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Robust Regenerator Allocation in Nonlinear
Flexible-Grid Optical Networks With Time-Varying

Data Rates
Li Yan, Yuxin Xu, Maı̈té Brandt-Pearce, Nishan Dharmaweera, and Erik Agrell

Abstract—Predeployment of regenerators in a selected subset
of network nodes allows service providers to achieve rapid
provisioning of traffic demands, high utilization, and reduced net-
work operational costs, while still guaranteeing lightpaths quality
of transmission. Enabled by bandwidth-variable transceivers in
flexible-grid optical networks, optical channel bandwidths are no
longer fixed but constantly changing according to real-time com-
munication requirements. Consequently, the data-rate-variable
traffic together with other new network features introduced by
flexible-grid networks will render the regenerator allocation very
difficult due to the complicated network states. In this paper,
we investigate how to allocate regenerators robustly in flexible-
grid optical networks to combat physical layer impairments when
data rates of traffic demands are random variables. The Gaussian
noise model and a modified statistical network assessment process
framework are used to characterize probabilistic distributions of
physical-layer impairments for each demand, based on which a
heuristic algorithm is proposed to select a set of regenerator sites
with the minimum blocking probability. Our method achieves the
same blocking probabilities with on average 10% less regenerator
sites compared with the greedy constrained-routing regenerator
allocation method, and obtains two orders of magnitude lower
blocking probabilities than the routing and reach method with
the same numbers of regenerator sites.

Index Terms—Network optimization; Regenerator placement;
Physical-layer impairments; Variable traffic.

I. INTRODUCTION

The rapid rise in the use of the mobile Internet, video
streaming, and cloud computing services has led to increasing
data volumes and diversified traffic requests, which put severe
pressure on backbone optical networks. Flexible-grid optical
networks have been proposed to relax the rigid spectrum
grid requirement of wavelength-division multiplexing (WDM)
networks and offer much higher efficiency by adaptively
assigning spectrum to traffic demands [1].

Moreover, new network and transmission techniques are
also introduced to further improve the network capacity. En-
abled by bandwidth-variable wavelength cross-connects (BV-
WXCs) and bandwidth-variable transceivers (BV-Ts), network
operators can dynamically change the bandwidths of optical
channels according to real-time communication requirements
and, thus, achieve cost-effective and highly available connec-
tivity services [2]. Additionally, the advent of higher-order
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modulation formats and variable coding-rate schemes [3]–
[5] will allow finer granularity of spectrum efficiency in
transmission systems. Consequently, the state of the network1

becomes extremely complicated and physical-layer impair-
ments (PLIs) will be the dominant limitation for satisfactory
lightpath quality of transmission (QoT) and optical reach.

In flexible-grid optical networks, to achieve long-haul trans-
mission between nodes, one or more optoelectronic regener-
ators may have to be used to restore optical signals. How-
ever, each regenerator adds a cost comparable to a pair of
endpoint transceivers [6] and, thus, requires system operators
to predeploy them as efficiently as possible. By deploying
regenerators at a subset of the network nodes, referred to as
regenerator sites (RSs), we can achieve better sharing of spare
regenerators for randomly variable demands and improved
operational efficiency by requiring fewer truck rolls [7], which
require to dispatch technicians in a truck to install or maintain
the network equipment.

The problem of allocating a minimum set of RSs is defined
as the regenerator location problem (RLP) [6]. Previous studies
have investigated the RLP in single-line rate or waveband-
switched WDM networks from cost and energy consump-
tion perspectives [6]–[10]. Efficient heuristic algorithms have
also been proposed to find RSs in mixed-line rate WDM
networks [11], [12]. However, this research either assumes
detailed PLIs as known system parameters [8], [9], or rely on
the transmission reach (TR) model [6], [7], [11]–[13], which
represents the impairments as reachability in the worst case
with fiber links fully loaded.

Another issue with the existing studies is that their solutions
are all based on static traffic models where both the set of
traffic demands and their data rates are fixed. Although the
set of traffic demands remains relatively stable in the current
backbone optical networks [14]–[16], the data rates of traffic
demands are usually random variables varying according to
real-time requirements. Provided that the flexible-grid enabling
BV-WXC and BV-T technologies [2] are utilized, the cor-
responding optical channel bandwidths in the network are
random variables as well. Consequently, RLP solutions based
on static traffic predictions become inaccurate and inefficient
in the variable-traffic operation scenario.

In this paper, we consider the RLP in nonlinear flexible-grid
networks, where the data rates of traffic demands are random

1In this paper, the state of flexible-grid optical networks refers to the
occupancy of all the resources in the network and determines the network
utilization and physical-layer impairments.
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Table I: PARAMETERS IN THE PROBLEM STATEMENT

Symbol Meaning
V the set of nodes
E the set of links
bsub the subcarrier bandwidth (in GHz) in the network
M the name of the modulation format used in the network
c the spectral efficiency of M
G the PSD (in W·THz−1) used for all the traffic demands
SNRth the SNR threshold of M to achieve an acceptable QoT
T the set of traffic demands

Rt
a random variable representing the data rate (in Gbps) of
demand t ∈ T

pRt (rt) the PDF of the data rate for demand t ∈ T
∆bt the optical channel bandwidth (in GHz) of demand t ∈ T
Fmax the maximum number of RSs in the network

S(Fmax)
the set of output RSs whose total number is constrained
by Fmax

variables. The PLI are characterized using the Gaussian noise
(GN) model [17]–[19] and a modified statistical network
assessment process (SNAP) framework [20], based on which
a robust RLP algorithm is implemented. The proposed method
is compared with two previous algorithms [6], [10] that are
based on the TR model and static traffic prediction. The impact
of data-rate-variable traffic on RS allocation is also studied.

The remainder of this paper is organized as follows. In Sec-
tion II, the RLP in nonlinear flexible-grid networks with vari-
able traffic is described. Our proposed algorithm is presented
in Section III. Section IV presents and discusses numerical
results. We conclude the paper in Section V.

II. PROBLEM STATEMENT

In this paper, we consider an optical network represented by
an undirected graph with sets of nodes V and links E, where
each link l ∈ E is a bidirectional dispersion-uncompensated
fiber link between nodes i and j for i, j ∈ V . The spectrum
on each fiber is sliced into subcarriers with a bandwidth
of bsub (in GHz). All traffic demands are assumed to use a
uniform power spectral density (PSD) G (in W·THz−1) and
the same modulation format M with a spectral efficiency c and
signal-to-noise ratio (SNR) threshold SNRth that guarantees
an acceptable QoT. A guardband with bandwidth of bsub is
assigned to each traffic demand.

A static and known set of traffic demands T is assumed in
this study. Each element t ∈ T is associated with its source
s, destination d for s 6= d and s, d ∈ V , and a time-varying
random variable Rt representing its instantaneous data rate (in
Gbps) including forward error correction (FEC) overhead. A
probability density function (PDF) pRt(rt) is used to represent
its distribution. By employing Nyquist spectral shaping [21],
the demand t with data rate rt has a bandwidth of ∆bt =
bsub · drt/(bsub ·c)e. The push-pull technique [22] and dynamic
lightpath adaptation algorithm [23], [24] are used to adjust
bandwidth and shift carrier frequencies of optical channels
without disruption. The spectrum ordering of demands is also
assumed random, because the traffic loading process is usually
unknown to the RLP, which is solved in the early stages
of the network planning, and the spectrum assignment will
probably change after restorations from network failures. In

response to the time-varying data rates and spectrum ordering,
the transceivers and switches in the network are reconfigured
periodically after fixed time intervals.

As functions of the data rates and spectrum ordering, the
SNRs of traffic demands are also varying in time. A blocking
happens when the temporary SNR of a demand is lower than
SNRth. To achieve efficient network operation, we assume
that the temporarily blocked demands are still present in the
network instead of being rejected and reconnected frequently.
The noise blocking probability (BP) in this study is thus
defined as the overall blocking probability averaged over time.

Based on the above-mentioned description, our RLP takes
as input parameters: the network topology (V,E), subcarrier
bandwidth bsub, available modulation format M with spectral
efficiency c, uniform PSD G, maximum number of RSs Fmax,
and set of data-rate-variable demands T with known pRt(rt)
for t ∈ T . The output is a set of RSs, denoted as S(Fmax),
that minimizes the BP. The input and output parameters of the
proposed regenerator allocation algorithm are listed in Table I.

III. REGENERATOR SITE ALLOCATION ALGORITHM

The modified SNAP framework that simulates PLI noise
distributions for each demand–link pair is discussed in Sec-
tion III-A. Then we present the RS allocation algorithm in
Section III-B. The parameters used in this section are listed
in Table II.

A. Modified Statistical Network Assessment Process

The GN model [17]–[19] is an analytical model to ac-
count for the nonlinear interference (NLI) caused by the Kerr
effect. It takes the allocation of routes, spectral orderings, and
bandwidths of all the traffic demands as input and calculates
the PLI noise for each demand–link pair (t, l),∀t ∈ T, l ∈ Pt,
where Pt ⊂ E denotes the ordered set of links on the route of
t. Based on the GN model, the PLI noise suffered by a demand
is the sum of its NLI noise and the additive spontaneous
emission (ASE) noise introduced by optical amplifiers on its
route. Therefore, under the condition that the data rates and
spectrum orderings of all the demands in the network are
random variables, the PLI noises for all the demand–link pairs
are random variables as well.

The probabilistic distribution of PLI noise suffered by each
demand–link pair is critical in quantifying the BP and achiev-
ing a robust regenerator placement. In this study, a modified
version of the SNAP [20] is used to draw samples from the
state space of the network and statistically characterize the
PLI noise distributions. The flowchart of the modified SNAP
is shown in Fig. 1.

The modified SNAP used in this study takes as input the
following information:

1) The traffic model including the set of traffic demands T
and the probabilistic distribution pRt(rt) for t ∈ T .

2) The routing and spectrum assignment policy.
3) The network topology (V,E).
4) Transmission and physical-layer parameters for PLI

evaluation, i.e., the modulation format of optical signals,



3

Table II: PARAMETERS IN THE PROPOSED ALGORITHM

Symbol Meaning
Pt the ordered set of links on the route of t ∈ T
Qt the ordered set of intermediate nodes on the route of t ∈ T
L(T ) the ordered list of randomly shuffled demands in T
NMC the number of Monte Carlo repetitions
Nt,l the random noise of the demand t ∈ T on the link l ∈ Pt
pNt,l (n) the PDF of Nt,l

fi
a binary indicator that equals 1 if node i ∈ V is an RS
and 0 otherwise

f f = {f1, . . . , f|V |} is a vector of fi for i ∈ V
Ht(f) the BP of the demand t ∈ T

Seg(t, f)
the set of transparent segments on the route of the demand
t ∈ T that is divided by the RS allocation f

Seg(t)
the set of all possible transparent segments on the route
of the demand t ∈ T

Ns
t

a random variable denoting the accumulated noise of the
demand t ∈ T at the end of the transparent segment s ∈
Seg(t)

pNst (n) the PDF of Ns
t

Hs
t

the BP of the demand t ∈ T on the transparent segment
s ∈ Seg(t)

src(x)
the source of x, where x can be a demand, link, or a
transparent segment

dst(x)
the destination of x, where x can be a demand, link, or a
transparent segment

V̄t V̄t = {src(t),dst(t)} ∪Qt for t ∈ T
ws the weight associated with the link s ∈ Seg(t)

D̄t
the auxiliary weighted complete graph D̄t = (V̄t,Seg(t))
with weight ws for the link s ∈ Seg(t)

St the set of promising RS allocations for t ∈ T

St,k
the set of promising RS allocations with exactly k trans-
parent segments for t ∈ T

K
the maximum number of different solutions that will be
collected in St,k

us
a binary variable that equals 1 if the transparent segment
s ∈ Seg(t) has its sourse and destinations as RSs, the
source, or the destination of t ∈ T and 0 otherwise

uκs
the value of us in the κ-th element of St,k for κ ∈
{1, . . . , |St,k|}

Ut Ut = {1, . . . , |St|}, the set of indices for elements in St
f t,κ the κ-th element in St for κ ∈ Ut

yt,κ

the binary variable that equals 1 if the precalculated
solution f t,κ ∈ St is chosen by the overall RS allocation
and 0 otherwise, κ ∈ Ut

zi
the binary variable that equals 1 if the node i ∈ V is
chosen by the overall RS allocation and 0 otherwise

θ a large enough real number

the PSD assignment policy, and the fiber and optical
amplifier parameters, etc.

The modified SNAP outputs the PLI distributions for each
demand–link pair by performing a Monte Carlo analysis.
During each Monte Carlo run, a progressive load of the
network is carried out to simulate one possible resource usage
state of the network:

1) Shuffle the demands randomly and generate an ordered
list of demands L(T ).

2) Draw a random sample of the data rate from the PDF
pRt(rt) for each t ∈ T .

3) Load demands with the order in L(T ) and data rates
generated at the step 2.

4) Calculate the PLI for each demand–link pair based
on the GN model, the demand bandwidths, and the
spectrum allocations from step 3).

Figure 1: The modified SNAP that statistically characterizes
PLI noise distributions.

Based on NMC Monte Carlo repetitions, we can obtain an
empirical PDF pNt,l(n) that describes the random noise Nt,l
for the demand t on the link l, for all t ∈ T and l ∈ Pt.

B. RS Allocation Heuristic
By using the empirical PLI noise distributions gener-

ated from the modified SNAP simulations, the RLP heuristic
minimizes the BP with a fixed number Fmax of RSs. This is
decomposed into two subproblems: 1) finding a promising set
of RS allocations with low BP and as few RSs as possible
for each demand, and 2) selecting one RS allocation from
the promising set of each demand such that the overall RS
allocation achieves a low BP and the number of RSs is no
larger than Fmax.

We use Ht(f) to denote the BP of demand t ∈ T as a
function of the RS allocation f in the network, where f is a
vector of fi for all i ∈ V , and fi is a binary indicator that
equals 1 if node i is an RS and 0 otherwise. Suppose f divides
the route of t into a set of transparent segments Seg(t, f). The
evaluation of Ht(f) for a given f is as follows:

1) Obtain pNst (n), the PDF of the random accumulated PLI
noise Ns

t at the end of the transparent segment s ∈
Seg(t, f), based on the simulation data in the modified
SNAP. Here we have

Ns
t =

∑
l∈s

Nt,l, (1)
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and
pNst (n) = ~

l∈s
pNt,l(n), (2)

where the right-hand side of (2) is the convolution of all
the pNt,l(n) along s.

2) Calculate the BP Hs
t on the transparent segment s with

Hs
t =

∫ +∞

G/SNRth

pNst (n)dn. (3)

3) Calculate Ht(f) under the assumption that the BPs on
disjoint transparent segments are independent by using

Ht(f) = 1−Πs∈Seg(t,f)(1−Hs
t ), (4)

or equivalently

− ln(1−Ht(f)) = −
∑

s∈Seg(t,f)

ln(1−Hs
t ). (5)

To obtain the promising set of RS allocations that contains
the optimal solution for the demand t, we first calculate Hs

t

for all s ∈ Seg(t), where Seg(t) is the set of all possible
transparent segments on the route of t. Then we construct a
weighted complete graph D̄t = (V̄t,Seg(t)) with the set of
nodes V̄t = {src(t),dst(t)}∪Qt, the set of links as Seg(t),
and the weight ws associated with the link s ∈ Seg(t) as

ws =

{
− ln(1−Hs

t ), if Hs
t < 1,

+∞, if Hs
t = 1,

(6)

where Qt is the ordered set of nodes on the route of t. In D̄t

the nodes on a path between src(t) and dst(t) is equivalent
to an RS allocations on the route of t, and the total path weight
corresponds to the BP of the RS allocation according to (5).
We identify the promising set of RS allocations with k − 1
RSs by an exhaustive search of the K-shortest weighted paths
in D̄t with k transparent segments. This search is summarized
in Algorithm 1, where the following optimization is solved for
different values of k.

minimize
us

∑
s∈Seg(t)

wsus (7a)

subject to
∑

s∈Seg(t)
src(s)=i

us −
∑

s∈Seg(t)
dst(s)=i

us

=


1, if i = src(t),

−1, if i = dst(t),

0, otherwise,
∀i ∈ V̄ ,

(7b)∑
s∈Seg(t)

us = k, (7c)

∑
s∈Seg(t)
uκs=1

us < 1, ∀κ ∈ {1, . . . , |St,k|}.

(7d)

Here us for s ∈ Seg(t) is a binary variable that equals
1 if the transparent segment s has its two endpoints as
RSs, source, or destination of t and 0 otherwise. St,k is the
set of solutions obtained at previous solvings of (7) with

Algorithm 1 Search of potential RS allocations for t, t ∈ T
Input:

• The weighted complete graph D̄t = (V̄ ,Seg(t)) with
link weights specified in (6)

• A constant K giving the number of RS solutions with
the same number of transparent segments that will be
searched

1: Let St denote the set of promising RS allocations
2: Initialize St = ∅
3: for k in {1, . . . , |Qt| − 1} do
4: Let St,k denote the set of RS allocations with exactly
k RSs

5: Initialize St,k = ∅
6: for j in {1, . . . ,K} do
7: Solve (7) and convert its solution and objective

value to an RS allocation f and BP Ht(f), respectively
8: St,k ← St,k ∪ {f}
9: end for

10: St ← St ∪ St,k
11: end for
Output: The set of all potential paths St and the correspond-

ing NPBs Ht(f),∀f ∈ St

k transparent segments. uκs is the value of us in the κ-th
element of St,k for κ ∈ {1, . . . , |St,k|}. The objective (7a)
calculates the BP of the demand t. Equation (7b) is the flow
conservation constraint. Equation (7c) is a constraint on the
number of transparent segments. Inequality (7d) searches for
new solutions by excluding those already found. In other
words, provided that (7c) is satisfied by us and uκs for all
s ∈ Seg(t) and κ ∈ {1, . . . , |St,k|}, (7d) guarantees that
us 6= uκs is held for at least one s and every κ such that
the new solution is not identical to any previously found one.

Based on the sets of promising RS allocations for all
demands, we can select the overall RS allocation that satisfies
the constraint on the number of RSs and achieves the minimum
BP by solving the optimization problem

minimize
yt,κ,zi

∑
t∈T

∑
κ∈Ut

yt,κH(f t,κ) (8a)

subject to
∑
κ∈Ut

yt,κ = 1, ∀t ∈ T, (8b)∑
t∈T

∑
κ∈Ut

f t,κi yt,κ ≤ θzi, ∀i ∈ V, (8c)∑
i∈V

zi ≤ Fmax. (8d)

Here Ut = {1, . . . , |St|} is the set of indices for elements in St,
the binary variable yt,κ indicates if the precalculated solution
f t,κ ∈ St is selected into the final RS allocation, the binary
variable zi indicates if the node i ∈ V is chosen as an RS,
f t,κi is the i-th element of f t,κ, θ is a large enough number,
and Fmax is the maximum number of RSs in the network.
The objective (8a) calculates the overall BP in the network,
(8b) implies that one RS allocation from St is chosen for each
demand t ∈ T , (8c) calculates the RS allocation for each node,
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Figure 2: CONUS network topology. Circles represent an
example RS allocation.

and (8d) is the constraint on the number of RSs.
The complexity of the proposed method is mainly attributed

to the modified SNAP, whose required computational re-
sources grow proportionally with the number of simulations
NMC. The RS allocation heuristic, however, has a compar-
atively low computational complexity due to the relatively
simple formulations in (7) and (8), as measured by the number
of variables involved.

IV. NUMERICAL RESULTS

In this section, we present simulation results for the pro-
posed RS allocation heuristic. We first verify the accuracy of
our BP estimation, next study the impact of data-rate-variable
traffic demands on BP, and then compare it with two previous
algorithms [6], [10] based on the TR model and static traffic
prediction. The first benchmark is the greedy constrained-
routing RLP (greedy-CRLP) [6] that minimizes the number
of RSs subject to a certain routing constraint (in most cases,
it is the shortest path constraint), a static traffic matrix, and
a provided TR. The second benchmark is the routing and
reach heuristic (RR) [10] that ranks the likelihood of being
an RS for each node based on the network connectivity and
TR model. This likelihood rank of nodes can also be obtained
with the proposed algorithm by varying the value of Fmax and
recording the increment of S(Fmax). The BP and node ranking
performances of the proposed algorithm are studied against the
greedy-CRLP and RR, respectively, in the data-rate-variable
scenario with the same TRs.

The continental US topology (CONUS) with 75 nodes
and 99 bidirectional links shown in Fig. 2 is studied in the
numerical simulations. We assume that there is one traffic
demand between each node pair. The shortest distance routes
and first-fit spectrum allocation scheme are used for all the
traffic demands. Polarization-multiplexing quadrature phase
shift keying with Nyquist spectral shaping is applied to all the
traffic demands to obtain a spectral efficiency of 4 bits/s/Hz.
A uniform and fixed PSD G = 15 W/THz is applied to all the
traffic demands. The subcarrier bandwidth is bsub = 12.5 GHz
on all the fiber links. The demand data rate Rt is assumed to
follow a normal distribution, i.e., Rt ∼ N(µ, σ2), for all the
demands t ∈ T , with µ = 200 Gbps and σ = 20 Gbps.

In the modified SNAP, NMC = 7 × 104 sets of random
traffic are used to simulate the PLI noise distributions pNt,l .

For performance verification, 3 × 104 sets of random traffic
with shuffled spectrum orderings are used to simulate the BP.
This gives an BP resolution of 3.3×10−5, which corresponds
to on average one noise blocking per demand in the whole
BP simulation. Also observe that the accuracy of the PLI
distributions output by the modified SNAP is dependable up
to a certain confidence level. Therefore, the accuracy of the
BP simulation as well as the PLI noise distributions can
be improved by increasing the number of simulated traffic
matrices in both parts, respectively.

Note that the benchmarks require the TR value as input,
which is determined by the SNR threshold of the chosen
transmission scheme and the fiber and amplifier parameters.
To make a thorough comparison with the benchmarks in
all possible cases, we vary the TR value from 1300 km to
5000 km by scaling the SNR threshold proportionally, which
corresponds to different coding schemes and error-correction
capacities. Moreover, the simulation results over different TR
values can also help us to understand in what transmission
scenarios the proposed algorithm is effective. Observe that in
our proposed method, the TR values, or equivalently the SNR
thresholds, are used in (3) to represent the susceptibility of
traffic demands to PLIs, whereas the GN model is still used
to calculate the actual PLIs.

BP estimation accuracy: The BPs predicted by (8) is
compared with the simulation results in Fig. 3 for different
TR values. The BPs are shown as functions of the number of
RSs. The simulated and predicted BPs are close to each other,
which means that the modified SNAP can empirically depict
the PLI distributions well. The simulated curves have slightly
higher BPs than the predicted ones because the results of the
proposed algorithm is based on the empirical PLI distributions
and, thus, suffers a slight BP performance degradation when
generalized to new traffic matrices.

Impact of data-rate-variable traffic: Figure 4 illustrates the
impact of variable data rate by simulating the BPs of demands
with zero standard deviation. The RS allocations are based

Figure 3: The BPs of the prediction and simulation with
different TRs.
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Figure 4: The simulated BPs for traffic demands with
different standard deviations of data rates.

on the traffic with σ = 20 Gbps. The larger variance causes
stronger PLIs for some of the demands and results in higher
overall BPs. The zero variance traffic has less randomness
in the PLI noise and, thus, has lower BPs. Therefore, it
is necessary to consider the variable traffic in the RLP in
nonlinear flexible-grid networks.

Comparison with the greedy-CRLP: In Fig. 5 the required
numbers of RSs to achieve the same level of BPs at different
TRs are compared for both the proposed algorithm and greedy-
CRLP. At each TR, the greedy-CRLP computes one RS set
and its corresponding BP, whereas the proposed algorithm can
generate multiple RS sets, each for a different Fmax. To make
a comparison between the two methods, we sweep Fmax and
choose the smallest one that achieves an BP no larger than
that of the greedy-CRLP. As shown in Fig. 5, the proposed
algorithm requires fewer RSs than the greedy-CRLP for most
of the TRs. The average reduction in the number of RSs is
around 10%.

Overprovision of the TR model: To study the impact of
the PLI models in the RLP, we analyze the PLI PSD of the

Figure 5: The number of RSs required by the proposed and
greedy-CRLP algorithms to achieve similar BPs.

Figure 6: The highest PLI noise per link from the GN model
normalized to the worst case from the TR model. The link

indices are sorted in such a way that the means are in a
descending order.

Figure 7: The BPs of the proposed and RR methods for
different TRs and numbers of RSs.

demand with the highest impairments on each link calculated
by the GN model, which is normalized to the worst case PLI
noise estimated by the TR model. The means and standard
deviations of the normalized noise are plotted in Fig. 6. We
observe that the TR model tends to overestimate the PLIs with
an average overestimation of 17%, which leads to an inefficient
placement of RSs. This is because the TR model assumes that
all the links are fully occupied, which is not the case in the
network scenario due to the inevitable spectrum segmentation
in the absence of wavelength converters.

Comparison with the RR: We compare the node ranking of
being an RS calculated by the proposed and RR methods by
visualizing their resulting BPs in Fig. 7. The BPs of different
TRs are plotted as functions of the number of RSs for both
methods. In the RR method, a node gets a higher rank if it
is chosen as an RS by more traffic demands. As a result,
two highly ranked nodes in the RR can be used to serve
similar demands and are not necessary to be RSs at the same
time. If we select both of them as RSs, the BP will not gain
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much but the RS resources are wasted. This is the reason for
the plateau areas in the RR curves in Fig. 7. In contrast, by
optimizing the RS in combination instead of individually based
on the empirical PLI distributions, the proposed algorithm
achieves significantly lower BPs compared with the RR, with
an average BP gain of two orders of magnitude.

V. CONCLUSION

The paper tackles the RLP in nonlinear flexible-grid net-
works with variable data rate requests. The GN model and
modified SNAP framework are applied to statistically describe
the PLI noise distribution of each demand–link pair in the
network, based on which the set of RSs are determined. The
proposed method also predicts the BP performance of its
solution. The efficiency of the allocated RS set is improved
compared with previous studies by estimating the PLI more
accurately and taking into account the realistic traffic condi-
tions in the network.
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