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Simulation and analysis of radiation from runaway electrons
MATHIAS HOPPE
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Abstract

Electron runaway constitutes one of the primary threats to future toka-
mak fusion reactors such as ITER. Successful prevention and mitigation
of runaways relies on the development of theoretical models which ac-
curately describe the dynamics of runaway electrons, and these models
must in turn be validated in experiments. Experimental validation of
models is however often made difficult by the fact that the diagnostic
signals obtained in experiments only depend indirectly on the parti-
cle dynamics. In this thesis, a synthetic diagnostic model is presented
which has been implemented in the Synchrotron-detecting Orbit Follow-
ing Toolkit (Soft), and which bridges this divide between theory and
experiment. The synthetic diagnostic calculates the bremsstrahlung and
synchrotron radiation diagnostic signals corresponding to a given run-
away electron population, which can be directly compared to camera
images and radiation spectra obtained in experiments. Bremsstrahlung
and synchrotron radiation from runaway electrons are particularly sen-
sitive to the runaway dynamics and, as is shown in this thesis, they
provide insight into the runaway electron distribution function.

This thesis focuses on geometric effects observed in the detected ra-
diation when magnetic field inhomogeneities and detector properties are
taken into account, something which previous studies have neglected.
The dependence of the observed radiation on magnetic field geometry,
detector properties and runaway parameters is characterised, and it is
explained how geometric effects limit the otherwise monotonic growth
of the diagnostic response function with the runaway pitch angle. The
synthetic diagnostic model is applied to experiments in the Alcator C-
Mod and the DIII-D tokamaks and is used to validate kinetic theory
predictions of the electron distribution function. It is found that the
kinetic model agrees well in certain scenarios and fails in others. In the
scenarios where it fails, the synthetic diagnostic model suggests that a
mechanism causing a larger spread in pitch angle may be missing from
the kinetic model.

Keywords: plasma physics, fusion, tokamak, runaway electrons, brems-
strahlung, synchrotron radiation, synthetic diagnostics
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Chapter 1

Introduction

It has been established scientifically, well beyond all reasonable doubt,
that global climate change is one of the most immediate and severe
threats to our planet and humanity as a whole [1]. To counter this threat,
we must drastically reduce our use of fossil fuels, which are among the
primary sources of greenhouse gases. Replacing coal, oil and natural gas
is however not a simple matter, as we have grown far too used to the
large amount and stable supply of energy they provide.

One alternative energy source that could provide both the stability
and vast amount of energy that fossil fuels give us today is nuclear fusion.
In fusion, the nuclei of two light atoms (commonly the hydrogen isotopes
deuterium and tritium) are combined, i.e. fused together, to produce a
heavier nucleus. This process releases a large amount of energy and can
be used to generate electricity [2].

While several types of fusion device are under study, the most promis-
ing candidate for large-scale fusion production is currently the torus-
shaped, so-called tokamak, illustrated in Fig. 1.1. In the tokamak, the
fusion fuel is heated to around 150 million Kelvin, at which point elec-
trons and atomic nuclei have separated and constitute a plasma. Using
magnetic fields, the plasma can be confined inside the device long enough
for fusion reactions to occur. A crucial component of the tokamak, and
a main distinguishing feature among magnetic confinement devices, is
the large current that runs through the device in the toroidal direction.
This generates a magnetic field in the poloidal direction which coun-
teracts the drift motion of the plasma particles that would otherwise
rapidly force them out of the device.
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Chapter 1. Introduction
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Figure 1.1: Illustration of a tokamak coordinate system.

Under certain circumstances, instabilities can arise in the tokamak
that rapidly cool the plasma and cause the toroidal current to dissi-
pate [3–5]. This, in turn, induces a strong electric field that can accel-
erate particles and which, due to a fundamental property of plasmas,
can give rise to a phenomenon known as runaway electrons. This phe-
nomenon occurs since, in a plasma, the friction force experienced in col-
lisions with other plasma particles decreases as a particle moves faster.
If an accelerating electric field is strong enough it can therefore lead to
a runaway of the particle energy. In particular electrons are prone to
being accelerated to high energies, due to their light mass [6].

Today, electron runaway is considered to be one of the primary
threats facing commercial tokamak fusion reactors, and it is therefore of
utmost importance to understand how runaway electrons are generated
and how they can be mitigated. A thorough understanding of runaway
electrons requires the development of theoretical models, which must
then be tested in experiments. The connection between theory and ex-
periment is however not always straightforward, as theory is usually
concerned with the detailed dynamics of particles, whereas experiments
produce diagnostic signals that, in most cases, depend only indirectly
on the particle dynamics. The aim of this thesis is to bridge the divide
between runaway electron theory and experiment, by presenting a syn-
thetic radiation diagnostic that can be used to predict what diagnostic
signal a given population of runaway electrons will give rise to. Before

2



1.1. Electron dynamics in tokamaks

Figure 1.2: Illustration of a particle orbit in a magnetic field. The orbit takes
the form of a helix that is wrapped around magnetic field lines,
due to the Lorentz force. Often, one is not interested in the
gyrating motion around magnetic field lines, and instead studies
the guiding-center of the orbit (dashed line).

presenting the model in detail, we will first review the basic theory of
runaway electrons and their radiation.

1.1 Electron dynamics in tokamaks

The motion of individual electrons in a tokamak is primarily governed
by the Lorentz force [7],

F = −e (E + v ×B) , (1.1)

where e is the elementary charge, v is the particle velocity, and E and
B are the electric and magnetic fields acting on the particle. The sec-
ond term in this equation causes the particle to move in a helical orbit,
approximately around magnetic field lines, as illustrated in Fig. 1.2.
This allows us to decompose the motion of the particle into two parts:
rapid gyro motion approximately perpendicular to the magnetic field,
and smoother “average” motion of the particle, approximately along the
magnetic field (indicated by the dashed line in Fig. 1.2). This latter
part of the motion is often referred to as the guiding-center motion
of the particle, and the mathematical theory concerned with the de-
composition of motion just described is called guiding-center theory [8].
The key assumption of guiding-center theory is that the magnetic field
varies slowly during one gyration of the particle orbit, which allows
equations of motion for the guiding-center to be given as an expan-
sion series using the radius of the gyro motion (known as the gyro or
Larmor radius) as the expansion parameter. In this thesis, we often (but
not always!) consider the guiding-center theory only to zeroth-order, in
which guiding-centers exactly follow magnetic field lines. In the stan-
dard guiding-center theory, which is more widely used, the first order
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Chapter 1. Introduction

terms are kept, and the guiding-center deviates slightly from the field
lines, a phenomenon known as drifting.

To study the dynamics of electrons in a plasma, the equations of
motion could be solved for each particle in the plasma with the help of
Eq. (1.1). This approach soon proves computationally infeasible how-
ever, as the density of particles in a typical tokamak plasma is of the or-
der∼ 1020 m−3. Instead, a statistical approach can be taken whereby the
probability distribution for finding an electron in a given state is propa-
gated in time. This probability distribution is known as the distribution
function and is usually denoted f(x,p, t). It is typically normalised such
that an integration over all coordinates of phase space yields the total
number of electrons in the plasma.

The distribution function plays a central role in this thesis and ap-
pears as a key component in the radiation diagnostic integral presented
in Chapter 2 and Paper A. Despite this, it should be pointed out that
the theory we present here does not evolve the distribution function in
time, but rather relies on external methods for doing so. When the
distribution of runaway electrons is needed, we either rely on previous
analytical results [9] or the numerical code Code [10, 11].

1.2 Runaway electrons

The mechanism behind electron runaway in plasmas has been known
since the early 1900’s [12], and its first theoretical description is often
credited to Dreicer [13, 14]. He showed that since the friction force ex-
perienced by a particle moving faster than the thermal speed (i.e. the
average speed of particles at the given temperature) is ∝ 1/v2, where v
denotes the speed of the particle under consideration, an applied elec-
tric field would yield a net acceleration of all particles faster than some
threshold speed vc. In the absence of any other decelerating forces, the
particle would accelerate indefinitely and approach the speed of light, a
process commonly known as runaway. The theory of electron runaway
was later extended to relativistic particles [15], and it was shown that
special relativity sets a lower limit Ec on the applied electric field for
any runaway electrons to be generated at all. Due to its decisive role in
the runaway process, this critical electric field has since been the subject
of much research, which has resulted in refined theoretical predictions
that account for effects such as radiation reaction losses [16] and par-
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1.2. Runaway electrons

tial ionisation of the background plasma [17], as well as experimental
measurements of the limit [18–20].

While runaway electrons have now been identified in a variety of
plasmas, including solar flares [21] and thunderstorms [22, 23], their
presence in tokamak plasmas [24] is of particular concern to the magnetic
fusion research community. If control is lost over a beam of runaway
electrons that is carrying a significant current, the runaway beam can
deposit a large amount of energy in a localised region on the device wall.
This can lead to severe damage to the wall, requiring repairs that may
be both costly and lengthy.

What puts the tokamak at a particularly high risk of runaway elec-
tron damage is the fact that it occasionally experiences instabilities lead-
ing to disruptions which abruptly cool the plasma and cause the plasma
current to dissipate [25–27]. As the plasma current drops, a strong
toroidal electric field is induced which can accelerate electrons and cause
them to become runaways.

Runaway generation is further exacerbated during disruptions by
a mechanism known as hot-tail generation [28–32]. When the plasma
temperature drops, it takes some time for the electron distribution to
equilibrate at the new temperature. Due to the non-monotonic nature
of the collisional friction force previously described, the fastest electrons
tend to take the longest to slow down, and as a result they form a “tail”
in the super-thermal part of the electron energy distribution. This hot
tail of electrons is particularly prone to being accelerated by the induced
electric field and hence producing runaway electrons.

The hot-tail generation mechanism is however not the sole reason
that runaway electrons are of particular concern in tokamaks. In ad-
dition to being generated through continuous electric field acceleration,
often called primary generation, runaway electrons can also be generated
through a mechanism known as avalanche or secondary generation [33–
36]. In the avalanche generation process, a highly energetic electron col-
lides with a thermal electron and imparts a significant amount of energy
to it, turning the thermal electron into a runaway electron while retain-
ing enough energy to remain a runaway electron itself. Although this
requires an existing seed of runaway electrons, once present, the seed
multiplies exponentially. Through this mechanism, it is therefore possi-
ble for the entire plasma current to be converted to runaway electrons
in the presence of even a weak electric field, as long as it is stronger
than Ec. In a tokamak with a large plasma current that can be poten-

5



Chapter 1. Introduction

tially converted to runaway electrons, such as ITER, the combination of
hot-tail and avalanche can therefore have devastating consequences.

Due to the severity of the runaway problem in tokamaks, several
mitigation schemes have been developed. The most promising schemes
at present are all based on injection of heavy impurities into the plasma,
either in the form of gas or solid pellets [37]. The heavy ions act to
increase the friction force experienced by the runaway electrons and
increase the dissipation of the runaway energy through bremsstrahlung
emission.

1.3 Radiation from runaway electrons

Relativistic runaway electrons primarily emit two types of radiation:
bremsstrahlung (from collisions with the background plasma) and synch-
rotron radiation (from motion around magnetic field lines). The emitted
radiation serves both as an important energy loss mechanism [16, 38–41]
and can be used to diagnose many aspects of runaway electron dynamics.
We will focus on the latter point in this thesis.

Since the pioneering measurements of synchrotron radiation from
relativistic runaway electrons on the TEXTOR tokamak in 1990 [42],
synchrotron radiation has become a standard diagnostic in runaway elec-
tron experiments. Today, many tokamaks are equipped with some form
of diagnostic that is able to measure synchrotron radiation, and mea-
surements have been performed on several of them, including Alcator C-
Mod (see Papers A, B and D), ASDEX Upgrade [43], COMPASS [44],
DIII-D [20, 45–48], EAST [49–51], FTU [52], HL-2A [53], HT-7 [54],
J-TEXT [55], KSTAR [56], TCV [43] and TEXTOR [42, 57–64]. Typi-
cally, a significant fraction of synchrotron radiation is emitted at visible
or near-infrared (IR) wavelengths, which allows common visible-light
cameras and spectrometers to serve as synchrotron diagnostics. It is
also possible to use the total amount of emitted synchrotron radiation
to indicate the presence of runaway electrons or to estimate runaway
energy loss rates. To interpret measurements, several models have pre-
viously been developed and applied [65–70], allowing pitch angle, energy
and position to be inferred from camera images and spectra.

Bremsstrahlung has also been used to diagnose runaway electrons for
several decades [71, 72] due to the fact that the runaways emit hard X-
rays (HXR) which can be distinguished from the lower energy soft X-ray
(SXR) bremsstrahlung emitted by the rest of the plasma. For runaway
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1.3. Radiation from runaway electrons

Figure 1.3: A false-coloured, visible-light, synchrotron image taken in the Al-
cator C-Mod tokamak during discharge 1140403026. The bright
spot on the right is synchrotron radiation from runaway electrons.
(Photograph courtesy of R. A. Tinguely and R. S. Granetz).

electrons, typical photon energies range from a few tens of keV to sev-
eral MeV. HXR counters and spectrometers are widely used today to
indicate the presence of runaway electrons in experiments, and runaway
energy distribution functions have been constrained from measurements
of bremsstrahlung spectra [47, 73, 74]. At the DIII-D tokamak, a HXR
camera called the “Gamma Ray Imager” (GRI) [75, 76] was recently in-
stalled with the purpose of producing energy-resolved bremsstrahlung
images.

Common to both bremsstrahlung and synchrotron radiation from
relativistic electrons is that the relativistic beaming effect causes the
radiation to be emitted almost entirely along each electron’s velocity
vector [77]. Only those electrons travelling towards the observer can
therefore be detected, placing a constraint that relates points of mo-
mentum space to points in real space. The result is that camera images
of the directed radiation show “spots” of radiation, such as in Fig. 1.3.
The shape of the spot depends sensitively on both the energy and pitch
angle of the runaways, and can also reveal their radial distribution.

Although both spectra and camera images are of interest in exper-
iments, this thesis is focused primarily on the latter. The reason for
this is that much of the previous work done on the topic has examined
bremsstrahlung and synchrotron spectra in great detail, while neglecting
the spatial structure of the radiation, which becomes especially appar-
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Chapter 1. Introduction

ent in camera images. In this thesis we explore the previously neglected
effects, which is therefore best done using images.

1.4 Thesis outline

Chapter 2 introduces the theory which underlies the rest of this thesis.
The radiation diagnostic integral is presented in its most general form, as
well as the conceptually and practically important cone approximation.
Another important concept for our analysis is the diagnostic response
function, which is also introduced here. In Chapter 3, a dedicated and
deeper analysis of the diagnostic response function is conducted. We
review the impact of what can be called geometric effects on the response
function, and compare to models that neglect such effects. This naturally
leads to a discussion about how the shape of the distribution affects
the diagnostic signal. A highlight of the main results of the appended
papers is then given in Chapter 4, where we also discuss possible areas
of improvement and further work.

8



Chapter 2

Radiation diagnostic theory

Ever since the first experimental measurements of radiation from rela-
tivistic runaway electrons were conducted [78], models for the radiation
have been developed [79]. In tokamaks, the first use of synchrotron radi-
ation as a diagnostic for relativistic runaway electrons was presented in
Ref. [42]. While early attempts to model the runaway synchrotron radi-
ation in tokamaks focused on estimating the curvature radius appearing
as a parameter in the synchrotron spectrum, as well as the pitch angle
of the runaways from the synchrotron spot shape [42], subsequent efforts
incorporated elements of the magnetic field geometry and runaway dis-
tribution function into the models [66, 80]. On the bremsstrahlung side,
a more sophisticated approach was taken, resulting in the development
of the synthetic bremsstrahlung diagnostic R5-X2 [72]. In contrast to the
models used for synchrotron radiation, R5-X2 evaluates an integral over
the plasma volume, momentum space and detector field-of-view, and is
able to take the magnetic field geometry into account. Only recently,
the synthetic diagnostic approach has also found its way into models of
synchrotron radiation, manifested in the synchrotron radiation module
of the orbit code Korc [70, 81], and the Synchrotron-detecting Orbit
Following Toolkit (Soft) presented in Paper A.

This chapter gives a brief introduction to the synthetic radiation
diagnostic model derived in Paper A, which differs in many aspects from
other models. One of the strengths of the model in Paper A is that it
permits the use of a simplified emission model, referred to as the cone
model, which not only reduces the computational demands, but also
gives some physical insight that is hard to come by using more advanced
emission models.

9



Chapter 2. Radiation diagnostic theory

dV

dΩ
dA

Detector
Plasma volume

n

rn̂

Figure 2.1: Illustration of the synthetic diagnostic setup described in Sec-
tion 2.1. The synthetic diagnostic sums up the radiation coming
from all volume elements dV in the plasma

2.1 Radiation diagnostic formulation

The function of a general radiation diagnostic, measuring some quantity
I (which can be, for example, radiated power or number of photons),
is illustrated in Fig. 2.1. Assuming that the plasma is optically thin to
the radiation, we can write the total received radiation from the plasma
volume V , along the line-of-sight specified by the unit vector n, as

In(x0, t) =

∫
V
δ2
(r
r
− n

) dI(x,n, t)

dV
dV, (2.1)

where δ2(x) is a two-dimensional Dirac delta function, and r = x0 − x
is a vector between the detector at x0 and the point x of space where
radiation originates.

Typically, we are interested in the radiation seen in the entire field-
of-view of the detector, or the field-of-view corresponding to a particular
camera pixel, and then we must integrate over the set Ωn of all line-of-
sight directions n in the field-of-view. If we integrate Eq. (2.1) over Ωn

we find that

I =

∫
In dΩn =

∫
V

Θ
(r
r

) dI (x, r, t)

dV
dV, (2.2)

where the delta function has substituted n for r/r and given rise to a
function Θ(r/r) that is one when r/r ∈ Ωn, and zero otherwise. In
other words, the integration over Ωn makes explicit the fact that only
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2.1. Radiation diagnostic formulation

particles situated in the detector’s field-of-view can contribute to the
measurement.

The amount of radiation received from an infinitesimal volume ele-
ment dV in the plasma, by a detector with area A, occupying a solid
angle Ω as seen from the emitter, is

dI

dV
=

∫
Ω

d2I

dV dΩ
dΩ. (2.3a)

Often, it is more convenient to express Eq. (2.3a) as an integral over the
detector surface instead of the solid angle subtended by the detector.
The surface area taken up by the solid angle dΩ a distance r from the
emission source is dS = r2dΩ, and the normal vector of this surface is
r/r. If we let dA be the corresponding area of dS when projected onto
the detector surface, with normal n̂, then dS = (n̂ · r/r)dA and

dI

dV
=

∫
A

n̂ · r
r3

d2I

dV dΩ
dA. (2.3b)

The radiation emitted from the volume element dV , into the infinitesimal
solid angle dΩ, is now given by the number of particles in dV , times the
amount of radiation emitted by each particle into dΩ:

d2I

dV dΩ
=

∫
dI(x,p, r)

dΩ
f (x,p) dp. (2.4)

Here, f(x,p) is the electron distribution function and dI/dΩ describes
the angular distribution of radiation emitted by each particle. Depend-
ing on which type of radiation we would like to model, we pick a suitable
form for the angular distribution of radiation. For synchrotron radia-
tion we would take it to be the total received power per unit solid angle
dP/dΩ, while for bremsstrahlung we would take it to be the differential
cross-section of photon production, multiplied by the electron speed and
local plasma density, to get the number of detected photons.

For completeness, we also give the combined form of the radiation
diagnostic integral. Combining Eqs. (2.1)-(2.4), we obtain

I =

∫∫∫
Θ
(r
r

) r · n̂
r3

dI(x,p, r)

dΩ
f(x,p) dp dV dA. (2.5)

This is, in essence, the integral that the simulation tool Soft evaluates.
It serves as the starting point of the theory developed in Paper A, which
transforms the set of coordinates used in Eq. (2.5) to a set more suitable
for integrating along runaway orbits. The details and implications of
this coordinate system is the topic of the next section.
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Chapter 2. Radiation diagnostic theory

(a) Uniform (b) Full-orbit (c) Guiding-center

Figure 2.2: Sketch of how the plasma can be parameterised in a synthetic
diagnostic. A direct/uniform discretisation of phase space would
look something like (a), whereas (b) represents phase space pa-
rameterised by particle orbits. In Soft and R5-X2, guiding-
center orbits are however used to parameterise phase-space, as
in (c).

2.2 Phase space parameterisation

We now have a general model of a radiation diagnostic, embodied in
Eq. (2.5), which could in principle be implemented in a simulation code
as it stands. In practice, however, the physics of the problem allows for
a range of simplifications that reduce computational costs. A first such
simplification is to discretise phase space in terms of orbits rather than,
for example, uniformly in Cartesian coordinates (i.e. by representing the
phase-space integral as a Riemann sum) as is schematically illustrated
in Fig. 2.2. The main benefit of this approach is that the value of the
distribution function need only be known at one point along the orbit—
Liouville’s theorem then ensures that we can deduce the value of the
distribution function at every other point along the orbit, under the
additional assumption that collisions and other dissipative effects (such
as radiation emission) are negligible on the orbit time-scale.

The most accurate way of utilising orbits for discretising phase-space
is to use particle orbits, often referred to as the full-orbit approach. This
would correspond to the parameterisation in Fig. 2.2(b) and is effectively
the parameterisation used for example in Korc [70, 81]. While this
ensures that all features of the orbits are accurately captured, it is still
a computationally expensive and numerically challenging approach.

An alternative approach, which is taken by both R5-X2 and Soft,
is to parameterise phase space using computationally cheaper guiding-
center orbits [8, 82, 83]. In this approach, which is schematically illus-
trated in Fig. 2.2(c), the rapid gyro-motion is explicitly separated from
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2.2. Phase space parameterisation

the much smoother guiding-center motion of the particle. The bene-
fits of this are more than just obtaining smoother orbits, as it allows
radiation formulas to be integrated analytically over the gyro angle, re-
ducing the dimensionality of the integral Eq. (2.5). Similar coordinate
systems are also used in 3D kinetic solvers such as CQL3D [28, 84, 85]
and Luke [86, 87]. The primary drawback is that the particle orbits
are approximated with guiding-center theory, which assumes that the
Larmor radius p⊥/eB (with p⊥ the particle’s momentum perpendicu-
lar to the magnetic field with magnitude B, and e the absolute value
of the particle’s charge) is much smaller than the length scales of the
magnetic-field variations. The guiding-center theory will therefore break
down when the runaway energy becomes very large, at which point full-
orbit simulations become necessary.

The use of guiding-center orbits to parameterise phase-space also
provides one additional benefit compared to the full-orbit approach.
Since full-orbit calculations are relatively expensive to conduct, there is
currently no feasible way of computing the full-orbit electron distribution
function. Instead we must use tools such as the aforementioned kinetic
solvers CQL3D and Luke—which assume that either zeroth or first or-
der guiding-center theory holds—or kinetic solvers such as Code [10, 11]
which altogether neglect the spatial dynamics. While it may be possible
to combine these approaches, i.e. running a full-orbit simulation of the
radiation with a distribution function obtained using first-order guiding-
center theory, one must be cautious when interpreting the subsequent
results. The calculation will only be as accurate as its least accurate
component, meaning that using a distribution function computed using
first-order guiding-center theory together with a full-orbit model for the
radiation will not accurately capture full-orbit effects.

13



Chapter 2. Radiation diagnostic theory

The coordinate system used in Soft consists of the following six
guiding-center coordinates:

ρ = Maximum major radius visited by guiding-center along orbit,

τ = Time coordinate along guiding-center trajectory

(at τ = 0, the guiding-center is located at ρ),

φ(0) = Toroidal angle of the guiding-center at τ = 0,

p
(0)
‖ = Guiding-center parallel momentum at τ = 0,

p
(0)
⊥ = Guiding-center perpendicular momentum at τ = 0,

ζ = Gyro angle.
(2.6)

The first three coordinates parameterise the position of the guiding-
center along the orbit; the guiding-center starts out at its outermost
radial point ρ, at some toroidal angle φ(0), and then follows a path pa-
rameterised by the time τ . The next three coordinates span momentum-

space, and while the choice of p
(0)
‖ and p

(0)
⊥ is often convenient for run-

away problems, it is not required and can be replaced by any equivalent
set of coordinates (e.g. momentum and pitch angle θp = arctan p⊥/p‖).
The main point is that ζ must always be chosen as the third coordinate,
since this is required by the guiding-center transformation.

As previously mentioned, with an orbit parameterisation of phase
space, Liouville’s theorem allows us to determine the value of the dis-
tribution function at any point along the orbit. Specifically, Liouville’s
theorem states that the distribution function satisfies df/dτ = 0, i.e. is
independent of τ , assuming that dissipative effects and time variations
in plasma and magnetic geometry parameters are negligible on the orbit
time scale. Moreover, it can be shown that f will be independent of the
gyro angle to the order of interest [6], and since we assume the tokamak
to be axisymmetric, the distribution function must be independent of
φ(0). The only parameters that remain for the distribution function to

depend on are therefore ρ, p
(0)
‖ and p

(0)
⊥ .

Returning to Eq. (2.5), we now consider the radiation diagnostic
integral from a different perspective. Since the input signal—the dis-
tribution function—only depends on three parameters, we can separate
the integrand of Eq. (2.5) into two parts. These are the distribution

function f(ρ, p
(0)
‖ , p

(0)
⊥ ), and a function G(ρ, p

(0)
‖ , p

(0)
⊥ ) which consists of

the other factors of the integrand in Eq. (2.5), including the integrals
over detector surface, toroidal angle, orbit time and gyro angle. We may
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2.3. Cone approximation

then write the detected radiation as

I =

∫∫∫
G
(
ρ, p

(0)
‖ , p

(0)
⊥
)
f
(
ρ, p

(0)
‖ , p

(0)
⊥
)
p

(0)
⊥ dρdp

(0)
‖ dp

(0)
⊥ , (2.7)

making sure to include the momentum space Jacobian determinant p
(0)
⊥ .

The function G is the response function of the diagnostic setup, repre-
senting essentially the orbit averaged received emission from the parti-
cles. This form of the synthetic diagnostic integral is often convenient,
as the linear relation between I and f enables the discretised integral
to be represented as a matrix multiplication. By pre-computing G, it is
possible to quickly compute I from an arbitrary distribution function f ,
something that was utilised for fitting the radial density of electrons to
a set of synchrotron images from Alcator C-Mod in Paper D.

The response function G is difficult to characterise in general, since
it not only depends on the three phase space parameters, but also on
the instantaneous magnetic geometry and detector setup. At the same
time, it is arguably the single most important object to study for any
diagnostic setup. In Chapter 3 we will take a closer look at the proper-
ties of a particular response function that will serve as a representative
example.

2.3 Cone approximation

One particular form of the radiation function dI/dΩ in Eq. (2.4) is found
to be especially useful for the radiation emitted by relativistic runaway
electrons. As illustrated in Fig. 2.3(a), the relativistic beaming effect
will direct the radiation along the velocity vector of the particle, with
an angular spread that is ∼ γ−1, i.e. the inverse of the relativistic factor
of the particle. For highly relativistic particles, which runaways often
are, this means that the radiation is emitted almost exclusively along
the velocity vector, motivating us to take this as an approximation. The
corresponding radiation function is

dP

dΩ
=
P
(
p‖, p⊥

)
2π

δ (v̂ · n− 1) , (2.8)

where P (p‖, p⊥) represents the total radiation emitted by the particle.
The delta function in Eq. (2.8) ensures that radiation will only be

emitted exactly along the direction of motion v̂ of the particle, which
must be aligned with the line-of-sight n under consideration. After
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Chapter 2. Radiation diagnostic theory

(a)

(b)

Figure 2.3: Illustration of relativistic (a) particle emission versus (b) guiding-
center emission. Several particles can share the same guiding-
center, and when the radiation of all of those particles is consid-
ered, that guiding-center can be considered as emitting radiation
in a larger cone with opening angle θp (the pitch angle of the
particles).

applying a guiding-center transformation to Eq. (2.8) and integrating it
over the gyro angle, a corresponding expression is obtained that describes
the emission of the guiding-center:∫ 2π

0

dP

dΩ
dζ = P

(
p‖, p⊥

)
δ
(
V̂ · n− cos θp

)
, (2.9)

where V̂ denotes a unit vector in the direction of motion of the guiding-
center and θp ≡ arctan(p⊥/p‖) is the pitch angle of the particle. The
geometric interpretation of Eq. (2.9) is illustrated in Fig. 2.3(b): the
guiding-center emits a circular cone of radiation with half opening an-
gle θp, centered on its direction of motion V̂ ; hence the name “cone
approximation.”

Equation (2.9) enables us to build some physical intuition about
radiation spot shapes. It asserts that radiation will be detected whenever

V̂ · x− x0

|x− x0|
= cos θp. (2.10)

where x denotes the particle position and x0 the observer’s position. To
leading order in the guiding-center approximation, V̂ is directed along
the magnetic field unit vector b̂, and hence the cone will sweep past
the detector, roughly following magnetic field lines. Whenever the cone
overlaps with the detector, radiation is registered.
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2.3. Cone approximation

(a) (b)

Figure 2.4: (a) Sketch of a surface-of-visibility, emphasising how it takes the
shape of a twisted, hollow cylindrical shell. (b) Camera image
projection of a simulated SoV. The projection shows how the
edges of the observed radiation spot tend to appear brighter to
an observer than the rest of the spot. This is due to the cylindrical
shape of the SoV which causes lines-of-sight that are tangential to
the SoV to receive much more radiation than other lines-of-sight.

If we consider a mono-velocity distribution function, with particles
distributed uniformly in ρ, then the points of space satisfying Eq. (2.10)
form a surface in space. This surface, which we refer to as a surface-of-
visibility or SoV, usually takes the shape of a bent and twisted cylinder
at small θp, and splits into two parts at larger θp. Figure 2.4 illustrates
the appearance of a hollow, cylinder-shaped SoV. Note that it is only
possible to look at the SoV from different perspectives in simulation,
due to the dependence on the detector position x0 in Eq. (2.10). Using
a camera in an experiment, it is only possible to observe the projection
in Fig. 2.4(b).

Although a camera will always see a two-dimensional projection of
the SoV, the fact that it has a three-dimensional structure has important
consequences for the observed radiation pattern. In particular, this can
be observed in Fig. 2.4(b), which shows the projection of a SoV. As is
shown there, the upper and lower edges of the projection have brighter
colours, corresponding to higher radiation intensity. In these points,
the lines-of-sight are tangential to the cylindrical shell that constitutes
the SoV, and it can be shown that if the shell is thin, those lines-of-
sight will receive the most radiation. From a single point of momentum
space—that is, from particles with the same energy and pitch angle—it
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is therefore primarily the edges of the SoV that contribute to the total
detected radiation.

The basic idea behind the cone approximation—that all radiation
is emitted exactly along the velocity vector of the particle—has been
known and utilised since the early days of runaway synchrotron measure-
ments. It has served as, arguably, the most important approximation
for synchrotron radiation, and is the source of many of the fundamen-
tal results within the topic [65, 66, 69]. In simulations, use of the cone
approximation can substantially reduce computation times, while main-
taining good agreement with more complete models of the radiation, as
we demonstrate in Paper A. For this reason, the cone approximation has
been used in most simulations of this thesis.
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Chapter 3

Properties of the diagnostic
response function

The synthetic diagnostic integral (2.5) can be written as an integral over
the product of the distribution function f (“the input signal”) and the
diagnostic response function G. This form of the integral has both prac-
tical and theoretical benefits. One example of the practical benefits is
given in Paper D, where the ability to approximate this integral transfor-
mation with a matrix multiplication and quickly evaluate it was utilised
to fit a radial distribution function to a set of experimental synchrotron
images.

The theoretical significance of the response function stems from the
fact that it maps points of phase-space to diagnostic signals, and hence
reveals which parts of phase-space the diagnostic is particularly sensitive
to. It can also be used to provide insight into how the radiation spot
shape is influenced by various features in the distribution function.

This chapter is dedicated to the diagnostic response function, and the
central question we address is: how do radiation measurements depend
on the magnetic field geometry, detector set-up and runaway proper-
ties? This question is advantageously answered by studying radiation
images of mono-energetic and mono pitch-angle populations of runaway
electrons. Such images are highly sensitive to all the aforementioned pa-
rameters, and we therefore begin the chapter with an in-depth analysis
of them. We next proceed to consider what happens when the electron
distribution function is taken into account. As we shall see, one point
of momentum-space will dominate the detected radiation, and the loca-
tion of this point is a characteristic of the diagnostic response function.
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Chapter 3. Properties of the diagnostic response function

Finally, we isolate the geometric effects in the response function and
interpret them using the surface-of-visibility concept resulting from the
cone approximation.

3.1 Radiation spot shape taxonomy

Directed radiation such as bremsstrahlung and synchrotron radiation
gives rise to radiation spots that can be observed using cameras. What
shape the radiation spot takes depends on several parameters: the mag-
netic field geometry, detector properties and runaway distribution. While
the relation between the radiation spot shape and the runaway pitch an-
gle was identified already in Ref. [42], the first model for the radiation
spot shape taking the magnetic field geometry into account was pre-
sented in Ref. [66]. That model accurately describes the shape of the
synchrotron radiation spot from runaways with small pitch angles, but
does not consider the distribution of radiation across the spot. As we
show in Papers A and C, the distribution of radiation across the spot
can however be of great importance, particularly when the electron dis-
tribution function is taken into account and when the magnetic field is
weak.

All simulations in this section use the simulation parameters listed
in Table 3.1. Since we are concerned with the spot shapes due to the
directed nature of bremsstrahlung and synchrotron radiation in this sec-
tion, we primarily consider bremsstrahlung radiation in the cone ap-
proximation Eq. (2.9). This is because bremsstrahlung is independent
of the magnetic field strength and particle pitch angle, meaning that for
a mono-energetic population of runaways, the amount of radiation emit-
ted from different parts of the surface-of-visibility (SoV) will be constant
in a homogeneous plasma. Hence, the extent of the SoV and associated
shape of the radiation spot become more apparent. In the cases where
the magnetic field strength and particle pitch angle strongly influence
the synchrotron radiation spot shape, this will be noted. The detector
position and viewing direction is indicated in Fig. 3.1.

In most simulations, we use a mono-energetic and mono pitch-angle
distribution function, with a uniform radial profile. This distribution
function is mathematically described by

f(ρ, p, θp) = nREδ (p− p0) δ (θp − θp,0) , (3.1)
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3.1. Radiation spot shape taxonomy

Table 3.1: Simulation parameters used in Section 3.1, unless otherwise noted.

Parameter Value

Magnetic field strength (on-axis) 2 T
Tokamak major (Rm) / minor (rm) radius 1.7 m / 0.5 m

Safety factor Constant, q = 1
Detector vertical position Z = 0
Runaway electron energy 50mec

2 ≈ 25 MeV
Runaway electron pitch angle 0.15 rad

Drift orbits Neglected

where nRE is the number of runaway electrons in the simulation, and
p0 and θp,0 denote the momentum and pitch-angle of all the runaways.
Note that we suppress the label “(0)”on all parameters in this section for
brevity. It is understood that all particle and guiding-center parameters
are specified at the point corresponding to the maximum radius visited
by the guiding-center along its orbit. Since the number of runaway
electrons appears multiplicatively in the distribution function, and hence
also in all radiation quantities, we normalise the simulated radiation
quantities so that they do not depend on nRE.

Finally, we also note that all simulations in this section (and also
thesis) use zeroth-order guiding-center theory. This means that guiding-
center drifts are neglected, since they are formally a first-order effect in
the theory. The effects of guiding-center drifts on the radiation are
therefore left for future studies.

3.1.1 Magnetic field and detector placement

Both the magnetic field and detector position strongly influence the ob-
served radiation spot shape. For the magnetic field, there is primarily
one parameter influencing the spot shape. This parameter is the mag-
netic field safety factor q, which is a measure of how twisted the tokamak
magnetic field is—it is defined as the number of toroidal turns a mag-
netic field line makes per poloidal turn when traversed. The safety factor
determines the inclination of the radiation spot against the horizontal,
as illustrated in Fig. 3.2. As a consequence, non-uniform safety fac-
tors cause the inclination of the radiation spot to vary, as apparent in
Figs. 3.2(c) & (d). In Ref. [51], the inclination angle βinc between the
synchrotron spot and the horizontal was related to the safety factor q,
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−y

x

(Rm,−Rm)

Figure 3.1: Detector setup in the simulations of this section. The detector,
denoted by the red square, is located at (x, y) = (Rm,−Rm),
where Rm is the tokamak major radius (see Table 3.1 for numer-
ical value). It is viewing the plasma tangentially, as indicated by
the red arrow.

(a) q(̄r) = 1 (b) q(̄r) = 4 (c) q(̄r) = r̄ + 1 (d) q(̄r) = 3r̄2 + 1

0% 20% 40% 60% 80%
I/max I

Figure 3.2: Safety factor. Simulated radiation images in four magnetic
fields with with different forms for the safety factor q(r̄), where r̄
is the minor radius normalised to the edge minor radius value. To
emphasise the shape of the spot, the colour scale has been chosen
such that white corresponds to 80% of the maximum value in any
pixel of each image.
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3.1. Radiation spot shape taxonomy

(a) Z = 0 (b) Z = –rm/3 (c) Z = –2rm/3 (d) Z = –rm

0% 20% 40% 60% 80%
I/max I

Figure 3.3: Camera vertical placement. Simulated radiation images with
the camera located at four different heights. The height Z = 0
corresponds to the midplane, and rm denotes the tokamak minor
radius. The spot changes similarly when the detector is moved
in the opposite vertical direction. To emphasise the shape of the
spot, the colour scale is chosen such that white corresponds to
80% of the maximum value in any pixel.

particle-detector distance D and tokamak major radius Rm through

tanβinc ≈
D

q(r)Rm
, (3.2)

in the small pitch angle limit. Note that the radial dependence of the
safety factor appears here, giving the inclination angle βinc a radial de-
pendence as well.

The magnetic field strength can also indirectly influence the observed
radiation spot shape by affecting the amount of radiation emitted at
different major radii. Therefore, the effect of magnetic field strength on
synchrotron radiation spots can be significant, while it does not affect
bremsstrahlung spots. In contrast to the safety factor, the magnetic
field strength alone does not alter the geometric condition for when
radiation is detected, but rather changes the distribution of radiation
intensity across the radiation spot. The intensity distribution however
also depends on the detector spectral range and particle momentum, and
hence we postpone a discussion of this effect to the next section where
the spot shape dependence on particle parameters is discussed.

The detector properties which primarily influence the radiation spot
shape are the vertical position of the detector as well as its radial dis-
tance to the plasma. Assuming toroidal symmetry, a rotation of the
detector in the toroidal direction around the device will not affect the
radiation spot shape. Also, since the orientation of the detector only
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enters through the geometric factor n · n̂ in Eq. (2.5), the orientation
will be unimportant as long as the detector is not nearly-perpendicular
to the incoming radiation.

Moving the detector along the vertical direction will alter the spot
shape in the way shown in Fig. 3.3. Positioning the detector in the
midplane will ensure that all particles within the detector field-of-view
are visible to the detector, regardless of which flux surface they are
on, or what their pitch angles are. If the detector is offset from the
midplane, however, particles with small pitch angles located close to
the magnetic axis will no longer radiate towards the detector. This is
because radiation is emitted with an angle approximately equal to the
pitch angle θp against magnetic field lines. Close to the magnetic axis,
magnetic field lines are directed almost entirely in the toroidal direction,
meaning that at a distance D from the particle, radiation will be spread
∼ Dθp from the midplane in both vertical directions. Particles with
θp < Z/D, located close to the magnetic axis, can therefore not be
observed by a detector that is offset from the midplane.

The same argument can be used to reason about how the spot shape
is affected when the detector is moved radially away from or towards the
plasma. Let Z now instead denote the vertical position of the particle.
The largest value of Z such that the particle emits at and is visible to
the detector is then Z ≈ Dθp. Since the surface-of-visibility is made up
of the particles that emit towards the detector, the vertical extent ∆z
of the radiation spot must therefore be ∆z ∝ Dθp. Consequently, the
vertical extent of the radiation spot must increase when the detector
is moved further away from the plasma, similar to how it is affected
by larger particle pitch angles. As is revealed by Eq. (3.2) however,
increasing the distance D between the detector and plasma also affects
the inclination of the radiation spot relative to the horizontal, since the
angles between the lines-of-sight of the detector and the magnetic field
change.

3.1.2 Runaway electron properties

Although the magnetic field and detector setup are important for the
shape of the radiation spot, the question of primary interest to any-
one studying runaway electrons is how the motion and location of the
runaways are reflected in the radiation spot. The position and velocity
of an electron are fully specified by six parameters, but as discussed in
Paper A and Sec. 2.2, these can be reduced to a set of just three param-
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eters in a tokamak: the outermost major radius visited by the particle
along its orbit ρ, the electron pitch angle θp and the electron momentum
p. For a given observation setup, the radiation spot characteristics can
therefore at most depend on these three parameters.

Pitch angle

The first runaway parameter we consider is the pitch angle, θp. The
effect of this parameter on the synchrotron spot shape has been discussed
extensively in the runaway synchrotron literature [51, 66, 69], precisely
because the spot shapes observed in synchrotron images are particularly
sensitive to the pitch angle. As is shown in Fig. 3.4, at small pitch
angles, the radiation spot is a thin stripe. As the pitch angle grows, the
line becomes thicker and the spot grows in size in the vertical direction.
The surface-of-visibility, described in Sec. 2.3, roughly takes the shape
of a cylinder in Figs. 3.4(a)-(e). At larger pitch angles, the vertical
expansion of the spot with pitch angle slows down, and the surface-of-
visibility begins to open up into two separate oval surfaces, which is
best illustrated by Fig. 3.4(h). At pitch angles beyond θp = 0.46 rad,
the shapes of the two oval surfaces change little, but rather they move
away from each other. In the view from above the tokamak in Fig. 3.5,
we see that the two surfaces move in opposite toroidal directions. If this
behaviour continues as the pitch angle increases, we would expect one
of the surfaces to eventually disappear behind the central column of the
tokamak, and this is indeed what happens. In fact, this effect is already
visible in Figs. 3.4(h) and 3.5(b), where the central column hides the
leftmost part of the smaller spot (corresponding to the upper spot in
Fig. 3.5(b)).

Radial location

The next parameter we consider is the maximum radial location of the
particle along its orbit. If we only launch particles from a discrete set
of radii, we obtain images such as those in Fig. 3.6. Since guiding-
centers approximately follow magnetic field lines, each band of radia-
tion in each of Figs. 3.6(a)-(h) originates from particles on the same
flux surface. At small pitch angles, each flux surface gives rise to two
bands of radiation—one to the right of the magnetic axis, and one to
the left. The magnetic axis is located at the point which all bands of ra-
diation appear to encircle, something which is particularly noticeable in
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(a) θp = 0.04 rad (b) θp = 0.10 rad (c) θp = 0.16 rad (d) θp = 0.22 rad

(e) θp = 0.28 rad (f) θp = 0.34 rad (g) θp = 0.40 rad (h) θp = 0.46 rad

0% 20% 40% 60% 80%
I/max I

Figure 3.4: Pitch angle. Simulated radiation images showing how the pitch
angle affects the radiation spot shape. A larger pitch angle
roughly corresponds to a larger vertical extent up until some
threshold pitch angle, at which point two separate spots appear
and move away from each other. The dashed white lines in (g)
and (h) indicate the inner part of the tokamak wall, which blocks
out part of the spot in (h). To emphasise the shape of the spot,
the colour scale has been chosen such that white corresponds to
80% of the maximum value in any pixel.
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(a) θp = 0.22 rad (b) θp = 0.46 rad

Figure 3.5: Top view of the tokamak, showing the origin of the radiation at (a)
θp = 0.22 rad (corresponding to Fig. 3.4(d)) and (b) θp = 0.46 rad
(corresponding to Fig. 3.4(h)). The camera position is indicated
by the red cross, with its viewing direction designated by the red
arrow. At larger pitch angles, the radiation originates from two
distinct regions of space which gradually move away from each
other, as exemplified in (b).

Figs. 3.6(b)-(d). At larger pitch angles, the bands of radiation split up
and join with the corresponding bands at the same radius on the other
side of the magnetic axis, as is particularly apparent in the transition
between Figs. 3.6(c)-(g).

It is also interesting to note that each pair of radiation bands in
Fig. 3.6 corresponds to a single point of the reduced phase space used in
Soft, and described in Sec. 2.2. Any radiation image will therefore be a
linear superposition of such bands, each weighted with the corresponding
value of the runaway electron distribution function.

Energy

The final phase space parameter which the radiation spot may depend
on is the energy of the particle, or equivalently, its momentum p. As
it turns out, the radiation spot shape does not in general depend on p
in zeroth-order guiding-center theory. This is evidenced by the condi-
tion for radiation to reach the detector, Eq. (2.10), which is completely
independent of the energy of the particle to zeroth-order.
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(a) θp = 0.04 rad (b) θp = 0.10 rad (c) θp = 0.16 rad (d) θp = 0.22 rad

(e) θp = 0.28 rad (f) θp = 0.34 rad (g) θp = 0.40 rad (h) θp = 0.46 rad

0% 1% 2% 3% 4% 5%
I/max I

Figure 3.6: Radial location. Each ribbon in these images consists of radi-
ation emitted along an individual guiding-center orbit, approx-
imately corresponding to an individual flux surface. The max-
imum radii of the ribbons are distributed uniformly between 6
and 48 cm. For comparison with the spots of Fig. 3.4, the pitch
angle is varied in each of subfigures (a)-(h). To emphasise the
shape of the spot, the colour scale has been chosen such that
white corresponds to 5% of the maximum value in any pixel.
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(a) p = 60mec

Synchrotron

(b) p = 120mec

Synchrotron

(c) p = 60mec

Bremsstrahlung

(d) p = 120mec

Bremsstrahlung

0% 20% 40% 60% 80%
I/max I

Figure 3.7: Energy. While the overall spot shape is not affected by the en-
ergy of the particle, the amount of emitted synchrotron radiation
becomes more strongly dependent on magnetic field strength at
low energies. Since bremsstrahlung is independent of the mag-
netic field, its radiation spot shape shows no energy dependence.
All images were generated in a magnetic field with B = 5 T on-
axis. The camera spectral range was λ ∈ [400, 800] nm in the
synchrotron case. To emphasise the shape of the spot, the colour
scale has been chosen such that white corresponds to 80% of the
maximum value in any pixel.

Despite this, the synchrotron spot shape can depend sensitively on
the particle energy, something which was noted in Paper C. There, it was
shown that due to the strong magnetic field dependence of the synch-
rotron radiation, combined with the necessarily finite spectral range of
all synchrotron cameras, the amount of synchrotron radiation received
from a particle at major radius R is

Psynch ∝ exp

[
−
(
R

Rc

)3/2
]
. (3.3)

The parameter Rc is the critical radius and scales as Rc ∝ 3
√
p2(1 + p2),

where p is normalised to the electron rest mass mec. It corresponds
to the location in the tokamak where, for a given particle energy and
pitch angle, the magnetic field is sufficiently strong for the synchrotron
radiation spectrum peak to lie within the observing camera’s spectral
range. Note that Eq. (3.3) is valid only in the limit where the peak of the
synchrotron spectrum lies at much longer wavelengths than the camera’s
spectral range, which is generally the case for visible-light cameras in
today’s tokamaks.

Due to the strong exponential dependence on R when Rc � Rm in
Eq. (3.3), synchrotron radiation is often mainly observed on the high field
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side in typical scenarios (such as in DIII-D, which has B = 2.2 T on-axis
under typical operating conditions). The critical radius Rc determines
the sensitivity to R—the larger Rc is (corresponding to higher particle
energies), the more evenly radiation is distributed between the low- and
high field sides of the tokamak. An example of this is shown in Figs. 3.7,
where in Fig. 3.7(a) only some radiation is seen on the left side of the
image, corresponding to the high field side. At twice the particle energy,
in Fig. 3.7, most of the radiation spot is visible. For comparison, the
corresponding bremsstrahlung emission is also given in Figs. 3.7(c)-(d),
showing that the bremsstrahlung spot shape is independent of p.

The energy dependence can give rise to synchrotron radiation spot
shapes that are vastly different from the cylindrical and oval spot shapes
exemplified in Figs. 3.2-3.7 when the runaway electron distribution func-
tion is taken into account. When the energy of the runaways is low, so
that most radiation is emitted at wavelengths that are much longer than
the camera’s spectral range, contributions from the high field side dom-
inate. When the pitch angle distribution of the particles is taken into
consideration, the radiation spot will have a more diffuse pattern. One
example of this is shown in Fig. 3.8, where all particles have the same
energy, but are distributed in pitch angle according to

f(θp) ∼ eC cos θp , (3.4)

with C = 70. As is shown in Fig. 3.8(a), the synchrotron spot takes a
crescent-like shape at low energies, while at higher energies it is possible
to identify the spot shape as similar to the cylindrical shape seen in, for
example, Fig. 3.4.

It should be mentioned that for bremsstrahlung, even though the
energy does not affect the radiation spot shape, the amount of emit-
ted radiation does depend on energy. Since the runaway pitch-angle
distribution typically varies with energy, the runaway electron energy
distribution will always matter for the resulting radiation spot.

3.2 Dominant particles

In the previous section we considered radiation images from single points
of the reduced phase space. This is useful for analysing the dependence
of the diagnostic signal on tokamak and runaway parameters, and can
help in optimising diagnostic setups. Kinetic theory however predicts
runaways to always be widely spread in momentum space, requiring
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(a)

Rc � Rm

p = 60mec

(b)

Rc ∼ Rm

p = 120mec

0% 20% 40% 60% 80% 100%
I/max I

Figure 3.8: Energy. Synchrotron radiation images at two different energies,
with particles distributed in pitch angle according to Eq. (3.4). In
such scenarios, the synchrotron radiation spot can take a crescent-
like spot shape as in (a). At higher energies, such as in (b), the
radiation is distributed more evenly across the spot, and it again
resembles a cylinder as in for example Fig. 3.4. The white contour
lines indicate the location of the circular tokamak wall. Note that
the on-axis magnetic field strength was set to B = 5 T for this
simulation.
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Table 3.2: Simulation parameters used to generate Fig. 3.9.

Parameter Value

Magnetic field strength (on-axis) 5 T
Tokamak major (Rm) / minor (rm) radius 1.7 m / 0.5 m

Radial distribution of runaways Uniform, f(ρ) = const
Safety factor Constant, q = 1

Detector vertical position Z = 0
Drift orbits Neglected

us to take the electron distribution function into account when studying
experiments. In a spatially homogeneous plasma where runaway genera-
tion is dominated by the avalanche mechanism, the distribution function
can be approximated by [9]

f(p, θp) =
Cγ

2πmecγ0p2(1− e−2Cγ)
exp

[
− γ

γ0
− Cγ (1− cos θp)

]
, (3.5)

with p denoting the particle momentum normalised to the electron rest
mass mec, γ =

√
1 + p2, γ0 the average runaway energy and C a con-

stant that depends on plasma parameters. This distribution function
decreases monotonically with energy γ. On the other hand, the amount
of emitted radiation typically increases monotonically with the runaway
energy, and in the case of synchrotron radiation, also with the pitch
angle. The radiation from a runaway population distributed according
to Eq. (3.5) should therefore not be dominated by the most common
particles in the population, but rather by those particles which collec-
tively contribute the most radiation to the detector. In other words,
the detected radiation should be dominated by the point p of momen-
tum space that maximises the product p⊥G(ρ, p‖, p⊥)f(p‖, p⊥), where
G(ρ, p‖, p⊥) is the diagnostic response function as defined by Eq. (2.7),
and the factor p⊥ is the momentum-space Jacobian.

Figure 3.9 shows an example distribution function of the form (3.5)
with C = 4 and γ0 ≈ 51 in (a), along with the amount of radiation

F (p‖, p⊥) =

∫
G(ρ, p‖, p⊥)f(p‖, p⊥) p⊥ dρ, (3.6)

seen by the detector from the runaway population. Figure 3.9(b) uses
a response function G corresponding to a bremsstrahlung detector mea-
suring photon energies in the range 511 keV-10 MeV, while Fig. 3.9(c)
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Figure 3.9: (a) A runaway electron distribution function dominated by ava-
lanche generation and contributions to detected (b) bremsstrahl-
ung and (c) synchrotron emission F of Eq. (3.6).
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uses that of a synchrotron radiation detector measuring radiation in
the wavelength range 400-800 nm. Both response functions have been
integrated over all radii. The physical simulation parameters used to
generate Fig. 3.9 are presented in Table 3.2.

The maxima in Figs. 3.9(b) and 3.9(c) are examples of what we
refer to as the dominant particles. Images, spectra and other measured
radiation signals from the distribution in Fig. 3.9(a) will have features
reminiscent of signals originating purely from the dominant point of
momentum space. Often, it is therefore sufficient to assume that all
runaways have the same energy and pitch angle to reproduce the main
features of a diagnostic signal. The particular energy and pitch angle
that best matches the signal is in general, however, not representative
of the actual runaway electron population. It is merely the point of
momentum space that is best resolved by the diagnostic.

The location of the dominant particle in momentum space depends
on both the runaway electron distribution function and the diagnostic
response function. This means that different types of radiation will be
associated with different dominant particles, as evidenced in Figs. 3.9.
It however also means that the same type of radiation, from the same
distribution function, measured at a different wavelength, or originat-
ing from a different position of the device, will be associated with a
different dominant particle. Therefore, multiple detectors viewing the
runaways from different positions and at different radiation wavelengths
may be able to probe complementary parts of the distribution function
and provide a more complete picture of the runaway dynamics.

3.3 Geometric effects

The location of the dominant particle, introduced in the previous sec-
tion, in momentum space depends sensitively on the geometric effects
appearing in the diagnostic response function. So far, in Section 3.1,
we have only considered the effect of geometry on the radiation spot
shape, and not how geometric effects influence the dominant particle.
The purpose of this section is therefore to characterise what is meant
by “geometric effects” and explain the behaviour of the Soft diagnostic
response function, and we will do so by analysing a specific synchrotron
radiation response function. As we will see, geometry generally has little
effect on the radiation observed from particles with small pitch angles,
but becomes increasingly important at larger particle pitch angles.
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Before presenting the example response function, however, we should
revisit the mathematics of the response function. The diagnostic re-
sponse function was defined in Eq. (2.7), and is given in terms of an
integral over the plasma volume, the detector surface and the particle gy-
ration angle ζ. For the purpose of studying geometric effects on directed
radiation, we utilise the cone approximation described in Section 2.3,
and stated mathematically in Eq. (2.8). We will only be concerned with
the momentum space dependence of the response function in this sec-
tion, which means that we will assume that all runaway electrons are
uniformly distributed in the radial coordinate ρ. Therefore, we introduce
the spatially integrated response function

G(p
(0)
‖ , p

(0)
⊥ ) =

∫
G(ρ, p

(0)
‖ , p

(0)
⊥ ) dρ =

=

∫∫∫
Θ
(r
r

) r · n̂
r3

P (x,p)

2π
δ

(
p · r
pr
− 1

)
dζ dAdV,

(3.7)
where P is the total amount of emitted radiation at the point (x,p)
of phase space and p = p(x,p(0)) is the local momentum of the par-
ticle in x, given initial momentum p(0) at the beginning of the orbit.
The coupling between the response function G and the magnetic field
and detector geometry is evident from Eq. (3.7): only radiation inside
the detector field-of-view contributes, defined through Θ(r/r); radia-
tion emitted further away from the detector contributes less by a factor
1/r2; the amount of emitted radiation P (x,p) varies in different parts
of the plasma; and only radiation emitted from points on the surface-
of-visibility—which results when integrating the delta function over the
plasma volume—can be observed.

Although the emitted radiation P generally depends on the geometry
of the setup, it is often possible to neglect this dependence and define a
geometric function

K(p‖, p⊥) =
1

P (x̄, p
(0)
‖ , p

(0)
⊥ )
G(p

(0)
‖ , p

(0)
⊥ ), (3.8)

where P (x̄, p
(0)
‖ , p

(0)
⊥ ) is the total amount of radiation emitted from some

representative position x̄ in the plasma. The function K characterises
the geometric effects on the detected radiation of the diagnostic setup
and has the property that it reproduces G when multiplied with the to-
tal emitted radiation P . This may seem like a trivial point, but it is
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in fact of great importance for constructing reduced models of the de-
tected radiation. For example, many previous studies of the synchrotron
spectrum can be seen as approximating Eq. (3.8) either as a constant
or with simple functional forms [45, 80]. For our analysis, we assume
K ≡ K0 = const for one of the response functions, which helps illumi-
nate the geometric effects in the full response function G of Eq. (3.7).

Simulated response functions

In Table 3.3, the parameters used to simulate the two response functions
are shown, and in Fig. 3.10, the corresponding response functions are
plotted against the initial particle pitch angle (the superscript “(0)” has
been suppressed for brevity on θp; all occurrences of θp are henceforth
understood to refer to the initial pitch angle of the particle). The two
response functions shown can be expressed mathematically as

G1(θp) = [Equation (3.7)] , (3.9a)

G2(θp) = P (x̄, p
(0)
‖ , p

(0)
⊥ )K0. (3.9b)

The first function, G1, is computed using Soft and contains all geometric
effects captured by that model. The second function, G2, approximates
the geometric function K in Eq. (3.8) as independent of the pitch angle
θp. We choose the point x̄ such that the magnetic field strength there is
the maximum experienced by any particle along its orbit. This should
be a good approximation for synchrotron radiation, since it depends
strongly on the magnetic field strength.

We will not be concerned with the energy dependence of the response
function here, as geometric effects almost exclusively appear as a pitch
angle dependence. Instead, we consider both response functions at a
fixed value of particle momentum p0, chosen at the representative value
p0 = 40mec. It should also be noted that while the following analysis is
done for a specific synchrotron radiation response function, the qualita-
tive insights gained apply also to bremsstrahlung, and a wide range of
detector and magnetic field configurations.

Figure 3.10 reveals that the shape of the two response functions
match relatively well at small pitch angles. At larger pitch angles, how-
ever, the growth of the Soft response function G1 is limited, while G2

continues to grow monotonically with pitch angle. Eventually, G1 even

∗The detector viewing direction is tangential to the toroidal plasma, as illustrated
in Fig. 3.1.
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Table 3.3: Parameters of the setup used to generate the response functions
of Fig. 3.10, with and without geometric effects (GE). The pa-
rameters are chosen to make the response functions as comparable
as possible, but naturally the response function taking geometric
effects into account depends on more parameters.

Parameter w/ GE w/o GE

Magnetic field strength (on-axis) (T) 2 2.83
Particle momentum p0 (mec) 40 40

Spectral range (µm) 3-5 3-5
Major/minor radius (m) 1.7/0.5 —

Detector aperture (m) 6 · 10−3 —
Field-of-view opening angle (rad) 0.55 —

Detector viewing direction Tangential∗ —
Detector vertical position Midplane —
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Figure 3.10: (a) Comparison of response functions simulated with and with-
out geometric effects. Geometric effects appear to be relatively
unimportant for the shape of the response function at small
pitch angles, but begin to make a significant difference around
θp ∼ 0.30 rad. Once they become important, they limit the
detected radiation and soon cause the response function to de-
crease rather than increase, as is the case when geometric effects
are neglected. (b) The same response functions as in (a), but
plotted on a linear scale to more clearly reveal the influence of
the geometric effects. For G2, K0 = 10−4.
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starts to decrease and completely vanishes above some threshold pitch
angle which depends on the field-of-view.

The rather complicated behaviour of the Soft response function can
be understood qualitatively by considering how the SoV is affected as
the pitch angle is varied. In Fig. 3.10 we identify four regions showing
very different pitch-angle dependences:

I. θp . 0.30 rad: Weak effect of geometry.

II. θp . 0.65 rad: Slowed growth of detected radiation.

III. θp . 1.30 rad: Detected radiation decreasing.

IV. 1.30 rad . θp: No radiation detected.

The first region, where pitch angles are small, is the region where ge-
ometric effects are mostly negligible and the response function can be
approximated according to Eq. (3.9b). Here, the full SoV is within the
field-of-view of the detector. The growth of both response functions is
∼ θ2

p, since this is the rate at which the emitted synchrotron radiation
P increases with θp in the considered wavelength range.

In region II, geometric effects begin to appear and limit the growth
of G1. The reason for this can be seen also in Eq. (3.8), which at small
pitch angles is

K(θp) ∝ VSoV
L

LC
, (3.10)

where VSoV denotes the volume taken up by the SoV† within the plasma.
The length L is the length of the circle segment of the guiding-center
cone that overlaps the detector, as illustrated in Fig. 3.11, and LC is
the circumference of the whole circle. It can be shown that VSoV ∝ θp

and L/LC ∝ θ−1
p , meaning that at small pitch angles K(θp) is in fact

approximately constant.
At some point, the SoV will have grown so large that it extends out-

side the plasma. While the SoV will continue to grow with θp, the volume
VSoV in Eq. (3.10)—the volume of SoV that is within the plasma—will
not. Rather, it shrinks as the pitch angle further increases. The tran-
sition between these two regimes is instant, and this is reflected by the
discontinuity in G1 between region I and region II in Fig. 3.10. Exactly

†Note that the SoV, despite being referred to as a surface, occupies a volume in
space when the detector has a finite surface area. The SoV is only truly a surface for
a point detector.
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Figure 3.11: Sketch of circular segment of length L of the guiding-center cone
that overlaps with the detector. The length of a cone cross-
section when projected on the detector plane is denoted by LC.

when this effect starts to impact the response function depends on the
shape of the magnetic field, as well as where the detector is located
relative to the plasma.

As the pitch angle further increases and we enter region III in Fig. 3.10,
the Soft response function suddenly starts to decrease. The reason for
this decrease is that the SoV—which at these large pitch angles consists
of two oval surfaces that move away from each other (c.f. Figs. 3.4(h)
and 3.5)—has started to move out of the detector’s field-of-view, and
so the step function Θ(r/r) in Eq. (3.7) starts to affect the geometric
function K. The onset of this effect is mainly determined by the size of
the field-of-view of the detector, but can also be affected by the shape
of the tokamak wall.

Eventually, no part of the SoV is in the detector’s field-of-view any-
more, at which point we enter region IV in Fig. 3.10. In region IV,
the detector sees no radiation, meaning that it is completely insensitive
to particles with such large pitch angles. This effect can particularly
impact spectrometers which often have relatively narrow fields-of-view.

As mentioned, the exact distribution of the four regions in Fig. 3.10
depends sensitively on the detector placement and magnetic field shape.
The slopes of the response function also depend on the spectral range
of the detector, and so the properties of a particular detector setup are
difficult to predict and require simulation. Although the shapes of G1

and G2 agree relatively well at small pitch angles in the analysed scenario,
agreement is not exact and could become important in certain scenarios.
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Chapter 4

Summary

One of the most important concepts the plasma physicist has for study-
ing the dynamics of runaway electrons is the electron distribution func-
tion. Unfortunately, the distribution function cannot be accessed di-
rectly in experiments; instead the runaways must be studied through
measurements of associated quantities, such as the amount of current
in the device or the number of emitted X-rays. On top of this, most
diagnostic signals are relatively insensitive to features in the runaway
electron distribution function, making detailed study of the runaways
challenging.

Among the runaway electron diagnostics, bremsstrahlung and synch-
rotron radiation stand out by being highly sensitive to all parameters
of the runaway electron distribution function. To utilise them in model
validation, corresponding synthetic diagnostics must be available, and
the development and subsequent application of such a numerical tool
has been the focus of the research presented in this thesis. In this chap-
ter we summarise the findings of the appended papers and comment on
possible future developments.

4.1 Summary of papers

A specialisation of the model derived in Chapter 2 was presented in
Paper A, along with the numerical code Soft which implements the
specialised model. The model utilises a guiding-center transformation
to a reduced phase space in order to make the evaluation of the syn-
thetic radiation diagnostic integral Eq. (2.5) more computationally fea-
sible. Subsequent papers in this thesis can then be categorised as either
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applications or extensions of that model. Papers B and D belong to
the first category: Paper B used Soft to simulate synchrotron spec-
tra in Alcator C-Mod, while Paper D used Soft response functions
to infer the radial distribution of runaway electrons in Alcator C-Mod.
Paper C belongs to both categories, as it added the ability to simu-
late runaway electron bremsstrahlung, while also using Soft to analyse
both the bremsstrahlung and synchrotron radiation measured during a
discharge in the DIII-D tokamak.

The first application of Soft to an experimental scenario was how-
ever already done in Paper A, where the then newly developed tool was
combined with the kinetic solver Code to study a synchrotron image
taken during an Alcator C-Mod discharge. It was found that even though
Code assumes a spatially homogeneous plasma, and thus only provides
the momentum-space distribution of electrons, the combined simulation
was able to reproduce several features of the experimentally measured
image if a radial distribution of electrons peaking on the magnetic axis
and decreasing linearly with minor radius, was assumed. This compari-
son of simulation and experiment provides an important example of how
powerful synchrotron radiation can be as a diagnostic when validating
kinetic models of runaway dynamics against experiment.

Paper D extended the analysis of the Alcator C-Mod discharge done
in Paper A and compared Code and Soft simulations with a time
series of synchrotron images. Since Code does not capture the spatial
dynamics of runaways, simulations of the runaway momentum-space dis-
tribution function were supplemented with direct inversions of the radial
distribution of electrons. This was facilitated through the computation
of Soft response functions which allowed Eq. (2.7) to be formulated
as a linear system of equations for every pixel of the image and solved
using standard methods. The inversion, combined with magnetic mea-
surements, indicate that runaway electrons may be trapped in a 2/1
magnetic island and expelled due to increased radial transport during
the discharge. The use of synchrotron radiation is therefore not necessar-
ily limited to validating kinetic models of runaway electrons, but could
also be used to directly infer parts of the runaway electron dynamics.

Soft was also used to study the impact of magnetic field strength
on the runaway dynamics in Paper B. There, a set of Alcator C-Mod
discharges were analysed by looking, in particular, at measured synchro-
tron spectra. Using Soft, it was possible to test the predictions for the
runaway dynamics made by a test-particle model [88] and Code against
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experimentally measured synchrotron spectra, and use these models to
determine how the runaway energy scales with magnetic field strength.
In addition to Soft, the synchrotron emission code Syrup [80] was also
used to compute spectra. While it was shown that Soft was needed to
reproduce the synchrotron spectra at higher magnetic field strengths, it
was only possible to explain the spectrum evolution at the highest field
strength at later times. One possible explanation for the lack of agree-
ment at higher fields that was put forward was that runaway electron
drift orbits became significant enough to alter the spectrum—the spec-
trometer’s field-of-view is small enough that a radial shift of the electrons
could change the dominant runaway parameters of the spectrum.

In Paper C, the most important features of directed radiation images
were reviewed, and demonstrated on bremsstrahlung and synchrotron
images taken in the DIII-D tokamak. The surface-of-visibility concept
was discussed, and it was shown how the strong magnetic field depen-
dence of synchrotron radiation can lead to distorted spot shapes, with
most radiation seen on the high-field side of the tokamak. Altogether,
this explains the crescent synchrotron spot shape often observed in many
tokamaks, including in DIII-D.

A kinetic simulation of a DIII-D discharge was also conducted using
Code, and validated against experiment. Despite assuming different
forms for the radial distribution of electrons, little agreement was found
between simulation and experiment. However, taking all particles to
have the same energy, but being distributed in pitch-angle, provided
better agreement with experiment. Hence, together with evidence from
Refs. [47, 48], it was suggested that kinetic processes not included in
Code may be contributing to the runaway dynamics in this scenario.
Possible such processes include radial transport and kinetic instabilities.

Paper C also described the implementation of bremsstrahlung into
Soft, which was demonstrated for the Gamma Ray Imager (GRI) di-
agnostic, installed at DIII-D, which is able to produce bremsstrahlung
camera images. It was shown that due to the completely different en-
ergy and pitch-angle dependence of bremsstrahlung, along with the lack
of magnetic field dependence, the same runaway electron distribution
function can give rise to completely different bremsstrahlung and synch-
rotron radiation spot shapes. This, however, also means that the two
types of radiation probe different parts of the distribution function, and
can therefore act as complementary diagnostics to study a larger part of
momentum space.
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4.2 Outlook

With numerical tools such as Soft available for simulating bremsstrahl-
ung and synchrotron radiation from runaway electrons, quantitative
comparisons of experimental measurements against distribution func-
tions from state-of-the-art kinetic models can now be carried out. As
evidenced by the work in this thesis, these comparisons have already
proven useful in interpreting several experimental observations, but have
also hinted at limitations of the current version of Soft. One impor-
tant effect that is currently not treated in the model is the drift motion
experienced by the guiding-center. At the high particle energies that
runaways typically possess, these orbit drifts can sometimes significantly
alter the orbit shape, and are therefore expected to alter the shape of
the observed radiation spot accordingly. To rigorously account for drift
orbits however, the current theory must be extended to the next order
in guiding-center theory, as drifts are formally a first order effect.

The extension to higher order is not straightforward, as the emitted
radiation explicitly depends on the position and momentum vectors of
the particle, and not just the guiding-center position and momentum.
This means that the emitted radiation will depend on the shape of the
gyration orbit of the particle around the guiding-center, which in the
lowest order theory just traces a circle in the plane perpendicular to
the magnetic field. To higher order, the gyro orbit receives corrections
that break the gyro orbit isotropy. As a consequence, the computation-
ally very efficient cone model may not be applicable in certain scenarios
where drifts become important, because the cone approximation relies
precisely on the fact that the gyro orbit is circular in lowest order. A
non-circular gyro-orbit leads to a non-circular cone of emission, which
affects at which points of space the runaways are observed by a detec-
tor. An estimate of the importance of this effect was made in Paper H
which suggested that in certain scenarios it may actually be significant
enough to enhance or completely cancel the radial shift of particles due
to guiding-center drifts. On the other hand, in a recent study [89] of the
guiding-center motion of runaway electrons, it was shown that the gyro
orbits of runaway electrons are in fact circular even to second order, if
the runaway electron pitch angle is also assumed small. A full study of
the importance of the effect, and to what extent the assumptions of the
cone approximation are valid, remains to be conducted.

An alternative approach to validating the cone model when drift
orbits are included is to compare Soft simulations to corresponding
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full-orbit simulations, with e.g. Korc [70, 81] or a similar model. This
would also help to validate the Soft model as a whole and help esti-
mate its accuracy in various scenarios. Recently, concerns about the
non-conservation of the first-order guiding-center magnetic moment in
runaway electrons have been raised [81, 90], suggesting that the regular
guiding-center equations of motion may not be valid for those particles.
Since this is what is used in Soft to parameterise phase space, a full-
orbit benchmark could help to discern in which scenarios a tool such as
Soft would not be applicable.

Most of the work in this thesis has focused on so-called forward
modelling of the runaway electron radiation—i.e. producing diagnostic
signals from a given distribution function. In Paper D, however, the
opposite problem was considered and the radial distribution of runaway
electrons was directly inferred from synchrotron images. In the past,
several studies attempted inversions of the runaway electron energy dis-
tribution from bremsstrahlung measurements [47, 71, 73, 74]. While
these studies were limited to one phase space parameter, it should be
possible to extend them to more parameters. The inverse problem for
observed radiation is however ill-posed, and standard matrix inversions
are usually not possible [72]. Instead, more sophisticated methods must
be applied that allow physical constraints to be set, and that utilise all
available measurements. Since bremsstrahlung and synchrotron radia-
tion probe different parts of momentum space, utilising both signals for
inversions should put the needed constraints on the possible shape of the
distribution function. Similar techniques have been applied to invert the
fast-ion distribution function in fusion plasmas previously [91–94], and
could serve as inspiration for an application to runaway electrons.

Already, runaway electron bremsstrahlung and synchrotron radia-
tion modelling has come a long way, and the suggestions discussed above
would further strengthen the utility of bremsstrahlung and synchrotron
for diagnosing runaway electrons. With the first plasma in ITER ap-
proaching, the urgency of the runaway issue is becoming more and more
apparent. The only way in which we can solve the problem is to continue
to improve our knowledge about runaway electrons, which, in the end,
means developing better models for their dynamics and validating them
against experiments. It is clear that both bremsstrahlung and synch-
rotron radiation have important roles to play in the validation of such
models, and to that end the work presented in this thesis provides a firm
basis for future studies.
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