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Research on intense terahertz (THz) electromag-
netic sources has received an increasing attention ow-
ing to numerous applications, for example, in time-
domain spectroscopy, biomedical imaging or security
screening [1]. Among the various techniques em-
ployed to generate THz radiation, focusing intense
two-color femtosecond pulses in air or noble gases
provides interesting features like absence of material
damage, large generated bandwidth (up to ~100 THz)
and high amplitudes of the emitted THz pulses (> 100
MV/m) [2]. First reported by Cook et al. [3], THz
emission from intense two-color pulses was initially
attributed to optical rectification via third-order non-
linearity. However, it was shown later that the plasma
built-up by tunneling photoionization is necessary to
explain the high amplitudes of the THz field [4], and a
quasi-dc plasma current generated by the temporally
asymmetric two-color field is responsible for THz
emission [5].

Numerous experimental results show that the
laser-induced free electron density has a strong impact
on the THz emission [4,6,7]. While it is frequently
observed that a larger free electron density leads to
broader THz spectra, the origin of the effect remains
controversial. In [6,7], homogeneous plasma oscilla-
tions were proposed as an explanation, even though
those oscillations are in principle non-radiative [8,9].
Moreover, nonlinear propagation effects have been
held responsible for THz spectral broadening as well
[10]

On the other hand, the gas plasma produced by
the fs laser pulse is a finite conducting structure with
a lifetime largely exceeding the fs time scale. Thus,
one can expect that the gas plasma features plasmonic
resonances which may have a strong impact on the
THz emission propertie [11]. However, no direct evi-
dence of plasmonic effects in laser-induced gas-plas-
mas was observed so far: To make an evidence of
plasmonic effects, those need to be distinguished from
nonlinear propagation effects. Also from the theoreti-
cal point of view capturing plasmonic effects is not
trivial: plasmonic effects require at least a full two-di-
mensional Maxwell-consistent description, and re-
duced models like the unidirectional pulse propaga-
tion equation [12], which are frequently used to de-
scribe plasma-based THz generation [5,7,10], are by
construction not capable of capturing such resonant
effects.

In this work, we consider the two-color-laser-in-
duced plasma as a plasmonic structure, and investi-

gate under which conditions such plasmonic perspec-
tive is important. In the context of plasmonic nanoan-
tennas (or metamaterials), e.g, for second-harmonic
generation, tailoring plasmonic resonances by tuning
the shape of the plasmonic particle is a standard ap-
proach. Therefore, we follow a similar strategy and
modify the usually prolate spheroidal plasma shape.
Going to tri-axial ellipsiods which can be achieved by
using elliptically shaped laser beams turns out to be
already sufficient [13]. Depending on whether the
laser polarization is oriented along the long beam axis
(quasi transverse electric, qTE) or along the short
beam axis (quasi transverse magnetic, qTM), plas-
monic resonances are triggered or not (see Fig. 1).
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Fig. 1. Illustrated configurations of THz emission from
an ellipsoidal plasma induced by a two-color Gaussian laser
pulse~(funamental in red, second-harmonic in purple) with
strongly elliptical beam shape propagating along z. The
laser electric field is y-polarized (along the long axis of the
beam, qTE) in (a) and x-polarized (along the short axis,
qTM) in (b). The plasma is sketched as blue surface. Simu-
lated forward emitted THz pulses are presented as white
lines demonstrating a significantly shorter pulse duration for
qTM polarization, which can be attributed to triggering a
plasmonic resonance.

While nonlinear propagation effects are in both
cases equally present, any difference between the THz
emission spectra in this two cases is linked to plas-
monic effects. We demonstrate experimental results
which reveal a significant difference: THz pulses are
shorter and have a broader emission spectrum when
the plasma is excited by the laser field in the direction
with the short focal beam width and plasma width
(see Fig. 2). A simple analytical model allows us to
link the broadening to a leaky mode. It turns out that
the resonance has a strong impact on the spectrum
whenever electrons are excited along a direction
where the plasma size is smaller than the plasma
wavelength. Finally, direct three-dimensional (3D)
Maxwell consistent simulations in tightly focused ge-
ometry confirm that these plasmonic resonances in-
deed broaden the emitted THz spectrum significantly.
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Fig. 2. Experimental THz spectra for qTE (a) and qTM
(b) polarization (see text for details). Corresponding on-axis
THz waveforms are shown as insets. The dashed lines spec-
ify the estimated maximum plasma frequency.
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