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Abstract—Reed–Muller (RM) codes exhibit good performance
under maximum-likelihood (ML) decoding due to their highly-
symmetric structure. In this paper, we explore the question of
whether the code symmetry of RM codes can also be exploited
to achieve near-ML performance in practice. The main idea
is to apply iterative decoding to a highly-redundant parity-
check (PC) matrix that contains only the minimum-weight dual
codewords as rows. As examples, we consider the peeling decoder
for the binary erasure channel, linear-programming and belief
propagation (BP) decoding for the binary-input additive white
Gaussian noise channel, and bit-flipping and BP decoding for the
binary symmetric channel. For short block lengths, it is shown
that near-ML performance can indeed be achieved in many
cases. We also propose a method to tailor the PC matrix to the
received observation by selecting only a small fraction of useful
minimum-weight PCs before decoding begins. This allows one to
both improve performance and significantly reduce complexity
compared to using the full set of minimum-weight PCs.

I. INTRODUCTION

Recently, the 5G cellular standardization process focused on
error-correcting codes and decoders that are nearly optimal for
short block lengths (e.g., rate-1/2 binary codes with lengths
from 128 to 512). Promising contenders include modified
polar codes, low-density parity-check (LDPC) codes, and tail-
biting convolutional codes [1]–[3]. These results also show that
short algebraic codes such as Reed–Muller (RM) and extended
BCH (eBCH) codes under ML decoding tie or outperform all
the other choices. ML performance can be approached with
methods based on ordered-statistics decoding [4] such as most-
reliable basis (MRB) decoding [5]. Depending on the code and
decoder parameters, the complexity of these methods range
from relatively practical to extremely complex.

Motivated by the good performance of RM codes under ML
decoding and the proof that RM codes achieve capacity on
the binary erasure channel (BEC) [6], we revisit the question
of whether code symmetry can be used to achieve near-ML
performance in practice. This question, in various forms, has
been addressed by several groups over the past years [7]–[9].
In general, one applies a variant of belief-propagation (BP)
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decoding to the Tanner graph defined by a redundant parity-
check (PC) matrix for the code. Often, the redundancy in the
PC matrix is derived from the symmetry (i.e., automorphism
group) of the code. Methods based on redundant PC matrices
are also related to earlier approaches that adapt the PC matrix
during decoding [10]–[12].

Highly-symmetric codes such as RM codes can have a
very large number of minimum-weight (MW) PCs. The main
contribution of this paper is to show that this large set of
MWPCs can be exploited to provide near-ML performance
with several well-known iterative decoding schemes. In par-
ticular, we consider the peeling decoder (PD) for the BEC,
linear-programming (LP) and BP decoding for the binary-
input additive white Gaussian noise (AWGN) channel, and
bit-flipping (BF) and BP decoding for the binary symmetric
channel (BSC). It is worth noting that the idea of using
all MWPCs for decoding appears in [13], even before the
rediscovery of iterative decoding. Their decoding algorithms
are variations of the BF algorithm [14] applied to a redundant
PC matrix. As we will see, the BF algorithms they propose
work remarkably well for the BSC, but result in a performance
loss compared to LP and BP decoding for the AWGN channel.

Using all available MWPCs for decoding can become quite
complex, e.g., the rate-1/2 RM code of length 128 has 94,488
MWPCs. To address this problem, we propose a method to
select only a small fraction of useful MWPC based on the
channel reliabilities. We exploit the fact that, given any small
set of bit positions, there exist efficient methods to find a
MWPC that contains the chosen bits. This process is iterated to
design a redundant PC matrix that is tailored to the received
observation from the channel. The resulting PC matrix can
allow one to both improve performance (by reducing cycles in
the Tanner graph) and reduce complexity. We stress that this
approach works by adapting the PC matrix before decoding
begins. Thus, it is closer in spirit to MRB decoding than to
the adaptive methods employed by [10]–[12].

II. BACKGROUND ON REED–MULLER CODES

RM codes were introduced by Muller in [15]. We use
RM(r,m) to denote the r-th order RM code of length n = 2m,
where 0 ≤ r ≤ m. Each codeword in RM(r,m) is defined
by evaluating a multivariate polynomial f ∈ F2[x1, . . . , xm]
of degree at most r at all points in Fm2 [16]. The code



RM(r,m) has minimum distance dmin = 2m−r and dimension
k =

(
m
0

)
+ · · ·+

(
m
r

)
.

A. Number of Minimum-Weight Parity Checks

For a binary linear code, the codewords of the dual code
define all valid rows of the PC matrix. Since the dual code of
RM(r,m) is RM(m − r − 1,m), the MWPCs of RM(r,m)
thus have weight 2m−(m−r−1) = 2r+1. In order to determine
the number of MWPCs for RM(r,m), one may use the fact
that each MW codeword of RM(m−r−1,m) is the indicator
vector of an (r + 1)-dimensional affine subspace of Fm2 [16].
Based on this, one can show that the number of MWPCs is
given by [16]

F (r,m) = 2m−r−1
r∏
i=0

2m−i − 1

2r+1−i − 1
. (1)

For example, the [128, 64, 16] code1 RM(3, 7) has 94,488
weight-16 PCs.

B. Generating Minimum-Weight Parity Checks

The connection between MWPCs and affine subspaces also
provides an efficient method for generating a MWPC that is
connected to any given set of r+2 codeword bits. In particular,
one can simply complete the affine subspace containing the
chosen r+2 points. If the chosen set of points is not affinely
independent, then one can extend the set to define an (r+1)-
dimensional affine subspace. This procedure is described in
Algorithm 1. The algorithm will be used to construct a PC
matrix for RM(r,m) that is tailored to a particular received
sequence. This procedure is described in the next section.

III. PARITY-CHECK MATRIX ADAPTATION

The PC matrix containing all MW dual codewords as rows is
denoted by Hfull. This matrix can be used directly for iterative
decoding, e.g., BP decoding. In general, however, the decoding
complexity for the considered iterative schemes scales linearly
with the number of rows in the PC matrix. Thus, depending
on the RM code, decoding based on the full matrix Hfull may
result in high complexity.

On the other hand, not all the rows of Hfull are equally
useful in the decoding of a particular received observation
vector y = (y1, . . . , yn)

>. For instance, if all the bits involved
in a given PC are relatively unaffected by the channel, the
associated PC would be uninformative for the decoding pro-
cess. Therefore, our approach to reduce complexity is to pick
only the rows of Hfull that are expected to be useful for the
decoding. The choice of rows is based on y and the resulting
PC matrix containing the subset of rows is denoted by Hsub.

1A linear code is called an [n, k, d] code if it has length n, dimension k,
and minimum-distance d.

Algorithm 1 For RM(r,m), generate MWPC w ∈ Fn2 with
ones in bit positions i1, . . . , ir+2 ∈ {1, . . . , n}, where n = 2m

1: Let row-vector vj ∈ Fm2 be the binary expansion of ij−1

2: Form matrix A ∈ F(r+1)×m
2 with rows aj = vj ⊕ vr+2

3: B ← reduced row echelon form of A
4: while B contains all-zero rows do
5: In first column that is not equal to a unit vector, add

a one at row position of the first all-zero row
6: end while
7: Initialize w ∈ Fn2 to the all-zero vector
8: for all l ∈ {0, . . . , 2r+1 − 1} do
9: ul ← m-bit binary expansion of l

10: zl ← ulB ⊕ vr+2

11: sl ← integer represented by binary expansion zl
12: wsl+1 ← 1
13: end for

A. General Idea

In order to illustrate the general idea, suppose the codeword
bits are transmitted through a channel and the received values
are classified either as good or bad. For example, on the
BEC an unerased bit would be labeled good while an erased
bit would be called bad. Then, Algorithm 1 can be used to
generate a MWPC that contains one bad bit of interest, r+ 1
randomly chosen good bits, and some set of 2r+1−r−2 other
bits. From an information-theoretic point of view, this MWPC
is expected to provide more information about the bad bit of
interest than a random MWPC because it involves a guaranteed
number of r+1 good bits. Repeating this process allows one
to generate a PC matrix for RM(r,m) that is biased towards
informative MWPCs.

B. Reliability Criterion

As a first step, the bit positions I = {1, 2, 3, . . . , n} are di-
vided into two disjoint sets G and B based on their reliability.
To that end, one first computes the vector of log-likelihood
ratios (LLRs) γ = (γ1, . . . , γn)

> ∈ Rn based on the received
vector y. The vector γ is then sorted, i.e., (t1, . . . , tn) is a
permutation of bit indexes such that i > j ⇒ |γti | ≥ |γtj |.
We then set G = {tk ∈ I : k ≤ fn} and B = I − G, where
0 ≤ f ≤ 1 is a tunable parameter and fn is assumed to be an
integer.

Remark 1. The LLR sorting can be applied for an arbitrary
binary-input memoryless channel with the exception of the
BSC. The BSC is discussed separately in Sec. V-C below.

Remark 2. The use of sorting may be avoided by in-
stead thresholding the LLRs. However, our numerical studies
showed that this results in some loss for the short block-lengths
we considered.

C. Tailoring Hsub to the Received Vector

The sets of reliable and unreliable bit positions G and B
are then used to generate an overcomplete PC matrix that is
tailored to the received vector y. The proposed method is



Algorithm 2 For index sets G/B of good/bad bits, generate
a tailored PC matrix Hsub with s rows

1: Initialize Hsub to an empty matrix
2: while Hsub has less than s rows do
3: for all b ∈ B do
4: Draw {g1, . . . , gr+1} random positions from G
5: Generate MWPC w based on {b, g1, . . . , gr+1}
6: if w is not already a row in Hsub then
7: Append row w to Hsub
8: end if
9: end for

10: end while

illustrated in Algorithm 2 below, where s ∈ N is the targeted
number of rows of Hsub. Essentially, one iterates through the
set of unreliable bit positions B, pairing at each step one
unreliable bit with r+1 reliable ones. Based on the resulting
set of r+2 bit positions, Algorithm 1 is then used to generate
a MWPC (line 5). The generated MWPC is accepted if it does
not already exist in Hsub. We remark that the if-condition in
line 6 of Algorithm 2 can be implemented very efficiently by
applying a hashing function to the vector w and storing the
result in a hashtable.

IV. DECODING ALGORITHMS

In this section, we briefly review the decoding algorithms
that are used in this paper.

A. Peeling Decoder

The PD is an iterative decoder for binary linear codes
transmitted over the BEC [14]. It operates on the PC matrix of
the code and tracks whether the value of each bit is currently
known or unknown. If there is a PC equation with exactly one
unknown bit, then the value of that bit can be computed from
the equation and the process is repeated. Once there is no such
PC, the algorithm terminates.

B. Belief Propagation

BP decoding is an iterative method for decoding binary
linear codes transmitted over memoryless channels [14]. It
works by passing messages along the edges of the Tanner
graph. If the graph is a tree, then BP decoding produces
optimal decisions. In general, it is suboptimal and its loss in
performance is often attributed to cycles in the graph.

For a code whose Tanner graph has many cycles, it is
known that introducing a scaling parameter can improve per-
formance [7]. When using a redundant PC matrix, this can also
be motivated by the existence of correlations between input
messages to a bit node. Since BP is based on an independence
assumption, these correlations typically cause it to generate
bit estimates that are overconfident. If these messages are
represented by LLRs, then this overconfidence can be reduced
by scaling messages by a constant less than one. This approach
was also proposed to mitigate the overconfidence associated
with min-sum decoding [17]. In this work, the input messages
to the bit nodes are scaled by the factor w.

C. Linear-Programming Decoding

LP decoding was introduced in [18]. It is based on relaxing
the ML decoding problem into the linear program

min

n∑
i=1

xiγi subject to x ∈
⋂
j∈J
Pj ,

where Pj denotes the convex hull of all {0, 1}n vectors that
satisfy the j-th PC equation. If the solution vector lies in
{0, 1}n, then it is the ML codeword. In theory, a nice property
of LP decoding is that the answer is static and does not depend
on the presence of cycles in the Tanner graph. But, in practice,
solving the LP with conventional solvers can be slow and
cycles may affect the convergence speed.

We employ LP decoding using the alternating direction
method of multipliers (ADMM), as proposed in [19]. The
method is based on an augmented Lagrangian which is param-
eterized by a tunable scaling parameter µ > 0 [19, Eq. (3.2)].
Then, LP decoding can be implemented as a message-passing
algorithm with an update schedule similar to BP, where the
update rules can be found in [19, Sec. 3.1]. The algorithm
stops after Tmax iterations or when a valid codeword is found.

D. Bit-Flipping Decoding

BF is an iterative decoding method for binary linear codes
transmitted over the BSC [14]. In its simplest form, it is based
on flipping a codeword bit that maximally reduces the number
of PC equations that are currently violated. In one case, we
also compare with the weighted BF (WBF) decoder proposed
in [13]. This extends the idea to general channels by including
weights and thresholds to decide which bits to flip.

E. Most-Reliable Basis Decoding

MRB decoding, which was introduced by Dorsch in
1974 [5], is based on sorting the received vector according
to reliability (similar to Algorithm 2). After sorting, it uses
linear algebra to find an information set (i.e., a set of positions
whose values determine the entire codeword) containing the
most reliable bits. Then, it assumes there are at most ν errors in
the k reliable positions. Then, one can encode the information
set implied by each of these error patterns and generate a list
of
(
k
ν

)
candidate codewords. Finally, the ML decoding rule is

used to choose the most-likely candidate codeword.

V. NUMERICAL RESULTS

For the numerical results, we consider various RM codes
with length n = 32 and n = 128. The code parameters
are summarized in Table I. For all data points, at least 100
codeword errors were recorded.

A. The Binary Erasure Channel

For a linear code on the BEC, the complexity of ML
decoding is at most cubic in the block-length [14]. Still, the
BEC provides a useful proving ground for general iterative-
decoding schemes. In this section, we evaluate the PD for RM
codes with redundant PC matrices derived from the complete
set of MWPCs.
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Fig. 1. Results of three numerical performance comparisons

For brevity, we focus only on the rate-1/2 codes RM(2, 5)
and RM(3, 7). Fig. 1a shows simulation results for ML decod-
ing, the PD with all MWPCs (100%), and the PD when the
PC matrix is tailored to the received sequence using a fixed
fraction of available MWPCs. Note that for the BEC, the sets
G and B used in Algorithm 2 are simply the unerased and
erased bits, i.e., the LLR sorting is not employed.

For the shorter code, all three curves are quite close together.
For the longer code, the PD matches the ML decoder when
the full set of MWPCs is used. The performance loss of the
low-complexity decoder is relatively small for the range tested.

B. The Binary-Input Additive White Gaussian Noise Channel

For the binary-input AWGN channel, we consider both LP
and BP decoding. For the LP decoding, the ADMM solver is
employed with parameters µ = 0.03 and Tmax = 1000. For
BP, we perform ` = 30 iterations and the weighting factor w
is optimized for each scenario. As a comparison, we use MRB
with ν = 3 to approximate ML performance.

First, we fix the number of rows in Hsub and illustrate how
different strategies for picking MWPCs affect the performance
under BP decoding. To that end, the code RM(3,7) is consid-
ered with s = 2835, i.e., Hsub contains s/F (3, 7) ≈ 3% of the
complete set of MWPCs. Simulation results are presented in
Fig. 1b. The performance is shown for three different values
for the parameter f . The proposed tailoring strategy leads
to better performance compared to picking a random set of
MWPCs, with a performance gain up to around 0.5 dB at
a block-error rate of 10−3. It can also be seen that for an
optimized choice of f = 1/4, the tailoring strategy leads to a
better performance compared to using the full set of MWPCs.
This can be attributed to the reduced number of cycles in the

TABLE I
CODE PARAMETERS

code n k dmin d⊥min rate F (r,m)

RM(2, 5) 32 16 8 8 0.5 620
RM(2, 7) 128 29 32 8 0.23 188,976
RM(3, 7) 128 64 16 16 0.5 94,488
RM(4, 7) 128 99 8 32 0.77 10,668

Tanner graph for Hsub compared to Hfull. In the following,
we fix f = 1/4 for all other simulations, noting that it may
be possible to increase performance by re-optimizing f for
each considered case. We also remark that for LP decoding,
similar observations regarding the optimal value of f can be
made and the results are omitted.

Simulation results for RM(2, 5) using LP and BP decoding
are shown in Fig. 1c. For this code, LP decoding outperforms
BP decoding and gives virtually identical block-error rates
as MRB decoding using both Hfull and Hsub with 20% of
available MWPCs. For this case, it can be seen again that BP
decoding benefits from using a sub-sampled PC matrix Hsub
compared to using Hfull. Also, a simulation point based on
WBF is included from [13] to show the superiority of LP and
BP decoding. Comparing with [8, Fig. 5], these curves nearly
match the ML results for the [31,16,7] BCH code and our “BP
(10%)” result is quite close to their “MBBP l = 6” curve.

Lastly, we study the performance of three RM codes with
length n = 128 and a range of rates. The performance is
shown in Fig. 2 for a varying number of rows in Hsub. From
these graphs, we see that the best performance is achieved
at a different fraction of rows for each code. In particular,
one requires around 1890 rows for RM(2, 7) (1% of Hfull),
4724 rows for RM(3, 7) (5% of Hfull), and 1067 rows for
RM(4, 7) (10% of Hfull). These values were chosen so that
the performance of the best scheme was roughly 0.25 dB from
MRB at a block-error rate of 10−2.

C. The Binary Symmetric Channel

While the BEC reveals the locations where bits are lost
and the binary-input AWGN channel gives soft information
for each bit, the BSC provides no indication of reliability for
received bits. As we saw in the last section, the performance
in AWGN actually improves when a subset of more reliable
MWPCs are used for BP decoding. On the BSC, however, it
is not possible to advantageously select PCs for BP decoding.
Similarly, decoders based on ordered statistics provide no
gains on the BSC. Therefore, MRB cannot be used to provide
a reference curve for the approximate ML performance.

We consider both BP and BF decoding for the BSC using
Hfull, i.e., the full set of MWPCs. Fig. 3 shows our simulation
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results for RM(2, 5) and RM(3, 7). The BF decoder is identi-
cal to Algorithm II in [13]. For RM(2, 5), both the BP and BF
decoder perform very close to the ML decoder. The figure also
includes results from [13] for the [31, 16, 7] BCH code under
BF decoding. One can see that the results for the [31, 16, 7]
BCH and the [32, 16, 8] RM code are very similar. This is
not surprising because the two codes are nearly identical, i.e.,
the [32, 16, 8] eBCH code is equivalent to the code RM(2, 5).
Interestingly, for the longer code RM(3, 7), the BF decoder
outperforms the BP decoder with an optimized weight factor.

VI. CONCLUSIONS

We have investigated the iterative decoding of RM codes
based on redundant PC matrices whose rows contain MW-
PCs. Various iterative schemes were considered for the BEC,
binary-input AWGN channel, and the BSC. For the [32, 16, 8]
code RM(2, 5), near-ML performance can be achieved using
the PD on the BEC, LP decoding on the AWGN channel,
and BF or BP decoding on the BSC. For RM codes with
n = 128 on the BEC, the PD remained very close to optimal.
For the AWGN channel, the performance gap of LP and BP
decoding with respect to ML decoding increases. It was also
shown that, for all channels with the exception of the BSC,
the complexity can be reduced by using only a fraction of the
available MWPCs. For BP, this strategy also translates into
better performance by reducing cycles.
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