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Abstract—In this review paper, we analyze the downlink of a
massive multiuser multiple-input multiple-output system in which
the base station is equipped with low-resolution digital-to-analog
converters (DACs). Using Bussgang’s theorem, we characterize the
sum-rate achievable with a Gaussian codebook and scaled nearest-
neighbor decoding at the user equipments (UE). For the case of 1-
bit DACs, we show how to evaluate the sum-rate using Van Vleck’s
arcsine law. For the case of multi-bit DACs, for which the sum-rate
cannot be expressed in closed-form, we present two approxima-
tions. The first one, which is obtained by ignoring the overload (or
clipping) distortion caused by the DACs, turns out to be accurate
provided that one can adapt the dynamic range of the quantizer
to the received-signal strength so as to avoid clipping. The sec-
ond approximation, which is obtained by modeling the distortion
noise as a white process, both in time and space, is accurate when-
ever the resolution of the DACs is sufficiently high and when the
oversampling ratio is small. We conclude the paper by discussing
extensions to orthogonal frequency-division multiplexing systems;
we also touch upon the problem of out-of-band emissions in low-
precision-DAC architectures.

I. INTRODUCTION

Nontrivial fronthaul connectivity challenges must be solved
if one wants to enable massive multiple-input multiple-output
(MIMO) operation over the relatively large bandwidth available
in the higher portion of the frequency spectrum assigned to 5G
systems. Consider, for example, a base station (BS) equipped
with 100 antennas, each one connected to two high-precision
(e.g., 10-bit resolution) digital-to-analog converters (DACs) and
analog-to-digital converters (ADCs) operating at 1 GS/s. In such
a system, 2 Tbit/s of data would need to be transferred to and
from the radio unit (typically co-located with the antenna array)
to the baseband-processing unit (typically located at the base of
the tower hosting the BS). This exceeds by far the rate supported
by the common public radio interface (CPRI) used over today’s
fiber-optical fronthaul links [1].

One promising approach to reduce this fronthaul bottleneck
is to lower the resolution of the data converters. Several as-
pects of massive MIMO systems equipped with low-precision
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Fig. 1. Block diagram of the basic components of a DAC [17, Fig. 1.1].

converters have been recently investigated in the literature, in-
cluding achievable rates [2]–[7], channel-estimation and data-
detection algorithms [8], [9], precoding design [10]–[14], energy
efficiency [15], and out-of-band spectral emissions [16]. In this
review paper, we provide an overview of some of the most recent
results. Our focus will be exclusively on the downlink of a multi-
user (MU) massive MIMO system in which a BS serves multiple
user equipments (UEs) concurrently in the same frequency band.

II. SYSTEM MODEL AND DIGITAL-TO-ANALOG
CONVERTERS

We consider a massive-MIMO BS equipped with B antennas
and serving U UEs. Each BS antenna is fed by two DACs, which
generate the in-phase and the quadrature components of the
transmitted signal. A DAC performs two basic operations: (i) it
transforms the digital input sequence into its analog represen-
tation (transcoder stage) and (ii) it maps the transcoder output
to a continuous-time waveform (reconstruction stage, typically
consisting of a zero-order hold followed by a low-pass filter [17];
see Fig. 1 for an illustration).

Under the simplifying assumption that the digital input to
the DAC has infinite precision, we can view the transcoding
step of the two DACs as a quantizer, i.e., a nonlinear func-
tion Q(·) that maps a sample in C to a finite-cardinality set
X = {q0, . . . , q2Q−1}×{q0, . . . , q2Q−1}. Here,Q is the number
of DAC bits. Throughout the paper, we shall consider only
symmetric, uniform quantizers and denote their step size by ∆
and the number of levels by L = 2Q. Furthermore, we shall
assume that the output of the DACs is scaled by a factor α so as
to satisfy an average transmit-power constraint.

III. ACHIEVABLE RATES VIA BUSSGANG’S
DECOMPOSITION

To begin with, we focus, for simplicity, on the case of trans-
mission over flat-fading channels. We also assume that the
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DACs operate at symbol time and that their reconstruction
stage involve an ideal rectangular low-pass filter (see [16] for
details). Generalizations to more realistic setups are discussed
in Section V. Under these assumptions, the input-output relation
of the downlink channel can be modeled as

y = Hx + n. (1)

Here, the vector y ∈ CU contains the signal received at the U
UEs; H ∈ CU×B is the fading channel, which is assumed to
be perfectly known at the BS. The vector n ∼ CN (0, N0IU )
models the additive noise. Finally x ∈ XB is the output of the
transcoder stage of the DACs.

We assume that
x = Q(Ps) (2)

where s ∈ CU contains the data symbols intended for the U UEs
and P ∈ CB×U is the precoding matrix, which is a function of
the fading channel H. The precoding structure in (2) is referred
to in [12] as linear-quantized precoding, to distinguish from
more general nonlinear precoder structures, which offer superior
performance at the cost of additional computational complexity.

By substituting (2) into (1), we see that the presence of the
quantizerQ(·) makes the channel output y depend on the symbol
vector s in a nonlinear way. We next use Bussgang’s theorem [18],
a special case of Price’s theorem [19], to linearize the input-
output relation and to enable a theoretical analysis [20]. Then,
we will use the generalized mutual information (GMI) [21]
to estimate the rate achievable at each UE by scaled nearest-
neighbor decoding [22] and a Gaussian codebook ensemble.

Theorem 1 below follows from a simple adaptation of Buss-
gang’s theorem to the quantizer output Q(Ps).

Theorem 1: Assume that s ∼ CN (0, IU ). Then for a fixed
precoding matrix P, we have that

E
[
Q(Ps)(Ps)H

]
= GPPH (3)

where G is the following real-valued diagonal matrix:1

G =
α∆√
π

diag
(
PPH

)−1/2
×

L−1∑
i=1

exp

(
−∆2

(
i− L

2

)2

diag
(
PPH

)−1)
. (4)

It follows from (3) that, under the assumption that s is Gaus-
sian, we can rewrite (2) in the linearized form

x = GPs + d (5)

where d is the zero-mean quantization-noise vector, which is
uncorrelated with s. Note that GPs is the linear minimum-
mean-square estimate of x given Ps, and d is the corresponding
estimation error.

Substituting (5) into (1), we obtain a linear input-output
relation, with non-Gaussian additive noise Hd+n. The ergodic

1In (4), the operator diag(·) returns a diagonal matrix whose main diagonal
coincides with that of the matrix it is applied to; furthermore, the exponential
function is applied elementwise to the diagonal entries of diag

(
PPH

)−1/2.

rate2 achievable over this channel using a Gaussian codebook
and scaled nearest-neighbor decoding at the receiver can be
established from a GMI analysis similar to the one reported
in [22], [24]. Specifically, we have the following result.

Theorem 2: Assume that UE u has knowledge of the channel
gain3 hT

uGpu, where hT
u is the uth row of the channel matrix H

and pu is the uth column of the precoding matrix P. Then
the GMI Ru achievable with a Gaussian codebook and scaled
nearest-neighbor decoding at the uth UE is

Ru = E[log(1 + γu)] (6)

where the signal-to-interference-noise-and-distortion ratio
(SINDR) γu is given by

γu =

∣∣hT
uGpu

∣∣2∑
v 6=u |hT

uGpv|2 + hT
u E[ddH ]h∗u +N0

. (7)

IV. STATISTICS OF THE QUANTIZATION NOISE

Evaluating (7) requires knowledge of the correlation matrix
E
[
ddH

]
of the zero-mean quantization noise d. It follows

from (5) that

E
[
ddH

]
= E

[
xxH

]
−GPPHG. (8)

For the caseL = 2 (1-bit DACs), the covariance matrix E
[
xxH

]
of the quantizer output admits a well-known closed-form expres-
sion, commonly referred to as the arcsine law and reported first
by Van Vleck [25]:

E
[
xxH

]
=

2P

πB

(
sin−1

(
diag(PPH)−

1
2<{PPH} diag(PPH)−

1
2

)
+ j sin−1

(
diag(PPH)−

1
2={PPH} diag(PPH)−

1
2

))
. (9)

Here, P denotes the power constraint. However, for any finite L
larger than 2, no closed-form expression is available for E

[
xxH

]
and this matrix needs to be evaluated numerically (see [26], [7]).

Alternatively, one can seek closed-form approximations to
E
[
ddH

]
. Two such approximations are discussed in [26]. The

first one, referred to as diagonal approximation, involves neglect-
ing spatial correlation, i.e., assuming that E

[
ddH

]
is a diagonal

matrix. Then, one exploits that the entries on the main diagonal
of E

[
ddH

]
can be computed in closed form even when L > 2.

This approximation is accurate only for DACs with medium-to-
high resolution (i.e., when L ≥ 4).

The second one, referred to as rounding approximation, in-
volves replacing each DAC by a one-dimensional midrise lattice
quantizer (which implies L =∞) with step size ∆, for which
the covariance matrix of the quantization error is known in
closed form [27]. This approximation is accurate also for low-
precision DACs, provided that the step size ∆ is chosen so that
the distortion due to clipping/saturation is negligible compared
to the granular quantization distortion. This requires adapting ∆
to the signal strength.

2We assume that coding can be performed over sufficiently many independent
realization of the channel matrix H. See [23] for an analysis of the impact of
imperfect channel-state information on the system performance.

3This is the scaling factor in the scaled nearest-neighbor decoding rule.



V. EXTENSIONS

Extensions of the analysis described above to the frequency-
selective case and to the use of orthognal-frequency-division
multiplexing (OFDM) and oversampling DACs are discussed
in [26], [28], [16]. In the oversampling case, the diagonal ap-
proximation involves neglecting also temporal correlation, and it
turns out to be accurate only when the oversampling ratio is small
(e.g., less than four for L = 4). The rounding approximation
does not suffer from this limitation.

The use of low-precision DACs in the massive MIMO down-
link causes unwanted out-of-band (OOB) emissions, which
may be incompatible with the spectral requirements imposed
by regulatory bodies. An extension of the Bussgang’s decom-
position (3) to OFDM systems with nonideal analog filters is
used in [16] to study such OOB emissions. There, it is shown
that by an appropriate design of the DACs’ low-pass filter and
by employing simple digital pre-equalization techniques, one
can significantly reduce OOB emissions, at the cost of a small
decrease in the SINDR (7) and of a small increase in the peak-
to-average power ratio of the transmitted signal.
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