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Abstract

Motivated by the realization that even the enormous bandwidth available in an opti-
cal fiber is finite and valuable, the design of spectrally efficient long-haul fiber-optical
communication systems has become an important research topic. Compared to other
wireline technologies, e.g., transmission over coaxial cables, the main challenge comes
from the inherent nonlinearity of the underlying communication channel caused by the
relatively high signal intensities. In this thesis, we study the design of spectrally efficient
fiber-optical systems for both uncoded and coded transmission scenarios.

We consider the problem of designing higher-order signal constellations for a system
that is severly impaired by nonlinear phase noise. By optimizing amplitude phase-shift
keying constellations, which can be seen as the union of phase-shift keying constellation
with different amplitude levels, gains of up to 3.2 dB at a symbol error probability of 10~2
are shown to be achievable compared to conventional constellations. We also illustrate
a somewhat counterintuitive behavior of optimized constellations for very high input
powers and nonlinear distortions. In particular, sacrificing a constellation point or ring
may be beneficial in terms of the overall performance of the constellation.

Furthermore, we study polarization-multiplexed transmission, where spectral efficiency
is increased by encoding data onto both polarizations of the light. For a memoryless fiber-
optical channel, we introduce a low-complexity detector which is based on an amplitude-
dependent phase rotation and subsequent threshold detection. The complexity compared
to the four-dimensional maximum likelihood detector is considerably reduced, albeit at
the expense of some performance loss.

Lastly, we consider the design of a coded fiber-optical system operating at high spectral
efficiency. In particular, we study the optimization of the mapping of the coded bits to
the modulation bits for a polarization-multiplexed fiber-optical system that is based on
the bit-interleaved coded modulation paradigm. This technique, which we refer to as bit
mapper optimization, is extended to the class of spatially coupled low-density parity-
check codes, which have shown outstanding performance over memoryless binary-input
channels. For a transmission scenario without optical inline dispersion compensation, the
results show that the transmission reach can be extended by roughly up to 8%, without
significantly increasing the system complexity.

Keywords: Bit-interleaved coded modulation, bit mapper, constellation optimization,
detector, fiber-optical communication, low-density parity-check codes, spatial coupling.
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Meaning
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stochastic nonlinear Schréodinger equation
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CHAPTER 1

Background

When requesting a website, most internet users are probably unaware that the digital
data is modulated onto a light source and transmitted over thousands of kilometers
in an optical waveguide, a so-called optical fiber, at some point on the way from the
remote server to their home computer or mobile device. In fact, more than 99% of the
global intercontinental traffic is carried over optical fiber and such “long-haul” fiber-
optical communication systems are the key enabler of high-speed internet data transfer
connecting cities, countries, and continents [1].

Optical fiber as a transmission medium is very well suited for sending large amounts of
data over long distances. Engineers and physicists have spent a great effort to refine the
fiber material to be very transparent for optical light over a large frequency range and
to improve the components in an optical transmission system, e.g., lasers and amplifiers.
Meanwhile, however, fiber-optical systems traditionally employ digital modulation tech-
niques that are rather wasteful with the available frequency spectrum. As an example,
switching the light source on and off according to the digital data stream, referred to as
on-off keying (OOK), is highly inefficient from a spectral viewpoint.

To keep up with the increasing data rate demands of current applications, and to enable
innovative broadband technologies in the future, it becomes more and more apparent that
next generation fiber-optical systems need to use the available spectrum more efficiently.
The bandwidth of optical fibers is now considered a limited resource and due to this
realization, there is currently a great deal of interest in determining the ultimate limits
of optical systems in terms of spectral efficiency [244] and developing practical schemes
that can achieve these limits [5H7]. The distinctive feature, and at the same time the
main challenge in fiber-optical communication, is that the underlying communication
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channel is fundamentally nonlinear. The fiber nonlinearity is considered as one of the
limiting factors for increasing the data rates in long-haul systems [8H10]. Some important
problems that arise in the design of spectrally efficient fiber-optical systems are addressed
in this thesis.

To improve the spectral efficiency over OOK, the data can be encoded into multiple
amplitude and/or phase levels of the optical carrier. This leads to the problem of design-
ing good signal constellations that are robust to the severe nonlinear distortions. Signal
constellation design can be thought of as optimizing the placement of a given number
of points in two or more dimensions under some constraints. This problem can be con-
sidered as a classical problem in communication theory [11, Ch. 1] and it is revisited in
Paper A, paying special attention to fiber nonlinearities.

A further increase in spectral efficiency can be made by properly utilizing both polar-
izations of the optical light, which we refer to as polarization-multiplexed (PM) trans-
mission. Compared to single-polarization (SP) transmission, signals are now represented
as points in a four- rather than a two-dimensional space. Optimal maximum likelihood
(ML) detection in four dimensions can be computationally very complex, particularly for
constellations with many points. Therefore, in Paper B, we study a detector design for
a recently developed four-dimensional, memoryless fiber-optical channel model with the
intention to significantly reduce the detection complexity.

The problems described above are related to uncoded transmission schemes and do not
consider forward error correction (FEC). However, FEC needs to be considered in order
to operate close to the ultimate transmission limits of optical fibers. We therefore also
consider the problem of designing coded transmission systems at high spectral efficiencies
in Paper C. Here, we restrict ourselves to systems that are based on the bit-interleaved
coded modulation (BICM) paradigm. BICM can be seen as a pragmatic way to combine
signal constellations consisting of many points with powerful binary error correction
codes. In particular, we study how the coded bits should be allocated to the modulation
bits. We refer to this problem as bit mapper optimization. As one particular example,
we consider spatially coupled low-density parity-check (SC-LDPC) codes which have
recently been shown to achieve outstanding performance over a variety of communication
channels [12414].

1.1 Thesis Organization

The licentiate degree is an intermediate step for a doctoral student towards the final PhD
degree and the licentiate thesis documents the progress that has been made over a period
of roughly two to two and a half years. The format of this thesis is a so-called collection
of papers. It is divided into two parts, where the first part serves as an introduction to
the appended papers in the second part.

The remainder of the first part of this thesis is structured as follows. In Chapter
we provide an introduction to fiber-optical channel modeling and describe the origin of
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the channel models that are used in the appended papers. Our main goal is to show
that all utilized models have the same mathematical foundation, namely the nonlinear
Schrodinger equation (NLSE), albeit assuming somewhat different material parameters
and system configurations. In Chapter 3] we explain the necessary theoretical background
for the optimization problem that we consider in Paper C. For Paper C, the reader
is assumed to be somewhat familiar with coding theory and in particular low-density
parity-check (LDPC) codes, which we discuss in Chapter |3l Finally, some conclusions
are summarized in Chapter [l where we also briefly discuss future work.

1.2 Notation

Throughout this thesis, vectors are denoted by boldface letters A, matrices by blackboard
letters A, sets by calligraphic letters A (except the sets containing the real numbers R,
complex numbers C, integers Z, and natural numbers N), and random variables by capital
letters A. The probability density function (PDF) of a continuous random variable Y is
denoted by fy (-) and E[-] denotes expectation. A matrix transpose is denoted by (-)T.
d(t) denotes Dirac’s delta function while §[k] denotes the Kronecker delta. Convolution
is denoted by ®. For a continuous-time signal z(t), we write x(t) - X(f) to indicate
its Fourier transform. The imaginary unit is denoted by 5 £ /—1.

We also acknowledge the following notational inconsistencies. In Paper A, x and y
are used for the channel input and output, respectively, whereas in Paper B and C,
x and y are used to differentiate between polarizations. In Paper A, conditioning on
particular realization of a random variable is denoted by fy|x—.(y), whereas in the
introductory part of the thesis we use fy|x(y|z) for readability purposes. In Papers
A and B, the spontaneous emission factor ns, appeared in the context of distributed
amplification, which should be replaced with the photon occupancy factor K for Raman
amplification [2]. Further, the additive noise power spectral density Ny in Paper A is
defined per unit length and this definition is inconsistent with the definition used in Part
I of the thesis where it has units of [W/Hz]. We use a different font Ny in Part I to
indicate the difference.






CHAPTER 2

Fiber-Optical Channel Modeling

A channel model is a mathematical description of the propagation medium and possi-
bly also includes certain elements of the transmitter and receiver (e.g., filters). In the
appended papers, the starting point for the analysis is a discrete memoryless channel,
which can be specified in the form of a conditional PDF. This chapter is intended to
describe the origin of the assumed PDFs and also to give the reader a broader picture
about optical channel modeling in general.

We are concerned with coherent, long-haul (i.e., distances exceeding 2000 km) data
transmission over single-mode fibers (SMFs) and the main challenge is a nonlinear effect
caused by the relatively high signal power in relation to the small cross-section area of the
fiber. Without going further into the physical details, a useful way to think about this
effect is to imagine that the presence of an optical signal can compress the fiber material
(in most cases silica) to such a degree that its propagation properties, in particular the
refractive index, are changed in a nonlinear way (9} p. 18].

If nonlinear effects are ignored, an optical fiber can be regarded as a linear dispersive
channel. Motivated by this, we start by reviewing some important results for this channel
in Section 2.1} In Section 2.2} we discuss the NLSE, which is a deterministic channel
model for an SMF. Multi-span links consisting of several SMFs and different amplification
types are described in Section 2:3] In Section [2.4] the channel models assumed in the
papers are introduced and compared.
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Figure 2.1: Block diagram of a system with linear modulation, a linear dispersive AWGN
channel, and a receiver that obtains a sufficient statistic for optimal detection.

2.1 Linear Dispersive Channels

Consider the complex-valued linear dispersive additive white Gaussian noise (AWGN)
channel

y(t) = h(t) ® z(t) + n(t), (2.1)

where z(t) is the baseband representation of the input signal, y(¢) is the output sig-
nal, h(t) is the channel impulse response, and n(t) is a circularly symmetric complex
Gaussian stochastic process with zero mean with power spectral density (PSD) Ny, i.e.,
E[N(t)N*(t')] = Nod(t —t’). Given an appropriate impulse response h(t), equation
is widely used as a model for, e.g., wireline transmission over coaxial cables. A vast
amount of literature exists on the linear dispersive AWGN channel and many impor-
tant problems such as the optimal receiver/detector structure, the ultimate achievable
transmission rates, or practical schemes that achieve these rates can be considered well
studied and understood by now, see [15] and references therein.

In the following, we review some important concepts and results under the assump-
tion that h(t) is a unit gain all-pass filter, i.e., |H(f)| = 1, where h(t) o H(f). This
assumption will turn out to be accurate for the fiber-optical channel later if nonlinear
effects are ignored. Henceforth, the receiver is always assumed to have perfect knowledge
about h(t), obtained through an appropriate channel estimation technique. Furthermore,
it is assumed that perfect carrier and timing synchronization between transmitter and
receiver has been achieved.

In Fig. a block diagram of the considered system is shown. We start with a linearly
pulse—modulatedﬂ input signal

o(t) =Y app(t — kTy), (2.2)
k

where zj, € C are the information symbols for k € Z, p(t) is the real-valued pulse shape,
and Ty is the symbol period. The symbol rate is defined as Ry = 1/T. The input signal

LA different approach to communicate over linear dispersive channels is through multicarrier transmis-
sion, which we do not consider in this thesis.
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x(t) is assumed to be bandlimited to a bandwidth W > 1/T and the power of x(¢) is

1 T
PéTI%—T/Tm(t)th. (2.3)

The receiver observes the filtered and noisy version of x(t) according to (2.1 as

y(t) = h(t) @ () +n(t) = > axp(t — KTs) + n(t), (2.4)
k

where p(t) = h(t)®p(t) is the convolution of the pulse shape with the channel impulse re-
sponse. A sufficient statisti(ﬂ for detecting the symbols xj, based on y(t) can be obtained
by filtering y(¢) with the channel matched filter p*(—¢) and sampling at time instances
t =kTs, k' € Z [16, Prop. 28.5.2]. Since p*(—t) = h*(—t) ® p(—t), one may interpret
the application of the channel matched filter as a two-step process. The first step (filter-
ing with h*(—t)) is referred to as “channel equalization” or simply “equalization”. Due
to the assumption that h(t) is an all-pass filter, one may also think of applying h*(—t)
as a compensation techniqud®] in the sense that h(t) ® h*(—t) = &(t), which is read-
ily seen by applying the Fourier transform and invoking the all-pass filter assumption,
ie., H(f)H*(f) = |H(f)|> = 1. After applying the (pulse) matched filter p(—t) and
sampling, one finally obtains the discrete-time channel model |16, Prop. 28.5.2 (ii)]

Yk = Zkap((k = KTs) + ny, (2.5)
k

where R,(t) = p(t) ® p(—t) is the self-similarity (or autocorrelation) function of the
pulse shape |16 Def. 11.2.1] and ng is a zero mean Gaussian random variable with
E[NpN; ] = NoRy((k — k')T). A discrete memoryless channel y, = xj, + ny, is obtained
by choosing the pulse shape such that its self-similarity function R,(¢) satisfies Nyquist’s
criterion R, ((k—k')Ts) = o[k — k'] |16| Def. 11.3.1], e.g., choosing p(t) to be a root-raised
cosine pulse with an arbitrary roll-off factor. In this case, the channel from xj to yi is
completely characterized by the conditional PDF

2
Fyx, (Yklog) = %NOGXP <—|ykN0zk|) : (2.6)
On the other hand, if the Nyquist criterion is not fulfilled (or h(¢) is not an all-pass filter),
the discrete-time channel model is not memoryless (one may write the first term on the
right-hand side of as a discrete convolution) and the noise samples are correlated.
The optimal detection approach in that case is maximum likelihood sequence estimation
(MLSE) either with [17] or without [18] the insertion of a noise whitening filter.

2See |16l Ch. 26] for a formal definition.
3The term “dispersion compensation” is often used instead of “equalization” in the context of fiber-
optical communication systems.
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v(t,0) ———-nonlinear Schrédinger equation - ——»> v(¢, L)

\/\T/\ N\ T\
\% ! | t

x(t) *) single mode fiber ) y(t)

0 L

Figure 2.2: Conceptual representation of the signal evolution through a SMF. The NLSE de-
scribes the relationship between the input signal z(t) = wu(¢,0) and the output
signal y(t) = u(t, L).

The previous description is relevant to fiber-optical systems for several important rea-
sons. The first one is that, while the actual fiber-optical channel model is nonlinear, the
linear (pulse) modulation and receiver structure in Fig. are nonetheless ubiquitously
used in practical fiber-optical systems. Obviously, they are not necessarily optimal any-
moreﬂ but their performance can still be analyzed and seen as a baseline. Secondly, the
previous discussion illustrates how an originally continuous-time channel model (eq. )
can be simplified to a discrete-time model (eq. (2.5)) which in turn can then be used to
study, e.g., detection algorithms or channel coding schemes. This is the approach taken
in all the appended papers, where the analysis is based on discrete-time channel models.

2.2 The Nonlinear Schrodinger Equation

The starting point for coherent, long-haul fiber-optical channel modeling is the NLSE,
which can be derived from the Maxwell equations under some assumptions that are
appropriate for SMFs [20]. The NLSE is a partial differential equation that defines the
input—output relationship for optical baseband signalsﬂ propagating through SMFs.

Let us first, in addition to the time parameter ¢, introduce a distance parameter 0 <
z < L that denotes the propagation distance of the signal from the beginning of the fiber,
where L is the total length of the fiber. The baseband signal of interest is then a function
of two parameters, denoted by v(¢,z). To be consistent with the previous notation, we
define the input and output signals as z(t) = v(¢,0) and y(t) = v(t, L), i.e., x(t) is the
signal launched into the fiber at z = 0, and y(t) is the signal received after propagating
through an SMF of length L. This is conceptually illustrated in Fig. Before we
continue, we also define the instantaneous signal power P(t,z) £ |v(t, 2)|? and the power
profile P(z) = limT_)oo(fiTT P(t,z)dt)/(2T), where P(0) = P is the power of the input

4 The author in [19} p. 42] goes so far to say that these methods “borrowed from linear system theories,
are inappropriate for communication over optical fiber networks”.

50ften called “slowly varying envelope” in the literature. The carrier frequency is assumed to be the
equivalent of a 1550 nm light wave, corresponding to roughly 193.4 THz.

10
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signal.
The NLSE accounts for signal attenuation, chromatic dispersion, and nonlinear effects
in an SMF and can be written as

0v(t, z) _ B &3211(@2)

o o"v(L, z) 2
) = Salt,2) - 2 T et 2ot ) P (27)

where « is the attenuation coefficient, (s is the chromatic dispersion coefficient, and
v is the nonlinear Kerr parameter. If we take into account only the first term on the
right-hand side of (2.7)), one obtains v(t,z) = exp(—az/2)v(t,0) as a solutiorﬂ ie.,
we immediately see that the signal amplitude in an SMF decays exponentially with
the propagation distance. By defining a renormalized version of v(t,2) as u(t,z) =
exp(az/2)v(t, z) and substituting it into , one obtains an alternative and somewhat
simpler version of the NLSE as [20} eq. (4)]

Ou(t,z) &82u(t,z)

Z T\ —az 2
o 15 eE T e ult, 2)|u(t, 2)|°. (2.8)

Unfortunately, there are no closed-form solutions to the NLSE and one has to use nu-

merical methods in order to solve (2.7)) or (2.8).
We proceed by discussing two special cases of (2.8]) in Sections and for

v = 0 and By = 0, respectively. In both cases, a closed-form solution can be obtained.
These solutions are also the key ingredients for one of the most widely used numerical
methods to solve , namely, the split-step Fourier method (SSFM), which is described
in Section 2.2.3]

2.2.1 Absence of Nonlinear Effects

As we will see, when nonlinear effects are ignored, the solution of (2.8) can be more
conveniently written as the convolution of the input signal with a dispersive filter. For

~v =0, (2.8) becomes

u(t,z) &8211(15,,2)
0= ‘2 o

(2.9)

which can be solved analytically by first transforming (2.9)) into the Fourier domairﬂ
using the correspondence %x(t) o—e (2 f)" X (f) to obtain |20]

WD) _ )% (o gy, 2), (210)

SRecall that the solution of f(2)/8z = cf(z) is given by f(z) = exp(cz)f(0).

"The solution of (2.9) iAs sometimes immediately written as u(t, z) = exp(zD)u(t,0) with D = 7]% 3722
The operator exp(zD) may be interpreted with the help of the Taylor expansion of the exponential
function around 0, i.e., using e* =1+ 4+ x2/2 + - with = zD.

11
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where U(f,z) o u(t, z). The solution of can be verified to be
U(f,2) = exp (5227 f22) U(£,0) (2.11)
= H(f,2)U(/,0), (2.12)

where H(f,z) = exp(2627m2 f22) can be seen as the frequency response of a (z-dependent)
dispersive filter. Applying the inverse Fourier transform to (2.12)) finally leads to the
expression

u(t, z) = h(t,z) ® u(t,0), (2.13)
where h(t,z) = exp (jt?/(2B22)) /v/727B2z o H(f,z) is the impulse response of the
filter. We further have |H(f,z)| = 1. In summary, in the absence of nonlinear effects,

chromatic dispersion manifests itself as a unit-gain all-pass filter.

2.2.2 Absence of Dispersion

Another special case that allows for an exact and explicit solution of the NLSE is when
chromatic dispersion is completely ignored. In this case, i.e., for Sy = 0, (2.8]) becomes

ou(t, z)

9 gve” “F|u(t, 2)[Fult, 2). (2.14)
One may then verify that the solution to is given by [20, eq. (17)]
u(t, z) = u(t, O)e”Le’cf(Z)|“(t’0)|27 (2.15)
where
Legt(2) 2 / o' gy — Lo explT02) exz(_az) (2.16)
0

is the effective nonlinear length, where Log(z) < z with Leg(z) — 2z as @ — 0.

From , we see that, for a given z, the nonlinear effect by itself causes a phase-
shift of the signal that is proportional to the instantaneous power |u(t,0)|?, whereas
the amplitude |u(¢,z)] = |u(t,0)|] remains unchanged. This effect is called self-phase
modulation and an important consequence of its nonlinear nature is that the bandwidth
of u(t, z) may grow during propagation through the fiber.

2.2.3 Split-Step Fourier Method

As was mentioned earlier, the NLSE with v £ 0 and 2 # 0 cannot be solved analytically
and one has to resort to numerical methods in order to obtain the relationship between
the input and output signals. A popular and computationally efficient numerical method
is the SSFM which we describe in the followingﬂ

8There exist several different versions of the SSFM and the one presented here is referred to as asym-
metric and non-iterative. For more details we refer the reader to [9, Sec. 2.4.1].
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repeat M times
[e% L STTTTIT T T T T T T \
62,7, ervLea(A)]; 2

a(t) @ u(t)  o(t) [ h(t. A) }re—by(t)

(a) (b)

Figure 2.3: Symbolic representation of an SMF in (a) and an (approximate) mathematical
model via the SSFM in (b). The notation | -|* stands for the instantaneous power
of the signal arriving at the corresponding multiplication block as indicated by the
dashed, gray line.

Conceptually, we start by discretizing the spatial dimension and subdividing the entire
fiber of length L into small segments of length A, where M = L/A € N is the total
number of segments. For the ith segment, 1 < i < M, the input signal is denoted by
u(t, (i — 1)A) and the corresponding output signal by w(¢,4A). It is assumed that an
approximate solution to obtain u(t,iA) based on u(t, (i — 1)A) is given by first applying

(2.15) and then (2.13)), i.e., for small A, we assert that
u(t,id) ~ h(t,A) ® (u(t, (i — 1)A)eﬂLeH<A>Iu(b(i—lm)lz) . (2.17)

Then, an approximate solution for an entire SMF of length L is given by repeatedly apply-
ing , starting with the first segment ¢ = 1, i.e., with the input signal u(¢,0) = z(t).
The SSFM step in is given in terms of the normalized signal u(t, z) and to incor-
porate the signal attenuation, the output signal u(¢,4A) is multiplied by exp(—aA/2) to
obtain v(t,iA) after each step. The resulting numerical method is shown in terms of a
block diagram in Fig. In the figure, the notation |- |? stands for the instantaneous
power of the signal that arrives at the corresponding multiplication block (e.g., |z(t)|? in
the first segment, |u(t, A)exp(—aA/2)|? in the second, and so on). It has been shown
that the above method converges to the true solution for A — 0 [9, p. 42]. Practical
guidelines on the choice of the segment size are developed in [21].

The name of the method originates from the fact that the nonlinear phase-shift op-
eration and the linear filtering in Fig. [2.3{b) are commonly carried out in the time and
frequency domain, respectively. Therefore, one forward and one inverse Fourier transform
have to be performed per segment. In computer implementations, a sampled version of
x(t) is considered which facilitates the application of the computationally efficient fast
Fourier transform (FFT). Such an implementation is for example provided in [9, App. B].
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Chapter 2 Fiber-Optical Channel Modeling

2.3 Optical Amplification and Noise

The numerical value of the attenuation coefficient « is typically between 0.2 and 0.4
dB/km. Assuming oo = 0.2 dB/km and a transmission distance of L = 2000 km, the input
signal would be attenuated by 400 dB implying that y(t) is practically zero |2, Sec. IX-
B]. It is therefore necessary to amplify the signal along the transmission path, which
invariably introduces noise into the system.

In this section, we briefly discuss two types of amplification, lumped and distributed,
in terms of their effect on the power profile of the signal and the type of noise that
they introduce. Modeling the power profile is important due to the dependency of the
nonlinear effect on the instantaneous signal power. Thus, one cannot simply ignore
attenuation effects and make a link budget analysis as is common for linear channels.
Details about the underlying physical aspects of optical amplification can be found in
standard textbooks on optical data transmission, e.g., [22, Ch. 6]. It should, however,
be pointed out that the optical amplifier noise is in fact the dominant source of noise in
long-haul systems meaning that noise from other sources, for example thermal noise from
electrical components, is negligible in comparison and can therefore be ignored |2}, Sec. IX-
Al

To account for amplification and noise, the NLSE can be extended by inserting
a gain profile g(z) and a complex-valued stochastic process w(t, z), resulting in

2
6"’;’;’ )@ QQ(Z)v(t, 2) — 3%% + oyt )t 2) 2 +w(t.z).  (218)
Equation is referred to as the stochastic nonlinear Schrédinger equation (sNLSE)
[23]. We first discuss the gain profile g(z) and its effect on the power profile of the signal
v(t, z), ignoring all other effects (including w(t, z)). Both amplification types are applied

periodically, in the sense that the entire transmission distance 0 < z < L is split up
into spans of length Lg,, varying between 60 and 120 km, where Ny, = L/Lg, € N is
the total number of spans. In the case of lumped amplification, an optical amplifier,
most often an erbium-doped fiber amplifier (EDFA) |2 Sec. IX-B], is inserted after each
span, where the amplifier gain G matches the power loss of the signal in that span, i.e.,
G = e*Lev. In (2.18), this is accounted for by setting g(z) = aLg, Y% §(z — iLgy).
The corresponding power profile is illustrated in Fig. a). The signal power decreases
exponentially according to the loss coefficient « and is periodically restored to the input
power P after each span. In the case of distributed amplification, it is assumed that the
signal power can be held at an approximately constant level as shown in Fig. b). In
order to achieve this, pump waves are launched into the fiber at Raman pump stations
(RPSs) which are located at the beginning and after each span |2, Sec. IX-B]. The
pump waves co-propagate together with the signal v(¢, z) and the nonlinear nature of
the fiber is exploited to continuously transfer energy from the pump wave to the signal.
In Fig. b)7 the “realistic” power profile (dashed line) is schematically reproduced
from [24} Fig. 3] and assumes two pump waves per span, one propagating co-directionally
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xe idealized
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Figure 2.4: Schematic comparison of the power profile as a function of the transmission dis-
tance z for the two considered amplification types.

and one contra-directionally to the signal. From a modeling perspective, the “idealized”
constant profile (solid line) is assumed for simplicity, where g(z) = « and hence the first
term on the right-hand side of simply disappears.

Next, we discuss the noise that is generated by the optical amplification schemes
through a process called amplified spontaneous emission (ASE). For lumped amplifica-
tion, noise can be thought of as being added to the signal at discrete locations z; £ 1Lgp,
1 < i < Ngp. Thus, if v(¢,z; ) is the output signal after the ith fiber span, the in-
put signal to the next span is given by v(t,z;") = Gu(t, 2] ) + n;(t), where n;(t) is the
additive noise originating from the ith amplifier |19, p. 36]. It has been experimentally
verified that ASE noise can be accurately modeled as circularly symmetric complex Gaus-
sian |2, p. 667] and therefore it remains to specify the autocorrelation function of n;(¢),
where processes from different amplifiers are uncorrelated. The most common assump-
tion is white Gaussian noise, i.e., E[N;(t) N (¢')] = N¢d(t —t")d[i — j], where the noise PSD
per amplifier for EDFAs is computed as Ny = (G — 1)hvgngp |2, eq. (54)]. The meaning
and values of the quantities appearing in this expression are summarized in Table at
the end of this section. We further set Ng = Ns, N, in the case of lumped amplification,
which one might think of as the cumulative PSD at the end of the transmission link
for Ny, amplifiers. Since temporally white noise has infinite instantaneous power, this
assumption would, however, lead to infinite phase rotations due to the nonlinear effect.
In reality, the noise power is of course finite, and the PSD of ASE noise is comparable to
the gain spectrum of the amplifier. For an idealized EDFA that provides flat gain over
a certain frequency range Wy, one would then replace 6(¢t — t') with dy, (t — ') where
dwy () = Wysine(Wyz) [19]. Further limitations of the optical bandwidth can occur
due to the insertion of optical bandpass filters and/or reconfigurable optical add-drop
multiplexers (ROADMs) along the transmission line [2].

Based on the previous description, a block diagram of a continuous-time model describ-
ing a multi-span transmission link with lumped amplification is depicted in Fig. [2.5(a).
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repeat Ngp times (1 <7 < Ngp) repeat Ngp times (1 <7 < Ngp)

! VAl 12 n; ;i (t)

(a) lumped (b) distributed

Figure 2.5: Block diagram for a multi-span link including amplification and noise for (a)
lumped and (b) distributed amplification.

The model consists of the concatenation of the deterministic model for an SMF based on
the SSFM (cf. Fig. [2.3b)) with a multiplicative gain and additive noise for the optical
amplifier. For completeness, we also indicate how the additive noise terms n;(t) can be
related to w(t, z) in @ for lumped amplification. Note that if we neglect all terms on
the right-hand side of (2.18) except w(t, z), we have dv(t, z)/8z = w(t, z) and integrating
this equation leads to

z

u(t,z) = v(t,0) + /w(t,g) dé =v(t,0) +n(t, 2). (2.19)

0

Here, n(t, z) represents the noise that is added to the signal up to a certain distance z.
For lumped amplification, one may set w(t, z) = Zi‘i n;(t)0(z —iLgp) [20, p. 84], so that
n(t,z) = ZlLi/lLS”J n;(t) corresponds the addition of all n;(t) up to distance z (the upper
integral limit in is interpreted as z1).

Next, we discuss distributed amplification, where ASE noise is continuously added
throughout the entire transmission link. A common assumption is that w(¢, z) is a white

Gaussian stochastic process in both time and space, and hence [2, eq. (53)] [19} p. 37]
E[W(t,2)W*(t',2")] = Ngd(t —t")d(z — 2'), (2.20)

where Ng is the distributed PSD per unit length (in [W/km/Hz]) computed as Ng =
ahvs K, where Kp is the photon occupancy factor. Similarly as for lumped amplifica-
tion, we set Ng = LN4q as the PSD at the end of the entire transmission line of length
L. The expressions for Ny for the two amplification types are related via Ng, = L/Lgp
and letting Ly, — 0, and replacing ne, with K. Regarding the temporal correlation
of w(t, z), one can make similar arguments as for the lumped case and replace §(t — t')
with dw, (t — t') for some Wy to account for the bandwidth limitation of physically
realistic noise. Under the assumption that w(¢, z) is uncorrelated in space, n(t,z) in
is a Wiener process, i.e., the integral of a white Gaussian process. As pointed out
in |25, Sec. I1I], the sSNLSE then has to be interpreted via an equivalent integral repre-
sentation (similar to but including all terms of (2.18)), since a Wiener process is
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not differentiable for any z to satisfy dn(t, z)/0z = w(t, z). Here, we will ignore such
issues and rely on some intuition to describe how the Wiener process can be included
in the SSFM to numerically solve the sNLSE with distributed noise. In particular, we
assert that the distributed nature of the noise can be accurately captured by adding a
Gaussian stochastic process in each segment of the SSFM. We denote the process that is
added in the jth segment of the ith fiber span by n; ;(t), where processes from different
segments and spans are uncorrelated. In order for all M Ny, processes n; ;(t) to produce
the same PSD as the Wiener process at the end of the link, i.e., Ng = LNg4, we require
E[N;i(t)N;, ()] = LNg4/(MNg,)8(t —t'). The corresponding block diagram is shown in
Fig. b). Compared to the lumped amplification case in Fig. a), it can be seen
that the attenuation step is removed (also Leg(A) = A, since o = 0) and an additive
noise term is included in each segment.

All relevant quantities that have been described in this section for the two amplification
types are summarized in Table 2.1}

2.3.1 Linear Regime

We briefly discuss the case where v = 0 but now including ASE noise from the optical
amplification schemes. To that end, consider again the two block diagrams in Fig. a)
and (b). If the nonlinear phase rotations are removed, the model indeed reverts to the
linear dispersive AWGN channel (see also Fig. for both amplification types. To
see this, first note that the attenuation and gain factors in Fig. [2.5(a) cancel out due to
the linearity of the model. Further, due to the all-pass nature of the dispersive filters,
one may freely rearrange the additive noise terms because filtered noise remains Gaussian
with the same PSD. Thus, we may assume that all noise processes are added together at
the end of the transmission link and the model in fact corresponds to the linear dispersive
AWGN channel in both cases [20} Sec. 5.1]. We have h(t) = h(t, L) (convolving h(t, A)
M N, times with itself) and n(t) = Zf\;‘{ n;(t) and n(t) = Zi\/:r{ ZJM:1 n;,;(t) for lumped
and distributed amplification, respectively.

2.4 Channel Models in the Appended Papers

2.4.1 Paper A: Zero-Dispersion Fiber, Single Polarization

In Paper A, we consider the special case where dispersive effects are absent, i.e., 8o = 0,
in combination with a distributed amplification scheme. In Section it has already
been shown that it is possible to find an analytical solution for the (deterministic) NLSE if
B2 = 0. When ASE noise from optical amplifiers is also considered, the signal and noise
interact through the fiber nonlinearity and give rise to the phenomenon of nonlinear
phase noise (NLPN). Fortunately, it turns out that an exact analytical characterization
of a discrete-time channel model can still be found. We proceed by first describing how
the discrete-time channel is obtained from the continuous-time channel. Based on this
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Table 2.1: Comparison of amplification types

quantity meaning lumped distributed
g(z) gain profile aLg, MUMMJV 0(z — iLgp) !
w(t, z) added to du(t, z)/0z MUMMM n;(t)0(z — iLgp) white Gaussian
n(t, z) Jo w(t, &) d¢ MW\HFE n;(t) Wiener process

E[W(t,2)W*(t', 2")]

Ned(t — /) SO0 (2 — iLyp)0(2' — iLp) | Nad(t—)3(z — 2')

E[N(t,2)N*(t', 2")] - Ngd(t —t')min(|z/Lsp], 2"/ Lsp)) Nad(t —t') min(z, 2')
No PSD after distance L NgpNg = Ny (e¥Ls» — 1) hung, ILNg = Ny Lepahv K
F, amplifier noise figure typically 4-7 dB -
Nsp spontaneous emission factor F,(1-G7H)71)2 -
Kr photon occupancy factor - ~ 1.13 (at room temp.)
h Planck’s constant 6.626- 10734 [Js]
Vg optical carrier frequency 1.936-10'* [Hz]
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linear modulation repeat K times (1 <1 < K) sampling receiver
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Figure 2.6: Block diagram of the transmission system considered in Paper A. Note that the
absence of a filter front-end at the receiver means that the noise bandwidth is
implicitly assumed to be limited due to inline optical filters.

discrete-time channel, an analytical expression for the conditional PDF is presented,
which is essentially the starting point for the discussions in Paper A.

For the case of distributed amplification and in the absence of dispersion, the sNLSE
(2.18)) reduces to

ov(t, z)
0z

= yyv(t, 2)|u(t, 2)|* + w(t, 2). (2.21)

A block diagram of the corresponding continuous-time channel model (via the SSFM)
is then derived from Fig. b) by simply removing the dispersive filters. A discrete-
time channel model can be obtained by assuming a conventional linear pulse modulation
(cf. Fig. in combination with a sampling receiver. The resulting block diagram
depicting this scenario is shown in Fig. For simplicity, and to make the notation
consistent with Paper A, we have replaced the double enumeration over segments and
spans with a single enumeration over 1 <i < K = M Ng,.

Due to the absence of a filter prior to sampling the received signal y(t) (see Fig.[2.6)), it is
implicitly assumed that the noise bandwidth Wy is somehow limited during propagation,
e.g., through inline optical filters (otherwise the samples yx would have infinite variance)
[26]. Furthermore, due to the absence of a matched filter (matched to the pulse shape),
the pulse p(t) itself rather than the self-similarity function of the pulse R,(¢) needs to
fulfill the Nyquist criterion p(kTs) = d[k], e.g., one may assume sinc pulses.

It is important to point out that the step from continuous-time to discrete-time is not
necessarily optimal, i.e., the samples 35 do not necessarily form a sufficient statistic for
detecting x, based on y(t). Therefore, statements about optimality (e.g., “ML detec-
tion”) are implicitly understood with respect to the discrete-time channel only, not with
respect to the actual waveform channel.

The channel from the transmitted symbols to the received samples is memoryless
and the indices can hence be dropped, i.e.,  and y denote the (complex-valued) channel
input and output, respectively. The system model presented thus far has been extensively
studied in the literature and there exist several different derivations of the conditional
PDF fy|x(y|x), some of which we mention in the following in chronological order.

e Gordon and Mollenauer were the first to recognize that the interaction between
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the signal and inline amplifier noise leads to a phase noise effect [27] and NLPN is
sometimes referred to as the Gordon-Mollenauer effect.

e Their model was made rigorous by Mecozzi in [23] and later in [28].

e In [29], Turitsyn et al. proposed a technique to derive the PDF based on the Martin—
Siggia—Rose formalism from statistical mechanics. It was also recognized that the
capacity of the discrete channel grows unbounded with input power.

e Ho provided an in-depth treatment on the subject of NLPN including a derivation
of the PDF based on characteristic functions |10, Ch. 5], see also [30].

e Most recently, Yousefi and Kschischang have considered the zero-dispersion case in
a series of papers [25026/31}/32]. They provide several additional derivations of the
PDF based on a sum-product and a Fokker—Planck differential equation approach.

The PDF is given as follows. Adopting a polar notation for the channel input and
output including a magnitude normalization with 03 = LNqWyx = NoWy according to
x/oq = roe’® and y/oq = re??, one may write the PDF in the form of a Fourier series

ad

1 _
fe,rjeq, R, (0,7160,70) = o > Crlr, )00, (2.22)
kez

where the Fourier coefficients are given by

2 2 2 2
: Zk T exp _ﬂ Ik .ifrro , (223)
sin z, (tan zx)/zk sin zj,

where I;(-) is the modified Bessel function of the first kind and 2z, = \/jyko3. The
singularities for zp = 0 are understood to be resolved as (sin0)/0 = 1 and (tan0)/0 = 1.

Cr(r,ro) =

Since the PDF is a real function, the symmetry condition Cy(r,r9) = C_(r, 7o) holds.

The zero-dispersion assumption can be motivated by the fact that the dispersion co-
efficient 85 can be physically engineered to take on values over a certain range including
(approximately) zero. However, this scenario is generally assumed to be unrealistic due
to the severe spectral broadening that may occur during propagation. For example, in |2]
the authors state that “the zero dispersion region is generally to be avoided as the ef-
fects of fiber nonlinearity are enhanced dramatically”. Similarly, in [20] it is noted that
“the zero-dispersion regime is not practical for communications”. A discussion about this
topic can also be found in [26, Sec. VIII].

The model can nonetheless be useful since the assumption of zero dispersion is some-
times fulfilled, at least approximately, in dispersion-managed (DM) transmission links.

9The joint density of the magnitude and phase of a complex random variable with density fy (y) can
be obtained via fg r(0,7) = rfy (re’?) |16, Lem. 17.3.5].
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These links consist of the concatenation of a standard SMF with a dispersion compensat-
ing fiber (DCF) whose dispersion coefficient 35 has been engineered to be of opposite sign,
ie., sgn(fy) = —sgn(B2). If the length of the DCF L{, is matched to the length of the
standard fiber Ly, according to the simple linear relation |f2|Ls, = [85|LL,, then the net
effect of the dispersion after distance Ly, + Ly, is zero (neglecting nonlinear effects). To see
this, consider the concatenation of two dispersive filters H(f, Lsp) = exp(y2827m2 f2Lsp)
(cf. (210)) and H'(f,LL,) = exp(s26857>f2L,,) which exactly cancel in this case. If
nonlinear effects are taken into consideration for such DM links, the accuracy of the
zero-dispersion model depends essentially on the symbol rate Ry and lengths L, and
Lgp. In general, the lower the symbol rate and the shorter the fibers, the more accurate

is the model.

2.4.2 Paper B: Zero-Dispersion Fiber, Polarization Multiplexing

In Paper B, we study an extension of the model used in Section [2.4.1] which was recently
derived in [33]. The model takes into account PM transmission, where both polarizations
of the light are used to transmit data. For PM transmission, the SNLSE equation can be
further extended by considering the vector signal v(t, z) = (va(t, 2), vp(t, 2))T, where the
indices indicate the signals in the two polarizations a and bE The resulting equation is
referred to as the Manakov equation including loss and gain terms and amplifier noise
and is given by (34, p. §]

ov(t, z) __a- g(2)
0z 2

2 0Pl 2)

2205+ ol Al )P+ wit ), (224)

v(t, z) —
where w(t, z) = (wa(t, z), wp(t, 2))T are two (independent) stochastic processes describing
the ASE noise generated in both polarizations. The major difference between and
is that models the nonlinearity that is due to the sum of the instantaneous
power in both polarizations ||v(t,2)||? = Pi(t,2)? + Py(t,z)?. We should mention that
(2.18) ignores the fact that amplifier noise is always generated “in two polarizations”, i.e.,
even if we assume one of the two signals in v(t, z) to be zero (as was done in Section,
technically the amplifier noise in that polarization still contributes via through the
fiber nonlinearity.

The derivation presented in [33] makes similar assumptions as in, e.g., |10423}/26,29]
for the continuous-to-discrete time conversion and the subsequent analysis. In particular,
dispersive effects are ignored. This also includes polarization mode dispersion (PMD),
which would cause different group velocities of the signals in polarization a and b because
of natural imperfections and asymmetries of the fiber cross-section area. The simplified
Manakov equation for distributed amplification and neglecting all dispersive effects is

10This nonstandard notation for the polarizations is an attempt to avoid confusion with the transmit
and received signals. However, we acknowledge inconsistent notation with respect to Paper B, where
the polarizations are denoted by z and y.
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Figure 2.7: Block diagram of the transmission system considered in Paper B.

obtained from (2.24) as

ov(t, z)

S = ol ) e )+ wi, 2). (225)

Again, noise is assumed to be bandlimited and a discrete channel is obtained based on
samples that are taken at the receiver at a rate 1/Ts in both polarizations. A block dia-
gram of the assumed transmission system including a graphical representation of
via the SSFM is shown in Fig. It can be seen that there are essentially two SP
transmission systems which are now coupled due to the fiber nonlinearity (and hence
uncoupled when v = 0).

As for the SP case, the discrete-time model is memoryless. Dropping the discrete-time
indices, the joint input and output in both polarizations are denoted by y = (ya,yp)T
and x = (z,,zp)T, respectively. A notation based on polar coordinates with the same
normalization as before is preferable and we therefore set z,/0q = roael?o Joa =
rope’%, Y, /oq = raet%, Yo/0a = rpe?® and collect the corresponding transmitted and
received magnitudes and phases in the vectors g = (roa,70)7, 7 = (ra,7)7, 6o =
(00a, B0b)T, @ = (0a,60,)7. Using this notation, the conditional PDF is given in the form
of a two-dimensional Fourier series as

1 _
fe.ri@,,Ry(0,7(60,70) = ey Z Z Cr(r,70)e*® %), (2.26)
ka€Z k€L

where k = (ka, kp)T and the Fourier coefficients are

2 2 2 2 2 2
Cr(r,70) = =k TaTp €XP Il + Jiroll® I, % TaToa | Ik, — TbTob |
sin 2 (tan zg )/ 2k > \ sin 2 sin g
(2.27)

with 2 = /77(ka + kb)o3. Since the PDF is a real function, the Fourier coefficients
satisfy the symmetry condition Cg(r,r9) = C_g(r,10).
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2.4 Channel Models in the Appended Papers

Visualizing such a four-dimensional PDF can be difficult and we make an attempt by
showing various scatter plots further below and in Paper B. When showing a scatter
plot of the received points in only polarization a, one is effectively showing a particle
representation of the marginal distribution

2m o]
f@a,Ra\@07Ro(oa7Ta|007'f'0) :/ / f@’R‘QO’RO(O,T‘BO,TO) d’/‘bdeb (228)
0 0
1 oo 27
e > > 63“93/ Ck(r,ro)drb/ kel 4y, (2.29)
T keezhver 0 0
1 -
“or Z Ch, (ra, )", (2.30)
ka

where the modified Fourier coefficient for the above marginal PDF is [33]

Oka(Taaro)Z/ Clh,,0)(r,70) drp (2.31)
0
2 2 2 e r2 -z tan z
=2 e (— a0 g (22, oxp (1 - 2k tan 25,)
sin zg (tan zg )/ 2k sin 2p COS 2p
(2.32)

Due to symmetry, the polarizations a and b have the same marginal distributions. Also,
the above distributions are conditioned on a given symbol in both polarizations.

In Paper B, we restrict ourselves to M-PSK with the same power in both polarizations
in order to simplify the detection problem.

2.4.3 Paper C: Non-Dispersion-Managed Links with a Linear Receiver

For Paper C, we consider PM transmission without neglecting dispersive effects that are
due to By (we do, however, neglect PMD). The optical transmission link consists of the
periodic concatenation of a standard SMF and an EDFA (i.e., a lumped amplification
scheme) and there is no optical inline dispersion compensation through DCFs. A block
diagram of this setup is shown in Fig. [2.8] The transmitters (TX) employ a linear pulse
modulation according to x,(t) = >, zarp(t — kT) for polarization a and similarly for
polarization b. The evolution of the PM signal is described by the Manakov equation
(2.24). The received signal in each polarization is processed according to the linear
matched filter receiver shown in Fig. For polarization a, this amounts to passing
ya(t) through an equalizer, a pulse-matched filter, and a sampler, to obtain y,x =
Ya(t) ® h(t,—L) ® p(—t)|,_pp, and similarly for polarization b.

Characterizing the statistical relationship between the transmitted symbols and re-
ceived samples is a challenging task due to the complicated interaction of the signal with
itself, the noise, and the signal in the orthogonal polarization. The crucial difference
with respect to the setup in Paper A and Paper B is the presence of dispersive filtering

23



Chapter 2 Fiber-Optical Channel Modeling
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Figure 2.8: Block diagram of the PM transmission scheme considered in Paper C.

effects throughout the signal propagation. Optical transmission links without any inline
dispersion compensation are referred to as non-DM or uncompensated transmission links.
Recently, there has been a substantial amount of work on these types of transmission
links with the goal to find such a statistical relationship [35/38][]

In [35], it is shown that the discrete-time channel for non-DM links is well modeled by
a circularly symmetric complex additive Gaussian channel including a complex scaling
factor. In the derivation of the model, the assumption is that dispersive effects are
dominant (i.e., the symbol rate is high enough) and that the nonlinear effects are not too
strong. The complex scaling accounts for a constant phase offset as well as the fact that
part of the signal is converted into noise-like interference through the interaction between
the dispersive and nonlinear effects. For simplicity, it is then assumed that the nonlinear
noise is additive, Gaussian, and uncorrelated (both in time and across polarizations).
Thus, the discrete-time channel model in polarization a is given according to

Ya = (T3 + ng + Ra, (2'33)

where ( € C is a complex scaling factor, n, corresponds to the linear ASE noise with
E[N,N] = Ng/Ts, and 72, accounts for nonlinear noise with E[N,N] = nP?3, where the
same transmit power P is assumed for both signals in the two polarizations. 7 (and
hence the nonlinear noise variance) is a function of the link parameters and the symbol
time, i.e., n = f(, B2,7, Lsps Nsp, Ts) [35} eq. (15)], and |¢|* =1 — || P2.

The main difference with respect to a “conventional” discrete-time additive Gaussian
channel is that the signal-to-noise ratio (SNR) (defined as the ratio of the input power
to the additive noise power) is not sufficient to characterize the operating point of the
channel but rather one needs to consider the pair (P, Pagg) or, more practically relevant,
the pair (P, L). This parameter pair in turn leads to both a linear and a nonlinear noise
variance based on which an effective SNR can be computed.

HThese links are also of high practical relevance and according to [36], “the current consensus is that
green-field installations, as well as major overhauling and refurbishing of existing links, should adopt
uncompensated transmission.”
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2.4.4 Comparison

In order to illustrate the previously described models, we show scatter plots of the re-
ceived symbols for different combinations of input power P and transmission distance L
in Fig. 2.9} The transmitted symbols are taken uniformly at random from the 16-QAM
signal constellation. For Fig. a) and (b), we use the same link parameters as in Paper
A. However, when generating the scatter plots shown in Fig. (a), we take into account
the noise in both polarizations. In fact, the gray points in Fig. [2.9((a) correspond to the
received symbols in the unused polarization and hence they represent only the noise. The
scatter plots along diagonals in Fig. [2.9] correspond to the same signal-to-additive-noise
ratio. For Fig. (c)7 we use the same parameters as in Paper C. We caution the reader
that a quantitative comparison between the scatter plots shown for the models in Paper
A/B and C is not fair due to the different link parameters and amplification schemes.
Furthermore, spectral considerations are not reflected in the scatter plots. For example,
operating at high input power and transmission length seems feasible for the memoryless
models, since the phase is predominantly distorted. However, in this transmission regime
severe spectral broadening of the signal is to be expected. Also, for the PM transmission
shown in Fig. [2.9(b), the nonlinear phase rotation in one polarization depends on the
selected point in the other polarization. Therefore, the noise clouds at high input power
begin to separate into three smaller clouds, where each cloud corresponds to a different
magnitude of the transmitted symbol in the orthogonal polarization.

From Fig. (c)7 it can be observed that the Gaussian noise assumption for the nonlin-
ear interference appears to be valid for a wide range of transmission parameters. For the
scatter plot in the lower right corner, is seems that the outer symbols are more affected
by phase noise rather than circularly symmetric Gaussian noise, which can be explained
by the fact that the transmission distance (two fiber spans) is relatively short.

2.5 Further Reading

In this chapter, we have presented an overview of the basic concepts regarding fiber-
optical channel modeling for long-haul data transmission. However, there are many
important issues that have not been addressed, some of which we briefly mention in this
section.

One important topic is the study of wavelength-division multiplexing (WDM) systems,
where many input signals are multiplexed in the frequency domain at different carrier
frequencies and simultaneously transmitted over the fiber. In this case, the underlying
channel model, i.e., the sNLSE together with the corresponding block diagrams via the
SSFM in Fig. 2.5 are still valid. However, nonlinear effects may be more pronounced
due to the additional input power. Furthermore, it was mentioned in the beginning of
this chapter that the matched filter receiver can be seen as a baseline. The develop-
ment of improved receiver structures is an active area of research. For example, digital
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Figure 2.9: Comparison of scatter plots for different combinations of input power P and trans-

mission length L.
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Figure 2.9: (cont.)

backpropagation (DBP) can be employed to improve performance, which is based on the
invertibility of the Schrodinger equation in the absence of noise. In [39|40], the authors
extend DBP via a factor-graph approach showing significant improvements over DBP for
DM links in the nonlinear operating regime. In [411/42], different detection approaches
are compared, with a focus on MLSE. In [19], a new transmission scheme based on the
nonlinear Fourier transform is proposed.

We have also ignored hardware imperfections, e.g., laser phase noise, which might
potentially have a significant impact on the discrete-time channel model that should be

used to design practical modulation and coding schemes.
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CHAPTER 3

Bit-Interleaved Coded Modulation with Low-Density Parity-Check
Codes

In this chapter, we provide a brief introduction on how to reliably transmit data at
high spectral efficiencies. Spectrally efficient communication can be achieved in practice
by combining forward error correction with higher-order signal constellations, which is
commonly referred to as coded modulation (CM). We focus on bit-interleaved coded
modulation (BICM), which is a pragmatic approach to CM and often implemented in
practice, due to its inherent simplicity and flexibility. This chapter should be seen mainly
as supplementary material for the problem statement that is addressed in Paper C, where
it is assumed that the reader is somewhat familiar with coding theory and iterative
decoding techniques.

We start by outlining the main principles behind coded modulation in Section [3:1} In
Section [3.2] we explain the building blocks of a BICM system. In Section [3.3] we review
some basic concepts behind LDPC codes and iterative decoding, focusing on protograph-
based codes. We also briefly cover SC-LDPC codes, which are one of the code classes
considered for the problem statement addressed in Paper C.
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Chapter 3 Bit-Interleaved Coded Modulation with Low-Density Parity-Check Codes

3.1 Introduction

Consider again the discrete memoryless AWGN channel y, = x5 + ny (see Section ,
where xp, € C is the channel input at time instant k, yj is the corresponding channel
output, and ny is the realization of a zero-mean, circularly symmetric complex Gaussian
random variable Nj with E[|Ng|?] = Px. The channel input is assumed to satisfy the
average power constraint E[|X|?] = P and the SNR is given by SNR = P/Pxy. The goal
is to reliably transmit data at high spectral efficiencies over this channel. To do so, one
can formally define an encoder & : {0,1}¢ — C., which maps a vector of d information
bits to a codeword in the code C. € CV. Each codeword is a complex vector of length
N and its components serve as the input for N consecutive uses of the AWGN channel.
Similarly, one can define a decoder D : CV — {0,1}¢, which maps a vector of N channel
outputs back to a sequence of d estimated bits. Assuming equally likely information
bits, the communication rate (measured in [bits/complex symbol]) of such a system is
given by k = logy(|Cc|)/N = d/N. Notice that the communication rate of the discrete
channel (in [bits/complex symbol]) is intimately related to the spectral efficiency of the
continuous-time channel (in [bits/s/Hz]) via the bandwidth of the pulse shape p(t) and
the symbol rate. Shannon proved that all rates up to the channel capacity

C =log,(1+ SNR) (3.1)

are achievable, in the sense that there exists an encoder/decoder pair that can provide
an arbitrarily small error probablitity as long as N — oo [43].

While Shannon’s proof provides communication engineers with an invaluable bench-
mark, the problem of designing practical encoders and decoders that operate close to the
capacity and are implementable with reasonable complexity was not directly addressed
by Shannon. In practical systems, the channel input xj; commonly does not take on
arbitrary complex values, but is constrained to a discrete signal constellation X C C.
Given this premise, it is useful to introduce a soft dividing line between two different
operating regimes for this channel. This dividing line is at k = 2, where xk < 2 is referred
to as the power-limited regime and k > 2 as the bandwidth-limited regime |15]. Roughly
speaking, in the power-limited regime, it is sufficient to consider a binary modulation,
independently in the real and imaginary part (e.g., Gray-labeled quadrature phase-shift
keying (QPSK) according to X = {1+ 3,1 —3,—1+ 3, —1 — 3} and scaled by /P/2), in
combination with binary error correction codes in order to operate close to the capacity.
On the other hand, spectrally efficient communication, i.e., k > 2, requires the use of sig-
nal constellations with cardinality larger than 4, which are referred to as higher—orderﬂ
constellations. By invoking the capacity formula, it follows directly that operating at
high spectral efficiencies £ > 2 requires the signal power to be at least three times the
noise power. In other words, spectrally efficient communication requires a reasonably
high SNR.

1One may also classify complex constellations with 4 points as “higher-order”, as long as they cannot
be viewed as two independent binary modulations per real and complex dimension.
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Figure 3.1: Two examples of higher-order signal constellations with 16 points.

Devising practical encoder/decoder pairs where zj is constrained to a higher-order
signal constellation is commonly referred to as CM design. There exist several differ-
ent approaches, for example trellis coded modulation (TCM) [44], CM with nonbinary
codes [45], multilevel coded modulation (MLCM) [46], or BICM [47]. Our focus is on
BICM in combination with (binary) LDPC codes, which is one of the most popular
capacity-approaching coding schemes for achieving high spectral efficiency, due to its
simplicity and flexibility [48]. BICM is employed as the de-facto standard in many wire-
less communication standards and has also been studied by many authors for fiber-optical
communication systems, see, e.g., [49] or [50] and references therein.

3.2 BICM System Model

The transmitted symbols xj in each time instant k are assumed to take on values from
a discrete signal constellation X C C with |X| points, where |X| is a power of two.
Furthermore, each point in the constellation is assumed to be labeled with a unique
binary string of length m = log, |X'|, where b;(a), 1 < ¢ < m, denotes the ith bit in the
binary string assigned to a € X (counting from left to right). Two examples of signal
constellations with |X'| = 16 points are shown in Fig. and referred to as 16-quadrature
amplitude modulation (QAM) and (8,8)-amplitude phase-shift keying (APSK). For a
detailed definition of APSK constellations, we refer the reader to Paper A.

In the following, we describe the main components of a BICM system. First, consider
the block diagram shown in Fig. a), where the modulo 2 addition of d; ;; and multi-
plication by Jz}k = (—1)% are explained further below and can be ignored for now. At
each time instant, the modulator ® takes m bits b; 5, 1 <4 < m, and maps them to one
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Figure 3.2: The modulator ®, demodulator ®~!, and channel symmetrization technique in
(a). A helpful approximate channel model via parallel symmetric Gaussian LLR
channels in (b).

of the constellation points according to the binary labeling of the signal constellation.
At the receiver, the demodulator ®~! computes soft reliability information about the
transmitted bits in the form of the log-likelihood ratios (LLRs)

A log fYk\sz(ykm) — log Z$€X¢,g fYlek (yk|gg)
fYk‘Bi’k(ka) ECEEXz‘,l fYlek (yk|x)’

Lik (3.2)

where X;,, £ {a € X : bi(a) = u} is the subconstellation where all points have the bit u
at the ¢th position of their binary label. The LLR is a function of the observation, and,
since the observation is a random variable, the LLR is also a random variable.

One way to interpret the setup depicted in Fig.[3.2fa) is as follows. The concatenation
of the modulator ®, the AWGN channel, and demodulator ®~! establishes a binary
interface for the complex-valued AWGN channel. It is useful to imagine transmitting
data over a set of m parallel binary-input continuous-output channels, or simply bit
channels, where one may view the conditional distribution of the LLR fr, 5, ,.(-]"),
1 <4 <'m, as a bit channel. In the following, a bit channel f7,(I[b) is called symmetric if
fri5(10) = fr;5(—1|1) and referred to as an LLR channel if f15(1|0)e! = fr5(l|1). The
terminology here is used to emphasize that, if the second condition is fulfilled, the output
of the channel corresponds to a “true” LLR. This is important because, in practice, low-
complexity approximations of are often considered, and the resulting bit channel
in that case is not necessarily an LLR channel. One can show that fr, g, ,(-|-) is an
LLR channel. However, the channel is not necessarily symmetric in generalﬂ Symmetry
can be enforced by adding modulo 2 independent and identically distributed bits d;
to the bits b; , [51]. After the demodulator, the corresponding LLR is multiplied by
Jz’,k = (=1)%* which implies that the bits d; ;; are known to both the transmitter and
receiver. The resulting bit channel fr, g, ,(-|-) can be shown to be symmetric.

We proceed by quantifying the quality of the m bit channels, where we rely on the
mutual information (MI) as a measure of quality. The MI between the output of a

2The symmetry condition will become important when discussing density evolution and LDPC codes,
where one relies on the all-zero codeword assumption.
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symmetric LLR channel f7,z(I|b) and uniform input bits is given by

I(L;B)=E [1og2 <fL'Jf;(é)B)ﬂ (3.3)
—1-Eo JfrB(LIB) + frig(L|1 — B)
=1k g, (I )| B4
el fop(Lll - B)
=1 sy (14 22 )] (35
=1-E [log, (1 +exp((—1)'"7L))] (3.6)

+oo

_1 _/_ Fu(110) logy(1 + exp(~1)) L. (3.7)

Writing the MI in the form can be useful in order to compute the MI with the help
of Monte Carlo integration.

It turns out that, while the channel quality of the bit channels can be determined quite
efficiently, it is very difficult to find exact analytical expressions for the actual densities
Jr1Bix(+]+). A common approach in the analysis of BICM is to make the simplify-
ing assumption that the densities fr, |5, , (-|-) are approximately Gaussian. An LLR
channel with a Gaussian density is particularly simple, because it can be parametrized
by a single parameter. More precisely, we refer to a bit channel f5(l|b) as a symmetric
Gaussian LLR channel with parameter o2 if L ~ N(0?/2,02) conditioned on B = 0
and L ~ N(—0?/2,0?) conditioned on B = 1. The MI between the output of a sym-
metric Gaussian LLR channel and uniform input bits is denoted by J(co). Under the
Gaussian assumption, a helpful approximation of the setup in Fig. a) is shown in
Fig. [3.2(b), where transmission takes place over m parallel symmetric Gaussian LLR
channels with different parameters o2. In order to find a correspondence between the
LLR channels fz, B, . (]-) and the parameters o2, one may match the MI according to
J(oi) = L;(SNR) < o2 = J~Y(I;(SNR))?, where I;(SNR) = I(Bj x; L; ;) is independent
of k.

While the parallel Gaussian model can be quite useful, one should, however, be aware
of the inaccuracies of this simplified model. In particular, the bit channels are not
independent as suggested in Fig. b) and the true distribution of the LLRs is not
Gaussian. To illustrate the latter inaccuracy, in Fig. we compare the actual densities
with the approximated Gaussian densities for two different SNRs for the first two bit
positions of the 16-QAM constellation shown in Fig. a)E| The densities f7, |5, ,(-10)
are estimated via histograms and shown by the solid lines, whereas the Gaussian densities
are shown by the dashed lines. It can be seen that the actual densities are clearly
non-Gaussian and the accuracy of the Gaussian approximation therefore depends on the
application scenario. For the application in Paper C (predicting the iterative performance

3The third and fourth bit positions lead to identical distributions, due to the fact that 16-QAM with
the shown labeling can be seen as a product constellation of two one-dimensional constellation.
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Figure 3.3: Comparison of the true LLR channels (including channel symmetrization) with the
symmetric Gaussian LLR channels that have the same MI.

parallel Gaussian LLR channels

Figure 3.4: A useful approximate system model for BICM systems.

behavior of LDPC codes), the approximation is quite accurate and at the same time
allows for a major simplification of the analysis, thereby justifying its use.

Consider now the case where we employ a single binary code C C {0,1}" of length n,
and each codeword is transmitted using N = n/m symbols z;. The allocation of the
coded bits to the modulator (i.e., the different bit channels in Fig.[3.2[b)) is determined
by a bit mapper as shown in Fig. [3:4] In Paper C, our goal is to find good bit mappers
for a given code and signal constellation, where we focus on protograph-based LDPC
codes.

As a side note, we remark that the term “bit interleaver” is also commonly used instead
of “bit mapper”. In fact, the modulator ® is sometimes referred to as the (symbol)
mapper (and the demodulator @1 as the demapper), which the reader should be aware
of in order to avoid confusion. However, the terms “bit mapper”, “bit mapping”, or
“mapping” seem to be preferred in the literature when the allocation of the coded bits to
the constellation symbols @ is explicitly studied or optimized, see, e.g., [52,53]. Moreover,
outside the context of BICM, the terms “mapping device” or “channel mapper” are used
when studying parallel channels in combination with binary codes, e.g., in [541[55].
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copy permute

Figure 3.5: Illustration of the protograph lifting procedure for P = (3,3) and M = 6.

3.3 Low-Density Parity-Check Codes

LDPC codes were proposed by Gallager in his PhD thesis [56]. They were conceived
as practically decodable codes, able to “utilize the long block lengths necessary for low
error probability without requiring excessive equipment or computation” [57]. Formally, a
binary LDPC code C of length n is defined as the null space of a sparse parity-check matrix
H = [h; ;] € {0,1}*", ie.,C = {c € {0,1}" : Hc™ = 0}, where n > ¢ and operations are
over the binary field. Assuming that H has full rank ¢, one can invoke the fundamental
theorem of linear algebra to infer that the code has |C| = 2¢ codewords, where d = n — ¢
is the dimension of the code. The code rate is defined as R =d/n =1 —¢/n.

3.3.1 Construction via Protographs

There exist different methods to construct “good” LDPC codes, i.e., good matrices H,
and one popular method is by using protographs [58]. The parity-check matrix of an
LDPC code can be represented by using a bipartite Tanner graph consisting of n variable
nodes (VNs) and ¢ check nodes (CNs), where the ith CN is connected to the jth VN if
hi; = 1. A protograph is also a “small” bipartite graph defined by an adjacency matrix
P=p ;| e NS/ X"/, called the base matrix. Given P, a parity-check matrix H is obtained
by replacing each entry p; ; in P with a random binary M-by-M matrix which contains
pi,; ones in each row and column. This procedure is called lifting and M > max; ; p;
is the lifting factor. Graphically, it amounts to copying the protograph M times and
subsequently permuting edges, in order to obtain the Tanner graph. Parallel edges, i.e.,
for p; ; > 1, are permitted in the protograph and are resolved in the lifting procedure.
The design rate of the code is given by R =1 —¢/n =1 —¢'/n’, where ¢ = ¢ M and
n =n'M. As an example, the lifting procedure for P = (3,3) and M = 6 is illustrated
in Fig.

Designing codes via protographs has several practical advantages, e.g., a quasi-cyclic
code construction is easily applied by constraining the M-by-M matrices to have a cir-
culant structure which in turn allows for hardware-efficient implementation [59, p. 263,
suitable for high-speed optical communications [6]. Moreover, codes of different lengths
can be obtained simply by adjusting the lifting factor.
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Figure 3.6: Illustration of the messages involved in the iterative BP decoding algorithm.

3.3.2 lterative Belief Propagation Decoding

Consider the scenario where each bit in the codeword is transmitted over an LLR channel
JriB(-|+). The goal of the decoder is to recover the transmitted codeword based on the
observation from the channel, which consists of n LLRs. These LLRs can be interpreted
as the initial belief about each coded bit. During the decoding process, the decoder tries
to iteratively improve the accuracy of the belief, by exchanging messages in the form of
extrinsic LLRs between VNs and CNs along the edges of the Tanner graph.

For an excellent and comprehensive description of belief propagation (BP) decoding,
we refer the reader to [59, Ch. 5.3]. Here, we will only briefly review the basic steps of
the decoding algorithm. We use the following convention. Messages arriving at VNs are
denoted by a, while messages emanating from VNs are denoted by b. For CNs, it is the
other way around, i.e., arriving messages are denoted by b, while emanating messages
by a. In an attempt to avoid cluttered notation, only one index is appended to a or b
in order to locally distinguish between messages along different edges for the same node.
The corresponding picture we have in mind is illustrated in Fig. [3.6] By locally we mean
that, for example, the message by emanating from the magnified VN does not correspond
to the message by arriving at the magnified CN. (In fact, from the way the figure is
drawn, the message b; arriving at the magnified CN would emanate from the fourth VN,
counting from the top.)

Consider now an arbitrary VN of degree d,, where the degree of a VN corresponds to
the number of CNs that are connected to it. There are d, + 1 messages arriving at this
VN, where ay, ..., aq, are messages from CNs and aq, corresponds to a channel LLR.
The d, outgoing messages by, ..., bg, are computed according to

bi=Y_a;+aam, (3.8)
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where the summation is over the index set j € {1,...,d,} excluding the index . Similarly,
if we consider an arbitrary CN of degree d., there are d. messages by, ..., bg, arriving
and the outgoing messages are computed according to

a; = 2tanh™! (H tanh(b; /2)) , (3.9)

~1

where the product is over the index set j € {1,...,d.} excluding the index i. Since the
CN operation (3.9)) is central in the analysis of LDPC codes under iterative decoding, it
is very common to rewrite it in terms of the binary boxplus operator defined as

by B by = 2tanh ™! (tanh(b; /2) tanh(by/2)), (3.10)

where the box-addition of an arbitrary number of terms is evaluated by recursively ap-
plying (3.10)), e.g., by B by B b3 = (by B by) B bs. With this convention, one can write the
CN operation more concisely as

a: = HH ;- (3.11)

The decoding process can now be described as follows. Initialize a., for all VNs to the
corresponding channel LLR, and set all other messages to 0. Then, repeat the following
two steps. First, compute outgoing messages for all VNs according to . After that,
compute the outgoing messages for all CNs according to . Stop if either a maximum
number of iterations has been reached, or the proper combination of the hard decisions
on the messages

dy
Z a; + Gch (312)
j=1

for all VNs forms a valid codeword.

3.3.3 Density Evolution

Deunsity evolution (DE) is a powerful tool to analyze the iterative decoding behavior and
performance of LDPC codes |60]. DE mimics the decoding process under a cycle-free
graph assumption by tracking how the densities of the messages evolve with iterations.
DE is commonly used to find so-called decoding thresholds, which can be interpreted as
the capacity for LDPC codes under BP decoding. Similar to the channel capacity, the
threshold divides the channel quality parameter range (for example the parameter o2 of
a symmetric Gaussian LLR channel) into a region where reliable decoding is possible and
where it is not.

The main steps in the DE algorithm can be understood by considering the update equa-
tions for the VNs and CNs (3.9)). If we assume that the involved incoming messages
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are random variables, then they have a certain probability distribution or density (for
example, agp, is distributed according to LLR channel). The main question is, how can
we obtain the densities of the outgoing messages? For the VN update, the answer turns
out to be a simple convolution. In particular, for two independent random variables A
and B with distributions f4(a) and fg(b), their sum C = A+ B is distributed according
to fo(e) = fala) ® fp(b). It is convenient to introduce the short notation a ® b, where
a and b are placeholders for the densities of the random variables A and B [61]. With
this notation, the densities of the outgoing messages, given the densities of the incoming
messages, can be computed according to

b; = @ aj ® ach- (3.13)

~1

For the CN update, it is somewhat more challenging to obtain the densities of the out-
going messages. The most straightforward approach is by using Monte Carlo techniques
and histograms. Consider the case where two messages b; and by with densities b; and
b, are processed according to the boxplus operation a = by H by. In order to obtain
the density a, one can simply generate many independent realizations of the random
variables B; and Bs, perform the boxplus operation, and collect the resulting samples.
These samples can be seen as a particle representation of the density a. This method is
illustrated in Fig. [3.7 where it is shown how two consistent Gaussian densities “evolve”
under the boxplus operation. A density a is called a consistent Gaussian densityﬂ with
parameter o2, if A ~ N (0?/2,02). As a short notation, one may introduce the operator
a = by @ by, referred to as box-convolution [61]. In practice, the box-convolution of two
densities can be implemented by using a look-up table approach [62]. Similar to (3.14)),
the densities of the outgoing CN messages can then be computed according to

a; = [k] b;. (3.14)

For protograph-based codes, DE can be used to analyze the iterative decoding behavior
by tracking one density for each edge in the protograph. This asserts that the messages
exchanged during the decoding process over edges belonging to the same edge-type (de-
fined by one protograph edge) have the same density. Assume that the transmission
takes place over a symmetric LLR channel with a fixed channel quality and we wish to
predict the iterative decoding behavior. Due to the channel symmetry, one may assume
the transmission of the all-zero codeword [59, p. 389]. Start by initializing ag, for all
VNs in the protograph to f7,z(1|0) and set all other densities to (). Then, repeat the
following two steps. First, calculate the outgoing message densities for all VNs in the
protograph according to . After that, calculate the outgoing message densities for
all CNs in the protograph according to . Stop if the error probability associated

4Note that the conditional distribution fr18(10) of a symmetric Gaussian LLR channel corresponds to
a consistent Gaussian density.
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Figure 3.7: Illustration of the box-convolution of two consistent Gaussian densities. The green
dashed line corresponds to the consistent Gaussian approximation obtained via
EXIT functions.

with the density

dy

@ a; ® ach (3.15)

j=1

for each VN is below a certain target bit error probability (successful decoding), where
the error probability associated with a density a is given by

0
pe(a) = /_ Fa(a)da, (3.16)

or a maximum number of iterations is reached (decoding failure). In order to find the
decoding threshold, the above procedure is repeated many times for decreasing channel
quality until the decoding fails, starting from a channel quality where the decoding is
successful.

Approximate Density Evolution via EXIT Functions

Tracking the full densities (or quantized densities in practice) is computationally de-
manding and extrinsic information transfer (EXIT) functions are usually considered to
be a good compromise between computational efficiency and accuracy [63]. Let us as-
sume that the density a fulfills the condition fa(a)e® = fa(—a). Then, the density can
be associated with the MI measure

I(a)=1- /jo fa(a)logy (14 e %) da. (3.17)
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Now, instead of tracking the evolution of densities, one may track the evolution of the MI
measure associated with the densities (which is just a scalar value for each density). Let
us assert that, under the VN operation, this measure evolves approximately according to

I(bi) =~ J (Z J M (1(a5)) + j_l(f(ach))> ; (3.18)

whereas, under the CN operation it evolves approximately according to
Ia)~1-J (Z J —I(bj))>, (3.19)

where J(z) = J(v/z). These two equations can be motivated as follows. Eq. is ex-
act under the assumption that all incoming densities aj, ..., aq,, and ac, are consistent
Gaussian densities. To see this, note that the convolution of two consistent Gaussian
densities with parameters 0? and o3 is another consistent Gaussian density with param-
eter (02 + 03)/2. Furthermore, if a is a consistent Gaussian density with parameter o2,
the operation J~*(I(a)) simply returns ¢2. Without going into details, can be
heuristically motivated by a duality property that holds for the binary erasure channel
(BEC) [59, p. 415]. It is important to point out that it is not exact, even if all
incoming densities are consistent Gaussians, but it turns out to be surprisingly accurate
nonetheless. For example, the green dashed lines in Fig. have been obtained using
, where the resulting MI measure is plotted in the form of the associated consistent
Gaussian density.

3.3.4 Spatially Coupled LDPC Codes

Spatial coupling of regularﬂ LDPC codes has emerged as a powerful technique to construct
capacity-achieving codes for a large class of channels using iterative BP decoding [13}/64].
The main idea is to make several copies of the Tanner graph that defines the regular base
code, arrange the copies next to each other, and then interconnect neighboring graphs in
a particular way. The key to the outstanding performance of codes constructed in such
a way is a boundary effect due to slight irregularities at the two ends of the resulting
Tanner graph.

In general, SC-LDPC codes have parity-check matrices with a band-diagonal structure,
see, e.g., [64] for a formal definition. Here, we briefly introduce their construction via pro-
tographs [65], [66, Sec. II-B]. The base matrix Py} of a (J, K) regular, protograph-based
SC-LDPC code with termination length 7" can be constructed by specifying matrices
P;, 0 < i < mg + 1 of dimension J' by K’, where ms is referred to as the memory.
The matrices are such that P = ) . P; has column weight J and row weight K for all
columns and rows, respectively. Given T and the matrices P;, the base matrix Pg

5An LDPC codes is called regular if all VNs have degree dy and all CNs have degree d.
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Figure 3.8: Illustration of the base matrix Pr of a (J, K) regular, protograph-based SC-LDPC
code.

is constructed as shown in Fig. @ From the dimensions of Pz one can infer a de-
sign rate of R(T) = 1 — (T + mg)J'/(TK'). As T grows large, the rate approaches
R(xx)=1-J /K"

Before continuing, it is insightful to recall the following statement from [67], where the
design of irregular LDPC codes is studied. (VNs are referred to as message nodes.)

“l...] we offer some intuition as to why irregular graphs prove useful. [...]
Message nodes with high degree tend to their correct value quickly. These
nodes then provide good information to the check nodes, which subsequently
provide better information to lower degree message nodes. Irregular graph
constructions thus lead to a wave effect, where high degree message nodes tend
to get corrected first, and then message nodes with slightly smaller degree,
and so on down the line.” [emphasis added]

For SC-LDPC codes, one can give a similar heuristic explanation for their outstanding
performance as follows (see |64] for a detailed explanation). By inspecting the structure
of the base matrix in Fig. 3.8 one may verify that the CN degrees corresponding to
the first and last couple of rows is lower than the CN degrees corresponding to the
rows in between. The lower degree CNs lead to a locally better decoding capability
which helps decoding neighboring VNs. This local boundary effect turns out to initiate
a wave-like behavior and can have a global effect on the decoding capability of the
entire code with increasing number of decoding iterations. To illustrate this behavior,
in Fig. we show the predicted bit error rates p. via (approximate) DE for the coded
bits corresponding to the jth column of the SC-LDPC protograph Py} with component
matrices P; = Py = P35 = (1,1) and 7' = 100. We assume transmission over a symmetric
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Figure 3.9: Illustration of the wave-like decoding behavior of SC-LDPC codes.

Gaussian LLR channel with parameter 02 = 4. In the figure, [ denotes the iteration
number. It can be observed that the error probability of the VNs at the two ends of the
graph converges to zero after 15 iterations. Due to the spatial coupling, this boundary
effect propagates inwards all the way to the center of the protograph in a wave-like
fashion.

An important reason for the tremendous interest in spatially coupled codes is their
universality. While irregular LDPC codes have been optimized for various communication
channels, the degree distribution pairs that achieve the best performance usually vary
from channel to channel [68]. In contrast, SC-LDPC codes derived from simple regular
codes have been shown to universally achieve capacity for a variety of channels. However,
there are also many open research problems concerning the practical implementation of
SC-LDPC, see [69] for a recent overview. For example, the price to pay for the wave-like
decoding behavior is a rate loss with respect to regular, uncoupled codes that are defined
by the protograph B = )", B;.
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CHAPTER 4

Conclusions and Future Work

In this chapter, we summarize the main conclusions from the appended papers and outline
some potentially interesting ideas for future work.

Paper A

In Paper A, we study the design of APSK signal constellations under the assumption of
a memoryless fiber-optical channel model with NLPN as the main system impairment.
Optimized APSK constellations can offer significant performance advantages over con-
ventional QAM constellations for the assumed channel model and detection scheme. It
is also shown that the optimization of the signal constellation in the presence of severe
nonlinear distortions can lead to somewhat counterintuitive results in the form of sac-
rificial points or sacrificial rings. As outlined in [70], these effects become particularly
important when studying the channel capacity for such channels. Furthermore, when
the bit error probability (BEP) is taken as a performance measure, it is important to
consider the joint design of both the constellation and the labeling. In particular, an
optimized constellation for symbol error probability (SEP) with an optimal labeling does
not necessarily provide the best BEP. In fact, more structured constellations such as
the considered rectangular APSK constellations may give better performance due to the
possibility of Gray-like labeling methods.

An interesting direction for future work would be to replace the relevant measures for
uncoded transmission (SEP and BEP) with the relevant measures for coded transmission
(MI and generalized mutual information (GMI)). It may also be rewarding to find an
accurate approximate characterizations of the channel PDF for the considered channel
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model which may simplify the optimization procedure in this case.

Paper B

In Paper B, we study the design of a low-complexity detector for a memoryless fiber-
optical channel assuming PM transmission. The detector uses a phase compensation
scheme based on the received signal amplitudes in both polarizations, followed by a
subsequent threshold detection. The complexity can be significantly reduced compared
to a four-dimensional ML detector, albeit at some performance loss.

An important conclusion for the corresponding detector for SP transmission is that a
nonlinear phase compensation scheme and subsequent threshold detection is equivalent
to the ML detector. Unfortunately, a similar conclusion does not hold for the proposed
detector for PM signals and it would be interesting to study the design of an improved
detector that has this property (or show that this is fundamentally not possible). Fur-
thermore, the detector in Paper B is limited to PM-M-PSK constellations and similar
detection schemes for constellations with multiple amplitude levels could be investigated.

Paper C

In Paper C, we study a coded transmission system that operates over a fiber-optical link
without inline dispersion compensation. Assuming a linear coherent receiver, the classical
AWGN channel with a modified SNR expression is used as a design channel. We propose
a method to optimize the bit mapper that determines the allocation of the coded bits
from the FEC encoder to the labeling bits of the signal constellation that is applicable to
any protograph-based LDPC code. Protograph-based codes are particularly interesting
for fiber-optical systems because they allow for an efficient hardware implementation.
We also extend the technique to SC-LDPC codes using a windowed decoder. The results
show that by using an optimized bit mapper, the transmission reach can be extended by
up to 8%, with almost no added system complexity.

An interesting direction for future work could be to study the bit mapper optimization
assuming hard-decision decoding. For example, Smith and Kschischang have proposed
such a setup in [49] using staircase codes for BICM with an additional shaping unit. An
appropriate model in this case would be to study parallel binary symmetric channels with
different crossover probabilities. To the best of our knowledge, bit mapper optimization
for such a scenario has not yet been considered in the literature.

44



Bibliography

[1] K. F. Rauscher, “ROGUCCI study final report,” IEEE Communications Society,
Tech. Rep., 2010.

[2] R.-J. Essiambre, G. Kramer, P. J. Winzer, G. J. Foschini, and B. Goebel, “Capacity
limits of optical fiber networks,” J. Lightw. Technol., vol. 28, no. 4, pp. 662-701,
Feb. 2010.

[3] E. Agrell and M. Karlsson, “Satellite constellations: Towards the nonlinear channel
capacity,” in Proc. IEEE Photon. Conf., Burlingame, CA, Sep. 2012.

[4] A.D. Ellis, J. Zhao, and D. Cotter, “Approaching the non-linear Shannon limit,” J.
Lightw. Technol., vol. 28, no. 4, pp. 423-433, Feb. 2010.

[5] B.P.Smith and F. R. Kschischang, “Future prospects for FEC in fiber-optic commu-
nications,” IEEFE J. Sel. Topics. Quantum FElectron., vol. 16, no. 5, pp. 1245-1257,
Oct. 2010.

[6] L. Schmalen, A. J. de Lind van Wijngaarden, and S. ten Brink, “Forward error
correction in optical core and optical access networks,” Bell Labs Tech. J, vol. 18,
no. 3, pp. 39-66, Mar. 2013.

[7] L. Beygi, E. Agrell, J. M. Kahn, and M. Karlsson, “Coded modulation for fiber-optic
networks,” IEEE Signal Processing Mag., vol. 31, no. 2, pp. 93-103, Mar. 2014.

[8] 1. Djordjevic, W. Ryan, and B. Vasic, Coding for Optical Channels. Springer, 2010.
[9] G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. Academic Press, 2006.

[10] K.-P. Ho, Phase-modulated Optical Communication Systems. Springer, 2005.

45



Bibliography

[11]

[12]

46

L. Hanzo, W. Webb, and T. Keller, Single- and Multi-carrier Quadrature Amplitude
Modulation: Principles and Applications for Personal Communications, WLANs
and Broadcasting. Wiley, 2000.

A. J. Felstrom and K. S. Zigangirov, “Time-varying periodic convolutional codes
with low-density parity-check matrix,” IEEE Trans. Inf. Theory, vol. 45, no. 6, pp.
2181-2191, Sep. 1999.

M. Lentmaier, A. Sridharan, K. S. Zigangirov, and D. J. Costello, Jr., “Terminated
LDPC convolutional codes with thresholds close to capacity,” in Proc. IEEE Int.
Symp. Information Theory (ISIT), Adelaide, Australia, Sep. 2005.

S. Kudekar, T. Richardson, and R. Urbanke, “Spatially coupled ensembles univer-
sally achieve capacity under belief propagation,” in Proc. IEEE Int. Symp. Infor-
mation Theory (ISIT), Cambridge, MA, Jul. 2012.

G. D. Forney, Jr. and G. Ungerboeck, “Modulation and coding for linear Gaussian
channels,” IEEE Trans. Inf. Theory, vol. 44, no. 6, pp. 23842415, Oct. 1998.

A. Lapidoth, A Foundation in Digital Communication. Cambridge University Press,
2009.

G. D. Forney, Jr., “Maximum-likelihood sequence estimation of digital sequences in
the presence of intersymbol interference,” IEEE Trans. Inf. Theory, vol. 18, no. 3,
pp- 363-378, May 1972.

G. Ungerboeck, “Adaptive maximum-likelihood receiver for carrier-modulated data-
transmission systems,” IEFEE Trans. Commun., vol. 22, no. 5, pp. 624-636, May
1974.

M. I. Yousefi, “Information transmission using the nonlinear Fourier transform,”
Ph.D. dissertation, University of Toronto, 2013.

M. Secondini and E. Forestieri, “The nonlinear Schrédinger equation in fiber-optic
systems,” Riv. Mat. Univ. Parma, vol. 8, pp. 69-98, Sep. 2008.

O. V. Sinkin, R. Holzlohner, J. Zweck, and C. R. Menyuk, “Optimization of the
split-step Fourier method in modeling optical-fiber communications systems,” J.
Lightw. Technol., vol. 21, no. 1, pp. 61-68, Jan. 2003.

G. P. Agrawal, Fiber-optic Communication Systems, 4th ed. Wiley-Interscience,
2010.

A. Mecozzi, “Limits to long-haul coherent transmission set by the Kerr nonlinearity
and noise of the in-line amplifiers,” J. Lightw. Technol., vol. 12, no. 11, pp. 1993—
2000, Nov. 1994.



Bibliography

[24]

[25]

[30]

[31]

[32]

[33]

[34]

[35]

T. J. Ellingham, J. D. Ania-Castanén, R. Ibbotson, X. Chen, L. Zhang, and S. K.
Turitsyn, “Quasi-lossless optical links for broad-band transmission and data pro-
cessing,” IEEE Photon. Technol. Lett., vol. 18, pp. 268-270, Jan. 2006.

M. I. Yousefi and F. R. Kschischang, “A Fokker-Planck differential equation ap-
proach for the zero-dispersion optical fiber channel,” in Proc. IEEE Int. Symp. In-
formation Theory (ISIT), Austin, TX, Jun. 2010.

——, “On the per-sample capacity of nondispersive optical fibers,” IEEE Trans. Inf.
Theory, vol. 57, no. 11, pp. 7522-7541, Nov. 2011.

J. P. Gordon and L. F. Mollenauer, “Phase noise in photonic communications sys-
tems using linear amplifiers,” Opt. Lett., vol. 15, no. 23, pp. 1351-1353, Dec. 1990.

A. Mecozzi, “Probability density functions of the nonlinear phase noise,” Opt. Lett.,
vol. 29, no. 7, pp. 673675, Apr. 2004.

K. S. Turitsyn, S. A. Derevyanko, I. V. Yurkevich, and S. K. Turitsyn, “Information
capacity of optical fiber channels with zero average dispersion,” Phys. Rev. Lett.,
vol. 91, no. 20, p. 203901, Nov. 2003.

K.-P. Ho, “Probability density of nonlinear phase noise,” J. Opt. Soc. Am. B, vol. 20,
no. 9, pp. 1875-1879, Sep. 2003.

M. I. Yousefi and F. R. Kschischang, “A probabilistic model for optical fiber channels
with zero dispersion,” in Proc. 25th Biennial Symp. on Communications, Kingston,

ON, May 2010.

——, “The per-sample capacity of zero-dispersion optical fibers,” in Proc. 12th
Canadian Workshop on Information Theory, Kelowna, BC, May 2011.

L. Beygi, E. Agrell, M. Karlsson, and P. Johannisson, “Signal statistics in fiber-
optical channels with polarization multiplexing and self-phase modulation,” J.
Lightw. Technol., vol. 29, no. 16, pp. 2379-2386, Aug. 2011.

L. Beygi, “Channel-aware multilevel coded modulation for coherent fiber-optic com-
munications,” Ph.D. dissertation, Chalmers University of Technology, 2013.

L. Beygi, E. Agrell, P. Johannisson, M. Karlsson, and H. Wymeersch, “A discrete-
time model for uncompensated single-channel fiber-optical links,” IEEE Trans.
Commaun., vol. 60, no. 11, pp. 3440-3450, Nov. 2012.

A. Carena, V. Curri, G. Bosco, P. Poggiolini, and F. Forghieri, “Modeling of the
impact of nonlinear propagation effects in uncompensated optical coherent trans-
mission links,” J. Lightw. Technol., vol. 30, no. 10, pp. 1524-1539, May 2012.

47



Bibliography

[37]

[38]

[40]

[41]

48

P. Poggiolini, A. Carena, V. Curri, G. Bosco, and F. Forghieri, “Analytical mod-
eling of nonlinear propagation in uncompensated optical transmission links,” IEEE
Photon. Technol. Lett., vol. 23, no. 11, pp. 742-744, Jun. 2011.

P. Johannisson, “Analytical modeling of nonlinear propagation in a strongly
dispersive optical communication system,” arXiv:1205.2193v2 [physics.optics], May
2012. [Online]. Available: http://arxiv.org/abs/1205.2193

N. V. Irukulapati, H. Wymeersch, P. Johannisson, and E. Agrell, “Extending back-
propagation to account for noise,” in Proc. European Conf. Optical Communication
(ECOC), London, UK, 2013, p. We.3.C.4.

N. V. Irukulapati, “On nonlinear compensation techniques for coherent fiber-optical
channel,” Licentiate Thesis, Chalmers University of Technology, 2014.

D. Marsella, M. Secondini, E. Forestieri, R. Magri, G. Moruzzi, and I. Pisa, “Detec-
tion strategies in the presence of fiber nonlinear effects,” in Proc. European Conf.
Optical Commaunication (ECOC), Amsterdam, NL, 2012, p. P4.06.

D. Marsella, M. Secondini, and E. Forestieri, “Maximum likelihood sequence detec-
tion for mitigating nonlinear effects,” J. Lightw. Technol., vol. 32, no. 5, pp. 908-916,
Mar. 2014.

C. E. Shannon, “Communication in the presence of noise,” Proc. IRFE, vol. 37, no. 1,
pp- 1021, 1949.

G. Ungerboeck, “Channel coding with multilevel/phase signals,” IEEE Trans. Inf.
Theory, vol. 28, no. 1, pp. 55-67, Jan. 1982.

A. Bennatan and D. Burshtein, “Design and analysis of nonbinary ldpc codes for
arbitrary discrete-memoryless channels,” IEFE Trans. Inf. Theory, vol. 52, no. 2,
pp. 549-583, Feb. 2006.

U. Wachsmann, R. Fischer, and J. Huber, “Multilevel codes: theoretical concepts
and practical design rules,” IEEE Trans. Inf. Theory, vol. 45, no. 5, pp. 1361-1391,
Jul. 1999.

G. Caire, G. Taricco, and E. Biglieri, “Bit-interleaved coded modulation,” IEEE
Trans. Inf. Theory, vol. 44, no. 3, pp. 927-946, May 1998.

D. J. Costello and G. D. Forney, Jr., “Channel coding: The road to channel capac-
ity,” Proc. IEEFE, vol. 95, no. 6, pp. 1150-1177, Jun. 2007.

B. Smith and F. R. Kschischang, “A pragmatic coded modulation scheme for high-
spectral-efficiency fiber-optic communications,” J. Lightw. Technol., vol. 30, no. 13,
pp- 2047-2053, Jul. 2012.


http://arxiv.org/abs/1205.2193

Bibliography

[50]

[51]

[52]

[61]

[62]

I. B. Djordjevic, M. Arabaci, and L. L. Minkov, “Next generation FEC for high-
capacity communication in optical transport networks,” J. Lightw. Technol., vol. 27,
no. 16, pp. 3518-3530, Aug. 2009.

J. Hou, P. H. Siegel, L. B. Milstein, and H. D. Pfister, “Capacity-approaching
bandwidth-efficient coded modulation schemes based on low-density parity-check
codes,” IEEFE Trans. Inf. Theory, vol. 49, no. 9, pp. 2141-2155, Sep. 2003.

G. Richter, A. Hof, and M. Bossert, “On the mapping of low-density parity-check
codes for bit-interleaved coded modulation,” in Proc. IEEE Int. Symp. Information
Theory (ISIT), Nice, Italy, Jun. 2007.

T. Cheng, K. Peng, J. Song, and K. Yan, “EXIT-aided bit mapping design for LDPC
coded modulation with APSK constellations,” IEEE Commun. Lett., vol. 16, no. 6,
pp. 777-780, Jun. 2012.

R. Liu, P. Spasojevic, and E. Soljanin, “Reliable channel regions for good binary
codes transmitted over parallel channels,” IEEE Trans. Inf. Theory, vol. 52, no. 4,
pp- 1405-1424, Apr. 2006.

I. Sason and I. Goldenberg, “Coding for parallel channels: Gallager bounds and
applications to turbo-like codes,” IEEE Trans. Inf. Theory, vol. 53, no. 7, pp. 2394—
2428, Jul. 2007.

R. Gallager, “Low-density parity-check codes,” Ph.D. dissertation, Massachusetts
Institute of Technology, Cambridge, 1963.

R. G. Gallager, “Low-density parity-check codes,” IRE Trans. Inf. Theory, vol. 8,
no. 1, pp. 21-28, Jan. 1962.

J. Thorpe, “Low-density parity-check (LDPC) codes constructed from protographs,”
IPN Progress Report 42-154, JPL, 2005.

W. Ryan and S. Lin, Channel Codes Classical and Modern. Cambridge University
Press, 2009.

T. Richardson and R. Urbanke, “The capacity of low-density parity-check codes
under message-passing decoding,” IFEFE Trans. Inf. Theory, vol. 47, no. 2, pp. 599-
618, Feb. 2001.

T. T. Richardson and R. Urbanke, Modern Coding Theory. Cambridge University
Press, 2008.

Sae-Young Chung, G. D. Forney, T. J. Richardson, and R. Urbanke, “On the design
of low-density parity-check codes within 0.0045 db of the Shannon limit,” IEFE
Commun. Lett., vol. 5, no. 2, pp. 5860, Feb. 2001.

49



Bibliography

[63]

[64]

[65]

[70]

50

A. Ashikhmin, G. Kramer, and S. ten Brink, “Extrinsic information transfer func-
tions: model and erasure channel properties,” IEEE Trans. Inf. Theory, vol. 50,
no. 11, pp. 26572673, Nov. 2004.

S. Kudekar, T. Richardson, and R. Urbanke, “Threshold saturation via spatial cou-
pling: Why convolutional LDPC ensembles perform so well over the BEC,” IEEFE
Trans. Inf. Theory, vol. 57, no. 2, pp. 803-834, Feb. 2011.

D. G. M. Mitchell, M. Lentmaier, and D. J. Costello, Jr., “AWGN channel analysis of
terminated LDPC convolutional codes,” Proc. Information Theory and Applications
Workshop (ITA), 2011.

A. R. Iyengar, M. Papaleo, P. H. Siegel, J. K. Wolf, A. Vanelli-coralli, and G. E.
Corazza, “Windowed decoding of protograph-based LDPC convolutional codes over
erasure channels,” IEEE Trans. Inf. Theory, vol. 58, no. 4, pp. 2303-2320, Apr.
2012.

M. Luby, M. Mitzenmacher, A. Shokrollah, and D. Spielman, “Analysis of low den-
sity codes and improved designs using irregular graphs,” in Proc. 30th Annual ACM
Symp. on Theory of Computing (STOC), New York, USA, 1998.

T. J. Richardson, M. A. Shokrollahi, and R. L. Urbanke, “Design of capacity-
approaching irregular low-density parity-check codes,” IEEE Trans. Inf. Theory,
vol. 47, no. 2, pp. 619-637, Feb. 2001.

D. J. Costello, L. Dolecek, T. E. Fuja, J. Kliewer, D. G. M. Mitchell,
and R. Smarandache, “Spatially coupled sparse codes on graphs - theory
and practice,” arXiw:1810.3724v1 [cs.IT], Oct. 2013. [Online]. Available: http:
//arxiv.org/abs/1310.3724

E. Agrell, “On monotonic capacity—cost functions,” arXiv:1209.2820v1 [cs.IT], Sep.
2012. [Online]. Available: http://arxiv.org/abs/1209.2820


http://arxiv.org/abs/1310.3724
http://arxiv.org/abs/1310.3724
http://arxiv.org/abs/1209.2820

