
Approaching Miscorrection-Free Performance of Product Codes with
Anchor Decoding

Downloaded from: https://research.chalmers.se, 2019-05-11 12:19 UTC

Citation for the original published paper (version of record):
Häger, C., Pfister, H. (2018)
Approaching Miscorrection-Free Performance of Product Codes with Anchor Decoding
IEEE Transactions on Communications, 66(7): 2797-2808
http://dx.doi.org/10.1109/TCOMM.2018.2816073

N.B. When citing this work, cite the original published paper.

©2018 IEEE. Personal use of this material is permitted.
However, permission to reprint/republish this material for advertising or promotional purposes
or for creating new collective works for resale or redistribution to servers or lists, or to
reuse any copyrighted component of this work in other works must be obtained from
the IEEE.

This document was downloaded from http://research.chalmers.se, where it is available in accordance with the IEEE PSPB
Operations Manual, amended 19 Nov. 2010, Sec, 8.1.9. (http://www.ieee.org/documents/opsmanual.pdf).

(article starts on next page)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Chalmers Research

https://core.ac.uk/display/198055169?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1

Approaching Miscorrection-Free Performance of
Product Codes with Anchor Decoding

Christian Häger, Member, IEEE and Henry D. Pfister, Senior Member, IEEE

Abstract—Product codes (PCs) protect a two-dimensional ar-
ray of bits using short component codes. Assuming transmission
over the binary symmetric channel, the decoding is commonly
performed by iteratively applying bounded-distance decoding to
the component codes. For this coding scheme, undetected errors
in the component decoding—also known as miscorrections—
significantly degrade the performance. In this paper, we propose
a novel iterative decoding algorithm for PCs which can detect
and avoid most miscorrections. The algorithm can also be used to
decode many recently proposed classes of generalized PCs such
as staircase, braided, and half-product codes. Depending on the
component code parameters, our algorithm significantly outper-
forms the conventional iterative decoding method. As an exam-
ple, for double-error-correcting Bose–Chaudhuri–Hocquenghem
component codes, the net coding gain can be increased by up to
0.4 dB. Moreover, the error floor can be lowered by orders of
magnitude, up to the point where the decoder performs virtually
identical to a genie-aided decoder that avoids all miscorrections.
We also discuss post-processing techniques that can be used to
reduce the error floor even further.

Index Terms—Braided codes, fiber-optic communication, hard-
decision decoding, iterative bounded-distance decoding, optical
communication systems, product codes, staircase codes.

I. INTRODUCTION

A product code (PC) is the set of all n × n arrays where
each row and column in the array is a codeword in some linear
component code C of length n [1]. Recently, a wide variety of
related code constructions have been proposed, e.g., braided
codes [2], half-product codes [3], [4], continuously-interleaved
codes [5], half-braided codes [4], [6], and staircase codes [7].
All of these code classes have Tanner graph representations
that consist exclusively of degree-2 variable nodes, i.e., each
bit is protected by two component codes. We use the term
generalized product codes (GPCs) to refer to such codes.

The component codes of a GPC typically correspond
to Reed–Solomon or Bose–Chaudhuri–Hocquenghem (BCH)
codes, which can be efficiently decoded via algebraic bounded-
distance decoding (BDD). The overall GPC is then decoded

Parts of this paper have been presented at the 2017 European Conference
on Optical Communication (ECOC), Gothenburg, Sweden.

This work is part of a project that has received funding from the European
Union’s Horizon 2020 research and innovation programme under the Marie
Skłodowska-Curie grant agreement No. 749798. The work was also supported
in part by the National Science Foundation (NSF) under Grant No. 1609327.
Any opinions, findings, recommendations, and conclusions expressed in this
material are those of the authors and do not necessarily reflect the views of
these sponsors.

C. Häger is with the Department of Electrical Engineering, Chalmers
University of Technology, SE-41296 Gothenburg, Sweden and the Department
of Electrical and Computer Engineering, Duke University, Durham, NC
27708, USA (e-mail: christian.haeger@chalmers.se). H. D. Pfister is with
the Department of Electrical and Computer Engineering, Duke University,
Durham, NC 27708, USA (e-mail: henry.pfister@duke.edu).

by iteratively applying BDD to the component codes. This
iterative coding scheme dates back to 1968 [8] and has been
shown to offer excellent performance in practice. In particular
for the binary symmetric channel (BSC) at high code rates,
iterative decoding of GPCs with binary BCH component codes
can achieve performance close to the channel capacity [7],
[9], [10]. Moreover, the decoder data flow can be orders of
magnitude lower than that of comparable low-density parity-
check (LDPC) codes under message-passing decoding [7].
This facilitates decoder throughputs of tens or even hundreds
of Gigabits per second. Indeed, GPCs are popular choices for
high-bit-rate applications with limited soft information such
as regional/metro optical transport networks [3]–[7], [9], [11]–
[16]. Besides data transmission, GPCs are also used in storage
applications [17]–[21].

PCs and GPCs can also be decoded using iterative soft-
decision decoding (SDD), see, e.g., [22], [23]. In this case,
however, an efficient hardware implementation at high data
rates may be an issue due to the increased complexity of
the component decoding. Moreover, the decoder data flow
reduction shown in [7] is based on a syndrome compression
effect which only occurs for BDD and not SDD. Indeed, we
are unaware of any studies that show a favorable performance–
complexity trade-off for PCs or GPCs under SDD compared
to other code classes, e.g., LDPC codes. Therefore, we focus
on iterative BDD in this paper.

For GPCs over the BSC, undetected errors in the compo-
nent decoding—also known as miscorrections—significantly
degrade the performance of iterative decoding. In particular,
let r = c + n, where c,n ∈ {0, 1}n denote a component
codeword and a random error vector, respectively. For a t-
error-correcting component code C, BDD yields the correct
codeword c ∈ C if and only if dH(r, c) = wH(n) ≤ t, where
dH and wH denote Hamming distance and weight, respectively.
On the other hand, if wH(n) > t, the decoding either fails or
there exists another codeword c′ ∈ C such that dH(r, c′) ≤ t.
In the latter case, we say that a miscorrection occurs, in
the sense that BDD is technically successful but the decoded
codeword c′ is not the correct one. Miscorrections are highly
undesirable because they introduce additional errors (on top of
channel errors) into the iterative decoding process. Moreover,
from a theoretical perspective, miscorrections are notoriously
difficult to analyze in an iterative decoding scheme [4], [7],
[14], [24]–[28]. In fact, despite the widespread use in practice
and to the best of our knowledge, no rigorous analytical results
exist characterizing the finite-length performance of GPCs
under iterative BDD over the BSC.

For specific code proposals in practical systems, the mis-

2

correction problem is typically addressed by appropriately
modifying the component code that is used to construct the
GPC, see, e.g., [4], [7], [9], [16]. In particular, for binary t-
error-correcting BCH codes, it is known that miscorrections
occur approximately with probability 1/t! [4], [29]. In order
to reduce this probability, one may employ a subcode of the
original code [4], [7], extend the code [16], and/or apply code
shortening [7], [16]. On the other hand, such modifications
invariably lead to a code rate reduction. Moreover, even with
a modified component code, miscorrections can still have a
significant effect on the performance.

The main contribution in this paper is a novel iterative
decoding algorithm for GPCs which can detect and avoid
most miscorrections. The algorithm relies on so-called anchor
codewords to resolve inconsistencies across component codes.
This can lead to significant performance improvements in the
waterfall and error-floor regimes, in particular when t is small,
i.e., t ∈ {2, 3}. We also discuss the application of post-
processing (PP) techniques [9], [21], [28], [30]–[32], which
can be combined with the proposed algorithm to reduce the
error floor even further. On the other hand, the practical use-
fulness of the proposed algorithm diminishes in cases where
miscorrections do not significantly affect the performance, e.g.,
for doubly-extended BCH component codes with t ≥ 4.

Decoder modifications that target miscorrections have been
proposed before in the literature. Usually these modifications
are minor and they are tailored to a specific GPC. As an
example, staircase codes [7] can be seen as a convolutional-
like (or spatially-coupled) version of PCs. The associated code
array consists of an infinite number of square blocks that
are arranged to look like a staircase [7, Fig. 4]. Decoding
is facilitated by using a sliding window which comprises only
a finite number of blocks. In order to reduce miscorrections,
one may reject certain bit flips from component codes that
are associated with the newest (most unreliable) block from
the channel [33, p. 59]. However, simulations suggest that
the performance gains using this approach are limited. On
the other hand, the proposed anchor decoding can closely
approach miscorrection-free performance when applied to
staircase codes [34].

In [4], a decoder modification for PCs is suggested based on
the observation that the miscorrection probability is reduced
by a factor of n if only t−1 errors are corrected for a t-error-
correcting component code. For large n, this is significant and
the author thus proposes to only correct t−1 errors in the first
iteration of iterative BDD. We will see later that this indeed
gives some notable performance improvements. This trick can
also be easily combined with the proposed algorithm.

The work in this paper is inspired by another comment
made in [4] where it is mentioned that for PCs it may be
desirable to “take special actions in case of conflicts” caused
by miscorrections. In particular, it is suggested to use the
number of conflicts for a particular component code as an
indicator for the reliability of the component code. Besides
this suggestion, no further details or results are provided. Our
algorithm builds upon this idea and we develop a systematic
approach that exploits component code conflicts and can be
applied to an arbitrary GPC.

ty
pe

1
(r

ow
co

de
s)

type 2 (column codes)

× × ×

× × ×

× × ×

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

component
code (1, 4)

component
code (2, 13)

Fig. 1. PC array for a length-15 component code. Two particular component
codewords are highlighted. The black crosses correspond to a minimal-size
stopping set when t = 2. Red circles indicate a miscorrection, see Example 3.

The remainder of the paper is structured as follows. In
Sec. II, we review PCs and the conventional iterative decoding
scheme. We also give a brief overview of theoretical methods
that have been proposed to analytically predict the perfor-
mance. The proposed anchor decoding is described in Sec. III.
In Sec. IV, simulation results are presented and discussed
for various component code parameters. PP is discussed in
Sec. V. We discuss some implementation details for the
proposed algorithm in Sec. VI. Finally, the paper is concluded
in Sec. VII.

II. PRODUCT CODES AND ITERATIVE DECODING

This paper focuses on PCs, with which we believe many
readers are familiar. Other classes of GPCs are discussed
separately in Sec. III-F.

A. Product Codes

Let H ∈ F(n−k)×n
2 be the parity-check matrix of a binary

linear (n, k, dmin) code C, where n, k, and dmin are the code
length, dimension, and minimum distance, respectively. A PC
based on C is defined as

P(C) , {X ∈ Fn×n2 |HX = 0,HXᵀ = 0}. (1)

It can be shown that P(C) is a linear (n2, k2, d2min) code. The
codewords X can be represented as two-dimensional arrays.
The two conditions in (1) enforce that the rows and columns
in the array are valid codewords in C.

We use a pair (i, j) to identify a particular component code
and the corresponding codewords or received words. The first
parameter i ∈ {1, 2} refers to the component code type which
can be either a row (i = 1) or a column (i = 2). The second
parameter j ∈ [n] enumerates the codes of a given type.
Example 1. The code array for a PC where the component
code has length n = 15 is shown in Fig. 1. The row and
column corresponding to component codes (1, 4) and (2, 13),
respectively, are highlighted. 4

For PCs, the coded bits can be identified by their two coor-
dinates within the PC array. However, this way of specifying

3

bits does not generalize well to other classes of GPCs because
the associated code array may have a different shape (or there
may not exist an array representation at all). In order to keep
the notation general, we therefore use the convention that a
coded bit is specified by two component codes (i, j) and (k, l),
i.e., four parameters (i, j, k, l) in total.
Example 2. The highlighted row and column in Fig. 1 intersect
at the bit corresponding to (1, 4, 2, 13) or (2, 13, 1, 4). 4

B. BCH Component Codes

We use binary t-error-correcting BCH codes as component
codes, as well as their singly- and doubly-extended versions.
Recall that a singly-extended BCH code is obtained through an
additional parity bit, formed by adding (modulo 2) all coded
bits c1, c2, . . . , c2ν−1 of the BCH code, where ν is the Galois
field extension degree. On the other hand, a doubly-extended
BCH code has two additional parity bits, denoted by c2ν and
c2ν+1, such that

c1 + c3 + · · ·+ c2ν−1 + c2ν+1 = 0, (2)
c2 + c4 + · · ·+ c2ν−2 + c2ν = 0, (3)

i.e., the parity bits perform checks separately on odd and even
bit positions. The overall component code has length n =
2ν − 1 + e, where e ∈ {0, 1, 2} indicates either no (e = 0),
single (e = 1), or double (e = 2) extension. In all three cases,
the guaranteed code dimension is k = 2ν − 1− νt. For e = 0,
the guaranteed minimum distance is dmin = 2t + 1. This is
increased to dmin = 2t + 2 for e ∈ {1, 2}. We use a triple
(ν, t, e) to denote all BCH code parameters.

C. Bounded-Distance Decoding and Miscorrections

Consider the transmission of a component codeword c ∈ C
over the BSC with crossover probability p. The error vector
introduced by the channel is denoted by n, i.e., the compo-
nents of n are i.i.d. Bernoulli(p) random variables. Applying
BDD to the received word r = c+ n results in

BDD(r) =

c if dH(r, c) = wH(n) ≤ t,
c′ ∈ C if wH(n) > t and dH(r, c′) ≤ t,
FAIL otherwise.

(4)

In practice, BDD is implemented by first computing the
syndrome sᵀ = Hrᵀ = Hnᵀ ∈ Fn−k2 . Each of the 2n−k

possible syndromes is then associated with either an estimated
error vector n̂, where wH(n̂) ≤ t, or a decoding failure. In
the first case, the decoded output is computed as r + n̂.

The second case in (4) corresponds to an undetected error
or miscorrection.
Example 3. Consider the component code (1, 4) in Fig. 1 and
assume that the all-zero codeword c = 0 is transmitted. The
black crosses represent bit positions which are received in
error, i.e., ni = 1 for i ∈ {3, 7, 10} and ni = 0 elsewhere.
For a component code with t = 2 and e = 0, we have
dmin = 2t + 1 = 5, i.e., there exists at least one codeword
c′ ∈ C with Hamming weight 5. Assume we have c′ ∈ C with
c′i = 1 for i ∈ {3, 6, 7, 10, 14} and c′i = 0 elsewhere. Applying
BDD to r = c + n then introduces two additional errors at

Algorithm 1: Iterative BDD of product codes

1 for l = 1, 2, . . . , ` do
2 for i = 1, 2 do
3 for j = 1, 2, . . . , n do
4 apply BDD to received component word (i, j)

5 if valid codeword is found then
6 break

bit positions 6 and 14. This is shown by the red circles in
Fig. 1. 4

Code extension reduces the probability of miscorrecting, at
the expense of a slightly increased code length (and hence
a small rate loss). To see this, let e = 0 and assume that
wH(n) > t. Consider now the decoding of a random syndrome
s where the components in s are i.i.d. Bernoulli(0.5). In that
case, the probability of miscorrecting is simply the ratio of
the number of decodable syndromes and the total number of
syndromes, i.e.,∑t

i=0

(
n
i

)
2n−k

=

∑t
i=0

(
n
i

)
2νt

≈
1
t!n

t

nt
=

1

t!
. (5)

For e = 1 and e = 2, the total number of syndromes is
increased to 2νt+e and the miscorrection probability is thus
reduced by a factor of 1/2 and 1/4, respectively. We note that
this reasoning can be made precise, see, e.g., [4], [29].

Example 4. Consider the same scenario as in Example 3. If
we use the singly-extended component code, the minimum
distance is increased to dmin = 2t+2 = 6. Assuming that there
is no additional error in the last bit position, i.e., n16 = 0, the
miscorrection illustrated in Example 3 can be detected because
the parity-check equation involving the additional parity bit is
not satisfied. 4
Remark 1. As an alternative to extending the code, one may
employ a subcode of the original BCH code. For example,
the singly-extended BCH code behaves similarly to the even-
weight subcode of the BCH code, which is obtained by
multiplying its generator polynomial by (1 + x). The doubly-
extended BCH code behaves similarly to the BCH subcode
where odd and even coded bits separately sum to zero. This
subcode is obtained by multiplying the generator polynomial
by (1+x)2 and was used for example in the original staircase
code construction [7]. Note that this subcode is not cyclic.
Subcodes have a reduced code dimension k and hence lead to
a similar rate loss as the code extension.

D. Iterative Bounded-Distance Decoding

We now consider the transmission of a codewordX ∈ P(C)
over the BSC with crossover probability p. The conventional
iterative decoding procedure consists of applying BDD first to
all rows and then to all columns. This is repeated ` times or
until a valid codeword in P(C) is found. Pseudocode for the
iterative BDD is given in Algorithm 1.

In order to analyze the bit error rate (BER) of PCs under
iterative BDD, the prevailing approach in the literature is
to assume that no miscorrections occur in the BDD of the

4

10−10

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

crossover probability p [· 10−2]

bi
t

er
ro

r
ra

te
(B

E
R

)

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6

bC
bC

bC
bC

bC

bC

bC

bC

bC

bC

bC
bC

bC
bC

bC bC bC bC

lD lD
lD

lD

lD

lD

lD

lD

lD

lD
lD

lD
lD

lD lD lD lD lD

uT
uT

uT
uT

uT
uT

uT

uT

uT

uT

uT

uT

uT
uT

uT
uT uT uT

rS
rS

rS
rS

rS
rS

rS

rS

rS

rS

rS

rS

rS
rS

rS
rS rS rS rS rS rS rS rS

∆NCG
≈ 0.4 dB

correct only one error
in the first iteration

ℓ = 15
correct only one error
in the first 5 iterations

de
ns

ity
ev

ol
ut

io
n

error floor

idealized iterative BDDuT

iterative BDDrS

anchor decodingbC
extrinsic message-passinglD

Fig. 2. Simulation results using different decoding schemes with ` = 10
iterations. The component code is a BCH code with parameters (7, 2, 1), i.e.,
an extended double-error-correcting BCH code with length n = 27 = 128.

component codes, see, e.g., [4], [14], [24]–[26]. To that end,
we define

BDD′(r) =

{
c if dH(r, c) = wH(n) ≤ t,
FAIL otherwise,

(6)

which can be seen as an idealized version of BDD where a
genie prevents miscorrections. Conceptually, this is similar to
assuming transmission over the binary erasure channel (BEC)
instead of the BSC [24].

Using (6) instead of (4), a decoding failure for a PC is
related to the existence of a so-called core in an Erdős–
Rényi random graph [4], [25]. This connection can be used
to rigorously analyze the asymptotic performance as n → ∞
using density evolution (DE) [4], [14], [25]. Moreover, the
error floor can be estimated by enumerating stopping sets,
also known as stall patterns. A stopping set is a subset of
bit positions such that every component code with at least one
bit in the set must contain at least t + 1 bits in the set. For
PCs, a minimal-size stopping set involves t+1 rows and t+1
columns and has size smin = (t+ 1)2. For example, the black
crosses shown in Fig. 1 form such a stopping set when t = 2.
If we consider only stopping sets of minimal size, the BER
can be approximated as

BER ≈ smin

n2
Mpsmin , (7)

for sufficiently small p, where M =
(
n
t+1

)2
is the total number

of possible minimal-size stopping sets, also referred to as
the stopping set’s multiplicity. Unfortunately, if miscorrections
are taken into account, DE and the error floor analysis are
nonrigorous and become inaccurate.
Example 5. Consider a BCH code C with parameters (7, 2, 1).
The resulting PC P(C) has length n2 = 1282 = 16384 and
code rate R = k2/n2 ≈ 0.78. For ` = 10 decoding iterations,
the outcome of DE (see Appendix A for details) and the error
floor analysis via (7) are shown in Fig. 2 by the dashed black
lines. The analysis can be verified by performing idealized

iterative BDD using (6). The results are shown by the blue
line (triangles). However, the actual BER with true BDD (4)
deviates significantly from the idealized decoding, as shown by
the red line (squares). The BER can be moderately improved
by treating the component codes as single-error-correcting in
the first iteration, as suggested in [4]. This is shown by the
red dotted line. 4

There exist several approaches to quantify the performance
loss due to miscorrections. In terms of the error floor, the
authors in [7] derive an expression similar to (7) for stair-
case codes. To account for miscorrections, this expression is
modified by introducing a heuristic parameter, whose value
has to be estimated using Monte–Carlo simulations. In terms
of asymptotic performance, the authors in [27] recently pro-
posed a novel approach to analyze a GPC ensemble that is
structurally related to staircase codes. The presented method is
shown to give more accurate asymptotic predictions compared
to the case where miscorrections are ignored.

Rather than analyzing the effect of miscorrections, the ap-
proach taken in this paper is to try to avoid them by modifying
the decoding. In the next section, we give a detailed description
of the proposed decoding algorithm. Its BER performance for
the code parameters considered in Example 5 is shown in
Fig. 2 by the green line (circles). The results are discussed
in more detail in Sec. IV below.

Remark 2. Iterative BDD can be interpreted as a message-
passing algorithm with binary “hard-decision” messages. The
corresponding message-passing rule is intrinsic, in the sense
that the outgoing message along some edge depends on the
incoming message along the same edge. In [10], the authors
propose an extrinsic message-passing algorithm based on
BDD. The BER for this algorithm when applied to the PC
in Example 5 is shown in Fig. 2 by the brown line (dia-
monds). Similar to the proposed algorithm, extrinsic message-
passing provides significant performance improvements over
iterative BDD. However, it is known that the decoder data-flow
and storage requirements can be dramatically increased for
message-passing decoding compared to iterative BDD [7]. One
reason for this is that iterative BDD can leverage a syndrome
compression effect by operating entirely in the syndrome
domain. We show in Sec. VI that this effect also applies to
the proposed algorithm. For extrinsic message-passing, it is an
open question if an efficient syndrome domain implementation
is possible. Due to this, we do not consider the extrinsic
message-passing further in this paper.

III. ANCHOR DECODING

In the previous section, we have seen that there exists a sig-
nificant performance gap between iterative BDD and idealized
iterative BDD where a genie prevents miscorrections. Our goal
is to close this gap. In order to do so, the key observation we
exploit is that miscorrections lead to inconsistencies (or con-
flicts) across component codes. In particular, two component
codes that protect the same bit may disagree on its value.
In this section, we show how these inconsistencies can be
used to (a) reliably prevent miscorrections and (b) identify

5

miscorrected codewords in order to revert the corresponding
decoding decisions.

A. Preliminaries

The proposed decoding algorithm relies on so-called an-
chor codewords which are simply codewords that have been
decoded successfully. No further additional corrections from
other component codes are then allowed if this would overturn
the decision of an anchor and lead to a conflict. However,
some anchors may be miscorrected. Therefore, the decoding
decisions of anchors are reversed or backtracked if too many
other component codes are in conflict with a particular anchor.
In order to make this more precise, we start by introducing
some additional concepts and notation in this subsection.

First, consider the BDD of a single received (component)
word. We explicitly regard this component decoding as a
two-step process. In the first step, the actual decoding is
performed and the outcome is either an estimated error vector
n̂ or a decoding failure. In the second step, error-correction
is performed by flipping the bits corresponding to the error
locations. These two steps are separated in order to perform
consistency checks (described below). These checks are used
to determine if the error-correction step should be applied.

It is more convenient to specify the estimated error vector
n̂ in terms of a set of error locations. For component code
(i, j), this set is denoted by Ei,j , where |Ei,j | ≤ t. The set
comprises those component codes that are affected by the bit
flips implied by n̂.

Example 6. Consider again the scenario described in Example
3, where the received word (1, 4) shown in Fig. 1 is miscor-
rected with an estimated error vector n̂ such that n̂i = 1
for i ∈ {6, 14} and n̂i = 0 elsewhere. The two affected
component codes correspond to columns specified by (2, 6)
and (2, 14) and, hence, the corresponding set of error locations
is given by E1,4 = {(2, 6), (2, 14)}. 4
Remark 3. It may seem more natural to define Ei,j in terms
of the bit positions of the BCH code, e.g., E1,4 = {6, 14} in
the previous example. However, defining Ei,j in terms of the
affected component codes leads to a more succinct description
of the proposed algorithm. Moreover, this definition also
generalizes more easily to other classes of GPCs, see Sec. III-F
below.

Furthermore, we denote by Li,j the set of component codes
that are in conflict with code (i, j) due to miscorrections.
Lastly, each component code has an associated status to signify
its current state. The status values range from 0 to 3 with the
following meaning:
• 0: anchor
• 1: eligible for BDD
• 2: BDD failed in last iteration
• 3: frozen

The precise use of the status and the transition rules between
different status values are described in the following. We
remark that the reliability of a component code is implicitly
encoded both in the status and in the number of conflicts |Li,j |.
Roughly speaking, frozen component codes are deemed highly

Algorithm 2: Main routine of anchor decoding
1 if (i, j).status = 1 then
2 R← (i, j).decode /* R indicates success (1) or failure (0) */

3 if R = 1 then
4 for each (k, l) ∈ Ei,j do /* consistency checks */

5 if (k, l).status = 0 then /* conflict with anchor */

6 if |Lk,l| ≥ δ then
7 add (k, l) to B /* mark for backtracking */

8 else
9 (i, j).status← 3 /* freeze */

10 add (k, l) to Li,j /* save the conflict */

11 add (i, j) to Lk,l /* save the conflict */

12 if (i, j).status = 1 then /* if not frozen */

13 for each (k, l) ∈ Ei,j do
14 error-correction for (i, j, k, l) /* see Alg. 4 */

15 (i.j).status← 0 /* code becomes an anchor */

16 for each (k, l) ∈ B do
17 backtrack anchor (k, l) /* see Alg. 3 */

18 else
19 (i, j).status← 2 /* indicate decoding failure */

unreliable, whereas the reliability of an anchor depends on the
number of conflicts.

B. Main Algorithm Routine

The algorithm is initialized by setting the status of all
component codes to 1. We then iterate ` times over the rows
and columns in the same fashion as in Algorithm 1, but
replacing line 4 with lines 1–19 in Algorithm 2. Algorithm 2
represents the main routine of the proposed anchor decoding.
It can be divided into 4 steps which are described in the
following.1

Step 1 (Lines 1–3): If the component code is eligible
for BDD, i.e., its status is 1, we proceed to decode the
corresponding received word. If the decoding is successful,
we proceed to the next step, otherwise, the status is set to 2
and we skip to the next component code.

Step 2 (Lines 4–11): For each found error location (k, l) ∈
Ei,j , a consistency check is performed. That is, one checks if
the implied component code (k, l) corresponds to an anchor. If
so, |Lk,l| is the number of conflicts that this anchor is already
involved in. This number is then compared against a threshold
δ. If |Lk,l| ≥ δ, the anchor (k, l) is deemed unreliable and it is
marked for backtracking by adding it to the backtracking set
B. On the other hand, if |Lk,l| < δ, the component code (i, j)
is frozen by changing its status to 3. Moreover, the conflict
between the (now frozen) code and the anchor is stored by
modifying the respective sets Li,j and Lk,l. Frozen component
codes are always skipped (in the loop of Algorithm 1) for the
rest of the decoding unless either the conflicting anchor is
backtracked or any bits in the frozen received word change.

Step 3 (Lines 12–15): If the component code (i, j) still
has status 1, the bit flips implied by Ei,j are consistent
with all reliable anchors, i.e., anchors that are involved in
δ or fewer other conflicts. If that is the case, the algorithm
proceeds by applying the error-correction step for component

1Similar to the conventional iterative BDD, it is not guaranteed that the
algorithm always terminates at a valid codeword for `→∞.

6

code (i, j), i.e., the bits (i, j, k, l) corresponding to all error
locations (k, l) ∈ Ei,j are flipped. The error-correction step
is implemented in Algorithm 4 and described in detail in
Section III-E. Afterwards, the code (i, j) becomes an anchor
by changing its status to 0.

Step 4 (Lines 16–17): The last step consists of backtracking
all anchors in the set B (if there are any). Roughly speaking,
backtracking involves the reversal of all previously applied bit
flips of the corresponding anchor. Moreover, the backtracked
code loses its anchor status. The backtracking routine is
implemented in Algorithm 3 and described in more detail in
Sec. III-D below.

C. Examples

We now illustrate the above steps with the help of two
examples. For both examples, a component code with error-
correcting capability t = 2 is assumed. Moreover, the conflict
threshold is set to δ = 1.

Example 7. Consider the scenario depicted in Fig. 3(a).
Assume that we are at (i, j) = (1, 4), corresponding to a
row with status 1 and four attached errors shown by the black
crosses. The received word is assumed to be miscorrected with
E1,4 = {(2, 5), (2, 13)} shown by the red circles. The column
code (2, 5) is assumed to have status 2 (i.e., BDD failed in the
previous iteration with three attached errors) and therefore the
first consistency check is passed. However, assuming that the
column (2, 13) is an anchor without any other conflicts, i.e.,
L2,13 = ∅, the code (1, 4) is frozen during step 2. Hence, no
bit flips are applied to the received word and the miscorrection
is prevented. The conflict is stored by updating the two conflict
sets as L1,4 = {(2, 3)} and L2,3 = {(1, 4)}, respectively. 4
Example 8. Consider the scenario depicted in Fig. 3(b),
where we assume that row (1, 4) is a miscorrected anchor
without conflicts (i.e., L1,4 = ∅) and error locations E1,4 =
{(2, 5), (2, 13)}. Assume that we are at (i, j) = (2, 5). The
column (2, 5) has status 1 and two attached error. Thus,
BDD is successful with E2,5 = {(1, 4), (1, 10)}. During step
2, the column (2, 5) is, however, frozen because there is a
conflict with anchor (1, 4). After freezing the column, we
have L1,4 = {(2, 5)} and L2,5 = {(1, 4)}. We skip to the
next component code (2, 6), which has status 1. Again, BDD
is successful with E2,6 = {(1, 4)}. The implied bit flip is
inconsistent with the anchor (1, 4). However, since this anchor
is already in conflict with (2, 5) (and, hence, |L1,4| = 1 = δ),
the anchor is marked for backtracking and the error-correction
step for bit (2, 6, 1, 4) will be applied. 4

D. Backtracking

In Example 8, we have encountered a scenario that leads
to the backtracking of a miscorrected anchor. The actual
backtracking routine is implemented in Algorithm 3. First,
all conflicts caused by the anchor are removed by modifying
the respective conflict sets. Note that all component codes
(k, l) ∈ Li,j for anchor (i, j) necessarily have status 3, i.e.,
they are frozen. After removing conflicts, such component
codes may be conflict-free, in which case their status is

Algorithm 3: Backtracking anchor codeword (i, j)

1 for each (k, l) ∈ Li,j do /* remove conflicts */

2 remove (k, l) from Li,j
3 remove (i, j) from Lk,l
4 if Lk,l is empty then /* no more conflicts */

5 (k, l).status← 1 /* unfreeze */

6 for each (k, l) ∈ Ei,j do
7 error-correction step for (i, j, k, l) /* see Alg. 4 */

8 (i, j).status← 3 /* freeze */

Algorithm 4: Error-correction step for bit (i, j, k, l)
1 if not ((i, j).status = 0 and (k, l).status = 0) then
2 flip the bit (i, j, k, l)
3 if (k, l).status = 2 then
4 (k, l).status← 1
5 else if (k, l).status = 3 then
6 (k, l).status← 1
7 for each (k′, l′) ∈ Lk,l do /* remove conflicts */

8 remove (k, l) from Lk′,l′

9 remove (k′, l′) from Lk,l

changed to 1. After this, all previously applied bit flips are
reversed. In order to perform this operation, it is necessary to
store the set Ei,j for each anchor. Finally, the anchor status
is lost. In principle, the new status can be chosen to be
either 1 or 3. However, backtracked anchors are likely to have
miscorrected. We therefore prefer to freeze the component
code by setting its status to 3 after the backtracking.

Remark 4. Since we do not know if an anchor is miscor-
rected or not, it is also possible that we mistakenly backtrack
“good” anchors. Fortunately, this is unlikely to happen for
long component codes because the additional errors due to
miscorrections are approximately randomly distributed within
the component word [4]. More precisely, consider the case
where two miscorrected component codes both introduce t
additional errors. Assuming that these errors are randomly
distributed among the n bit positions, the probability that any
of the error locations overlap is 1−

∏t−1
i=0(1− t

n−i) ≈ t2/n,
where the approximation is valid for large n.

E. Error-correction Step

The error-correction step is implemented in Algorithm 4.
The input is a parameter tuple (i, j, k, l) where (i, j) is
the component code that initiated the bit flip and (k, l) is
the corresponding component code affected by it. Note that
Algorithm 4 can be reached from both the main routine
(Algorithm 2, lines 13–14) and as part of the backtracking
process (Algorithm 3, lines 6–7). If the algorithm is reached
via backtracking, it is possible that the affected code (k, l) is
now an anchor. In this case, we use the convention to trust the
anchor’s decision about the bit (i, j, k, l) and not apply any
changes.2 In all other cases, apart from actually flipping the
bit (i, j, k, l) (line 2), error-correction triggers a status change
(lines 3–9). If the bit flip affects a frozen component code, the

2A different, but potentially more complex approach would be to gen-
eralize the backtracking procedure and allow for multiple codewords to be
backtracked in this case.

7

× ×× ×

×

×

×

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

status 1

status 2

status 0

(a)

× × × ×

×

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

status 0

status 1

status 1

(b)

× × ×

× × ×

× × ×

× × ×

× × ×

× × ×

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

(c)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

× × × ×

× × × ×

× ×× ×

(d)

Fig. 3. (a) Error/status configuration illustrating how anchor codewords prevent miscorrections (see Example 7) , (b) Error/status configuration illustrating
how backtracking is triggered for miscorrected anchors (see Example 8), (c) A minimal-size stopping set after algebraic-erasure post-processing (PP) assuming
no miscorrections for t = 2 and e ∈ {1, 2}, (d) Illustration of a dominant error event for anchor decoding for t = 2 and e ∈ {1, 2} in the error-floor regime.

code is unfrozen and we remove the conflicts that this code is
involved in.

F. Generalized Product Codes

In principle, anchor decoding can be applied to an arbitrary
GPC. Indeed, Algorithms 2–4 are independent of the under-
lying GPC. The global code structure manifests itself only
through the set of error locations Ei,j . This set is defined in
terms of the affected component codes, which implicitly uses
the code structure.

Compared to PCs, the main difference for other GPCs is that
Algorithm 1 has to be replaced by a version that is appropriate
for the specific GPC. For anchor decoding, Algorithm 1
simply specifies the order in which the received words of the
component codes are traversed during the iterative decoding.

Example 9. We have considered anchor decoding of staircase
codes in the conference version of this paper [34]. In that case,
Algorithm 1 is replaced by a window decoding schedule, see
[34, Alg. 1].3 4

Note that staircase codes have more than two types of
component codes. In particular, the component code types
indicate the position of the component codes in the staircase
code sliding window. For GPCs that do not admit a description
in terms of a finite number of types (e.g., tightly-braided
block codes), one may simply use the convention that each
component code forms its own type.

Anchor-based decoding can also be applied to GPCs that are
based on component codes with different lengths and/or error-
correcting capabilities. For example, PCs can be defined such
that different component codes are used to protect the rows
and columns of the code array. More generally, the component
codes may even vary across rows and columns, leading to
irregular PCs [35], [36].

While Algorithms 2–4 are agnostic to changes in the overall
code structure, it may be beneficial to adopt different conflict
thresholds δ for the component codes in a generalized product
code or when using a mixture of component codes with
different error-correcting capabilities. For example, for stair-
case codes or other convolutional-like GPCs, different conflict

3[34] contains two typos. First, the for-loop in [34, Alg. 1] over i should
start from W −1 (not W). Second, the window size used for the simulations
is W = 9 (not W = 8).

thresholds may be adopted depending on the component code
position in the sliding window to reflect the different com-
ponent code reliabilities. A concrete example where different
conflict thresholds are useful is discussed in Section IV-C.

IV. SIMULATION RESULTS

In this section, we present and discuss simulation results
assuming different BCH component codes. For the conflict
threshold, we tested different values δ ∈ {0, 1, 2, 3} for a
wide variety of component code parameters (ν ∈ {7, 8}, t ∈
{2, 3, 4}, e ∈ {0, 1, 2}) and BSC crossover probabilities. In all
cases, δ = 1 was found to give the best performance. Hence,
δ = 1 is assumed in the following. The only exception are the
PCs discussed in Section IV-C which are based on different
component codes for the rows and columns.

Remark 5. For the staircase codes considered in [34], a conflict
threshold of δ = 1 for all component codewords (regardless
of their position in the sliding window) also gave the best
performance.

A. BCH Codes with t = 2

Double-error-correcting BCH codes are of particular interest
because they can be decoded very efficiently in hardware [16],
[37]. On the other hand, the resulting PCs suffer from rela-
tively high error floors and their performance is significantly
affected by miscorrections. This was shown in Example 5 in
Sec. II-D. Therefore, performance improvements, in particular
in the error floor regime, are highly relevant for practical
applications with stringent reliability constraints.

Recall that Example 5 uses a BCH component code with
parameters (7, 2, 1) and ` = 10 decoding iterations. For these
parameters, the BER of anchor decoding is shown in Fig. 2 by
the green line (circles). The algorithm closely approaches the
performance of the idealized iterative BDD in the waterfall
regime. Moreover, virtually miscorrection-free performance
is achieved in the error-floor regime. The remaining gap
between the idealized decoder and the anchor decoder is due
to instances where too many miscorrections occur. We also
note that the code parameters for this example were chosen
such that the error floor is high enough to be within the reach
of software simulations. In certain applications, e.g., optical
transport networks, lower BERs (< 10−15) may be required.

8

In this case, other code parameters have to be used to reduce
the error floor below the application requirements.

In order to quantify the performance gain with respect to
iterative BDD, we use the net coding gain (NCG). To that end,
assume that a coding scheme with code rate R achieves a BER
of pout on a BSC with crossover probability p. The NCG (in
dB) is then defined as

NCG , 10 log10

(
R

(Q−1 (pout))
2

(Q−1 (p))2

)
. (8)

The NCG assumes antipodal binary modulation over an ad-
ditive Gaussian noise channel and measures the difference
in required Eb/N0 between uncoded transmission and coded
transmission using the coding scheme under consideration.
As an example, it can be seen from Fig. 2 that the iterative
BDD and the anchor decoding achieve a BER of 10−8 at
approximately p = 1.31 · 10−2 and p = 1.69 · 10−2, respec-
tively. The code rate in both cases is R = 0.78. Hence,
the respective NCGs are given by 6.96 dB and 7.37 dB. The
proposed algorithm thus achieves a NCG improvement of
approximately ∆NCG = 0.4 dB, as indicated by the arrow
in Fig. 2.

As suggested in [4], correcting only one error in the first
iteration of iterative BDD gives some moderate performance
improvements. This trick can also be used in combination with
the anchor decoding. In that case, a decoding failure (in line
2 of Algorithm 2) also occurs when BDD is successful but
|Ei,j | = 2. Since the status of such component codes is set to
2, it is important to reset the status to 1 after the first iteration
in order to continue the decoding with the full error-correction
capability. For the PC in Example 5 with ` = 10 iterations,
we found that correcting only one error in the first iteration
does not lead to noticeable performance improvements for the
anchor decoding. Some small improvements can be obtained,
however, by increasing the total number of iterations to ` = 15
and correcting only one error in the first 5 iterations. This is
shown by the green dotted line in Fig. 2. It is important to
stress that without the gradual increase of t, the BER for ` =
10 and ` = 15 is virtually the same. Thus, the improvement
shown in Fig. 2 is indeed due to the artificial restriction of the
error-correcting capability.

Next, we provide a direct comparison with the results
presented in [16]. In particular, the authors propose a hardware
architecture for a PC that is based on a BCH component code
with parameters (8, 2, 1). The BCH code is further shortened
by 61 bits, leading to an effective length of n = 195 and
dimension k = 178. The shortening gives a desired code
rate of R = k2/n2 = 1782/1952 ≈ 0.833. The number of
decoding iterations is set to ` = 4. For these parameters,
BER results are shown in Fig. 4 for iterative BDD, anchor
decoding, and idealized iterative BDD (labeled “w/o PP”).
As before, the outcome of DE and the error floor prediction
via (7) are shown by the dashed black lines as a reference.
Compared to the results shown in Fig. 2, the anchor decoding
approaches the performance of the idealized iterative BDD
even closer and virtually miscorrection-free performance is
achieved for BERs below 10−7. This can be attributed to the

10−13

10−12

10−11

10−10

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

crossover probability p [· 10−2]

bi
t

er
ro

r
ra

te
(B

E
R

)

0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5

bC

bC

bC

uT
uT

uT
uT

uT
uT

uT

uT

uT

uT

uT

uT
uT

uT
uT

uT
uT uT uT uT uT

bC
bC

bC

bC

bC

bC

bC

bC

bC
bC

bC
bC

bC bC bC bC bC bC

rS
rS

rS
rS

rS

rS

rS

rS

rS

rS

rS
rS

rS
rS rS rS rS rS rS rS rS

rS

rS

rS

de
ns

ity
ev

ol
ut

io
n

error floor w/o PP

error floor w/ PP

w/o PP

w/ PP

idealized iterative BDDuT

iterative BDDrS

anchor decodingbC

Fig. 4. Simulation results assuming a shortened (195, 178) BCH component
code with parameters (8, 2, 1). The resulting product code is considered in
[16]. Simulation data for iterative BDD including bit-flip-and-iterate post-
processing (PP) was provided by the authors of [16].

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

crossover probability p [· 10−2]

bi
t

er
ro

r
ra

te
(B

E
R

)

1.4 1.6 1.8 2.0 2.2 2.4 2.6

rS

rS

rS

rS

rS

rS

rS

rS
rS
rS rS rS rS

bC

bC

bC

bC

bC

bC

bC
bC
bC bC bC bC

uT

uT

uT

uT

uT

uT

uT
uT
uT
uT uT uT

rS

rS

rS

rS

rS

rS

rS

rS
rS
rS
rS rS rS rS rS rS rS rS rS rS rS

bC

bC

bC

bC

bC

bC

bC
bC bC bC bC bC bC bC

uT

uT

uT

uT

uT

uT
uT
uT uT uT uT

de
ns

ity
ev

ol
ut

io
n

de
ns

ity
ev

ol
ut

io
n

BCH code
n = 257, t = 4
(doubly-extended)

BCH code
n = 255, t = 3

(not extended)
idealized iterative BDDuT

iterative BDDrS

anchor decodingbC

Fig. 5. Simulation results assuming two different BCH component codes with
parameters (8, 3, 0) and (8, 4, 2).

quite extensive code shortening, which reduces the probability
of miscorrecting compared to an unshortened component code.

B. BCH Codes with t > 2

For BCH component codes with error-correcting capability
larger than 2, the error floor is generally out of reach for our
software simulations. Hence, we focus on the performance
improvements that can be obtained in the waterfall regime.

In Fig. 5, we show the achieved BER for two different
PCs. The first PC is based on a BCH component code
with parameters (8, 3, 0). For these parameters, miscorrections
significantly degrade the performance. Consequently, there is
a large performance gap between iterative BDD and idealized
iterative BDD. The anchor decoding partially closes this gap
and achieves a NCG improvement of around 0.23 dB over

9

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

crossover probability p [· 10−2]

bi
t

er
ro

r
ra

te
(B

E
R

)

1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

rS

rS

rS

rS

rS

rS

rS

rS
rS

rS rS rS rS rS rS rS rS

bC

bC

bC

bC

bC

bC

bC
bC

bC
bC bC bC bC

uT

uT

uT

uT

uT

uT

uT
uT

uT uT

de
ns

ity
ev

ol
ut

io
n

best conflict thresholds
(δ0 = 1 and δ1 = 0)

worst conflict thresholds
(δ0 = 0 and δ1 = 3)

idealized iterative BDDuT

iterative BDDrS

anchor decodingbC

Fig. 6. Simulation results assuming that the row and column BCH component
codes have different parameters (8, 4, 0) and (8, 2, 0), respectively. Solid lines
without markers correspond to different combinations of conflict thresholds
δ0, δ1 ∈ {0, 1, 2, 3}.

iterative BDD at BER = 10−7. The second PC is based
on a BCH component code with parameters (8, 4, 2). The
miscorrection probability is reduced approximately by a factor
of 16 compared to the first PC. Hence, there is only a small
gap between iterative BDD and idealized iterative BDD. The
anchor decoding manages to close this gap almost completely.
The NCG improvement at BER = 10−7 in this case is,
however, limited to around 0.01 dB.

C. Different Row and Column Component Codes

Lastly, we consider PCs where the rows and columns are
protected by component codes with different error-correcting
capabilities. In particular, we assume that the row and column
codes are BCH codes with parameters (8, 4, 0) and (8, 2, 0),
respectively. The miscorrection probabilities in this case are
roughly 1/4! ≈ 0.0471 for the rows and 1/2 for the columns.
Since the decisions of the row codes are highly unreliable
compared to those of the column codes, one might expect
that adopting different conflict thresholds may be benefi-
cial. To confirm this intuition, we denote by δ0 and δ1 the
threshold for rows and columns, respectively. An exhaustive
search is performed over all possible combinations where
δ0, δ1 ∈ {0, 1, 2, 3}. The results are shown in Fig. 6, where
` = 10 decoding iterations are assumed. It can be seen that the
best performance is indeed achieved when different conflict
thresholds are adopted. In particular, we have δ0 = 1 and
δ1 = 0, i.e., columns should be immediately backtracked in
case of conflicts.

V. POST-PROCESSING

If the anchor decoding terminates unsuccessfully, one may
use some form of PP in order to continue the decoding. In
this section, we discuss two PP techniques, which we refer
to as bit-flip-and-iterate PP and algebraic-erasure PP. Both
techniques have been studied before in the literature as a

means to lower the error-floor for various GPCs assuming the
conventional iterative BDD [9], [21], [28], [30]–[32].

A. Methods

Let Fi denote the set of failed component codes of type i
after an unsuccessful decoding attempt. That is, F1 and F2

are, respectively, rows and columns that still have nonzero
syndrome after ` decoding iterations. The intersection of these
rows and columns defines a set of bit positions according to

I = {(i, j, k, l) | (i, j) ∈ F1 and (k, l) ∈ F2}. (9)

For bit-flip-and-iterate PP, the bits in the intersection (9) are
first flipped, after which the iterative decoding is resumed for
one or more iterations. Bit-flip-and-iterate PP has been applied
to PCs [30], [31], half-product codes [32], and staircase codes
[28]. For algebraic-erasure PP, the bits in the intersection (9)
are instead treated as erasures. An algebraic erasure decoder
is then used to recover the bits. Assuming that there are
no miscorrected codewords, algebraic-erasure PP provably
succeeds as long as either |F1| < dmin or |F2| < dmin holds.
This type of PP has been applied to braided codes in [9] and
to half-product codes in [21].

B. Post-Processing for Anchor Decoding

In principle, the above PP techniques can be applied after
the anchor decoding without any changes. However, it is
possible to improve the effectiveness of algebraic-erasure PP
by exploiting additional information that is available for the
anchor decoding. In particular, recall that it is necessary to
keep track of the error locations of anchors in case they are
backtracked. If the anchor decoding fails, these error locations
can be used for the purpose of PP as follows. Assume that we
have determined the sets F1 and F2. Then, one can check for
anchors that satisfy the condition

Ei,j ⊂ F and |Ei,j | = t, (10)

where F = F1∪F2, i.e., anchors that have corrected t errors,
where the error locations overlap entirely with the set of failed
component codes. For the algebraic-erasure PP, we found that
it is beneficial to include such anchors into the respective sets
F1 and F2 (even though they have zero syndrome). This is
because the associated component codewords are likely to be
miscorrected.

Note that additional component codes should only be in-
cluded into the sets F1 and F2 as long as |F1| < dmin
or |F2| < dmin remain satisfied. Therefore, if there are
more component codes satisfying (10) than allowed by these
constraints, we perform the inclusion on a random basis.

Remark 6. For bit-flip-and-iterate PP, we found that the same
strategy may, in fact, degrade the performance, in particular if
the number of decoding iterations is relatively low. For small `,
the decoding often terminates unsuccessfully with only a few
remaining errors left. These errors are then easily corrected
using the conventional bit-flip-and-iterate PP. In that case, it
is counterproductive to include additional component codes
into the sets F1 and F2.

10

C. Example for BCH Codes with t = 2

Consider again the PC based on the (195, 178) shortened
BCH code with parameters (8, 2, 1) studied in [16] (see Fig. 4).
The authors in [16] also consider the application of bit-flip-
and-iterate PP in order to reduce the error floor. The simulation
data was provided to us by the authors and the results are
reproduced4 for convenience in Fig. 4 by the red line (squares)
labeled “w/ PP”. For the anchor decoding we propose to use
instead the algebraic-erasure PP as described in the previous
subsection. In order to estimate its performance, we first
consider algebraic-erasure PP for the idealized iterative BDD
without miscorrections. In this case, the dominant stopping set
is of size 18 and involves 6 rows and 6 columns. An example
of this stopping set is shown by the black crosses in Fig. 3(c),
where the involved rows and columns are indicated by the
dotted lines. It is pointed out in [28] that the multiplicity of
such a stopping set can be obtained by using existing counting
formulas for the number of binary matrices with given row and
column weight [38]. In particular, there exist 297, 200 binary
matrices of size 6× 6 with uniform row and column weight 3

[38, Table 1]. This gives a multiplicity of M = 297, 200
(
n
6

)2
for this stopping set. The error floor can then be estimated
using (7) with smin = 18. This is shown in Fig. 4 by the dashed
black line labeled “error floor w/ PP” and can be verified using
the idealized iterative BDD including PP. The performance
of anchor decoding with algebraic-erasure PP is also shown
in Fig. 4 and virtually overlaps with the performance of
idealized iterative BDD for BERs below 10−11. Overall, the
improvements translate into an additional NCG of around
0.2 dB at a BER of 10−12 over iterative BDD with bit-flip-
and-iterate PP.

Without the modification described in Sec. V-B, the perfor-
mance of algebraic-erasure PP under anchor decoding would
be slightly decreased. Indeed, we found that a dominant error
event of the anchor decoding for t = 2 and e ∈ {1, 2} is such
that 3 row (or column) decoders miscorrect towards the same
estimated error pattern n̂ of weight 6. This scenario is illus-
trated in Fig. 3(d). We did not encounter similar error events
for the conventional iterative BDD. This indicates that the
anchor decoding introduces a slight bias towards an estimated
error pattern, once it is “anchored”. For the error event shown
in Fig. 3(d), 6 columns are not decodable, whereas all rows
are decoded successfully with a zero syndrome. This implies
that the set F2 is empty and therefore the bit intersection
(9) is empty as well. Hence, conventional PP (both bit-flip-
and-iterate and algebraic-erasure) would fail. On the other
hand, with high probability condition (10) holds for all 3
miscorrected row codewords.

VI. IMPLEMENTATION DETAILS

In this section, we discuss some implementation details of
anchor decoding. In particular, we focus on the syndrome
compression effect discussed in [7] and some high-level imple-
mentation differences between anchor decoding and iterative
BDD in the following.

4The same results are shown in [16, Fig. 3].

Remark 7. In principle, it may also be desirable to quantify
the increase in complexity of anchor decoding compared
to iterative BDD, e.g., in terms of the additional number
of operations or computations. However, this is a nontrivial
task because it is not obvious how to properly define these
quantities. To illustrate the difficulty, consider for example the
implementation of Algorithm 1 (for simplicity without the exit
criterion) as a baseline. A straightforward approach requires
2`n algebraic decodes, which one may define as an operation.
On the other hand, using a status flag to indicate a syndrome
change with respect to the previous decoding attempt can
reduce this number to vn, where v ranges from 3–4 in practice.
Implementing the status flag would also require additional
operations and memory. The status flag idea is mentioned in
[7] in a footnote, but it is not used for the architecture in
[31] (possibly due to the low number of iterations performed).
Therefore, there arises ambiguity even when attempting to
quantify the baseline complexity of Algorithm 1. Thus, in
order to obtain an accurate estimate for the complexity, it
would be necessary to design a full hardware architecture in
both cases, which is beyond the scope of this paper.

A. Syndrome Domain Implementation

One of the main advantages of iterative BDD compared to
message-passing decoding is the significantly reduced decoder
data flow [7]. We argue that similar considerations also apply
in the case of anchor decoding. To that end, we start by review-
ing the product decoder architecture in [7], which consists of
three main parts or units (cf. [7, Fig. 3]): a data storage unit for
the product code array, a syndrome storage unit, and a BCH
component decoder unit. The main contributors to the decoder
data flow (in bits/s) between these units are as follows:

• Initially, the syndromes for all received component words
have to be computed and stored in the syndrome storage
based on the received data bits.

• During iterative decoding, syndromes are loaded from
the syndrome storage and used by the BCH component
decoder unit for the component decoding.

• After a successful component decoding, the syndromes
in the syndrome storage are updated based on the found
error locations. Moreover, the corresponding bits in the
data storage unit are flipped.

A key aspect of this architecture is that information be-
tween component codes is exchanged entirely through their
syndromes. This is very efficient at high code rates: in this
case, syndromes can be seen as a compressed representation
of the received component word. Moreover, each successful
component decoding affects at most t syndromes.

In principle, anchor decoding can also operate entirely in
the syndrome domain, thereby leveraging the same syndrome
compression effect as iterative BDD. In particular, the initial
syndrome computation phase can be performed in the same
fashion as for iterative BDD. The syndrome loading occurs
before executing line 2 of Algorithm 2 and syndrome updates
are triggered due to line 2 of Algorithm 4.

11

B. Implementation Differences Compared to Iterative BDD

While the syndrome domain implementation can be kept
intact, in the following we comment on some of the implemen-
tation differences between iterative BDD and anchor decoding.

1) Component code status: Anchor-based decoding uses a
status value for each component code. Status changes occur
after BDD (lines 15 and 19 in Algorithm 2), after backtracking
(line 8 in Algorithm 3), and after applying bit flips (lines
3–6 in Algorithm 4). This leads to an apparent complexity
increase compared to a straightforward implementation of
iterative BDD. On the other hand, even for iterative BDD,
it is common to introduce some form of status information
for each component code. For example, a status flag is often
used to indicate if the syndrome for a particular component
code changed since the last decoding attempt [7]. This is
done in order to avoid decoding the same syndrome multiple
times. The product decoder architecture in [16] also features a
status flag to indicate the failure of a particular component
code in the last decoding iteration. Therefore, the slightly
more involved status handling for the anchor decoding should
not lead a drastic complexity increase compared to practical
implementations of iterative BDD.

2) Error locations: Additional storage is needed to keep
track of the error locations Ei,j for each anchor codeword (i, j)
in case of backtracking (lines 6–7 in Algorithm 3). Since each
individual error location can be specified using dlog2(n)e+1
bits, the total extra storage for all error locations required is
2nt(dlog2(n)e+1) bits.

3) Conflict sets: Additional storage is also needed to store
the conflicts between component codewords. For a t-error-
correcting component code, there can be at most t conflicts
for each frozen component code. Moreover, for a conflict
threshold of δ = 1, it is sufficient to keep track of a single
conflict per anchor codeword. Taking the larger of these two
values, the conflict set size therefore has to be t. The extra
storage required is thus the same as for the error locations,
i.e., 2nt(dlog2(n)e + 1) bits. One possibility to reduce the
required storage is to only keep track of a single conflict for
each frozen component code and ignore other conflicts. This
would also lead to a very simple implementation of the loops
in Algorithm 3 (line 1) and Algorithm 4 (line 7). On the other
hand, this may also lead to a small performance loss.

VII. CONCLUSION

We have shown that the performance of product codes
can be improved by applying a novel iterative decoding
algorithm. The proposed algorithm uses anchor codewords to
reliably detect and prevent miscorrections. It was shown that
the performance improvements (and therefore the practical
usefulness) depend on the component code parameters and
the BSC crossover probability. In general, anchor decoding
can provide significant improvements in cases where miscor-
rections severely affect the performance. For example, for
BCH component codes with t = 2, NCG improvements of
up to 0.4 dB can be obtained. Moreover, the error floor can
be reduced up to the point where the performance is close to
that of a genie-aided decoder that avoids all miscorrections.

On the other hand, in cases where miscorrections rarely
occur (e.g., for doubly-extended BCH codes with t ≥ 4),
limited performance gains are observed and the small NCG
improvements likely do not warrant any complexity increase
compared to the conventional iterative decoding.

REFERENCES

[1] P. Elias, “Error-free coding,” IRE Trans. Inf. Theory, vol. 4, no. 4, pp.
29–37, Apr. 1954.

[2] A. J. Feltström, D. Truhachev, M. Lentmaier, and K. S. Zigangirov,
“Braided block codes,” IEEE Trans. Inf. Theory, vol. 55, no. 6, pp.
2640–2658, Jul. 2009.

[3] J. Justesen, K. J. Larsen, and L. A. Pedersen, “Error correcting coding
for OTN,” IEEE Commun. Mag., vol. 59, no. 9, pp. 70–75, Sep. 2010.

[4] J. Justesen, “Performance of product codes and related structures with
iterated decoding,” IEEE Trans. Commun., vol. 59, no. 2, pp. 407–415,
Feb. 2011.

[5] M. Scholten, T. Coe, and J. Dillard, “Continuously-interleaved BCH
(CI-BCH) FEC delivers best in class NECG for 40G and 100G metro
applications,” in Proc. Optical Fiber Communication Conf. (OFC), San
Diego, CA, 2010.

[6] H. D. Pfister, S. K. Emmadi, and K. Narayanan, “Symmetric product
codes,” in Proc. Information Theory and Applications Workshop (ITA),
San Diego, CA, 2015.

[7] B. P. Smith, A. Farhood, A. Hunt, F. R. Kschischang, and J. Lodge,
“Staircase codes: FEC for 100 Gb/s OTN,” J. Lightw. Technol., vol. 30,
no. 1, pp. 110–117, Jan. 2012.

[8] N. Abramson, “Cascade decoding of cyclic product codes,” IEEE Trans.
Commun. Tech., vol. 16, no. 3, pp. 398–402, Jun. 1968.

[9] Y.-Y. Jian, H. D. Pfister, K. R. Narayanan, R. Rao, and R. Mazahreh,
“Iterative hard-decision decoding of braided BCH codes for high-speed
optical communication,” in Proc. IEEE Glob. Communication Conf.
(GLOBECOM), Atlanta, GA, 2014.

[10] Y.-Y. Jian, H. D. Pfister, and K. R. Narayanan, “Approaching capacity
at high-rates with iterative hard-decision decoding,” IEEE Trans. Inf.
Theory, vol. 63, no. 9, pp. 5752–5773, Sep. 2017.

[11] A. Farhoodfar, F. R. Kschischang, A. Hunt, B. P. Smith, and J. Lodge,
“Staircase forward error correction coding,” US Patent 8,751,910 B2,
2011.

[12] L. M. Zhang and F. R. Kschischang, “Staircase codes with 6% to 33%
overhead,” J. Lightw. Technol., vol. 32, no. 10, pp. 1999–2002, May
2014.

[13] C. Häger, A. Graell i Amat, H. D. Pfister, A. Alvarado, F. Brännström,
and E. Agrell, “On parameter optimization for staircase codes,” in Proc.
Optical Fiber Communication Conf. (OFC), Los Angeles, CA, 2015.

[14] C. Häger, H. D. Pfister, A. Graell i Amat, and F. Brännström, “Density
evolution for deterministic generalized product codes on the binary
erasure channel at high rates,” IEEE Trans. Inf. Theory, vol. 63, no. 7,
pp. 4357–4378, Jul. 2017.

[15] ——, “Density evolution and error floor analysis of staircase and braided
codes,” in Proc. Optical Fiber Communication Conf. (OFC), Anaheim,
CA, 2016.

[16] C. Condo, P. Giard, F. Leduc-Primeau, G. Sarkis, and W. J. Gross,
“A 9.96 dB NCG FEC scheme and 164 bits/cycle low-complexity
product decoder architecture,” IEEE Trans. Circuits and Systems I:
Fundamental Theory and Applications (accepted for publication), 2017.
[Online]. Available: https://arxiv.org/pdf/1610.06050v2.pdf

[17] H. C. Chang, C. B. Shung, and C. Y. Lee, “A Reed–Solomon product-
code (RS-PC) decoder chip for DVD applications,” IEEE J. Solid-State
Circuits, vol. 36, no. 2, pp. 229–238, Feb. 2001.

[18] J. Kim, N. Hardavellas, K. Mai, B. Falsafi, and J. C. Hoe, “Multi-bit error
tolerant caches using two-dimensional error coding,” in Proc. ACM/IEEE
Int. Symp. Microarchitecture (MICRO), 2007.

[19] V. Tam Van and S. Mita, “A novel error correcting system based on
product codes for future magnetic recording channels.” IEEE Trans.
Magnetics, vol. 56, no. 10, pp. 3320–3323, Oct. 2011.

[20] C. Yang, Y. Emre, and C. Chakrabarti, “Product code schemes for error
correction in MLC NAND flash memories,” IEEE Trans. VLSI Systems,
vol. 20, no. 12, pp. 2302–2314, Dec. 2012.

[21] S. Emmadi, K. R. Narayanan, and H. D. Pfister, “Half-product codes for
flash memory,” in Proc. Non-Volatile Memories Workshop, San Diego,
CA, 2015.

12

[22] R. M. Pyndiah, “Near-optimum decoding of product codes: block turbo
codes,” IEEE Trans. Commun., vol. 46, no. 8, pp. 1003–1010, Aug.
1998.

[23] R. Lucas, M. Bossert, and M. Breitbach, “On iterative soft-decision
decoding of linear binary block codes and product codes,” IEEE J. Sel.
Areas Commun., vol. 16, no. 2, pp. 276–296, Feb. 1998.

[24] M. Schwartz, P. Siegel, and A. Vardy, “On the asymptotic performance
of iterative decoders for product codes,” in Proc. IEEE Int. Symp.
Information Theory (ISIT), Adelaide, SA, 2005.

[25] J. Justesen and T. Høholdt, “Analysis of iterated hard decision decoding
of product codes with Reed-Solomon component codes,” in Proc. IEEE
Information Theory Workshop (ITW), Tahoe City, CA, 2007.

[26] L. M. Zhang, D. Truhachev, and F. R. Kschischang, “Spatially-coupled
split-component codes with iterative algebraic decoding,” IEEE Trans.
Inf. Theory, vol. 64, no. 1, pp. 205–224, Jan. 2017.

[27] D. Truhachev, A. Karami, L. Zhang, and F. Kschischang, “Decod-
ing analysis accounting for mis-corrections for spatially-coupled split-
component codes,” in Proc. IEEE Int. Symp. Information Theory (ISIT),
Barcelona, Spain, 2016.

[28] L. Holzbaur, H. Bartz, and A. Wachter-Zeh, “Improved decoding and
error floor analysis of staircase codes,” in Proc. Int. Workshop on Coding
and Cryptography (WCC), Saint Petersburg, Russia, 2017.

[29] R. J. McEliece and L. Swanson, “On the decoder error probability for
Reed-Solomon codes,” IEEE Trans. Inf. Theory, vol. 32, no. 5, pp. 701–
703, Sep. 1986.

[30] S. Sridharan, M. Jarchi, and T. Coe, “Product code based forward error
correction system,” US Patent 6,810,499 B2, 2003.

[31] C. Condo, G. Sarkis, P. Giard, W. J. Gross, and S. Member, “Stall
pattern avoidance in polynomial product codes,” in Proc. IEEE Global
Conf. Signal and Information Processing (GlobalSIP), Washington, DC,
2016.

[32] T. Mittelholzer, T. Parnell, N. Papandreou, and H. Pozidis, “Improving
the error-floor performance of binary half-product codes,” in Proc. Int.
Symp. Information Theory and its Applications (ISITA), Montenery, CA,
2016.

[33] B. P. Smith, “Error-correcting codes for fibre-optic communication
systems,” Ph.D. dissertation, University of Toronto, 2011.

[34] C. Häger and H. D. Pfister, “Miscorrection-free decoding of staircase
codes,” in Proc. European Conf. Optical Communication (ECOC),
Gothenburg, Sweden, 2017.

[35] S. Hirasawa, M. Kasahara, Y. Sugiyama, and T. Namekawa, “Modified
product codes,” IEEE Trans. Inf. Theory, vol. 30, no. 2, pp. 299–306,
Mar. 1984.

[36] M. Alipour, O. Etesami, G. Maatouk, and A. Shokrollahi, “Irregular
product codes,” in Proc. IEEE Information Theory Workshop (ITW),
Lausanne, Switzerland, 2012.

[37] D. Gorenstein, W. W. Peterson, and N. Zierler, “Two-error correcting
Bose-Chaudhuri codes are quasi-perfect,” Inf. Control, vol. 3, no. 3, pp.
291–294, 1960.

[38] B.-Y. Wang and F. Zhang, “On the precise number of (0,1)-matrices in
U(R,S),” Discrete Mathematics, vol. 187, pp. 211–220, 1998.

APPENDIX A
DENSITY EVOLUTION FOR PRODUCT CODES

In this appendix, we briefly describe how to reproduce the
DE results that are shown in Figs. 2, 4, and 5.

Consider a BCH component code with parameters (ν, t, e).
The goal is to predict the waterfall BER of the PC P(C) under
iterative BDD as a function of the BSC crossover probability
p. Recall that the component code length is n = 2ν−1+e and
the number of iterations is `, where each iteration consists of
two half-iterations with row and column codes being decoded
separately. We define c = pn, L = 2, and η = (0 1

1 0). Further,
let A(l) = {1} for l odd and A(l) = {2} for l even, where
l ∈ [2`]. Finally, let Ψ≥t(λ) = 1 − e−λ

∑t−1
i=0

λi

i! be the tail
probability of a Poisson random variable with mean λ. With
these definition, we recursively compute

x
(l)
i =

{
Ψ≥t

(
c
L

∑L
j=1 ηi,jx

(l−1)
j

)
if i ∈ A(l)

x
(l−1)
i otherwise

(11)

for i ∈ [L] and l = 1, 2, . . . , 2`, using x
(0)
i = 1, i ∈ [L], as

initial values. Collecting all final values in a vector as x =

(x
(2`)
1 , . . . , x

(2`)
L), the BER is then approximated as

BER(p) ≈ pxηx
ᵀ

‖η‖2F
, (12)

where ‖η‖2F is the number of 1s in η.
The above procedure can be applied to compute the asymp-

totic performance for a wide variety of GPCs by simply
adjusting the code parameters L and η, and the decoding
schedule A(l). For example, for staircase codes, the matrix
η is an L × L matrix with entries ηi,i+1 = ηi+1,i = 1 for
i ∈ [L − 1] and zeros elsewhere. The procedure can also
be generalized to handle a mixture of component codes with
different error-correcting capabilities as used for example in
Section IV-C (see Fig. 6). For more details on this topic, we
refer the interested reader to [14].

Christian Häger (S’11–M’16) received the Dipl.-Ing. degree (M.Sc. equiva-
lent) in electrical engineering from Ulm University, Ulm, Germany, in 2011
and his Ph.D. degree in communication theory from Chalmers University
of Technology, Gothenburg, Sweden, in 2016. Since August 2016, he is
a postdoctoral researcher at the Department of Electrical and Computer
Engineering at Duke University, Durham, USA, and, since April 2017,
also at the Department of Electrical Engineering at Chalmers University at
Technology. His research interests include modern coding theory, fiber-optic
communications, and machine learning. He received the Marie Skłodowska-
Curie Global Fellowship from the European Commission in 2017.

Henry D. Pfister (S’99–M’03–SM’09) received his Ph.D. in electrical engi-
neering in 2003 from the University of California, San Diego and is currently
an associate professor in the Electrical and Computer Engineering Department
of Duke University. Prior to that, he was a professor at Texas A&M University
(2006-2014), a post-doctoral fellow at the École Polytechnique Fédérale de
Lausanne (2005-2006), and a senior engineer at Qualcomm Corporate R&D
in San Diego (2003-2004).

He received the NSF Career Award in 2008 and a Texas A&M ECE
Department Outstanding Professor Award in 2010. He is a coauthor of
the 2007 IEEE COMSOC best paper in Signal Processing and Coding
for Data Storage and a coauthor of a 2016 Symposium on the Theory
of Computing (STOC) best paper. He served as an Associate Editor for
the IEEE TRANSACTIONS ON INFORMATION THEORY (2013-2016) and a
Distinguished Lecturer of the IEEE Information Theory Society (2015-2016).

His current research interests include information theory, communications,
probabilistic graphical models, and machine learning.

