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Abstract
The operation of nanoscale devices at low temperatures is highly sensitive to
heating effects. This motivates current research on controlling heat currents in
these devices. A particularly important class of setups are hybrid superconducting
devices, since (1) there exist a variety of sensitive applications such as qubits, in
which heating is an issue, and (2) because the superconducting energy gap as well
as the controllable phase-difference across junctions allow for cooling and heat
control.
This thesis deals with phase-controllable heat currents through superconducting-

normal conducting-superconducting (SNS) Josephson junctions. Elaborate de-
vices containing junctions of this type have in recent years been proposed and
partly even experimentally been implemented in heat interferometers, heat switch-
es and heat diodes. These complex structures motivate our study on how the
properties of an extended, diffusive junction affect the phase-dependent heat con-
ductance of SNS Josephson junctions. In order to analyse the heat conductance
of such junctions, in which heat is carried by quasiparticle excitations of the
superconducting condensate, we use a scattering matrix formalism for hybrid su-
perconducting systems. The transmission of quasiparticles through the diffusive
region takes place via a large number of transmission channels with transmission
probabilities characterized by a statistical distribution. We implement these sta-
tistical properties using previously obtained results from random-matrix theory.
Our main findings are that the channel average of the diffusive conductor leads to
a full suppression of the phase-dependence of the heat conductance. In contrast,
the weak-localization correction to the heat conductance, as well as the heat con-
ductance fluctuations are still sensitive to the phase. We also find that these heat
conductance fluctuations have a similarly universal behavior as the well-known
conductance fluctuations of charge currents in normal conductors. However, we
identify an additional non-trivial temperature dependence, which is due to the
superconducting phase difference.
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1 Introduction
In this thesis we study thermal effects in nano-scale devices. The operation of
nano-scale devices at low temperatures is sensitive to heating effects. This moti-
vates the study on controlling heat currents in these devices.
One class of particularly relevant nano-scale devices are setups containing su-

perconducting elements, since heat transport in such junctions is remarkably in-
fluenced by the specific characteristics of superconductivity [1, 2]. One of these
characteristics is the superconducting temperature-dependent energy gap. The
energy gap makes superconductors good energy filters, in the sense that they only
allow quasiparticles (constituting the energy carriers in superconductors) at spe-
cific energies to tunnel out from or into an electrode. Depending on the device
operation this makes the superconducting electrode or closeby normalconductors
to be cooled [3]. Therefore having superconducting elements as part of hybrid
systems is useful for cooling: it allows for an implementation of electronic refrig-
erators [1], thereby improving the performance of electronic devices.
However, in this thesis, the focus is on superconducting junctions used as heat

rectifiers and heat current switches [4, 5]. Here, another aspect of superconductors
plays the most important role, namely the possibility of heat current control via
the phase-dependence of superconducting junctions. It has been theoretically pre-
dicted [2] that heat currents through so-called Josephson junctions, consisting of
two superconductors separated by an insulator (SIS), depend on the relative phase
of the superconducting condensates of the two superconducting regions. This the-
oretical work has been generalized and refined in several follow-up works [6–8].
Only, a few years ago, this intriguing effect has also been proven experimentally
[5, 9]. Since then, various different devices, which exploit this effect for heat
current-control, have been proposed and partially even implemented experimen-
tally, see [10] for a recent review.
These developments motivate theoretical studies on how phase-dependent heat

transport depends on the properties of possibly complex hybrid (normal(N)- and
superconducting(S)) junctions. The focus of this work is on junctions, consisting
of extended diffusive conductors, in which many transport channels with randomly
distributed transmission probabilities can contribute to heat transport via quasi-
particles. The impact of these trasnmission statistics on the phase-dependent
thermal conductance have not been considered so far.
In order to approach the role of complex junction properties on heat transport,

in this Licentiate thesis, we elaborate a formalism to study heat transport in

1



2 Chapter 1. Introduction

Figure 1.1: (a) Structure of a Josephson junction with two superconductors with
different phases ϕL, ϕR. (b) Scheme of a temperature biased SQUID made of two
identical superconductors S1 and S2. Temperature T1 is kept fixed, while the temper-
ature T2 < T1 is influenced by the heat flow across the junctions. RJ is the normal
state resistance of each junction and Q̇SQUID(Φ) is the heat current flowing from the
hotter to the colder superconductor. (c) Flux modulation of the drain temperature
Tdrain ≡ T2 of the superconductor S2 in the structure shown in (b) [9].

superconducting hybrid devices which is based on a scattering matrix approach.
In contrast to powerful, but complex Green’s function approaches for electron-
and hole-like quasiparticle excitations, which have been employed in the seminal
theoretical works on this topic [2, 6–8], the scattering approach allows to straight-
forwardly implement different types of junction properties. We use this both for
the theoretical description of the above-mentioned heat-conductance statistics of
diffusive SNS junctions, but also for heat conductance calculations of NS junc-
tions, which are often used to suppress detrimental effects of hot quasiparticles in
superconductors [11]. Furthermore, we envision to exploit this approach for the
study of heat currents, or even of heat current noise, in junctions with differently
designed structures in the future.

In addition to the practical interest in heat current control in superconducting
devices specifically, there is however an even broader interest in heat currents in
generic phase-coherent setups. Recently, the field of quantum thermodynamics,
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Figure 1.2: Phase-biasing a Josephson junction by means of a three-junction SQUID
[18].

combining the apparently distinct thermodynamical properties of quantum- and
nanoscale systems and statistically described macroscopic systems, has gained a
lot of interest. In this context, for example, quantum heat engines have been
theoretically studied [12–14]. Furthermore, the possibility of enhancing the ef-
ficiency of thermoelectric devices using quantum effects, for heat to electricity
conversion and also energy harvesting [15–17], is currently addressed. Also in this
broader context, the theoretical results of this Licentiate thesis are expected to
be of interest.

1.1 Heat transport in hybrid superconducting
devices

Generally, electronic transport happens together with transport of energy and
therefore of heat.1 Our aim is to study phase-coherent heat transport in super-
conducting hybrid devices.
Hybrid devices are structures which contain superconducting elements as well

as normal conductors or insulators. We concentrate on Josephson junctions—
structures containing two superconductors connected by an insulator (SIS) or a
small normal metal conductor (SNS). Transport across Josephson junctions is
governed by the phase difference between the two superconducting condensates of
the junction. Indeed, Josephson junctions form the basis of an extensively used
device, the superconducting quantum interference device (SQUID) [19]. In panel
(a) of Fig. (1.1) we show a schematic representation of a Josephson junction.
The phase difference of the two superconducting leads results in a dissipationless
charge current in the absence of any bias voltage. This charge current is carried
by Cooper pairs, I = Ic sinϕ. This famous effect is known as the Josephson effect

1Note that we do not treat heat transport due to phonons or photons, which in shielded
low-temperature devices as the ones considered here is suppressed.
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Figure 1.3: Subgap Andreev reflection: An electron incoming to an NS interface from
the normal-conducting side is reflected as a hole, while a total charge of 2e is trans-
mitted into the superconductor. Equivalently, quasiparticles above the superconducting
gap can be Andreev-reflected.

and has first been predicted by Brian Josephson [20]. Importantly, this current
flows in the absence of any heat current!
However, when a temperature bias is applied between the two superconducting

leads, there will be a heat current flowing through the junction. This heat is
carried by electron- and hole-like quasiparticle excitations that exist in the su-
perconductors at energies above the superconducting gap, when the temperature
of these leads are different from zero. A striking property of this heat current
is its dependence on the phase difference of the two superconducting conden-
sates, as predicted by Maki and Griffin [2]. The phase-dependent transport of
quasi-particles arcoss the junction takes place via Andreev reflection at the su-
perconductor’s interface. The Andreev reflection is a type of particle scattering
which occurs at the interfaces between a superconductor and a normal conductor
and consists in a back reflection of, e.g., an electron-like quasiparticle into a hole
by transferring a charge of 2e to the superconductor [21]. In Fig. (1.3) Andreev
reflection is schematically shown, for an NS junction at an energy, where normal
single-particle transmission is forbidden due to the superconducting gap. Note
however, that for the heat current considered here, also Andreev reflection above
the gap is relevant.
Only recently, this phase-dependence of the quasiparticle heat current across

a Josephson junction has been proven experimentally [9]. In Figs. (1.1) and
(1.2), we show schematic sketches of the setup and the results of this experimental
realization. The basic ingredient of the experiment is a three-junction SQUID, see
Fig. (1.2), which allows for a modulation of the superconducting phase-difference
via an applied magnetic flux. One of the SQUID segments is heated to a fixed
temperature T1. The quasi-particle heat flow across the junction results in a
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measurable temperature change on the other side of the junction, T2. Due to the
phase-dependence of the heat current, also the resulting temperature change is
phase dependent. This can be seen in Fig. (1.1c).
The phase-dependent control of heat currents has been the basis for a number

of experimental proposals and realizations: by biasing different phases in similar
setups even the directions of heat currents can be controlled, resulting in the
experimental design of a heat diode, and different designs of thermal transistors,
which might operate as a thermal switch or as an amplifier/modulator [10].

1.2 Heat conductance
In order to focus on the study of the fundamental heat transport properties of an
SNS junction, we consider the heat conductance, namely the linear response to
the temperature gradient. This quantity is furthermore of relevance for realistic
situations, where the temperature gradient is not intentional, but results from
the operation of a device [22]. Then one expects the case when the temperature
difference of the two superconducting leads is very small, TL = T and TR = T+δT ,
with δT � T .
We are interested in how the properties of the junction influence this phase-

dependent linear-response heat conductance. More specifically, we focus on a
situation where the normal-conducting segment connecting the two superconduc-
tors is diffusive and of a finite length L. This diffusive normal conductor supports
N transport channels. In order to consider the effect of these many channels,
which contribute to transport with randomly distributed transmission probabil-
ities, we take an average of the heat conductance over all these channels using
the DMPK formalism [23]. This formalism suggests a distribution of transmis-
sions in the normal metal which depends on the junction length. It is valid in
the length scales where the junction length is much smaller than the localization
length of electrons (short junction limit) and much larger than the mean free path
of electrons (diffusive regime). More details about the formalism and the resulting
averaged heat conductance are discussed in Section 3.2. The main finding here
is that the averaging fully suppresses the phase-dependence of the heat conduc-
tance, which has major consequences for the requirements on the device design of
coherent heat modulators. Interestingly, the weak-localization correction to the
conductance remains however phase-dependent.

1.3 Heat conductance fluctuations
After studying the heat conductance considering many transport channels for an
SNS junction, we study the behavior of heat conductance fluctuations in super-
conductors and the influence of phase difference on it.
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The research on conductance fluctuations of the charge current in diffusive con-
ductors caught attention already decades ago. Most interestingly, it was found
that these conductance fluctuations can be universal (UCF). This was first the-
oretically discovered in 1985 by Altshuler, and Lee and Stone [24, 25] and has
been observed in many experiments [26]. The conductance fluctuations are uni-
versal from two aspects. One is that the order of magnitude of the variance of
the conductance (or in other words the conductance fluctuations) normalized to
the quantum of conductance, G0 = 2e2/h, is of order unity

Var
[
G

G0

]
' 1 . (1.1)

On the other hand, the conductance fluctuations is weakly dependent on the shape
of the conductor. This means, more specifically, that Var[G] neither depends on
the length of the junction L, nor on the number of transverse modes N . Only the
symmetry class modifies the value of the UCFs (e.g., the fluctuations in a system
with or without time-reversal symmetry breaking differ by a factor of 2).
One explanation for UCF was put forward by Imry [27] using an argument based
on the number of open scattering channels which contribute effectively to the
conductance. In a disordered conductor most transmission eigenvalues are expo-
nentially small, implying that those channels are closed. A fraction l/L (where
l is the mean free path) of the total number N of transmission eigenvalues is
of order unity—these channels are open. Only open channels contribute to the
conductance. Therefore the effective number of channels is Neff ≈ N l/L.
Universal conductance fluctuations originate from quantum fluctuations. The
reason for that is that on length scales below the phase coherence length, Lϕ
(namely the distance across which the electrons loose phase memory), interfer-
ence effects are important and interference is sensitive to the disorder in a given
system. Therefore it can generate fluctuations, stemming from certain interfering
paths only. The aim of this work is to study the effects of these fluctuations on
the heat conductance.
In normal metals, the conductance fluctuations of the heat conductance are not of
special interest; the transmission of transport channels contributes to the electrical
conductance basically in the same way as to the thermal conductance. Therefore
thermal conductance fluctuations are expected to have similar properties, except
for an overall prefactor depending quadratically on the temperature of the sys-
tem. More concretely, for the heat conductance κN of a fully normal-conducting
junction, we can write

Var
[
κN
κ0

]
' 1 (1.2)

where κ0 = π2k2
B

3h T is the temperature-dependent heat conductance quantum.



7

This is different in Josephson junctions, consisting of two superconductors con-
nected by a normal-conducting junction (SNS). In such a highly nonlinear device,
the linear conductance G is zero. The linear heat conductance κSNS is however
finite [2] and has recently attracted interest due to its phase-dependent proper-
ties [7–9]. The study of heat conductance fluctuations in such systems is however
lacking.
In Chapter 3 we study the heat conductance fluctuations in an SNS junction us-
ing the DMPK formalism. We find that the heat conductance fluctuations remain
universal, in the sense that their magnitude is independent of the specific shape
and size of the conductor. We can however identify an interesting temperature-
dependence, which is different from the temperature-dependence of a normal setup
and which is related to the phase-dependence of κSNS.

1.4 Scattering theory
The theoretical approach used in the above mentioned theoretical works on phase-
dependent heat currents is mostly based on Green’s function methods, which can
be demanding particularly when the system to be studied gets complex itself. This
motivates us to use a more straight forward method to study heat transport which
is scattering theory. In particular, for the calculation of average heat conductances
in diffusive conductors, its weak localization corrections, as well as conductance
fluctuations, based on previously obtained results from random matrix theory [23],
the scattering matrix approach turns out to be most appropriate.
The scattering theory of electronic transport in mesoscopic conductors was first

developed by Landauer and Büttiker [28–30]. It is most applicable for systems
in which the many-body interaction between quasiparticles is negligibly small. In
Chapter 2 a general model of a nanostructure is shown, in which a picture of
single-particle transport is visualized, see Fig. (2.1). There is a scattering region
connected to reservoirs via perfect leads. A particle flux coming in from the
equilibrium reservoirs is scattered at the central region. This is described by a
scattering matrix, which relates the incoming to outgoing fluxes to the scatterer

~b = S~a. (1.3)

The scattering matrix S is a unitary matrix, S−1 = S†, guaranteeing current
conservation at the scatterer. We here assume that particle scattering happens
without energy loss, in other words it is elastic. The transmission amplitudes
entering the scattering matrix, as well as the resulting transmission probabilities
govern the charge and heat current through a junction, which we are interested
in.
Charge transport in superconducting hybrid systems using scattering theory

has beed studied before [31]. On top of that, the scattering theory and Landauer-
Büttiker formalism has been used to study heat transport in multi terminal normal



8 Chapter 1. Introduction

conducting structures [32]. As discussed above, it is now worthwhile to employ
the scattering matrix approach to study heat transport in superconducting hybrid
systems as well.
We describe this formalism for the calculation of heat currents in normal and

superconducting junctions in more detail in Chapter 2. Therefore, we set up the
scattering matrix description for electron- and hole-like quasiparticle states in
superconductors, which are described by Bogoliubov-De Gennes equations.
Finally, in Chapters 3 and 4 we derive an explicit scattering matrix for multi-

channel NS and SNS junctions. The resulting transmission probabilities can then
be used to calculate the heat current following the Landauer-Büttiker formalism.

1.5 Thesis outline
This thesis comprises our recent study on the statistics of heat conductances in
diffusive NS and SNS junctions, as well as some of the required background for
these studies.
The thesis is organized as follows. First of all, in Chapter 2, we introduce some

basics of the analysis of heat currents and heat conductances in mesoscopic nor-
mal conductors using scattering theory within the Landauer-Büttiker formalism.
Furthermore, we extend this discussion to quasiparticle excitations in hybrid su-
perconducting junctions described by Bogoliubov-de Gennes equations. Also some
general background on heat transport in normal metals is collected in the end of
Chapter 2 for comparison. Chapter 3 presents the main results of this thesis. We
study phase-dependent heat transport in an SNS junction. We describe the heat
conductance in the linear response regime for single-channel conductors as well as
for diffusive conductors where an average of the many-channel contributions has
to be performed. We furthermore present the weak localization correction to the
averaged heat conductance. Finally, the study of heat conductance fluctuations is
the key aspect of this chapter. In Chapter 4 a brief overview of heat transport in
NS junctions is provided, where we focus on equivalent regimes as the ones studied
in Chapter 3. Chapter 5 contains a summary and outlook. We also provide some
technical details concerning the derivation of the Landauer-Büttiker heat current
formula for superconducting structures, as well as of the full scattering matrices
for the multi-channel hybrid setups in the Appendices of this thesis.



2 Methods and Background
Combined structures of superconducting and normal conducting elements form
a class of systems in which it is interesting to study transport properties. The
main focus of this thesis is to study thermal transport. Specifically, the purpose
of this chapter is to provide an introduction about the thermal transport of hy-
brid superconducting and normal-conducting systems. We discuss methods that
we use to study thermal transport in superconducting hybrid structures. The
present chapter begins with a discussion of heat transport in bulk metals, which
will prove useful when formulating an analogous description for superconducting
systems. Next, we introduce superconducting systems in which heat current is
carried by quasiparticles living outside the superconducting gap. The behavior
of quasiparticle excitations is well explained by the Bogoliubov-de Gennes (BdG)
equations. We describe these equations, and then, introduce a scattering matrix
theory to study heat currents using Landauer-Buttiker formalism.

2.1 Heat currents and heat conductance in
coherent conductors

2.1.1 Heat current
Electrons carry both charge and energy. In a superconductor energy of quasipar-
ticles living above the superconducting gap can be dissipated as heat. The extra
energy current with respect to Fermi level is defined as heat current, and it can
be expressed in terms of particle and energy currents as follows:

J = IE − µIP . (2.1)

The currents IE and IP stand for energy and particle currents, respectively, while
µ denotes the equilibrium electrochemical potential. The method we use for cur-
rent calculation is Landauer-Büttiker formula which is based on calculating cur-
rents with the help of scattering states. This current can be particle, charge or
energy current.

2.1.2 Linear response
In the linear response regime, the temperature difference δT between the left and
right leads of a junction is assumed to be small with respect to the equilibrium

9
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Figure 2.1: Schematic depiction of a model system involving a scatterer. Incoming
and outgoing states in the vicinity of the scatterer are represented by operators â and b̂.

temperature T , that is, TL = T and TR = T + δT with δT � T . Thus, expanding
the thermal current in power series of δT in such a regime, we obtain

J(T, δT ) = −κ(T )δT, (2.2)

where κ(T ) is the temperature dependent heat conductance.

2.1.3 Landauer formula for heat current
A schematic illustration of a metallic scattering region is shown in Fig. (2.1).
The scattering region is connected to two reservoirs, which are considered to be
in thermal equilibrium. The incoming and outgoing states in the vicinity of the
scatterer are indicated in the figure. These states are combinations of plane waves
with a real wave number kn and are also referred to as propagating modes or
scattering channels. Particles (electrons or holes) incident on the metallic region
are scattered (reflected or transmitted). These particles carry energy as well as
charge. Using the Landauer-Büttiker formula [33], we derive the operator for the
heat current in a normal conductor

Ĵα,N(t, T ) = 1
h

N∑
n

∫ ∞
0
dE dE ′ ei(E−E

′)t/~

×
(
E + E′

2 − µ
)[
b̂†αn(E)b̂αn(E ′)− â†αn(E)âαn(E ′)

]
, (2.3)

where N denotes the total number of channels. The operators âαn (â†αn) rep-
resent the amplitudes for the waves coming to the scattering region, whereas
b̂αn (b̂†αn) for the waves transmitted or reflected from the scattering region. These
operators are related to each other via coefficients which are the elements of a
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scattering matrix
b̂αn =

∑
β,n′

sαn,βn′âβn′. (2.4)

Here, α and β are the lead indices, while the indices n and n′ label transport
channels. In general, a scattering matrix in a normal metal is block-diagonal and
satisfies the symmetry relation

SN =
(
s0(ε) 0

0 s0(−ε)†
)
. (2.5)

The two blocks correspond to the scattering matrices for electrons and holes,
and they are not coupled in a normal metal. Using polar decomposition [23],
the matrix s0(ε) can be written in terms of the transmission matrix of the normal
region which is a diagonal matrix of dimensionsN×N containing the transmission
eigenvalues of the normal region, D = diag(D1, D2, ..., DN ),

s0 =
[
U1 0
0 U2

] [√
1−D

√
D√

D −
√

1−D

] [
V1 0
0 V2

]
, (2.6)

where U1, U2, V1, V2 are unitary matrices of dimensions N ×N . Using the relation
for the average of fermionic operators,

〈â†αn(E)âβn′(E′)〉 = δαβδnn′δ(E − E ′)fα(E), (2.7)

we derive the expression for the the average heat current in a normal metal to
have the form:

Jα,N(T ) = 1
h

N∑
n=0

∫ ∞
0
dE EDn

[
fL(E)− fR(E)

]
. (2.8)

Here, the Fermi function

fα(E) = 1
1 + exp

(
(E − µ)/(kBTα)

) (2.9)

determines the fermionic particle occupation in the lead α. Note that both leads
are kept at the same electrochemical potential µ. The temperature and energy
dependence of the Fermi distribution is shown in Fig. (2.2).

2.1.4 Heat conductance
In order to obtain the heat conductance in a normal metal we employ the linear
response approximation for small temperature differences δT , see Eq. (2.2). In
particular, we approximate the difference of Fermi functions in Eq. (2.8) as follows

fL(E)− fR(E) ≈ −∂f(E)
∂E

(E − µ)2 δT

T
, (2.10)
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Figure 2.2: Temperature and energy dependences of the Fermi distribution.

and consequently, we obtain

JN(T ) ≈ −k
2
BT

h

N∑
n=0

Dn

∫ ∞
0
dE

(
E − µ
kBT

)2
∂f

∂E
· δT. (2.11)

We considered the transmission eigenvaluesDn to be energy independent. Such an
assumption allows for calculating analytically the energy integral in the equation
above, yielding ∫ ∞

0
dE

(
E − µ
kBT

)2
∂f

∂E
= −π

2

3 . (2.12)

As a result, the heat current in the linear response regime takes the form

JN(T ) = π2kBT

3h
N∑
n=0

Dn · δT ≡ κN(T ) · δT. (2.13)

The heat conductance of a normal metal κN(E) corresponds simply to the heat
conductance quantum, defined as κ0 = π2kBT/(3h), multiplied by the sum over
transmission eigenvalues.

2.2 Heat currents and heat conductance in
superconductors

Now, after reviewing the scattering formalism for heat transport in a normal
metal, we introduce the scattering formalism for a superconductor and we show
how the scattering problem formulated in the previous section changes. For this



13

reason, we recall the BdG equation which explains the behavior of superconduct-
ing states.

2.2.1 Bogoliubov-De Gennes equation
The scattering states in superconductor are eigenfunctions of the BdG equation
that has the form of two Schrödinger equations for electron and hole wave func-
tions coupled by the superconducting energy gap.

i~
∂f

∂t
=
[
−~

2∇2

2m − µ(x) + V (x)
]
f(x, t) + ∆(x)g(x, t), (2.14a)

i~
∂g

∂t
= −

[
−~

2∇2

2m − µ(x) + V (x)
]
g(x, t) + ∆(x)f(x, t). (2.14b)

Here ∆(x) is the space dependent energy gap and µ(x) is the chemical poten-
tial. In a normal metal [that is, for ∆(x) = 0], Eqs. (2.14) are two independent
Schrödinger equations for electrons and holes. On the contrary, in a supercon-
ductor we have ∆(x) 6= 0, and the electron and hole wave functions are coupled.
We now assume that µ(x),∆(x) and V (x) are all constant. As a result, the so-
lutions for Eqs. (2.14) are plane waves f = ueikx−iEt/~ and g = veikx−iEt/~. The
amplitude |v|2 represents the probability that a pair of states (k,−k) is occupied,
whereas |u|2 is the probability that such a pair of states is unoccupied, which also
implies |u|2 + |v|2 = 1. In the absence of a external field V = 0, substituting f
and g into (2.14) gives:

Eu =
(
~2k2

2m − µ
)
u+ ∆v, (2.15a)

Ev = −
(
~2k2

2m − µ
)
v + ∆u. (2.15b)

Now, we want to obtain the dispersion relation for a superconductor. To do this,
we need to calculate u or v by solving the set of equations (2.15). Eventually, this
procedure allows for finding the Bogoliubov spectrum (dispersion relation)

E2 =
(
~2k2

2m − µ
)2

+ ∆2, (2.16)

which is also illustrated in Fig. (2.3). Solving the equation above for wave vector,
we get

~k± =
√

2m
(
µ±
√
E2 −∆2

)
. (2.17)

The two momenta k+ and k− correspond to particle- (electron-) and hole-like
excitations, respectively. Knowing that |u|2 + |v|2 = 1, we have the energy de-
pendences of u and v

|u|2 = 1
2

(
1± (E2 −∆2)1/2

E

)
= 1− |v|2. (2.18)
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Figure 2.3: Dispersion relation for a superconductor, see Eq. (2.16), showing the
energy gap of a superconductor.

The Bogoliubov spectrum illustrated in Fig. (2.3) corresponds to the spectrum
of quasiparticles in the excited band, out of superconducting energy gap. In order
to represent the energy levels in a superconductor more clearly let us consider
the following model. A superconductor has an energy gap of ∆ between two
energy bands. As shown in Fig. (2.4), at zero temperature, the lower band is full
of electrons and the higher band is empty. By increasing temperature, some of
the electrons move from the lower to the upper band. These excited electrons
are called quasielectrons (or quasiparticles). They act approximately like normal
conduction electrons in the sense that they move at Fermi velocity vF . These
electrons lose the energy ∆ by falling from the bottom of the upper band to the
top of the lower band. As was explained earlier, the probability of the state k to
be empty and ready to receive an incoming electron is |u|2, see Eq. (2.18) [34].
The Fermi energy level is considered at the center of the gap. This picture is
called the semiconductor representation model of a superconductor [35].

2.2.2 Scattering theory for heat currents in a superconductor
Now, we develop the Landauer formula for heat currents in a superconducting
region. In appendix (A) we derive the formula for the heat-current operator in a
superconductor. Setting the electrochemical potential µ = 0, the result takes the
form
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Figure 2.4: (a) Schematic diagram of energy levels for a normal metal with Fermi
distribution shown at finite temperature. The Fermi energy level is denoted by µ. (b)
Semiconductor picture of energy levels of a superconductor at T = 0 and T > 0. The
gap of superconductor is ∆. The dotted areas indicate occupied electronic states.

Ĵ(t, T )α,S = 1
h

N∑
n

∑
i=e,h

∫ ∞
∆
dE dE ′ ei(E−E

′)t/~

×
(
E + E ′

2

)[
b̂†i,n(E)b̂i,n(E ′)− â†i,n(E)âi,n(E ′)

]
. (2.19)

In the expression above, there are two parts for electron- (i = e) and hole-like
(i = h) quasiparticle contributions to the heat current with a sum over N trans-
port eigenchannels in a superconducting lead. The gap ∆ in the lower limit of
integration should be understood as the maximum gap in the case we have dif-
ferent superconducting leads with unequal gap functions. Here, the operators
â

(†)
i,n (âi,n) and b̂

(†)
i,n (b̂i,n) represent incoming and outgoing states to the super-

conductor’s junction and in this case they indicate Bogoliubov operators. As
mentioned before, the incoming and outgoing states are related to each other by
a scattering matrix specific to the junction under consideration. The BdG equa-
tion is used together with wave function matching in appendices (B and C) to
construct the scattering matrix of a superconducting hybrid junction. Calculat-
ing the average of the heat-current operator in Eq. (2.19), analogously as in the
case of normal leads, we obtain the average heat current that depends on the
transmission probabilities of electrons and holes,

Jα,S(T ) = 1
h

N∑
n=0

∫ ∞
∆
dE E

[
Den +Dhn

][
fL(E)− fR(E)

]
, (2.20)
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where Fermi functions fα(E), Eq. (2.9), determine the quasiparticle occupation
in superconducting contacts, α ≡ L,R. The transmission probability of channel n
consists of electron-like and hole-like quasiparticles contributions that are equal
due to particle hole symmetry (Den = Dhn). The transmission probability Den is a
sum of transmission probabilities of electron-like and whole-like quasiparticles to
the electron-like channels, Den = Deen +Dehn . These transmission probabilities are
calculated using scattering matrices for NS and different regimes of SNS junctions
in the next chapters.

2.2.3 Heat conductance
In order to derive the linear response heat conductance in a superconductor we
consider the difference of Fermi functions at small temperature differences of two
leads to be

fL(E)− fR(E) = E

4kBT 2 cosh2(E/(2kBT )
) · δT. (2.21)

Substituting the equation above into Eq. (2.20) and employing the linear response
relation (2.2), we obtain the formula for the heat conductance in a superconduct-
ing lead

κS(T ) = 1
2h

N∑
n=0

1
kBT 2

∫ ∞
∆
dE

E2

cosh2(E/(2kBT )
)Den. (2.22)

Here, we also made use of the particle-hole symmetry which basically means that
the transmission probabilities of electron-like (Den) and hole-like (Dhn) quasiparti-
cles are equal.

2.3 Thermal conductivity of the normal state
Befor we analyze heat transport in superconducting structures for specific junc-
tions, it is intuitive to review the mechanisms of thermal conductivity in a normal
metal. In such a case, carriers of thermal energy are electrons and phonons which
have two independent channels. Total thermal conductivity can be written as a
sum of electronic (κe) and phononic (κe) contributions,

κN = κe + κph. (2.23)

Moreover, the electronic conductivity has electron-lattice contribution κe−L and
the impurity term κe−I, whereas the phonon conductivity contains phonon-elec-
tron κph−e and impurity κph−I contributions. Each pair of conductivities involving
the same carriers of heat act in series. Considering pure metals, the electron-lattice
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contribution of electronic conductivity will be important. From solid state physics
we know [35]

κe−L = 1
3vF lCe, (2.24)

where l = vF τ is the mean free path and Ce = γT stands for the conduction-
electron contribution to the specific heat. Here, γ = π2

3 D(EF )k2
B is the Sommer-

feld constant with the density of state defined as D(EF ) = (m∗kF )/(~2π2) and m∗
representing the effective mass. Temperature dependence of relaxation time is

τ =
T

−3, for T � ΘD,

T−1, for T � ΘD,
(2.25)

where ΘD is the Debye temperature. Combining Eqs. (2.24)-(2.25), we can explic-
itly write the temperature dependence of the lattice contribution to the electronic
thermal conductivity

κe−L =


const
T 2 , for T � ΘD,

const, for T � ΘD.
(2.26)

In order to obtain the temperature dependence of the impurity contribution
to the electronic thermal conductivity we consider the Wiedemann-Franz law
κth/σ = (3/2)(kB/e)2T , knowing that the electrical conductivity at low tem-
peratures is temperature independent, σ(T ) = σ0. As a result, κe−I = const · T
at T → 0. We also note that in pure metals, the electronic contribution to the
thermal conductivity tends to dominate at all temperatures. Finally, comparing
Eq. (2.26) with the heat conductance we obtained for a normal metal in linear re-
sponse regime Eq. (2.24). Thus, we conclude that the Drude’s model is applicable
for temperatures larger that the Debye temperature.





3 Heat Conductance and Heat
Conductance Fluctuations in SNS
Junctions

In the previous chapter, we presented the scattering theory for heat currents in
normal and superconducting devices. In this chapter, we use this formalism to
study thermal transport in an SNS junction with a disordered normal region. In
order to use scattering theory to study heat currents we first construct the scat-
tering matrix of the SNS junction. Following Ref. [36], we express the scattering
matrix of the SNS junction in terms of the transmission eigenvalues of the dis-
ordered normal region. The obtained transmission probabilities are then used to
calculate the heat current and the linear response heat conductance.
With this, in a first step, we are able to reproduce previous results for SIS

junctions (in the absence of a diffusive junction), as experimentally proven in
Ref. [9]. We then come to the main focus of this chapter and study the statistical
contribution of many transport channels to the heat conductance using the DMPK
formula, based on random matrix theory (RMT) [23]. This formula suggests a
bimodal distribution of transmission eigenvalues of the disordered normal region,
dependent on the length of the junction.
In the channel average of the heat conductance, obtained from this, we find

that the phase dependence is fully suppressed. The properties of the supercon-
ductor barely enter via the magnitude of the gap compared to the temperature,
which determines the occupation of quasiparticles. We then calculate the weak
localization correction to this average, which interestingly maintains the phase
dependent behavior. Finally, we address the variance of the heat conductance
in Josephson junctions (SNS). Conductance fluctuations of the charge current
in normal diffusive conductors have been of interest since several decades; their
most important feature is their universal behavior [24–26]. The heat conductance
fluctuations in an SNS junction, have however not been addressed before. Here,
we show that they are similarly universal, but have an additional temperature
dependence, induced by the phase difference between the superconductors.

19
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Figure 3.1: Sketch of an SNS junction consisting of two superconducting leads char-
acterized by different temperatures and phases. Assuming a generic barrier in the
normal region, we construct the scattering matrix of the whole SNS junction in terms
of the normal scattering matrix of the barrier.

3.1 Superconductor-normal metal-superconductor
(SNS) junction

In this section we explain the construction of the scattering matrix of an SNS
junction. The model we consider is shown schematically in Fig. 3.1. It consists
of a normal region containing a generic barrier or a disordered part between two
superconducting regions SL and SR. Incoming and outgoing states in normal and
superconducting regions are indicated in figure (3.2)
In Appendix C the scattering matrix of an SNS junction is derived in terms of

the normal region scattering matrix. In order to obtain a well defined scattering
matrix we assume two ideal normal leads at the left and right of the disordered
region, NL and NR. We assume that the disorder is only contained in the normal
region. This separation of scatterings in the disordered normal region and the
normal-superconductor interface is illustrated in Fig. (3.1). It allows us to simplify
the scattering matrix of a SNS junction by relating it directly to the normal
scattering matrix. This model is valid in superconductor clean limit where the
electron mean free path l is large compared to the superconducting coherence
length ξ (l� ξ). Therefore the SNS junction we consider will be divided into three
junctions, NS, NN and SN junctions. By writing down the scattering matrix of
each junction separately and combining the three matrices, we have the scattering
matrix of SNS junction. For a Josephson junction shown in figure (3.2) containing
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Figure 3.2: Sketch of an SNS junction across which a temperature as well as a
phase difference occurs. The normal part of the junction has length L and supports
N scattering channels. We consider the normal region to be disordered.

a disordered normal region the scattering matrix has the following structure

SSNS = U−1(1−M)−1(1−M †)SNU. (3.1)

This matrix is written in terms of the normal scattering matrix, SN. Thus having
normal scattering matrix, we can study the properties of the whole SNS junction.
In derivation of this scattering matrix we used the trick from Ref. [37] that is,
we considered a generic barrier in the middle of the normal part. The matrices in
the formula (3.1) are defined as follows

U ≡
[
ν 0
0 ν∗

]
, ν ≡

 eiϕL/2

cosαL
0

0 eiϕR/2

cosαR

 ,
The matrix U is a unitary matrix and contains the terms which vanish in the

process of calculating transmission probabilities using the scattering matrix. The
phases of matrix U disappear due to the multiplication of the unitary matrix by
its inverse. Therefore this matrix U does not have any effect on the final trans-
missions that are related to transport properties. Calculating the transmission
probabilities through SSNS, the phase dependence of transmission amplitudes is
due to Andreev reflection which enters the scattering matrix via rA and is defined
as follows

M ≡ SN

[
0 rA
r∗A 0

]
, rA ≡

[
sinαLe

iϕL 0
0 sinαRe

iϕR

]
.

Here rA contains the terms which are the results of Andreev scattering with de-
fined as sinαL(R) = vL(R)/uL(R), uL(R) =

√
∆L(R)/2Eearcosh(E/∆L(R))/2 and vL(R) =
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√
∆L(R)/2Ee−arcosh(E/∆L(R))/2. The temperature dependent gaps of the left and

right superconducting leads are ∆L(R).
The normal scattering matrix contains two separate blocks for electrons and holes
which are not coupled

SN =
[
s0(ε) 0

0 s0(−ε)†
]
. (3.2)

Using polar decomposition [23], the matrix s0(ε) can be written in terms of
the transmission eigenvalues of the disordered normal region which is an N ×N
diagonal matrix of normal transmission eigenvalues (D). This matrix brings the
effect of many transport channels supported by the disordered normal region to
SNS scattering matrix.

s0 =
[
U1 0
0 U2

] [ √
1−D

√
D√

D −
√

1−D

] [
V1 0
0 V2

]
. (3.3)

Here the matrices U1, U2, V1, V2 are four N ×N unitary matrices.
Transport properties are related to transmission probabilities through junctions.

Therefore from the scattering matrix (3.1) we obtain the transmission probability
through the SNS junction in order to apply it into heat transport quantities.
The full transmission probability is a sum over transmissions of N transport
channels, Dn. We are interested in this summation since we want to study the
case where there are many channels contributing to transport, as it is in disordered
conductors. The transmission probabilities into electron-like quasiparticle channel
is the sum of transmissions from electron- and hole-like quasiparticels, Deen +Dehn ,
and is given by

Den(E) = 2DnξLξR
DnξLξR + (2−Dn)(E2 −∆L∆R cosϕ)

((2−Dn)ξLξR +Dn(E2 −∆L∆R cosϕ))2 , (3.4)

where ξL(R) =
√
E2 −∆2

L(R) is the quasiparticle energy in the contact L(R). The
phase difference between left and right superconductors is ϕ = ϕL − ϕR. This
result is important since it is the general transmission which is valid for the case
of unequal superconducting gaps ∆L 6= ∆R. Another important aspect of this
transmission is that it supports different limits of Dn including arbitrary strong
normal transmissions. From this general result we can reproduce all other limiting
cases as follows.
Now, we look at different limits of this transmission probability. For small Dn,

by expanding the transmission amplitude in Eq. (3.4) up to first order in Dn, we
obtain the transmission probability in tunneling regime with which we reproduce
the results of heat conductance obtained by Maki-Griffin [2]

Den(E) = Dn
E2 −∆L∆R cosϕ

ξLξR
. (3.5)
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Figure 3.3: Phase and transmission dependence of the Andreev bound state energy.
The temperature is T/Tcrit = 0.2 and ∆0 is the superconducting energy gap at zero
temperature.

This result is only valid for small Dn.
Another limit of interest is the opposite case of small transmissions which cor-

responds to a fully transparent junction when Dn = 1. In this case the only
transmission in the whole junction is from electron-like to electron-like quasipar-
ticles and Deh = 0. The transmission probability in this case is given by

Dn(E) = Dee(E) = 2ξLξR
E2 + ξLξR −∆L∆R cosϕ. (3.6)

Finally, in the linear response regime which we consider to calculate the con-
ductance, the temperature difference of the two superconducting leads is small.
Therefore the temperature dependence of the energy gap of the two leads will be
equal. This requires finding the transmission amplitude for equal superconduct-
ing gaps. Therefore considering equal superconducting leads with equal gaps and
substituting ∆L = ∆R in the expression (3.4) we obtain

Deen =Dn
ξ2(E2 −∆2

0 cos2(ϕ/2))
(E2 − E2

b )2 , Dehn = Dn(1−Dn)ξ
2∆2

0 sin2(ϕ/2)
(E2 − E2

b )2 , (3.7)

and therefore

Den = (E2 −∆2)
(E2 − E2

b )
[Dn(E2 −∆2 cosϕ)−D2

n∆2 sin2(ϕ/2)]. (3.8)

Here, Eb = ∆
√

1−Dn sin2(ϕ/2) is the Andreev bound state energy. Multiple
Andreev reflections lead to formation of sub-gap states which are called Andreev
bound states, with energies below the superconducting gap. These states influence
the transmissions above the gap. In Fig. (3.3) dependence of this energy on the
transmission Dn and phase is shown at the temperature T/Tcrit = 0.2. It is visible
from the plots that the bound state energy has significant temperature and phase
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dependence, and this influences the heat conductance. This influence is missing
in the weak coupling regime where Dn is small.
In the case when there is no phase difference between superconducting leads,

ϕ = 0, as well as the case of zero gap function, ∆ = 0, we obtain the transmission
(3.8) which is equal to the normal transmission, Den = Dn. This behavior is the
same as for similar limits of conductance for which we obtain the results in the
next sections.

3.2 Heat conductance and averaging
We have derived the formula for heat conductance in a superconducting junction
in Section (2.2.3). The heat conductance calculated in the linear response regime
is

κSNS = 1
2h

N∑
n=0

1
kBT 2

∫ ∞
|∆|
dE

E2

cosh2( E
2kBT

)
Den(E)|δT=0 (3.9)

where Den(E) is the full transmission in Eq. (3.4).
Assuming the equal temperature dependent superconducting gap functions (∆L =

∆R) and substituting the transmission probability given in Eq. (3.8) in the for-
mula for heat conductance gives us the heat conductance of an SNS junction with
equal gaps for superconducting leads

κSNS(T ) = 1
2h

N∑
n=0

1
kBT 2

∫ ∞
∆
dE

E2

cosh2(E/2kBT )
(3.10)

× (E2 −∆2)
(E2 − E2

b )
[Dn(E2 −∆2 cosϕ)−D2

n∆2 sin2(ϕ/2)].

The transmission probability of the disordered normal region, Dn takes the values
between 0 and 1. For superconducting contacts with ∆0,L = ∆0,R = ∆0 (made of
the same material), we recover previously obtained result in the single- [22] and
multi-channel regime [7, 8]. Note that results obtained in the tunneling limit [2,
38] are only valid for heat currents at relatively large temperature gradients and
the heat conductance is hence not straightforwardly obtained from this. With
Eqs. (3.4) and (3.10), we confirm an important result of Ref. [8], namely that
the heat conductance κSNS shows a phase- and transmission-dependent increase
with respect to the value of a fully normal-conducting device κN = κ0

∑N
n=0Dn.

Here, κ0 = π2k2
B

3h T is the (temperature-dependent) heat conductance quantum [39],
recently measured in electronic systems [40].
The heat conductance behavior for a single channel is shown in Fig. (3.4).

When the temperature reaches the critical point of the superconductor, the heat
conductance is equal to the normal heat conductance as shown in the figure.
For some transmissions the heat conductance is larger than the normal case at
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Figure 3.4: Temperature dependence of single channel heat conductance of SNS junc-
tion (Left ) Equal superconducting gaps at different transmissions of disordered nor-
mal region. The phase difference of the two superconductors here is ϕ = π. (Right)
Different superconducting gaps at different phases and transmissions. Heat conduc-
tance increases to values larger than these for normal heat conductance for smaller
transmissions.

temperatures smaller than Tcrit. We set the phase difference of the two supercon-
ductors to ϕ = π which has the most effect comparing to other phase differences.
These results agree well with previous studies [8]. The phase dependence of single
channel heat conductance for different transmissions is shown in Fig. (3.5).
Now, we come to the case where the conductance is affected by large number

of channels. We consider a disordered region to exist in the normal barrier in the
model we study. This barrier supports N transport channels. In order to take
into account the effect of many channels in the heat conductance we take average
of all channels. To compute this average we need to know how the transmission
eigenvalues are distributed. The distribution function of transmission eigenchan-
nels of a diffusive conductor is computed by Dorokhov [41], Mello and Pichard
[42]. They consider a wire with length L which has random impurities. The scat-
tering of such a wire is random. By considering an ensemble of RMT (Random
Matrix Theory) for transmission probabilities, the distribution of transmission
probabilities is obtained and it depends on the length of the wire (or junction in
our model)

ρ(Dn) = l

2LDn

√
1−Dn

. (3.11)

In order to calculate the average of heat conductance we multiply it by the DMPK
equation and integrate over all transmissions

〈κSNS〉 =
∫ 1

0
dDnρ(Dn)κSNS. (3.12)

This ensemble average of heat conductance is of the first order in l/L which comes
from the length dependence of Dorokhov distribution. Using a trick developed in
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chapter 2 of Ref. [33] based on a parametrization of the transmission eigenvalues
Dn, this integral can be solved analytically and we find

〈κSNS〉
〈κN〉

= 2− 6
π2

( |∆|
kBT

)2
(1− f(|∆|))

+2 |∆|
kBT

ln f(|∆|)− 2Li2
(
−e|∆|/kBT

)]
, (3.13)

with the dilogarithmic function Li2. This key result shows that 〈κSNS〉 in a dis-
ordered SNS junction is fully phase-independent. The average heat conductance
〈κSNS〉/〈κN〉 equals the single-channel result at vanishing phase difference δϕ = 0.
In Fig. (3.5) the average of SNS heat conductance normalized to the normal
heat conductance average is shown. As one can see, although the single chan-
nel heat conductance is phase dependent, this dependence disappears by taking
the average (The blue plot in the figure shows the average of the single channel
heat conductance for zero phase difference which are equal). This is how DMPK
distribution influences averaging by considering different weights for transmission
eigenvalues. Both single channel and average of heat conductances also show a
suppression in very small temperatures.
Considering the Lorentzian shape for transmission eigenvalues, Dn = 1/(1 +

(χ/ω)2), and computing the average of transmission probability of the SNS junc-
tion, Eq. (3.8), using the DMPK distribution, we obtain∫

dDnDe(Dn)ρ(Dn) =
∫
dχD1/2

n De(χ) = ω. (3.14)



27

Therefore we see a witness which shows the phase dependence disappears by
averaging over transmission eigenvalues which are distributed by the DMPK dis-
tribution. We conclude that the transmissions Dn are not distributed uniformly
according to Dorokhov distribution and they are either exponentially small or of
the order of unity.

3.3 Weak localization
A theory of localization in multimode wires has been introduced by Dorokhov [43]
and Mello, Pereyra, and Kumar [44]. Due to enhanced backscattering of carri-
ers [45] and the resulting interference between time-reversed paths, the average
quantum conductance is smaller than the classical one. This has been verified
by a numerical experiment for a conductor containing 30 transport channls [46].
This is one of the very important phase-coherent mesoscopic effects. This effect
is known as the weak localization and occurs on length scales L � N l, where
the length of the conductor or the junction length is much smaller than the lo-
calization length. Here l is the mean free path and N l the localization length.
This regime corresponds to the short junction limit. In a long junction, where the
junction length is comparable to the localization length, electrons are localized.
This is the strong localization regime. For a metallic conductor it is not very
probable to enter the strong localization regime, however, the weak localization
has been observed in metallic wires at very low temperatures [47].
The resulting correction to the average of the heat conductance can be obtained

considering the corresponding correction to the distribution of transmission eigen-
values δρ. Using the parametrization Dn = 1

cosh2 x
for the transmission eigenvalues

of the normal region, one can write δρ for time-reversed and spin-rotation sym-
metric systems (as the one considered here) as [48].

δρ(x) = −
[1
4δ(x− 0+) + (4x2 + π2)−1

]
.

This correction is in the following used to evaluate the correction to the average
heat conductance of the SNS junction

δκSNS =
∫ ∞

0
dxκSNSδρ(x). (3.15)

Therefore the weak localization is defined as a negative correction to the average
of heat conductance and it is of order N 0 compared to the previously calculated
〈κSNS〉, which is of order N . The weak localization correction is hence expected to
be of importance in particular in devices with a rather small amount of channels,
such as in recently developed hybrid superconductor, semiconductor devices [49].
We show results for δκSNS in Fig. 3.6, which as expected have the order of mag-
nitude of a single-channel heat conductance. Importantly, we see that the weak-
localization correction re-establishes a dependence on the superconductors’ phase
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Figure 3.6: Temperature- and phase-dependence of the weak localization correction
δ〈κSNS〉 to the average heat conductance. (Left) δκSNS/〈κSNS〉/(l/L) as function of
temperature T/Tcrit at different phase differences ϕ and (Right) as function of the
phase difference ϕ at different temperatures T/Tcrit. The length scale is considered
l/L = 0.3.

difference ϕ. This is intuitively clear since the weak localization itself arises from
quantum-mechanical interference effects. The overall magnitude of δκSNS as a
function of temperature depends on ϕ, as one can clearly see from panel (a) of
Fig. 3.6. The phase dependence is most pronounced for smaller temperatures,
T/Tcrit . 0.5. This correction is constant at zero phase when it is normalized
to the average of conductance. This occurs because the zero phase transmission
probability is equal to the transmission in normal metal which makes the ratio of
the correction to the average to be temperature independent.

3.4 Universal conductance fluctuations
As we have seen so far in previous sections, transport properties such as charge
and heat conductances are dependent to the transmission eigenvalues. In a normal
metal this dependence is

GN = G0
∑
n
Dn(µ), κN = κ0

∑
n
Dn(µ), (3.16)

where the quantum of charge and heat conductances are G0 and κ0. The trans-
mission eigenvalues depend on energy. In the linear response regime, the applied
voltage is much smaller than the typical energy scale of this dependence. There-
fore Dn can be evaluated at the Fermi level. As we see in Eq. (3.16), in normal
metals the transmission of transport channels contributes to the electrical conduc-
tance basically in the same way as to the thermal conductance; therefore thermal
conductance fluctuations are expected to have similar properties. This is different
in superconductors.
We want to address the variance of the heat conductance. Thanks to the eigen-

channel decomposition of the full transmission matrix, leading to Eq. (3.4), the
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variance Var[κSNS] can be directly computed as in Ref. [23, 48]

Var [κSNS] = 1
2π2

∫ ∞
0
dx

∫ ∞
0
dx′

(
dκSNS(x)

dx

)
(3.17)

×
(
dκSNS(x′)

dx′

)
ln
(1 + π2(x− x′)−2

1 + π2(x+ x′)−2

)
,

using the previously introduced parametrization of Dn(x). Importantly, this
term is of order N 0. For the conductance G/(e2/h) of a normal-conducting junc-
tion in the diffusive limit, it takes the universal value Var

[
G/(e2/h)

]
= 2/15 for

the type of system we are considering here. In particular, this means that the vari-
ance of the heat conductance of the normal-conducting junction κN = κ0

∑N
n=0Dn,

which, similarly to the conductance G, is simply linearly proportional to the av-
erage transmission, is given by

Var
[
κN
κ0

]
= 2

15 (3.18a)

⇒ Var [κN] = 2
15

(
π2k2

B
3h

)2

T 2. (3.18b)

This quantity is hence universal up to a factor T 2, which is expected for the heat
conductance (having a temperature dependent heat conductance quantum κ0).
Also the fluctuations of the heat conductance of the SNS junction Var [κSNS/κ0]

are of the order N 0. However, in contrast to the straightforward result for the
heat conductance fluctuations of the normal-junction, Eq. (3.18a), the phase dif-
ference across the SNS junctions induces a small, but nontrivial dependence of
Var [κSNS/κ0] on phase and temperature.





4 Normal Metal as Heat Sink for
Superconducting Devices

This chapter deals with the study of heat transport in normal-superconducting
(NS, NIS or NNS ) junctions. NS junctions are significant structures in the re-
search of cooling. The energy gap in the superconducting electronic density of
states, which is one of the defining properties of superconductors, can act as an
energy filter for electrons. This property can be exploited in order to cool the
superconducting lead in the junction via the normal conductor, acting as a heat
sink, or vice versa.
In this chapter, we study heat transport in diffusive NS junctions. We use the

same formalism as in Chapter 3 to construct the scattering matrix of a diffusive
NS junction and to then calculate the heat conductance and its channel average
using the Dorokhov formula. The results presented in this chapter constitute the
starting point for further investigations of cooling in NS junctions.

4.1 Scattering Matrix of NS Junction
We first construct the scattering matrix of an NS junction. We employ the same
trick as we used in Chapter 3 for an SNS junction, formally dividing the junction
into NN and an NS subjunctions. We assume a disordered region in the normal
conducting junction as shown in Fig. (4.1) and write the scattering matrix of the
whole NS junction in terms of the normal scattering matrix of this region.
We first write down the scattering matrix of the NS and NN junction separately,

and next, combine them to have the scattering matrix of the whole junction. The
reflection and transmission coefficients in the NS interface are calculated by wave
function matching in Appendix B. Here are the results of these coefficients

reh = u0v0

γ
, (4.1a)

ree = −(u2
0 − v2

0)(Z2 + iZ)
γ

, (4.1b)

teh = iv0Z

γ
, (4.1c)

tee = u0

γ
(1− iZ), (4.1d)
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Figure 4.1: Normal-metal-superconducting (NS) junction containing a disordered
normal region. Scattering states in both normal and superconducting leads are indi-
cated schematically.

where Z = mH/~2kF corresponds to an effective barrier at the interface of a
normal metal and a superconductor, H stands for the potential of this barrier
and γ = u2

0 + (u2
0 − v2

0)Z2 [50].
In Eqs. (4.1), reh corresponds to the Andreev reflection, ree to ordinary reflec-

tion, tee to transmission without branch crossing and teh to transmission with
crossing between electron and hole branches. Due to the conservation of proba-
bility, the sum of related probabilities to all of these coefficients is one. In the
absence of a barrier [that is, when H = 0], one gets Z = 0 and consequently
ree = teh = 0. In this case there are two regimes, the first one for E < ∆ (i.e.,
for energies below the superconductor gap) where tee = 0, and the only possible
scattering is Andreev reflection with the probability of A = r∗ehreh = 1. The
second case is for energies above the gap, E > ∆, in which there is both Andreev
reflection and transmission without branch crossing in the absence of a barrier.
Using Eqs. (4.1) for energies above the superconductor gap in the absence of a
barrier, the scattering matrix of the NS interface can be written as follows:

SNS = 1
u


0

√
ξ/Eeiϕ/2 veiϕ 0√

ξ/Ee−iϕ/2 0 0 −v
ve−iϕ 0 0

√
ξ/Ee−iϕ/2

0 −v
√
ξ/Eeiϕ/2 0



=


0 cosαeiϕ/2 sinαeiϕ 0

cosαe−iϕ/2 0 0 − sinα
sinαe−iϕ 0 0 cosαe−iϕ/2

0 − sinα cosαeiϕ/2 0

 , (4.2)

where we have introduced the angle α defined as sinα = v/u. The scattering
matrix satisfies the time-reversal and particle-hole symmetry [37]. Since in an NS
junction there is only one superconductor, there is no phase difference between
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different superconductors, and ϕ can be set to zero which does not make any
difference in calculating transmission probabilities.
The scattering matrix of the normal region, as we saw in previous chapters,

can be written in terms of the transmission probabilities of the disordered normal
region. The structure of this normal scattering matrix is

SN =
[
s0(ε) 0

0 s0(−ε)†
]
. (4.3)

Using the polar decomposition [23], the matrix s0(ε) is written as

s0 =
[
U1 0
0 U2

] [ √
1−D

√
D√

D −
√

1−D

] [
V1 0
0 V2

]
, (4.4)

where D is a diagonal matrix of normal transmissions Dn and U1, U2, V1, V2 are
four N ×N unitary matrices.

4.1.1 Transmission Probabilities
Combining the scattering matrix of the NS interface with the normal scattering
matrix we obtain the transmission probabilities of the whole NS junction illus-
trated in Fig. (4.1). The transmission probability of an electronic state is the
sum De = Deen +Dehn .

Deen = Dn cos2 α

(1− (1−Dn) sin2 α)2 (4.5a)

Dehn = sin2α cos2αDn(1−Dn)
(1− (1−Dn) sin2 α)2 , (4.5b)

where
cos2 α = 2ξ

E + ξ
and sin2 α = ∆2

(E + ξ)2 . (4.6)

Here, Den and Dhn, which are equivalently obtained from Dhhn +Dhen , denote trans-
mission probabilities for electrons and holes, and as a consequence of the particle
and hole symmetry they fulfill Den = Dhn. The transmission probabilities depend
on the superconductor’s gap.

4.2 Heat Current and Heat Conductance
As discussed in Chapter 3, the heat current in the superconducting lead has two
parts for electrons and holes

J(T ) = 1
h

N∑
n=0

∫ ∞
0
dE E

[
Den(E) +Dhn(E)

][
fL(E)− fR(E)

]
. (4.7)
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Figure 4.2: Temperature dependence of single channel heat conductance of an NS
junction at different transmissions of the disordered normal region. At T = Tcrit the
heat conductance becomes equal to the normal heat conductance. In the left panel the
normal heat conductance, κN, with respect to which κNS is normalized, is temperature
dependent and in the right panel the conductance is normalized to the normal heat
conductance at Tcrit.

The heat current depends also on the difference between Fermi functions of the
left and right leads of the NNS junction. In the linear response regime, when the
temperature difference between the left and right leads is small, we obtain heat
conductance from heat current. By employing

fL(E)− fR(E) ≈ E

4 cosh2(E/2KBT )kBT 2 δT, (4.8)

together with Eq. (4.5), and considering linear response regime J(T ) = κNS(T )δT ,
we obtain the heat conductance of an NS junction

κNS(T ) = 1
2hkBT 2

N∑
n=0

∫ ∞
0
dE

E2

cosh2(E/kBT )

× cos2 αDn(1 + sin2 α(1−Dn))
(1− (1−Dn) sin2 α)2 . (4.9)

? The temperature dependent heat conductance of NNS junction is shown in
Fig. (4.2) for a single channel at different normal transmissions. The single
cha?nnel conductance compared to the normal conductance have similar behav-
ior in NS and SNS junctions by having a larger value for conductances at some
temperatures below Tcrit. The single channel conductance which is normalized
to the conductance at Tcrit shows the same behavior to the results of a previous
experiment [51]. The average NS heat conductance is shown in Fig. (4.3). The
averaging is calculated using the same formalism as that introduced in Chapter 3
for averaging the SNS conductance. The SNS results are highly ϕ dependent. It
seems that ∆L 6= ∆R can lead to κNS/SNS > κN even at ϕ = 0. The behavior of
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〈κNS〉 is what we expect. For the SNS case, 〈κSNS〉 depended only on ∆max and
not on ϕ. Therefore this should be the same for NS.

4.3 Phonon Heat Transport
One of the questions that becomes important when thinking of applications is
the contribution of phonons comparing to quasiparticles in the heat conductance
of superconducting junctions. In general, it is not straightforward to separate
the lattice and quasiparticle components of heat conductance in superconductors.
This is due to the influence of quasiparticles on the lattice contribution of heat
conductance through electron-phonon coupling. There have been observed various
results in different experiments for the comparison of quasiparticle and phonon
heat conductances. One of the experiments on measuring the thermal conductance
of a superconductor has been performed in a temperature range where lattice con-
duction dominates [52]. This kind of measurements are still limited due to the
scattering of phonons by electrons. It has been shown in another experiment that
a finite electron-phonon coupling would lead to an increase in lattice conductance
below the critical temperature Tcrit of superconductor [53]. Therefore it seems to
be an important question to what extent the phonon contribution to heat con-
ductance is noticeable and how electron-phonon coupling affects the contribution
of both lattice and quasiparticles to heat conductance.





5 Summary
In this thesis we discuss heat transport in superconducting hybrid structures.
In order to investigate the influence of superconductivity on heat transport in
temperature-biased systems, we study two types of structures, containing su-
perconducting elements as well as normal conductors. The first structure is a
Josephson junction containing a normal disordered scattering region between two
superconductors. In addition to the temperature bias, there is also a crucially
important phase difference between the superconducting condensates of the two
contacts and the two superconductors of the SNS junction can have different gaps.
In the second structure, an SN junction, one of the superconducting contacts is
replaced by a normal conductor.
We analyze the behavior of thermal properties such as the linear-response heat

conductance and in particular the influence, which the junction properties have
on the heat transport. The disordered region of the junction, which we consider
here, is characterized by a large number N of transport channels with randomly
distributed transmission probabilities. As a consequence, we consider the channel-
averaged heat conductance, which turns out to be independent of the supercon-
ducting phases and only governed by temperature compared to the largest of the
superconducting gaps in the structure. In addition, we calculate the weak localiza-
tion correction of the heat conductance. Finally, we address the heat conductance
fluctuations. We find these heat conductance fluctuations to have a similarly uni-
versal behavior as the well known charge conductance fluctuations. However, we
can also identify an up-to-date unknown, non-trivial dependence on the super-
conducting phase in SNS junctions. In order to analyze the heat transport in
these junctions, we use a Landauer-Büttiker scattering theory for quasiparticle
excitations in the superconductor together with previously obtained distribution
functions for disordered junctions from random-matrix theory.
After a general overview in Chapter 1, we introduce the scattering formalism

for heat transport in Chapter 2, both for fully normal-conducting systems, as
well as for hybrid superconducting systems, described by Bogoliubov-de Gennes
equations. In order to calculate the heat current or the heat conductance, the full
scattering matrix of the structure of interest is required.
In Chapter 3 and in the Appendices, we show a detailed derivation of the scat-

tering matrix of an SNS junction. This is done by combining the scattering matri-
ces of SN junctions—obtained from wave-function matching using Bogoliubov-de
Gennes equations—with the scattering matrix of the disordered normal region.
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We write the scattering matrix SN of the normal-conducting disordered region
in terms of the transmission eigenvalues (Dn) using a polar decomposition. As
a result, we obatin the scattering matrix of the whole SNS junction in terms of
these transmission eigenvalues of SN. This approach is beneficial, since we can
directly employ the statistical distribution of the transmission eigenvalues of the
normal region to get a channel-average of the heat conductance of the full SNS
structure. The obtained scattering matrix of the SNS junction is valid for arbi-
trary junction transmission Dn, as well as for superconductors with different gaps
and phases. It can therefore serve as the starting point for the analysis of both
types of structures, SNS and SN, which we are interested in in this thesis.
In the second part of Chapter 3, we then use the obtained matrix to calculate the

heat current and the heat conductance in the linear response regime for the SNS
junction. Importantly, the heat conductance is phase-dependent, as it has recently
experimentally been observed in Josephson heat interferometers [9]. In order to
investigate the effect of the disordered region on the heat conductance, we use the
so-called Dorokhov distribution, which proposes a bimodal density distribution
for the transmission eigenvalues Dn. Using this distribution we calculate the
averaged heat conductance in the SNS junction and find that, surprisingly, the
disorder averaging fully suppresses the phase dependence of the heat conductance.
Considering the length of the disordered junction in the SNS structure to be much
smaller than the localization length of electrons, that is the number of channels
multiplied by the electron mean free path (N l), we expect weak localization to
occur in the normal junction. Calculating this N -independent weak localization
correction to the average heat conductance, we notice that a dependence on the
superconducting phase-difference is restored.
Finally, we address the variance of the statistics of the heat conductance.

These heat conductance fluctuations can be studied employing the same formal-
ism, which we used for averaging and weak localization, the DMPK formalism.
The heat conductance fluctuations —being a quantum effect— are again phase-
dependent in an SNS junction, in contrast to the average heat conductance. Inter-
estingly, we furthermore find that the heat conductance fluctuations are similarly
universal as the famous universal conductance fluctuations of charge currents.
These fluctuations are independent of the junction length and of order unity,
when compared to the (heat) conductance average.
In the end in Chapter 4 we describe the heat current and conductance in an

NS junction with the same formalism of the previous chapters. This analysis is
mostly motivated by the interest in NS junctions for cooling applications. Also
here we find that the statistics of the transmission eigenvalues of the disordered
region lead to sensitive differences in the heat conductance with respect to results
obtained for single-channel junctions.
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Outlook
In this thesis, we set up a scattering matrix formalism for the heat conductance
of hybrid superconducting devices. With this formalism at hand, we are now
able to consider further, experimentally relevant hybrid structures, where (1) a
complex junction design can be taken into account (2) multi-terminal structures
can be considered and (3) higher-order correlation functions can straightforwardly
be addressed.
It is of particular interest to compare the magnitude of the heat current noise [54]

(the second-order correlation function between heat currents) to the variance of
the heat current statistics due to the distribution of transmission probabilities in
a disordered region. The calculation of the heat current noise using the scattering
matrix approach is a currently ongoing project.
Finally, we have briefly addressed the question of phononic heat transport in

Chapter 4. Phononic heat transport is largely suppressed in low-temperature
experiments. However, in particular in applications of NS junction in cooling,
this contribution is expected to be of relevance. Also here, we are interested in
comparing the order of magnitude of effects calculated in this thesis to effects
of phonon scatterings and electron-phonon interactions in heat transport in NS
junctions.
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Appendices





Appendix A

Heat current operator in
superconductors
Heat current is defined as the difference of energy currents of particles with respect
to the energy current at the Fermi level

J = IE − µIP . (A.1)

Therefore in order to calculate the heat current we need the energy current. We
start with the density of energy flow for which we write the corresponding conti-
nuity equation so that the following conservation law holds

∂ρE

∂t
+ ~∇j̇E = ρES . (A.2)

Here, jE is the energy current density and ρE is the energy density. The current
is injected into the system by a source and ρES is the energy density of the source.
The expectation value of the energy of a particle described by the Hamiltonian
H = −~2~∇2/(2m) is given by

〈E〉 = − ~2

2m
∑
i

∫
v
dv ψ†α(~r, t)~∇2ψα(~r, t), (A.3)

where the sum is over all leads i and the integration is over the entire volume of
the system. The time derivative of this average is

∂

∂t
〈E〉 = − ~2

2m
∑
i

∫
v
dv

{
~∇ ·

[ ∂
∂t

(
ψ†i ~∇ψi

)]
− ∂

∂t

(
~∇ψ†α~∇ψα

)}
. (A.4)

Using that

~∇ ·
[∂ψ†α
∂t

~∇ψα + ~∇ψ†α
∂ψα
∂t

]
= ∂

∂t

(
~∇ψ†α~∇ψα

)
, (A.5)

one can reformulate Eq. (A.4) as follows:

∂

∂t
〈E〉 = − ~2

2m
∑
α

∫
v
dv ~∇ ·

[
ψ†α
∂ψα
∂t
− ~∇ψ†α

∂ψα
∂t

]
. (A.6)
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44 A Heat current operator in superconductors

Thereby the energy current density can be written as

jEα (~r, t) = ~2

2m

[
ψ†α(~r, t)∂

~∇ψα(~r, t)
∂t

− ~∇ψ†α(~r, t)∂ψα(~r, t)
∂t

]
. (A.7)

The total energy current along the chosen axis (here xα) is found then by inte-
grating out Eq. (A.7) with respect to the transverse cross-section through which
the current flows,

IEα (xα, t) =
∫
dyα dzα j

E
α (~rα, t). (A.8)

Replacing the wave functions with the field operators in the above formula gives
the energy current operator.
The wave functions in a superconductor are a combination of electron-like and

hole-like quasipartricles:

ψe(x) =
[
ue−iϕ/2

veiϕ/2

]
e±ik

+x (A.9a)

ψh(x) =
[
ve−iϕ/2

ueiϕ/2

]
e∓ik

−x. (A.9b)

The wave vectors k+ and k− represent the wave vectors of electron- and hole-
like quasiparticles in a superconductor which are calculated using Bogoliubov-De
Gennes equation in Chap. 2. The total wave function written in terms of electron-
and hole-like wave functions and with the amplitudes replaced by field operators
takes the form

ψα(~r, t) = âe

[
ue−iϕ/2

veiϕ/2

]
e−ik

+x + b̂e

[
ue−iϕ/2

veiϕ/2

]
eik

+x

+ âh

[
ve−iϕ/2

ueiϕ/2

]
eik
−x + b̂h

[
ve−iϕ/2

ueiϕ/2

]
e−ik

−x. (A.10)

Inserting this wave function into Eq. (A.7) We obtain the total energy current
operator

ÎE(t, T )α,S = 1
h

N∑
n

∑
i=e,h

∫ ∞
∆
dE dE ′ ei(E−E

′)t/~

× E + E ′

2

[
b̂†i,n(E)b̂i,n(E′)− â†i,n(E)âi,n(E ′)

]
. (A.11)

Here, â†i,n (âi,n) and b̂†i,n (b̂i,n) are creation (annihilation) operators for electron-like
and hole-like quasiparticles which are called Boholiubov operators. This energy-
current operator consists of two parts for electron- and hole-like quasiparticles.
If we assume the Fermi level to be set at zero µ = 0, the formula for the heat
current (2.19) is identical to that for the energy current (A.11).



Appendix B

Transmission and reflection
coefficients in NS junction
In this appendix we derive transmission and reflection coefficients in an NS junc-
tion. Assuming that particles travel from N to S, appropriate boundary conditions
for these particles can be formulated as follows:
(i) Continuity of wave function ψ at x = 0, so that

ψN(0) = ψS(0) ≡ ψ(0). (B.1)

(ii) The derivative boundary condition appropriate for the Dirac-δ potential

~2

2m

[
∂ψS(x)
∂x

− ∂ψ′N(x)
∂x

]
= Hψ(0). (B.2)

Next, using the incident (ψinc), reflected (ψref ) and transmitted (ψtrans) compo-
nents of a wave function,

ψinc =
[

1
0

]
eiq

+x, with ~q± =
√

2m(µ± E), (B.3a)

ψref = a

[
0
1

]
eiq
−x + b

[
1
0

]
e−iq

+x, (B.3b)

ψtrans = c

[
u0
v0

]
eik

+x + d

[
v0
u0

]
e−ik

−x, (B.3c)

the wave functions in the normal (ψN) and superconducting (ψS) part of the
junction can be written as:

ψN = ψinc + ψrefl =
[

1
0

]
eiq

+x + a

[
0
1

]
eiq
−x + b

[
1
0

]
e−iq

+x, (B.4a)

ψS = ψtrans = c

[
u0
v0

]
eik

+x + d

[
v0
u0

]
e−ik

−x. (B.4b)
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46 B Transmission and reflection coefficients in NS junction

Furthermore, the relevant derivatives of such wave functions are:

ψ′N = ∂ψN
∂x

= iq+
[

1
0

]
eiq

+x + iq−a

[
0
1

]
eiq
−x − iq+b

[
1
0

]
e−iq

+x, (B.5a)

ψ′S = ∂ψS
∂x

= ik+c

[
u0
v0

]
eik

+x − ik−d
[
v0
u0

]
e−ik

−x, (B.5b)

where k+ = k− = q+ = q− = kF . From the first boundary condition (B.1) we
then obtain: [

1
0

]
+ a

[
0
1

]
+ b

[
1
0

]
= c

[
u0
v0

]
+ d

[
v0
u0

]
(B.6)

together with
1 + b = cu0 + dv0 and a = cv0 + du0. (B.7)

Analogously, we apply the second boundary condition (B.2):

~2

2mikF
(
c

[
u0
v0

]
− d

[
v0
u0

]
−
[

1
0

]
− a

[
0
1

]
+ b

[
1
0

] )

= H

( [
1
0

]
+ a

[
0
1

]
+ b

[
1
0

] )
(B.8)

so that

i~2kF
2m (cu0 − dv0 − 1 + b) = H(1 + b) = H(cu0 + dv0), (B.9a)

i~2kF
2m (cv0 − du0 − a) = Ha = H(cv0 + du0). (B.9b)

From Eqs. (B.9) one can find:

c = −u0

Hv0

(
H + i~2kF

m

)
d, (B.10a)

d = iv0
mH/~2kF

u2
0 + (u2

0 − v2
0)(mH/~2kF )2 . (B.10b)

We note that by introducing the auxiliary notation

Z = mH

~2kF
and γ = u2

0 + (u2
0 − v2

0)Z2, (B.11)

Eqs. (B.10) can be further simplified:

d = iv0Z

γ
and c = u0

γ
(1− iZ). (B.12)
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It is not clear where the following equations come from. From Eqs. (??) one also
finds:

a = cv0 + du0 = u0v0

γ
, (B.13a)

b = cu0 + dv0 − 1 = −(u2
0 − v2

0)(Z2 + iZ)
γ

. (B.13b)

In fact, the coefficients above represent transmission and reflection amplitudes,
that is, a describes the Andreev reflection (i.e., reflection with branch crossing),
b is associated with the ordinary reflection, c corresponds to transmission with-
out branch crossing, while d to transmission with branch crossing. The related
probabilities are A, B, C, and D, and there is conservation of probability as
A(E) +B(E) +C(E) +D(E) = 1. These probabilities are actually the probabil-
ity currents for the particle.
In the absence of a barrier [namely, for H = 0] one finds Z = 0, and thus,

b = d = 0. In such a case, we can distinguish two situations: the first one for
E < ∆ (i.e., for energies below the gap of superconductor) when c = 0 and there
is just Andreev reflection with the probability of A = |a|2 = 1. On the other hand,
the second situation corresponds to E > ∆ (i.e., there is effectively no barrier),
so that all reflections are Andreev reflections and all transmissions occur without
branch crossing.





Appendix C

Scattering matrix of SNS junction
We shall prove the derivation of scattering matrix of an SNS junction. The model
we consider is shown schematically in Fig. 3.1. We start from the scattering
matrix of SN junction. As it is shown in Appendix (B) by performing the wave
function matching of normal and superconducting region, one can obtain the
scattering matrix of SN junction. In our model there are three sub junctions:
SLNL, NLNR and NRSR. The incoming and outgoing states associated with these
three junctions are related by scattering matrices as follows:

b̂e(SL)
b̂e(NL)
b̂h(SL)
b̂h(NL)

 =


0 cosαe−iϕL/2 − sinα 0

cosαeiϕL/2 0 0 sinαeiϕL

− sinα 0 0 cosαeiϕL/2

0 sinαe−iϕL cosαe−iϕL/2 0




âe(SL)
âe(NL)
âh(SL)
âh(NL)

 ,
(C.1)


âe(NL)
âe(NR)
âh(NL)
âh(NR)

 = SN


b̂e(NL)
b̂e(NR)
b̂h(NL)
b̂h(NR)

 , (C.2)


b̂e(NR)
b̂e(SR)
b̂h(NR)
b̂h(SR)

 =


0 cosαeiϕR/2 sinαeiϕR 0

cosαe−iϕR/2 0 0 − sinα
sinαe−iϕR 0 0 cosαe−iϕR/2

0 − sinα cosαeiϕR/2 0




âe(NR)
âe(SR)
âh(NR)
âh(SR)

 ,
(C.3)

Where sinα = v/u, u =
√

∆/2E earcosh(E/∆)/2 and v =
√

∆/2E e−arcosh(E/∆)/2.
∆ is the temperature dependent superconductor gap and we are interested in
working at energies above the gap. ϕ is the phase difference between left and
right superconductors. The aim is to express the SNS scattering matrix (SSNS) in
terms of the scattering matrix of the normal region (SN). SSNS relates the states
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50 C Scattering matrix of SNS junction

in S regions, so we should write all the states of N region in terms of S region’s
states. From eq. (C.1) we have:

âe(NL) = secαeiϕL/2[b̂e(SL) + sinαâh(SL)], (C.4)
b̂e(NL) = secαeiϕL/2[âe(SL) + sinαb̂h(SL)],
âh(NL) = secαeiϕ/2[b̂h(SL) + sinαâe(SL)],
b̂h(NL) = secαeiϕ/2[âh(SL) + sinαb̂e(SL)].

Similarly for NRSR junction by using Eq. (C.9) we have:

âe(NR) = secαe−iϕ/2[b̂e(SR) + sinαâh(SR)], (C.5)
b̂e(NR) = secαe−iϕ/2[âe(SR) + sinαb̂h(SR)],
âh(NR) = secαeiϕ/2[b̂h(SR) + sinαâe(SR)],
b̂h(NR) = secαeiϕ/2[âh(SR) + sinαb̂e(SR)].

Substituting Eqs. (C.4 and C.5) into Eq. (C.2) gives


e−iϕ/2b̂e(SL)
e−iϕ/2b̂e(SR)
eiϕ/2b̂h(SL)
eiϕ/2b̂h(SR)

 + sinα


e−iϕ/2âh(SL)
e−iϕ/2âh(SR)
eiϕ/2âe(SL)
eiϕ/2âe(SR)

 = (C.6)

SN



e−iϕ/2âe(SL)
e−iϕ/2âe(SR)
eiϕ/2âh(SL)
eiϕ/2âh(SR)

 + sinα


e−iϕ/2b̂h(SL)
e−iϕ/2b̂h(SR)
eiϕ/2b̂e(SL)
eiϕ/2b̂e(SR)




The incoming and outgoing waves in leads SL and SR can be described in the
following basis

ain
S ≡

[
âe(SL), âe(SR), âh(SL), âh(SR)

]T
, (C.7)

bout
S ≡

[
b̂e(SL), b̂e(SR), b̂h(SL), b̂h(SR)

]T
. (C.8)
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Rearranging Eq. (C.6) in the order of incoming and outgoing states gives



e−iϕ/2 0 0 0

0 e−iϕ/2 0 0
0 0 eiϕ/2 0
0 0 0 eiϕ/2

− sinαSN


0 0 e−iϕ/2 0
0 0 0 e−iϕ/2

eiϕ/2 0 0 0
0 eiϕ/2 0 0


bout

S

=
SN


e−iϕ/2 0 0 0

0 e−iϕ/2 0 0
0 0 eiϕ/2 0
0 0 0 eiϕ/2

− sinα


0 0 e−iϕ/2 0
0 0 0 e−iϕ/2

eiϕ/2 0 0 0
0 eiϕ/2 0 0


ain

S .

(C.9)

After some algebra we have1− sinαSN

[
0 rA
r?A 0

]bout
S =

SN − sinα
[

0 rA
r?A 0

]ain
S , (C.10)

where
rA ≡

[
eiϕ/21 0

0 e−iϕ/21

]
(C.11)

originates from Andreev reflection. We define matrix

M = sinα
[

0 rA
r?A 0

]
. (C.12)

Using this we write Eq. (C.10) in the following form

bout
S = (1−M)−1(1−M †)SNa

in
S . (C.13)

Here we have the scattering matrix of SNS junction

SSNS = (1−M)−1(1−M †)SN. (C.14)

The scattering matrix of the normal region does not couple electrons and holes,
therefore the matrix SN has block-diagonal form

SN =
[
s0(ε) 0

0 s0(−ε)†
]
. (C.15)

Substituting Eq. (C.15) in (C.14) gives

SSNS =
[

A−1 sinαA−1s0rA
sinα s†0r?AA−1 1 + (sinα)2s†0r

?
AA−1s0rA

]

×
[

s0 − sinαrA
− sinαr?A s†0

]
. (C.16)
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with
A−1 ≡

[
1− (sinα)2s0rAs

†
0r
?
A

]−1 (C.17)

Using the polar decomposition [23], the matrix s0(ε) can be written in terms of
transmission matrix D = diag(D1, D2, ..., DN) that is a N × N diagonal matrix
of transmission eigenvalues of normal region

s0(ε) =
[
U1 0
0 U2

] [ √
1−D

√
D√

D −
√

1−D

] [
V1 0
0 V2

]
(C.18)

where U1, U2, V1, V2 are four N × N unitary matrices. Inserting Eq. (C.18) into
A−1, Eq. (C.17), gives

A−1 = (C.19) U1[1− (sinα)2(1−D + e−iϕD)]U †1 U1(sinα)2(1− eiϕ)D1/2(1−D)1/2U †2
U2(sinα)2(e−iϕ − 1)D1/2(1−D)1/2U †1 U2[1− (sinα)2(1−D + eiϕD)]U †2

−1

.

To inverse the matrix in Eq. (C.19) we use block matrix inversion formula. If a
matrix is partitioned into four blocks, it can be inverted as follows
[
A B
C D

]−1
=
[
A−1 + A−1B(D − CA−1B)−1CA−1 −A−1B(D − CA−1B)−1

−(D − CA−1B)−1CA−1 (D − CA−1B)−1

]
.

(C.20)

Following Eq. (C.20) we have the inverse of the matrix in Eq. (C.19)

(1− (sinα)2s0rAs
†
0r
?
A)−1 =

 U1Q1U
†
1 U1Q2U

†
2

U2(−Q2)U †1 U2Q3U
†
2

 , (C.21)

Where

Q1 =[1− (sinα)2(1 + (e−iϕ − 1)D)]−1 (C.22)
[1 + 2(sinα)4(cosϕ− 1)D(1−D)[1 + (sinα)4 − 2(sinα)2(1 + (cosϕ− 1)D)]−1]

Q2 = (sinα)2(eiϕ − 1)D1/2(1−D)1/2[1 + (sinα)4 − 2(sinα)2(1 + (cosϕ− 1)D)]−1

Q3 = [1− (sinα)2(1 + (e−iϕ − 1)D)][1 + (sinα)4 − 2(sinα)2(1 + (cosϕ− 1)D)]−1.
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Substituting Eqs.(C.22) in (C.16) gives the scattering matrix of SNS junction as
the multiplication of following matrices

SSNS =
[(U1Q1U

†
1

)
,
(
U1Q2U

†
2

)
,
(
U1 sinαeiϕ/2[Q1(1−D)1/2 +Q2D1/2]V1

)
,

(C.23)(
U1 sinαe−iϕ/2[Q1D1/2 −Q2(1−D)1/2]V2

)]
;[(

U2(−Q2)U †1
)
,
(
U2Q3U

†
2

)
,
(
U2 sinαeiϕ/2[−Q2(1−D)1/2 +Q3D1/2]V1

)
,

(
U2 sinαe−iϕ/2[−Q2D1/2 −Q3(1−D)1/2]V2

)]
;[(

V †1 sinα[e−iϕ/2Q1(1−D)1/2 − eiϕ/2Q2D1/2]U †1
)
,(

V †1 sinα[e−iϕ/2Q2(1−D)1/2 + eiϕ/2Q3D1/2]U †2
)
,(

V †1 [1 + (sinα)2
(
Q1(1−D) + eiϕQ3D + (1− eiϕ)Q2D1/2(1−D)1/2

)
]V1

)
,(

V †1 (sinα)2[(e−iϕQ1 −Q3)D1/2(1−D)1/2 −Q2(D + e−iϕ(1−D))]V2

)]
;[(

V †2 sinα[e−iϕ/2Q1D1/2 + eiϕ/2Q2(1−D)1/2]U †1
)
,(

V †2 sinα[e−iϕ/2Q2D1/2 − eiϕ/2Q3(1−D)1/2]U †2
)
,(

V †2 (sinα)2[(Q1 − eiϕQ3)D1/2(1−D)1/2 −Q2(D + eiϕ(1−D))]V1

)
,

(
V †2 [1 + (sinα)2

(
e−iϕQ1D +Q3(1−D)− (1 + e−iϕ)Q2D1/2(1−D)1/2

)
]V2

)]

×


U1(1−D)1/2V1 U1D1/2V2 − sinαeiϕ/2 0
U2D1/2V1 −U2(1−D)1/2V2 0 − sinαe−iϕ/2
− sinαe−iϕ/2 0 V †1 (1−D)1/2U †1 V †1 D1/2U †2

0 − sinαeiϕ/2 V †2 D1/2U †1 −V †2 (1−D)1/2U †2

 .

The elements of the matrix in Eq. (C.23) represents the following scatterings

SSNS =


ree t

′

ee reh t
′

eh

tee r
′

ee teh r
′

eh

rhe t
′

he rhh t
′

hh

the r
′

he thh r
′

hh

 . (C.24)

Therefore we have the following amplitudes from Eq. (C.23)
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Deen (E) =(1− (sinα)2)2Dn(1 + (sinα)4 − 2(sinα)2 cosϕ)
[((sinα)2 − 1)2 − 2(sinα)2Dn(cosϕ− 1)]−2,

Dehn (E) =2(sinα)2(1− (sinα)2)2Dn(1−Dn)(1− cosϕ)
[((sinα)2 − 1)2 − 2(sinα)2Dn(cosϕ− 1)]−2. (C.25)

Results in Eq. (C.25) are in the agreement with the single channel amplitudes.
Full expressions for transmission amplitudes when the left and right supercon-

ductors are nonsimilar, are

Deen (E) =Dn cos2(αL) cos2(αR)[1 + sin2(αL) sin2(αR)− 2 sin(αL) sin(αR) cosϕ]
(cos2(αL) cos2(αR) +Dn[sin2(αL) + sin2(αR)− 2 sin(αL) sin(αR) cosϕ])−2,

Dehn (E) =Dn(1−Dn) cos2(αL) cos2(αR)[sin2(αL) + sin2(αR)− 2 sin(αL) sin(αR) cosϕ]
(cos2(αL) cos2(αR) +Dn[sin2(αL) + sin2(αR)− 2 sin(αL) sin(αR) cosϕ])−2.

(C.26)

And adding these two transmission gives

Den(E) = 2DnξLξR
DnξLξR + (2−Dn)(E2 −∆L∆R cosϕ)

((2−Dn)ξLξR +Dn(E2 −∆L∆R cosϕ))2 . (C.27)
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