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Abstract
Rapid growth in the transportation of goods has led to raised concerns about

environmental effects, road freight traffic, and increased infrastructure usage.

The increasing cost of fuel, and issues with congestions and gas emissions,

make longer and heavier commercial vehicles (LHCVs) an attractive alter-

native to conventional heavy vehicles. However, one major issue concerning

LHCVs is their potential impact on traffic safety. A typically dangerous be-

haviour happens during sudden evasive steering maneuvers, which causes

amplified lateral motions in the towed units. These amplified motions can

lead to the towed units’ oscillation, large offtracking and, in a worst case

scenario, cause rollover.

The main objective of this thesis is to develop robust steering-based con-

trollers for improving the lateral performance of LHCVs at high speeds by

suppressing unwanted amplified motions in the towed units. Robust control

methods aim to achieve an adequate level of robustness against model un-

certainties and disturbances, while at the same time satisfying the desired

closed-loop system performance specifications. The proposed robust control

syntheses are formulated based on an H∞ static output-feedback (SOFB), in

which only one easily measurable state variable is required. As the measure-

ment of the driver steering input is available, a combined version of SOFB

and dynamic feed-forward (DFF) is also developed and several techniques for

designing DFF are proposed. The control synthesis problems are solved by

using linear matrix inequality (LMI) optimizations. The theoretical contribu-

tions of this research mainly lie in the derivation of a novel LMI condition for

an integral quadratic constraint (IQC) on the states and also in the derivation

of a set of new LMI conditions for the DFF design method. From a practical

point of view, the proposed controllers are simple and easy to implement,

despite their theoretical complexity.

The effectiveness of the designed controllers is verified through numerical

simulations performed on linear vehicle models as well as high-fidelity ve-

hicle models. The verification results confirm a significant reduction in yaw

rate rearward amplification, lateral acceleration rearward amplification and

high-speed transient off-tracking, thereby improving the lateral stability and

performance of the studied LHCVs.

Keywords: Commercial vehicles, Rearward amplification, Static output feed-

back, Dynamic feed-forward, Robust control, LMI-based H∞ synthesis
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Chapter 1

Introduction

This chapter provides the background, literature review and objectives for

this thesis. It also states the limitations, main contributions and outline of the

thesis.

1.1 Background

Total goods transport activities in the 28 member countries of European Union

(EU-28) were estimated to be about 3516 billion tonne-kilometres in 2015

which has increased by 23.6 % compared to 1995. The share of road trans-

port as the biggest contributor accounted for 49 % of this total, intra-EU

maritime transport for 31.6 %, rail transport for 11.9 %, inland waterways

transport for 4.2 %, oil pipelines for 3.3 % and intra-EU air transport for 0.1

% of the total. These statistics focus only on intra-EU transport, not transport

activities within the rest of the world [1].

The transport sector consumed about one third of the energy demand in the

EU-28 and was responsible for 23.5 % of total greenhouse gas (GHG) emis-

sions (including international aviation) in 2015. The largest source of the

GHG emissions produced by transport sectors in 2015 was from road trans-

port with a share of 72.9 %. Of these road freight transport emissions, 61.5

% was contributed by cars, while 25.9 % came from heavy-duty vehicles

and busses. Hence, the entire transport sector, and particularly road freight

transport, has been identified for further environmental and overall efficiency

improvements for a sustainable future in Europe [1, 2]. In addition, signif-

icant improvements within the transport sector are expected in the area of

safety, reducing accidents and fatalities. According to the 2005 European

Truck Accident Causation (ETAC) study [3], based on the 624 accidents in-
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volving heavy goods vehicles (Vehicle Gross Weight (VGW) >3.5 tonnes)

in seven European countries, 303 people were killed and 774 injured over

a period of 2.5 years (2004-2006). The findings of this study revealed that

heavy goods vehicles were the main cause of 25 % of these accidents. The

annual report of Community database on Accidents on the Roads in Europe

(CARE) [4] revealed that heavy goods vehicles (VGW > 3.5 tonnes) were

responsible for 520 out of total 26132 road fatalities occurred in the EU-28

in 2015.

To enhance the efficiency, safety and environmental performance of transport

system, the European Union has recognised the urgent need for developing

a vision and setting targets. It is expected that setting targets leads to more

effective and realistic programmes and resource allocation. The European

Commission’s 2011 Transport White Paper has provided an ambitious vision

for the future of EU transport in which a reduction of at least 60 % of GHG

emissions is targeted by 2050, compared to 1990 levels. The White Paper

also sets the goal of zero road fatalities and serious injuries in road transport

by 2050 (Vision Zero) [5].

In order to meet the long-term 60 % GHG emission reduction target, one of

the most effective ways is to increase the size (height, length and weight) of

heavy goods vehicles. The increased payload per vehicle is expected to re-

duce transport costs, the number of trips and also energy intensity per unit of

payload, and consequently reduce GHG emissions. Unlike most other coun-

tries in Europe where only conventional heavy vehicles with the maximum

length of 18.75 m, maximum weight of 40 tonnes (44 tonnes for combined

transport) and height of 4 m are permitted (according to the European di-

rective 96/53/EC), heavy vehicles up to 25.25 m in length and 60 tonnes in

weight are permitted in Sweden and Finland, with trials underway in some

other EU member countries (Norway, Denmark, Netherlands, Belgium and

Germany). However, some other countries outside Europe have allowed

longer and heavier vehicles for many years, like Brazil, Canada, Australia,

New Zealand, Mexico, South Africa and the USA.

The potential environmental, economic and practical impacts of implement-

ing longer or/and heavier commercial vehicles (LHCVs) in road transport

have been widely investigated in many countries (e.g. [6–13]). In a report

prepared by Woodroofe and Ash, the use of LHCVs instead of the common

non-LHCVs truck (45 feet) in Alberta has been resulted in 29 % saving in

transportational costs, 32 % in fuel consumption and GHG emissions, 44 %
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reduction in vehicle-kilometer travelled and 40 % decreased road wear [6].

In another study conducted by a Swedish transport institute, the performance

of LHCVs (25.25 m) were compared with two commonly-used EU heavy

vehicles (18.75 m and 16.5 m). The findings of this study indicated that the

use of LHCVs leads to a reduction in the number of trips by 32 % and conse-

quently reduced fuel consumption and GHG emissions by 15 %. In addition,

the total operational costs will drop by 23 % [7].

Road safety is the most controversial issue of LHCVs. There are contrasting

opinions about the road safety of LHCVs among different groups of special-

ists and scientists. On the one hand, proponents argue that the introduction of

LHCVs means fewer vehicles on roads and reduced congestion, and conse-

quently a smaller exposure to road accident risk. In other words, the probabil-

ity of traffic accidents increases with vehicle-kilometers travelled and since

the vehicle-kilometers travelled are reduced, the number of accidents are ex-

pected to decline [14]. On the other hand, opponents disagree, stressing that

LHCVs are more likely to be involved in accidents due to their larger size,

if compared with conventional commercial vehicles [15]. In a simulation-

based study conducted by Glaeser and Ritzinger [8], it has been shown that

LHCVs have worse performance in terms of rearward amplification of lat-

eral acceleration in rear trailers, rear trailer off-tracking at high speeds and

also poor low-speed maneuverability. Even so, when considering these is-

sues, it can not be concluded that LHCVs are significantly unsafe, but it is

recommended that their use should be limited to the roadways that are ge-

ometrically sufficient to accommodate such vehicles. In addition, Steer et

al. [10] conclude that there is no evidence that LHCVs increase safety risk,

but increased length and weight may increase the severity of accidents. They

also mention that introducing LHCVs would bring an overall improvement

in road safety due to the reduction in vehicle-km.

The relationship between the features of LHCVs and road safety issues are

investigated in [14, 16]. Based on the findings of these studies, traffic con-

gestion and road safety are highly influenced by the main features of LHCVs

such as heavy weight, long length, poor manoeuvrability, and low dynamical

stability. On the contrary, in a study by Aurell and Wadman [17], it is argued

that LHCVs have in general better dynamic stability than shorter heavy vehi-

cles. Although so far, there is no empirical evidence showing that LHCVs are

significantly more dangerous than conventional heavy vehicles. Despite the

slight discordance in the conclusions of these studies, they have shown that
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with improved vehicle designs, it is possible to overcome the safety-related

problems of LHCVs in such a way that they can perform as well or better

than currently-used heavy vehicles.

Main dynamical instability modes associated with heavy commercial vehi-

cles are known as trailer swing, jackknifing, trailer lateral oscillation and

rollover [18], see Figure 1.1. Trailer swing occurs when the wheel of the

trailer (the towed unit) are locked up and the trailer start to swing out. This is

more likely to happen on slippery/poor-conditioned roads, specially when the

trailer is empty or lightly loaded. Jackknifing happens when the rear wheels

of the lead unit are locked up due to improper and hard braking, or slippery or

poor-conditioned roads. Trailer lateral oscillation happens due to instabilities

in yaw motions of the towed units mainly because of sudden evasive driver

steering. Rollover occurs due to roll instabilities in the center of gravity of

the vehicle and results in wheels lift-off the ground. Main factors involved in

rollover crashes are high speed, high centre of gravity, improper braking and

excessive lateral force. ! " # # $ % & % $ ' ( ) ! % * + ) , - % $ ' ( ) ! % * + ) * ! . + ) ! * / , " % * * ! . % / $ 0 / * * / 1 + )
Figure 1.1: Most common instability modes; yaw instability (jackknifing, trailer swing and

trailer lateral oscillation) and yaw/roll instability (rollover)

Therefore, in this regard, there is a crucial need for innovative technical solu-

tions that improve the high-speed stability and low-speed maneuverability of

LHCVs in order to promote the use of LHCVs and ease the concerns about

the impact of LHCVs on traffic safety as well as damages to road infrastruc-

ture.

One way to improve low-speed maneuverability and high-speed stability would

be to steer the axles of the towed vehicle units in LHCVs. Hence, in order to

make the towed unit steerable, several active and passive steering techniques

have been proposed. To solve the problems of manoeuvrability at low speed,

a number of passive steering systems have been developed (e.g. [19–21]).

Such systems steer some axles on the towed unit according to a simple geo-

4



metrical relationship or force/moment balance. The passive steering systems

are able to reduce tire and road wear and improve low-speed steady-state

manoeuvrability. However, they have a detrimental effect on high-speed per-

formance, leading to high-speed yaw instability and increased rearward am-

plification and poor maneuverability. All passive steering systems found to

date are locked at high speeds. Moreover, the passive steering systems are de-

signed to work in steady-state circular motion. They do not generally provide

the correct steering inputs for transient manoeuvres [22, 23].

To overcome these problems at high speeds, an active steering system can

be used instead of passive steering systems. Such systems can offer vi-

able solutions for both low-speed maneuverability and high-speed stability of

LHCVs. Therefore, different studies have been carried out to develop control

strategies for active steering of heavy vehicles (e.g. [24–31]). Active steering

systems work similar to passive steering systems by steering the rear axles.

However, the steering angle of each axle is no longer dependent on a simple

geometric relationship or force balance. They usually consider the vehicles

current states to calculate the required steering angles to be performed on the

rear axles. The focus of this thesis is on active steering of LHCVs to im-

prove their dynamic behavior by attenuating lateral oscillation of the towed

units at high speeds. The next section summarizes some of existing studies

on steering-based control of heavy vehicles.

1.2 Literature Review

The use of active steering systems has shown a remarkable potential in im-

proving maneuverability and lateral performance of heavy commercial ve-

hicles. The active steering of heavy vehicles has been widely investigated

to improve the low-speed manoeuvrability (e.g. [25–27, 32, 33]), high-speed

lateral stability (e.g. [28, 29, 31, 34–36]), and both the maneuverability and

lateral stability (e.g. [30, 37–43]).

The most common approach used in the active steering systems is linear

quadratic regulator (LQR) algorithms (e.g. [28–30,34,36,37,39,42].) Unlike

other current systematic control design syntheses, like H∞, classical LQR

controller might suffer from poor robustness when the system is exposed to

parameter variations and is out of its nominal condition (e.g. [44–46]). In

other words, the success of the LQR-based controllers is dependent on the

accuracy of linear vehicle models.
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A number of control systems have been proposed based on combined feed-

forward and proportional feedback [31] and proportional integral derivative

(PID) control (e.g. [38,40,43]) algorithms and have been successfully applied

to various vehicle handling and stability control. Undoubtedly conventional

P, PD and PID controllers are by far the most frequently used controllers in

different engineering applications due to their simplicity and ease of online

re-tuning. Yet, the selection of the controller parameters (three parameters

P, I, D to tune) does not give optimum values of the controller directly. In

addition these controllers may not guarantee the robustness of the system.

Compared with the aforementioned conventional PID and LQR control meth-

ods, fuzzy logic control (FLC) method (e.g. [25, 27, 28]) has its advantages

in dealing with systems with large uncertainties. Nevertheless in spite of its

practical success, it is hard to program and prior knowledge of the system is

required to model the fuzzy system. In addition, it is a very time-consuming

design and there is not a standard analytical procedure for designing, analyz-

ing its stability and tuning it.

Most of the works discussed above are not considering robust stability and ro-

bust performance in the controller design procedure. The majority of the lat-

eral control approaches for heavy vehicles are based on exact system model

in which it is assumed that all parameters and variables of the considered

vehicle model for control designs are known and measurable or can be esti-

mated. Consequently, the applicability of these control systems are restricted

by the accuracy of vehicle units’ parameters and may exhibit significant per-

formance degradation or even instability in the presence of parametric uncer-

tainties such as mass, yaw moment of inertia, position of center of gravity

and tire cornering stiffness coefficient.

To the author’s best knowledge, very few publications are available in the

literature that address the issue of directly synthesizing robust lateral control

of heavy vehicles in presence of parametric uncertainties and un-modeled

nonlinear dynamics, especially in the case of active-steering based control.

Much of the early research on robust synthesis of heavy vehicles has been

conducted over 20 years ago by the California PATH (Partners for Advanced

Transit and Highways) program (under project TO4201/MOU385). The main

goal of this project was to implement and test previously developed lateral

control algorithms for the automated lane following in the context of auto-

mated highway systems, and enhance robustness and performance of lateral

controllers. For instance, in [47], a robust H∞ loop shaping for lateral con-
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trol of automated heavy vehicles (AHVs) was designed in order to cope with

the model uncertainties such as vehicle longitudinal velocity, road adhesion

coefficient and cargo loads in the trailer.

In the 2003 PATH report [48], five different types of robust controllers against

un-modeled nonlinear dynamical uncertainties and parametric uncertainties

have been designed and experimentally implemented for lateral control of

AHVs; four nonlinear controller (a sliding mode control, a nonlinear ro-

bust feedback linearization controller, a nonlinear loop-shaping controller,

an adaptive robust control) and one linear controller (a linear robust feedback

controller with a feedforward compensation). It was observed that all the

proposed controllers provide robustness against uncertainties in tire corner-

ing stiffness and location of center of gravity due to varying loads, and also

un-modeled dynamics such as roll, pitch, bounce, and suspension dynamics.

However, as the uncertainty increases, the performance of the sliding mode

controller severely degrades due to the inevitable high control gain. It was

also concluded that the implementation of nonlinear controllers are much

more complicated than that of linear controllers. In [49], a linear parame-

ter varying controller is designed to incorporate velocity dependence of the

vehicle dynamics in the control design of automated lane keeping for heavy

vehicles. It should be noted that in all above mentioned studies by the PATH

program, only the front wheels of the tractor are steerable for the tractor-

semitrailer type of heavy vehicles.

In a study done by Wang [50], a model reference adaptive control (MRAC)

strategy is developed for active trailer steering system control. The MRAC

technique has been used to improve the robustness of the active trailer steer-

ing system with respect to vehicles parametric variation and varied operating

conditions such as the variations of vehicle longitudinal velocity and trailer

payload. The main vehicle researched in this work is a double-trailer heavy

vehicles (B-train), which is the most commonly used across Canada for goods

transportation. In [51] Ni et al. proposed an LMI-based LQR method for ac-

tive trailer steering of an A-double vehicle in which the vehicle longitudinal

velocities and the time constant of the steering actuator model are considered

as uncertain parameters. In the proposed controllers, it is assumed that all the

state variables are perfectly measured, which is not the case in reality and not

all the state variables are available or easily measurable.

7



1.3 Objectives

The main objective of the research presented in this thesis is to develop active

steering-based control strategies for improving the high-speed lateral perfor-

mance and stability of LHCVs, with a primary focus on a prospective LHCV

denoted as the A-double (tractor-semitrailer-dolly-semitrailer). The proposed

controllers should be designed in such a way that the controlled vehicle not

only maintains robust stability in the presence of parameter uncertainties and

un-modeled dynamics but also achieves a desirable level of robust perfor-

mance.

1.4 Contributions

Several robust steering-based control strategies are proposed for LHCVs.

The synthesis problem in this thesis is formulated as an H∞-type design

problem and can conveniently be solved by using linear matrix inequality

(LMI) optimizations.

The main contributions of this thesis are as follows:

• The proposed controllers ensure robust stability and performance in the

face of model uncertainties such as steering actuator model parameters,

cornering stiffness of tires and yaw moment of inertia of trailers.

• The developed controllers steer the axles of selected towed vehicle unit

in a way to suppress undesired amplified motions, namely yaw rate rear-

ward amplifications, towards the towed vehicle units.

• The controller syntheses are formulated based on a static output feed-

back (SOFB), which uses information from only one articulation angle

that is relatively easy to measure.

• A novel LMI condition is derived that ensures an integral quadratic con-

straint (IQC) on the states.

• Since the measurement of the driver steering is available, combined

SOFB with dynamic feed-forward (DFF) has been considered and sev-

eral alternatives for designing the DFF controller are proposed.
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• To deal properly with tire cornering stiffness uncertainties, a linear time-

varying (LTV) tire model is suggested, in which the cornering stiffness

is considered as a time-varying uncertain parameter.

• Since the resulting state-space representation of the system is rationally

dependent on uncertain moment of inertia parameters, a descriptor-type

representation of the system is hence employed to avoid the rational

dependency. Accordingly, a synthesis method is developed to deal with

the systems with the descriptor form representation.

• A gain-scheduled control synthesis is developed by considering the lon-

gitudinal velocity as the scheduling parameter for a selected set of LHCVs.

The performance of the proposed controllers are verified by performing nu-

merical simulation on linear vehicle models as well as high-fidelity vehicle

models in both frequency and time domains.

1.5 Limitations

The results of this thesis are subjected to the following limitations.

• The proposed controller syntheses are only verified by using high fi-

delity vehicle models, but not experimentally with a test vehicle.

• The driver role is limited only to a steering input in the performed sim-

ulations and a simple driver model is used for modelling the frequency

content of the driver steering for control synthesis purposes.

• In this thesis only steering actuators for control of the vehicle dynam-

ics are considered; other actuators such as braking actuators and active

suspension components are excluded.

• The controller syntheses are designed based on a simplified single-track

linear vehicle model without accounting for frame flexibility, roll, pitch

or bounce dynamics.

• There is always measurement noises and other disturbances in addition

to the driver input entering the system in an unpredictable way which

are not mentioned in this thesis.
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1.6 Outline

Chapter 2 provides the background on longer and heavier vehicles, related

performance measures and the linear vehicle model used in this thesis. Chap-

ter 3 describes an overview of the theoretical material that is required for the

proposed controller syntheses of the next chapters. Chapter 4 summarizes

the scientific contributions of the appended papers at the end of the thesis.

Finally, Chapter 5 provides some concluding remarks and suggestions for

further work.
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Chapter 2

Longer and Heavier Commercial Vehicles

In this chapter, first a brief introduction is given on the background of Longer

and Heavier Commercial Vehicles (LHCVs). Afterwards, some important

performance based standards (PBSs) used for evaluating heavy commercial

vehicles are presented. In the end, the linear vehicle model used for the

design of the proposed controllers is briefly described.

2.1 Introduction to Longer and Heavier Commercial Vehicles

Heavy goods vehicles operating in international and national road networks

in the EU must comply with certain rules on weights and dimensions that are

set by Council Directive 96/53/EC in 1996 [52]. In most European countries,

the permitted length of a goods vehicle is restricted to a maximum of 16.5

m in length for standard articulated heavy vehicles (e.g. a tractor-trailer) and

18.75 m for road trains (e.g. a rigid truck or tractor-trailer pulling a drawbar

trailer). The maximum authorized weight is set to 40 tonnes, except for 40-

foot (13.6 m) ISO containers operating in intermodal transports (combined

transports) which are allowed a maximum weight of 44 tonnes. Two exam-

ples of existing European heavy vehicles are depicted in Figure 2.1. However

a number of countries, including Brazil, Canada, Australia, New Zealand,

Mexico, Africa and the USA, allow even longer and heavier combinations

than those used in Europe.

The Directive 96/53 EC [52] and the European Modular System (EMS) [53]

also give the possibility to use longer combination vehicles for each member

country in the European Union on the condition that the vehicles are formed

by the established EU modules and operate only in national transports. Mod-

ular combinations are flexible and may have a varying number of modular
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(a) Tractor+semitrailer (b) Truck+full trailer

Figure 2.1: Examples of European heavy vehicles

units combined in different order as can be seen in Figure 2.2.  !" # $ % & ' ( ) * % + ' , ) - .- / 0 1 2 3 1 2 4
5 6 7 8 9 : ; <5 6 7 8 9 : ; <= > ? @ A B C D= > ? @ A B C D
Figure 2.2: European and EMS heavy vehicles [53]

Since 1970, Sweden and Finland are allowed to use modular combination

vehicle each carrying one short module (7.82-m long) and one long module

(13.6-m long). This leads to a maximum permitted length and weight of

25.25 m and 60 tonnes respectively [17]. Figure 2.3 shows two commonly

used EMS vehicles in Sweden. Since 2008, 25.25 m/60 tonnes vehicles are

also allowed on the major road network in the Netherlands and on selected

main roads in Denmark and Norway [54, 55].

LHCVs refer to modular combination vehicles which are even longer and

heavier than the ones currently permitted in Sweden, see Figure 2.4. Since

2009 on-road trials are being conducted in Sweden to investigate the potential

economical and environmental benefits of LHCVs. One of the projects is

so-called ”ETT” (En Trave Till) project [56] which was first proposed by

Skogsforsk (The Forestry Research Institute in Sweden) in 2006. The on-

road trial of the first ETT vehicle with a total length of 30 m and a maximum

weight of 90 tonnes was started in 2009. The ETT vehicle was tested within
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(a) Truck+semitrailer

(b) Tractor+semitrailer+center axle trailer

Figure 2.3: Examples of EMS heavy vehicles in Sweden

timber haulage industry over more than three years in the northern part of

Sweden. The results of using LHCVs showed both transport costs and CO2

emissions were reduced by 20 % if compared to the use of regular 24 m/60

tonnes timber trucks. No negative impact on road safety was observed and

road wear was not increased as the weight was distributed over more axles.

(a) Truck+Double center axle trailer (DUO-CAT)

(b) Tractor+semitrailer+dolly+semitrailer (DUO2, A-double)

Figure 2.4: Examples of longer EMS heavy vehicles on trials in Sweden

Another interesting project so-called ”Duo2” started in 2010 was initiated by

Volvo AB, DB Schenker and the Swedish Transport Administration along

with several other companies [57]. The purpose of the project was to investi-

gate the potential benefits of transporting cargo loads more efficiently on the

existing road network. Two double-trailer vehicles, as shown in 2.4, were

considered to transport general cargos between Göteborg and Malmö under

two years. The combination vehicles used in this project are 32 m long with

a maximum weight of 80 tonnes. The Duo2 concept led to a substantial re-
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duction of 27 % in terms of distance converged and 8 % reduction in the fuel

consumption and CO2 emissions compared to the current transport struc-

ture [58].

One major issue concerning LHCVs is their potential impacts on traffic safety

that is the most controversial issue. Road safety performance of LHCVs de-

pends on their technical features such as power train and braking systems

capability, lateral dynamical stability, manoeuvrability and etc. By introduc-

ing LHCVs as a part of future transportation, there is a need to ensure that

they are performing within specific boundary conditions. Defining proper

technical characteristics, denoted as Performance Based Standards (PBSs)

for LHCVs would assist to create operational requirements by which LHCVs

will be allowed to operate in the road network with less negative road safety

impacts. In the next section, a comprehensive list of safety related PBSs is

introduced and some of these PBSs that are used in this thesis are briefly

explained.

2.2 Performance Based Standards

Heavy vehicles are traditionally regulated by tightly-defined prescriptive reg-

ulations and rules on their mass and dimensions which provides little space

for innovations. In fact, the prescriptive regulations are detailed and inflexible

rules that are generally only indirectly related to the desired vehicle perfor-

mance. On the other hand, the Performance Based Standard (PBS) scheme

offers the heavy vehicle industry the possibility to achieve higher safety, pro-

ductivity and stainability than current prescriptive regulations through inno-

vative and optimized design of heavy vehicles.

Under the PBS approach, performance measures are utilized to specify the

performance required from the vehicle. The PBS scheme has been imple-

mented in New Zealand, Australia, and Canada [59,60,60–62]. Safety related

standards included in PBS scheme can be divided into two main groups, lon-

gitudinal and lateral characteristics. The PBSs are listed as follows [61, 63]:

• Longitudinal measures: startability, gradeability, acceleration capabil-

ity, stopping distance, down-grade holding capability,

• Lateral measures: rearward amplification (RA), high speed transient

offtracking (HSTO), high speed offtracking, swept path width, high
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speed steady-state offtracking, yaw damping coefficient, straight line

offtracking, lateral clearance time, steady-state rollover threshold, de-

celeration capability in a turn

Startability and gradeability characteristics indicate the ability of the vehi-

cle combination to start from rest on an up-grade and maintain speed on an

up-grade, respectively. Acceleration capability reflects the vehicle’s ability

to clear intersections and rail crossings etc. These three characteristics are

power train- and tire-related characteristics. Stopping distance and down-

grade holding capability characteristics concern braking system. Steady-state

rollover threshold, yaw damping ratio and deceleration capability in a turn are

vehicle combination’s characteristics reflecting the vehicle lateral stability.

Rearward amplification (RA), high speed offtracking and straight line off-

tracking indicate the trailers’s dynamic characteristics. Swept path width is

concerning the vehicle combination manoeuvrability and insuring that the

vehicle safely manoeuvres around corners. Compared to Australian PBSs,

some new characteristics are added to the above list such as stopping distance,

down-grade holding capability, lateral clearance time, high speed steady-

state offtracking and deceleration capability in a turn (for further information

see [63]).

While making a sudden lateral movement in a heavy vehicle, each unit in

the combination experiences different lateral acceleration which is amplified

towards the rearmost unit of the vehicle as shown in Figure 2.5. The RA

is used to quantify this dynamical behaviour of heavy vehicles. The RA is

defined as the ratio of the maximum value of the motion variable of interest

(e.g. yaw rate or lateral acceleration) of the worst excited towed vehicle

unit to that of the first vehicle unit during a specified manoeuvre at a certain

friction level and constant speed. Lower values of the RA indicates better

lateral performance of heavy vehicles [61, 63].

 ! "# $ % & ' % & ( % ) * + , - , . % / , 0 1 2 3 4 5 3 6
Figure 2.5: Illustration of RA
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When an articulated heavy vehicle is negotiating with a turn or performing

a lane-change at high speeds, there is a tendency for the rear axles to sway

outside of the front axle’s path. This tendency to sway outward is called

high speed offtracking or outboard offtracking and can be either determined

in a steady-state turn or in a lane change maneuver; the latter is called as

high speed transient offtracking (HSTO). The HSTO is defined as the lateral

deviation between the path of the front axle of the lead unit and the path of the

rearmost axle in the towed vehicle unit in a lane change maneuver, as shown

in Figure 2.6. A high value of this overshoot might lead to collision with the

road objects or other vehicles especially when the lane width is narrow and

traffic flow on the road is high [31]. ! " # $ % & & ' ( ) * + , ! & + - . / / - ) * 0 1 ! + "
Figure 2.6: Illustration of HSTO

In this thesis, the RA and HSTO measurements are used to evaluate the high-

speed lateral performance of candidate LHCVs.

2.3 Vehicle Dynamic Modelling

Vehicle models and tire models should capture the most relevant dynamics

and reflect reality. Both linear and nonlinear models are commonly used.

However, linear models are well suited for control design purposes, while

nonlinear models are more often used to verify the controllers and evaluate

them. The linear models have a limited operating range due to assumptions

and simplifications that are made when they are designed. In this thesis,

the simplest linear vehicle model is used which has two degree-of-freedom

representing the lateral and yaw motions of the lead vehicle unit and one

degree of freedom for each towed vehicle unit representing its yaw motion.

The nonlinear high-fidelity vehicle models used in this thesis are denoted

as Volvo Transportation Models (VTM) and are developed and well-tested

against numerous test data by Volvo Group Trucks Technology [64–67].
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To derive the equations of motion of the linear vehicle model for multi-unit

vehicles, there are usually two kinds of forces applied to the system that

should be considered: the given forces generated by the actuators and the

constraint forces resulted from the interaction between the vehicle units. The

methods used in the derivation of the linear models are based on either the

Newtonian approach or the Lagrangian approach. The Newtonian approach

is more practical if all given forces and constraint forces acting on the vehicle

units are known, and the Lagrangian approach is more convenient if the po-

tential and kinetic energies of the units are known. Despite their differences,

they are equivalent to each other and result in equivalent descriptions of the

dynamics. The Lagrangian mechanics formulation has the advantage over

the Newtonian mechanics because it can eliminate the coupling constraints

and forces at the coupling joints between the vehicle units that are usually

unknown. In addition, the number of equations are fewer in the Lagrangian

approach [68]. Therefore in this thesis, the Lagrangian approach is employed

in order to derive the equations of motion. In the derivation of the linear vehi-

cle model, the longitudinal velocity vx is considered as a constant value and

all angles are assumed to be small.

The Lagrangian approach is briefly described here. The development of this

approach is based on defining the Lagrange function L(q, q̇) in terms of gen-

eralized coordinates q and their time derivatives q̇. The Lagrangian is defined

as the difference between the total kinetic energy T and the total potential en-

ergy U of the system, i.e. L(q, q̇) = T (q, q̇)− U(q). The Lagrangian equa-

tions are then obtained by differentiating the Lagrange function L(q, q̇) with

respect to the generalised coordinates qi and their time derivatives as

d

dt

∂L(q, q̇)

∂q̇i
−

∂L(q, q̇)

∂qi
= Qi, i = 1, .., nq, (2.1)

where nq is the number of generalized coordinate and Qi represent the gener-

alized external forces associated with the corresponding generalised coordi-

nates qi. The vector of generalized coordinates for n-unit vehicles is formed

as

q(t)T = [Y1 ϕ1(t) θ1(t) θ2(t) ... θj(t)], j = 1, ..., n− 1, (2.2)

where Y1 and ϕ1 are the lateral displacement and the yaw angle of the COG of

the lead unit, respectively. The remaining elements are the articulation angles

between the attached units, whereas θj is the articulation angle between the

units j and j + 1 . The schematic diagram of the linear vehicle model for

a 3-unit vehicle is depicted in Figure 2.7, where the driven axles of the lead
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unit and the axles of the towed units are lumped together into a single axle in

the middle position of each unit’s axle group.

Fy1f
Fy1r

Fy3

Fy2 a1b1
c1

δdriver

ωz1

vx1

vy1

θ1
δu a2

c2

b2

a3b3
θ2

Last unit Steered unit First unit

ωz2

ωz3

Figure 2.7: Simplified bicycle model of a 3-unit vehicle

Since only the planar motion is considered in the linear model, the potential

energy is set to zero (i.e. U = 0). The kinetic energy is then calculated as the

total sum of the translational and rotational kinetic energies of the system.

The kinetic energy of the system with n units is thus obtained as

T =
1

2

n∑

j=1

(mjv
2
j + Izjω

2
zj), j = 1, ..., n, (2.3)

where vj is the translational velocity, ωzj the yaw rate (yaw velocity), mj the

mass and Izj the yaw moment of inertia of the vehicle unit j. The generalized

forces Qi are given by

Qi =

nk∑

k=1

Fk

∂rk
∂qi

, (2.4)

where nk is the number of forces and Fk’s are the tire forces with the position

vector rk. In the bicycle vehicle model, it is assumed that the axles in each

axle group are combined together in the center of the axle group, therefore

Fk’s actually mean the tire forces on each axle. The force Fk has two com-

ponents; longitudinal force Fxk
and lateral force Fyk . Since it is assumed that

the vehicle is travelling with a constant longitudinal velocity, the longitudinal

acceleration is thus zero. Consequently, the longitudinal tire forces are equal

to zero (i.e. Fxk
= 0 ).

To construct the equations of motion of the vehicle, it is often more conve-

nient to transform the velocities in the global (inertial) frame to the vehicle-

fixed frame. The coordinates in the vehicle-fixed frame is more useful, since
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these coordinates are more likely to be available by either direct measure-

ments or estimations in the real vehicle. To this end, the following transfor-

mation matrix is performed

R2(φ) =

[
cos(φ) sin(φ)
− sin(φ) cos(φ)

]

. (2.5)

The tire forces including the lateral and longitudinal forces are expressed as

F T
k = [Fxk

Fyk ]R2(ϕk + δk), k = 1f , 1r, 2, ..., n, (2.6)

where δk is the steering angle for the steered axles and it is zero for unsteeled

axles. The subscripts 1f , 1r, 2, and n denote the front axle of the first vehicle

unit, the rear axles of the first vehicle unit, the axle group in the second

vehicle unit and the axle group in the last vehicle unit, respectively.

A linear time-invariant (LTI) tire model is often used in this model assuming

that the tire behaves linearly up to a certain slip angle. Hence, the lateral tire

force (Fyk) on each axle is considered as a linear function of the lateral slip

angle (αyk) and defined as

Fyk = Cαk
αyk , k = 1f , 1r, 2, ..., n, (2.7)

where the proportionality constant Cαk
is the sum of the cornering stiffness

of the tires on each axle group and is determined by the slope of Fyk versus

αyk curve at αyk = 0. The lateral slip angle is described by

αyk = − arctan( vy
vx
)+δk, k = 1f , 1r, 2, ..., n, (2.8)

where δk is the steering angle of the steered axles and for the first axle of the

lead unit is equal to δdriver, nonzero and to be designed for the steered axles

in the towed units, and zero for the un-steered axles.

The position vectors rk are expressed relative to the position vector r1 =
[X1, Y1] defined at the center of gravity (COG) of the first vehicle unit as

r1f = r1 +
[
a1 0

]
R2(ϕ1),

r1r = r1 −
[
b1 0

]
R2(ϕ1),

r2 = r1 −
[
c1 0

]
R2(ϕ1)−

[
(a2 + b2) 0

]
R2(ϕ2),

rk = rk−1 −
[
(ak + bk) 0

]
R2(ϕk), k = 3, ..., n,

(2.9)

where ak, bk and ck in each unit are the distance between the COG and the

front coupling joint, the distance between the COG and the center axle group
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and the distance between the COG and the rear coupling joint, respectively.

Since there is no front coupling joint in the first unit and the rear coupling

joint in the last unit of the vehicle, therefore a1 for the first unit is the distance

between the COG and the front axle and cn and bn for the last units are equal,

see Figure 2.7. ϕk denotes the experienced yaw angle in the vehicle unit k.

The translational velocities of different units used in equation (2.3) are de-

fined in the corresponding COG of each vehicle unit and are calculated as

vk =
drk
dt
, k = 1f , 1r, 2, ..., n, (2.10)

whereas vk is the time derivative of rk defined in (2.9). The yaw rate ωzk and

yaw angle ϕk of the vehicle unit k are expressed in the coordinate system of

the first unit (ωz1 = ϕ̇1) as

ωzj = ωz1 + θ̇1 + ...+ θ̇k,
ϕzj = ϕz1 + θ1 + ...+ θk.

(2.11)

By using the small-angle approximation, the following simplifications can be

applied: sin(θ) ≈ θ, cos(θ) ≈ 1 and arctan(θ) ≈ θ. As the last step of the

derivation of the model based on Lagrangian formulation, one needs to insert

the equations (2.4) and (2.3) in (2.1) with the considered positions, velocities

and forces. Finally, the following equation is obtained

Mq q̈(t) + Cq q̇(t) +Kqq(t) = Bqδu(t) +Hqδdriver(t). (2.12)

The input signal δu ∈ Rnu is the control input vector and δdriver ∈ Rnd is the

driver steering input, respectively. In our case, the considered control input δu
is the steering angles to be designed and applied to the axles of the steerable

vehicle units. The matrix Mq ∈ Rnq×nq is the inertial matrix containing all

of the inertial information of the system which is usually symmetric and pos-

itive definite, Cq ∈ Rnq×nq is the damping matrix and is a velocity-dependent

matrix, Kq ∈ Rnq×nq is the stiffness matrix, Bq ∈ Rnq×nu and Hq ∈ Rnq×nd

are the force distribution matrices related to the external disturbance forces

and the control input forces applied to the system.

Now considering the state vector as xT
q , [qT q̇T ], the state-space model of

the system of (2.12) in can be written as follows:
[
q̇(t)
q̈(t)

]

︸ ︷︷ ︸

ẋq(t)

=

[
0 I

−M−1
q Kq −M−1

q Cq

]

︸ ︷︷ ︸

A

[
q(t)
q̇(t)

]

︸ ︷︷ ︸

xq(t)

+

[
0

M−1
q Bq

]

︸ ︷︷ ︸

B

δu(t) +

[
0

M−1
q H

]

︸ ︷︷ ︸

H

δdriver(t).

(2.13)
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Thanks to the structure of the matrix Kq, two states Y1 and ϕ1 are removed

from xq to obtain the state-space model to be used in the controller design.

As a result, the state vector of the vehicle model x ∈ Rnx is formed as

x = [θ1 ... θn vy1 ϕ̇1 θ̇1 ... θ̇n]
T . (2.14)

By removing the relevant row blocks from all matrices and also the relevant

column blocks from A , B and H , the dynamics of the system are expressed

as
ẋ(t) = A x(t) + B δu(t) +H δdriver(t), (2.15)

where A ∈ Rnx×nx is the state matrix, H ∈ Rnx×nd is related to the dis-

turbance inputs and B ∈ Rnx×nu represents the input matrix. The obtained

state-space description is used for the purpose of synthesizing controllers

throughout this thesis. The reader is referred to [69,70] for more mathemati-

cal details on the derivation of the linear vehicle model.
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Chapter 3

Controller Synthesis based on LMI
Optimization

This chapter provides an introduction to the use of linear matrix inequali-

ties (LMIs) in the analysis and synthesis of the control systems used in this

thesis. Some basic materials and techniques used in this chapter are briefly

introduced in Appendix A.

3.1 Introduction to Linear Matrix Inequalities (LMIs)

Linear matrix inequalities (LMIs) and LMI techniques have recently emerged

as powerful analysis and control design techniques to a wide variety of en-

gineering problems. LMIs are an important class of convex optimization

problems which are numerically tractable problems. Many engineering opti-

mization problems can be translated into LMI problems and be solved numer-

ically using recently developed interior-point algorithms in an efficient and

practical manner [71]. The basic idea of the LMI method is to translate or ap-

proximate a given analysis or synthesis problem into a convex optimization

problem with linear objective and linear inequality constraints. In general,

there are two main cases subjected to the study of LMIs; feasibility problem

and optimization problem [72–74].

3.1.1 Feasibility problem

In these kinds of problems, the interest is only on testing whether there exists

a feasible solution that renders the considered LMI constraint satisfied. In

this case, the LMI constraint is a convex constraint on a vector x ∈ Rn of the
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form

F (x) := F0 +
n∑

i=1

xiFi ≺ 0, (3.1)

where x is the vector of decision variables and Fi ∈ Rm×m are given real

symmetric matrices. The inequality in (3.1) means that the vector of the de-

cision variables x should render the symmetric matrix F (x) negative definite.

In other words, the largest eigenvalue of F (x) should be negative. The feasi-

bility problem is testing the existence of the vector x such that the inequality

in (3.1) holds. The problem is feasible if there exists a solution x, otherwise

it is said to be infeasible.

As a very important property, multiple LMI constraints can be regarded as a

single LMI since

F1(x) ≺ 0, F2(x) ≺ 0, ..., Fn(x) ≺ 0, (3.2)

is equivalent to

F (x) = diag(F1(x), F2(x), ..., Fn(x)) ≺ 0, (3.3)

where F (x) denotes the block-diagonal matrix with F1(x), F2(x), ..., Fn(x)
on its diagonal. As well-known, a block-diagonal symmetric matrix is neg-

ative (semi) definite if and only if its diagonal blocks are negative (semi)

definite.

As an example, consider the problem of determining the asymptotic stability

of an autonomous dynamical system given as

ẋ(t) = Ax(t), (3.4)

where x∈Rnx is the state vector and A∈Rnx×nx is the system matrix. In the

beginning of 1890, Lyapunov showed that the system (3.4) is asymptotically

stable if there exists a quadratic Lyapunov function V (x) = xTPx with a

Lyapunov matrix as P =P T ∈Rnx×nx � 0 such that dV (x)/dt ≺ 0 along the

trajectories of (3.4). Equivalently, the system is asymptotically stable if and

only if there exists a symmetric matrix P such that

ATP + PA ≺ 0,
P � 0.

(3.5)

Obviously, this inequality is nothing else than an LMI feasibility problem.

The Lyapunov inequality is clearly in the form of (3.2) and can be casted to
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a single LMI as in (3.3) given as
[
−P 0
0 ATP + PA

]

≺ 0. (3.6)

It is easy to show that the Lyapunov inequality in (3.5) is equivalent to the

feasibility of the LMI constraint in (3.6) [72–74].

3.1.2 Optimization problem

A Semidefinite Programming (SDP) problem is a convex optimization prob-

lem of the form

minimize cTx :=
∑n

i=1 cixi

subject to F (x) := F0 +
∑n

i=1 xiFi ≺ 0.
(3.7)

This problem involves the determination of minimum cTx over all x ∈ Rn

that satisfy the given LMI constraints. The feasibility problem can be viewed

as a special case of the optimization problem (3.7) for c = 0. The SDP is

a very natural generalization of linear programming (LP), where the com-

ponentwise inequalities between vectors are replaced by matrix inequali-

ties [75].

As an example, consider calculating the H∞ norm of an LTI system (see

Appendix A) described as
{

ẋ(t) = Ax(t) +Hw(t),
z(t) = Cx(t) +Gw(t),

(3.8)

where x ∈ Rnx is the state vector, w ∈ Rnw the external disturbance input and

z ∈ Rnz the performance output. The system matrices A, H , C and G are

constant matrices of appropriate dimensions. The H∞ norm of this system

can be found by solving the following optimization problem for P � 0

minimize γ

subject to





ATP + PA PH CT

HTP −γI GT

C G −γI



 ≺ 0.
(3.9)

Many control problems can be defined as optimization problems with LMI

constraints, for instance H∞-type static state-feedback and static output-

feedback syntheses that will be discussed in the sequel.
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3.2 H∞ Synthesis Methods

H∞ control theory was designed to reduce modeling errors and unknown

disturbances in a system, while providing quantifiable optimization of large

scale multi-variable problems. The general setting of the H∞ synthesis prob-

lem can be stated as follows.

Given a linear time-invariant (LTI) plant P described with a state-space de-

scription 





ẋ(t) = Ax(t) +Hw(t) + Bu(t),
z(t) = Cx(t) +Gw(t) +Du(t),
y(t) = Sx(t) +Rw(t),

(3.10)

where the system signals are: x ∈ Rnx the state vector, w ∈ Rnw the external

disturbance input, u ∈ Rnu the control input, z ∈ Rnz the performance output,

y ∈ Rny the measurement output. In general, the control input is generated

as
u(t) = Ky(t), (3.11)

where K is the feedback gain to be determined. With the plant P and the

controller K, the closed-loop system admits the realization






ẋ(t) = (A+BKS)
︸ ︷︷ ︸

Acl

x(t) + (H +BKR)
︸ ︷︷ ︸

Hcl

w(t),

z(t) = (C +DKS)
︸ ︷︷ ︸

Ccl

x(t) + (G+DKR)
︸ ︷︷ ︸

Gcl

w(t).
(3.12)

The aim would be to have:

• Internal stability: for w = 0, the state vector of the closed loop system

in (3.12) tends to zero as time goes to infinity.

• H∞ performance: the H∞ norm of the closed-loop transfer function

from w to z (i.e. ||Twz||∞ = ||Ccl(sI−Acl)
−1Bcl+Dcl||∞) is minimized

for all stabilizing K.

Then, the H∞ synthesis problem is formulated as follows:

Problem 1 Given a linear time-invariant system P as in (3.10), find a feed-

back gain matrix K such that the closed-loop system (3.12) is stable and the

following objective is satisfied for all w(·) with 0 < ‖w‖2 ,
√
∫∞

0
w(t)Tw(t)dt

< ∞ when x(0) = 0 :
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‖z‖2 < γ‖w‖2. (3.13)

In this expression, the scalar γ represents the level of guaranteed L2-gain

performance and is typically desired to be minimized. On the other words,

the γ value is the desired upper bound on the worst-case energy gain from

w to z. Indeed, the performance objective of (3.13) is an H∞ constraint on

the transfer function Tzw(s) , ẑ(s)/ŵ(s), where ŵ represents the Laplace

transformation of w. Indeed, condition (3.13) can be equivalently expressed

as

‖Tzw‖∞ , sup
Re{s}>0

||Tzw(s)|| < γ, (3.14)

where ‖ · ‖ represents the maximum singular value.

In the sequel, the solution of the H∞ synthesis problem is provided based

on two types of controller, namely, static state-feedback and static output-

feedback. With state feedback, all states (e.g., y = x) of the system are as-

sumed to be available for use by the controller, whereas with output feedback,

a set of output variables (e.g., y = Sx+Rw) related to the state variables are

available.

3.2.1 H∞ state-feedback synthesis

In the synthesis based on state-feedback framework, all the system’s states

are assumed to be available for measurement. Therefore, the state-space de-

scription of the system will be a special case of the system (3.10), in which

the measurement output y is equal to the state vector x (i.e. S = I and

R = 0). Consequently, the control input will be formed as

u(t) = Kx(t), (3.15)

where K ∈ Rnu×nx is the control gain matrix to be designed. Obviously the

closed-loop system with the state-feedback control input can be characterized

as {
ẋ(t) = (A+BK)x(t) +Hw(t),
z(t) = (C +DK)x(t) +Gw(t).

(3.16)

As a results of the bounded real lemma (see Appendix A), the controller sta-

bilizes the system and ensures that the H∞-norm of the closed-loop system is
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less than γ if and only if there exists a matrix variable X = XT ∈ Rnx×nx � 0
for which





(A+BK)TX +X(A+BK) XH (C +DK)T

HTX −γI GT

(C +DK) G −γI



 ≺ 0. (3.17)

As can be seen, the LMI condition depends non-linearly on the decision vari-

ables K and X , which makes the LMI condition a bilinear matrix inequal-

ity (BMI). In order to arrive at an LMI condition, a congruence transfor-

mation (see Appendix A) is applied to (3.17) with block diagonal matrix

diag(Y, I, I) in which Y = X−1 � 0. This leads to the following solution

for the Problem 1.

Lemma 1 There is a solution to Problem 1 if and only if there exists a matrix

variable Y = Y T ∈ Rnx×nx � 0 for which

N = He





AY +BN H 0
0 −γ

2
I 0

CY +DN G −γ

2
I



 ≺ 0, (3.18)

where HeM , M+MT and N = KY .

By solving the optimization problem and obtaining the matrix variables N
and Y , the state-feedback gain matrix K can be easily constructed through

K = NY −1.

It should be noted that in the state feedback techniques, it is required either

to have the measurement of every system’s state some of which might be

expensive or even impossible to be measured, or to use the observer-based

controllers which makes the implementation task expensive and hard.

3.2.2 H∞ static output-feedback synthesis

In many applications, having access to the full state information is quite un-

common situation and usually the information available for feedback pur-

poses consists of a reduced set of the states or a linear combination of the

states. In this context, static output-feedback (SOFB) controllers represent a

very interesting option due to their conceptual simplicity and ease in practical

implementation. Therefore, in this section the solution of the H∞ synthesis

problem is provided based on the SOFB.
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Let us now consider the H∞ synthesis problem for the system (3.10). The

aim of the SOFB control problem is to find a constant matrix gain K ∈
Rnu×ny defined by the control law given as in (3.11) that stabilizes the closed-

loop system and guarantees that the H∞-norm of the transfer matrix Tzw is

less than γ. By inserting (3.11) in (3.10), the closed-loop description of the

system can be presented as in (3.12).

In order to solve Problem 1, the approach proposed in [76] is used, in which

sufficient solvability conditions expressed in the form of dilated LMIs. The

basic idea behind the dilated LMIs is to not use the Lyapunov matrix X in the

construction of the feedback gain and as a result this will lead to effectively

decreasing conservatism in robust output feedback synthesis. It is hence as-

sumed a feedback gain matrix as

K = NW−1, (3.19)

where N ∈ Rnu×ny and invertible matrix W ∈ Rny×ny are two new matrix

variables to be determined. In this fashion, the control input is decoupled

from the Lyapunov matrix X . The relevant solution of Problem 1 is summa-

rized as follows:

Lemma 2 There is a solution to Problem 1 if there exist matrix variables

0 ≺ X = XT ∈ Rnx×nx , W ∈ Rny×ny and N ∈ Rnu×ny for which

N = He







−φW φ(SX −WS) φR 0
BN AX +BNS H 0
0 0 −γ

2
I 0

DN CX +DNS G −γ

2
I






≺ 0, (3.20)

where φ ∈ R+ is an arbitrary (and yet fixed) scalar.

The SOFB gain matrix is then computed as in (3.19). The reader is referred

to [76] for further details and derivations.

3.3 Robust Control Synthesis

Most control engineering problems can be solved by using classical con-

trol methods. It is possible to obtain perfectly satisfactory performance in

many engineering applications using just PID controllers, particularly when

the system is almost linear and its mathematical model is precise. But there

29



is always a risk of modelling errors and uncertainties. These modelling er-

rors and uncertainty can arise from real parameter variations, unmolded or

incorrectly modeled dynamics, and neglected nonlinearities and external dis-

turbances. To solve these types of control problems, there is a need for more

powerful tool than the classical control. In this context, robust control theory

is developed as an extension to optimal and modern control methods. Ro-

bust control methods aim to achieve robust performance and/or stability in

the presence of bounded modelling errors and uncertainties [77].

In order to synthesize a robust controller, the ideas and methods presented in

the previous section can be extended to uncertain parameter-dependent (time-

invariant as well as time-varying) systems and can be used for synthesizing

constant as well as parameter-dependent controller gains that ensure robust

performance. Let assume a parameter-dependent system described by






ẋ(t) = A(δ)x(t) +H(δ)w(t) + B(δ)u(t),
z(t) = C(δ)x(t) +G(δ)w(t) +D(δ)u(t),
y(t) = S(δ)x(t) +R(δ)w(t),

(3.21)

where the system matrices depend on an uncertain parameter vector δ ∈ ∆

and ∆ denotes a compact (i.e. closed and bounded) uncertainty set. In robust

synthesis problems for such systems, the uncertain parameter vector (and

if relevant its derivative) is assumed to take values from a compact region

denoted as ∆. The synthesis LMIs in the previous section clearly become

parameter-dependent when dealing with uncertain parameter-dependent sys-

tems, i.e. N (δ) ≺ 0, ∀δ ∈ ∆. Here the uncertain parameters are assumed to

be time-variant parameters.

As a result, the parameter-dependent LMIs are required to be satisfied over

the whole uncertainty region. This eventually leads to infinitely many LMIs,

i.e. one LMI for each point of the uncertainty region. In order to formulate

tractable optimization problems, finitely many LMI conditions are needed

to ensure that the parameter-dependent LMIs are satisfied over the whole

uncertainty region. This is done by employing a so-called relaxation scheme

[78] that is suitable to use for the particular type of parameter dependency

(e.g. affine, quadratic, general polynomial, or rational) in the LMI conditions.

As is employed in our design methods in this thesis, it is briefly described

here how problems can be formulated in the simplest case of affine param-

eter dependence. Let us represent the uncertain parameter vector as δ =
[ δ1 δ2 · · · δq ]

T ∈Rq. Assume that δ is time-invariant and each δi is assumed
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to take values from a known finite interval [ δi, δi ]. This implies that the un-

certainty region (represented as ∆) is identified as a hyper-rectangle called a

parameter box:

∆ ,
{
δ ∈ R

q : δi ≤ δi ≤ δi, i = 1, 2, . . . , q
}
. (3.22)

The set of extreme points (i.e. the vertices of this parameter box) are repre-

sented as

∆v ,
{
δ ∈ R

q : δi ∈ {δi, δi}
}
=

{
δ1, δ2, . . . , δ2

q}
. (3.23)

Let us now consider an LMI that has affine parameter dependence as follows

N (δ) = N0 +N1δ1 + · · ·+Nqδq ≺ 0, ∀δ ∈ ∆. (3.24)

Since the parameter dependence is affine and the uncertainty region is poly-

topic, it is necessary and sufficient to impose the LMI condition only on the

vertices, i.e.

N (δj) ≺ 0, j = 1, . . . , 2q. (3.25)

Thanks to this equivalence, infinitely many LMIs in (3.24) are replaced by the

2q LMI conditions in (3.25). It should be noted that the matrix variables that

are not used in the computation of the controller parameters can be chosen to

depend on all uncertain parameters (i.e. measurable and un-measurable). If

there are some uncertain parameters that are measurable during online oper-

ation, in order to have a potentially less conservative design, one can choose

the matrix variables used in the calculation of the controller gain to have de-

pendence on these parameters. In this case, the resulting controller will be

parameter-dependent and hence can be scheduled during online operation.
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Chapter 4

Summary of Included Papers

This chapter provides a short summary of the appended papers that constitute

the base for this thesis. Papers A-D are focused on improving the lateral

performance of an A-double heavy vehicle by active steering of the dolly

axles at high speeds. Paper E is focused on synthesizing a gain-scheduled

controller design for a selected set of longer and heavier commercial vehicles

(LHCVs). All the syntheses are performed via linear matrix inequality (LMI)

optimizations.

4.1 Paper A: H∞ Static Output Feedback Synthesis under an Integral

Quadratic Constraint with Application to High Capacity Transport

Vehicles

This paper proposes an LMI-based approach for H∞ static output feedback

(SOFB) synthesis under a novel integral quadratic constraint (IQC) on the

states. The main idea of imposing the IQC constraint is to minimize the

energy to energy gain of states. As a particularly relevant application, the

proposed approach is considered for minimizing the yaw rate rearward am-

plification (RA) in order to enhance the lateral performance of the A-double.

The RA is defined as the peak to peak gain of the yaw rates. Hence by ap-

plying the derived IQC on the yaw rates, the RA values of the towed units

are indirectly reduced. The verification results confirm significant reductions

in the yaw rate RA and high speed transient off-tracking (HSTO) in the last

semitrailer.
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4.2 Paper B: Robust Control of an A-double with Active Dolly based

on Static Output Feedback and Dynamic Feed-Forward

In this paper, a robust controller synthesis based on SOFB combined with

dynamic feed-forward (DFF) is presented. The controller is designed to en-

sure an H∞ performance objective in the face of parametric uncertainty in

the dolly steering actuator. The steering actuator is simply modeled by a

first order filter characterized by a time constant and a transport delay which

are assumed to be uncertain in a known bounded range. It is observed that

the lateral performance of the A-double is improved significantly when the

DFF from the driver steering angle accompanies the static feedback from the

articulation angles if compared to the case in which DFF is not applied.

4.3 Paper C: Robust static output feedback with dynamic feed-forward

for lateral control of long-combination vehicles at high speeds

The focus of this paper is on a controller synthesis based on SOFB combined

with DFF in order to ensure robustness against cornering stiffness uncer-

tainty in the tire parameters. In this study, the cornering stiffness coefficients

are treated as time-invariant parameters with known lower and upper bounds.

Two alternative DFF designs are proposed which are applicable to known

systems as well as uncertain parameter-dependent systems. The theoretical

novelty of this paper mainly lies in the derivation of a set of new sufficient

LMI conditions for the first DFF design method in order to guarantee the

required performance objectives. The second DFF method is adapted from

previous relevant works by including a weighting filter acting as a simple

driver model. In this approach, only the measurement of lead unit’s steer-

ing angle and one articulation angle are required for the DFF and the SOFB

controllers, respectively. The results are verified using a high-fidelity vehicle

model and confirm a significant reduction in the yaw rate RA, and HSTO as

a byproduct, thereby improving the lateral stability and performance of the

A-double during sudden lane change manoeuvres.
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4.4 Paper D: Robust Lateral Control of Long-combination Vehicles un-

der Moments of Inertia and Tire Cornering Stiffness Uncertainties

In this paper, the synthesis of a robust steering-based controller is presented

for the A-double. The main purpose of this controller is to achieve robust sta-

bility and robust performance in the presence of uncertainties in the cornering

stiffness of the tires and the moments of inertia of the semitrailers. In order

to have a more accurate tire model than the one used in the previous paper

and capture some important un-modeled tire dynamics, a linear time-varying

(LTV) tire model is used, in which the cornering stiffness is considered as a

time-varying uncertain parameter. In addition, the moments of inertia enter

rationally in the system matrices of the linear vehicle model. Therefore, in

order to avoid this rational dependency, a descriptor-type representation of

the system is employed which is more convenient to work with, compared

to the standard state-space description of the system. The controller synthe-

sis is then formulated as an LMI-based H∞-type SOFB for the systems that

have affine parameter dependence in the descriptor form. The controller uses

information from the second articulation angle which is easily measurable.

The driver steering input is also taken into account by including a static feed-

forward in the formulation. The effectiveness of the controller is evaluated

in both frequency and time domains. The simulation results obtained from a

high-fidelity vehicle model show a significant improvement in the high-speed

lateral performance of the A-double that can be achieved by the controller in

presence of parametric uncertainties.

4.5 Paper E: Gain-scheduled H∞ Controller Synthesis for Actively-

steered Longer and Heavier Commercial Vehicles

This paper proposes an LMI-based design technique that allows to systemati-

cally design gain-scheduling (GS) controllers for high speed lateral control of

a selected set of heavy vehicles; A-double, A-triple, truck-dolly-semitrailer

and truck-double center-axle trailer. The proposed GS controller synthesis

with the vehicle longitudinal velocity as the GS parameter guarantees both

stability and performance, and avoids the troublesome interpolation step used

in the classical GS design approach. The controller steers the axles of the

selected towed units of each vehicle to enhance its lateral stability and per-

formance at high speeds. By active steering of the selected towed units, a
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significant reduction is observed in the yaw rate RA, as well as reduction in

the lateral acceleration RA and HSTO, as byproducts.
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Chapter 5

Concluding Remarks and Future research
Directions

This chapter contains some concluding remarks and also some ideas for po-

tential future works.

5.1 Concluding Remarks

In multi-unit heavy vehicle combinations, each vehicle unit in the combina-

tion might amplify the yaw rate or the lateral acceleration of the unit ahead of

it in severe maneuvers at high speeds. High amplification would clearly lead

to higher risks of accidents and rollover. Therefore, it is desired to limit or

decrease this amplification, that can be quantified by measuring the rearward

amplification (RA), to a desired level to meet some performance based stan-

dards. By active steering of the towed units at high speeds, the required lateral

force for yaw motion regulation is generated earlier before the increase in the

yaw rates. In fact, the RA is suppressed by preemptive action. Furthermore,

since the lateral forces are generated due to the imposed steer angles (rather

than the side slip of the tires), the side slip angle of the towed units and con-

sequently off-tracking will also be decreased significantly without degrading

the vehicle’s maneuverability.

It should be noted that there is usually a trade-off relationship between the

low-speed maneuverability and high speed lateral stability, which means that

what improves the low-speed performance is likely to degrade the high speed

performance and vice versa. Hence, the proposed controllers should be turned

off at low speeds.
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5.2 Recommendations for Future Work

In this study, several robust control syntheses are proposed for improving

the yaw and lateral dynamic performance of LHCVs (mainly the A-double).

However, the rollover issues are not included in this research completely, but

the developed controller could prevent the roll instabilities occurred due to

high lateral acceleration. The functionality of the proposed controller syn-

thesis could be extended by adding the roll dynamics to the vehicle linear

model and roll enhancement objectives to the controller synthesis formula-

tion.

Additionally, the integration of the steering and braking controllers should be

investigated for potential further improvements.

The developed controllers are based on the assumption that all the axles of the

steered vehicle unit are steered equally in the same direction. Further efforts

could be dedicated to investigate the advantage of using individual steering

at each single axle of the steered vehicle unit.

The driver interaction with the developed controllers is included by consid-

ering a simple linear model describing the frequency content of the driver

steering in lane change maneuvers. A more advanced linear driver model

could be considered in related future works.

As a challenging direction that is particularly relevant for the considered ap-

plication, the problem in which the IQC constraint is replaced with a peak-

to-peak constraint on the states can be considered.

Furthermore, the performance of the control strategies developed in this the-

sis should be validated using the experimental vehicle.
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Appendix A

Preliminaries

Relevant to this thesis, some basic materials and techniques have been pre-

sented in this chapter that has been used in the appended papers and also in

Chapter 3.

A.1 Schur complement lemma

The Schur complement lemma is very useful since it may convert quadratic

matrix inequalities that appears regularly in many control problems (e.g. Lya-

punov and Riccati inequalities) into LMIs. According to the Schur comple-

ment lemma, the negative-definite square block matrix

[
Q S
ST R

]

≺ 0. (a.1)

is equivalent to the following nonlinear inequalities

{
R ≺ 0
Q− SR−1ST ≺ 0

(a.2)

{
Q ≺ 0
R− STQ−1S ≺ 0

(a.3)

where Q = QT and R = RT . In other words, the set of nonlinear inequalities

in (a.2) and (a.3) can be represented as the LMI in (a.1). A proof of the Schur

complement lemma can be found in [79].
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A.2 Congruence transformation

A congruence transformation of a square matrix X = XT is in fact a map-

ping X 7→ Y TXY with a square nonsingular matrix Y . By applying the

congruence transformation, the definiteness property of X doesn’t change,

i.e.

X ≺ 0 if and only if Y TXY ≺ 0. (a.4)

This transformation leaves also the number of negative/zero/positive eigen-

values of X invariant. The Schur complement lemma and congruence trans-

formation are often the key to transform nonlinear matrix inequalities into

LMIs.

A.3 Generalized plant concept

The proposed control syntheses throughout this thesis make use of a closed-

loop control system with a general configuration such as the one given in

Figure a.1. The subsystem P , called the generalized plant, is assumed to be

given and contains the plant, actuators, weights, and uncertainties if there is

any. The second subsystem K is referred as the controller and its design must

guarantee internal stability of the closed-loop system and make it behave in a

desired manner. Interpretations for the various signals depicted in Figure a.1

zw

u y

P

K

Figure a.1: Block-diagram of general closed-loop configuration

are as follows:

• Disturbance inputs (w) contain all exogenous signals (possibly contain-

ing disturbance, reference and measurement noise)

• Performance/controlled outputs (z) are usually signals that should be

rendered small, such as the tracking error or control effort.
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• Control inputs (u) represent the control inputs to be designed by the

controller

• Measured outputs (y) comprise the plant measured outputs accessible to

the controller

Most control system problems can be represented with this generalized con-

figuration.

A.4 H∞ performance

A popular performance measure of a stable linear time-invariant (LTI) system

is the H∞ norm of its transfer function. Suppose an LTI system described as
{

ẋ(t) = Ax(t) +Hw(t),
z(t) = Cx(t) +Gw(t),

(a.5)

where x ∈ Rnx is the state vector, w ∈ Rnw the external disturbance input

and z ∈ Rnz the performance output. The system matrices A, H , C and G
are constant matrices of appropriate dimensions. The transfer function of the

system from w to z is given by Tzw(s) = C(sI − A)−1H + G. Since it

is assumed that the system is asymptotically stable, Tzw is bounded for all

s ∈ C with positive real part. The H∞ norm of the system is given by

‖Tzw‖∞ , sup
Re{s}>0

σmax(Tzw(s)) < ∞, (a.6)

where ‖ · ‖ represents the maximum singular value. In words, the H∞ norm

of a transfer function is the supremum of the maximum singular values of

the frequency response of the system. The H∞ norm measures the system

input-output gain for finite energy [73, 74].

A.5 Integral quadratic constraint

In some applications, it is desired to enforce certain objectives on transfer

functions from states to states, rather than external disturbance to states as in

(a.6). Such requirements correspond to integral quadratic constraints (IQC)

on the states. In fact, it is a constraint expressed in terms of integrals of norm

squares of the signals as follows:

‖p‖2 ≤ σ‖q‖2. (a.7)
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where q and p are states or a function of states of the system (a.5). As derived

in [80], an equivalent frequency domain constraint is expressed as

‖Tpq(ω)‖ ≤ σ, ∀ω ≥ 0, (a.8)

where Tpq(s) , Tpw(s)T
−1
qw (s) and w is the external disturbance input to the

system.

It should be noted that there is also the IQC approach that is more commonly

known in the literature, in which integral quadratic constraints are also in-

volved. The same terminology is used in this thesis to avoid potential con-

fusion. However, the IQC framework is used to facilitate a systematic and

efficient stability and performance analysis for a wide variety of uncertain

dynamical systems via LMIs [81].

A.6 Bounded Real Lemma

The bounded real lemma converts the H∞ performance condition given as

‖Tzw‖∞ ≺ γ to an equivalent LMI condition.

Now using the bounded real lemma, the system (a.5) is asymptotically stable

and ‖Tzw‖∞ ≺ γ, if and only if, there exists a positive symmetric matrix

X = XT � 0 such that




ATX +XA XH CT

HTX −γI GT

C G −γI



 ≺ 0, (a.9)

where γ is a positive scalar value. The matrix X ∈ Rnx×nx is usually called

as Lyapunov function matrix [72–74].
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“Towards performance based standards in sweden.” 13th International

Heavy Vehicle Transport Technology Symposium, 2014.

[55] A. McKinnon, A. Palmer, MDS Transmodal, Transport Research Lab-

oratory, WSP Development and Transportation, and Department of

Transport, Longer semi-trailer feasibility study and impact assessment.

Department of Transport, 2010.
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