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Cooperative Localization of Vehicles without
Inter-vehicle Measurements

Markus Frohle, Christopher Lindberg and Henk Wymeersch
Department of Electrical Engineering, Chalmers University of Technology, Gothenburg, Sweden
E-mail:{frohle, chrlin, henkw } @chalmers.se

Abstract—While cooperation among vehicles can improve lo-
calization, standard communication technologies (e.g., 802.11p)
cannot provide reliable range or angle measurements. To allow
cooperation without explicit inter-vehicle measurements, we pro-
pose a cooperative localization method whereby vehicles track
mobile features in the environment and use associations of
features among vehicles to improve the vehicles’ localization
accuracy. The proposed algorithm, which scales linearly in the
number of vehicles and quadratically in the number of tracked
features, shows superior localization performance compared to a
non-cooperative approach.

I. INTRODUCTION

Intelligent transportation systems (ITS) in general and au-
tonomous driving in particular require accurate position in-
formation [1]. On-board sensors, such as a global navigation
satellite system (GNSS) receiver, provide absolute position,
whereas a radar-like sensor provides relative measurements
with respect to moving objects (e.g., pedestrians), termed
features, which are not part of any offline map. Such a
sensor is capable of delivering high-quality observations of
the environment, but suffers from an unknown association
between the objects and the measurements, thus requiring a
data association step for tracking. When vehicles are equipped
with an IEEE 802.11p radio interface, allowing them to com-
municate with a road side unit (RSU), i.e., through vehicle-
to-infrastructure (V2I) communication, or cooperating vehicles
in range (V2V communication), they can share measurements.
In such a cooperative setting, local measurement associations
within a vehicle as well as associations among vehicles must
be resolved. Under the assumption that such associations
are possible, [2] presented a distributed method for accurate
feature and vehicle localization through nonparametric belief
propagation (BP) on a factor graph. Moreover, a distributed
implementation was provided using a consensus scheme [3].
An adaption for parametric BP was presented and compared
to a centralized Kalman filter in [4]. In [5], [6], a central-
ized nonparametric multi-target tracker (MTT), to track an
unknown number of features based on measurements provided
by multiple sensors with known location, is presented. Data
association (DA) is incorporated in a factor graph (FG) and
resolved by BP. Through a redundant formulation of the DA
uncertainty, following [7], complexity is kept low and scales
quadratically with number of features. This type of filter
belongs to the class of joint probabilistic data association
(JPDA) filter and the related multiple hypothesis density
tracker (MHT) [8]. More recent approaches for MTT are based

on finite set statistics (FISST) which involve the probability
hypothesis density (PHD) filters and the multi-Bernoulli filters
[9], [10], which avoid the DA problem. However, most of these
methods are restricted to a single sensor with known location.

In this paper, we follow a cooperative localization approach,
where vehicles use their on-board sensors, i.e., GNSS and
radar-like sensors, to track the vehicle state as well as features
in the environment. All measurements are sent to the RSU
using V2I communication. At the RSU, the proposed tracker is
executed centrally allowing to improve the localization perfor-
mance. Our primary objective is not to track the features, but
use them to improve the tracking of the vehicle states. In doing
so, we remove the assumption of perfect DA from [2], [4]. In
contrast to [5], [6], we consider the sensor (vehicle) state to be
unknown and time-varying. We apply a nonparametric tracking
approach allowing nonlinear vehicle and feature motion and
observation models, and resolve DA similarly to [5], [6]. In
contrast to other cooperative vehicle localization methods, we
do not rely on inter-vehicle measurements (e.g., received signal
strength in [11]).

A. Notation

Boldface lowercase letters f denote column vectors. When
applicable to a certain vector quantity, subscript k£ indicates a
reference to feature k, subscript s indicates that the vector
corresponds to vehicle s, subscript m signifies V2F mea-
surement m, and ¢ indicates the time instant. For a quantity
denoted by f ;. this means that it corresponds to feature
k, vehicle s, at time t. If one subscript is removed, say k
in f,,, this denotes the stacking into a column vector over
the k’s, i.e., fo, = [fI_s’t, . .,fI(’S,t]T. Removing another
index produces an additional stacking over that index, e.g.,
fe=1fls--.. F5,)7. For the time index t, a stacking over
1,...,t is denoted by f,., = [f-lr, cee f;r]T. In Section 1V,
we shorten the notation by removing the dependence on the
state variable of the BP messages and factors, and indicate
it by subscript k£ instead of f, subscript s instead of s,
and so on. For example, we substitute a(f,, ;) by aj. We
also introduce a superscript to indicate iteration index when
applicable, for example dki)s.

II. SYSTEM MODEL

We consider an urban ITS scenario consisting of S vehicles
(illustrated in Fig. 1). Each vehicle is equipped with a sensor
allowing them to determine their absolute position, (e.g., a
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Figure 1. Urban ITS scenario with two vehicles cooperating through the RSU
and six mobile features.

GNSS receiver), and a sensor to retrieve relative positions to
K features present in the environment (e.g., a radar), through
vehicle-to-feature (V2F) measurements. For simplicity of the
exposition, we assume that all .S’ vehicles are able to observe
the same K features. At every time-step ¢, each vehicle
receives a GNSS and V2F measurements with respect to all
K features. The time-varying state s, € R of vehicle s
at time instant ¢ is statistically modeled as p(xs|®s —1).
and similarly for each feature state k as p(fy ,|fy 1) We
define the joint state of the whole system at time ¢ to be
0, 2 [x],f]]T. The GNSS measurement of vehicle s at
time ¢ is modeled with the likelihood function p(z{7 |z, ),

where zgi) denotes the GNSS measurement. The m-th V2F
measurement between vehicle s and feature k£ at time ¢ is
modeled as

(V2F)
m,s,t

V2F
= s (Frps o) T Wiy, (1)

where gy, s (-, -) is a possibly nonlinear function and wévsth)

represents the V2F measurement noise which is independent
and identically distributed (i.i.d.) over time and space. Note
that m is used for V2F measurements since the order of z(WF)
may not coincide with the order in f,, i.e., measurements may
arrive randomly permuted in each time-step due the radar-
like sensor, and feature and vehicle mobility. We define the

. (@), T (V2F),T1T
combined measurement vector z,, s = [z, ot -
Furthermore, we assume that all measurements (GNSS and
V2F) from all vehicles are communicated to the RSU instan-
taneously and without errors.

III. PROBLEM FORMULATION IN FACTOR GRAPH FORM

In this section, we describe the cooperative localization
problem subject to the system model of Section II. We then
utilize the structure of the problem to factorize the joint
posterior PDF, which is graphically visualized by a factor
graph.

A. Optimal State Estimation
The state estimation we seek is the minimum mean-square

. - (MMSE) ..
error (MMSE) estimator 6, of 6, containing the states
of the vehicles and features, which in a Bayesian framework

S
is given by O(MM R f@t p(0¢|z1.1) dO;. Hence, this task

includes the calculation of the posterior distribution p(6;|z1.;)
of the joint state given all measurements up to time ¢. We will
first determine a factorization of the joint probability density
function (PDF) of p (01.¢, @1, b1.¢|21.t), where a; and b; are
association variables (to be defined), after which p(0¢|21.¢) is
found through marginalization.

Since a feature can generate only one measurement at each
vehicle, and a measurement at a vehicle can only originate
from one feature [12], we define the association variables
following the approach of [6], [7]: as; = m € {1,..., K}
and by, s.¢ 2 k€ {1,...,K}. The value of ak,s,¢ indicates
which measurement m feature k generates at vehicle s at time
t, while the value of b, s indicates which feature k generates
measurement m at vehicle s at time t. Note that the above
formulation gives a one-to-one mapping between ay s, and
bim,s,¢, such that if aj, s ¢ is known, 0 is by, s .

B. A Priori Distribution
Given the structure of the problem, the a priori PDF of the
joint state of the whole system factorizes as

p(014) =p(z1:6) p (f1. t) (2)

(Hp ) Hp s | s ))

=1

(Hp ka HP -fkt’|fk:t’ )) 3)

=1

where p(x,) is the prior PDF of the state of vehicle s,
and p(fy o) the prior PDF of the state of feature k." For the
association variables, their definition implies

P(Ch:n b1 t H H 1/1 as ', b t/) 4
t'=1s=1
with
K M
1/1(05 tv H H ak,s,tv mst) (5)
wherein

0, A5t = M, bm,s,t 7& k
O Qg st 7é m, bm,s,t =k (6)

1, otherwise.

v (ak,s7t7 bm,s,t) =

C. Measurement Likelihood

Conditioned on the association variable a, the measurement
likelihood of the V2F measurements from the initial time up
to time ¢ is given by

p (zg\{‘?F) ‘ fl:tvml:taa'l:t> - (7)

[T (-

t'=1s=1k=1

(V2F)
a‘kst/st’lfk?t/ Ts,t/

'In the absence of prior information, the vehicle prior may be found by
initializing the vehicle state by the GNSS measurement with a large enough
support to cover the region of interest. The feature prior may be found by
initializing the feature state by the GNSS plus V2F measurement, also with
a large enough support.



while for the GNSS measurements, we find that

t S
p (chi) | wl:t) = H Hp St/|ws t’)

t'=1s=1
Note that GNSS measurements are completely resolved, since
they observe a single known target, i.e., there is no DA
uncertainty.

®)

D. Joint Posterior and Factor Graph

Due to the Markovian and independence assumptions, the
complete factorization of the posterior PDF for vehicle and
feature states, as well as the DA, is given by

(V2F)
akus‘t/,s,t’

P (014, a1:6, b1t | 21:0) X (Hp Fro) HP Frw | Fra—1)
t/f
S K
X Hp (Z | fk,t’a :Bs,t’) H Y (ak,s,t’;bm,s,t’)>
m=1

x Hp (@.0) H (@ | o 1)P(25) |a00):
ysiet

Note that in the likelihoods, we only need to condition on one
of the data association variables, ai.; or by.;, since by.; can be
recovered from knowing a;.;, and vice versa. The reason for
introducing both a; and b, is that it allows for a factorization
in (9) using the previously described factors ¥(-, -), with which
message-passing can efficiently approximate the associations.
In contrast, brute force exact calculation of the data association
becomes intractable for all but the smallest problems [7]. Note
also that the feature-measurement data association variable
a is independent over time, since the order in which V2F
measurements are retrieved is i.i.d. over time.

In Fig. 2, the factor graph of this factorization is illustrated.
In the next section, we describe how to estimate the marginal
PDFs that we seek, in a computationally efficient way, through
message passing on the factor graph We have introduced

2k
notational shorthands vy, for p(z,, "/ ss | Frer ®s¢) and us
for p(zs,t |s,1)-

(€))

IV. NONPARAMETRIC BP MESSAGE PASSING

In this section, we detail the computation steps to calculate
the marginals of (9), required for the MMSE estimator from
Section III-A using loopy BP. For tree-like FGs, BP can
be used to efficiently compute exact marginal distributions.
However, the FG described by the factorization (9) contains
cycles (between factors a and b, as well as among sensors)
and we can apply BP by ignoring the presence of cycles in
the FG. This is known as loopy BP, where its solution yields a
belief, not necessarily the true marginal distribution. However,
in practice the procedure often arrives at a reasonable set
of approximations of the correct marginals [13]. For details
regarding loopy BP, see for example [13].

A. Multisensor Localization through Multitarget Tracking

We divide the proposed algorithm into six steps, each
consisting of a number of message updates. Messages are only
updated forward in time, equivalent to a filtering approach
[14]. Messages are shown in shorthand in Fig. 2.
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Figure 2. Factor graph representation of the posterior PDF (9). A label close
to a vertex represents an incoming message to that vertex. Note that messages
are functions of the variable appearing in the adjacent variable vertex. In the

figure, we let hi = p(fi [ Fi,e—1), and gs = p(@st[@s,e—1).

Step I — Prediction: This step involves computing
ap(f k,t) as the message representing the prediction of fea-

ture k to time instant ¢ from the belief b,(cj’?fl (fri_1) with
the help of the state-space model. It is computed as
- ) bl(ft)—l (-fk,t—l) Adf g1

At (fk,t) = /P(
(10)

In a similar manner, we have a parallel prediction step of the
vehicle state, where we compute ¢, .(xs,) as

¢s7t(ws,t) = /p (ws7t|ws,t71) bgi)_l (:Bs}tfl) dws,t71~ (1])

Note that bz(jg(fk,o) = P(fk,o) and bgmo) (zs,0) = p(®s,0), and
we assume that the RSU has access to the relevant priors.
From now on we drop the time index ¢, as we stay in this
time slot for the rest of the algorithm description.

Step 2 — Measurement evaluation: Next, we compute the
outgoing message from f, to v;  which is ¢y, 5. With the fact
that 'y,(:_)(z =1, we have

0
O — o T[4 =
s'#s

Furthermore, to compute p,(cll

12)

we use message s and initialize

all puy s as /1,( ) = 1, which yields

(0)

s =bsxs || tr.s = dsxs- (13)
k' #£k
Now, using (12), and (13) to compute 3 ; we have
— [[ wooxardside. (14)

The message [ s carries information about data association
given the observed measurements and the predicted and esti-
mated states.



Step 3 — Initialization of DA: The data association mes-
sage passing follows the approach described in [5]-[7], with an
initialization step, followed by an iterative loop of alternating
between updating messages 0., ks and €x m s. The DA loop is
performed per sensor, therefore, we drop the subscript s on the
messages O, ks and~£m’k’s. We also introduce the auxiliary
backward-messages d,, ;, which go in the opposite direction

to 0,,,,. The DA procedure is initialized from 5202n as

n =3 kb i, (15)
ag,s
in which (using here that the d,, ; are initialized as 1)
k= Bk,s H 6m’7k = Bk,s- (16)
m’'#m
We plug this into (15) to obtain
(17)

gl(fozn Z\I]k,mﬂk,&
a

Step 4 — DA iterative update loop: Once initialization
of the DA loop is performed we update (5 k iteratively, for
iterations p = 1,..., P, according to

-1
5ff>k = Z\I}k IT = (18)
k' #k
With the expression of § (p )k we can now update our calculation
of e,(fj ) by

Eépy)n = Z\Ijk mﬂk s H 67(71;’)k

l;ém

19)

After P iterations, we complete the data association loop and
compute the outgoing message 7 s as (reintroducing the s
subscript on the DA messages)

Hémks

An interpretation of 7y, is that it contains the approximate
data association information after applying the MTT exclusion
assumption, using the information from S .. An efficient
implementation of the DA procedure is stated in [15].

Step 5 — Measurement correction loop using DA: Now,
we take the information we have about the DA in the form
of 7 and compute the outgoing message -y s, which is
to say we update our measurement likelihood with new DA
information. Then, we take an iterative approach to updating
the messages in the network carrying information between
vehicle and feature states. The updating steps in the loop are
summarized as follows. For iterations ¢ = 1,...,1

/kam o Nz,

where the 7, , message contains the measurement corrected
information about the state of feature k, with the V2F mea-
surements from vehicle s, where measurement correction has

(20)

2L

been weighted according to the output of the DA. With the
updated j,, messages, we update ¢, s as
=ar [T (22)
s'#s
We proceed to update fu5 s as
— [ Y vmadati 23)
ay
and then py ¢ as
p](cl)s = PsXs H Mg)ys- (24)
k'#k
Step 6 — Computation of posterior beliefs: When I

iterations of measurement correction are completed, we fuse
the information from all vehicles to form the posterior belief
of the state of feature k, and update the belief of the vehicle
states with the information from feature tracking. The posterior
beliefs of the feature states are computed by

by7) o ane H . (25)
Finally, the vehicle state posterior is computed by
K
I
b = s exs [ i (26)

k=1

B. Farticle-based Representation

With the possibly nonlinear vehicle and feature state dy-
namic models, the possible nonlinear measurement models
and the DA description, a closed-form expression of (9) is
intractable. For this reason, we represent messages and beliefs
of continuous random variables (such as x ;) by random
measures each consisting of a set of N, support points

NP
(particles) with associated weights, e.g., {mgli, wgl%} , such
that the vehicle state belief is expressed as [16] a

Zwslié (mst—w ),

where the weights are normalized such that Zz | w(l) =1,
and 0 denotes the Dirac delta distribution (not to be confused
with the message 0,,.). The particle-based implementation
of the message passing algorithm follows the same steps as
outlined earlier in the section, with an additional resampling
step to avoid particle degeneracy [16]. Products of messages
represented by a common list of particles are done by point-
wise multiplication of the weights.

27

wst

C. Practical Considerations

We observe that (22) and (25) requires fusing of information
from all S vehicles. As each vehicle sends raw measurements
(V2F and GNSS) to the RSU, it can perform these operations.
In terms of complexity, the proposed algorithm depends on
the number of DA iterations P, the number of measurement
update iterations I, the number of vehicles S, the number of
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Figure 3. The CDF of the RMSE of the vehicle state estimates is shown for
GNSS-only positioning and the proposed method.

features K, and the number of particles used to represent a
feature/vehicle state N,. It scales as O((K'N,)*ISP). For
the case the vehicle states are known, complexity scales as
O(K?N,ISP) as has been shown in [6].

V. NUMERICAL RESULTS AND DISCUSSION

In this section, we describe first the simulation setup fol-
lowed by the simulation results and discussion thereof.

A. Setup and Parameters

We consider a cooperative ITS scenario where the tracking
algorithm is run centrally at an RSU involving S = 2 vehicles,
as illustrated in Fig. 1. The state of vehicle s at time instant
tis xsy = [pl;,vl,]T with position p, , € R? and velocity
Vst € R2. Vehicle dynamics follow a constant velocity (CV)

model with x;; = Ax,; 1 + 75+ Here,

1 AT
A_[O ) ]®Ig, (28)
where AT = 0.5, and r,; ~ N (0, R) with
_ | (AT)?/3 (AT)?/2
R=r I: (AT)2/2 AT ® Io, (29
where » = 0.1 m? and the operator ® denotes the Kro-
necker product. The vehicle state is observed through zg’(i) =
Hx,; + wgi), where
117
H:{O} ® I, (30)
(G),2

and w'Q ~ N'(0, W) with W, = {*"I,. For vehicle
s = 1, we assume it has low location uncertainty with
o{®? = 1072 m? and for vehicle s = 2 high location
uncertainty with UgG)’Z = 15 m2. There are K = 3 features
present, where feature state f , € R* is comprised of position
and velocity, similar to vehicle state x; ;. Furthermore, feature
dynamics follow the CV model with the same parameters used
for the vehicles. To generate a challenging scenario for DA, we

initialize the feature states f; , ~ N(0,0.2514) for t = 251 s

3 T T T T
=@= Vehicle 1

=@= Vehicle 2

RMSE [m]

. 2F),2
V2F variance cr,(CV );

Figure 4. The RMSE averaged over the whole vehicle trajectory is shown
for different values of V2F measurement variance crl(C

and k = 1,..., K and run the CV model forward and back-
ward in time similar to [17, Sec. VI]. The V2F measurement
is modeled as zx, = HY?[f] 2l T + w,?lsth) Here,

HY? — [H,—H] and v} ~ N(0,Wy.,) with
Wit = U£V2F)’2I2, where a,iVQF)’Q = 1 m? unless stated

otherwise. We use P = 5 DA iterations, / = 1 measurement
correction iterations, /V,, = 600 particles to represent each
state, and we simulate for 501 time-steps.

B. Numerical Results and Discussion

In Fig. 3, we plot the cumulative distribution function (CDF)
for the root mean squared error (RMSE) of the vehicle state
using the proposed algorithm. For comparison, we also show
the performance of a GNSS-only noncooperative particle filter,
i.e., where only GNSS measurements z ;' are considered.
Note that, due to the linear observation and motion models
used in this simulation, this case corresponds to a Kalman
filter tracking the vehicle state. For the GNSS-only case,
we observe that vehicle 1 has a low RMSE thanks to the
accurate GNSS measurements. In contrast to this, vehicle 2
lacks accurate GNSS measurements leading to a high RMSE.
Executing the proposed algorithm, which incorporates the
V2F measurements, reduces the RMSE significantly. Similar
performance was observed for a multi-vehicle scenario (not
shown here) indicating benefits for all vehicles with poor
GNSS. In Fig. 4, the RMSE averaged over the whole vehicle
trajectory is shown for different values of V2F measurement
variance UIEVQF)’Q. For vehicle 1 the RMSE stays almost
constant and independent of JIQVQF)Q. The slight increase of
RMSE for increasing J,EVQF)’Q may be due to the loopy BP
processing, where information is not incorporated optimally
as would be in a centralized Kalman filter over the joint total
state. For vehicle 2 the RMSE increases significantly with

. . . . (V2F),2
increasing V2F variance until al(c )2 ~ 3 m2. For even

higher values of U,EVQF)’Q the RMSE increase reduces since
the vehicle state is still corrected by the GNSS measurement.

In comparison, the RMSE for the GNSS-only noncooperative
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Figure 5. Average RMSE for different number of tracked features. The case
with zero features corresponds to independent Kalman filters using GNSS
measurements only, which are run separately for vehicle.

Kalman filter is 3.5 m, which can also be seen as the case
of feature tracking with V2F variance JéVQF)’Q approaching
infinity. Thus, we can conclude that the accuracy of the
V2F measurements plays a significant role about how much
information can be transferred from a well-localized vehicle
(vehicle 1) to vehicles with a lower accuracy (vehicle 2). In
Fig. 5, the RMSE averaged over the whole vehicle trajectory is
shown for different number of tracked features. The case where
the number of tracked features equals zero corresponds to the
GNSS-only noncooperative Kalman filter, executed separately
for each vehicle. From the figure, we observe that for vehicle
1 the average RMSE remains almost constant since the GNSS
measurement of vehicle 2 is not very informative. For vehicle
1, no improvement is seen with increasing number of tracked
features K. As mentioned earlier, the slight increase of RMSE
for vehicle 1 for increasing K may be caused by the loopy BP
processing. In contrast, vehicle 2 benefits when features are
tracked from both vehicles. Furthermore, the RMSE of vehicle
2 decreases with increasing number of tracked features K. In
this way, accurate feature state information from vehicle 1
allows to reduce the average RMSE of vehicle 2. Increasing
the number of tracked features can further reduce the average
vehicle state RMSE.

VI. CONCLUSION

A method for implicit cooperative vehicle state estimation
via feature tracking was proposed. Since with vehicle-to-
feature measurements the data association between features
and measurements is in general not known, it was con-
sidered in a suitable factor graph representation. Running
nonparametric belief propagation on a road-side unit enables
accurate tracking of the vehicle states through cooperative
feature tracking. The proposed method scales linearly with
the number of vehicles, and quadratically with the number
of features. Numerical results demonstrated the improved
tracking performance compared to a noncooperative Kalman
filter. Future work will consider the incorporation of a time

varying number of features as well as non-overlapping sensor
fields of view.
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