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Abstract. Online controlled experiments are extensively used by web-facing
companies to validate and optimize their systems, providing a competitive advan-
tage in their business. As the number of experiments scale, companies aim to invest
their experimentation resources in larger feature changes and leave the automated
techniques to optimize smaller features. Optimization experiments in the continu-
ous space are encompassed in the many-armed bandits class of problems. Although
previous research provides algorithms for solving this class of problems, these
algorithms were not implemented in real-world online experimentation problems
and do not consider the application constraints, such as time to compute a solution,
selection of a best arm and the estimation of the mean-reward function. This work
discusses the online experiments in context of the many-armed bandits class of
problems and provides three main contributions: (1) an algorithm modification to
include online experiments constraints, (2) implementation of this algorithm in an
industrial setting in collaboration with Sony Mobile, and (3) statistical evidence that
supports the modification of the algorithm for online experiments scenarios. These
contributions support the relevance of the LG-HOO algorithm in the context of
optimization experiments and show how the algorithm can be used to support
continuous optimization of online systems in stochastic scenarios.

Keywords: Online experiments - Multi-armed bandits
Infinitely many-armed bandits + Continuous-space optimization

1 Introduction

Traditional requirements engineering relies on domain experts and market research to
model the user behavior and define requirements for their systems. However, research
shows that, often as 70-90% of the time, companies can be wrong about their customer
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preferences [1-3]. In this scenario, several companies are adding on top their
requirements engineering practices the usage of post-deployment data to evaluate the
user behavior and set prioritization and optimization objectives. One way use post-
deployment data in software development is through online controlled experiments
with user behavior. Aligned with a set of long-term business goals metrics [4], these
companies are running business-driven experiments, such as A/B tests, to validate their
business hypotheses [5].

This movement started with web-facing companies such as Microsoft, Google,
Facebook, Amazon, LinkedIn, among others [2, 6-9], and they continuously report the
competitive advantages that experimentation techniques such as A/B delivers in
business-driven experiments [10]. As these companies scale their experimentation
infrastructure and organization to keep their competitive edge, they developed
sophisticated techniques to run experiments in range of situations that simple A/B
experiments face limitations. Some of these techniques are overlapping experiments
[6], optimal ramp-up [9], networked A/B testing [11], multi-armed bandits [12],
counterfactual analysis [13] and optimization experiments [14, 15]. With the increasing
number of experiments being run every year [1, 9], companies are looking for new
techniques that can free some of their research and development resources from the
lower risk optimization experiments and allow these resources to be employed in
experiments that have higher risk and higher potential return on investment and that
cannot be managed automatically by a computer.

In this context, bandit algorithms started to be employed by software companies to
simplify the experimentation process in some experiments [12]. Bandit problems is a
class of problems that deals with the exploration/exploitation dilemma [16]. This work
focuses on a subset of bandit problems called the infinitely many-armed bandit prob-
lems. This subset investigates the optimization of parameters in a continuous space, in
the presence of an unknown mean reward function. This class of problems is partic-
ularly important in online controlled experiments, as several user-behavior assumptions
are captured in the systems in the form of constants that can be mapped in a continuous
space. The most prominent and least restrictive algorithm for the infinitely many-armed
bandit problem is the Hierarchical Optimistic Optimization (HOO) algorithm [17, 18].
However, there is no evidence or empirical evaluation of the usage of this algorithm in
online experiments. During the implementation of the HOO algorithm in collaboration
with Sony Mobile, this algorithm presented limitations some limitations, such as the
computation time, the correctness of the output based on different mean-reward dis-
tribution functions, the lack of a criterion to select the best arm at any point, and an
estimation of the mean-reward.

The contribution of this work is three-fold. First, we provide a modification of the
HOO algorithm to overcome the identified online experiments restrictions, improving
the correctness of the output, the time to compute, a criterion to select the best arm and
an estimation of the mean-reward function. We call this new algorithm as the Limited
Growth Hierarchical Optimistic Optimization algorithm (LG-HOO). Second, we pre-
sent an implementation of LG-HOO in an industrial setting, in collaboration with Sony
Mobile. Third, we provide statistical evidence that supports the modification of the
algorithm not only in real-world scenario, but also on simulation scenarios.
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This paper is organized as follows. Section 2 presents background information in
controlled experiments, bandits problems and the infinitely many-armed bandit prob-
lem, the HOO algorithm and related work. Section 3 discusses the research process.
Section 4 presents the LG-HOO algorithm, results from simulations, and the results of
the implementation of the LG-HOO in an industrial context in collaboration with Sony
Mobile. Section 5 discuss the results of the LG-HOO and makes a statistical com-
parison of the LG-HOO algorithm with the HOO. Section 6 concludes and discusses
future research directions.

2 Background and Related Work

2.1 Online Controlled Experiments

Controlled experiments are a technique where the users are randomly assigned to two
variants of a product: the control (current system) and the treatment (the system with a
change X). The change X can be the implementation of a new feature or the
parametrization for optimization of existing features. After the change is implemented,
the system is instrumented and the user’s behavior and the system performance are
computed. After a predetermined period of data collection, the computed metrics for all
variations of the system (control and treatments) are analyzed. If the two following
conditions are true: (1) the assumption that the external factors are spread out evenly
between the two variants due to consistent randomization process holds true (quality
checks can help assess this assumption) and (2) the only consistent difference between
the treatment and the control is the change X; we can establish a causal relationship of
the change X and the observed difference in the metrics. Kohavi et al. [19] provide a
detailed guide on how to run online controlled experiments in the web. If the exper-
imentation process is used in incremental variations of the system, this becomes an
optimization procedure.

2.2 The Multi-armed Bandit, the y-Bandit Problem, and the HOO

The Multi-armed Bandit Problem

Multi-armed bandit problems are a class of problems that deals with the exploration
and exploitation trade-off. The problem statement and its name come from parallel the
of the gambler problem facing a row of N slot machines, also called one-armed bandits.
The gambler wants to maximize the end reward from the slot machines after a set of
plays. Each slot machine/arm has a fixed unknown probability distribution for the
reward. The gambler faces the problem of exploiting the arm that provides the largest
reward while exploring other arms to make sure he does not miss arms that can provide
a better reward. In its simpler formulation, the bandit has limited number of rows to
play, the number of arms is finite, the arms are independent of each other, and each arm
has a stationary stochastic distribution over time.
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The general problem can be formulated as [13]:
a=mn(d), Arma € {qa;.. .ag} (1)
y=r(a, &'), Reward y € R (2)

Where a is the arm selected, K is the number of arms, 7 is the user-defined policy (a
selection of actions) function to balance the exploration of arms and the exploitation of
the best arm so far, 6 and ¢ are noise variable (that makes the problem stochastic), y is
the measured reward and r is the unknown mean-reward function for the selected arm.
Several policies can be formulated in this class of problem, the most used is to min-
imize the regret. Regret is comparison of the cumulative mean reward of the algorithm
and the expected reward of playing the optimal arm.

Regret(t) = r(a*) -t — 22:1 u(ay) (3)

Where p(a) is the mean reward of the arm a over the time and a* is the arm with the
largest mean-reward over time:

a = max u(a) (4)
ac{a;...ax}

The multi-armed bandit algorithms are the construction of the user-defined policy =
to select the arm.

The y-Bandit Problem and The Infinitely Many-Armed Bandit Problem
The y-bandit problem, also known as the continuum-armed bandit problem, is for-
mulated similarly to the multi-armed bandit problem. However, instead of a predefined
and finite number of arms (Arm a € {qy...ax}), the y-bandit problem has an infinite
number of arms that are drawn from a continuous set (Arm a € y, where y C R). The
y-bandit problem is part of the general problem of the infinitely many-armed bandits
(when the number of arms in much greater than the allowed number of plays). Some of
the advantages of selecting the arms from a continuous space compared to the discrete
many-arms counterpart are: (1) discretization of the space reduces limits the opti-
mization precision to the discretization interval. To obtain a more refined interval it is
necessary to add new arms that have lower confidence compared to the existing ones.
(2) It is not necessary to discretize and compute the arms prior to the experiment, as
well as keeping statistics for them all. (3) infinitely many-armed bandits require less
exploration time than finite armed bandits (discretized) in the same conditions [20].
The x-bandit problem can be represented as finding the arm a* that minimizes the
regret function:

a=m(d),Arm a € y,where y CR (5)

y =r(a, 8'),Reward y € R (6)
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t

Regret(t) = r(a*) -t — Z u(as) (7)

a* = arg min Regret(t) (8)

s=1

The infinitely many-armed bandit problems have been studied in different frame-
works, Bayesian, frequentist parametric and frequentist non-parametric settings. The
Bayesian problem is to compute the optimal actions efficiently, while the frequentist is
to achieve a low rate of regret [21]. A class of algorithms for the frequentist non-
parametric setting is the hierarchical optimization. A recent report compares Bayesian
and the frequentist non-parametric frameworks concluding that major advantage of a
hierarchical optimization algorithms is that they are faster in term of time complexity
[18]. In the frequentist non-parametric framework two algorithms stand out, the Bandit
Algorithm for Smooth Trees (BAST) and the Hierarchical Optimistic Optimization
(HOO) [17]. In this work we use the HOO algorithm, as the BAST algorithm makes
strong assumptions on the unknown mean-reward distribution functions that might not
be valid in real-world applications [17]. An in-depth discussion and comparison with
other algorithms are presented in [18, 21].

The HOO algorithm

The Hierarchical Optimistic Optimization (HOO) algorithm [21] investigates the infi-
nite many-armed bandit problem. This algorithm is classified inside of the hierarchical
optimization algorithms in the frequentist non-parametric framework. In this section,
we briefly describe the HOO algorithm and its assumptions.

The algorithm makes the stochastic assumption of the mean-reward of any new
selected arm. This assumption means that the reward from the new arm is an inde-
pendent sample from a fixed distribution. The reward is assumed to be in the interval of
y € [0, 1]. This assumption is realistic as the reward metric is defined and can be
normalized to this range. The other assumption is that the unknown reward function is
continuous around the maximum, which is a reasonable assumption in practical
problems [21].

The algorithm aims to estimate the underlying unknown reward function f around
its maxima while it estimates loosely f in other parts of the space y. This is imple-
mented using a binary tree in which each arm is associated to a region of the space. The
deeper the tree grows the smaller the subset of the space y that it estimates. The HOO
uses an optimistic estimate B, using the upper confidence bound, for each node. The
tree is traversed and at each iteration the node of largest bound B, is selected. Based on
the reward the tree is updated.

The algorithm starts from the root and selects the child with the largest bound B
(ties are broken randomly) until it reaches the leaf. From the traversed path from root to
leaf, it randomly selects one node to play. The node statistics are updated and the tree is
extended if it is a leaf. The statistics and bounds are computed recursively from the leaf
until the root using the formulas below. Below is the notation used in throughout this
work (and is the same as the one presented in [21]).

v((H, I)) is the value of the node (H, I).

Qplayeq 18 the value of the played arm.
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By, ;i is the bound for the node i at the height 4. The children for this node are
B4+ 1,2i—1 and By, 1, ;. The root is denoted by the index (0, 1).

n is the current discrete time instance and the mean reward for time is represented
by Hy,i(n).

Ty, i(n) is the number of times a node was played until time .

The bounds are updated according to the formulas below:

Upi(n) = 4 P+ 7505+ vip"s i Tii(n) > 0 9)
’ Yoo, if Ty i(n) =0

By s(n) = min{Uj, ;(n), max{By 1 2i-1(n), By+1,2(n)}} if(h,i) € Tree, (10)
" + 00, 0therw1se

Apart from the mentioned advantages of y-armed bandits algorithms in comparison
with grid searching, one of the main advantages of this method is the updating of
confidence bound of the whole path as a child is selected. Even though a particular
node was not played, its confidence bound is updated if any of its descendants are
played. This leads to tighter confidence intervals of a whole path. In most grid search
and regular multi-armed bandits, the confidence intervals are created and updated only
for the discrete played arm.

2.3 Related Work

Optimization in online experiments can be done by using a range of different tech-
niques. The simplest one is conducting sequential A/B/n experiments. This technique
has the advantage of having comparable sample sizes for all variations in the statistical
analysis at the expense of increase in the regret and the higher sample size for the
optimization. Genetic algorithm has also been used in simulation of online experi-
ments. Tamburrelli and Margara [15] proposed an infrastructure and a genetic algo-
rithm to optimize HTML web pages in a large space. However, the proposed solution
requires using non-validated assumptions on the hyper-parameters and on the mating
strategies. Additionally, the solution requires a large space of unique users that makes it
application in real world restricted to very large scale software companies.

Multi-armed bandits algorithms provide a framework for optimization of experi-
ments and it is widely used in industry [14, 22, 23]. Google’s Vizier [14] is a tool for
black-box optimization that take advantage of multi-armed bandit algorithms. While
the paper does not focus on online controlled experiments, it mentions the use of the
tool for optimization of web properties such as thumbnail sizes and color scheme.
Shang [18] presents an overview of black-box optimization methods using bandits
algorithms and Gaussian processes. Mattos et al. [24, 25] presents an architecture
framework and architecture decisions to run optimization experiments with a domain
specific heuristic for the bandit problem.
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3 Research Process

This research was conducted in collaboration with Sony Mobile Communications in
Lund, Sweden. Sony Mobile is a subsidiary of Sony Corporation and is a leading
global innovator in information technology products for both consumer and profes-
sional markets. One of the Sony Mobile’s products is transitioning to data-driven
development and aims to run experiments continuously throughout its development
process. The product consists of a business to business solution, where the user of the
software consists of employees of the company that requested the solution. The soft-
ware development of this product span development for web, mobile, backend systems
and distributed embedded hardware. Therefore, the requirements for an experimenta-
tion system include the ability of allowing experiments to be run in the variety of
supported systems and the capability of supporting both traditional A/B experiments as
well as search solutions in a larger or continuous space. An experimentation system
(called ACE) that fulfills the requirements was developed following the framework and
architecture decisions presented in [24, 25]. A full description of this system is beyond
the scope of this paper. During the development of the product several assumptions
were made, such as numerical, textual, and GUI constants that has a direct impact in the
how the user interact with the system. Some of the numerical assumptions are constants
in the real space or in a predetermined range (x € R or x € [0, 1]). The develop-
ment team of this product wants to optimize these constants and to verify these
assumptions in based on actual user behavior metrics. The HOO algorithm was selected
as the starting point for the optimization search process. The HOO algorithm was
implemented in the ACE system and was repeatedly tested and iterated in both sim-
ulation and with real users. The results of these iterations were constantly discussed
with the product development team and the modifications of this algorithm resulted in
the LG-HOO algorithm. The limitations of the HOO algorithm, the changes motivation
for the LG-HOO algorithm, and an empirical comparison between both are presented in
the Sect. 4.

4 The LG-HOO Algorithm and the Empirical Data

This section presents the modification version of the HOO algorithm [21]. The HOO
algorithm was modified to allow its application in online controlled experiments. The
LG-HOO follows the same structure as the HOO with the main modifications high-
lighted below. The growth restrictions motivate the name Limited Growth HOO. The
implementation source code, the results for comparison, and the raw data used and the
analysis source is available at https://github.com/davidissamattos/LG-HOO.

e A node (arm) is only allowed to grow if it has been played a minimum number of
times. This ensures that each arm has a minimum confidence level to ensure the
growing in more confident direction. The HOO grows based only on the upper
bound of the arm, and this bound can be unrealistic if only one observation has been
made, as it grows with \/(21nn)/T}, ;(n). The tradeoff of selecting a minimum
growth limit is that it needs a higher number of plays to reach the same level of
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interval refinements (that is related to the height of the tree). However, as shown
later, the minimum growth does not imply that the estimated best arm is further to
the theoretical best arm when the underlying function is known.

e The original HOO does not point a method for selecting the best arm, as it is
intended to be a continuous process. The algorithm indicates that the highest node
on the tree represents the maximum of the underlying function. However, in online
experiments, after a period of time the company might want to stop the experiment
to save resources, improve performance or make a static decision regarding the
change. Given these constraints we defined the process to select the best arm as the
node (h, i) with the largest criterion Cj,;, where

L("), if Th,i(n> >0
Chi= \/:/2%“'011 "

0, if Ty:(n) =0

The idea behind this criterion is to select the node with the largest average while
having the lowest bound. This penalizes nodes that have been play few times
compared to nodes that have a higher confidence. A downside of this is that it
favors nodes that had several plays, and this is usually associated with nodes at
lower heights. However, this criterion performs better than the suggested highest
height node, when measuring the distance to the theoretical best arm using an
absolute Euclidian distance. Note that this criterion does not influence the growth of
the tree as it still uses the upper confidence bound to select the best child node.

e The LG-HOO introduces a restriction to the height of the tree. As the tree grows it
becomes computationally intensive to update all bounds in a single play iteration.
Delays and computational restriction if running in computers with limited resources
(such as embedding the algorithm in mobile apps) can significantly impact the user
experience. Restricting the tree height puts an upper bound in the computational
time, however it limits the precision that the algorithm can reach.

e To facilitates the understanding of the user behavior after running the algorithm for
a limited time period, we make an estimation of the underlying mean-reward
function using the Savitzky-Golay filter [26] with the decision criterion. Empiri-
cally, we determine that a window size of (number of nodes)/2 and a polynomial
order equal to the tree’s height, to produce good results. The tradeoff of using the
Savitzky-Golay smoothing filter is the underestimation of high derivative peaks,
leading to a conservative estimation.

e In practice, it often happens that an experiment is coded and then launched without
being active (showing for all users the same variation). When the experiment is
finally launched several users might be using arms that are not the defined root of
the HOO algorithm. Similar situation can also happen in approximation of values
by different users/clients. The LG-HOO tries to minimize the number of lost data
points by selecting the closest node. If the played arm is closer to the node then its
children, the reward is added to the node, otherwise it is discarded. This strategy
works under the assumption of continuity of the underlying function while it
minimizes the number of discarded data points.
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Algorithm 1 represents the full LG-HOO strategy, using the same notation as the
HOO, as discussed in the background. This algorithm is implemented in Python 2.7
and is available at https://github.com/davidissamattos/LG-HOO.

Algorithm 1 The LG-HOO algorithm

Input:

vy > 0, p € (0,1), minimum growth y > 0, tree maximum height o

Initialization: 7 = (0,1) and By 3 = B3 = 400
1: procedure SELECT ARM(n)

»

(i)  (0,1)
P (h,i)
while (h,i) € T do
if Bhy1,2i-1 > Bry1,2i+1 then
(hyi) « (h+1,2i— 1)
else
if Bhy1,2i—1 < Bhy1,2i41 then By 2i 1 > By
else
Z Ber(0.5)
(hyi) « (h+1,2 — Z)
P« PU(hi)
(H,I) « (h,i)
Selected arm « U(1, Py 1)

15: procedure UPDATE TREE(Gplayed, 7, Teward Y')

30:
31

32

35:

Select the closest arm aplayed to the node v((H,I))
if |aplayed — v((H,I))| < lo((H +1,2D)) — o(H + 1,21 ~ 1) then

2
Gplayed + v((H,I))
else
break
for all node in Py do
T}.,,- — Th,g +1

hi— (1 ! Vin,: + Y
Hh,i Th. Eh,i Tha

for all node in 7 do
Uhi < fini +/@In) [Ty ; + v1p
if Ty >~ and H < o then
BH+1,2I—1 < +00
By a1 < +00
while node # (0,) do
(h,) < new leaf
By, ; + min{Up, ;, max(Bpy1,2i—1, Bh1,2i)}

: procedure SELECT BEST ARM

Hh,i

Toest = (‘/(2]11n)7T;.,.- + ulp")

: procedure APPROXIMATION OF THE UNDERLYING FUNCTION

fn

V@Inn)/Th i +viph

f = savitzky-Golay(( ), number of nodes/2, max h)

The repository presents additional information on the connection of the algorithm
with the implemented code. The algorithm is composed of four procedures. The first
procedure is the procedure that selects the arm to be played in with the current tree. The
second is called after an arm is played and a reward is received, updating and extending
the tree. The third selects the best arm, when the optimization process is being final-
ized. The forth estimates the mean-reward function using the Savitzky-Golay filter.

4.1 The LG-HOO in Simulation

In this subsection, we provide some illustrative pictures of the LG-HOO algorithm in a
simulation environment using different mean reward functions. Figure 1 shows the
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usage of the LG-HOO algorithm in 6 different conditions. The orange line is the true
mean-reward function that determines the probability of a Bernoulli distribution
Y = Ber(f(x)). Where Y is the measure value (0 or 1, click or no click) and f(x) is the
mean reward function with variation x. This line can represent a customer profile (that
is unknown but we still want to optimize a variation for this function). This profile can
be complex as the picture in the left-top corner or simpler such as the picture in left-
middle with only three ranges of value. The optimization process consists of finding the
variation x that maximizes the mean reward function based only on the stochastic
measured Y.

s —
1o 0 b |0.3957agn
3 vm%#
; @ TITOT vy
0.0 02 04 0 08 10 0.0 02 0.4 06 0.8 10

0.2812

1

1

| u—\/
P SR — g //’V./-A

1

! Best arm: ! Best arm:

8
0.9375 10.8125

11
NAIRIAIIIRRRIRERIRNANAY PO
RS &W

o

0.0 0.2 0.‘4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Values in the x-space Values in the x-space
Estimated function —— True function

Fig. 1. Simulation results of the LG-HOO algorithm in wide range of different user mean-
reward functions. In orange, is the true mean-reward function (unknown to the LG-HOO). In
blue, is the estimated mean-reward function. The tree represents the LG-HOO search process at
the end of the iteration, and the blue vertical line represents the best arm selection using the
proposed selection criterion. The top-left subplot represents the same mean-reward function
discussed in the original HOO algorithm [21]. (Color figure online)
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These simulations show how the LG-HOO algorithm work and estimate the mean
reward function (blue line). All the simulations were conducted considering a total of
10,000 unique interactions (horizon n = 10, 000), using the minimum growth of 10,
maximum tree height limit of 10, vi = 1.0, and p = 0.5, which is representative of
the amount of data collected in a period of one month of the conducted experiment with
Sony Mobile. We can see that with this number of unique interactions we can estimate
the parameter that maximizes mean reward function.

4.2 The LG-HOO at Sony Mobile

The LG-HOO was implemented in the context of the product described in Sect. 3. One
of the features of the product has an algorithm that estimates the time for launching a
notification to users. If the notification arrives too early the users can ignore it and the
feature has little value. If it arrives too late it can have a negative impact in the overall
user experience. Before the experiment, the feature was using the minimum time
scenario (reducing even more the time makes the notification arrives too late). The
impact of the notification is measured depending on the action the user takes after
receiving the notification. This metric is a stochastic variable that follows a Bernoulli
distribution, where 1 (positive value) represents when the user takes an action in time
and 0 when the user does not take an action in time (negative). The metric is stochastic
because different factors not related to the time of the notification might influence the
user action. The team wanted to investigate if a change in the algorithm that modifies
the notification time impacts the metric. The hypothesis of this experiment is that
adding a constant delay in the algorithm could indicate the extent the algorithm
influences the metric and if development effort was needed to improve it. The team also
wanted to minimize the regret of too early notifications. Sequential A/B/n experiments
would take too long to cover the whole extent of search space while increasing the
regret. This scenario sets an appropriate experiment for a continuum-armed bandit
algorithm such as the LG-HOO.

The experiment consisted of searching an appropriate delay offset for the notifi-
cation. The experiment limited the offset in the range of 0 and 600,000 ms (10 min).
The users were assigned to a new variation delay every time they launched their mobile
applications, and they logged their behavior right after the timeout to complete the
action.

The LG-HOO was implemented in the ACE system in Python 2.7. The ACE
system is hosted in the Google App Engine Flexible cloud environment'. The company
application logged data and requested variation arms from the ACE system using
POST requests. In case of lost packages or failure in requesting a new variation, the
system uses the current variation (offset of zero). The parameters of the LG-HOO in
this scenario are: minimum growth of 10, maximum tree height limit of 10, v; = 1.0,
and p = 0.5. The limit in the tree height restricts the precision of the output of the
algorithm in approximately 500 ms, which is considered good level of precision for the
application. For this experiment, it was collected data from over 5000 user interactions

! https://cloud.google.com/appengine/docs/flexible/.



304 D. 1. Mattos et al.

Best value optimization using LG-HOO
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Fig. 2. The LG-HOO used in the Sony Mobile case. This picture provides both the visualization
of the search tree, as well as the approximated mean-reward function and the selected best arm.

in the period of 4 weeks. The results and the outputs of the algorithm are shown in
Fig. 2. This Figure provides both the visualization of the search tree, as well as the
approximated mean-reward function and the selected best arm. The mean-reward
function indicates that the offset does not have a large influence in the selected metric
for the extent of the whole range of delays, but it still shows that a small delay can
improve the concerned metric.

For the team the approximation of the of the mean reward function was important
because it maps how the users behave in respect to this modification on the system, and
therefore can help decisions such as to modify the feature, try other experiments on the
feature or related features or move the development effort to another part of the system.

This section described the LG-HOO algorithm, the modifications, and trade-offs of
the LG-HOO. In the simulation subsection, we provide simulation results and evidence
of the LG-HOO being applied to different mean-reward functions. The simulation
results allowed us to implement the LG-HOO algorithm with confidence in an
industrial setting in collaboration with Sony Mobile. As there is no industrial evidence
of the use of the HOO algorithm, some of its limitations were unknown prior to this
work. The industrial case provides real-world evidence of the use of the LG-HOO in
online experiments.

5 Discussion

Prior to launching the algorithm to real users, a comparison between the HOO and the
LG-HOO was made and is discussed in this section. The algorithms were compared
using the absolute Euclidian distance to the theoretical maximum and the time to
compute an algorithm iteration. The first comparison looks at how far the algorithm got
from the true value and relates to the following LG-HOO modifications: (1) the
selection of the best arm policy modification and (2) the minimum number of times an
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arm must be played before growing. The second comparison relates to degradation of
user experience and performance of the system due to the introduction of delays in the
estimation of the next arm to be played.

The algorithms were compared using a Monte Carlo simulation comparing one
thousand runs with a horizon of n = 1000. At each simulation of the algorithm, it was
used a generated random polynomial function as the true mean-reward function f(x).
The polynomial functions were generated by: (1) generating a set of 30 random points
in the (x, y) plane, (2) fitting a polynomial with random order (ranging between 0 and
10) to these points, and (3) constraining both the space (x) and the mean reward
probability (y) between 0 and 1. The user follows a Bernoulli distribution Bern(f(x)),
where y = f(x), and 1 represents a success. With this method we generate random
polynomial functions that are used as the mean reward functions to simulate the user
profile for the algorithms. With this method we can simulated both algorithms against
the same set of true mean reward functions and compare the LG-HOO and the HOO
solutions with the true solution using the absolute Euclidean distance.

The time spent in the calculation for selecting the next arm and the Euclidian
distance were done in the same hardware and operational conditions. The data collected
from this Monte Carlo simulation, and the conducted analysis is also available at
repository. The collected data for the Euclidian distance and the time spent metrics for
both algorithms are non-normal, Shapiro-Wilk test with p < 2.2e—16 and by visual
inspection. Therefore, we compared the two algorithms metrics using the Mann-
Whitney U non-parametric test [27]. We considered as null hypothesis that the
respective LG-HOO metric does not differ from the HOO metric. Table 1 provides a
summary of the statistical analysis. This statistical analysis provide evidence that the
LG-HOO reduces the distance average Euclidian in 14.3% and reduces the spent time
in 26%, using a confidence level of 95%. Due to the increased performance of the LG-
HOO regarding to the correctness of the output and the computation time, only the LG-
HOO algorithm was selected for empirical evaluation in the company case. The data
and code to run this statistical analysis is available at the repository.

Table 1. Summary of the statistical analysis to compare the LG-HOO and the HOO algorithms
using the Mann-Whitney U test, using a confidence level of 95%

Metric Algorithm | Mean value | Absolute relative difference | P-value

Euclidian distance LG-HOO |0.293 14.3% 0.04179
HOO 0.335

Time spent (in seconds) | LG-HOO | 1.00 26% <2.2e—16
HOO 1.26

6 Conclusion

Optimization procedures associated with bandit algorithms are of great interest to
companies running online experiments. A particular case is the optimization of a
continuous space in the presence of an unknown mean-reward function. As companies
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develop their products, several user assumptions are incorporated into constants in their
software development. Optimization in this scenario is a subclass of bandit problems
called infinitely many-armed bandits. Previous research provides algorithms to solve
this problem in the unidimensional space. However, these algorithms do not have
empirical evidence or usage in online experiments and have restrictions that prevent
their utilization as proposed. This work explores the unidimensional infinitely many-
armed bandits problem in collaboration with Sony Mobile Communications.

The contribution of this work is three-fold. First, we present a modification of the
Hierarchical Optimistic Optimization algorithm (HOO), called the Limited Growth
Hierarchical Optimistic Optimization algorithm (LG-HOO). This modification is
intended to overcome the problems associate with implementing the HOO algorithm in
real-world online experiments. The modifications and the trade-offs involved with these
modifications are presented. Second, the LG-HOO was implemented in collaboration
with Sony Mobile. In this scenario, we provide real-world evidence of the usage of this
algorithm for optimization of software constants. Third, we provide a statistical com-
parison between the LG-HOO and the HOO algorithm in simulation. The statistical
analysis supports the conclusion that the LG-HOO perform better than the HOO, in the
time spent to run and the accuracy of the results. These contributions support the
relevance of the LG-HOO algorithm in the context of optimization experiments and
show how the algorithm can be used to support continuous optimization of online
systems in stochastic scenarios.

This work is the first step in analyzing the usage of infinitely many-armed bandit
algorithms in optimization procedures in software development. In future work, we
plan to expand the LG-HOO to support multi-dimensional arm space, support a multi-
dimensional reward, as these are one of the key aspects that companies want to provide
optimization, and validate these extensions in relevant industrial problems.
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