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Abstract
The theme of this thesis is the analysis and design of error-correcting codes that are
suitable for high-speed fiber-optical communication systems. In particular, we consider
two code classes. The codes in the first class are protograph-based low-density parity-
check (LDPC) codes which are decoded using iterative soft-decision decoding. The
codes in the second class are generalized LDPC codes with degree-2 variable nodes—
henceforth referred to as generalized product codes (GPCs)—which are decoded using
iterative bounded-distance decoding (BDD). Within each class, our focus is primarily on
spatially-coupled codes. Spatially-coupled codes possess a convolutional structure and
are characterized by a wave-like decoding behavior caused by a termination boundary ef-
fect. The contributions of this thesis can then be categorized into two topics, as outlined
below.

First, we consider the design of systems operating at high spectral efficiency. In particu-
lar, we study the optimization of the mapping of the coded bits to the modulation bits for
a polarization-multiplexed system that is based on the bit-interleaved coded modulation
paradigm. As an example, for the (protograph-based) AR4JA code family, the trans-
mission reach can be extended by roughly up to 8% by using an optimized bit mapper,
without significantly increasing the system complexity. For terminated spatially-coupled
codes with long spatial length, the bit mapper optimization only results in marginal per-
formance improvements, suggesting that a sequential allocation is close to optimal. On
the other hand, an optimized allocation can significantly improve the performance of tail-
biting spatially-coupled codes which do not possess an inherent termination boundary.
In this case, the unequal error protection offered by the modulation bits of a nonbinary
signal constellation can be exploited to create an artificial termination boundary that
induces a wave-like decoding for tail-biting spatially-coupled codes.

As a second topic, we study deterministically constructed GPCs. GPCs are particu-
larly suited for high-speed applications such as optical communications due to the signifi-
cantly reduced decoding complexity of iterative BDD compared to iterative soft-decision
decoding of LDPC codes. We propose a code construction for GPCs which is sufficiently
general to recover several well-known classes of GPCs as special cases, e.g., irregular
product codes (PCs), block-wise braided codes, and staircase codes. Assuming trans-
mission over the binary erasure channel, it is shown that the asymptotic performance
of the resulting codes can be analyzed by means of a recursive density evolution (DE)
equation. The DE analysis is then applied to study three different classes of GPCs:
spatially-coupled PCs, symmetric GPCs, and GPCs based on component code mixtures.

Keywords: Bit-interleaved coded modulation, bit mapper, bounded-distance decoding,
braided codes, density evolution, generalized low-density parity-check codes, generalized
product codes, spatial coupling, staircase codes.
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LLR log-likelihood ratio
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NLSE nonlinear Schrödinger equation
OOK on-off keying
PC product code
PDF probability density function
PM polarization-multiplexed
PSD power spectral density
QPSK quadrature phase-shift keying
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sNLSE stochastic nonlinear Schrödinger equation
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SSFM split-step Fourier method
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CHAPTER 1

Background

When requesting a website, most internet users are probably unaware that the digital
data is modulated onto a light source and transmitted over thousands of kilometers
in an optical waveguide, a so-called optical fiber, at some point on the way from the
remote server to their home computer or mobile device. In fact, more than 99% of the
global intercontinental traffic is carried over optical fiber and such “long-haul” fiber-
optical communication systems are the key enabler of high-speed internet data transfer
connecting cities, countries, and continents [1].

There is currently a significant interest in determining the ultimate capacity limits
of fiber-optical systems [2–4] and developing practical schemes that can achieve these
limits [5–7]. Error-correcting codes are an integral part of communication systems that
operate close to capacity. In theory, the proper use of such codes allows the system to
achieve an arbitrarily low error rate if the data rate is chosen below the capacity [8].
In practice, however, operating at lower error rates and closer to capacity comes at the
expense of an increased system complexity and communication delay. Code design thus
requires assessment of nontrivial trade-offs between performance, complexity, and delay.

Fiber-optical communication systems operate at very high data rates that can exceed
several hundreds of Gbit/s. At such high speeds, one of the main challenges is to keep
the decoding complexity at an acceptable level. For example, the amount of processing
power that can be spent on decoding each bit is severely limited [6]. Fiber-optical com-
munication systems also require extremely low error rates below 10−15 [6]. On the other
hand, communication delay caused by coding is typically not an issue. This implies that
the use of codes with long block lengths is relatively unproblematic. As an example, the
code proposals in [9, 10] have effective block lengths in the order of 106 bits. Assuming
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Chapter 1 Background

a transmission rate of 100 Gbit/s, the corresponding delay is then only 20µs. This is
negligible compared to the propagation delay caused by the light traversing hundreds or
even thousands of kilometers of fiber.1 In a nutshell, the challenge is therefore to devise
coding schemes that offer very low error rates with affordable decoding complexity, while
potentially using relatively long block lengths.
Current state-of-the-art codes are defined on graphs and decoded iteratively by passing

messages along the edges of the graph [11, 12]. In this thesis, our focus is primarily on
spatially-coupled codes. The first instance of spatially-coupled codes are the low-density
parity-check (LDPC) convolutional codes introduced in [13], which are now also referred
to as spatially-coupled LDPC codes. It was later realized in [14] that these codes have
much better performance than conventional regular LDPC codes [15]. The reason for
this phenomenon is a wave-like decoding behavior caused by a termination boundary
effect. Several different proofs now exist for the fact that spatially-coupled LDPC codes
can operate arbitrarily close to the capacity of a variety of different communication
channels [16, 17]. Other instances of spatially-coupled codes include braided codes [18]
and staircase codes [9], which have been shown to offer outstanding performance using
very low-complexity decoding algorithms. In this thesis, we address several challenges
that arise in the analysis and design of spatially-coupled codes when used in fiber-optical
communication systems.
We start by studying the design of spectrally-efficient systems. Fiber-optical systems

traditionally employ digital modulation techniques that are rather wasteful with the
available frequency spectrum. As an example, switching the light source on and off
according to the digital data stream—referred to as on-off keying (OOK)—is highly
inefficient from a spectral viewpoint. To keep up with the increasing data rate demands
of current applications, and to enable innovative broadband technologies in the future, it
becomes more and more apparent that next-generation fiber-optical systems need to use
the available spectrum more efficiently. To improve the spectral efficiency over OOK, the
data can be encoded into multiple amplitude and/or phase levels of the optical carrier.
A further increase in spectral efficiency can be achieved by utilizing both polarizations
of the optical light, which is referred to as polarization-multiplexed (PM) transmission.
PM signals can be represented as points in a four-dimensional signal space, also referred
to as a signal constellation [19]. In Papers A and B, we study how to combine such
signal constellations with error-correcting codes. In Paper A, we consider LDPC codes
which are defined via protographs [20]. Protograph-based LDPC codes allow for an
efficient hardware implementation, which makes them attractive candidates for high-
speed application such as fiber-optical communications [6].
Spatially-coupled LDPC codes can also be constructed using protographs. An in-depth

analysis focusing exclusively on spatially-coupled LDPC codes for spectrally-efficient sys-
tems is presented in Paper B. In order to highlight one of the contributions of this thesis,
we first note that the termination boundary that induces the wave-like decoding behav-

1As a rule of thumb, light takes approximately 5 ms to propagate through 1000 kilometer of fiber.
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ior for spatially-coupled LDPC codes comes at the price of a so-called rate loss, i.e., a
larger redundancy overhead, compared to “uncoupled” regular LDPC codes. This rate
loss can be avoided by considering a tail-biting termination scheme. The resulting codes
are referred to as tail-biting spatially-coupled LDPC codes. Unfortunately, by default,
these codes behave essentially the same as regular LDPC codes because the absence of
an explicit termination boundary prevents a wave-like decoding behavior. One of the
main findings of this work is that the different modulation bits of a nonbinary signal
constellation can be exploited to create an artificial termination boundary. This artifi-
cial boundary is sufficient to initiate a decoding wave and can significantly improve the
performance of “rate-loss-free” tail-biting spatially-coupled LDPC codes.

As a second topic, we investigate so-called generalized product codes (GPCs). GPCs
are extensions of classical product codes (PCs) [21]. PCs are one of the first examples of
the idea to build long and powerful codes from shorter component codes. In particular,
each coded bit in a PC is protected by two component codes, where the coded bits are
assumed to be arranged in a rectangular array. This assumption is relaxed for GPCs
which allows the array shape to be arbitrary. GPCs are very appealing for high-speed
applications such as fiber-optical communication systems. The reason is rooted in their
low-complexity decoding algorithm, which is based on iteratively decoding the component
codes. When compared to message-passing decoding of LDPC codes, this approach can
result in significant complexity advantages [9]. Indeed, PCs are already implemented
in certain communication standards for fiber-optical systems [22]. Moreover, several
constructions of GPCs, e.g., braided [10] and staircase codes [9], have been recently
proposed and investigated for such systems.

GPCs are the main focus in Papers C–F (although we already consider the application
of GPCs for the bit mapper optimization in Paper B as a side application). In Paper C,
we study parameter optimization for staircase codes. This work is inspired by the work
in [23], where staircase code parameters are found using a simulation-based approach.
The parameter optimization in Paper C on the other hand is based on density evolution
(DE). DE is an analytical tool to analyze the behavior of codes under iterative decoding
in the limit of infinite block lengths [24]. However, the DE analysis used in Paper C does
not directly apply to staircase codes. Rather, we observed that staircase codes share
some structural similarities with the spatially-coupled PC ensemble defined in [25]. A
code ensemble is a collection or set of codes, typically defined via suitable randomized
connections in the underlying graphical representation. The approach used in Paper C
is therefore only heuristically motivated. While it appears to work well, it raises the
question whether an asymptotic DE analysis is possible by directly targeting specific
deterministic GPCs such as staircase codes.

This question is answered positively in Paper D, which represents the main theoretical
contribution of this thesis. In Paper D, we propose a parametrized family of deterministic
GPCs that includes staircase codes (and also many other code classes) as special cases.
Based on the theory of inhomogeneous random graphs [26], we provide a DE analysis that
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characterizes the asymptotic code performance. It is important to stress that the analysis
does not rely on the definition of a code ensemble but directly applies to sequences
of deterministically constructed codes. The resulting DE analysis can be useful for a
variety of different applications. For example, it can be used to predict and compare the
waterfall performance of different GPCs, optimize code parameters for particular classes
of GPCs, find suitable windowed-decoding schedules for spatially-coupled PCs, or design
new classes of GPCs. Papers E and F are based on the theoretical tools derived in Paper
D, where we apply the theory to design and study deterministically constructed GPCs
in more detail.

1.1 Thesis Organization
The format of this thesis is a so-called collection of papers. It is divided into two parts,
where the first part serves as an introduction to the appended papers in the second part.
The remainder of the introductory part of this thesis is structured as follows. In

Chapter 2, we provide an introduction to fiber-optical channel modeling and describe
the origin of the channel models that are used in the appended papers. In Chapter
3, we give a brief introduction to bit-interleaved coded modulation (BICM), which is a
pragmatic way to combine signal constellations with error-correcting codes to operate at
high spectral efficiencies. In Chapter 4, we review some basic background about LDPC
codes. In particular, we discuss iterative belief propagation (BP) decoding, DE, and
protograph-based constructions including spatially-coupled LDPC codes. The content
of this chapter is mainly relevant for Papers A and B, where the reader is assumed
to be somewhat familiar with LDPC codes and iterative decoding. In Chapter 5, we
then discuss GPCs. Starting from the concept of generalized low-density parity-check
(GLDPC) codes, we give several examples of well-known classes of GPCs and discuss
the decoding via iterative bounded-distance decoding (BDD). We also briefly review two
approaches to perform an asymptotic analysis for GPCs. Finally, the main conclusions
from the appended papers are summarized in Chapter 6, where we also discuss future
work.

1.2 Notation
The following notation is used in the introductory part of this thesis.

• Vectors and matrices are typeset in bold font by lowercase letters a and capital
letters A, respectively.

• The transpose of a matrix is denoted by ( · )ᵀ.

• Z, N0, N, R, and C denote the set of integers, nonnegative integers including
zero, nonnegative integers excluding zero, real numbers, and complex numbers,
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respectively.

• The cardinality of a set A is denoted by |A|.

• Random variables are denoted by capital letters X and their realizations by lower-
case letters x.

• The probability density function (PDF) of a random variable X is denoted by
fX(x). The PDF of a random variable Y conditioned on the realization of another
random variable X is denoted by fY |X(y|x).

• Expectation is denoted by E[ · ].

• δ(t) denotes Dirac’s delta function while δ[k] denotes the Kronecker delta.

• Convolution is denoted by �.

• The imaginary unit is denoted by  ,
√
−1.

• Complex conjugation is denoted by ( · )∗.

Notational Inconsistencies

The reader should be aware of the following inconsistencies in the notation across the
appended papers and the thesis introduction.

• The variable n is used to denote the block length of an LDPC code and GLDPC
code in Papers A, B, and the thesis introduction. It is used for different purposes in
Papers C–F, e.g., it denotes the length of a Bose–Chaudhuri–Hocquenghem (BCH)
code in Paper C.

• The block size of staircase codes and braided codes is denoted differently in different
papers and the thesis introduction. For example, for staircase codes, the block size
is denoted by a in Paper C, E and the thesis introduction, while it is denoted by d
in Paper F. In Paper D, the block size is denoted by ni, where the index i indicates
the position in the Tanner graph.

• The error-correcting capability of a component code is denoted by t in Papers B,
C, F, and the thesis introduction, while it is denoted by t in Papers D and E. The
variable t is also used as a time index for the signals in Papers A, B, and Chapter
2 of the thesis introduction.

• The matrix η that defines the Tanner graph connectivity of the deterministic GPC
construction is typeset in normal weight font as η in Paper E.

• The two light polarizations are denoted by a and b in the thesis introduction, while
we use x and y in Papers A and B.
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• The acronym “SC” is used for “spatially-coupled” in Papers A, B, and F, while it
is used for “staircase code” in Paper E.

• The acronym “CN” is used for “constraint node” in Papers D, E, F, and the thesis
introduction, while it is used for “check node” in Papers A and B.

• The spatially-coupled code ensemble in [27] is referred to as a “SC-GLDPC ensem-
ble” in Papers B and C, while it is referred to as a “spatially-coupled PC ensemble”
in Paper F and the thesis introduction.
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CHAPTER 2

Fiber-Optical Channel Modeling

A channel model is a mathematical description of the propagation medium and possi-
bly also includes certain elements of the transmitter and receiver (e.g., filters). In the
appended papers, we assume “traditional” channel models, in particular the (discrete
and memoryless) additive white Gaussian noise (AWGN) channel. This chapter is in-
tended to put this channel model into the context of fiber-optical communications. It
should also give the reader a broader picture about optical channel modeling in general.
Other channel models that are mainly relevant for iterative hard-decision decoding are
discussed in Chapter 5.

We are concerned with coherent, long-haul (i.e., distances exceeding 2000 km) data
transmission over single-mode fibers (SMFs). The main challenge from a channel model-
ing perspective is a nonlinear effect caused by the relatively high signal power in relation
to the small cross-section area of the fiber. Without going further into the physical de-
tails, a useful way to think about this effect is to imagine that the presence of an optical
signal can compress the fiber material (in most cases silica) to such a degree that its
propagation properties, in particular the refractive index, are changed in a nonlinear
way [28, p. 18].

The chapter is structured as follows. In Section 2.1, we review the AWGN channel
model. In Section 2.2, we discuss the nonlinear Schrödinger equation (NLSE) which is
a deterministic channel model for an SMF. Multi-span links consisting of several SMFs
including optical amplification elements are covered in Section 2.3. PM systems are
discussed in 2.4. Lastly, linear modulation and receivers are described in Section 2.5.
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Chapter 2 Fiber-Optical Channel Modeling

2.1 The Additive White Gaussian Noise Channel
Consider the discrete and memoryless (complex-valued) AWGN channel model

yk = xk + nk (2.1)

for k ∈ Z, where xk ∈ C denotes an information symbol, nk is a realization of a zero-mean
complex Gaussian random variable Nk with E[NkN∗k′ ] = N0δ[k − k′] and power spectral
density (PSD) N0, and yk ∈ C is the channel output or simply the observation. The
channel from xk to yk is characterized by the conditional PDF

fYk|Xk(yk|xk) = 1
πN0

exp
(
−|yk − xk|

2

N0

)
. (2.2)

The primary goal of this section is to motivate (2.1) in the context of fiber-optical com-
munication systems. In particular, our target application is coherent, long-haul data
transmission over SMFs. The validity of (2.1) in this case depends heavily on the as-
sumed system parameters, e.g., the type of dispersion-compensation scheme that is being
used.

2.2 The Nonlinear Schrödinger Equation
The starting point for fiber-optical channel modeling is the NLSE, which can be derived
from Maxwell’s equations under some assumptions that are appropriate for SMFs [29].
The NLSE is a partial differential equation that defines the input–output relationship
for optical baseband signals1 propagating through SMFs.
Let us first introduce a continuous-time parameter t ∈ R and a distance parameter

0 ≤ z ≤ L that denotes the propagation distance of the signal from the beginning of the
fiber, where L is the total length of the fiber. The baseband signal of interest is a function
of two parameters, denoted by v(t, z). We define the input and output signals as x(t) ,
v(t, 0) and y(t) , v(t, L), i.e., x(t) is the signal launched into the fiber at z = 0, and y(t)
is the signal received after propagating through an SMF of length L. This is conceptually
illustrated in Fig. 2.1. Before we continue, we also define the instantaneous signal power
P (t, z) , |v(t, z)|2 and the power profile P (z) , limT→∞(

∫ T
−T P (t, z) dt)/(2T ), where

P = P (0) is the power of the input signal.
The NLSE accounts for signal attenuation, chromatic dispersion, and nonlinear effects

in an SMF and can be written as
∂v(t, z)
∂z

= −α2 v(t, z)− β2
2
∂2v(t, z)
∂t2

+ γv(t, z)|v(t, z)|2, (2.3)

where α is the attenuation coefficient, β2 is the chromatic dispersion coefficient, and
γ is the nonlinear Kerr parameter. If we take into account only the first term on the
1Often called “slowly varying envelope” in the literature. The carrier frequency is assumed to be the
equivalent of a 1550 nm light wave, corresponding to roughly 193.4 THz.
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2.2 The Nonlinear Schrödinger Equation

y(t)single mode fiberx(t)
z

0 L

t

v(t, 0)

t

v(t, L)nonlinear Schrödinger equation

Figure 2.1: Conceptual representation of the signal evolution through an SMF. The NLSE
describes the relationship between the input signal x(t) = v(t, 0) and the output
signal y(t) = v(t, L).

right-hand side of (2.3), one obtains v(t, z) = exp(−αz/2)v(t, 0) as a solution2, i.e.,
we immediately see that the signal amplitude in an SMF decays exponentially with
the propagation distance. By defining a renormalized version of v(t, z) as u(t, z) ,
exp(αz/2)v(t, z) and substituting it into (2.3), one obtains an alternative and somewhat
simpler version of the NLSE as [29, eq. (4)]

∂u(t, z)
∂z

= −β2
2
∂2u(t, z)
∂t2

+ γe−αzu(t, z)|u(t, z)|2. (2.4)

In general, there are no closed-form solutions to the NLSE and one has to resort to
numerical methods in order to obtain a solution. In the following, we briefly describe
one of the most widely used numerical methods to solve (2.4), namely the split-step
Fourier method (SSFM). Conceptually, we start by discretizing the spatial dimension
and subdividing the entire fiber of length L into small segments of length ∆, where
M = L/∆ ∈ N is the total number of segments. For the i-th segment, 1 ≤ i ≤ M , the
input signal is denoted by u(t, (i−1)∆) and the corresponding output signal by u(t, i∆).
It is then assumed that an approximate solution to obtain u(t, i∆) based on u(t, (i−1)∆)
is given by

u(t, i∆) ≈ h(t,∆) �
(
u(t, (i− 1)∆)eγLeff(∆)|u(t,(i−1)∆)|2

)
, (2.5)

where h(t, z) = exp
(
t2/(2β2z)

)
/
√
2πβ2z is the impulse response of a linear filter rep-

resenting dispersive effects and

Leff(z) ,
∫ z

0
e−αz

′
dz′ = 1− exp(−αz)

α
(2.6)

is referred to as the effective nonlinear length with Leff(z) ≤ z and Leff(z)→ z as α→ 0.
The reasoning behind (2.5) is that over a short segment of length ∆� L, the linear (i.e.,
dispersive) and nonlinear effects act almost independently of one another.
2Recall that the solution of ∂f(z)/∂z = cf(z) is given by f(z) = exp(cz)f(0).
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α, β2, γ, L

x(t) y(t)

(a) Symbolic representation
of an SMF

repeat M times

x(t) y(t)

eγLeff(∆)| · |2

h(t, ∆)

e−α∆/2

(b) Approximate mathematical model via
the SSFM

Figure 2.2: Illustrations for an SMF. The notation | · |2 in (b) stands for the instantaneous
power of the signal that arrives at the corresponding multiplication block as indi-
cated by the dashed, gray line.

Using this assumption, an approximate solution for an entire SMF of length L is given
by repeatedly applying (2.5), starting with the first segment where i = 1, i.e., with the
input signal u(t, 0) = x(t). The SSFM step in (2.5) is given in terms of the normalized
signal u(t, z). In order to incorporate the signal attenuation, the output signal u(t, i∆) is
multiplied by exp(−α∆/2) to obtain v(t, i∆) after each step. Fig. 2.2 shows the resulting
numerical method in terms of a block diagram. In the figure, the notation | · |2 stands
for the instantaneous power of the signal that arrives at the corresponding multiplication
block (e.g., |x(t)|2 in the first segment, |u(t,∆) exp(−α∆/2)|2 in the second, and so on).
It has been shown that the above method converges to the true solution for ∆→ 0 [28,
p. 42]. Practical guidelines on the choice of the segment size are developed in [30].
The name of the method originates from the fact that the nonlinear phase-shift op-

eration and the linear filtering in Fig. 2.2(b) are commonly carried out in the time and
frequency domain, respectively. Therefore, one forward and one inverse Fourier trans-
form have to be performed per segment. In computer implementations, a sampled version
of the baseband signal u(t, z) (or v(t, z)) is considered which facilitates the application
of the computationally efficient fast Fourier transform. Such an implementation is for
example provided in [28, App. B].

2.3 Optical Amplification and Noise
The numerical value of the attenuation coefficient α is typically between 0.2 and 0.4
dB/km. Assuming α = 0.2 dB/km and a transmission distance of L = 2000 km, the input
signal would be attenuated by 400 dB implying that y(t) is practically zero [2, Sec. IX-
B]. It is therefore necessary to amplify the signal along the transmission path, which
invariably introduces noise into the system.
We briefly discuss one common type of amplification, referred to as lumped ampli-

fication, in terms of its effect on the power profile of the signal and the type of noise
that is introduced. Modeling the power profile is important due to the dependency of the
nonlinear effect on the instantaneous signal power. Thus, one cannot simply ignore atten-
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2.3 Optical Amplification and Noise

0 Lsp 2Lsp

P

z

P (z)

b b b

∝ e−αz

SMF SMF
EDFA EDFA

(a) Power profile as a function of trans-
mission distance

repeat M times (1 ≤ j ≤ M)

eγLeff(∆)| · |2

h(t, ∆)

e−α∆/2 G ni(t)

repeat Nsp times (1 ≤ i ≤ Nsp)

(b) Block diagram for a multi-span link

Figure 2.3: Illustrations for a fiber-optical communication link including a lumped amplifica-
tion scheme and noise.

uation effects and make a link budget analysis as is common for linear channels. Details
about the underlying physical aspects of optical amplification can be found in standard
textbooks on optical data transmission, e.g., [31, Ch. 6]. It should, however, be pointed
out that the optical amplifier noise is in fact the dominant source of noise in long-haul
systems. This means that noise from other sources, e.g., thermal noise from electrical
components, is negligible in comparison and can therefore be ignored [2, Sec. IX-A].

To account for amplification and noise, the NLSE (2.3) can be extended by inserting
a gain profile g(z) and a complex-valued stochastic process w(t, z), resulting in

∂v(t, z)
∂z

= −α− g(z)
2 v(t, z)− β2

2
∂2v(t, z)
∂t2

+ γv(t, z)|v(t, z)|2 + w(t, z). (2.7)

Equation (2.7) is referred to as the stochastic nonlinear Schrödinger equation (sNLSE)
[32]. We start by discussing the gain profile g(z) and its effect on the power profile of
the signal v(t, z), ignoring all other effects (including w(t, z)). Signal amplification is
applied periodically, in the sense that the entire transmission distance 0 ≤ z ≤ L is
split up into spans of length Lsp varying between 60 and 120 km, where Nsp = L/Lsp ∈
N denotes the total number of spans. For lumped amplification, an optical amplifier,
most often an erbium-doped fiber amplifier (EDFA) [2, Sec. IX-B], is inserted after each
span, where the amplifier gain G matches the power loss of the signal in that span, i.e.,
G = eαLsp . In (2.7), this is accounted for by setting g(z) = αLsp

∑Nsp
i=1 δ(z − iLsp). The

corresponding power profile is schematically illustrated in Fig. 2.3(a). It can be seen
that the signal power decreases exponentially according to the loss coefficient α and is
periodically restored to the input power P after each span.
Next, we discuss the noise that is generated by optical amplification through a process

called amplified spontaneous emission (ASE). Noise can be thought of as being added to
the signal at discrete locations zi , iLsp, 1 ≤ i ≤ Nsp. Thus, if we think about z−i and z+

i

as the locations right before and after the amplifiers, we have v(t, z+
i ) = Gv(t, z−i )+ni(t),
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where ni(t) is the additive noise originating from the i-th amplifier [33, p. 36]. It has been
experimentally verified that ASE noise can be accurately modeled as circularly symmet-
ric complex Gaussian [2, p. 667] and therefore it remains to specify the autocorrelation
function of ni(t), where processes from different amplifiers are uncorrelated. The most
common assumption is white Gaussian noise, i.e., E[Ni(t)N∗j (t′)] = N`δ(t − t′)δ[i − j],
where N` denotes the noise PSD per amplifier. (The index ` refers to the lumped ampli-
fication type.) We further set N0 = NspN`, which one might think of as the cumulative
PSD at the end of the transmission link for Nsp amplifiers. Since temporally white noise
has infinite instantaneous power, this assumption would, however, lead to infinite phase
rotations due to the nonlinear effect. In reality, the noise power is of course finite, and
the PSD of ASE noise is comparable to the gain spectrum of the amplifier. For an ide-
alized EDFA that provides flat gain over a certain frequency range Wn, one would then
replace δ(t− t′) with δWn(t− t′) where δWn(x) = Wnsinc(Wnx) [33]. Further limitations
of the optical bandwidth can occur due to the insertion of optical bandpass filters and/or
reconfigurable optical add-drop multiplexer along the transmission line [2].
Based on the previous description, a block diagram of a continuous-time model for a

multi-span transmission link with lumped amplification is depicted in Fig. 2.3(b). The
model consists of the concatenation of the deterministic model for an SMF based on the
SSFM (cf. Fig. 2.2(b)) with a multiplicative gain factor and additive noise representing
the optical amplifier. For completeness, we also indicate how the additive noise terms
ni(t) can be related to w(t, z) in (2.7). Note that if we neglect all terms on the right-hand
side of (2.7) except w(t, z), we have ∂v(t, z)/∂z = w(t, z) and integrating this equation
leads to

v(t, z) = v(t, 0) +
z∫

0

w(t, ξ) dξ = v(t, 0) + n(t, z). (2.8)

Here, n(t, z) represents the noise that is added to the signal up to a certain distance z.
For lumped amplification, one may set w(t, z) =

∑Nsp
i=1 ni(t)δ(z− iLsp) [29, p. 84], so that

n(t, z) =
∑bz/Lspc
i=1 ni(t) corresponds the addition of all ni(t) up to distance z (the upper

integral limit in (2.8) is interpreted as z+).

2.4 Polarization Multiplexing

In addition to the amplitude and phase (or, alternatively, the in-phase and quadrature
component), data may also be encoded using the polarization of the light source. Systems
where both polarizations of the light are used to transmit data are referred to as PM.
For PM transmission, the sNLSE equation can be further extended by considering the
vector signal v(t, z) = (va(t, z), vb(t, z))ᵀ, where the indices indicate the two polarizations
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2.5 Linear Pulse Modulation and Linear Receiver

a and b.3 The resulting equation is referred to as the Manakov equation which includes
amplifier noise, gain, and loss terms. It is given by [34, p. 8]

∂v(t, z)
∂z

= −α− g(z)
2 v(t, z)− β2

2
∂2v(t, z)
∂t2

+ γv(t, z)‖v(t, z)‖2 +w(t, z), (2.9)

wherew(t, z) = (wa(t, z), wb(t, z))ᵀ are two (independent) stochastic processes describing
the ASE noise generated in both polarizations. The major difference between (2.9) and
(2.7) is that (2.9) models the nonlinearity that is due to the sum of the instantaneous
power in both polarizations ‖v(t, z)‖2 = Pa(t, z)2 + Pb(t, z)2. We should mention that
(2.7) ignores the fact that amplifier noise is always generated “in two polarizations”, i.e.,
even if we assume one of the two signals in v(t, z) to be zero, technically the amplifier
noise in that polarization still contributes via (2.9) through the fiber nonlinearity.

For simplicity, we ignore polarization-specific impairments. This includes for example
polarization mode dispersion, which would cause different group velocities of the signals
in polarization a and b caused by natural imperfections and asymmetries of the fiber
cross-section area.

2.5 Linear Pulse Modulation and Linear Receiver
So far, we have discussed models for waveform channels. In order to arrive at a discrete-
time channel model, we have to make some assumptions about the type of modulation
that is used in the transmitter and the type of receiver structure. The statistics of the
resulting discrete-time channel may depend heavily on these assumptions.

In Fig. 2.4, a generic block diagram for a PM transmission scheme is shown. We
assume that the transmitters (TX) employ a linear pulse modulation according to xa(t) =∑
k xa,kp(t−kTs) for polarization a and similarly for polarization b, where Ts is the symbol

period. The evolution of the PM signal is then described by the Manakov equation (2.9),
where va(t, 0) = xa(t) and vb(t, 0) = xb(t). The received signal in each polarization is
assumed to be processed according to a linear receiver. In particular, for polarization a,
it is assumed that ya(t) = va(t, L) is passed through an equalizer, a pulse-matched filter,
and a sampler, in order to obtain ya,k′ = ya(t) � h(t,−L) � p(−t)|t=k′Ts and similarly
for polarization b.

Characterizing the statistical relationship between the transmitted symbols and re-
ceived samples is a challenging task due to the complicated interaction of the signal with
itself, the noise, and the signal in the orthogonal polarization. Here, we focus on optical
transmission links without any inline dispersion compensation, which are referred to as
non-dispersion-managed or uncompensated transmission links. Recently, there has been
a substantial amount of work on this type of transmission link with the goal to find such

3This nonstandard notation for the polarizations is an attempt to avoid confusion with the transmitted
and received signals.
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Figure 2.4: Block diagram of the PM transmission scheme considered in Papers A and B.

a statistical relationship [35–38].4
In [35], it is shown that the discrete-time channel for non-dispersion-managed links is

well modeled by a circularly symmetric complex additive Gaussian channel including a
complex scaling factor. In the derivation of the model, the assumption is that dispersive
effects are dominant (i.e., the symbol rate 1/Ts is high enough) and that the nonlinear
effects are not too strong. The complex scaling accounts for a constant phase offset as
well as the fact that part of the signal is converted into noise-like interference through
the interaction between the dispersive and nonlinear effects. For simplicity, it is then
assumed that this nonlinear noise is additive, Gaussian, and uncorrelated (both in time
and across polarizations). A discrete-time channel model in polarization a is then given
according to

ya = ζxa,k + na,k + ña,k, (2.10)

where ζ ∈ C is a complex scaling factor, na,k corresponds to the linear ASE noise with
E[Na,kN∗a,k] = N0/Ts = PASE, ña,k accounts for nonlinear noise with E[Ña,kÑ∗a,k] = ηP 3,
and the same transmit power P is assumed for the signals in both polarizations. The
parameter η (and hence the nonlinear noise variance) is a function of the link parameters
and the symbol time, i.e., η = f(α, β2, γ, Lsp, Nsp, Ts) [35, eq. (15)], and |ζ|2 = 1−|η|P 2.
The main difference with respect to the “conventional” discrete-time additive Gaussian

channel in (2.1) is that the signal-to-noise ratio (SNR) (defined as the ratio of the input
power to the additive noise power) is not sufficient to characterize the operating point
of the channel but rather one needs to consider the pair (P, PASE) or, more practically
relevant, the pair (P,L). This parameter pair leads in turn to both a linear and a
nonlinear noise variance based on which an effective SNR can be computed.

4This case is also of high practical relevance and according to [36], “the current consensus is that
green-field installations, as well as major overhauling and refurbishing of existing links, should adopt
uncompensated transmission.”
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CHAPTER 3

Bit-Interleaved Coded Modulation

In this chapter, we provide a brief introduction on how to design systems that reliably
transmit data at high spectral efficiencies. Spectrally-efficient communication can be
achieved in practice by combining error-correcting codes with nonbinary signal constel-
lations, which is commonly referred to as coded modulation (CM). We focus on BICM,
which is a pragmatic approach to CM and often implemented in practice, due to its
inherent simplicity and flexibility.

We start by outlining the main principles behind CM in Section 3.1. In Section 3.2, we
explain the building blocks of a BICM system. We also cover the parallel independent
channel model for BICM which is used for the bit mapper optimization problem studied
in Papers A and B.
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3.1 Introduction to Coded Modulation
Consider again the discrete memoryless AWGN channel in (2.1). The goal is to reliably
transmit data at high spectral efficiencies over this channel. To do so, one can formally
define an encoder E : {0, 1}d → Cc, which maps a vector of d information bits to a
codeword in the code Cc ⊂ CN . Each codeword is a complex vector of length N and its
components serve as the input for N consecutive uses of the AWGN channel. Similarly,
one can define a decoder D : CN → {0, 1}d, which maps a vector of N channel observa-
tions back to a sequence of d estimated bits. Assuming equally likely information bits,
the communication rate (measured in [bits/complex symbol]) of such a system is given
by κ = log2(|Cc|)/N = d/N . Notice that the communication rate of the discrete-time
channel is intimately related to the spectral efficiency of the continuous-time channel (in
[bits/s/Hz]) via the bandwidth of the pulse shape p(t) and the symbol time Ts. Shannon
proved that all rates up to the channel capacity

C = log2(1 + SNR) (3.1)

are achievable, in the sense that there exists an encoder/decoder pair that can provide
an arbitrarily small error probability as long as N →∞ [39].
While Shannon’s proof provides communication engineers with an invaluable bench-

mark, the problem of designing practical encoders and decoders that operate close to
capacity and are implementable with reasonable complexity was not directly addressed
by Shannon. In practical systems, the channel input xk commonly does not take on
arbitrary complex values, but is constrained to a discrete signal constellation X ⊂ C.
Given this premise, it is useful to introduce a soft dividing line between two different
operating regimes for this channel. This dividing line is at κ = 2, where κ ≤ 2 is referred
to as the power-limited regime and κ > 2 as the bandwidth-limited regime [40]. Roughly
speaking, in the power-limited regime, it is sufficient to consider a binary modulation
independently in the real and imaginary part (e.g., Gray-labeled quadrature phase-shift
keying (QPSK) according to X = {1 + , 1− ,−1 + ,−1− } and scaled by

√
P/2), in

combination with binary error-correcting codes in order to operate close to the capacity.
On the other hand, spectrally-efficient communication requires the use of signal constel-
lations with cardinality larger than 4, which are referred to as nonbinary or higher-order1
constellations. By invoking the capacity formula, it follows directly that operating at high
spectral efficiencies (where κ > 2) requires the signal power to be at least three times
the noise power. In other words, spectrally-efficient communication requires a reasonably
high SNR.
Devising practical encoder/decoder pairs where xk is constrained to a higher-order

signal constellation is commonly referred to as CM design. There exist several different
approaches, for example trellis coded modulation [41], CM with nonbinary codes [42],
1One may also classify complex constellations with 4 points as “higher-order”, as long as they cannot
be viewed as two independent binary modulations per real and complex dimension.
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Figure 3.1: Two examples of higher-order signal constellations with 16 points.

multilevel coded modulation [43], or BICM [44]. Our focus here is on BICM in combina-
tion with (binary) LDPC codes, which is one of the most popular capacity-approaching
coding schemes for achieving high spectral efficiency, due to its simplicity and flexibil-
ity [45]. BICM is employed as the de facto standard in many wireless communication
standards and has also been studied by many authors for fiber-optical communication
systems, see, e.g., [46] or [47] and references therein.

3.2 BICM System Model

In the following, the transmitted symbols xk in each time instant k are assumed to take
on values from a discrete signal constellation X ⊂ C with |X | points, where |X | is a
power of two. Furthermore, each point in the constellation is assumed to be labeled with
a unique binary string of length m = log2 |X |, where bi(x), 1 ≤ i ≤ m, denotes the i-th
bit in the binary string assigned to x ∈ X (counting from left to right). Two examples
of signal constellations with |X | = 16 points are shown in Fig. 3.1 and referred to as
16-QAM and (8, 8)-APSK.

We now describe the main components of a BICM system. First, consider the block
diagram shown in Fig. 3.2(a), where the modulo 2 addition of di,k ∈ {0, 1} and multi-
plication by d̄i,k = (−1)di,k are explained further below and can be ignored for now. At
each time instant, the modulator Φ takes m bits bi,k, 1 ≤ i ≤ m, and maps them to one
of the constellation points according to the binary labeling of the signal constellation.
At the receiver, the demodulator Φ−1 computes soft reliability information about the
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transmitted bits in the form of the log-likelihood ratios (LLRs)

li,k , log
fYk|Bi,k(yk|0)
fYk|Bi,k(yk|1) = log

∑
x∈Xi,0 fYk|Xk(yk|x)∑
x∈Xi,1 fYk|Xk(yk|x) , (3.2)

where Xi,u , {x ∈ X : bi(a) = u} is the subconstellation where all points have the bit u
at the i-th position of their binary label. The LLR is a function of the observation and,
since the observation is a random variable, the LLR is also a random variable.
One way to interpret the setup depicted in Fig. 3.2(a) is as follows. The concatenation

of the modulator Φ, the AWGN channel, and demodulator Φ−1 establishes a binary
interface for the complex-valued AWGN channel. It is useful to imagine transmitting
data over a set of m parallel binary-input continuous-output channels, or simply bit
channels, where one may view the conditional distribution of the LLR fLi,k|Bi,k( · | · ),
1 ≤ i ≤ m, as a bit channel. In the following, a bit channel fL|B(l|b) is called symmetric
if fL|B(l|0) = fL|B(−l|1) and referred to as an LLR channel if fL|B(l|0)el = fL|B(l|1).
The terminology is used to emphasize that, if the second condition is fulfilled, the output
of the channel corresponds to a “true” LLR. This is important because, in practice, low-
complexity approximations of (3.2) are often considered, and the resulting bit channel in
that case is not necessarily an LLR channel [48, Ch. 5]. While fLi,k|Bi,k( · | · ) is an LLR
channel, the channel is not necessarily symmetric in general.2 Symmetry can be enforced
by adding modulo 2 independent and identically distributed bits di,k to the bits bi,k [49].
After the demodulator, the corresponding LLR is multiplied by d̄i,k = (−1)di,k , which
implies that the bits di,k are known to both the transmitter and receiver. The resulting
bit channel fLi,k|Bi,k( · | · ) can be shown to be symmetric [49].

We proceed by quantifying the quality of the m bit channels, where we rely on the
mutual information (MI) as a measure of quality. The MI between the output of a

2The symmetry condition will become important when discussing DE and LDPC codes, where one relies
on the all-zero codeword assumption.
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symmetric LLR channel fL|B(l|b) and uniform input bits is given by

I(L;B) = E
[
log2

(
fL|B(L|B)
fL(L)

)]
(3.3)

= 1− E
[
log2

(
fL|B(L|B) + fL|B(L|1−B)

fL|B(L|B)

)]
(3.4)

= 1− E
[
log2

(
1 +

fL|B(L|1−B)
fL|B(L|B)

)]
(3.5)

= 1− E
[
log2

(
1 + exp((−1)1−BL)

)]
(3.6)

= 1−
∫ +∞

−∞
fL|B(l|0) log2(1 + exp(−l)) dl. (3.7)

Writing the MI in the form (3.7) can be useful in order to compute the MI with the help
of Monte Carlo integration.

It turns out that, while the channel quality of the bit channels can be determined
quite efficiently, it is very difficult to find exact analytical expressions for the actual
densities fLi,k|Bi,k( · | · ). A common approach in the analysis of BICM is to make the
simplifying assumption that the densities fLi,k|Bi,k( · | · ) are Gaussian. An LLR channel
with a Gaussian density is particularly simple, because it can be parametrized by a
single parameter. More precisely, we refer to a bit channel fL|B(l|b) as a symmetric
Gaussian LLR channel with parameter σ2 if L ∼ N (σ2/2, σ2) conditioned on B = 0
and L ∼ N (−σ2/2, σ2) conditioned on B = 1, where N (µ, σ2) denotes the Gaussian
distribution with mean µ and variance σ2. The MI between the output of a symmetric
Gaussian LLR channel and uniform input bits is denoted by J(σ). Under the Gaussian
assumption, a helpful approximation of the setup in Fig. 3.2(a) is shown in Fig. 3.2(b),
where transmission takes place over m parallel symmetric Gaussian LLR channels with
different parameters σ2

i . In order to find a correspondence between the LLR channels
fLi,k|Bi,k( · | · ) and the parameters σ2

i , one may match the MI according to J(σi) =
Ii(SNR)⇔ σ2

i = J−1(Ii(SNR))2, where Ii(SNR) = I(Bi,k;Li,k) is independent of k.
While the parallel Gaussian model can be quite useful, one should, however, be aware

of the inaccuracies of this simplified model. In particular, the bit channels are not
independent as suggested in Fig. 3.2(b) and the true distribution of the LLRs is not
Gaussian. To illustrate the latter inaccuracy, in Fig. 3.3, we compare the actual densities
with the approximated Gaussian densities for two different SNRs for the first two bit
positions of the 16-QAM constellation shown in Fig. 3.1(a).3 The densities fLi,k|Bi,k(l|0)
are estimated via histograms and shown by the solid lines, whereas the Gaussian densities
are shown by the dashed lines. It can be seen that the actual densities are clearly non-
Gaussian and the accuracy of the Gaussian approximation therefore depends on the
application scenario. For the application in Papers A and B (i.e., predicting the iterative
3The third and fourth bit positions lead to identical distributions, due to the fact that 16-QAM with
the shown labeling can be seen as a product constellation of two one-dimensional constellations.
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performance behavior of LDPC codes), the approximation turns out to be quite accurate
and at the same time allows for a major simplification of the analysis, thereby justifying
its use.
Consider now the case where we employ a single binary code C ⊂ {0, 1}n of length n,

and each codeword is transmitted using N = n/m symbols xk. The allocation of the
coded bits to the modulator (i.e., the different bit channels in Fig. 3.2(b)) is determined
by a bit mapper as shown in Fig. 3.4. In Papers A and B, our goal is to find good bit
mappers for a given code and signal constellation.
As a side note, we remark that the term “bit interleaver” is also commonly used instead

of “bit mapper”. In fact, the modulator Φ is sometimes referred to as the (symbol)
mapper (and the demodulator Φ−1 as the demapper), which the reader should be aware
of in order to avoid confusion. However, the terms “bit mapper”, “bit mapping”, or
“mapping” seem to be preferred in the literature when the allocation of the coded bits to
the constellation symbols Φ is explicitly studied or optimized, see, e.g., [50,51]. Moreover,
outside the context of BICM, the terms “mapping device” or “channel mapper” are used
when studying parallel channels in combination with binary codes, e.g., in [52,53].
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CHAPTER 4

Low-Density Parity-Check Codes

LDPC codes were proposed by Gallager in his Ph.D. thesis [15]. They were conceived
as practically decodable codes, able to “utilize the long block lengths necessary for low
error probability without requiring excessive equipment or computation” [54].

In this chapter, we review some basic concepts behind LDPC codes and iterative
decoding, focusing on protograph-based codes. In Section 4.1, we give a formal definition
of an LDPC code. In Section 4.2, we review BP decoding which is based on message
passing. The protograph-based construction of LDPC codes is explained in 4.3. The
basic idea behind the asymptotic analysis of LDPC codes via DE is outlined in Section
4.4. Finally, in Section 4.5 we briefly cover spatially-coupled LDPC codes, which are one
of the code classes considered for the problem statement addressed in Papers A and B.

23



Chapter 4 Low-Density Parity-Check Codes

4.1 Introduction
A binary LDPC code C of length n is defined as the null space of a sparse parity-check
matrix H = [hi,j ] ∈ {0, 1}c×n, i.e.,

C = {c ∈ {0, 1}n : Hcᵀ = 0}, (4.1)

where n > c and operations (i.e., additions and multiplications) are over the binary field.
Assuming that H has full rank c, one can invoke the fundamental theorem of linear
algebra to infer that the code has |C| = 2d codewords, where d = n− c is the dimension
of the code. The code rate is defined as R = d/n = 1− c/n.
The definition in (4.1) does indeed apply to an arbitrary binary linear code with a given

parity-check matrix H. It is of course up to interpretation when exactly the matrix H
should be classified as sparse (and, hence, the resulting code should be classified as an
LDPC code). As an example, consider the case where H is such that each row contains
exactly dc ones and each column contains exactly dv ones. Choosing n and c large
compared to dc and dv then leads to a sparse matrix H. The code defined by such a
matrix H is referred to as a regular LDPC code.

4.2 Iterative Belief Propagation Decoding
Consider the scenario where each bit in the codeword of an LDPC code is transmitted
over an LLR channel fL|B( · | · ) (recall the definition of an LLR channel in Section 3.2).
The goal of the decoder is to recover the transmitted codeword based on the observation
from the channel, which consists of n LLRs. These LLRs can be interpreted as the initial
belief about each coded bit. The decoding is based on a graphical representation of the
code. In particular, the parity-check matrix of an LDPC code can be represented by
using a bipartite Tanner graph consisting of n variable nodes (VNs) and c constraint
nodes (CNs), where the i-th CN is connected to the j-th VN if and only if hi,j = 1.
During the decoding process, the decoder tries to iteratively improve the accuracy of the
initial belief by exchanging messages in the form of extrinsic LLRs between VNs and
CNs along the edges of the Tanner graph.
For an excellent and comprehensive description of BP decoding, we refer the reader

to [12, Ch. 5.3]. Here, we only briefly review the basic steps of the decoding algorithm. We
use the following convention. Messages arriving at VNs are denoted by a and messages
emanating from VNs are denoted by b. For CNs, it is the other way around, i.e., arriving
messages are denoted by b, while emanating messages by a. In an attempt to avoid
cluttered notation, only one index is appended to a or b in order to locally distinguish
between messages along different edges for the same node. The corresponding picture we
have in mind is illustrated in Fig. 4.1. By locally we mean that, for example, the message
b1 emanating from the magnified VN does not correspond to the message b1 arriving at
the magnified CN. (In fact, from the way the figure is drawn, the message b1 arriving at

24



4.2 Iterative Belief Propagation Decoding

local messages for degree-dv VN

ach

a1

a
d
v

b1

bd
v

b

b

b

local messages for degree-dc CN

a
1

adc

b1

bdc

b

b

b

Figure 4.1: Illustration of the messages involved in the iterative BP decoding algorithm.

the magnified CN would emanate from the fourth VN, counting from the top.)
Consider now an arbitrary VN of degree dv, where the degree of a VN corresponds to

the number of CNs that are connected to it. There are dv + 1 messages arriving at this
VN, where a1, . . . , adv are messages from CNs and ach corresponds to the channel LLR.
The dv outgoing messages b1, . . . , bdv are computed according to

bi =
∑
∼i

aj + ach, (4.2)

where the summation is over the index set j ∈ {1, . . . , dv} excluding the index i. Similarly,
if we consider an arbitrary CN of degree dc, there are dc incoming messages b1, . . . , bdc
and the outgoing messages are computed according to

ai = 2 tanh−1

(∏
∼i

tanh(bj/2)
)
, (4.3)

where the product is over the index set j ∈ {1, . . . , dc} excluding the index i. Since the
CN operation (4.3) is central to the analysis of LDPC codes under iterative decoding, it
is very common to rewrite it in terms of the binary boxplus operator defined by

b1 � b2 = 2 tanh−1 (tanh(b1/2) tanh(b2/2)) . (4.4)

The box-addition of an arbitrary number of terms is evaluated by recursively applying
(4.4), e.g., b1 � b2 � b3 = (b1 � b2) � b3. With this convention, one can write the CN
operation more concisely as

ai =�
∼i

bj . (4.5)
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copy permute

Figure 4.2: Illustration of the protograph lifting procedure for P = (3, 3) and M = 6.

The decoding process can now be described as follows. Set ach for all VNs to the cor-
responding channel LLR and set all other messages to 0. (As an example, in a BICM
system, the channel LLRs are computed according to (3.2).) Then, repeat the following
two steps. First, compute outgoing messages for all VNs according to (4.2). After that,
compute the outgoing messages for all CNs according to (4.3). Stop if either a maximum
number of iterations has been reached or the proper combination of the hard decisions
on the messages

dv∑
j=1

aj + ach (4.6)

for all VNs forms a valid codeword.

4.3 Code Construction via Protographs
There exist different methods to construct “good” LDPC codes, i.e., good matrices H,
and one popular method is by using protographs [20]. A protograph is a “small” bipartite
graph defined by an adjacency matrix P = [pi,j ] ∈ Nc

′×n′
0 , called the base matrix.

Given P , a parity-check matrix H is obtained by replacing each entry pi,j in P with a
random binary M -by-M matrix which contains pi,j ones in each row and column. This
procedure is called lifting and M ≥ maxi,j pi,j is the so-called lifting factor. Graphically,
it amounts to copying the protograph M times and subsequently permuting edges in
order to obtain the Tanner graph. Parallel edges, i.e., for pi,j > 1, are permitted in the
protograph and are resolved in the lifting procedure. The design rate of the code is given
by R = 1 − c/n = 1 − c′/n′, where c = c′M and n = n′M . As an example, the lifting
procedure for P = (3, 3) and M = 6 is illustrated in Fig. 4.2.
Designing codes via protographs has several practical advantages, e.g., a quasi-cyclic

code is easily obtained by constraining the M -by-M matrices to have a circulant struc-
ture. This in turn allows for hardware-efficient implementation [12, p. 263] suitable
for high-speed optical communications [6]. Moreover, codes of different lengths can be
obtained simply by adjusting the lifting factor.
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4.4 Density Evolution
DE is a powerful tool to analyze the iterative decoding behavior and performance of
LDPC codes in the limit of infinite block length [24]. DE mimics the decoding process
under a cycle-free graph assumption by tracking how the densities of the messages evolve
with iterations. DE is commonly used to find so-called decoding thresholds, which can
be interpreted as the capacity for LDPC codes under BP decoding. Similar to the
channel capacity, the threshold divides the channel quality parameter range (for example
the parameter σ2 of a symmetric Gaussian LLR channel) into a region where reliable
decoding is possible and where it is not.

The main steps in the DE algorithm can be understood by considering the update
equations (4.2) and (4.3) for the VNs and CNs, respectively. If we assume that the
involved incoming messages are random variables, then they have a certain probability
distribution or density. For example, ach is distributed according to the LLR channel.
The main question is, how can we obtain the densities of the outgoing messages? For
the VN update, the answer turns out to be a simple convolution. In particular, for
two independent random variables A and B with distributions fA(a) and fB(b), their
sum C = A + B is distributed according to fC(c) = fA(a) � fB(b), where � denotes
convolution. It is convenient to introduce the short notation a � b, where a and b are
placeholders for the densities of the random variables A and B [11]. Given the densities
of the incoming messages, the densities of the outgoing messages can then be computed
according to

bi = �
∼i

aj � ach. (4.7)

For the CN update, it is somewhat more challenging to obtain the densities of the out-
going messages. The most straightforward approach is by using Monte Carlo techniques
and histograms. Consider the case where two messages b1 and b2 with densities b1 and
b2 are processed according to the boxplus operation a = b1 � b2. In order to obtain
the density a, one can simply generate many independent realizations of the random
variables B1 and B2, perform the boxplus operation, and collect the resulting samples.
These samples can be seen as a particle representation of the density a. This method is
illustrated in Fig. 4.3, where it is shown how two consistent Gaussian densities “evolve”
under the boxplus operation. A density a is called a consistent Gaussian density1 with
parameter σ2 if A ∼ N (σ2/2, σ2). As a short notation, one may introduce the operator
a = b1 � b2, which is referred to as box-convolution [11]. In practice, the box-convolution
of two densities can be implemented by using a look-up table approach [55]. Similar to
(4.7), the densities of the outgoing CN messages can then be computed according to

ai = �
∼i

bj . (4.8)

1Note that the conditional distribution fL|B(l|0) of a symmetric Gaussian LLR channel corresponds to
a consistent Gaussian density.
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Figure 4.3: Illustration of the box-convolution of two consistent Gaussian densities. The green
dashed line corresponds to the consistent Gaussian approximation obtained via
EXIT functions.

For protograph-based codes, DE can be used to analyze the iterative decoding behavior
by tracking one density for each edge in the protograph. This asserts that the messages
exchanged during the decoding process over edges belonging to the same edge-type (de-
fined by one protograph edge) have the same density. Assume that the transmission takes
place over a symmetric LLR channel with a fixed channel quality. Due to the channel
symmetry, one may assume the transmission of the all-zero codeword [12, p. 389]. The
iterative decoding behavior can be predicted via DE as follows. Set ach for all VNs in
the protograph to fL|B(l|0) and set all other densities to δ(l). Then, repeat the following
two steps. First, calculate the outgoing message densities for all VNs in the protograph
according to (4.7). After that, calculate the outgoing message densities for all CNs in the
protograph according to (4.8). Stop if the error probability associated with the density

dv�
j=1

aj � ach (4.9)

for each VN is below a certain target bit error probability (successful decoding), where
the error probability associated with a density a is given by

pe(a) =
∫ 0

−∞
fA(a) da, (4.10)

or a maximum number of iterations is reached (decoding failure). In order to find the
decoding threshold, we start from a channel quality where the decoding is predicted to
be successful. The above procedure is then repeatedly applied for decreasing channel
quality until the decoding fails.
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Approximate Density Evolution via EXIT Functions

Tracking the full densities (or quantized densities in practice) is computationally de-
manding and extrinsic information transfer (EXIT) functions are usually considered to
be a good compromise between computational efficiency and accuracy [56]. Let us as-
sume that the density a fulfills the condition fA(a)ea = fA(−a). Then, the density can
be associated with the MI measure

I(a) = 1−
∫ ∞
−∞

fA(a) log2(1 + e−a) da. (4.11)

Now, instead of tracking the evolution of densities, one may track the evolution of the MI
measure associated with the densities (which is just a scalar value for each density). Let
us assert that, under the VN operation, this measure evolves approximately according to

I(bi) ≈ J̃
(∑
∼i

J̃−1(I(aj)) + J̃−1(I(ach))
)
, (4.12)

whereas, under the CN operation it evolves approximately according to

I(ai) ≈ 1− J̃
(∑
∼i

J̃−1(1− I(bj))
)
, (4.13)

where J̃(x) = J(
√
x). These two equations can be motivated as follows. Eq. (4.12) is ex-

act under the assumption that all incoming densities a1, . . . , adv , and ach are consistent
Gaussian densities. To see this, note that the convolution of two consistent Gaussian
densities with parameters σ2

1 and σ2
2 is another consistent Gaussian density with param-

eter (σ2
1 + σ2

2)/2. Furthermore, if a is a consistent Gaussian density with parameter σ2,
the operation J̃−1(I(a)) simply returns σ2. Without going into the details, (4.13) can be
heuristically motivated by a duality property that holds for the binary erasure channel
(BEC) [12, p. 415]. It is important to point out that (4.13) it is not exact, even if all
incoming densities are consistent Gaussians, but it turns out to be surprisingly accurate
nonetheless. For example, the green dashed lines in Fig. 4.3 have been obtained using
(4.13), where the resulting MI measure is plotted in the form of the associated consistent
Gaussian density.

4.5 Spatially-Coupled LDPC Codes
Spatial coupling of regular LDPC codes has emerged as a powerful technique to construct
capacity-achieving codes for a large class of channels using iterative BP decoding [14,57].
The main idea is to make several copies of the Tanner graph that defines the regular
code, arrange the copies next to each other, and then interconnect neighboring graphs in
a particular way. The key to the outstanding performance of codes constructed in such
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Figure 4.4: Illustration of the base matrix P [T ] of a (J,K) regular, protograph-based SC-LDPC
code.

a way is a boundary effect due to slight irregularities at the two ends of the resulting
Tanner graph.
In general, spatially-coupled LDPC codes have parity-check matrices with a band-

diagonal structure, see, e.g., [57] for a formal definition. Here, we briefly introduce their
construction via protographs [58], [59, Sec. II-B]. The base matrix P [T ] of a (J,K)
regular, protograph-based spatially-coupled LDPC code with termination length T can
be constructed by specifying matrices P i, 0 ≤ i ≤ ms of dimension J ′ by K ′, where ms
is referred to as the memory. The matrices are such that P =

∑
iP i has column weight

J and row weight K for all columns and rows, respectively. Given T and the matrices
P i, the base matrix P [T ] is constructed as shown in Fig. 4.4. From the dimensions of
P [T ] one can infer a design rate of R(T ) = 1− (T +ms)J ′/(TK ′). As T grows large, the
rate approaches R(∞) = 1− J ′/K ′.
Before continuing, it is insightful to recall the following statement from [60], where the

design of irregular LDPC codes is studied. (VNs are referred to as message nodes and
CNs are referred to as check nodes.)

“[. . . ] we offer some intuition as to why irregular graphs prove useful. [. . . ]
Message nodes with high degree tend to their correct value quickly. These
nodes then provide good information to the check nodes, which subsequently
provide better information to lower degree message nodes. Irregular graph
constructions thus lead to a wave effect, where high degree message nodes tend
to get corrected first, and then message nodes with slightly smaller degree,
and so on down the line.” [emphasis added]

For spatially-coupled LDPC codes, one can give a similar heuristic explanation for their
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Figure 4.5: Illustration of the wave-like decoding behavior of spatially-coupled LDPC codes.

outstanding performance as follows (see [57] for a detailed explanation). By inspecting
the structure of the base matrix in Fig. 4.4, one may verify that the CN degrees corre-
sponding to the first and last couple of rows are lower than the CN degrees corresponding
to the rows in between. The lower degree CNs lead to a locally better decoding capability
which helps decoding neighboring VNs. This local boundary effect turns out to initiate
a wave-like behavior and can have a global effect on the decoding capability of the en-
tire code with increasing number of decoding iterations. To illustrate this behavior, in
Fig. 4.5, we show the predicted bit error rates pe via (approximate) DE for the coded
bits corresponding to the j-th column of the spatially-coupled LDPC protograph P [T ]
with component matrices P 1 = P 2 = P 3 = (1, 1) and T = 100. We assume transmission
over a symmetric Gaussian LLR channel with parameter σ2 = 4. In the figure, ` denotes
the iteration number. It can be observed that the error probability of the VNs at the
two ends of the graph converges to zero after 15 iterations. Due to the spatial coupling,
this boundary effect propagates inwards all the way to the center of the protograph in a
wave-like fashion.

An important reason for the tremendous interest in spatially-coupled LDPC codes is
their universality. While irregular LDPC codes have been optimized for various commu-
nication channels, the degree distribution pairs that achieve the best performance usually
vary from channel to channel [61]. In contrast, spatially-coupled LDPC codes derived
from simple regular codes have been shown to universally achieve capacity for a variety of
channels. However, there are also many open research problems concerning the practical
implementation of spatially-coupled LDPC, see [62] for a recent overview. For example,
the price to pay for the wave-like decoding behavior is a rate loss with respect to regular
codes that are defined by the protograph P =

∑
iP i.
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CHAPTER 5

Generalized Product Codes

The practical implementation of BP decoding for LDPC codes at very high data rates
poses a significant challenge. This motivates the use of coding schemes that are less
complex (potentially sacrificing some performance). One particular example of such a
coding scheme is discussed in this chapter, namely the use of GPCs in combination with
iterative BDD.

We start in Sections 5.1 and 5.2 by reviewing GLDPC codes and PCs, respectively.
GPCs can be regarded as a subclass of GLDPC codes and a formal definition is given
in Section 5.3 together with several examples of GPCs. In Section 5.4, we discuss the
assumed channel model and describe the decoding of GPCs via iterative BDD. Finally,
in Section 5.5 we briefly outline and compare two approaches to perform an asymptotic
DE analysis for GPCs.
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5.1 Generalized Low-Density Parity-Check Codes
In the previous chapter, we have seen that the parity-check matrix H of an LDPC code
can be represented in terms of a bipartite Tanner graph where coded bits and parity-
check equations are represented by VNs and CNs, respectively. An edge in the graph
indicates if a certain bit participates in a certain parity-check equation (i.e., a row in
H). The code can then be defined as the set of all VN bit assignments such that the
parity-check equations corresponding to the CNs are satisfied.
This concept can be generalized by interpreting the CNs not just as simple parity-

check equations but as component code constraints corresponding to smaller block codes
(e.g., Hamming or BCH codes). In order to specify the code, one uses a binary matrix
Γ ∈ {0, 1}m×n. This matrix is interpreted as the adjacency matrix for an associated
bipartite graph. The graph consists again of n VNs representing coded bits (one for
each column in Γ) and m CNs representing component code constraints (one for each
row in Γ). An edge between a VN and CN indicates if a certain bit participates in a
certain constraint enforced by a component code. In addition to the matrix Γ (or the
corresponding graph), one also needs to specify m component codes B1,B2, . . . ,Bm that
are associated with the m CNs in the graph. The overall code is defined as the set of all
VN bit assignments that satisfy all component code constraints. The code thus defined
is referred to as a GLDPC code.
Assuming that all component codes B1,B2, . . . ,Bm are linear codes, the resulting over-

all GLDPC code is also a linear code [12]. This implies that the code can alternatively
be represented by using a parity-check matrix H and a corresponding Tanner graph
where CNs correspond again to simple parity-check equations. It should thus be stressed
that the term “generalized” refers to the extended graphical representation by means
of “generalized” CNs. The main reason for introducing these generalized CNs is that
they add a layer of abstraction into the code representation. This may be helpful when
constructing new codes or devising decoding algorithms. For example, assume that we
have at our disposal an efficient decoding algorithm for some linear block code. The
GLDPC code framework then allows us to build longer and potentially more powerful
codes by using this block code as a building block. When decoding the overall code, we
may take advantage of the available component code decoder, thereby allowing for an
efficient overall decoding scheme.

5.2 Product Codes
PCs are one of the first examples that use the idea of building longer codes from shorter
component codes [21]. In the following, we review the code construction and the repre-
sentation as a GLDPC code.
Let B be some binary linear block code of length nB. A PC is defined as the set of

nB × nB arrays such that each row and each column in the array is a codeword in B.
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Figure 5.1: Illustrations for a PC with nB = 5.

The code array for nB = 5 is visualized in Fig. 5.1(a), where we use a two-dimensional
indexing to refer to the coded bits ci,j for i, j ∈ {1, 2, . . . , nB}. In the figure, one particular
row/column constraint is highlighted in red.

A PC can be interpreted as a GLDPC code with a very structured Tanner graph
representation [63]. In particular, for nB = 5, the adjacency matrix Γ of the Tanner
graph is given by

Γ =



1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1
1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0
0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0
0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0
0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1


, (5.1)

where the first and last five rows of Γ correspond to the row and column component
codes, respectively. We further have B1 = B2 = · · · = B10 = B in the GLDPC code
representation since all component codes are identical.

From the structure of Γ, it can be seen that all VNs in the corresponding Tanner graph
have degree 2. This is due to the fact that each coded bit (i.e., each entry in the array) is
protected by precisely two component codes. In this case, it turns out to be convenient
to represent these degree-2 VNs by simple edges. Fig. 5.1(b) shows the simplified Tanner
graph corresponding to the Γ-matrix in (5.1). With this simplified representation, the
Tanner graph corresponds to a complete bipartite graph: There exist two types of CNs
representing the row and column component codes, respectively, and each CN of one
type is connected to all CNs of the other type. This gives rise to exactly n2

B edges, each
of which corresponds to one coded bit in the array.
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As a side note, one subtlety that arises in the graphical representation of a GLDPC
code is that, strictly speaking, the edges emanating from each CN should also be la-
beled with the corresponding component code bit positions [63]. If the component code
has length nB (i.e., the corresponding CN has degree nB), then in principle any of the
nB! possible permutations of the bit positions can be assigned to the edges. Choosing
different assignments may result in an overall code with different properties, e.g., rate
and minimum distance [63]. The reason this is not an issue for LDPC codes is that a
parity-check equation is invariant under the order in which the bits appear in the equa-
tion. Moreover, for PCs and related code structures, the code is typically unambiguously
defined by an accompanying array description.

5.3 Generalized Product Codes
With the background about GLDPC codes and PCs described in the previous two sec-
tions, we are now in the position to give a formal definition of a GPC. In particular, we
adopt the convention in [64] and define a GPC as any GLDPC code whose Tanner graph
representation consists exclusively of degree-2 VNs.1 This implies that, similar to PCs,
each coded bit is protected by exactly two component codes. However, the bits may not
necessarily be arranged in the form of a rectangular array.
We remark that this terminology is nonstandard and GPCs are sometimes also referred

to simply as “product-like” codes [9]. In the following, we review several examples of
GPCs that are relevant for the appended papers.

5.3.1 Braided Codes
Braided codes are proposed in [18] as “convolutional (or sliding) versions” of PCs. Similar
to PCs, the code construction is based on a two-dimensional array where bits are placed in
the array under the constraint that rows and columns form codewords in some component
code. Depending on the type of component code, the resulting braided code is referred
to either a braided block code or a braided convolutional code. In this thesis, we focus
exclusively on the case where the component codes are block codes, and for simplicity
we refer to the resulting codes simply as braided codes.
Braided codes come in different flavors, depending on the precise structure of the

code array. Figs. 5.2(a) and (b) show two examples which are referred to as tightly
braided codes and block-wise braided codes, respectively. In both cases, the array is
conceptually infinite, i.e., one assumes the transmission of a continuous data stream. For
tightly braided codes, the array structure consists of rows and columns that are shifted by
one array element at each step. The simplified Tanner graph for a tightly braided code is
shown for example in [18, Fig. 2(b)]. For the block-wise braided codes the array consists

1In [10], a slightly different definition of a GPC is given.

36



5.3 Generalized Product Codes

b
b

b

(a) tightly braided

a

a b
b

b

(b) block-wise braided

a

a
b

b
b

B⊺
0 B1

B⊺
2 B3

B⊺
4

(c) staircase

Figure 5.2: Differently shaped code arrays for the various GPCs discussed in Section 5.3.

of three block ribbons with block size a. For example, the block size in Fig. 5.2(b) is
given by a = 4.
Braided codes can be classified as spatially-coupled PCs or alternatively as convolu-

tional PCs. (In [18], the term “GLDPC convolutional codes” is used instead.) Braided
codes have been explicitly considered for the use in fiber-optical communication systems
for example in [10]. The code construction we propose in Paper D includes block-wise
braided codes as special cases, thereby enabling an asymptotic analysis for these codes.

5.3.2 Staircase Codes
Staircase codes are proposed in [9] as a new class of error-correcting codes for optical
transport networks by “combining ideas from convolutional and block coding”. Given
a component code B of length nB, a staircase code is defined as the set of all matrix
sequences Bi ∈ {0, 1}a×a, where a = nB/2 and i = 0, 1, 2, . . . , such that the rows in
[Bᵀ

i−1Bi] for all i ≥ 1 form valid codewords in B. The matrix B0 is assumed to be
initialized to the all-zero matrix. The code array that corresponds to this definition
has a characteristic staircase structure and is shown in Fig. 5.2(c), where nB = 12 and
a = 6. Similar to braided codes, staircase codes can also be classified as instances of
spatially-coupled PCs.

When comparing staircase and braided codes, it should be mentioned that for braided
codes, only soft-decision decoding of the component codes is studied in [18]. The au-
thors in [9] consider this to be “unsuitable for high-speed fiber-optic communications”.
Motivated by the excellent performance of staircase codes under iterative hard-decision
decoding, the design of braided codes intended for fiber-optical communications is con-
sidered for example in [10]. The resulting braided code is found to be “competitive”
to the staircase code designed in [65] suggesting that the performance of staircase and
braided codes can be quite similar. This conclusions is also confirmed in Paper E, where
we compare staircase codes and braided codes. For the considered parameters, both code
classes perform almost identically in terms of waterfall performance and error floor.
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Figure 5.3: Illustrations for an HPC with nB = 5. In the array, “*” means “equal to the
transposed element”. The highlighted array elements illustrate one particular code
constraint, which is also highlighted in the Tanner graph.

5.3.3 Half-Product Codes
Consider again the simplified Tanner graph representation of a PC shown in Fig. 5.1(b)
which corresponds to a complete bipartite graph. The graph structure is a consequence
of the array description of a PC which appears to be quite natural. On the other hand,
in [66], Justesen points out that if one focuses instead on the graph, “it is not clear why
a bipartite graph is preferable” and that in this case “the more natural concept [...] is
a complete graph”. Such a complete Tanner graph indeed appears as one of the first
examples in [63]. The resulting codes, however, have received very little attention in the
literature thus far and, to the best of our knowledge, Justesen was the first to provide
an interpretation of the graph structure in terms of a code array [66, Sec. III-B]. He also
found a direct connection to conventional PCs which we briefly review in the following
based on the descriptions in [67, Sec. IV-B].
Consider a conventional nB×nB PC based on a component code B of length nB. Based

on this PC, a new code is formed by keeping only codeword arrays that have zeros on the
diagonal and are symmetric, in the sense that the array is equal to its transpose. Since
the diagonal and upper (or lower) triangular part of the array do not contain “useful”
bits, they can be ignored so that the effective length of the resulting code is given by
m =

(
nB
2
)
. Such codes are referred to as half-product codes (HPCs) in [66]. The Tanner

graph of an HPC corresponds exactly to a “complete Tanner graph” with nB CNs where
each CN is connected to all other CNs through a VN. As an example, Figs. 5.3(a) and
(b) show the code array and Tanner graph for an HPC assuming that nB = 5, where one
particular code constraint is highlighted in red.
HPCs and PCs are compared for example in [64], where it is shown that HPCs can have

larger normalized minimum distance than PCs. It is also possible to extend the above
definition to other classes of GPCs, i.e., other array shapes. For example, for the arrays
shown in Figs. 5.2(a) and (b), it poses no conceptual problem to enforce the additional
constraint (additional to the usual row and column component code constraints) that
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the array should be symmetric with a zero diagonal. The resulting codes belong to the
class of symmetric GPCs [64]. In general, symmetric GPCs use symmetry to reduce the
block length of a GPC while employing the same component code [64].

5.4 Iterative Bounded-Distance Decoding
We assume that the intended “target” channel for GPCs is the binary symmetric channel
(BSC) where each bit is flipped independently of all other bits with a certain crossover
probability p. In the context of fiber-optical communications, this channel can be mo-
tivated by considering PM-QPSK transmission (i.e., independent binary modulation in
both quadratures and polarizations) in combination with a minimum-distance detector
that provides a hard decision about the transmitted signal. The BSC can be shown to
be exact in the case where nonlinear transmission effects are ignored.

For the BSC, there exist very efficient algebraic BDD for several linear block codes,
e.g., BCH codes. BDD corrects all error patterns with Hamming weight up to the error-
correcting capability t of the code. The idea is then to use such codes as component codes
for a GPC and decode the overall code by iteratively performing BDD of all component
codes. While this decoding scheme is suboptimal, it has been shown to offer excellent
performance provided that the code rate of the GPC is relatively high. For example, the
staircase code designed in [9] has rate R = 239/255 ≈ 0.937 and performs only about
0.56 dB away from the channel capacity of the BSC under iterative BDD. Moreover, the
decoder data flow requirements in this case are estimated to be more than two orders
of magnitude smaller compared to the requirements for a comparable LDPC code with
message-passing decoding [9].

The main conceptual problem that arises in the theoretical analysis of iterative BDD
for GPCs over the BSC is that the component decoders may miscorrect in which case
a successful (component) decoding is declared but the found codeword is not the cor-
rect one. Such miscorrections introduce additional bit errors into the iterative decoding
process which makes a rigorous analysis challenging. One approach to avoid this issue
is to ignore miscorrections entirely and assume the use of so-called idealized BDD. Such
a decoder either outputs the correct codeword or declares a decoding failure. The as-
sumption of idealized BDD over the BSC is conceptually equivalent to transmission over
the BEC. For the BEC, each bit is erased independently of all other bits with a certain
erasure probability p. In that case, the error-correcting capability t of the component
code is interpreted as the erasure-correcting capability. The BEC is used in Papers D–F
in order to allow for a rigorous theoretical analysis.

5.5 Density Evolution
The purpose of this section is to discuss two different approaches to perform an asymp-
totic performance analysis for GPCs under iterative BDD assuming transmission over
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the BEC. The first approach is based on an ensemble argument and uses the ideas and
techniques discussed in [24,68]. The second approach directly targets a sequence of deter-
ministically constructed GPCs and is based on the work in [69,70]. Here, we only give a
high-level overview of the basic approach idea in both cases. The main goal of this section
is to contrast the two approaches and discuss potential advantages and disadvantages.
As a side note, the reader should be aware that the term “density evolution” for the

asymptotic analysis may be somewhat misleading. This is because the parameter of
interest in this case turns out to correspond to a simple probability and not a density.

5.5.1 Code Ensembles
The first and most widely used approach to perform an asymptotic analysis for GPCs
is to define a “suitable” code ensemble. In the following, we review one such ensemble
which is taken from [71] as an illustrative example. Let B be a component code of length
nB. Assume that there are m CNs of degree nB (each corresponding to the component
code B) and mnB/2 VNs of degree 2. In order to construct the Tanner graph, it is
helpful to imagine that there are mnB half-edges emanating from all the CNs and VNs,
respectively. One particular code in the ensemble is defined by the Tanner graph obtained
by connecting these half-edges using a uniform random permutation. The ensemble is
defined as the set of all codes defined by all possible choices of permutations.
The above ensemble definition is conceptually not much different from the definition of

the regular LDPC code ensemble [24], except that the graph consists of generalized CNs.
The asymptotic scenario considers the limit m → ∞, i.e., one increases the number of
VNs and CNs in the graph, while using a fixed component code. The principal conclusions
from [24] (see also [68]) can be paraphrased as follows.

1. Asymptotically, the fixed-depth neighborhood of a randomly chosen VN or CN in
the Tanner graph becomes a tree with high probability.

2. Assuming that the neighborhood is tree-like, the analysis of the expected iterative
decoding performance is drastically simplified to the extend that it can usually be
accomplished “in closed form” using a recursive expression.

3. There exists a concentration phenomenon that ensures that with high probability,
a particular code taken uniformly at random from the ensemble will have actual
performance close to the expected decoding performance computed in the previous
step.

By combining these three conclusions, one can then study and analyze the asymptotic
performance of the GPC ensemble defined above.
This ensemble approach appears to be appealing at first. For instance, one may be

interested in using a fixed component code B in practice (e.g., a triple-error correcting
BCH code of length nB = 1023) and the ensemble analysis enables an asymptotic analysis
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for precisely this component code. Moreover, the approach is not limited to the analysis
of iterative BDD but can be used to analyze the ensemble performance for a variety of
different channels and iterative decoding algorithms [24].

On the other hand, for certain applications, the ensemble approach may not be ap-
propriate. In particular, assume that we are interested in implementing a GPC with a
fixed deterministic structure, e.g., a PC. In that case, it is not clear to what extend the
ensemble approach is useful. In order to illustrate this, note that a PC is contained in the
ensemble defined above for m = 2nB and a particular interleaver permutation. However,
the ensemble approach only makes a statement about codes that are sampled uniformly
at random from the ensemble and not particular ones. It is therefore not clear if the
expected ensemble performance is somehow indicative for the performance of a PC.

5.5.2 Deterministic Codes
For sequences of deterministic GPCs, choosing a meaningful asymptotic scenario is not
straightforward. For simplicity, let us restrict ourselves to “square” PCs, i.e., the case
where both the row and column component codes have length nB. For the asymptotic
scenario, we consider sequences of PCs with increasing array size. Increasing the array
size, however, has two consequences. First, it leads to an increase in the number of
component codes and thereby an increase in the number of CNs in the underlying Tanner
graph. This is similar to the ensemble approach described in the previous subsection.
However, increasing the array size also changes the component codes. In particular, the
length nB of each component code does not remain fixed but it increases. This is different
from the ensemble approach where the component code properties (including the length)
are assumed to remain fixed.

When dealing with sequences of component codes with increasing lengths, one should
also specify what happens to the other component code parameters, in particular the
erasure-correcting capability t. There are essentially two possibilities that have been
studied in the literature before. In the following, we briefly review both cases.

In the first case, one assumes that the erasure-correcting capability increases linearly
with nB, i.e., t is assumed to be a function of nB. In particular, one may assume that
each component code can correct a fixed fraction α ∈ (0, 1) of erasures in terms of its
block length, i.e., we have t = αnB. This case has been studied in [69]. The analysis
is based on Chernoff bounds and the conclusion is quite simple: If one has access to
component codes with t = αnB, then, asymptotically, it is pointless to construct a PC
out of these component codes since both the PC and each component code can operate
reliably if (and only if) the erasure probability satisfies p < α. In other words, the
product construction is useless in this asymptotic scenario.

In the second case, one assumes that the erasure-correcting capability remains fixed.
This is reasonable from a practical perspective because the complexity of algebraic BDD
for BCH codes increases drastically with t. With this assumption, however, one finds
that for any fixed erasure probability p, the decoding will fail with high probability in
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the limit nB → ∞. The reason for this is simple. Even if we choose p very small, the
expected number of erasures per row and column in the PC array grows linearly with nB
and will eventually far exceed the assumed finite erasure-correcting capability t of each
component code.
In summary, both cases lead to somewhat unsatisfactory answers. The important thing

to realize in the second case, however, is that we are essentially considering sequences
of PCs with code rate approaching 1 as nB → ∞. Due to this vanishing redundancy,
it should not come as a surprise that operating at any fixed erasure probability is futile
asymptotically. With this in mind, a meaningful asymptotic analysis can be performed
by allowing the erasure probability to decay slowly as c/nB for some fixed constant
c > 0. In other words, we are not considering a fixed channel anymore but the channel
is changing in accordance with the strength of the PC. This approach is pioneered for
PCs in [69, 70] and it heavily relies on properties from random graph theory. In Paper
D, this approach is extended to a large class of deterministic GPCs based on properties
of so-called inhomogeneous random graphs [26].
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CHAPTER 6

Conclusions and Future Work

In this chapter, we summarize the main conclusions from the appended papers and outline
some potentially interesting ideas for future work. The conclusions are structured in
terms of the two topics that are investigated in this thesis.

Bit Mapper Optimization for Spectrally-Efficient Systems (Papers A and B)

In Papers A and B, we study coded transmission systems that operate at high spectral
efficiency over fiber-optical links without inline dispersion compensation. Assuming a
linear coherent receiver, the classical AWGN channel with a modified SNR expression is
used as a design channel.

In Paper A, we propose a method to optimize the bit mapper that determines the
allocation of the coded bits from the channel encoder to the modulation or labeling bits of
the signal constellation. The proposed method applies to an arbitrary protograph-based
LDPC code. Compared to previous approaches for protograph-based codes, we use a
fractional allocation between the modulation bits and the VN classes in the protograph.
This allows for an unrestricted matching between different protographs and modulation
formats. We also discuss the bit mapper optimization for spatially-coupled LDPC codes
that are based on protographs and decoded using a windowed decoder. Our results show
that by using an optimized bit mapper, the transmission reach can be extended by up to
8%, with almost no added system complexity. We also provide a simulative verification
for a nonlinear transmission scenario based on the SSFM which confirms the accuracy of
the assumed channel model.

In Paper B, we consider the bit mapper optimization for spatially-coupled codes in
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more detail. In particular, we consider both spatially-coupled LDPC codes based on
protographs and the spatially-coupled PC ensemble in [27]. In the first case, standard
BP decoding is assumed, while in the second case we assume an iterative hard-decision
decoding algorithm which is significantly less complex. For both cases, we consider termi-
nated and tail-biting spatially-coupled codes. In general, for terminated spatially-coupled
codes with long spatial length, the bit mapper optimization only results in marginal per-
formance improvements, suggesting that a sequential or random allocation is close to
optimal. On the other hand, an optimized allocation can significantly improve the per-
formance of tail-biting spatially-coupled codes. Such codes do not possess an inherent
termination boundary. In this case, the unequal error protection offered by the modula-
tion bits can be used to create an artificial termination boundary that induces a wave-like
decoding behavior. Unlike for terminated spatially-coupled codes, the wave effect in this
case does not come at the price of a rate loss: tail-biting spatially-coupled codes have
the same design rate as the underlying uncoupled codes.
An interesting direction for future work could be to study the bit mapper optimization

for irregular spatially-coupled LDPC codes. In this thesis, we have assumed the use of
spatially-coupled LDPC codes that are based on regular LDPC codes. While such codes
are capacity-achieving, it has been shown in [72] that irregular spatially-coupled LDPC
codes can offer some advantages when taking into consideration practical restrictions for
parameters, e.g., a limited number of decoding iterations. For the irregular case, there is
an opportunity to optimize the bit allocation by only considering the different VN degrees
at one spatial position instead of considering the entire code chain. An optimized bit
mapper allocation could for example lead to a decreased number of decoding iterations
that are necessary to reach a certain target error rate.

Analysis and Design of Deterministic Generalized Product Codes (Papers C–F)

In Paper C, we study parameter optimization for staircase codes assuming an extrinsic
iterative hard-decision decoding algorithm. The optimization is based on a DE analysis
for a spatially-coupled PC ensemble that shares structural similarities with staircase
codes. Using this approach, staircase code parameters can be found at a significantly
reduced optimization time compared to a simulation-based approach. We also propose
an extension of staircase codes by allowing for multiple code constraints per row and
column in the corresponding array description. This construction leads to larger staircase
block sizes and steeper waterfall performance that better matches the predicted DE
performance.
The optimization approach in Paper C is, however, only heuristically motivated. In

particular, the DE analysis does not directly apply to staircase codes. This issue is
addressed in Paper D, where we consider an asymptotic DE analysis for deterministic
GPCs with a fixed Tanner graph structure. The main conclusion from Paper D can
be summarized as follows. There exists a large class of deterministic GPCs for which
a rigorous asymptotic DE analysis assuming iterative BDD over the BEC is possible.
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For example, the proposed code construction and analysis can be used to study the
asymptotic performance of

• conventional PCs [21], staircase codes [65], and block-wise braided codes [18],

• GPCs employing a mixture of different component codes with varying erasure-
correcting capabilities such as irregular PCs [73,74],

• symmetric GPCs [64] such as HPCs [66] which can be seen as symmetric subcodes
of certain GPCs.

The DE analysis in Paper D can also be used to study different decoding schedules that
are practically relevant such as row/column decoding for PCs or windowed decoding of
staircase and braided codes.

In Papers E and F, we use the proposed code construction and DE analysis to study
some relevant classes of GPCs in more detail. In Paper E, we provide a comparison
between staircase codes, block-wise braided codes, and the symmetric subcode of a block-
wise braided code which is referred to as a half-braided code. Our results indicate that
half-braided codes can outperform both staircase codes and braided codes in the waterfall
performance, at a lower error floor and decoding delay.

In Paper F, we consider spatially-coupled PCs in more detail. In particular, we revisit
the spatially-coupled PC ensemble that is used in Paper C for the parameter optimization
of staircase codes. It is shown in [27] that this ensemble can approach the capacity of the
BSC at high rates. Motiviated by this result, our main goal is to compare the ensemble
performance to the performance of deterministic GPCs with a spatially-coupled structure
via their respective DE equations. For the BEC, it is shown that there exists a family
of deterministic braided codes that performs asymptotically equivalent to the ensemble.
It is also shown that there exists a related but structurally simpler family of braided
codes with essentially the same performance, even though the DE equations are not
exactly equivalent. Lastly, we consider spatially-coupled PCs with a mixture of different
component codes. In that case, the conclusion is that employing such component code
mixtures for spatially-coupled PCs is not beneficial from an asymptotic point of view.

In the following, we suggest two potentially interesting topics for future work. The first
topic concerns the asymptotic performance of deterministic GPCs over the BSC. While
the obtained results for the BEC can be used to approximate the code performance
over the BSC, it would be desirable to rigorously characterize the BSC performance
including the effect of decoder miscorrections. For example, the equivalence between
the spatially-coupled PC ensemble in [27] and the deterministic spatially-coupled PCs in
Paper F only holds for the BEC. This is not sufficient to show that the same deterministic
codes are also capacity-achieving over the BSC. On the other hand, the proof in [27]
relies partially on the fact that the impact of miscorrections becomes small if the error-
correction capability increases. Similar conclusions should also hold for deterministic
GPCs, at least qualitatively.
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Another potentially interesting topic is the investigation of the finite-length scaling
behavior of deterministic GPCs, similar to the scaling analysis for certain LDPC code
ensembles presented in [75]. A generalization to deterministic GPCs may give a relatively
complete picture of the performance of these codes under iterative decoding.
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