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ABSTRACT 

This technical note summarises major changes in the updated version of SF Box, which 

is part of the SCORE – the Multi-Criteria Decision Analysis method for decision 

support in soil remediation projects. SCORE stands for the Sustainable Choice Of 

REmediation and SF Box stands for Soil Function toolBox. The SF Box tool has been 

developed for soil function assessment to complement environmental risk assessments, 

in order to increase awareness of decision-makers for inherent soil qualities other than 

concentration of contaminants and their availability/mobility, which are critical for 

proper soil functioning, e.g. availability of water and nutrients for soil organisms, but 

often ignored in remediation projects (driven by protection of the soil environment with 

ambition to recover ecosystem functions) in Sweden. The tool is based on a scoring 

method using soil quality indicators (SQIs) for assessing (I) the soil’s capacity to 

perform its functions in its own reference state of being ‘clean’, i.e. “what can this soil 

do and can it perform its functions well, assuming that it is free of contaminants?”, and 

(II) the effects of the remedial actions themselves on soil functions, i.e. “can the 

remediated soil continue to perform these functions well?”. The earlier version of 

SF Box addresses the soil functions associated with Primary Production. By (i) taking 

into consideration the perspectives of soil microbiology, soil fauna and vegetation, 

(ii) slightly modifying the set of SQIs (consisting of soil texture, content of coarse 

material, organic carbon/matter, available water, C/N ratio, pH and available 

phosphorus), and (iii) revisiting the curves for scoring of soil performances on each 

SQI, the SF Box tool has been updated to assess the soils’ capacity to function as a basis 

for Life and Habitat of flora and fauna. This updated version is therefore aimed to 

provide an improved basis for site-specific environmental risk assessment by means of 

(1) differentiating between the effects of contamination on soil biota and the effects of 

soil capability to function as a host to these species in its own reference state free from 

contaminants, and (2) classification of the soils (usually characterized by heterogeneity 

at contaminated sites) in accordance with their overall performance on the selected SQIs 

for further analysis of ecotoxicological risks in each soil class. 

 

Key words: soil functions, soil quality, soil classification, contaminated sites, 

sustainable remediation, environmental risk assessment 
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Preface 
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contaminated soils in Sweden, with the aim of developing an applicable site-specific 

methodology for environmental risk assessment (ERA) to protect the soil environment. 

The working research group has been established within the APPLICERA project to 

adapt the earlier developed SF Box (Soil Function toolBox) method, which is part of 

the SCORE (Sustainable Choice Of REmediation) framework for decision support in 

remediation projects, for its application as a basis for site-specific ERA. 

This technical note first provides the reader with a background, the overall aim as well 

as limitations of previous and the updated SF Box (Chapter 1). Thereafter, the methods 

used in this study are briefly described (Chapter 2) and the major changes in SF Box 

are presented (Chapter 3). Finally, the outcomes of this work are discussed (Chapter 4), 

and summarised in several concluding remarks (Chapter 5). 
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1 Introduction 

The first chapter provides the background to the technical note. The aim and objectives 

of the work are specified. Important limitations of the work are also presented. 

 

1.1 Background 

Soils are multifunctional and non-renewable resources within a human life span. It takes 

thousands of years to transform bedrocks into mature soils characterised by well-

developed soil profiles (Jenny, 1941). Formation of the fertile uppermost soil layer rich 

in nitrogen and organic matter requires decades, and sometimes centuries, of complex 

and dynamic interactions between biotic and abiotic soil components (Ibid). The upper 

soil layers host the majority of soil organisms (Lavelle, 2012). These organisms, which 

are sometimes grouped into four assemblages of (i) decomposers, (ii) nutrient 

transformers, (iii) ecosystem engineers, and (iv) biocontrollers, mediate four aggregate 

ecosystem functions of (I) carbon transformation, (II) nutrient cycling, (III) soil 

structure maintenance, and (IV) biological population regulation (see Kibblewhite et 

al., 2008; Barrios et al., 2012; Brussaard, 2012 for details). 

More than four decades ago, soil scientists introduced the concept of multi-functionality 

of soils and placed a high degree of importance on soil functions (SF) for ecosystem 

functioning as a whole (e.g. Schlichting, 1972; cited in Lehmann and Stahr, 2010). 

Ecosystem functions, in turn, result in ecosystem services (ESS) when they are 

delivered to and utilised by society to promote human well-being (Costanza et al., 1987; 

de Groot et. al, 1992). Essential soil functions that underpin a vast majority of ESS have 

been specified in scientific publications (e.g. de Groot, 2002, 2006; Daily, 1997; 

Lavelle et al., 2006; Barrios et al. 2007; Kibblewhite et al., 2008; Dominati et al., 2010; 

Barrios et al., 2012; Brussaard, 2012), the high impact UN report Millennium Ecosystem 

Assessment (MEA, 2005), and frameworks developed for classification of ESS (TEEB, 

2010; CICES, 2013). This body of work underscores the soil ecosystem’s role as a stock 

of natural capital fulfilling human needs (Dominati et al., 2010). 

In 2006, in a published draft proposal of the Soil Framework Directive (COM, 2006), 

policy-makers recognised that soils provide SFs that are critical and fundamental for 

survival of ecosystems and humans. Their aim was to develop a unified soil protection 

strategy across EU countries and to combat threats to SFs, such as soil contamination. 

These emerging regulatory requirements necessitate a more holistic view on soil quality 

in soil management projects, taking into consideration the interplay of physical, 

chemical and biological soil properties that are usually assessed with help of soil quality 

indicators (SQIs) (e.g. Rodrigues et al, 2009; Bone et al, 2010). However, due to 

differences in national soil protection legislation and well-established traditions of 

contaminated soil management, several member states have perceived this new 

legislation rather as a bottleneck than a “one-size-fits-all” solution for soil protection. 

As a result, after pending for seven years in the European Parliament, the draft has 

unfortunately been withdrawn (COM, 2014). 

However, the underpinning role, i.e. function in biophysical and socio-economic 

perspectives, of the worlds’ soils in tackling global societal challenges of “food, water 

and energy security, climate change abatement, biodiversity protection [to supply ESS] 

and human health” must be recognised in policy and legislation (McBratney et al., 

2017a). Efforts to bring together scientific communities across different disciplines, 



CHALMERS, Architecture and Civil Engineering, Volchko et al. (2018) 
2 

policy-makers, investors and citizens in all parts of the globe have resulted in the 

concept of Soil Security (McBratney et al., 2014), which aims to (1) improve the 

understanding of the fundamental role that soils have to play in tackling current societal 

challenges, and (2) “guide the development of policies addressing… [the above 

mentioned] challenges” (McBratney et al., 2017a). This concept integrates the earlier 

developed concepts of soil quality, soil health, soil functions, ecosystem services, soil 

resilience, soil protection, and soil conservation (see McBratney et al, 2017b for 

overview), and provides a framework for action on the global scale by means of 

addressing the 5C’s of Capability, Condition, Capital, Connectivity, and Codification. 

The Capability domain refers to the soil’s intrinsic capability to perform its functions 

“in the context of its own reference state” (McBratney et al., 2014). The Condition 

domain addresses “the current state of the soil and refers to the shift in capability 

compared to the reference state” (Ibid.). The domain of Capital recognises the soil as a 

stock of natural capital, i.e. an asset with monetary value, contributing to human 

wellbeing. The domain of Connectivity brings in societal aspects with respects to 

stakeholders’ knowledge and resources “to manage the soil according to its capability” 

(Ibid.). Finally, the domain of Codification deals with public policy and regulation to 

serve as a ‘safety net’ by (i) management of the soil in accordance with its capability to 

its best condition, (ii) placing monetary value on natural capital, and (iii) involving 

stakeholders into the management process for connectivity. The domain of Codification 

is aimed to translate the codified knowledge of soil science into language 

understandable to a wide audience (not necessarily soil experts), to “provide practical 

solutions” for proper soil management (McBratney et al., 2014). 

Soil functions have been overlooked in soil remediation projects (Volchko et al., 2013). 

However, by conceptualising the linkages between soil functions, soil ecosystem 

services and the three domains of sustainability, and by involving stakeholders into 

assessment process, the SCORE method (Rosén et al., 2015) revolutionises approaches 

to decision support in soil remediation projects (Carré et al., 2017). SCORE addresses 

soils’ capability and condition by means of the SF Box method (Volchko et al., 

2014b,c), which is part of SCORE and a complement to environmental risk assessment. 

The socio-cultural domain of SCORE addresses connectivity. While the economic 

domain addresses connectivity and capital in the broader sense than natural capital. 

SCORE provides a basis for integrating national ambitions of soil protection to 

“sustain/restore ecosystem functions to a level that corresponds to the intended land 

use” (SEPA, 2009) and, in this sense, addresses codification. 

Based on scoring of the selected SQIs, the SF Box method seeks to, in understandable 

and somewhat simplified language, (I) answer “what can this soil do and can it perform 

its functions well in its reference state, assuming that it is free of contaminants?” and 

(II) evaluate the effects of remedial actions themselves on these functions as part of 

sustainability assessment, i.e. “can the remediated soil continue to perform these 

functions well?”. The earlier version of SF Box addresses soil functions associated with 

Primary Production. By taking into consideration the perspectives of soil 

microbiology, soil fauna and vegetation, the updated version of SF Box, presented in 

this technical note, is aimed to assess the soils’ capacity to function as a basis for Life 

and Habitat of flora and fauna.  

The updated version of SF Box is aimed to facilitate codification and provide a better 

basis for site-specific environmental risk assessment (ERA) within the scope of the 

APPLICERA project. Aiming to develop an applicable site-specific methodology for 

ERA and protect the soil environment based on known benefits for the ecosystem, 



CHALMERS, Architecture and Civil Engineering, Volchko et al. (2019) 

APPLICERA brings together researchers across different disciplines (i.e. soil biology, 

ecotoxicology, soil chemistry, geology, and land management) and consultants with 

decades of experience from risk assessment and management of contaminated soils in 

Sweden. 

 

1.2 Aim and objectives 

The overall aim of this technical note is  

to summarise major changes in the updated version of the SF Box method for 

application of soil quality classification as a basis for applicable site-specific 

environmental risk assessments within the APPLICERA framework. 

The specific objectives to reach the aim are: 

(i) to provide a brief description of the scoring method for classification of 

contaminated soils, where each class reflects the overall soil performance 

on the selected SQIs, in order to form an opinion on the capacity of 

contaminated soils to function in the reference state of being ‘clean’; 

(ii) to describe the working process behind the adaptation of this method 

providing a basis for applicable site-specific ERA; 

(iii) to revisit and update the scoring curves for each SQI to reflect the capacity 

of soils to function as a basis for Life and Habitat of flora and fauna; 

(iv) to describe the major changes in the updated version of SF Box used for 

operationalisation of the scoring method for soil quality classification. 

 

1.3 Limitations 

Similar to the previous version of the SF Box, the updated version explicitly handles 

uncertainties in the predicted soil class which reflects the capacity of the soil to perform 

its functions at a remediation site as a whole. These uncertainties result from spatial 

heterogeneity of SQIs, limited sampling size, and analytical errors. Classification of 

each soil sample by the scoring curves is, however, based on a deterministic model, i.e. 

soil classes of separate soil samples are based on point values of the computed soil 

quality indices. Therefore, the uncertainties in the determined soil class of each soil 

sample are not taken into account. This is a significant limitation which must be 

addressed in future studies, in order to provide an improved basis for site-specific ERA 

within the APPLICERA framework, where ecotoxicological risks are suggested to be 

analysed in each soil class. 

Also, excess nitrogen (N) and phosphorus (P) in the soil is not considered to be 

detrimental to above- and below-ground soil biota (i.e. vegetation, soil fauna and 

microorganisms). This rationale is used for scoring the performance of the soil on these 

SQIs. The levels of N and P that are considered toxic will likely be much higher than 

commonly observed values in soils, even frequently fertilized agricultural soils. The 

authors, however, recognise that excess N and P may indeed have negative 

environmental impacts due to leaching and run-off of nutrients into surface- and 

groundwater. 
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2 Methods 

This chapter briefly summarises the methods used for soil quality classification in the 

updated version of the SF Box providing the basis for applicable site-specific 

environmental risk assessment of contaminated soils. 

 

2.1 Minimum data set 

Soil functions are difficult to measure directly, and are usually assessed by measuring 

soil quality indicators (SQIs) and evaluating soil performance on these SQIs to form an 

opinion of the soil’s capacity to function. It is a common practice to identify a minimum 

set of SQIs, i.e. a minimum data set (MDS), usually using expert judgement (e.g. 

Lehmann and Stahr, 2010), statistical studies (e.g. Moebius-Clune et al., 2016), and 

methods which combine expert judgement and sieving approaches (e.g. Ritz et al., 

2009). There is no universal MDS, because different functions require different sets of 

indicators to be measured and evaluated. Thus, different studies have often used 

different MDSs to assess the same soil function (see compilation in Volchko, 2014). 

The MDS for soil function assessment in remediation projects by Volchko et al. (2014a) 

has been used in this study with further minor modifications (see Chapter 3). 

 

2.2 Scoring method 

A scoring method is used in this study for soil function assessment and classification of 

the soils in accordance to their overall performance on the selected SQIs. The schematic 

description of the method is presented in Figure 1. The scoring method was (i) initially 

described by Karlen et al. (2001, 2003) and Andrews et al. (2004) and it is forming the 

basis for Soil Management Assessment Framework, SMAF; (ii) followed by Moebius-

Clune et al. (2016), Gugino et al. (2008), Idowu et al. (2008), Schindelbeck et al. (2008) 

and it is realised in the Cornell Framework for Soil Health Assessment; and (iii) further 

adapted for contaminated soil management in the studies by Volchko et al. (2014 a,b,c). 

Scoring is performed in three steps: (1) selection of an MDS, (2) interpretation of SQIs, 

and (3) calculation of the soil quality index (Andrews et al., 2004).  

The works by Moebius-Clune et al. (2016), Gugino et al. (2008), Idowu et al. (2008), 

Schindelbeck et al. (2008) extended the method by classification of soils in accordance 

with their overall performance on the selected SQIs. The studies by Volchko et al. (2014 

a,b,c) added a step of uncertainty analysis to the scoring procedure, in order to handle 

uncertainties in the assessment results while applying this method to assess the effects 

of remedial actions on soil functions within the SCORE framework for decision support 

in remediation projects (see Volchko et al., 2014c for details). Furthermore, although 

the arithmetic mean has been suggested for aggregation of the sub-scores (Andrews et 

al., 2004), there is a possibility in the scoring procedure by Volchko et al. (2014a,b,c) 

to choose between two methods for aggregation of transformed SQIs into a soil quality 

index, using arithmetic mean or geometric mean. In contrast to the arithmetic mean, the 

geometric mean does not allow for compensation of a weak performance on one SQI 

by a stronger performance on another SQI. The geometric mean is therefore 

recommended to be used for aggregation. 
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Figure 1. The scoring method for soil function assessment with examples of scoring 

curves (in red colour) used for interpretation of the measured values of soil quality 

indicators (SQIs).  

To interpret the measured values of SQIs, three types of scoring curves are used, i.e. 

“more is better”, “optimum”, and “less is better” (Figure 1). For the “more is better” 

example, the higher the value of the SQI, the higher the sub-score of this indicator. For 

the “less is better” example, the lower the value of the SQI, the higher the sub-score. 

For the “optimum” example, there is a limited range of values corresponding to high 

sub-scores, whereas “less” and “more” than these optimum values are scored lower. 

The sub-scores of [1; 0.71], [0.7; 0.31], [0.3; 0] represent soils of “good”, “medium” 

and “poor” qualities, respectively (reflected with help of green, yellow and red colour 

codes, respectively; see Table 3 below for details). 

  



CHALMERS, Architecture and Civil Engineering, Volchko et al. (2018) 
6 

The soil quality index forms a basis for soil classification into five soil classes 

corresponding to “very good”, “good”, “medium”, “poor”, and “very poor” soil 

performances (Table 1). 

 

Table 1: Correspondence between soil classes, soil performances and a soil 

quality index (Volchko et al., 2014a). 

Soil class Soil performance Soil quality index 

1 Very good > 0.85 

2 Good 0.70 – 0.85 

3 Medium 0.55 – 0.69 

4 Poor 0.40 – 0.54 

5 Very poor < 0.40 

 

2.3 The working process 

A working group consisting of soil scientists, a geologist and a land management expert 

(the authors of this technical note) was established within the scope of the APPLICERA 

project. Their aim was to adapt the earlier version of SF Box for its application in ERA 

of contaminated soils. The scoring curves in the updated version of SF Box have been 

revisited and updated by the working group in a workshop setting. Taking into 

consideration the perspectives of soil microbiology, soil fauna and vegetation, the 

baseline scoring of intrinsic capabilities of the soil to function as a basis for Life and 

Habitat was obtained through a systematic review of the scientific evidence and expert 

judgement in the case of limited empirical evidence. 

The procedure of expert knowledge elicitation was carried out in four steps: 

(I) problem definition – given soil heterogeneity at the contaminated sites, there 

is a difficulty in assessing environmental risks using biological indicators, 

available ecotoxicity tests and principal component analysis, if a distinction 

between the effects of contaminants on soil biota and other conditions 

crucial for operation of biota in the soil is not made; 

(II) preparation for elicitation – a systematic review of scientific evidence in the 

literature on “what conditions are good?” and “what conditions are poor?” 

for realisation of intrinsic capabilities of the soil to function as a basis for 

Life and Habitat of flora and fauna in urban parks and pristine grassland has 

been made by the members of the working group;  

(III) the elicitation itself in a workshop setting – conjoint update of the scoring 

curves by the members of the working group, based on step (II) and expert 

judgement; and 

(IV) documentation of the expert knowledge elicitation results. 
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3 Assessment of the soils’ capacity to function as 

basis for Life and Habitat of Flora and Fauna 

This chapter briefly describes the major changes in the updated version of SF Box. 

 

3.1 The minimum data set 

A minimum dataset for assessment of soil function Life and Habitat of flora and fauna 

is presented in Table 2. The set of SQIs for assessment of this function slightly differs 

from those in the study by Volchko et al. (2014a), as potentially mineralizable N is 

replaced with the C/N ratio and an SQI of soil depth is added. Soil depth becomes an 

important measurement for evaluating soil functions, because active life and habitat 

take place in the upper layers of the soil, i.e., down to 0.6–1 m below the surface. 

Furthermore, organic carbon (OC) has also been added to the MDS to make the method 

more practical and flexible, as this parameter correlates strongly to the earlier suggested 

SQI of organic matter (OM) while allowing for quantification of C/N ratios. 

 

Table 2: A minimum dataset for assessment of soil functions in remediation projects 

(modified after Volchko et al. 2014a). 
Soil quality indicators (SQIs) 

Soil depth 

Soil texture 

Content of coarse material (CM) 

Organic carbon (OC), or organic matter (OM) 

Available water (AW) 

C/N ratio (C/N) 

pH 

Phosphorus (P) 

 

3.2 The flowchart for soil function assessment 

The overall flowchart for assessment of soil function Life and Habitat of flora and fauna 

is presented in Figure 2. There are four important features in the flowchart for 

assessment of Life and Habitat function of the soil: 

 

(I) Available water is determined as a function of clay, silt, sand and organic 

matter using Eq.1 (Behrman, 2016): 

 

0.05 0.26 0.08 0.9Sa Si Cl OM
AW

Sa Si Cl OM

+ + +
=

+ + +
,   (1) 

where AW is available water (%), and Sa, Si, Cl and OM are contents of sand 

(%), silt (%), clay (%) and organic matter (%) respectively. 

Note, Sa, Si, Cl and OM constitute 100%. 

In practice, AW is first evaluated for each soil horizon, multiplied by a thickness of 

horizons and thereafter these values are added to derive AW in the whole soil profile. 

If the depth to bedrock is shallower than one meter, then AW is multiplied by the depth 

of 1 m (Soil Survey, 1976). The latter is used in SF Box, because the thickness of soil 
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layers at which soil samples are usually taken for analysis in remediation projects are 

less or equal to 1 m, e.g. 0-0.5 m or 0.5-1 m. 

 

The contents of clay, silt, and sand are also used to determine soil texture by means of 

the Food and Agriculture Organisation of United Nations (FAO) triangle (FAO 2006). 

Soil texture is not scored but it provides valuable information on the inherent soil 

quality. Here, Sa, Si and Cl constitute 100%. 

 

(II) Organic carbon is computed as a function of organic matter and vice versa 

using the “van Bemmelen factor” of 1.724 which is based on the assumption 

that organic matter contains 58% organic carbon (Eq. 2): 

 

1.724OM OC=  ,    (2) 

where OM is organic matter (%) determined as loss on ignition at temperature 

T and OC is the carbon content of OM (%). 

 
 

C/N_Score 

 

Figure 2. Schematic drawing of the overall input/output flow for assessment of soil 

function Basis for Life and Habitat of Flora and Fauna (modified after Volchko et al., 

2014b). CM – content of coarse material, OM – organic matter, OC – organic carbon, 

N – total nitrogen, P – available phosphorus, AW – available water, C/N – C/N ratio. 

AW_Score, OC_Score, C/N_Score, pH_Score, P_Score – the scores for available 

water, organic carbon, the C/N ratio, pH and available phosphorus, respectively. 
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(III) CM is not scored but accounted for, in order to correct the pools of AW and P 

in soils (Eq. 3) before scoring of these SQIs, using a correction factor (Soil 

Survey, 1976) (Eq. 4): 

corr

corr

AW AW F

P P F

= 

= 
,            (3) 

where F is a correction factor, AWcorr and Pcorr are corrected pools of AW (%) 

and P (mg/kg) in soils respectively. 

100

100

CM
F

−
= ,     (4) 

where F is a correction factor and CM is a content of coarse material (%), i.e. 

particles of ø > 2 mm. 

Pools of OM (or OC) and N are not corrected for contents of coarse material in the soil, 

because these SQIs are only used as inputs to computation of the C/N ratio and AW. 

The rationale is that multiplying the numerator and denominator of a fraction by the 

same factor results in a fraction that is equivalent to the original fraction. 

 

(IV) The Olsen-P values (ISO 11263) are used as inputs for scoring of available P. 

However, AL-P values (Egner et al. 1960) can also be used as input for the 

scoring. The Olsen-P values are then computed as a function of AL-P values, 

pH and a clay content in the soil (Otabbong et al., 2009), using Eq. 5: 

( )
2

0.5 0.512.786 0.599 0.232 1.985Olsen ALP P Cl pH= +  +  −  ,  (5) 

where POlsen is a Olsen-P value (mg/kg), PAL is a AL-P value (mg/kg), and Cl is a 

clay content (%). 

 

3.3 The updated scoring curves 

The scoring curves (Table 3) for assessment of the soil function Life and Habitat of 

flora and fauna in the reference state, i.e. no adverse impact of contamination, are 

derived using the procedure described in Section 2.3. These scoring curves support 

evaluation of the overall soil performance based? on the selected SQIs, sorting out soils 

into classes in accordance with their potential to perform Life and Habitat function in 

their own reference state (free of contaminants). The limit which separates “good” and 

“medium” quality soils (green and yellow colour codes, respectively, in Table 3) from 

“poor” quality soils (a red colour code in Table 3) cuts off extreme values of SQIs. 

These extreme values imply limited opportunities for the soil to function as a host to a 

wide range of species (from soil microorganisms to vegetation). 
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Table 3: Scoring curves for soil function assessment at contaminated sites. The colour 

codes of red, yellow and green in the graphs correspond to ‘poor’, ‘medium’ and ‘good’ 

soil quality of the respective indicator. 

Graph of a scoring curve Mathematic description and comment 

3.1 Scoring curve for available water (AW) – shape of “more is better” meaning that 

the higher the value of AW, the higher the sub-score of and the soil performance on 

this SQI.  

 

The scoring curve for available water 

in a soil profile of 1 m depth is based 

on Soil Survey (1976). It is described 

by the Sigmoid function: 

 

( ) ( )0.03799 10 124.11629

1

1
x

f x
e
− −

=
+

. 

 

3.2 Scoring curve for organic carbon (OC) – shape of “more is better” meaning that 

the higher the value of OC, the higher the sub-score of and the soil performance on 

this SQI. 

 

 

The scoring curve for organic carbon 

is based on the works by (1) 

Herrmann and Witter (2002) 

representing a plant perspective, (2) 

Lerch et al. (2013) representing a soil 

microbiology perspective, and (3) 

Hendrix et al. (1992) representing a 

soil fauna perspective. It is described 

by the system of linear equations: 

 

( )
0.66667 , 0 1.5;

1, 1.5.

x x <
f x

x


= 
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3.3 Scoring curve for the C/N ratio (C/N) – shape of “less is better” meaning that 

the lower the value of the C/N ratio, the higher the sub-score of and the soil 

performance on this SQI. 

 

The scoring curve for the C/N ratio is 

based on the studies by Herrmann and 

Witter (2008) and Zechmeister-

Boltenstern et al. (2015) representing 

plant and microbiology perspectives 

respectively. It is described by the 

system of linear equations: 

 

( )

1 15;

0.028 1.42, 15 40;

0.005 0.5, 40 100;

0, 100.

, x

x < x <
f x

x x <

x



− +

= 
− + 

 

 

 

The rationale behind the shape of 

scoring curve is that the excess of N 

does not affect soil biota (see 

Section 1.3 for details). 

3.4 Scoring curve for pH – shape of “optimum” meaning that a limited range of pH 

values corresponds to high sub-scores of and performances on this SQI, whereas 

“less” and “more” than these optimum values are scored lower.  

 

 

The scoring curve for pH is based on 

(i) Wiertz et al. (1992) and Rosen et 

al. (1998) representing a plant 

perspective, (ii) Enwall et al. (2007) 

and Lauber et al. (2009) representing 

a microbiology perspective, and (iii) 

Burns (1971) representing a soil fauna 

perspective. It is described by the 

system of linear equations: 

 

( )

0.2 0.6, 3 4.5;

0.7 2.85, 4.5 5.5;

1, 5.5 7;

0.3 3.1, 7 8;

0.7 6.3, 8 9;

0, 9 3.

x x <

x x <

x
f x

x < x <

x x <

x <

− 


− 

  

= 
− +

− + 
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A pH value of 8 is chosen to separate 

“good quality” soils from “poor 

quality” soils, in order to also 

acknowledge specific soil conditions 

in some regions of Sweden which are 

characterized by a high lime content 

in the soil. 

3.4 Scoring curve for phosphorus (P) – shape of “more is better” meaning that the 

higher the value of P, the higher the sub-score of and the soil performance on this 

SQI. 

 

The scoring curve for available 

phosphorus (Olsen P) is based on the 

studies by Tang et al. (2009) and 

Jordan-Meille et al. (2012) 

representing a plant perspective. The 

curve reflects relative yield responses 

to soil Olsen P which are simulated 

using the Mitscherlich model. The 

scoring curve is described by the 

exponential function (Tang et al., 

2009): 

 

( ) ( )0.148 1.07
1 .

x
f  x e

− −
= −  

 

The rationale behind the shape of 

scoring curve is that the excess of P 

does not affect soil biota (see 

Section 1.3 for details). 

 

3.4 Operationalisation of the scoring method 

Using Visual Basic for Applications, the updated scoring method (Section 2.2) is 

realised in the updated version of SF Box programme in accordance with changes 

summarised in this chapter (Figure 2 and Table 3), in order to provide a basis for 

assessment of environmental risks within the APPLICERA framework. The updated 

version of SF Box is part of the SCORE tool which is planned to be available for 

download in 2019. Please contact lars.rosen@chalmers.se for further information. 
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4 Discussion 

The SF Box tool takes into consideration the perspectives of soil microbiology, soil 

fauna and vegetation, in order to assess the soil’s capacity to function as a basis for Life 

and Habitat in its reference state, i.e. assuming no adverse impact of contamination. 

This, in turn, assists in differentiating between the effects of contamination on soil biota 

and the effects of soils’ capacity to serve as a host to species in its reference state. The 

ability to distinguish between these effects provides an improved basis for the 

APPLICERA framework for applicable site-specific ERA. The distinction is made by 

means of the updated version of SF Box in accordance with the overall performance of 

the soil on the selected SQIs. 

In relation to the Soil Security concept, the capacity of the soil to perform its functions 

“in the context of its own reference state” refers to capability (McBratney et al., 2014). 

However, the MDS used in this study also consists of SQIs (e.g. organic matter, 

available water, pH) attributed to the condition by the work of Field and Sanderson 

(2017), i.e. “the current state of the soil and refers to the shift in capability compared to 

the reference state” as defined by McBratney et al. (2014). In this respect, the SF Box 

method addresses the capability of the contaminated soils to function in their reference 

state of being ‘clean’, assuming that the soils are free of contaminants and other 

important soil attributes, e.g. water and nutrients critical for survival of soil organisms, 

are in place. In contrast, the site-specific ERA deals with assessment of the current state 

of this soil, i.e. condition.  

Therefore, the APPLICERA framework for ERA may facilitate management of the soil 

in accordance with its capability and to its best condition for life and habitat of the 

diversity of species. Protection of biodiversity in the soil may be motivated not only to 

supply ESS as suggested in McBratney et al. (2017a) but also by ethical values as 

described in Back et al. (2019). Furthermore, the value can then be placed on the 

sustained or restored ecosystem functions, using the criterion of social profitability in 

the economic domain of SCORE (Söderqvist et al., 2015), addressing the dimension of 

capital in a broader sense of land use and soil protection. This domain of SCORE also 

implies involvement of stakeholders for qualitative valuation as the first step of 

economic assessment, addressing connectivity. 

The updated version of SF Box transmits complex information on soil quality and 

functions in a simple way that makes this information approachable for non-experts in 

soil science, contributing to codification. In order to turn sustainable ambitions of soil 

protection to recover ecosystem functions, there is an urgent need to increase awareness 

of policy- and decision-makers for soil qualities other than concentration of 

contaminants and their availability/mobility, which are critical for proper soil 

functioning, e.g. availability of water and nutrients for soil organisms. These qualities 

are, however, often ignored in remediation projects at the expense of future generations.  

Given scarcity of land for development and the EU zero net land take target of 2050 

(COM, 2015), the contaminated sites which are often found in attractive locations of a 

city map form a valuable resource. More careful risk management may help to 

effectively sustain and restore ecosystem functions to the level of the intended land use 

and prevent redundant remedial actions associated with waste of money, time and 

effort. There is therefore an urgent need for the improved codification of scientific soil 

knowledge in policy and regulation. The Soil Security concept will, hopefully, facilitate 

this codification process for enabling the conjoint well-coordinated action on soil 

security in all parts of the globe in time, for humanity. 
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5 Concluding remarks 

The following conclusions can be drawn from this study: 

 

− Given scarcity of land for development and the EU zero net land take target, 

contaminated sites which are often found in attractive locations of a city map 

should be managed in accordance with the soils’ capability and their best 

condition in order to prevent redundant remedial actions and losing of valuable 

resources such as money, time and effort. 

 

− In order to turn sustainable ambitions to recover ecosystem functions through 

soil protection into action, there is an urgent need to increase awareness 

amongst policy- and decision-makers for soil qualities other than concentration 

of contaminants and their availability/mobility. These qualities are critical for 

proper soil functioning, e.g. availability of water and nutrients for soil 

organisms. However, these aspects are often ignored in remediation projects at 

the expense of future generations. 

 

− The updated version of SF Box is aimed to improve the basis for ERA by 

seeking to answer the questions “what can this soil actually do and can it 

perform its Life and Habitat function well, assuming that it is free of 

contaminants?” and thus to assist in making a distinction between the effects of 

contamination on soil biota and the effects of soil capability to function as a host 

to these species in its own reference state free of contaminants. 

 

− In this study, the application of the earlier developed and operationalised soil 

classification method with SF Box as part of SCORE for sustainable 

remediation has been extended to serve as an improved basis for site-specific 

ERA within the APPLICERA framework. 

 

− There is a potential for using SF Box for soil function assessment not only in 

remediation projects but also for other types of land management projects 

focused on soil functions. 
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