉]

〈Q1 | Q2〉[〈nb
2 〉]

(a) Hierarchical Scheduling.

εL(Q) =

{
〈◦0〉 if Q ∩ P = ∅
Q ↓L otherwise

〈nb〉↓L= 〈nb〉
〈Q1,Q2〉↓L= (Q1 ↓L) g (Q2 ↓L)

〈nb1
1H〉 g 〈n

b2
2H〉 = 〈n

b1+b2
1H 〉

Q1 g Q2 = 〈Q1,Q2〉

(b) Core erasure.

Fig. 17: Core queues.

B.2 Lemmas

We now prove a number of lemmas auxiliary to our security proofs. Fig. 17a
formalizes the hierarchical scheduling policy and Fig. 17b repeats the erasure
function for core queues, where Q ∩ P = ∅ abbreviates the predicate ∀ i ∈
{1 . . |Q |}.Q [〈nbi

i 〉] ∧ ni 6∈ P , i.e., the queue contains only secret threads,
whose resources are not observable.

Lemma 1. If Q [〈n0〉], then one of the following holds:

1. If n ∈ P , then εL(Q)[〈n0〉]
2. If n 6∈ P , then there exists n ′ ∈ P such that εL(Q)[〈n ′0〉]

Proof. First, Q [〈n0〉] implies that all threads in queue Q have budget 0. Then,
since εL(Q) simply redistribute the residual budgets of the secret threads on the
queue, any thread scheduled by εL(Q) will have budget 0 intuitively. Formally,
we have two cases depending on whether n ∈ P or not.

1. By induction on the scheduling policy. Case [Next1] is trivial, case [Next2]
is impossible and case [Next3] follows by induction. If n ≡ ◦ the lemma
is trivial, i.e., εL(〈◦0〉) = 〈◦0〉↓L= 〈◦0〉.

2. If Q ∩ P = ∅, then εL(Q) = 〈◦0〉. If Q ∩ P 6= ∅, we perform induction.
Case [Next1] and [Next2] are absurd, in case [Next3], we inspect the
result of (Q1 ↓L) g (Q2 ↓L). If that is a leaf, e.g., 〈n0

H 〉, then nH ∈ PH

(erasure reassigns the budgets of the threads in Q1 and Q2 to the closest
ancestor in Q ∩P) and the lemma follows by rule [Next1]. Otherwise, we
inductively apply Lemma 1 to Q1[〈n0

1 〉] and Lemma 1.2 to Q2[〈n0〉].

214 B. SECURITY PROOFS

Lemma 2. If Q [〈nb
L〉], then εL(Q)[〈nb

L〉].

Proof. The core scheduler runs public thread nL, thus nL ∈ P and εL(Q) =
Q ↓L. Then the proof follows by induction on the scheduling policy Q [〈nb

L〉],
observing in case [Next2] and [Next3] that 〈Q1,Q2〉 ↓L= 〈Q1 ↓L,Q2 ↓L〉,
because either Q1 or Q2 contains public thread nL and using Lemma 1 in case
[Next3].

Lemma 3. Proof. If Q [〈n1+b
H 〉] and nH ∈ P , then there exists b′, such that

b 6 b′, εL(Q)[〈n1+b′

H 〉].

Since nH ∈ P , then Q ∩ P 6= ∅ and εL(Q) = Q ↓L and we proceed by
induction. Case [Next1] is trivial. In case [Next2], we perform case analysis
on the result of (Q1 ↓L)g (Q2 ↓L), if that is a branch, i.e., 〈Q1 ↓L,Q2 ↓L〉, then
the lemma follows by induction on Q1[〈n1+b

H 〉], otherwise, Q1 ↓L= 〈n1+b
H 〉 and

Q2 ↓L= 〈n ′b
′

H 〉, for some other secret thread n ′, with leftover budget b′, which
then gets collapsed into the budget of its ancestor n , i.e., 〈n1+b

H 〉 g 〈n ′b
′

H 〉 =
〈n1+b+b′

H 〉. The lemma then follows by applying rule [Next2] to rule [Next1],
i.e., scheduling 〈n1+b+b′

H 〉. The same line of reasoning applies to case [Next3],
where the public ancestor, say n ′L ∈ P , of secret thread nH ∈ P is in the
left branch, i.e., Q1[〈n ′0L]〉, thus (Q1 ↓L) g (Q2 ↓L) equals to 〈Q1 ↓L,Q2 ↓L〉.
Then, the lemma follows by applying Lemma 1 to Q1[〈n ′0L]〉 and induction on
(Q ↓L)[〈n1+n

H].

Lemma 4. If Q [〈n1+b
H 〉], nH 6∈ P and Q ∩ P 6= ∅, then there exists n ′H ∈

Q ∩ P and b′ > b, such that εL(Q)[〈n ′1+b′

H 〉].

Proof. Intuitively, we need to �nd in core Q , the closest ancestor n ′H ∈ Q∩P
of secret thread nH — there exists one threads form a hierarchy and Q∩P 6= ∅—
and show that the ancestor gets scheduled in the erased queue and that erasure
function redistributes the residual budget to it. We do that by induction on
Q [〈n1+b

H 〉]. Case [Next1] contradicts the hypothesis Q ∩ P 6= ∅, hence the
lemma is vacuously true. Case [Next2] follows by induction in the left sub-
queue, i.e., Q1[〈n1+b

H 〉]. Intuitively, the ancestor of nH can only be in the left
subtree, thus Q1∩P 6= ∅ and 〈Q1,Q2〉↓L= 〈Q1 ↓L,Q2 ↓L〉. 21 In case [Next3],
we inspect the result of (Q1 ↓L)g (Q2 ↓L). If that is a leaf, by Lemma 1 there
exists a secret thread n1H with zero residual budget, such that Q1 ↓L= 〈n0

1H〉
and Q2 ↓L= 〈n1+b2

2H 〉 for some other thread n2H 6∈ Q ∩ P with left-over
budget b2 > b (since core erasure does not discard left-over budgets). 22 Then,
the erased queue is 〈n1+b1+b2

1H 〉, and the lemma follows by rule [Next1]. If
(Q1 ↓L)g (Q2 ↓L) is a branch, then either we apply Lemma 1 and induction, if
21 The public parent thread cannot be in the right branch, i.e., Q2, because parents are

moved to the left branch when forking.
22 Either n2H ≡ nH , or it is the oldest ancestor of nH on the core.

CHAPTER 5. PARALLEL IFC RUNTIME SYSTEMS 215

Q2 ∩ P 6= ∅, or derive a contradiction, otherwise. Intuitively, if Q2 ∩ P = ∅,
then Q1 ∩P 6= ∅ and either (i) all the threads in the left branch are secret, i.e.,
Q1 ⊆ PH , which contradicts the fact that (Q1 ↓L) g (Q2 ↓L) is a branch, or
(ii) there exists a public thread n ′L ∈ Q1, and we can show that nH ∈ PH ,
contradicting the second hypothesis of the lemma.

Lemma 5. Properties of the erasure function:

1. |εL(∆)| ≡ |∆|
2. fv∗(εL(∆), εL(t)) ≡ fv∗(∆, t)
3. εL(t1 [x / t2]) = εL(t1)

Proof. By straightforward induction on the arguments. The second lemma re-
lies on secret labeled values containing closed term. These values have no
free variables, i.e., fv∗(∆,Labeled H t °)) = ∅, and thus the lemma holds,
i.e., fv∗(εL(∆), εL(Labeled H t °)) = fv∗(εL(∆), Labeled H •) = ∅. If
labeled values contained open terms, then the lemma would not hold, e.g.,
fv∗(∆,Labeled H x) = {x } 6≡ ∅ = fv∗(εL(∆), Labeled H •).

Lemma 6. For all time budget maps B, memory budget maps H , core capa-
bilities maps θ, core queues Q , thread pool T and public threads n ∈ P , let
N = {n }, then the following hold:

–
∑
i ∈ JNKT ,i.k=n.k B(i) =

∑
j ∈ JNKεL(T),j .k=n.k εL(B)(j)

–
∑
i ∈ JNKT ,i.k=n.k H (i) =

∑
j ∈ JNKεL(T),j .k=n.k εL(H)(j)

–
⋃
i ∈ JNKT θ(i) =

⋃
i ∈ JNKεL(T) εL(θ)(i)

– {i.k | i ∈ JNKT , i.k 6= n.k } = {i.k | i ∈ JNKεL(T), i.k 6= n.k }.

– εL(Q \ JNKT) = εL(Q) \ JNKεL(T).

Proof. This lemma relates the observable parts of the budget maps and the era-
sure function, and ensures that budget erasure returns all the secret resources,
i.e., the resources allocated by the secret descendants of thread n ∈ P , re-
gardless of their number. Intuitively, the left-hand side of the equation involves
an arbitrary number of those secret threads and the right-hand none, because
the erasure function removes them from the thread pool map. More precisely,
we partition the descendants of thread n ∈ P in two groups, based on
whether the attacker can observe their resources, formally: JNKT = X ∪ Y ,
such that X ⊆ P and and Y 6⊆ P . We observe that the erased thread map
only contains only the threads with visible resources, i.e., JNKεL(T) = X ,
since Dom(εL(T)) = P , that is erasure removes the secret threads con-
tained in Y . Then, we further partition set X in two sets depending on
the security level of the threads, i.e., X = XL ∪ XH , where XL ⊆ PL

and XH ⊆ PH . First, we observe that the erasure function leaves the bud-
gets of public threads unchanged, i.e.,

∑
(iL ∈ XL)

B(iL) =
∑

(iL ∈ XL)
BL(iL),

216 B. SECURITY PROOFS

where εL(B) = BL ∪BH from Figure 16b. Then, we only need to show that∑
(iH ∈ XH∪Y)B(iH) =

∑
(iH ∈ XH)BH (iH). The equality follows by two ob-

servations. Firstly, both sides sum the budget of the secret threads in XH , i.e.,
B(iH) for iH ∈ XH . Secondly, the remaining secret threads iH ∈ Y 6⊆ P
are descendants of some secret thread nH ∈ XH ⊆ P (X ∪Y = JNKT), and
therefore their budget is accounted for on the right-hand side in the summa-
tion

∑
i ∈ J{nH }KT B(i). The same line of reasoning applies for memory, core

capabilities budgets and core queues.
The next lemma ensures that processing any event e generated by a secret

thread changes only the secret parts of the global state. L-equivalence of con-
�gurations (and all the other syntactic categories) is de�ned as the kernel of
the erasure function, i.e., c ≈L c′ i� εL(c) ≡ εL(c′), see De�nition 1.

Lemma 7. If next(nH , e, c) = c′, then c ≈L c′.

Proof. By case analysis on event e . Case ε is trivial. Rule [Spawn] ensures
that the child thread is at least as sensitive as the parent nH , hence if e =
spawn(∆,n2, t ,K), then n2 is secret and furthermore n2 6∈ P , hence c ≈L

c′, because the global state c′ changes only in parts that are not observable by
the attacker, i.e., T ≈L T [n2 7→ (∆,n2.pc,∅, [] | t , [])]), T ≈L T [n2 7→ s],
B ≈L B[n2 7→ B0] and H ≈L H [n2 7→ H0], because erasure �lters out the
new secret binding n2 6∈ P . Furthermore, if the parent thread has observable
resources, i.e., nH ∈ P , then erasure reassigns the core capabilities of the child
to the parent, i.e., θ[nH 7→ θ(nH) \ {n2.k } ∪K][n2 7→ K] ≈L θ (Figure 16b).
Lastly, the core maps are L-equivalent, i.e., Φ ≈L Φ[n2.k 7→ 〈nB0

2 〉], because
Φ(n2.k) ≈L 〈nB0

2 〉 and εL(〈nB0
2 〉) = 〈◦0〉 = εL(Φ)(n2.k), since n2 6∈ P and

n2.k is free in Φ (thread n1 could have not spawned on that core otherwise).
Case fork(∆,n2, t , b, h) is similar. Case kill(n ′) is trivial, if n ′ 6∈ Dom(T).
Otherwise, we observe that n ′ 6∈ P and so are its descendants, i.e., i 6∈ P
where i ∈ N and N = J{n ′}KT , and the changes to the budget maps
involve only secret threads. If the parent thread has observable resources, i.e.,
nH ∈ P , then the new budget maps are also indistinguishable to the attacker,
e.g., B[n 7→ B(n) +

∑
i ∈ N,i.k=n.k B(i)] ≈L B. The �nal core map is L-

equivalent to the initial map, i.e., Φ(k) ≈L Φ(k)\N for k ∈ {1 . . κ}, because
N contains only secret threads and their left-over budget is reassigned to their
closest ancestor in P . Lastly, we prove case send(n2, t) by case analysis on the
guards of function next(·). The lemma follows trivially in the �rst and in the
third case—the global state does not change because the message is dropped.
In the second case, the message gets delivered in the message queue of thread
n2, under the condition that pc1 v pc2, i.e., pc2 ≡ H . If n2 6∈ P , erasure
drops its con�guration from the thread pool and we obtain L-equivalence. If
n2 ∈ PH , then εL(T)(n2) = (•, •, •, • | •, •) and the update does not change
the thread pool, because • . t ≡ • and • ∪∆ ≡ •.

Lemma 8. If next(nL, e, c) = c′, then next(nL, εL(e), εL(c)) = εL(c′).

CHAPTER 5. PARALLEL IFC RUNTIME SYSTEMS 217

Proof. Intuitively, the lemma ensures that processing any event e generated
by public thread nH ∈ P commutes with the erasure function. The proof
starts with case analysis on e . Case ε is trivial. Two cases follow for event
spawn(∆,n2, t ,K) depending on the security level of the child thread. If
the thread is public, i.e., T (n2).pc ≡ L, then erasure rewrites the event to
spawn(εL(∆),n2, εL(t),K) and the updates to the budget and core maps
commute with erasure, e.g., εL(T [n2 7→ (∆,L,∅, [] | t , [])]) = εL(T)[n2 7→
(εL(∆),L,∅, [] | εL(t), [])]. If the child thread is secret, i.e., T (n2).pc ≡ H ,
we apply 2-steps erasure to simulate the sensitive write operation [153]. In
particular, erasure rewrites the event to special event spawnL(εL(∆),n2,K),
and function next(·) handles it so that it gives global state εL(c′) (Fig. 16c).
Notice that the child thread has a secret current label and its parent is pub-
lic, thus n2 ∈ PH and εL(T [n2 7→ (∆,L,∅, [] | t , [])]) = εL(T)[n2 7→
(•, •, •, • | •, •)]. Case fork(∆,n2, t , b, h) is similar. In case kill(n2), we apply
Lemma 6 to show that the resources assigned to the parent thread nL remain the
same under erasure. In case send(n2, t), we distinguish two cases depending
on the sensitivity of n2. If public, i.e., T (n2).pc ≡ L, then the lemma is trivial. In
function next(·) the same guard holds true under erasure, i.e., nL ∈ Dom(T)
i� nL ∈ Dom(εL(T)), εL(T)(nL) = εL(T (nL)) and |∆| = |εL(∆)| (Lemma
5.1), and the public updates to the thread pool commutes under erasure. If the
recipient is secret, i.e., T (n2).pc ≡ H , then we further distinguish between
n2 ∈ PH , which follows as before, and n2 6∈ PH , which implies that
n2 6∈ Dom(εL(T)), the message is dropped and the thread map remains
unchanged, i.e., εL(T) ≡ εL(T [n2 7→ s]).

By means of this lemma, we show that erasure commutes with processing
parallel events commute.

Lemma 9. εL(〈〈sort es〉〉c) ≡ 〈〈sort (map εL(·) es)〉〉εL(c)

Proof. Intuitively, the proof relies on the fact that public events, i.e., events
generated by public threads, are erased homomorphically, i.e., εL(nL, e) =
(nL, εL(e)) and secret events are rewritten to ε, i.e., εL(nH , e) = (, ε) oth-
erwise.23 The proof follows by induction on the event list es . The base case
is trivial. In the inductive case, we need to consider how event erasure af-
fects sorting. Intuitively, the erasure function does not a�ect the relative or-
der of public events, i.e., (nL, e), because εL(e) has the same priority as e .
Instead, secret events end up at the end of the list because their event is
erased to ε, which has the least priority. If the next event is secret, we use
Lemma 7 and we apply induction, after removing the corresponding event in
the erased list—the erased event is trivial (ε) and it does not change the state,
i.e., 〈〈sort ((nH , ε) : map εL(·) es)〉〉εL(c) ≡ 〈〈sort (map εL(·) es)〉〉εL(c). If the
next event is public, then the scheduler processes the corresponding erased
23 The thread that generates ε could be di�erent from nH , see Proposition 7.2 and 7.3.

Since the event ε has no e�ects on the state, the thread identi�er is irrelevant for the
rest of the proof.

218 B. SECURITY PROOFS

event in the erased con�guration. The proof then follows by Lemma 8 and
straightforward induction.

We conclude this section by showing that hierarchical scheduling (Figure
17a) is deterministic.

Lemma 10. If Q [〈nb1
1 〉] and Q [〈nb2

2 〉], then n1 ≡ n2 and b1 ≡ b2.

Proof. Induction on the scheduling relation.
B.3 Progress-Insensitive Non-interference

Using the auxiliary lemmas listed above, we prove progress-inensitive noninter-
ference, which guarantees that L-equivalence is preserved under assumptions
that both con�gurations make progress. As explained in Section 5.2, the prop-
erty relies ondeterminism of the stepping relation and simulation.

Proposition 5 (Determinism). For all states s1, s2, s3, core queues Q1, Q2,
Q3, thread ids n1, n2, events e1, e2, global states Σ, con�gurations c1, c2, c3, the
following hold:

1. If s1 ;µ s2 and s1 ;µ s3, then s2 ≡ s3.
2. If Q1

(n1,s1,e1)−−−−−−→Σ Q2 and Q1
(n2,s2,e2)−−−−−−→Σ Q3, then n1 ≡ n2, s1 ≡ s2,

e1 ≡ e2 and Q2 ≡ Q3.
3. If c1 ↪→ c2 and c1 ↪→ c3, then c2 ≡ c3.

Proof.
1. Case analysis on the sequential step relation.
2. By Lemma 10, we derive n1 ≡ n2, thus the same thread is scheduled on

both cores. Then, we do case analysis and, since Σ is the same in both
reductions, the threads step likewise, i.e., s1 ≡ s2 (using Lemma 5.1 in
case [Step]), and generate the same event, e1 ≡ e2. The resulting cores
are equal, i.e., Q1 ≡ Q2, since both threads have the same residual budget
(Lemma 10).

3. The lemma follows immediately by applying determinism, i.e., Lemma 5.2,
on all the core reductions Φ(i) (ni,si,ei)−−−−−−→Σ Qi, for i ∈ {1 . . κ}.

Proposition 6 (Sequential Simulation). If s ; s ′, then εL(s) ; εL(s
′).

Proof. If the current label is H , then simulation follows by rule [Hole], which
simply ticks, i.e., (•, •, •, • | •, •) ; (•, •, •, • | •, •). If the current la-
bel is L, then simulation follows by applying the same step rule under re-
duction. For those, we discuss only the interesting cases, where we apply 2-
steps erasure [153]—all the others cases are trivial and follow by applying
Lemma 5 when needed, e.g., 5.1 for rule [App2] and 5.3 for rule [GC]. The era-
sure function rewrites term label to special term labelL, then rule [LabelL1]
simulates [Label1] and rule [LabelL2] ([LabelL3]) simulates [Label2] when
the assigned label is public, i.e., L, (resp. secret, i.e., H). Similarly, erasure

CHAPTER 5. PARALLEL IFC RUNTIME SYSTEMS 219

rewrites term unlabel to special term unlabelL, then rule [UnlabelL1] simu-
lates [Unlabel1] and rule [UnlabelL2] ([UnlabelL3]) simulates [Unlabel2],
when the labeled value is public, i.e., Labeled L εL(t)° for some term t (resp.
secret, i.e., Labeled H •).

We now lift simulation to core reductions. For brevity, we write thread’s
state • for erased state (•, •, •, • | •, •), state s◦ for the spinning thread’s state,
i.e., s◦ = ([],⊥,∅, [] | return (), []).

Proposition 7 (Core Simulation). Given a core reduction step Q
(n,s,e)−−−−→Σ

Q ′, then one of the following holds:

1. If n ∈ P , then εL(Q)
εL(n,s,e)−−−−−−→εL(Σ) εL(Q

′)

2. If n 6∈ P and Q ∩ P = ∅, then εL(Q)
(◦,s◦,ε)−−−−−→εL(Σ) εL(Q

′)

3. If n 6∈ P and Q ∩ P 6= ∅, then there exists some thread n ′ ∈ PH , such

that εL(Q)
(n′,•,ε)−−−−−→εL(Σ) εL(Q

′)

Proof.
1. The �rst case simulates the execution of a thread with visible resources,

i.e., n ∈ P , which executes similarly under erasure. We distinguish two
cases depending on the thread’s current label.
– If nL ∈ PL, we show that the same thread is scheduled using Lemma

2 and we proceed by case analysis on the core step. Since the thread’s
current label is public, erasure preserves the thread’s structure and its
resources. As a result the erased thread steps likewise, i.e., it performs
exactly the same reduction step. In particular, we apply Proposition 6
in case [Step] and Lemma 1 in case [ContextSwitch].

– If nH ∈ PH , we apply Lemma 3, i.e., the core scheduler executes the
same secret thread, which then ticks, i.e., it reduces with rule [Step]
applied to rule [Hole], since its con�guration gets completely erased,
i.e., εL(T (nH)) = (•, •, •, • | •, •).

2. The second case simulates the execution of a core allocated to threads with
no visible resources, i.e., n 6∈ P and Q ∩ P = ∅. This case occurs if
some secret thread with public resources spawns another secret thread on
a core that it owns. Under erasure, the core is still free, i.e., εL(Q) = 〈◦0〉
and the spinning thread ◦ takes over in the erased core queue via rule
[ContextSwitch].

3. The third case simulates the execution of a secret thread with no visible
resources, i.e., n 6∈ P , which shares the core with threads gets scheduled
on the queue Q , which contains some other thread with visible resources,
i.e., Q ∩ P 6= ∅. For example, this happens when a secret thread with
visible resources forks another secret thread on the same core. Then, we
apply Lemma 4 and conclude that the core scheduler executes its closest

220 B. SECURITY PROOFS

ancestor n ′H ∈ PH , which remains in the erased core. 24 Thread n ′H
simulates the execution of thread nH by rule [Step] and [Hole] (see above).
We remark that core erasure cancels out the e�ects of fork from queue
Q ′ (rule [Fork]), as it collapses both thread nH and its new child to the
ancestor thread n ′H , which regains their resources.

Proposition 2 (Parallel Simulation). If c ↪→ c′, then εL(c) ↪→ εL(c
′).

Proof. The proof requires to show that running the parallel scheduler on
the erased initial state, i.e., εL(c), by means of rule [Parallel] from Fig. 5,
gives a �nal state that corresponds to the erased state obtained in original step
i.e., εL(c′). The fact that the core scheduler could schedule di�erent threads on
erased cores makes the proof interesting. Intuitively, public cores, i.e., cores that
execute public threads, proceed in lock-step with the original con�guration
(Proposition 7.1) and the parallel scheduler processes their public events in
the same relative order, so that erasure and changes to the state commute.
Instead, secret cores execute either the public spinning thread (Proposition 7.2)
or a another public thread n ′H ∈ PH (Proposition 7.3). In either case, they
generate the trivial event, i.e., ε, which leaves the global state unchanged, hence
the di�erent order with which they get processed is irrelevant under erasure.

Firstly, we apply core simulation, i.e., Proposition 7, to the core scheduler
step on each core i ∈ {1 . . κ}. Then, the parallel scheduler changes the
global state accordingly: it updates the erased thread pool εL(T), the core map
εL(Φ) and then processes the events generated by the core scheduler. Those
operations either commute under erasure, whenever they a�ect public parts of
the state, or have no e�ect, otherwise. We show that, by case analysis on the
security level of the threads scheduled in the erased con�guration. In particular,
for each thread ni that runs in the original con�guration, one of the clauses of
Proposition 7 applies.

Commutativity holds in the �rst case (Proposition 7.1), since εL(T [n 7→
s]) ≡ εL(T)[n 7→ εL(s)], when n ∈ P . In the second case (Proposition 7.2),
we show εL(T [n 7→ s]) ≡ εL(T)[◦ 7→ εL(s◦)] by rewriting both sides of the
equation to εL(T). On the left-hand side, erasure �lters out the secret thread
from T , since n 6∈ P , while the update does not change the thread pool on
the right-hand side, because εL(T)(◦) ≡ εL(s◦) ≡ ([],⊥,∅, [] | return (), [])
In the third case (Proposition 7.3), the ancestor n ′ ∈ P takes over n in
the erased core and the update to the thread map has no e�ect, i.e., εL(T) =
εL(T [n

′ 7→ •]), since εL(T)(n ′H) = (•, •, •, • | •, •). In all cases, core map
erasure is homomorphic, i.e., εL(Φ) = λk .εL(Φ(k)), then core map updates
always commute with erasure, i.e., εL(Φ[k 7→ Qi]) ≡ εL(Φ)[k 7→ εL(Qi)]. To
conclude the proof, we apply Lemma 9 and show that erasing and processing
events commute, i.e., εL(〈〈sort es〉〉c) ≡ 〈〈sort (map εL(·) es)〉〉εL(c).

We conclude with the proof of progress-insensitive noninterference.

24 The current label of the ancestor cannot be public, i.e., n ′L ∈ PL), otherwise
nH ∈ PH and case 1 applies instead.

CHAPTER 5. PARALLEL IFC RUNTIME SYSTEMS 221

Proposition 3 (Progress-Insensitive Non-interference). If c1 ↪→ c′1, c2 ↪→
c′2 and c1 ≈L c2, then c′1 ≈L c′2.

Proof. We apply parallel simulation, i.e., Proposition 2 and derive the erased
reductions εL(c1) ↪→ εL(c

′
1) and εL(c2) ↪→ εL(c

′
2). From c1 ≈L c2, we obtain

εL(c1) ≡ εL(c2) (De�nition 1), and Proposition 5.3 (parallel determinism) gives
εL(c

′
1) ≡ εL(c′2), i.e., c′1 ≈L c′2.

B.4 Timing-Sensitive Non-interference

We now lift the security guarantees of LIOPAR to be timing-sensitive. Intu-
itively, timing-insensitive non-interference ensures that the timing of any par-
allel program does not depend on secret information, when executed with
LIOPAR runtime system. More precisely, the theorem ensures that if a parallel
program steps with some secret information, then it also steps with di�erent
secret information. The key property to proving this stronger form of non-
interference is time-sensitive progress, i.e., Proposition 4, which reconstructs
the single step taken by program in the other execution. This property relies
on some side conditions that guarantee that the program satis�es some ba-
sic correctness properties, that we formally specify in the de�nition of valid
con�guration.

De�nition 2 (Valid Con�guration). A con�guration 〈T,B,H , θ, Φ, ω〉 is
valid if and only if it satis�es the following properties:

– If T (n) = s, then state s is well-formed, i.e., it is the state of a well-typed
thread and x ∈ Dom(s.∆) for all variables x ∈ fv(s);

– For all cores k ∈ {1 . . κ}, ◦k 7→ s◦ ∈ T , ◦k 7→ 0 ∈ B, ◦k 7→ H0 ∈ H ,
◦k 7→ ∅ ∈ θ;

– Dom(T) = Dom(B) = Dom(H) = Dom(θ);
– If n ∈ Q , then n ∈ Dom(T);
– If Q [〈nb〉], then b 6 B(n), |T (n).∆| 6 H (n) and n.k 6∈ θ(n);
– For all threads n1 n2 ∈ Dom(T), such that n1 6= n2, θ(n1) ∩ θ(n2) = ∅;

It is easy to see that the initial parallel con�guration (Corollary 1) is valid.
The next lemma shows that valid con�gurations that execute with the opera-
tional semantics of LIOPAR remain valid.

Lemma 11 (Valid Invariant).
For all valid con�gurations c, if c ↪→ c′, then c′ is valid.

Proof. By case analysis on all the reduction relations.

Proposition 4 (Time-Sensitive Progress). For all valid con�gurations c1, c′1
and c2 and parallel reduction steps c1 ↪→ c′1, if c1 ≈L c2, then there exists a
con�guration c′2, such that c2 ↪→ c′2.

Proof. The parallel scheduler has only one reduction rule, i.e., [Parallel], thus

222 B. SECURITY PROOFS

the proof mainly relies on core progress, i.e., showing that for each core that
steps in the �rst con�guration, then the corresponding core in the second
con�guration also steps. Formally, for all valid cores Q1 ≈L Q2 and global
states Σ1 ≈L Σ2, if Q1

m1−−→Σ1
Q ′1 and Q1 ≈L Q2, then there exists Q ′2

and m2, such that Q2
m2−−→Σ2

Q ′2. Since c1 ≈L c2, the core maps in the
con�gurations are L-equivalent, i.e., Φ1 ≈L Φ2, hence Φ1(i) ≈L Φ2(i), for
all i ∈ {1 . . κ}. In particular, we apply core simulation, i.e., Proposition 7,
which gives us εL(Q1)

m3−−→εL(Σ1) εL(Q
′
1), for some message m3, and use

that together with εL(Q1) ≡ εL(Q2) and the assumption that Q1 and Q2 are
valid to reconstruct Q ′2, m2 and the other step Q2

m2−−→εL(Σ2) Q ′2.
The task of reconstructing a core step is facilitated by the fact that the core

semantics always steps, regardless of the number of threads on the core, their
resources and state. Speci�cally, either threads execute sequentially ([Step]),
or they perform a concurrent operation ([Fork,Spawn,Wait]), or they are stuck
[Stuck] otherwise. Note that, even if no thread has su�cient time budget to
step, then rule [ContextSwitch] takes over and that even free cores step
thanks to the core’s spinning thread, i.e., ◦.
Theorem 1 (Timing-Sensitive Non-interference). For all valid con�gura-
tions c1 and c2, if c1 ↪→ c′1 and c1 ≈L c2, then there exists a con�guration c′2,
such that c2 ↪→ c′2 and c′1 ≈L c′2

Proof. We apply time-sensitive progress, i.e., Proposition 4 to valid con-
�gurations c1 ≈L c2 and obtain the second reduction c2 ↪→ c′2 for some
con�guration c′2. We then derive L-equivalence of the �nal con�gurations,
i.e., c′1 ≈L c′2, from progress-insensitive non-interference, i.e., Proposition 3,
applied to c1 ↪→ c′1, c2 ↪→ c′2 and c1 ≈L c2.

Corollary 1 generalizes timing-sensitive non-interference to many steps by
applying Theorem 1 and Proposition 11 as many times.

CHAPTER 5. PARALLEL IFC RUNTIME SYSTEMS 223

C Attack Code
Below we list the code for the parallel scheduler-based attacks. The code de-
pends on the following external packages:

– lio-0.11.6.0
– hashable-1.2.7.0
– text-1.2.3.1
– array-0.5.1.1
– bytestring-0.10.8.1

Haskell package manager Cabal can be used to con�gure and install these
dependencies with the command cabal install packages. Both attack mod-
ules rely on some helper functions found in Appendix C.3. Additionally, both
attacks rely on thresholds that must be determined empirically as they are
machine dependent.

The attacks can be compiled and executed using GHC version 8.0.2 with
the following commands, where CODE is the �le containing the attack code and
SECRET represents the secret value to leak (0 or 1),

$ ghc -threaded -rtsopts CODE lib.hs -o attack
$./attack SECRET +RTS -N2 -RTS

Section C.1 and C.2 list the code of the reclamation and allocation attacks
(reclamation.hs and allocation.hs), sketched in Section 2.3. In the attacks,
a secret thread a�ects the CPU-time available to other public threads by termi-
nating early (the scheduler reclaims its quota of CPU-time), or forking another
secret thread (the scheduler allocates a new CPU-time quota). The attacks are
written using the LIO library and disjunction category (DC) labels to specify
the security lattice [142].

224 C. ATTACK CODE

C.1 Reclamation Attack

-- reclamation.hs

module Main where

import System.Environment

import Data.List

import LIO

import LIO.LIORef

import LIO.DCLabel

import LIO.Concurrent

import LIO.Run

import Lib

-- Thresholds.

-- These parameters are machine specific and estimated empirically.

len = 100000

threshold = 3000

-- The code run by the secret thread.

-- If secret == 1, the thread loops,

-- otherwise it terminates right away.

highThread :: DC (DCLabeled Int) -> DC Int

highThread secret = do

s <- unlabel secret

case s of

1 -> do

t1 <- busyWait 100000

return 0
_ -> return 0

-- Simple heuristic to determine the value of the secret

analyze :: (String, Int) -> Int

analyze (_,a) = if a > threshold then 1 else 0

-- Count the number of messages from each thread

-- in the public channel and infer the secret.

count :: LIORef DCLabel [String] -> DC Int

count channel= do

msgs <- readLIORef channel

let acc = map (\x -> (head x, length x)) (group msgs)

return $ analyze $ head acc

-- Fork the two public threads that write to

-- the same public channel

CHAPTER 5. PARALLEL IFC RUNTIME SYSTEMS 225

runLowThreads :: LIORef DCLabel [String] -> DC Int

runLowThreads channel = do

t1 <- lFork low (writeA len channel)

t2 <- lFork low (writeB len channel)

() <- lWait t1

() <- lWait t2

-- analyze the public channel to infer the secret

count channel

-- Start the the secret thread and the two public threads,

-- which return the secret.

leak :: DC (DCLabeled Int) -> DC Int

leak secret = do

channel <- newLIORef low []

secretThread <- lFork secretL (highThread secret)

secretValue <- runLowThreads channel

return secretValue

main :: IO ()

main = do

l <- getArgs

let secret = getArg l

secret <- evalLIO (leak (label secretL secret)) init

print $ "The secret is " ++ (show secret)

return ()

226 C. ATTACK CODE

C.2 Allocation Attack

-- allocation.hs

module Main where

import System.Environment

import Data.List

import LIO

import LIO.LIORef

import LIO.DCLabel

import LIO.Concurrent

import LIO.Run

import Lib

-- Thresholds.

-- These parameters are machine specific and estimated empirically.

len = 100000

lowThreshold = 4000

highThreshold = 15000

-- The code run by the secret thread.

-- If secret == 1, then the thread forks a child,

-- otherwise it loops.

highThread :: DC (DCLabeled Int) -> DC Int

highThread secret = do

s <- unlabel secret

case s of

1 -> do

s1 <- lFork high (busyWait len)

t1 <- busyWait len

res <- lWait s1

return 0
_ -> do

t1 <- busyWait len

return 0

-- Simple heuristic to determine the value of the secret.

analyze :: (String, Int) -> Int

analyze (_,a) =

if (a < lowThreshold) || (a > highThreshold)

then 1

else 0

-- Count the number of messages from each thread

-- in the public channel and infer the secret.

CHAPTER 5. PARALLEL IFC RUNTIME SYSTEMS 227

count :: LIORef DCLabel [String] -> DC Int

count channel= do

msgs <- readLIORef channel

let acc = map (\x -> (head x, length x)) (group msgs)

return $ analyze $ head acc

-- Fork the two public threads that write

-- to the same public channel

runLowThreads :: LIORef DCLabel [String] -> DC Int

runLowThreads channel = do

t1 <- lFork low (writeA len channel)

t2 <- lFork low (writeB len channel)

() <- lWait t1

() <- lWait t2

-- analyze the public channel to infer the secret

count channel

leak :: DC (DCLabeled Int) -> DC Int

leak secret = do

channel <- newLIORef low []

secretThread <- lFork high (highThread secret)

secretValue <- runLowThreads channel

return secretValue

main :: IO ()

main = do

l <- getArgs

let secret = getArg l

secret <- evalLIO (leak (label high secret)) init

print $ "The secret is " ++ (show secret)

return ()

228 C. ATTACK CODE

C.3 Helper Functions

-- lib.hs

module Lib where

import LIO

import LIO.LIORef

import LIO.DCLabel

import Control.Monad

-- Command line parsing

getArg [] = -1

getArg (a:r) = read a

-- Labels

low = "Public" %% "Public"

secretL = "Secret" %% "Secret"

high = low `lub` secretL

-- Initial LIO state (current label and clearance)

init = LIOState { lioLabel = low

, lioClearance = high }

-- Write a message to the channel for a given number of times.

write :: String -> Int -> LIORef DCLabel [String] -> DC ()

write msg n ref = replicateM_ n trace

where trace = do

() <- modifyLIORef ref (\l -> msg:l)

return ()

-- Write "A" to the channel

writeA :: Int -> LIORef DCLabel [String] -> DC ()

writeA len ref = write "A" len ref

-- Write ``B" to the channel

writeB :: Int -> LIORef DCLabel [String] -> DC ()

writeB len ref = write "B" len ref

-- Busy waiting.

busyWait :: Int -> DC Int

busyWait 0 = return 1

busyWait n = do

acc <- busyWait (n - 1)

return $ acc + n

231

Bibliography

1. Martín Abadi, Anindya Banerjee, Nevin Heintze, Nevin Heintze, and Jon G. Riecke.
A core calculus of dependency. In Proceedings of the 26th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL ’99, pages 147–160,
New York, NY, USA, 1999. ACM.

2. Maximilian Algehed and Alejandro Russo. Encoding dcc in haskell. In Proceedings
of the 2017 Workshop on Programming Languages and Analysis for Security, PLAS
’17, pages 77–89, New York, NY, USA, 2017. ACM.

3. A. Askarov, S. Chong, and H. Mantel. Hybrid monitors for concurrent noninterfer-
ence. In 2015 IEEE 28th Computer Security Foundations Symposium, pages 137–151,
July 2015.

4. Aslan Askarov, Sebastian Hunt, Andrei Sabelfeld, and David Sands. Termination-
insensitive noninterference leaks more than just a bit. In Proceedings of the 13th
European Symposium on Research in Computer Security: Computer Security, ES-
ORICS ’08, pages 333–348, Berlin, Heidelberg, 2008. Springer-Verlag.

5. Aslan Askarov, Danfeng Zhang, and Andrew C. Myers. Predictive black-box miti-
gation of timing channels. In Proceedings of the 17th ACM Conference on Computer
and Communications Security, CCS ’10, pages 297–307, New York, NY, USA, 2010.
ACM.

6. Joshua Auerbach, David F Bacon, Perry Cheng, David Grove, Ben Biron, Charlie
Gracie, Bill McCloskey, Aleksandar Micic, and Ryan Sciampacone. Tax-and-spend:
democratic scheduling for real-time garbage collection. In Proceedings of the 8th
ACM international conference on Embedded software, pages 245–254. ACM, 2008.

7. Thomas H. Austin and Cormac Flanagan. E�cient purely-dynamic information
�ow analysis. In Proceedings of the ACM SIGPLAN Fourth Workshop on Program-
ming Languages and Analysis for Security, PLAS ’09, pages 113–124, New York, NY,
USA, 2009. ACM.

8. Thomas H. Austin and Cormac Flanagan. Permissive dynamic information �ow
analysis. In Proceedings of the 5th ACM SIGPLAN Workshop on Programming Lan-
guages and Analysis for Security, PLAS ’10, pages 3:1–3:12, New York, NY, USA,
2010. ACM.

9. Thomas H. Austin and Cormac Flanagan. Multiple facets for dynamic information
�ow. In Proceedings of the 39th Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL ’12, pages 165–178, New York, NY,
USA, 2012. ACM.

10. Amittai Aviram, Shu-Chun Weng, Sen Hu, and Bryan Ford. E�cient system-
enforced deterministic parallelism. Communications of the ACM, 55(5):111–119,
2012.

11. Jean Bacon, David M. Eyers, Thomas F. J.-M. Pasquier, Jatinder Singh, Ioannis
Papagiannis, and Peter R. Pietzuch. Information �ow control for secure cloud
computing. IEEE Transactions on Network and Service Management, 11:76–89, 2014.

12. Clem Baker-Finch, David J. King, and Phil Trinder. An operational semantics for
parallel lazy evaluation. In Proceedings of the Fifth ACM SIGPLAN International
Conference on Functional Programming, ICFP ’00, pages 162–173, New York, NY,
USA, 2000. ACM.

13. Henry G Baker Jr. List processing in real time on a serial computer. Communica-
tions of the ACM, 21(4):280–294, 1978.

232

14. Musard Balliu, Benjamin Liebe, Daniel Schoepe, and Andrei Sabelfeld. Jslinq: Build-
ing secure applications across tiers. In Proceedings of the Sixth ACM Conference
on Data and Application Security and Privacy, CODASPY ’16, pages 307–318, New
York, NY, USA, 2016. ACM.

15. Anindya Banerjee and David A. Naumann. Stack-based access control and secure
information �ow. J. Funct. Program., 15(2):131–177, March 2005.

16. Gilles Barthe, Tamara Rezk, and Amitabh Basu. Security types preserving compi-
lation. Computer Languages, Systems & Structures, 33(2):35–59, 2007.

17. Gilles Barthe, Tamara Rezk, Alejandro Russo, and Andrei Sabelfeld. Security of
multithreaded programs by compilation. Special issue of ACM Transactions on
Information and System Security (TISSEC), 2009.

18. Lujo Bauer, Shaoying Cai, Limin Jia, Timothy Passaro, Michael Stroucken, and
Yuan Tian. Run-time monitoring and formal analysis of information �ows in
Chromium. In Annual Network & Distributed System Security Symposium. Internet
Society, 2015.

19. David E. Bell and L. La Padula. Secure computer system: Uni�ed exposition and
multics interpretation. Technical Report MTR-2997, Rev. 1, MITRE Corporation,
Bedford, MA, 1976.

20. K. J. Biba. Integrity considerations for secure computer systems. ESD-TR-76-372,
1977.

21. Abhishek Bichhawat, Vineet Rajani, Deepak Garg, and Christian Hammer. Infor-
mation �ow control in webkit’s javascript bytecode. In Martín Abadi and Steve
Kremer, editors, Principles of Security and Trust, pages 159–178, Berlin, Heidelberg,
2014. Springer Berlin Heidelberg.

22. Abhishek Bichhawat, Vineet Rajani, Deepak Garg, and Christian Hammer. Infor-
mation �ow control in webkit’s javascript bytecode. In Martín Abadi and Steve
Kremer, editors, Principles of Security and Trust, pages 159–178, Berlin, Heidelberg,
2014. Springer Berlin Heidelberg.

23. Guy E Blelloch and Perry Cheng. On bounding time and space for multiprocessor
garbage collection. In ACM SIGPLAN Notices, volume 34, pages 104–117. ACM,
1999.

24. Andrew Bortz and Dan Boneh. Exposing private information by timing web
applications. In World Wide Web. ACM, 2007.

25. William J. Bowman and Amal Ahmed. Noninterference for free. In Proceedings of
the 20th ACM SIGPLAN International Conference on Functional Programming, ICFP
2015, Vancouver, BC, Canada, September 1-3, 2015, pages 101–113, 2015.

26. Joachim Breitner. dup – explicit un-sharing in haskell. CoRR, abs/1207.2017, 2012.
27. Joachim Breitner. Formally proving a compiler transformation safe. In Proceedings

of the 2015 ACM SIGPLAN Symposium on Haskell, Haskell ’15, pages 35–46, New
York, NY, USA, 2015. ACM.

28. Niklas Broberg, Bart Delft, and David Sands. Paragon for practical programming
with information-�ow control. In Proceedings of the 11th Asian Symposium on
Programming Languages and Systems - Volume 8301, pages 217–232, Berlin, Hei-
delberg, 2013. Springer-Verlag.

29. Sven Bugiel, Stephan Heuser, and Ahmad-Reza Sadeghi. Flexible and Fine-grained
Mandatory Access Control on Android for Diverse Security and Privacy Policies.
In USENIX Conference on Security, SEC. USENIX Association, 2013.

30. P. Buiras, D. Vytiniotis, and A. Russo. HLIO: Mixing static and dynamic typing for
information-�ow control in Haskell. In ACM SIGPLAN International Conference
on Functional Programming. ACM, 2015.

233

31. Pablo Buiras and Alejandro Russo. Lazy programs leak secrets. In Proceedings
of the 18th Nordic Conference on Secure IT Systems - Volume 8208, NordSec 2013,
pages 116–122, New York, NY, USA, 2013. Springer-Verlag New York, Inc.

32. Pablo Buiras, Deian Stefan, and Alejandro Russo. On dynamic �ow-sensitive
�oating-label systems. In Proceedings of the 2014 IEEE 27th Computer Security
Foundations Symposium, CSF ’14, pages 65–79, Washington, DC, USA, 2014. IEEE
Computer Society.

33. Winnie Cheng, Dan R.K. Ports, David Schultz, Victoria Popic, Aaron Blankstein,
James Cowling, Dorothy Curtis, Liuba Shrira, and Barbara Liskov. Abstractions for
usable information �ow control in aeolus. In Presented as part of the 2012 USENIX
Annual Technical Conference (USENIX ATC 12), pages 139–151, Boston, MA, 2012.
USENIX.

34. Stephen Chong, Jed Liu, Andrew C. Myers, Xin Qi, K. Vikram, Lantian Zheng, and
Xin Zheng. Secure web applications via automatic partitioning. In Proceedings of
the 21st ACM Symposium on Operating Systems Principles, pages 31–44, October
2007. (Best paper award.).

35. Stephen Chong, K. Vikram, and Andrew C. Myers. SIF: enforcing con�dentiality
and integrity in web applications. In Proceedings of the 16th USENIX Security
Symposium, Boston, MA, USA, August 6-10, 2007, 2007.

36. Ankush Das and Jan Ho�mann. ML for ML: Learning cost semantics by exper-
iment. In Axel Legay and Tiziana Margaria, editors, Tools and Algorithms for
the Construction and Analysis of Systems, pages 190–207, Berlin, Heidelberg, 2017.
Springer Berlin Heidelberg.

37. Dorothy E. Denning and Peter J. Denning. Certi�cation of programs for secure
information �ow. Communication of the ACM, 20(7):504–513, July 1977.

38. D. Devriese and F. Piessens. Information �ow enforcement in monadic libraries. In
ACM SIGPLAN Workshop on Types in Language Design and Implementation. ACM,
2011.

39. Petros Efstathopoulos, Maxwell Krohn, Steve VanDeBogart, Cli� Frey, David
Ziegler, Eddie Kohler, David Mazières, Frans Kaashoek, and Robert Morris. Labels
and event processes in the Asbestos operating system. In ACM Symposium on
Operating Systems Principles, SOSP. ACM, 2005.

40. Matthias Felleisen. On the expressive power of programming languages. Sci.
Comput. Program., 17(1-3):35–75, December 1991.

41. Edward W. Felten and Michael A. Schneider. Timing attacks on web privacy. In
Proceedings of the 7th ACM Conference on Computer and Communications Security,
CCS ’00, pages 25–32, New York, NY, USA, 2000. ACM.

42. L. Fennell and P. Thiemann. Gradual security typing with references. In 2013 IEEE
26th Computer Security Foundations Symposium, pages 224–239, June 2013.

43. Earlence Fernandes, Justin Paupore, Amir Rahmati, Daniel Simionato, Mauro
Conti, and Atul Prakash. FlowFence: Practical data protection for emerging IoT
application frameworks. In USENIX Security Symposium, pages 531–548, 2016.

44. Qian Ge, Yuval Yarom, David Cock, and Gernot Heiser. A survey of microarchi-
tectural timing attacks and countermeasures on contemporary hardware. Journal
of Cryptographic Engineering, pages 1–27, 2016.

45. Daniel B. Gi�n, Amit Levy, Deian Stefan, David Terei, David Mazières, John
Mitchell, and Alejandro Russo. Hails: Protecting data privacy in untrusted web
applications. In Proc. of the 10th Symposium on Operating Systems Design and
Implementation, October 2012.

234

46. Daniel B. Gi�n, Amit Levy, Deian Stefan, David Terei, David Mazières, John
Mitchell, and Alejandro Russo. Hails: Protecting data privacy in untrusted web
applications. Journal of Computer Security, 25, 2017.

47. J. A. Goguen and J. Meseguer. Security policies and security models. In 1982 IEEE
Symposium on Security and Privacy, pages 11–11, April 1982.

48. J. A. Goguen and J. Meseguer. Unwinding and inference control. In 1984 IEEE
Symposium on Security and Privacy, pages 75–75, April 1984.

49. Helena Handschuh and Howard M. Heys. A timing attack on RC5. In Proceedings
of the Selected Areas in Cryptography, SAC ’98, pages 306–318, Berlin, Heidelberg,
1999. Springer-Verlag.

50. D. Hedin, L. Bello, and A. Sabelfeld. Value-sensitive hybrid information �ow con-
trol for a javascript-like language. In 2015 IEEE 28th Computer Security Foundations
Symposium, pages 351–365, July 2015.

51. D. Hedin, A. Birgisson, L. Bello, and A. Sabelfeld. JSFlow: Tracking information
�ow in JavaScript and its APIs. In ACM Symposium on Applied Computing. ACM,
2014.

52. Daniel Hedin and Andrei Sabelfeld. A perspective on information-�ow control.
In Software Safety and Security - Tools for Analysis and Veri�cation, pages 319–347,
2012.

53. Daniel Hedin and David Sands. Noninterference in the presence of non-opaque
pointers. In IEEE Computer Security FoundationsWorkshop. IEEE Computer Society
Press, 2006.

54. Roger Henriksson. Scheduling Garbage Collection in Embedded Systems. PhD thesis,
Department of Computer Science, 1998.

55. Stefan Heule, Deian Stefan, Edward Z. Yang, John C. Mitchell, and Alejandro Russo.
Ifc inside: Retro�tting languages with dynamic information �ow control. In Pro-
ceedings of the 4th International Conference on Principles of Security and Trust -
Volume 9036, pages 11–31, New York, NY, USA, 2015. Springer-Verlag New York,
Inc.

56. Carl Hewitt, Peter Bishop, and Richard Steiger. A universal modular actor formal-
ism for arti�cial intelligence. In Proceedings of the 3rd International Joint Conference
on Arti�cial Intelligence, IJCAI’73, pages 235–245, San Francisco, CA, USA, 1973.
Morgan Kaufmann Publishers Inc.

57. Kohei Honda, Vasco Thudichum Vasconcelos, and Nobuko Yoshida. Secure Infor-
mation Flow as Typed Process Behaviour. In European Symposium on Programming
Languages and Systems. Springer-Verlag, 2000.

58. Kohei Honda and Nobuko Yoshida. A uniform type structure for secure infor-
mation �ow. In Proceedings of the 29th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL ’02, pages 81–92, New York, NY, USA,
2002. ACM.

59. C. Hritcu, M. Greenberg, B. Karel, B. C. Peirce, and G. Morrisett. All your IFCexcep-
tion are belong to us. In IEEE Symposium on Security and Privacy. IEEE Computer
Society, 2013.

60. Justin Hsu, Marco Gaboardi, Andreas Haeberlen, Sanjeev Khanna, Arjun Narayan,
Benjamin C. Pierce, and Aaron Roth. Di�erential privacy: An economic method
for choosing epsilon. In Proceedings of the 2014 IEEE 27th Computer Security Foun-
dations Symposium, CSF ’14, pages 398–410, Washington, DC, USA, 2014. IEEE
Computer Society.

61. Wei-Ming Hu. Reducing timing channels with fuzzy time. Journal of Computer
Security, 1(3-4):233–254, 1992.

235

62. J. Hughes. Why functional programming matters. The Computer Journal, 32(2):98–
107, April 1989.

63. Mauro Jaskelio� and Alejandro Russo. Secure multi-execution in haskell. In
Proceedings of the 8th International Conference on Perspectives of System Informatics,
PSI’11, pages 170–178, Berlin, Heidelberg, 2012. Springer-Verlag.

64. Limin Jia, Jassim Aljuraidan, Elli Fragkaki, Lujo Bauer, Michael Stroucken,
Kazuhide Fukushima, Shinsaku Kiyomoto, and Yutaka Miyake. Run-time enforce-
ment of information-�ow properties on android. In Computer Security – ESORICS
2013, pages 775–792, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.

65. Richard A Kemmerer. Shared resource matrix methodology: An approach to identi-
fying storage and timing channels. ACM Transactions on Computer Systems (TOCS),
1(3):256–277, 1983.

66. Naoki Kobayashi. Type-based information �ow analysis for the π-calculus. Acta
Inf., 42(4):291–347, December 2005.

67. Paul C. Kocher. Timing attacks on implementations of Di�e-Hellman,RSA, DSS,
and other systems. In Proceedings of the 16th Annual International Cryptology
Conference on Advances in Cryptology, CRYPTO ’96, pages 104–113, London, UK,
UK, 1996. Springer-Verlag.

68. David Kohlbrenner and Hovav Shacham. Trusted browsers for uncertain times.
In USENIX Security Symposium, pages 463–480, 2016.

69. Maxwell Krohn, Alexander Yip, Micah Brodsky, Natan Cli�er, M. Frans Kaashoek,
Eddie Kohler, and Robert Morris. Information �ow control for standard OS abstrac-
tions. In ACM SIGOPS Symposium on Operating Systems Principles, SOSP. ACM,
2007.

70. Lindsey Kuper and Ryan R Newton. Lvars: lattice-based data structures for de-
terministic parallelism. In Proceedings of the 2nd ACM SIGPLAN workshop on
Functional high-performance computing, pages 71–84. ACM, 2013.

71. Lindsey Kuper, Aaron Todd, Sam Tobin-Hochstadt, and Ryan R Newton. Tam-
ing the parallel e�ect zoo: Extensible deterministic parallelism with lvish. ACM
SIGPLAN Notices, 49(6):2–14, 2014.

72. B. W. Lampson. A note on the con�nement problem. Communications of the ACM,
16(10):613–615, October 1973.

73. John Launchbury. A natural semantics for lazy evaluation. In Proceedings of the
20th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL ’93, pages 144–154, New York, NY, USA, 1993. ACM.

74. Jaewoo Lee and Chris Clifton. How much is enough? choosing ε for di�erential
privacy. In Proceedings of the 14th International Conference on Information Security,
ISC’11, pages 325–340, Berlin, Heidelberg, 2011. Springer-Verlag.

75. Peng Li and Steve Zdancewic. Encoding information �ow in haskell. In Proceedings
of the 19th IEEE Workshop on Computer Security Foundations, CSFW ’06, pages 16–,
Washington, DC, USA, 2006. IEEE Computer Society.

76. Peng Li and Steve Zdancewic. Arrows for secure information �ow. Theor. Comput.
Sci., 411(19):1974–1994, April 2010.

77. Ximeng Li, Heiko Mantel, and Markus Tasch. Taming message-passing commu-
nication in compositional reasoning about con�dentiality. In Programming Lan-
guages and Systems - 15th Asian Symposium, APLAS 2017, Suzhou, China, November
27-29, 2017, Proceedings, pages 45–66, 2017.

78. S. Lipner, T. Jaeger, and M. E. Zurko. Lessons from vax/svs for high-assurance vm
systems. IEEE Security Privacy, 10(6):26–35, Nov 2012.

236

79. Jed Liu, Owen Arden, Michael D George, and Andrew C Myers. Fabric: Building
open distributed systems securely by construction. Journal of Computer Security,
25(4-5):367–426, 2017.

80. Jed Liu, Michael D George, Krishnaprasad Vikram, Xin Qi, Lucas Waye, and An-
drew C Myers. Fabric: A platform for secure distributed computation and storage.
In Proceedings of the ACM SIGOPS 22nd symposium on Operating systems principles.
ACM, 2009.

81. Jed Liu and Andrew C Myers. De�ning and enforcing referential security. In
International Conference on Principles of Security and Trust, pages 199–219. Springer,
2014.

82. Luísa Lourenço and Luís Caires. Dependent information �ow types. In Proceedings
of the 42Nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, POPL ’15, pages 317–328, New York, NY, USA, 2015. ACM.

83. H. Mantel, D. Sands, and H. Sudbrock. Assumptions and guarantees for composi-
tional noninterference. In 2011 IEEE 24th Computer Security Foundations Sympo-
sium, pages 218–232, June 2011.

84. Heiko Mantel and Andrei Sabelfeld. A unifying approach to the security of dis-
tributed and multi-threaded programs. J. Comput. Secur., 11(4):615–676, July 2003.

85. Heiko Mantel and Henning Sudbrock. Flexible scheduler-independent security.
In Proceedings of the 15th European Conference on Research in Computer Security,
ESORICS’10, pages 116–133, Berlin, Heidelberg, 2010. Springer-Verlag.

86. Simon Marlow. Parallel and concurrent programming in Haskell. O’Reilly, July
2013.

87. Simon Marlow, Ryan Newton, and Simon Peyton Jones. A monad for deterministic
parallelism. ACM SIGPLAN Notices, 46(12):71–82, 2012.

88. Simon Marlow and Simon Peyton Jones. Making a fast curry: push/enter vs.
eval/apply for higher-order languages. Journal of Functional Programming, 16(4-
5):415–449, 2006.

89. Conor Mcbride and Ross Paterson. Applicative programming with e�ects. J. Funct.
Program., 18(1):1–13, January 2008.

90. D. McCullough. Speci�cations for multi-level security and a hook-up. In 1987 IEEE
Symposium on Security and Privacy(SP), volume 00, page 161, April 1987.

91. Simon Meurer and Roland Wismüller. Apefs: An infrastructure for permission-
based �ltering of android apps. In AndreasU. Schmidt, Giovanni Russello, Ioannis
Krontiris, and Shiguo Lian, editors, Security and Privacy in Mobile Information and
Communication Systems, volume 107. Springer Berlin Heidelberg, 2012.

92. Eugenio Moggi. Notions of computation and monads. Inf. Comput., 93(1):55–92,
July 1991.

93. S. Moore and S. Chong. Static analysis for e�cient hybrid information-�ow control.
In 2011 IEEE 24th Computer Security Foundations Symposium, pages 146–160, June
2011.

94. Jamie Morgenstern and Daniel R. Licata. Security-typed programming within
dependently typed programming. In ACM SIGPLAN International Conference on
Functional Programming. ACM, 2010.

95. Stefan Muller and Stephen Chong. Towards a practical secure concurrent language.
In Proceedings of the 25th Annual ACM SIGPLAN Conference on Object-Oriented
Programming Languages, Systems, Languages, and Applications, pages 57–74, New
York, NY, USA, October 2012. ACM Press.

237

96. Toby Murray, Daniel Matichuk, Matthew Brassil, Peter Gammie, Timothy Bourke,
Sean Seefried, Corey Lewis, Xin Gao, and Gerwin Klein. sel4: From general purpose
to a proof of information �ow enforcement. 2012 IEEE Symposium on Security and
Privacy, 0, 2013.

97. Toby Murray, Robert Sison, Edward Pierzchalski, and Christine Rizkallah. Com-
positional veri�cation and re�nement of concurrent value-dependent noninterfer-
ence. In IEEE Computer Security Foundations Symposium, pages 417–431, Lisbon,
Portugal, June 2016.

98. Alan Mycroft. The theory and practice of transforming call-by-need into call-by-
value. In Bernard Robinet, editor, International Symposium on Programming, pages
269–281, Berlin, Heidelberg, 1980. Springer Berlin Heidelberg.

99. Andrew C. Myers and Andrew C. Myers. J�ow: Practical mostly-static information
�ow control. In Proceedings of the 26th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL ’99, pages 228–241, New York, NY,
USA, 1999. ACM.

100. Andrew C. Myers, Lantian Zheng, Steve Zdancewic, Stephen Chong, and Nathaniel
Nystrom. Jif 3.0: Java information �ow, July 2006.

101. Adwait Nadkarni, Benjamin Andow, William Enck, and Somesh Jha. Practical
DIFC enforcement on android. In USENIX Security Symposium, pages 1119–1136,
2016.

102. Aleksandar Nanevski, Anindya Banerjee, and Deepak Garg. Veri�cation of infor-
mation �ow and access control policies with dependent types. In IEEE Symposium
on Security and Privacy, SP. IEEE Computer Society, 2011.

103. Ulf Norell. Dependently typed programming in Agda. In Andrew Kennedy and
Amal Ahmed, editors, Proceedings of TLDI’09: 2009 ACM SIGPLAN International
Workshop on Types in Languages Design and Implementation, Savannah, GA, USA,
January 24, 2009, pages 1–2. ACM, 2009.

104. Stephen C North and John H Reppy. Concurrent garbage collection on stock
hardware. In Conference on Functional Programming Languages and Computer
Architecture, pages 113–133. Springer, 1987.

105. James Parker, Niki Vazou, and Michael Hicks. LWeb: Information �ow security
for multi-tier web applications. In Proceedings of the ACM Conference on Principles
of Programming Languages (POPL), January 2019.

106. James Lee Parker. LMonad: Information �ow control for haskell web applications.
PhD thesis, University of Maryland, College Park, 2014.

107. Mathias V. Pedersen and Aslan Askarov. From trash to treasure: Timing-sensitive
garbage collection. In 2017 IEEE Symposium on Security and Privacy, SP 2017, San
Jose, CA, USA, May 22-26, 2017, pages 693–709, 2017.

108. Colin Percival. Cache missing for fun and pro�t. In BSDCan, 2005.
109. Simon Peyton Jones. Implementing lazy functional languages on stock hardware:

The spineless tagless G-machine. Journal of Functional Programming, 2(2):127–202,
1992.

110. Simon Peyton Jones. Tackling the awkward squad: monadic input/output, concur-
rency, exceptions, and foreign-language calls in Haskell, pages 47–96. IOS Press,
January 2001.

111. Simon Peyton Jones et al. The Haskell 98 language and libraries: The revised
report. Journal of Functional Programming, 13(1):1–255, Jan 2003. http://www.

haskell.org/definition/.
112. Benjamin C. Pierce. Types and Programming Languages. MIT Press, 2002.

http://www.haskell.org/definition/
http://www.haskell.org/definition/

238

113. Benjamin C. Pierce, Arthur Azevedo de Amorim, Chris Casinghino, Marco
Gaboardi, Michael Greenberg, Cǎtǎlin Hriţcu, Vilhelm Sjöberg, and Brent
Yorgey. Software Foundations. Electronic textbook, 2016. Version 4.0.
http://www.cis.upenn.edu/ bcpierce/sf.

114. Filip Pizlo, Antony L. Hosking, and Jan Vitek. Hierarchical real-time garbage col-
lection. In Proceedings of the 2007 ACM SIGPLAN/SIGBED Conference on Languages,
Compilers, and Tools for Embedded Systems, LCTES ’07, pages 123–133, New York,
NY, USA, 2007. ACM.

115. François Pottier. A Simple View of Type-Secure Information Flow in the π-
Calculus. In IEEE Computer Security Foundations Workshop, pages 320–330, 2002.

116. François Pottier and Vincent Simonet. Information �ow inference for ML. ACM
Trans. Program. Lang. Syst., 25(1):117–158, January 2003.

117. Willard Rafnsson, Deepak Garg, and Andrei Sabelfeld. Progress-sensitive security
for spark. In Proceedings of the 8th International Symposium on Engineering Secure
Software and Systems - Volume 9639, ESSoS 2016, pages 20–37, Berlin, Heidelberg,
2016. Springer-Verlag.

118. Willard Rafnsson, Limin Jia, and Lujo Bauer. Timing-sensitive noninterference
through composition. In Matteo Ma�ei and Mark Ryan, editors, Principles of Secu-
rity and Trust, pages 3–25, Berlin, Heidelberg, 2017. Springer Berlin Heidelberg.

119. Willard Rafnsson, Keiko Nakata, and Andrei Sabelfeld. Securing class initialization
in Java-like languages. IEEE Transactions on Dependable and Secure Computing,
10(1), January 2013.

120. Vineet Rajani, Iulia Bastys, Willard Rafnsson, and Deepak Garg. Type systems
for information �ow control: The question of granularity. ACM SIGLOG News,
4(1):6–21, February 2017.

121. Vineet Rajani and Deepak Garg. Types for Information Flow Control: Labeling
Granularity and Semantic Models. In Proc. of the IEEE Computer Security Founda-
tions Symp., CSF ’18. IEEE Computer Society, 2018.

122. Indrajit Roy, Donald E. Porter, Michael D. Bond, Kathryn S. McKinley, and Emmett
Witchel. Laminar: Practical �ne-grained decentralized information �ow control. In
ACM SIGPLAN Conference on Programming Language Design and Implementation,
PLDI. ACM, 2009.

123. Alejandro Russo. Functional Pearl: Two Can Keep a Secret, if One of Them Uses
Haskell. In Proceedings of the 20th ACM SIGPLAN International Conference on
Functional Programming, ICFP 2015, pages 280–288, New York, NY, USA, 2015.
ACM.

124. Alejandro Russo, Koen Claessen, and John Hughes. A library for light-weight
information-�ow security in haskell. In Proceedings of the First ACM SIGPLAN
Symposium on Haskell, Haskell ’08, pages 13–24, New York, NY, USA, 2008. ACM.

125. Alejandro Russo and Andrei Sabelfeld. Security for multithreaded programs under
cooperative scheduling. In Irina Virbitskaite and Andrei Voronkov, editors, Per-
spectives of Systems Informatics, pages 474–480, Berlin, Heidelberg, 2007. Springer
Berlin Heidelberg.

126. Alejandro Russo and Andrei Sabelfeld. Securing interaction between threads
and the scheduler in the presence of synchronization. The Journal of Logic and
Algebraic Programming, 78(7):593 – 618, 2009. The 19th Nordic Workshop on
Programming Theory (NWPT 2007).

127. Alejandro Russo and Andrei Sabelfeld. Dynamic vs. static �ow-sensitive secu-
rity analysis. In Proceedings of the 2010 23rd IEEE Computer Security Foundations

239

Symposium, CSF ’10, pages 186–199, Washington, DC, USA, 2010. IEEE Computer
Society.

128. A. Sabelfeld and A. C. Myers. Language-based information-�ow security. IEEE
Journal on Selected Areas in Communications, 21(1):5–19, Jan 2003.

129. Andrei Sabelfeld and David Sands. Probabilistic noninterference for multi-
threaded programs. In Proceedings of the 13th IEEE Workshop on Computer Security
Foundations, CSFW ’00, pages 200–, Washington, DC, USA, 2000. IEEE Computer
Society.

130. Andrei Sabelfeld and David Sands. A per model of secure information �ow in
sequential programs. Higher-Order and Symbolic Computation, 14(1):59–91, Mar
2001.

131. Thomas Schmitz, Maximilian Algehed, Cormac Flanagan, and Alejandro Russo.
Faceted secure multi execution. In Proc. of the 2018 ACM SIGSAC Conference on
Computer and Communications Security, CCS ’18, pages 1617–1634, New York, NY,
USA, 2018. ACM.

132. Thomas Schmitz, Dustin Rhodes, Thomas H. Austin, Kenneth Knowles, and Cor-
mac Flanagan. Faceted dynamic information �ow via control and data monads. In
Frank Piessens and Luca Viganò, editors, POST, volume 9635 of LNCS. Springer,
2016.

133. Daniel Schoepe, Daniel Hedin, and Andrei Sabelfeld. Selinq: Tracking information
across application-database boundaries. In Proceedings of the 19th ACM SIGPLAN
International Conference on Functional Programming, ICFP ’14, pages 25–38, New
York, NY, USA, 2014. ACM.

134. David Schultz and Barbara Liskov. Ifdb: Decentralized information �ow control
for databases. In Proceedings of the 8th ACM European Conference on Computer
Systems, EuroSys ’13, pages 43–56, New York, NY, USA, 2013. ACM.

135. Peter Sestoft. Deriving a lazy abstract machine. J. Funct. Program., 7(3):231–264,
May 1997.

136. Naokata Shikuma and Atsushi Igarashi. Proving noninterference by a fully com-
plete translation to the simply typed λ-calculus. In Proceedings of the 11th Asian
Computing Science Conference on Advances in Computer Science: Secure Software
and Related Issues, ASIAN’06, pages 301–315, Berlin, Heidelberg, 2007. Springer-
Verlag.

137. V. Simonet. The Flow Caml system. Software release at http://cristal.inria.fr/ si-
monet/soft/�owcaml/, 2003.

138. Geo�rey Smith and Dennis Volpano. Secure information �ow in a multi-threaded
imperative language. In Proceedings of the 25th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL ’98, pages 355–364, New York, NY,
USA, 1998. ACM.

139. Gregor Snelting, Dennis Gi�horn, Jürgen Graf, Christian Hammer, Martin Hecker,
Martin Mohr, and Daniel Wasserrab. Checking probabilistic noninterference using
JOANA. it - Information Technology, 56(6):280–287, 2014.

140. Deian Stefan, Pablo Buiras, Edward Z. Yang, Amit Levy, David Terei, Alejan-
dro Russo, and David Mazières. Eliminating cache-based timing attacks with
instruction-based scheduling. In Jason Crampton, Sushil Jajodia, and Keith Mayes,
editors, Computer Security – ESORICS 2013, pages 718–735, Berlin, Heidelberg,
2013. Springer Berlin Heidelberg.

141. Deian Stefan, Alejandro Russo, Pablo Buiras, Amit Levy, John C. Mitchell, and
David Maziéres. Addressing covert termination and timing channels in concurrent

240

information �ow systems. In Proceedings of the 17th ACM SIGPLAN International
Conference on Functional Programming, ICFP ’12, pages 201–214, New York, NY,
USA, 2012. ACM.

142. Deian Stefan, Alejandro Russo, David Mazières, and John C. Mitchell. Disjunction
category labels. In Nordic Conference on Security IT Systems (NordSec). Springer,
October 2011.

143. Deian Stefan, Alejandro Russo, David Mazières, and John C. Mitchell. Flexible
dynamic information �ow control in the presence of exceptions. Arxiv preprint
arXiv:1207.1457, to appear in Journal of Functional Programming, 2012.

144. Deian Stefan, Alejandro Russo, David Mazières, and John C. Mitchell. Flexible dy-
namic information �ow control in the presence of exceptions. Journal of Functional
Programming, 27, 2017.

145. Deian Stefan, Alejandro Russo, John C. Mitchell, and David Mazières. Flexible
dynamic information �ow control in Haskell. In Proceedings of the 4th ACM Sym-
posium on Haskell, Haskell ’11, pages 95–106, New York, NY, USA, 2011. ACM.

146. Deian Stefan, Edward Z. Yang, Petr Marchenko, Alejandro Russo, Dave Herman,
Brad Karp, and David Mazières. Protecting users by con�ning JavaScript with
COWL. In USENIX Symposium on Operating Systems Design and Implementation.
USENIX Association, 2014.

147. David Terei, Simon Marlow, Simon Peyton Jones, and David Mazières. Safe haskell.
SIGPLAN Not., 47(12):137–148, September 2012.

148. Matías Toro, Ronald Garcia, and Éric Tanter. Type-driven gradual security with
references. ACM Transactions on Programming Languages and Systems, 40(4):16:1–
16:55, November 2018.

149. Ta-chung Tsai, Alejandro Russo, and John Hughes. A library for secure multi-
threaded information �ow in haskell. In Proceedings of the 20th IEEE Computer
Security Foundations Symposium, CSF ’07, pages 187–202, Washington, DC, USA,
2007. IEEE Computer Society.

150. Stephen Tse and Steve Zdancewic. Translating dependency into parametricity.
In Proceedings of the Ninth ACM SIGPLAN International Conference on Functional
Programming, ICFP ’04, pages 115–125, New York, NY, USA, 2004. ACM.

151. Marco Vassena, Joachim Breitner, and Alejandro Russo. Securing concurrent lazy
programs against information leakage. In 30th IEEE Computer Security Foundations
Symposium, CSF 2017, Santa Barbara, CA, USA, August 21-25, 2017, pages 37–52,
2017.

152. Marco Vassena, Pablo Buiras, Lucas Waye, and Alejandro Russo. Flexible ma-
nipulation of labeled values for information-�ow control libraries. In Computer
Security - ESORICS 2016 - 21st European Symposium on Research in Computer Se-
curity, Heraklion, Greece, September 26-30, 2016, Proceedings, Part I, pages 538–557,
2016.

153. Marco Vassena and Alejandro Russo. On formalizing information-�ow control
libraries. In Proceedings of the 2016 ACM Workshop on Programming Languages
and Analysis for Security, PLAS ’16, pages 15–28, New York, NY, USA, 2016. ACM.

154. Marco Vassena, Alejandro Russo, Pablo Buiras, and Lucas Waye. Mac a veri�ed
static information-�ow control library. Journal of Logical and Algebraic Methods
in Programming, 2017.

155. Pepe Vila and Boris Kopf. Loophole: Timing attacks on shared event loops in
chrome. In 26th USENIX Security Symposium (USENIX Security 17), pages 849–864,
Vancouver, BC, 2017. USENIX Association.

241

156. D. Volpano and G. Smith. Probabilistic noninterference in a concurrent lan-
guage. In Proceedings. 11th IEEE Computer Security Foundations Workshop (Cat.
No.98TB100238), pages 34–43, June 1998.

157. Dennis Volpano, Cynthia Irvine, and Geo�rey Smith. A sound type system for
secure �ow analysis. J. Comput. Secur., 4(2-3):167–187, January 1996.

158. Dennis Volpano and Geo�rey Smith. Eliminating covert �ows with minimum
typings. In Proceedings of the 10th IEEEWorkshop on Computer Security Foundations,
CSFW ’97, pages 156–, Washington, DC, USA, 1997. IEEE Computer Society.

159. P. Wadler and S. Blott. How to make ad-hoc polymorphism less ad hoc. In Proceed-
ings of the 16th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL ’89, pages 60–76, New York, NY, USA, 1989. ACM.

160. Wing H. Wong. Timing attacks on rsa: Revealing your secrets through the fourth
dimension. XRDS, 11(3):5–5, May 2005.

161. Weiyi Wu, Ennan Zhai, David Isaac Wolinsky, Bryan Ford, Liang Gu, and Daniel
Jackowitz. Warding o� timing attacks in deterland. In Conference on Timely Results
in Operating Systems, Monterey, CS, US, 2015.

162. Edward Z. Yang and David Mazières. Dynamic space limits for haskell. SIGPLAN
Not., 49(6):588–598, June 2014.

163. Jean Yang, Travis Hance, Thomas H Austin, Armando Solar-Lezama, Cormac Flana-
gan, and Stephen Chong. Precise, dynamic information �ow for database-backed
applications. In ACM SIGPLAN Notices, volume 51, pages 631–647. ACM, 2016.

164. Jean Yang, Kuat Yessenov, and Armando Solar-Lezama. A language for automati-
cally enforcing privacy policies. In Proceedings of the 39th Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL ’12, pages
85–96, New York, NY, USA, 2012. ACM.

165. Stephan Arthur Zdancewic. Programming Languages for Information Security. PhD
thesis, Cornell University, Ithaca, NY, USA, 2002. AAI3063751.

166. Nickolai Zeldovich, Silas Boyd-Wickizer, Eddie Kohler, and David Mazières. Mak-
ing information �ow explicit in HiStar. In USENIX Symp. on Operating Systems
Design and Implementation. USENIX, 2006.

167. Nickolai Zeldovich, Silas Boyd-Wickizer, and David Mazières. Securing distributed
systems with information �ow control. In Proceedings of the 5th USENIX Sympo-
sium on Networked Systems Design and Implementation, NSDI’08, pages 293–308,
Berkeley, CA, USA, 2008. USENIX Association.

168. Danfeng Zhang, Aslan Askarov, and Andrew C. Myers. Predictive mitigation of
timing channels in interactive systems. In Proceedings of the 18th ACM Conference
on Computer and Communications Security, CCS ’11, pages 563–574, New York,
NY, USA, 2011. ACM.

169. Danfeng Zhang, Aslan Askarov, and Andrew C. Myers. Language-based Control
and Mitigation of Timing Channels. In ACM Conference on Programming Language
Design and Implementation. ACM, 2012.

	Introduction
	Information-Flow Control
	Facets of Information-Flow Control

	Information Flow Control Libraries
	MAC
	LIO

	Contributions
	On Formalizing IFC Libraries
	Flexible Manipulation of Labeled Values for IFC Libraries
	MAC, a Verified Static IFC Library
	Securing Concurrent Lazy Programs
	From Fine- to Coarse-Grained Dynamic IFC and Back
	Towards Foundations for Parallel IFC Runtime Systems

	 Paper I, II. III
	MAC, A Verified IFC Library
	Introduction
	Overview
	Secure Information Flows
	Implicit Flows

	Core Calculus
	Pure Calculus
	Impure Calculus

	Addressing Label Creep
	Semantics of Join

	Exception Handling
	Calculus
	Exceptions and Join

	References
	Semantics

	Soundness
	Term Erasure
	Two Steps Erasure
	Erasure Function
	Discussion
	Progress-Insensitive Non-interference

	Concurrency
	Termination Attack
	Semantics
	Round Robin Scheduler

	Flexible Labeled Values
	Functors and Relabeling
	Examples
	Semantics

	Soundness of Concurrent Calculus
	Erasure Function
	Scheduler Requirements
	Progress-sensitive Non-interference

	Related work
	Conclusion

	Appendices
	Flexible Labeled Values in Sequential MAC
	Thread Synchronization
	Semantics
	Erasure Function

	Typing Rules

	 Paper IV
	Securing Concurrent Lazy Programs
	Introduction
	Overview of MAC
	Lazy Calculus
	Security Primitives
	References
	Concurrency

	Duplicating Thunks
	Semantics
	References

	Securing MAC
	Security Guarantees
	Term Erasure
	Decorated Calculus
	Decorated Semantics
	Erasure Function
	Decorated Progress-Sensitive Non-interference
	Simulation between Vanilla and Decorated semantics
	Vanilla Progress-Sensitive Non-interference

	Related Work
	Conclusions

	Appendices
	Securing LIO
	Simulation Proof
	Sharing and References
	Erasure Function

	 Paper V
	On the Granularity of Dynamic IFC
	Introduction
	Fine-Grained Calculus
	Dynamics
	Security

	Coarse-Grained Calculus
	Dynamics
	Security

	Fine- to Coarse-Grained Program Translation
	Correctness

	Coarse- to Fine-Grained Program Translation
	Cross-Language Equivalence Relation
	Correctness

	Related work
	Conclusion

	 Paper VI
	Parallel IFC Runtime Systems
	Introduction
	Internal Manifestation of External Timing Attacks
	Overview of Concurrent LIO
	External Timing Attacks to Runtime Systems
	Internalizing External Timing Attacks

	Secure Parallel Runtime System
	Hierarchical Calculus
	Core Scheduler
	Resource Reclamation and Observations
	Parallel Scheduler

	Security Guarantees
	Erasure Function
	Timing-Sensitive Non-interference

	Limitations
	Related work
	Conclusion

	Appendices
	Full Calculus
	Thread Synchronization and Communication
	Queue Pruning

	Security Proofs
	Two-Steps Erasure
	Lemmas
	Progress-Insensitive Non-interference
	Timing-Sensitive Non-interference

	Attack Code
	Reclamation Attack
	Allocation Attack
	Helper Functions

	Bibliography

