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This paper presents an objective comparison of two closed-loop steering feel control concepts in an electric power assisted steering
(EPAS) system. The closed-loop methods, torque- and position-control, aim to compensate the EPAS motor inertia in an effective
manner as compared to the open loop (feed-forward) solution. For a given steering feel reference, the feedback controllers are
developed in a sequential manner ensuring coupled stability. Linear system theory is used for the analysis. For a comparable reference
tracking and stability margin, higher haptic controller bandwidth is achieved in torque-control. The position controller stability and
performance are limited due to feedback control filtering and high system inertia (from EPAS motor and driver arms), which further
makes it more sensitive towards muscle co-contraction. Moreover, torque-control offers better road disturbance attenuation for low
and high frequency spectrum, whereas position-control is better for mid-frequency range.

Topics/ Vehicle Dynamics and Chassis Control, Advanced Driver Assistant Systems, Haptic Feedback Control

1 INTRODUCTION

In a typical mechanical-assisted system, the motor inertia con-
tributes to an additional impedance. Due to this shortcoming,
the system bandwidth is reduced as compared to its passive char-
acteristic. Without compensating the additional impedance, the
high frequency tracking or system dynamics is compromised
[1]. This is in analogy for the system under consideration, rack
mounted electric power assisted steering (EPAS) system. The ef-
fect is further amplified by the mechanical gear ratio between the
electric motor and steering hardware, see [2, 3]. Subsequently, it
results in a fundamental difference to the passive response (or
high bandwidth) of the hydraulic assisted system.

The straightforward EPAS control method is open loop. Vari-
ous feed-forward functions including non-linear basic assist, in-
ertia compensation, active damping, etc. are implemented to ful-
fill the purpose of a good steering feel, refer [4, 2]. The aim is
to replicate the hydraulic assisted system. This is achieved typi-
cally for lower frequencies, but the dynamics is affected due to
the above mentioned reason. The potential of feed-forward iner-
tia compensation is limited due to model uncertainties [5]. As a
result, the measurement noise might get amplified during the dif-
ferentiation and can raise stability concerns especially for high
impedance. The foremost motivation of compensating the EPAS
motor inertia by developing a closed-loop approach is investi-
gated in this paper.

The closed-loop approach have two distinct variants depend-
ing on the feedback control variable; torque or position/velocity.
Position- and velocity-control are considered under the same
category of controlling the motion state. Torque- and position-
control methods are in a sense inverse to each other. For refer-
ence position, torque disturbance is required and position dis-
turbance for torque reference. The research on haptic controllers
has been done for mechanical systems where the actuator inter-
acts directly with the human, see [1, 6]. For EPAS systems, there
is a mechanical connection between the state variables; rack po-
sition and steering angle (which is different than disconnected
systems, e.g. Steer-by-Wire). Although there are examples of
EPAS closed-loop steering feel controllers as discussed in [7, 3],
but there is no objective comparison between the two methods
in the existing literature. Therefore, the differences in tracking

performance, stability and disturbance attenuation for the two
approaches are studied in this paper. With a closed-loop solu-
tion, the controller can decouple the system from the external
load disturbance (originating from the environment). Similarly,
the closed-loop steering feel controller attenuates the road distur-
bance and generates a feedback based on the reference generator.

Besides steering feel, the control algorithm should incorpo-
rate the external intervention from lateral vehicle control (active
safety) functions. These functions, such as Lane Keeping Aid,
Pilot Assist [8], etc. increase the vehicle automation level. They
aim to maintain the reference vehicle position; and the suitable
control variable is steering rack position. In an open loop archi-
tecture, these functions could be in isolation to the steering feel
functionality and merged at the motor torque request similar to
[4]. For driver acceptance, it is crucial that the intervention is
perceived consistent and intuitive. Hence, the external interven-
tion is realized via the proposed steering feel controllers.

As a first step, the controllers are designed with classical con-
trol theory. A driver model is necessary to develop a stable hu-
man coupled interaction. With a defined stability margin, the ref-
erence tracking is evaluated. In this regard, a fixed steering feel
reference at a given vehicle speed is based on virtual dynam-
ics considering the driver excitation. The closed-loop controllers
attenuate the road disturbances and mimic the virtual dynam-
ics. The paper focuses on the feedback control and therefore,
the road feedback content is not considered in the reference for
a simplified analysis. The comparison is done in classical mea-
sures of bandwidth, loop gain phase margin, etc. Finally using
the same control law (from reference tracking), road disturbance
attenuation and external intervention are briefly discussed.

2 SYSTEM DYNAMICS

This section introduces an overview of the implemented me-
chanical models, steering feel reference generator and system
identification scheme for steering rack parameter estimation.

2.1 EPAS and Driver Model

In an EPAS system, the interaction of the motor with the driver is
not completely direct due to the mechanical connection with the
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Figure 1: Block diagram of EPAS and driver mechanical model.
The single-track vehicle model is not shown (applying rack
force, Fr) instead it is represented by a spring, cr. EPAS motor
torque (Mmot) translates to rack assist force by gear ratio imot.

road. The steering torque, Ms, translates to the steering rack via
torsion bar compliance (ctb, ktb), refer Fig. 1 and (1)−(3). Pinion
angle (δpin) is mechanically constrained to rack position (xr),
such that δpin = irpxr. Equation (1) and (2) represent the force
balance on the steering wheel and rack respectively. The front
axle lateral tire force generating the rack force, Fr, is obtained
from the single-track vehicle model, see [9]. Coulomb friction
is not considered for the controller development assuming high
amplitude excitations within sliding friction regime.

(Js + Jarm)δ̈s(t) + bsδ̇s(t) = Ms(t)−Mtb(t) (1)

mrẍr(t) + krẋr(t) = Mtb(t) irp +Mmot(t) imot −Fr(t) (2)

ktb(δ̇s(t)− δ̇pin(t)) + ctb(δs(t)− δpin(t)) = Mtb(t) (3)

karm(δ̇s,req(t)− δ̇s(t)) + carm(δs,req(t)− δs(t)) =Ms(t) (4)

The driver model is a second-order system. This simplified
model is easy to analyze coupled stability, further discussed in
section 3. The arm inertia (Jarm) couples to the steering wheel
(Js). The muscle co-contraction (intrinsic stiffness, carm, and
damping, karm) generates the required steering torque, refer (4).
Because force/torque is an input to a mechanical system and mo-
tion state/s such as position/velocity becomes the feedback. The
driver model parameter values are taken from [10]. The motor
current controller and sensors (for torsion bar torque and rack
position) have fast dynamics. But a first-order transfer function
representing their bandwidth (Gs,Mmot

, Gs,Mtb
and Gs,xr

) is
used for the simulation. Their bandwidth are assumed as 2kHz,
1kHz and 1kHz respectively. A time delay of 2ms is also consid-
ered from the request to actual EPAS motor torque.

2.2 Steering Feel Reference

This section introduces the reference generator. The given ref-
erence model is considered to be a good steering feel represen-
tation. It is objectified in terms of torsion bar torque (Mtb) to
rack position for the existing feed-forward system. For the feed-
back controller, the derived reference defines the virtual dynam-
ics. The rack motion is controlled in a straightforward manner
because both the variables Mtb and xr act on the rack itself.
Moreover, the rack dynamics cause the fundamental difference
between an electric- and hydraulic-rack assisted steering system.
For the analysis, the reference at 75km/h (vehicle speed) is used.

The reference transfer function (5) is proper, sinceMtb(s) acts
as an input and Xr(s) as an output. The two eigenfrequencies
represent yaw (≈ 1− 2Hz) and steering rack (≈ 2− 3Hz) dy-
namics. However, the reference inverse (6) is improper and re-
quires a second-order filter (with damping ratio Df and cut-off
frequency ωf ), further discussed below. The requirement of ref-
erence inverse and reference is for torque- and position-control
(outer loop) respectively, refer Fig. 2.

Gref =
Xr(s)

Mtb(s)
=

b2s
2 + b1s+ b0

a4s4 + a3s3 + a2s2 + a1s+ a0
(5)

G−1ref =
Mtb(s)

Xr(s)
=

1

Gref

ω2
f

s2 + 2Dfωfs+ ω2
f

(6)

𝐺𝑠,𝑀𝑡𝑏

𝐺𝑠,𝑥𝑟

𝐺𝑎𝑟𝑚
−1

𝐸𝑃𝐴𝑆

+𝛿𝑠,𝑟𝑒𝑞
+𝑀𝑠

𝐺𝑟𝑒𝑓
−1 𝐺𝑠,𝑀𝑚𝑜𝑡

+𝑀𝑚𝑜𝑡
𝐹𝑀

+𝑀𝑚𝑜𝑡,𝑟𝑒𝑞+𝑒𝑀𝑡𝑏
+𝑀𝑡𝑏,𝑟𝑒𝑓

−𝛿𝑠

−𝑀𝑡𝑏

+𝑥𝑟

+𝑒𝛿𝑠

Torque Control

−𝑥𝑟𝑒𝑞

𝐺𝑠,𝑥𝑟

𝐺𝑠,𝑀𝑡𝑏

𝐸𝑃𝐴𝑆

+𝛿𝑠,𝑟𝑒𝑞
+𝑀𝑠

𝐺𝑠,𝑀𝑚𝑜𝑡

+𝑀𝑚𝑜𝑡
𝐹𝑥

+𝑀𝑚𝑜𝑡,𝑟𝑒𝑞+𝑒𝑥𝑟+𝑥𝑟,𝑟𝑒𝑓

−𝛿𝑠

+𝑀𝑡𝑏

−𝑥𝑟

+𝑒𝛿𝑠

Position Control

+𝑥𝑟𝑒𝑞

𝐺𝑟𝑒𝑓

𝐺𝑎𝑟𝑚
−1

Figure 2: Schematic scheme of the closed-loop steering feedback
control strategies in an EPAS system (as the plant); (a) Torque-
and (b) Position-control respectively.

2.3 System Identification

Before designing the haptic controller, it is essential to iden-
tify the steering rack impedance, i.e., dynamic rack mass (due
to EPAS motor inertia), mr, and viscous damping, kr. The sys-
tem identification is performed on the steering test rig. The steer-
ing rack is connected to two external linear actuators on each
side. Open loop identification is done with freely rotating steer-
ing wheel, such that Ms(t) = 0.

The parameters mr, kr are estimated by exciting one of the
linear actuators with a reference force in passive EPAS-Off con-
dition, Mmot(t) = 0. The external rack force for the selected
reference stiffness (cref ) becomes, Fr(t) = −cref (xr,ref (t)−
xr(t)). The LTI transfer function estimate (ratio of output-input
cross to input spectrum) is derived from the measurement data.
The coherence spectrum criteria, (k̂Nyu(ω))2 ≥ 0.95, is followed
for lower noise interference. Neglecting the torsion bar torque
disturbance (as a simplified assumption), Mtb(t) ≈ 0. Equation
(2) is transformed to Laplace domain resulting in (7), refer Fig. 3
for the frequency response plot. EPAS-On condition signifies the
implemented feed-forward algorithm, such that Mmot(t) 6= 0.

H(s) =
Xr(s)

Xr,ref (s)
=

cref
mrs2 + krs+ cref

(7)

Vn =
1

n

n∑
i=1

(
1− |Ĥ(j2πfi)|
|H(j2πfi)|

)2

(8)

The cost function (Vn) in (8) uses the estimated (Ĥ(jω)) and
fitted (H(jω)) frequency response magnitude at selected fre-
quencies for error minimization (by linear least squares crite-
rion). The optimization result (in EPAS-Off) gives steering rack
impedance parameters. However in reality, the inertia of the front
wheels is also added to the steering rack mass. Here it is done af-
terwards, considering a static steering arm (or linkage) ratio.

2.4 Problem Formulation

This paper highlight key differences between the closed-loop
methods for compensating the steering rack impedance (due to
EPAS motor). As stated before, the controllers are developed in a
sequential manner with a defined stability criteria using classical
methods. The stability conditions at each step of the design pro-
cedure are mathematically derived. This provides a quantified
comparison between the feedback control solutions. Secondly,
the disturbance rejection is evaluated for the same control law.
Finally the issue of merging the external rack position request
(in hands-on/off situations) is addressed for the controllers.



Figure 3: System identification result from the steering test rig.
Frequency response of reference to actual rack position, H(jω),
for conditions EPAS-On and -Off respectively. Also, an esti-
mated second-order system with identified passive steering rack
mass, mr, and viscous damping, kr.

3 HAPTIC FEEDBACK CONTROL

The feedback control objective is to track the reference by com-
pensating the rack impedance. The design methodology for the
closed-loop possibilities is discussed in this section. For the final
(numerical and simulation) results, the rack force is considered
to be given by a single-track vehicle model. However for sim-
plicity, the analytical expressions in the following equations is
achieved considering the rack stiffness (cr), such that the rack
force becomes, Fr(t) = crxr(t). The combined EPAS system
and vehicle model is called the plant, see Fig. 2. The plant model
has different parameters (such as tire cornering stiffness, yaw in-
ertia, etc.) as compared to the reference. The controller is de-
signed in a stepwise manner; coupling of the feedback control
to the plant, coupling the reference/reference inverse and hu-
man/driver coupling. The worst-case scenario is assumed for the
controller design, rigidly coupled driver arm inertia to the steer-
ing wheel with high muscular arm stiffness. The phase margin
at each step has been evaluated and the gain margin is fixed to
infinite. For a robust performance, the phase margin of each loop
gain is set between 30◦ − 60◦ [11]. In simulation, the controller
stability was maintained at all times and the EPAS motor torque
never exceeded its saturation limit (5Nm).

3.1 Torque Control

This architecture requires reference inverse in the outer loop and
torque feedback in the inner loop as shown in Fig. 2(a). The
strategy is termed on the basis of feedback control variable (i.e.
torsion bar torque). The reference torque (9) is requested to the
feedback control, which results in (10) for the motor torque.

Mtb,ref (s) = G−1refXr(s) (9)

Mmot(s) = FM (Mtb,ref (s)−Mtb(s)) (10)

Using (2) and above mentioned equations, the tracking and
reference transfer functions are given as (11) and (12) respec-
tively. Consider a proportional feedback,FM =−Kp,M , without
the outer loop. As a result, the steering rack impedance in (11) is
reduced by a factor of (1 +Kp,M iepas), where iepas = imot/irp
and Kp,M > 0. This can also be proved using the initial value
theorem on (12) for a given (simplified) reference inverse in
(13). Therefore, the requirement of proportional gain in torque-
control for the given plant is essential to overcome the mechan-
ical impedance. This is necessary to compensate the motor iner-
tia.

Xr(s)

Mtb(s)
=

irp − FM imot

(mrs2 + krs+ cr)−G−1refFM imot

(11)

Mtb(s)

Mtb,ref (s)
=

(mrs
2 + krs+ cr)−G−1refFM imot

G−1ref (irp − FM imot)
(12)

G−1ref = (mrefs
2 + krefs+ cref )/irp (13)

The integral part is required for reference tracking. This is
proved using the final value theorem on (11) which shows the
steady state error. Considering FM = −Ki,M/s, a step distur-
bance in rack position, ∆xr, at t = 0 results in steady state
torque, ∆Mtb, as shown in (14). For minimum stationary error
at lower frequencies, Ki,M (> 0) should be large.The quantifi-
cation of Kp,M and Ki,M is explained under stability analysis.

∆Mtb = lim
s→0

Mtb(s)

Xr(s)
∆xr = lim

s→0

[cref + crs
Ki,M iepas

1 + s
Ki,M iepas

]
∆xr
irp

(14)

The ideal torque-control law should consist of proportional
and integral gains as defined in (15). The feedback control is de-
signed such that it is independent of reference/reference inverse
with high inner loop bandwidth. The open loop transfer function
from motor torque to torsion bar torque (obtained from (1)−(3)
in Laplace domain) has a zero at the origin. Using the integral
feedback gain results in a pole/zero cancellation. Despite that,
the closed-loop LTI system remains reachable and observable
(for rack position on the outer loop).

FM = −(Ki,M/s+Kp,M ) (15)

The stability property of the inner loop is investigated at first.
The inner loop gain becomes (16) with control law (15). Open
transfer function signifies the (open loop) plant behavior using
(1)−(3). The feedback controller governs the inner loop stability.
Higher Kp,M ensures lower mechanical impedance and higher
(inner loop gain) phase margin; whereas higherKi,M is required
for reference tracking but at the cost of a reduced phase margin.
The constraint (17) must be satisfied for the inner loop stabil-
ity as a necessary and sufficient condition. For a given Kp,M ,
Ki,M has an upper bound limiting the tracking performance.
This has been analytically derived (and numerically verified) by
neglecting the small terms with respect to high torsion bar stiff-
ness as an assumption. With reducing stiffness, the upper bound
increases. IncreasingKp,M gives a higher upper bound onKi,M .
But Kp,M is also limited by the time delay in motor torque re-
quest for stability. Ki,M upper bound is primarily dependent on
Kp,M , mr and ktb. Although it is somewhat dependent on the
driver arm inertia (Jarm), but the inner loop performance (in
terms of bandwidth) is not compromised as seen in Fig. 4(a).
Hence, the inner loop (controller) performance is almost insen-
sitive to Jarm variation. Lower torque sensor bandwidth reduces
the phase margin, which is undesirable for stability and robust-
ness.

Lin,M = FM

∣∣∣∣ Mtb(s)

Mmot(s)

∣∣∣∣
open

(16)

Ki,M <
1

iepas

[ (αktb + kr

i2rp
)(α+ cr

ctbi2rp
)

mr/i2rp
+

2αktb
Js + Jarm

+ (17)

+
(bs + ktb)mr/i

2
rp

(Js + Jarm)2

]
; where, α = 1 +Kp,M iepas

The next step is to integrate the reference inverse on the outer
loop. The resulting loop gain is shown in (18). There are two pos-
sibilities for the integration; either the feedback control is given
and the reference inverse needs to be designed or vice versa. The
reference impedance parameters, mref and kref , do not affect
the stability. But the reference stiffness, cref , limits the outer
loop performance. At first, consider a torque controller to be
given with a bandwidth, ωin, such that Ts = 1/ωin. The valid
(non-negative) solution of the quadratic equation (19) gives the
upper bound on cref . But if the inequity constraint (20) holds
true, then the outer loop is stable ∀ cref > 0. In the second pos-
sibility (focus of the paper), the outer loop is stable ∀ cref > 0, if
the constraint (21) holds. Typically cref < cr, because the pur-
pose of EPAS is to reduce the plant stiffness (or steering effort).
mref and kref are implemented as feed-forward (with a suitable



Figure 4: Torque feedback control. (a) Analytical inner loop fre-
quency response without and with driver arm inertia. (b) Root
locus plot for the driver admittance (δs/Ms) with muscular arm
stiffness (carm) variation.

filter) in the reference inverse. The inverse filter time constant
(Tf = 1/ωf ) should be low for a good tracking performance.
On the contrary, it is constrained by the controller sampling rate
to prevent numerical instability. For the given reference inverse,
Tf = 5ms with critical damping ratio,Df = 0.707, provides 60◦

phase margin for (18).

Lo,M = FM

[∣∣∣∣ Mtb(s)

Mmot(s)

∣∣∣∣
open

−G−1ref

∣∣∣∣ Xr(s)

Mmot(s)

∣∣∣∣
open

]
(18)

c2ref + ctbi
2
rp

(
2 +

bsTs
Js + Jarm

− ctbTs
bs

)
cref + (19)

+

(
1 +

bsTs
Js + Jarm

)
(ctbi

2
rp)2 > 0

ωin >
(
ctb − b2s/(Js + Jarm)

)2
/4bsctb (20)

Ki,M < Kp,M

(
kr + (1 +Kp,M iepas)ktbi

2
rp

)
/mr (21)

Ls = G−1arm

∣∣∣∣ δs(s)Ms(s)

∣∣∣∣
closed

(22)

Finally stability of the torque controller depends on its interac-
tion with the driver. Coupled instability of haptic controllers dur-
ing human interaction is a common phenomenon [12]. The driver
admittance is defined as the ratio of steering angle to torque,
δs/Ms, which represents the human interaction. Coupled stabil-
ity depends on Jarm and carm. The inner loop maintains the
required stability and performance irrespective of varying Jarm
satisfying constraint (17). The effect of muscle co-contraction
is understood using the root locus plot. For this, the loop gain of
the closed-loop system is (22), whereG−1arm = carm + karms, as
derived from (4). Following this stepwise controller design ap-
proach, the closed-loop admittance ensures a stable human cou-
pling. It is evident from the admittance root locus plot as shown
in Fig. 4(b). With increasing carm, the poles (especially the dom-
inant one defined by Jarm) stay in LHP.

The controller is designed analytically at first and then verified
in simulation. The controller bandwidth is approximately 20Hz
(for rigidly coupled hands-on situation). With reducing Jarm,
it remains almost same. The simulation result can be seen in
Fig. 5(a). The reference tracking of torsion bar torque to rack po-
sition is well matched. The haptic bandwidth (defined by the ra-
tio of reference to actual control variable) stays close to 1 within
the driver’s steering excitation range as shown in Fig. 5(b).

3.2 Position Control

The position-control approach has reference (5) in the outer loop
and position feedback in the inner loop as shown in Fig. 2(b).

Figure 5: Simulation result: (a) Frequency response of torsion
bar torque to steering rack position for torque- and position-
control in comparison to reference. (b) The haptic bandwidth is
defined in terms of reference transfer function (Torque control
−Mtb/Mtb,ref and Position control −Xr/Xr,ref ).

The reference steering rack position is derived using the torsion
bar torque as (23). The resulting motor torque request is given in
(24). Considering (2), the (position-control) tracking and refer-
ence transfer functions are given as (25) and (26) respectively.

Xr,ref (s) = GrefMtb(s) (23)

Mmot(s) = Fx(Xr,ref (s)−Xr(s)) (24)

Xr(s)

Mtb(s)
=

irp +GrefFximot

(mrs2 + krs+ cr) + Fximot
(25)

Xr(s)

Xr,ref (s)
=

irp +GrefFximot

Gref ((mrs2 + krs+ cr) + Fximot)
(26)

The position feedback control (Fx) is derived using the torque
feedback control law, FM . The criteria is to place the closed-loop
poles at the same location in the complex plane. This implies
same characteristic equation (Gchar = 1 + Lo) for the closed-
loop plant. The final result is shown in (27). For manipulating the
haptic feedback (torque) using the position-control method, the
inner loop requires a higher order transfer function to reduce the
error in steering rack speed and acceleration. This is motivated in
(28), as derived from (13) and (27). The resulting feedback con-
trol law becomes (29) using (15). The feedback controller gains
(Kd2,x,Kd,x,Kp,x,Ki,x) should be quantified independent of
reference parameters. For practical reasons, the derivative and
double-derivative terms require filtering. With this, the closed-
loop LTI system is reachable and observable since no pole/zero
cancellations takes place.

Gchar,M
!
= Gchar,x =⇒ Fx = −FMG

−1
ref (27)

Fx = −FM (mrefs
2 + krefs+ cref )/irp (28)

Fx = Kd2,xs
2 +Kd,xs+Kp,x +Ki,x/s (29)

The requirement of each feedback gain is discussed next. It
is done by developing the inner loop for the steering rack as the
plant defined by (2). Mtb(t) is considered as an external dis-
turbance (rather than a state variable). The resulting closed-loop
reference and disturbance transfer functions are (30) and (31) re-
spectively. Introducing the proportional gain, Kp,x > 0, adjusts
the reference bandwidth. Higher gain is desirable but it reduces
the damping ratio (and phase margin). The addition of the deriva-
tive part (Kd,x > 0) compensates for it. However, the derivative
filter (with time constant Tf ) has limitations. For a certain Kp,x

and Tf = 5ms, Kd,x is selected to achieve 60◦ inner loop gain
phase margin. Further increase in Kd,x reduces the phase mar-
gin. The integral gain, Ki,x, ensures lower steady-state and in-
tegrated error for a position request and load-torque disturbance
respectively. This is proved using the final value theorem on (31)
to compute the integrated position error. For a step torque dis-
turbance, ∆Mtb, at t = 0 the integral position error is given by
(32). As Ki,x increases, the integrated error decreases. Since the



proportional gain in torque-control compensates the mechani-
cal impedance, the double-derivative gain (Kd2,x) in position-
control fulfills that purpose. The initial value theorem on (30)
proves this claim as shown in (33) for a step position request,
∆xr,ref , at t= 0. HigherKd2,x is desirable to overcome the rack
mass (which is a primary motive), but the phase margin limits the
upper bound due to the second-order derivative filter. Another
important reason for smaller Kd2,x is that the double-derivative
amplifies the sensor noise incredibly. The torque-control filter
for reference inverse is used here for an unbiased comparison
between the two methods. The quantification of Ki,x and Kd2,x

is explained in the stability part.

Xr(s)

Xr,ref (s)
=

Fximot

mrs2 + krs+ cr + Fximot
(30)

Xr(s)

Mtb(s)
=

irp
mrs2 + krs+ cr + Fximot

(31)

lim
t→∞

∫ t

0

∆xrdt = lim
s→0

Xr(s)

Mtb(s)

∆Mtb

s
=

∆Mtb

Ki,xiepas
(32)

∆xr = lim
s→∞

Xr(s)

Xr,ref (s)
∆xr,ref =

∆xr,ref
1 + mr

Kd2,ximot

(33)

The feedback control is coupled to the plant for the inner
loop. The stability is defined by the loop gain (34). Ki,x defines
the stiffness of the closed-loop position-control plant, whereas
Kd2,x represents the dynamics. To ensure stability of the inner
loop, (35) must be satisfied (necessary and sufficient condition).
This analytical result does not include controller derivative fil-
ter for simplicity. There are two key aspects for the constraint.
For a given Kd2,x, there exists an upper bound on Ki,x or vice
versa. Ideally both the gains should be higher but the constraint
limits the inner loop performance. IncreasingKd2,x, lowersKi,x

upper bound. This is contrary to the torque-control constraint in
(17). Also, higher mr or Jarm limits the inner loop performance
and stability margin such that the upper bound on either Ki,x or
Kd2,x decreases noticeably. As seen in Fig. 6(a), the inner loop
bandwidth changes with and without Jarm keeping the same
feedback control. As a consequence, the position-control inner
loop phase margin is set higher than torque-control because of
its sensitivity towards varying Jarm.

Lin,x = Fx

∣∣∣∣ Xr(s)

Mmot(s)

∣∣∣∣
open

(34)

Ki,x <

[ bs +
(kr+Kd,ximot

i2rp

)
Js + Jarm +

(mr+Kd2,ximot

i2rp

)][ cr
imot

+Kp,x

]
(35)

In the next step, the reference is introduced on the outer loop
and coupled to the position controlled plant. The loop gain is
given as (36). Considering the two possibilities for the inner and
outer loop integration. In the first case, the choice of reference
admittance parameters kref and cref does not affect the con-
troller stability for a given feedback control. But the admittance
mass, mref , cause the limitation because it defines the reference
dynamics. With an inner loop bandwidth (ωin) defined by the
feedback control, mref lower bound is given as (37) such that
Ts = 1/ωin. It is possible to have fast reference dynamics (which
implies lowermref ) either by decreasing the inertia (Js +Jarm)
or increasing ωin. However, the inner loop bandwidth is also
dependent on the inertia as shown above. The other possibility
is feedback control design for a given reference. The stability
holds, if the lower bound condition on Kd,x obtained by solv-
ing (38) is fulfilled. The simplified resulting constraint primarily
depends on the system inertia and mref . For lower mref and
higher Jarm or mr, Kd,x lower bound increases for the outer
loop stability. This is in conflict with phase margin. Because as
Kd,x increases, the inner loop gain phase margin decreases.

Lo,x = Fx

[∣∣∣∣ Xr(s)

Mmot(s)

∣∣∣∣
open

−Gref

∣∣∣∣ Mtb(s)

Mmot(s)

∣∣∣∣
open

]
(36)

Figure 6: Position feedback control. (a) Analytical inner loop
frequency response without and with driver arm inertia. (b) Root
locus plot for the driver admittance (δs/Ms) with muscular arm
stiffness (carm) variation.

mref >
Js + Jarm

(bs + ktb)/i2rp

[ (
ctb − k2

tb

Js+Jarm

)
Ts − ktb

1 + bs+ktb

Js+Jarm
Ts + ctb

Js+Jarm
T 2
s

]
(37)

K2
d,x +

1

imot

[ −
(

mr

mref
− 1
)
ctb( 1/i2rp

Js+Jarm
+ 1

mref

)
ktb

+ ktb

(
i2rp + (38)

+
mr

Js + Jarm

)]
Kd,x +

ctb
i2mot

(
mr

Js+Jarm
+ i2rp

)2(
1

Js+Jarm
+

i2rp
mref

) > 0

The effect of muscle co-contraction is analytically explained
using (22) as the loop gain for the coupled interactions. If the
above constraints hold true, then the closed-loop admittance
could be made stable independent of carm. This ensures con-
tact stability for human coupled interactions in position con-
trolled systems [12, 6]. Fig. 6(b) presents the driver admittance
root locus plot for the muscle co-contraction level. With increas-
ing carm, the closed-loop admittance poles remain in LHP. The
dominant pole defined by Jarm (although stays in LHP) move
towards the jω−axis (marginal stability) with increasing gain.
This would cause contact instability, if the haptic position con-
troller is not designed properly. Hence, this method is not only
sensitive to Jarm variation but to the muscle co-contraction as
well, especially if the plant has high inertia or mr.

The haptic position controller bandwidth is defined by the in-
ner loop. For generic parameters, the bandwidth achieved is ap-
proximately 11Hz and 6Hz without and with driver-in-the-loop
(or Jarm) respectively. The reference tracking from simulation
result can be seen in Fig. 5(a). Frequency response of torsion bar
torque to rack position is similar to torque-control with some de-
viations at higher frequencies due to filtering of the higher order
derivative/s in the inner loop. The haptic control variable (func-
tion) is shown in Fig. 5(b), which stays close to 1 as desired.

3.3 Road Disturbance Attenuation

After a similar tracking performance for haptic controllers, the
next point of comparison is disturbance rejection with their re-
spective control law. This is obtained by grounding δs,req (= 0)
and adding an external road input (Fr,dist) on the steering rack,
see Fig. 1. The resulting disturbance attenuation (closed-loop)
frequency response is shown in Fig. 7(a). For low frequency
disturbances (< 1Hz), torque-control has better attenuation. Be-
cause the steering rack stiffness is high and the torque con-
troller performs better with stiffer environments as mentioned
in [13]. For high frequencies (> 5Hz), torque-control again pro-
vides more disturbance rejection than position-control. Higher
arm inertia is desirable for high frequency noise attenuation. But
position-control (with Jarm 6= 0) shows less damping around



Figure 7: Disturbance rejection. Dark and light gray lines are
torque/position-control respectively. Solid and dotted lines are
with and without Jarm respectively. (a) Ms/Fr,dist closed-loop
frequency response. (b) Step response of Ms for Fr,dist = 1kN.

10Hz at the steering wheel eigenfrequency due to increase in
system inertia and limited feedback control performance. Sub-
sequently, the oscillations in position-control steering torque re-
sponse for a disturbance step, Fr,dist = 1kN, can be seen in Fig.
7(b). High system inertia causes limitation in position-control for
high frequency disturbance rejection. This requires further im-
provement in the feedback control especially for the higher order
derivative/s to control high system inertia. Within mid-frequency
range (1− 5Hz), the steering rack stiffness (which is a function
of front axle lateral slip) drops and the position controller of-
fers better attenuation for softer environments, see [13]. The con-
troller performance is closely matched analytically. Hence, they
will be compared in reality both objectively and subjectively as
next steps.

4 MERGING LATERAL CONTROL REQUEST

Lateral vehicle control functions are based on steering rack po-
sition request. As shown in Fig. 2, the external request can be
added directly to the inner loop before the feedback control in
the position controller as a straightforward solution. In case of
torque-control, the position request is subtracted from the actual
rack position in the outer loop before the reference inverse. Both
methods provide a comparable performance in hands-on/off con-
ditions with a bandwidth 1.5Hz and similar stability margin.
This external intervention performance is only sufficient for low
frequency requests, e.g. in Lane Keeping Aid, etc. Higher band-
width might be achievable with other controller layouts, but it
would require additional tuning.

5 CONCLUSIONS

In this paper, the closed-loop haptic feedback control methods
for an EPAS system are investigated. The objective is to com-
pensate the motor impedance on the steering rack and track the
desired reference defining the steering feel. In torque-control, the
proportional gain is necessary to overcome the mechanical rack
impedance. Whereas in position-control, the double-derivative
term fulfills the same purpose. The higher order derivatives in
position feedback control (with suitable filtering) are required to
overcome the inertia and achieve an acceptable reference track-
ing. As a consequence of the filtering and stability constraint,
the position-control inner loop bandwidth is limited. Increasing
the system inertia hampers stability and high frequency track-
ing. Moreover, increasing the driver arm inertia further deterio-
rates the position-control inner loop stability and performance.
On the contrary, the torque-control inner loop is almost insen-
sitive to the arm inertia variation. However, the torque-control
outer loop limits the reference tracking due to filtering without
causing controller stability issues. For human coupled interac-
tions, the position controller is more sensitive to the muscle co-
contraction. Following the controller design procedure outlined

in the paper, it is possible to realize a similar reference track-
ing performance (within the driver’s steering excitation range)
and stability margin in both the cases. Subsequently, the result-
ing torque controller haptic bandwidth is higher than the position
controller.

For road disturbance attenuation, the torque controller offers
better performance in low frequency range due to higher system
stiffness. As the stiffness reduces with increasing frequency, the
position controller performs better (for mid-frequency range).
However at higher frequencies, the position feedback control
has limited performance due to high system inertia. As a result,
the torque controller provides higher attenuation. For external
rack position request, the controllers have similar performance
in both hands-on/off conditions. Experiments in vehicle will be
performed to evaluate the steering feel and external lateral vehi-
cle control intervention for the controllers under different condi-
tions and driver excitations.
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