
Miscorrection-free Decoding of Staircase Codes

Downloaded from: https://research.chalmers.se, 2019-05-11 12:19 UTC

Citation for the original published paper (version of record):
Häger, C., Pfister, H. (2018)
Miscorrection-free Decoding of Staircase Codes
European Conference on Optical Communication, ECOC, 2017-September: 1-3
http://dx.doi.org/10.1109/ECOC.2017.8345919

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology.
It covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004.
research.chalmers.se is administrated and maintained by Chalmers Library

(article starts on next page)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Chalmers Research

https://core.ac.uk/display/198055168?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Miscorrection-free Decoding of Staircase Codes

Christian Häger(1,2) and Henry D. Pfister(2)

(1) Department of Signals and Systems, Chalmers University, Sweden, B christian.haeger@chalmers.se
(2) Department of Electrical and Computer Engineering, Duke University, US

Abstract We propose a novel decoding algorithm for staircase codes which reduces the effect of undetected
component code miscorrections. The algorithm significantly improves performance, while retaining a low-complexity
implementation suitable for high-speed optical transport networks.

Introduction
Hard-decision forward error correction (HD-FEC) can
offer dramatically reduced complexity compared to soft-
decision FEC, at the price of some performance loss.
HD-FEC is used, for example, in regional/metro optical
transport networks (OTNs) 1 and has also been consid-
ered for other cost-sensitive applications such as opti-
cal data center interconnects2. Our focus is on stair-
case codes3, which provide excellent performance and
have received considerable attention in the literature.

Similar to classical product codes, staircase codes
are built from short component codes and decoded by
iteratively applying bounded-distance decoding (BDD)
to the component codes. For the purpose of this pa-
per, BDD of a t-error-correcting component code can
be seen as a black box that operates as follows. Let
r = c + e, where c, e ∈ {0, 1}n denote a component
codeword and random error vector, respectively, and n
is the code length. BDD yields the correct codeword c

if dH(r, c) = wH(e) ≤ t, where dH and wH denote Ham-
ming distance and weight, respectively. On the other
hand, if wH(e) > t, the decoding either fails or there ex-
ists another codeword c′ such that dH(r, c

′) ≤ t. In the
latter case, BDD is technically successful but the de-
coded codeword c′ is not the correct one. Such miscor-
rections are highly undesirable because they introduce
additional errors into the iterative decoding process and
significantly degrade performance.

In this paper, we propose a novel iterative HD decod-
ing algorithm for staircase codes which can detect and
avoid most miscorrections. The algorithm provides sig-
nificant post-FEC bit error rate improvements, in par-
ticular when t is small (which is typically the case in
practice). As an example, for t = 2, the algorithm can
improve performance by roughly 0.4 dB and reduce the
error floor by over an order of magnitude, up to the
point where the iterative decoding process is virtually
miscorrection-free. Error floor improvements are partic-
ularly important for applications with stringent reliability
constraints such as OTNs.

Staircase codes and iterative decoding
Let C be a binary linear component code with length n
and dimension k. Assuming that n is even, a staircase
code with rate R = 2k/n − 1 based on C is defined
as the set of all matrix sequences Bk ∈ {0, 1}a×a, k =

0, 1, 2, . . . , such that the rows in [Bᵀ
k−1,Bk] for all k ≥ 1

form valid codewords of C, where a = n/2 is the block
size and B0 is the all-zero matrix.

We use extended primitive Bose–Chaudhuri–
Hocquenghem (BCH) codes as component codes, i.e.,
a BCH code with an additional parity bit formed by
adding (modulo 2) all 2ν − 1 coded bits of the BCH
code, where ν is the Galois field extension degree.
The overall extended code then has length n = 2ν

and guaranteed dimension k = 2ν − νt − 1. The extra
parity bit increases the guaranteed minimum distance
to dmin = 2t+ 2.

The conventional decoding procedure for staircase
codes uses a sliding window comprising W received
blocks Bk,Bk+1, . . . ,Bk+W−1. This is illustrated in
Fig. 1 for W = 5 and a = 6. It is convenient to
identify each component code in the window by a tu-
ple (i, j), where i ∈ {1, 2, . . . ,W − 1} indicates the
position relative to the current decoding window and
j ∈ {1, 2, . . . , a} enumerates all codes at a particular
position. As an example, the component codes (1, 3)

and (4, 4) are highlighted in blue in Fig. 1. Pseudocode
for the conventional decoding procedure is given in
Algorithm 1 below. Essentially, all component codes
are decoded ` times, after which the decoding window
shifts to the next position. Note that after the window
shifts, the same component code is identified by a dif-
ferent position index.

Performance analysis
Analyzing the post-FEC bit error rate of staircase codes
under the conventional decoding procedure is chal-
lenging. A major simplification is obtained by assuming
that no miscorrections occur in the BDD of the com-
ponent codes. In this case, it is possible to rigorously
characterize the asymptotic performance as a → ∞
using a technique called density evolution4. Moreover,
the error floor can be estimated by enumerating stop-
ping sets, also known as stall patterns3. However, if
miscorrections are taken into account, both the asymp-
totic and error floor predictions are nonrigorous and be-
come inaccurate.

Algorithm 1: Window decoding of staircase codes

1 k ← 0
2 while true do
3 for l = 1, 2, . . . , ` do
4 for i = W,W − 1, . . . , 1 do
5 for j = 1, 2, . . . , a do
6 apply BDD to component code (i, j)

7 output decision for Bk and shift window
8 k ← k + 1

mailto:christian.haeger@chalmers.se

p
o
s.

1

p
o
s.

3

pos. 2

pos. 4

b

b

b

b

b

b

× × × ××

××× ××

1 2 3 4 5 6

1 2 3 4 5 6

1

2

3

4

5

6

1

2

3

4

5

6

Bk

Bk+1

Bk+2

Bk+3

Bk+4

Fig. 1: Staircase decoding window of size W = 5

Example 1: Let ν = 8 and t = 2, which gives a stair-
case code with a = 128 and R = 0.867. For window
decoding parameters W = 8 and ` = 7, the density
evolution and error floor predictions are shown in Fig. 2
by the dashed lines. The analysis can be verified by
performing idealized decoding, where miscorrections
are prevented during BDD. The results are shown by
the blue line (triangles) in Fig. 2 and accurately match
the theoretical predictions. However, the actual perfor-
mance with true BDD deviates from the idealized de-
coding, as shown by the red line (squares). 4

The performance degradation with respect to ideal-
ized decoding becomes less severe for larger values of
t. Unfortunately, small values of t are commonly used
in practice because BDD can be implemented very effi-
ciently in this case. We note at this point that there exist
several works that attempt to quantify the performance
loss due to miscorrections. In terms of error floor, the
work in 3 introduces a heuristic parameter, whose value
unfortunately has to be estimated from simulative data.
In terms of asymptotic performance, the authors are
aware of two works5,6, both of which do not directly ap-
ply to staircase codes, but to a related code ensemble.

Proposed algorithm
The main idea in order to improve performance is to
systematically exploit the fact that miscorrections lead
to inconsistencies, in the sense that two component
codes that protect the same bit may disagree on its
value. In the following, we show how these inconsis-
tencies can be used to (a) reliably prevent miscorrec-
tions and (b) identify miscorrected codewords in order
to revert their decoding decisions.

Our algorithm relies on so-called anchor codewords,
which have presumably been decoded without miscor-
rections. Roughly speaking, we want to make sure that
bit flips do not lead to inconsistencies with anchor code-
words. Consequently, decoding decisions from code-
words that are in conflict with anchors are not applied.
However, a small number of anchor codewords may be
miscorrected and we allow for the decoding decisions

10−11

10−9

10−7

10−5

10−3

10−1

pre-FEC bit error rate

p
o
st
-F

E
C

b
it

er
ro
r
ra
te

0.8 0.9 1.0 1.1 1.2 1.3 1.4 · 10−2

bC bC bC bC bC bC bC bC

bC

bC

bC

bC

bC
bC bC

rS
rS

rS
rS

rS

rS

rS

rS

rS
rS rS rS rS

uT uT uT uT uT uT uT uT uT
uT

uT

uT

uT

uT

uT
uT uT

d
e
n
si
ty

e
v
o
lu
ti
o
n

error
floor

conventional
decoding

idealized
decoding

proposed

Fig. 2: Results for component codes with n = 256 and t = 2

of anchors to be reverted if too many other codewords
are in conflict with a particular anchor.

In order to make this more precise, we regard the
BDD of a component code (i, j) as a two-step pro-
cess. In the first step, the decoding is performed and
the outcome is either a set of error locations Ei,j ⊂
{1, 2, . . . , n}, where |Ei,j | ≤ t, or a decoding failure. In
the second step, error-correction is performed by flip-
ping the bits corresponding to the error locations. Ini-
tially, we only perform the decoding step for all compo-
nent codes, i.e., all component codes in the decoding
window are decoded without applying any bit flips. We
then iterate ` times over the component codes in the
same fashion as in Algorithm 1, but replacing line 6 with
the following four steps:

1. If no decoding failure occurred for the component
codeword (i, j), we proceed to step 2, otherwise,
we skip to the next codeword.

2. For each e ∈ Ei,j , check if e corresponds to an
anchor codeword. If so, let C be the number of
other conflicts that this anchor is involved in. If
C < T , where T is a fixed threshold, the codeword
(i, j) is frozen and we skip to the next codeword.
Frozen codewords are always skipped (in the loop
of Algorithm 1) for the rest of the decoding unless
any of their bits change. If C ≥ T , the anchor is
marked for backtracking.

3. Error-correction for codeword (i, j) is applied, i.e.,
the bits at all error locations in Ei,j are flipped. We
also apply the decoding step again for codewords
that had their syndrome changed due to a bit flip.
Finally, the codeword (i, j) becomes an anchor.

4. Lastly, previously applied bit flips are reversed for
all anchor codewords that were marked for back-
tracking during step 2. These codewords are no
longer anchors and all frozen codewords that were
in conflict with these codewords are unfrozen.

Note that steps 3 and 4 are not reached for codeword
(i, j) if the corresponding bit flips of that codeword are
inconsistent with any anchor for which C < T holds.

The following two examples illustrate the above steps
for t = 2 and T = 1 with the help of Fig. 1.

Example 2: Assume that we are at (i, j) = (3, 4),
corresponding to a component code with three at-
tached errors shown by the black crosses. The code-
word is miscorrected with E3,4 = {10, 12} shown by the
red crosses. Assuming that the codeword (4, 4) is an
anchor without any other conflicts, the codeword (3, 4)

is frozen during step 2 and no bit flips are applied. 4
Example 3: Let the codeword (1, 3) in Fig. 1 be a

miscorrected anchor without conflicts and error loca-
tions E1,3 = {5, 7}. Assume that we are at (i, j) =

(2, 1). The codeword (2, 1) has one attached error, thus
E2,1 = {3}. During step 2, the codeword (2, 1) is frozen
and we skip to codeword (2, 2) with E2,2 = {3, 10}. The
bit flip at e = 3 is inconsistent with the anchor (1, 3), but,
since this anchor is already in conflict with (2, 1) (and,
hence, C = T = 1), the anchor is marked for backtrack-
ing. The bits according to E2,2 are then flipped in step
3 and the anchor (1, 3) is backtracked in step 4. 4

The previous example shows how a miscorrected an-
chor is backtracked. Since we do not know if an anchor
is miscorrected or not, it is also possible that we mis-
takenly backtrack “good” anchors. Fortunately, this is
unlikely to happen for long component codes because
the additional errors due to miscorrections are approx-
imately randomly distributed within the codeword. This
implies that errors of two (or more) miscorrected code-
words rarely overlap.

For the algorithm to work well, a sufficiently large
fraction of codewords at each position should be “good”
anchors. However, when the decoding window shifts
and a new block is added, no anchors exist at the last
position W − 1. We found that it is therefore benefi-
cial to artificially restrict the error-correcting capability
of these component codes in order to avoid anchor-
ing too many miscorrected codewords. For example,
for t = 2, all component codes at position W − 1

are treated as single-error-correcting. This restriction
reduces the probability of miscorrecting a component
code by roughly a factor of n, which is significant for
long component codes7. Note that due to the window
decoding, we are merely gradually increasing the error-
correction capability: once the decoding window shifts,
the component codes shift as well and they are then
decoded with their full error-correcting capability.

We remark that essentially the same algorithm can
also be applied to product codes and other related code
constructions, e.g., half-product or braided codes.

Decoding complexity
In terms of decoding complexity, one of the main ad-
vantages of iterative HD decoding of staircase codes
compared to message-passing decoding of LDPC
codes is the significantly reduced decoder data flow
requirement3. While a thorough complexity analysis
for the proposed algorithm is beyond the scope of this
paper, we note that the algorithm can operate entirely
in the syndrome domain, thereby leveraging the syn-
drome compression effect that is described in 3. How-

ever, additional storage is needed compared to the con-
ventional decoding to keep track of the error locations
of anchor codewords (in case they are backtracked)
and to store the conflicts between codewords.

Results and Discussion
We consider the same parameters as in Example 1,
i.e., ν = 8, t = 2, W = 8, and ` = 7. The con-
flict threshold is set to T = 1 and we apply the error-
correction capability restriction for component codes at
position W − 1 as described above. Simulation results
for the proposed algorithm are shown in Fig. 2 by the
green line (circles). It can be seen that the performance
is significantly improved compared to the conventional
decoding. In particular in terms of the error floor, the
performance is virtually identical to the idealized decod-
ing where miscorrections are prevented. Overall, the
improvements translate into an additional coding gain
of around 0.4 dB at a post-FEC bit error rate of 10−9

over the conventional decoding.
Note that the staircase code parameters were cho-

sen such that the error floor is high enough to be within
the reach of software simulations. For OTNs, post-FEC
bit error rates below 10−15 are typically required. In
this case, other code parameters should be used or
one may apply post-processing techniques to reduce
the error floor below the application requirements8.

Conclusion
We have shown that the post-FEC performance of stair-
case codes can be significantly improved by adopting a
modified iterative HD decoding algorithm that reduces
the effect of miscorrections. For component codes with
error-correcting capability t = 2, an additional coding
gain of around 0.4 dB can be achieved. Moreover, the
error floor can be reduced by over an order of magni-
tude, giving virtually miscorrection-free performance.

Acknowledgements
This work is part of a project that has received funding from the Euro-
pean Union’s Horizon 2020 research and innovation programme under
the Marie Skłodowska-Curie grant agreement No. 749798. The work
was also supported in part by the National Science Foundation (NSF)
under Grant No. 1609327. Any opinions, findings, recommendations,
and conclusions expressed in this material are those of the authors and
do not necessarily reflect the views of these sponsors.

References
[1] J. Justesen, K. J. Larsen, and L. A. Pedersen, “Error correcting coding for

OTN,” IEEE Commun. Mag., vol. 59, no. 9, pp. 70–75, Sep. 2010.
[2] F. Yu, M. Li, N. Stojanovic, C. Xie, Z. Xiao, and L. Li, “FPGA demonstra-

tion of stretched continuously interleaved BCH code with low error floor for
short-range optical transmission,” in Proc. Optical Fiber Communication Conf.
(OFC), San Diego, CA, 2017, p. W1J.5.

[3] B. P. Smith, A. Farhood, A. Hunt, F. R. Kschischang, and J. Lodge, “Staircase
codes: FEC for 100 Gb/s OTN,” J. Lightw. Technol., vol. 30, no. 1, pp. 110–117,
Jan. 2012.

[4] C. Häger, H. D. Pfister, A. Graell i Amat, and F. Brännström, “Density evolution
for deterministic generalized product codes on the binary erasure channel
at high rates,” IEEE Trans. Inf. Theory (to appear), 2017. [Online]. Available:
https://arxiv.org/abs/1512.00433

[5] Y.-Y. Jian, H. D. Pfister, and K. R. Narayanan, “Approaching capacity at
high-rates with iterative hard-decision decoding,” IEEE Trans. Inf. Theory (to
appear), 2017. [Online]. Available: https://arxiv.org/abs/1202.6095

[6] D. Truhachev, A. Karami, L. Zhang, and F. Kschischang, “Decoding analysis
accounting for mis-corrections for spatially-coupled split-component codes,” in
Proc. IEEE Int. Symp. Information Theory (ISIT), Barcelona, Spain, 2016.

[7] J. Justesen, “Performance of product codes and related structures with iterated
decoding,” IEEE Trans. Commun., vol. 59, no. 2, pp. 407–415, Feb. 2011.

[8] L. Holzbaur, H. Bartz, and A. Wachter-Zeh, “Improved decoding and error floor
analysis of staircase codes,” arXiv:1704.01893 [cs.IT], Apr. 2017. [Online].
Available: https://arxiv.org/abs/1704.01893

https://arxiv.org/abs/1512.00433
https://arxiv.org/abs/1202.6095
https://arxiv.org/abs/1704.01893

