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Efficient Concept Formation in Large State
Spaces?

Fredrik Mäkeläinen, Hampus Torén, and Claes Strannegård

Department of Computer Science and Engineering,
Chalmers University of Technology, Gothenburg, Sweden

Abstract. General autonomous agents must be able to operate in pre-
viously unseen worlds with large state spaces. To operate successfully
in such worlds, the agents must maintain their own models of the en-
vironment, based on concept sets that are several orders of magnitude
smaller. For adaptive agents, those concept sets cannot be fixed, but
must adapt continuously to new situations. This, in turn, requires mech-
anisms for forming and preserving those concepts that are critical to
successful decision-making, while removing others. In this paper we com-
pare four general algorithms for learning and decision-making: (i) stan-
dard Q-learning, (ii) deep Q-learning, (iii) single-agent local Q-learning,
and (iv) single-agent local Q-learning with improved concept formation
rules. In an experiment with a state space larger than 232, it was found
that a single-agent local Q-learning agent with improved concept forma-
tion rules performed substantially better than a similar agent with less
sophisticated concept formation rules and slightly better than a deep
Q-learning agent.

Keywords: autonomous agents · artificial animals · efficient concept
formation · adaptive architectures · local Q-learning.

Neuroplasticity refers to the capacity of animals to alter their nervous systems
in response to changes in the environment. The connectivity between neurons
may change over time and neurons may be added and removed continuously
in a life-long process [1]. Artificial neural network models are frequently based
on static architectures that are only plastic in the sense that their connectivity
patterns develop over time. Several neural network models also allow nodes to be
added and removed, however. For instance, the cascade-correlation architecture
adds one hidden neuron at the time [2], and the progressive neural networks
grow new columns while retaining previously acquired knowledge [11]. There are
also regularization techniques [3] and pruning methods [18] that reduce the size
of neural networks, while improving generalization.

Reinforcement learning occurs across the animal kingdom, and its biological
basis has been studied extensively [9]. Reinforcement learning algorithms, on
the other hand, are powerful tools for learning and decision-making in a general
setting [13]. Q-learning is a basic algorithm for learning an optimal policy from
? Research supported by the Torsten Söderberg Foundation Ö110/17.
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experience for any Markov Decision Process [15]. The U-tree model has been
used for building decision-trees for state representations [4] and local Q-learning
has been used in a multiple agent setting for merging Q-values collected from
multiple agents into a global Q-value [10]. Reinforcement learning algorithms
have also been applied to homeostatic agents, whose single objective is to regulate
their homeostatic variables and thus stay alive as long as possible [5, 19].

Artificial animals have been studied primarily in the context of artificial life
[6, 14]. Stewart Wilson defined animats as a form of artificial animals, whose sole
goal is homeostasis [16]. He also suggested the animat path to AI as a way of
creating artificial intelligence by modeling animal behavior [17].

In this paper, we consider artificial animals and propose generic mechanisms
for perception, learning, and decision-making. For perception we use a graph
model that supports sequences and represents sensory concepts as single nodes
(cf. grandmother nodes). This choice of graph model makes it relatively easy to
define efficient rules for adapting the graph topology continuously. The purpose
of our dynamic graph model is to support one-shot, life-long, on-line learning
while avoiding catastrophic forgetting and the data hunger associated with deep
learning.

This paper extends our previous work [12], with its single-agent local Q-
learning and basic structural rules for adding new nodes by introducing radi-
cally improved rules for node formation. Section 1 presents the improved animat
model. Section 2 presents an experiment in which our animat model is compared
to four other models. The results of the experiment are presented in Section 3.
Section 4 discusses possible directions for future research. Section 5, finally, draws
some conclusions.

1 Animats

A schematic description of the animat model is given in Figure 1. Time proceeds
in discrete ticks in the animat model and the animat is updated at each tick
according to Algorithm 1. Code describing the model in full detail is open sourced
and available at [7]. Now let us zoom in on the constituents of the animat.

1.1 Body
The body is the animat’s physical representation. The body has its associated
finite sets of variables called sensors, needs, and motors. Sensors and motors take
boolean values, whereas needs take values in the real interval [0, 1].

Needs are denoted by natural numbers i. The status of need i at time t is
the real value ιi(t) ∈ [0, 1]. Intuitively, 0 means death, while 1 means full need
satisfaction. Examples of needs are water, energy, and protein. Now, it is easy
to define reward in terms of changes in the status of the needs:
Definition 1 (Rewards). For each need i and time t > 0, the reward signal
ri(t) is defined as follows:

ri(t) = ιi(t)− ιi(t− 1). (1)
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Fig. 1: The main constituents of the animat model in a reinforcement learning setting.

Algorithm 1: The update sequence for the animat.
Input: An animat A
while A is alive do

The body receives a response from the environment and updates its sensors
and needs accordingly

The controller receives the active sensors and the status of the needs from
the body

The top active nodes are determined
The global Q-values are determined
The local Q-values are updated
Formation rules are activated
The top active nodes are determined again
The global Q-values are determined again
The action goodness and utility are determined
An action is selected and sent to the body
The action is performed by the body
The world evaluates the interaction

end

1.2 Controller

The controller is responsible for both learning and decision-making. Intuitively,
it models the animat’s brain. The controller is a function that takes a (physio-
logical) state consisting of sensor values and need values as input and outputs
an action, which is immediately executed by the motors. The controller either
selects a random action (exploration), or an action that is expected to have the
best consequences, based on its experience from previous interactions (exploita-
tion). Next let us describe the controller in more detail.
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1.3 Perception

Based on sensory input, a perception graph is used to approximate the state, an
example of a perception graph is given in Figure 2. We construct the perception
graph as a DAG where the input layer consists of the sensors. Initially, the per-
ception graph consists only of the input layer, but through the use of formation
rules, AND nodes can be added over time.

Fig. 2: A perception graph with 5 active and 3 top active nodes. The lowest layer
contains the sensors.

Definition 2 (Perception graph). A perception graph is a graph whose nodes
(concepts) are sensors and binary AND-gates.

Definition 3 (Perception graph activity). At each time step the perception
graph receives boolean values to its sensors. Those that receive the value True are
called active. This activity propagates to the AND-nodes within the same tick.
An AND-node is active if both its incoming signals are active.

We use the symbol b for nodes of the perception graph and Bt for the set of all
nodes at time t. The set of all active nodes at time t is denoted by BA

t .

Definition 4 (Top activity). An active node b ∈ BA
t is top active if the set of

sensors it represents is not a subset to a set of sensors represented by another
active node b′ ∈ BA

t .

The set of all top active nodes at time t is denoted by BT A
t . The set of top active

nodes describes the current state to its maximum level of detail with respect to
the structure of the perception graph.

1.4 Learning

In this section we present several experience structures that are updated each
time step, and three new formation rules for the perception graph. The rules
for expanding the perception graph are the main novelty of the present model
compared to our previous work [12].
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We will start with how the the quality of each action, with respect to either
a single top active node or the set of all top active nodes, are updated and
calculated in this model.

Definition 5 (Local Q-values). A local Q-value is a real-valued variable Qi(b, a)
that reflects the expected response to the status of need i when performing action
a, given that node b is top active.

Definition 6 (Global Q-values). A global Q-value is a real-valued variable
Qglobal

i (BT A
t , a) that reflects the expected response to need i when performing

action a given the set of top active nodes. It is defined as follows:

Qglobal
i (BT A

t , a) =
∑

b∈BT A
t

Qi(b, a)
|BT A

t |
. (2)

Definition 7 (Update local Q-values). The update of the local Q-values is
based on Q-learning where the main differences stem from the state represen-
tation, which is given by the set of top active nodes. At t + 1 the Q-values are
updated for all previous top active nodes b ∈ BT A

t , with respect to the selected
action at, the received rewards ri(t+ 1) and the new top active nodes b′ ∈ BT A

t+1,
as

Qi(b, at)← Qi(b, at) + α
(
ri(t+ 1) + γ ·max

a

[
Qglobal

i (BT A
t+1, a)

]
−Qi(b, at)

)
,

(3)
where α ∈ [0, 1] is the learning rate and γ ∈ [0, 1] is the discount rate.

We will now move over to the new formation rules, but before we introduce
them, we will present the information that they are based on.

Definition 8 (Pair reward). PairRewardi(b, b′, a) is the probability that the
reward for need i will be positive if action a is performed when b and b′ are both
top active.

Definition 9 (Reward history). The reward history RewardHistoryi(b, a) is
a pair (pos, neg), where pos (neg) is the number of times a positive (negative)
reward for need i has been received when doing action a while node b has been
active.

To increase their chances of surviving, animats must be able to memorize what
kind of objects are, e.g. suitable for eating and drinking.
Definition 10 (Positive stable nodes). Based on the entries in
RewardHistoryi(b, a), the positive stable nodes PositiveStablei(a) is a list of all
nodes that have received at least φP ositiveStable positive rewards and no negative
rewards for need i and action a.

Definition 11 (Relevant nodes). For each stable node b ∈ PositiveStablei(a)
all nodes b′ that seem to be correlated to b are added to the list of relevant nodes,
Relevanti(b). If at least at least φRelevantUpdates updates have been performed
for an entry in RelevantTransition(b, b′|b′′, a) and
RelevantTransition(b, b′|b′′, a) > pRelevant, then b′′ is added to Relevanti(b).
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Definition 12 (Relevant transition probabilities). The relevant transition
probabilities, RelevantTransition(b, b′|b′′, a), contains the conditional probability
that b′ is active given that b′′ was active and action a was performed, where
b ∈ PositiveStablei(a′) and b′ ∈ Relevanti(b).
From studying the Definitions 4, 6 and 7, we made the following observation: all
sets of top activities a node can be part of needs to have a coherent response from
the environment for each action, otherwise conflicting rewards and conflicting
global Q-values could prevent the agent from learning a good policy. Our new
formation rules were designed with this in mind, and they will now be briefly
described.
Definition 13 (Positive reward merge). At each time step, flip a biased
coin. If heads, then select two nodes b and b′ with probability proportional to
their entry PairRewardi(b, b′, a) and so that b and/or b′ have received conflicting
rewards, i.e. the entry in RewardHistoryi(b, a) is (> 0, > 0). Then if it does
not yet exist, add b′′ = b AND b′ to Bt.
The positive reward merge creates connections for nodes with conflicting re-
wards, with the goal that the new node becomes a positive stable node. Entries
in PairReward with high probability are more likely to be made first.
Definition 14 (Stable node merge). Suppose a stable node
b ∈ PositiveStablei(a) is active, b ∈ BA

t . For b′ ∈ BT A
t , if it is not already

represented, add b′′ = b AND b′ to Bt.
The stable node merge makes sure that all stable nodes receive a coherent re-
sponse from the environment, i.e. we isolate them by forming new nodes with
the top active nodes.
Definition 15 (Relevant node merge). Suppose a relevant node
b′ ∈ Relevanti(b), is active, b′ ∈ BA

t . For b′ ∈ BT A
t , if it is not already repre-

sented, add b′′ = b AND b′ to Bt.
Similar to stable node merge, we also isolate nodes deemed relevant to a stable
node.

1.5 Decision-making
In this section, we present the building blocks that are used by an animat to
select an action in a potentially multi-objective setting.
Definition 16 (Action goodness). The action goodness is defined as

Gi(a, t) = ιi(t) + ωQglobal
i (BT A

t , a), (4)

where ω ∈ [0, 1] is a constant.
Definition 17 (Utility). The utility is defined as

utility(a, t) = min
i

[Gi(a, t)] . (5)

Definition 18 (Policy). Flip a biased coin. If heads then select the action that
maximizes utility(a, t), otherwise select a random action.
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2 Experiment
Now let us describe the experiment, whose purpose was to evaluate the three
new formation rules (Definitions 13, 14, 15) and make comparisons with some
other models. Accompanying code can be found at [7].

Fig. 3: The 3x3 cat world shown in a state with fish in three
locations, red light off, green light on and 4 out of the 32 noise
lights active, as shown in the top bar. The cat has to find the
fish by using its smell sensors and then determine whether
the fish is edible. Because of the noise, the state space of this
world is greater than 232.

2.1 World
The world that is used in the experiment consists of a 3x3 bounded grid pop-
ulated by a cat and fish, see Figure 3. When exploring the cat discovers that
eating the fish sometimes results in (energy) reward, sometimes in punishment.
For this environment, a green light indicates that the fish is safe to consume
while a red light indicates the opposite. For the agent to find an optimal policy,
it must learn to navigate towards fish and then only consume fish when the green
light is active. To increase the size of the state space there are also lights that
represent noise, these are activated randomly with p = 0.25, and they do not
affect the received reward. The optimal policy is thus straightforward, but the
problem lies in finding this policy with all the noise present.

2.2 Agents
In the experiment we evaluated five agents:
– New Animat, which is the animat model described in this paper.
– Old Animat, which is an adaptation of the animat model described in [12].
– DQN, which uses a two-layer ANN for approximating the Q-value. It also

uses a target network and replay-memory similar to [8]. In total there are
200 weights to train.

– Q-learner, which is based on ordinary Q-learning, where each unique set of
active sensors has an entry in its Q-matrix. Since the state space is vast, it
is implemented using lazy initialisation.

– Random, which selects actions randomly.
The New Animat, Old Animat and Q-learner share the common Q-learning
parameters: εstart = 1.0, εdecay = 0.99, εmin = 0.01, α = 0.05, γ = 0.9, which
are the exploration/exploitation parameters, learning rate and the discount rate,
respectively.
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Sensors The body of the cat has the following sensors: a green light sensor, a
red light sensor, 32 noise light sensors, a fish sensor and four remote sensors for
fish smell. So in total, the agent’s perception of the environment is based on 39
boolean values.

Needs The cat has one need only: energy. The energy is not only affected by
the actions, but it also decreases each time step with a constant decay rate of
−0.02, an agent that is not following a good policy will usually see its energy
reach 0 in about 40 time steps.

Actions The agent can perform five different actions a ∈ {move up, move down,
move left, move right, eat}. The actions have the following impact on energy in
terms of the received reward: any move, r = −0.01; eat fish while green light
is active, r = 0.3; eat fish while red light is active, r = −0.3; eat nothing,
r = −0.015.

2.3 Evaluation

For each agent, data is collected over 20 independent experiments where one
experiment is divided into two parts: training and testing. Learning and explo-
ration are turned on during training and turned off during testing. Each training
episode lasts 200 time steps and is followed by a test episode, in which perfor-
mance data from 20 test runs are collected. Each test run ends after 100 time
steps or if the agent’s energy level reaches 0.

3 Results

In this section, we present the results of the experiment. Figure 4 shows the
performance of the five agents. It is clear that New Animat and DQN has the
best performance. DQN is the quickest to improve but is soon overtaken by
New Animat. New Animat performs best overall and stabilizes at a level above
all other agents. Old Animat performs better than both the Q-learner and the
Random agent.

Figure 5 shows that at the end of the experiment, Old Animat’s perception
graph contained ∼ 2000 nodes, while New Animat’s perception graph had stabi-
lized around ∼ 700 nodes already after 3000 time steps. Although Old Animat
used almost three times the number of nodes compared to New Animat, it failed
to match its performance level. The main difference between the two lies in the
formation rules, and thus they are the explanation of the success of New Animat.

4 Future work

The animat model was extended with three new formation rules. They all have
the goal of creating a coherent response for all top active nodes, by identifying
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Fig. 5: The mean and standard deviation
for the total number of nodes for New An-
imat and Old Animat, and the total num-
ber of unique states for Q-learner, with
respect to the number of trained steps.

and isolating important nodes. Instead of isolating the important nodes by cre-
ating many nodes in the perception graph, we suggest that it might be possible
to simply filter the top active nodes so that only the important nodes are taken
into account. We believe this approach is well worth exploring further, since it
has the potential to significantly reduce the number of nodes in the perception
graph, while possibly maintaining the same level of performance.

5 Conclusion

Improvements to a computational model for artificial animals were proposed.
The model combines generic mechanisms for homeostatic decision-making, lo-
cal reinforcement learning, and dynamic concept formation. An experiment was
conducted in which this model was compared to four other models: a previous
version of the animat model, a deep Q-learning model, a basic Q-learning model,
and a randomizer. The experiment was conducted in an environment with a state
space of size exceeding 232, which rendered basic Q-learning infeasible. It was
found that the improved animat model performed substantially better than the
previous animat model and somewhat better than an optimized deep Q-learning
model, despite starting with a blank slate architecture.
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