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Abstract. We study the capture and subsequent annihilation of inelastic dark matter (DM)
in the Sun, placing constraints on the DM-nucleon scattering cross section from the null result
of the IceCube neutrino telescope. We then compare such constraints with exclusion limits
on the same cross section that we derive from XENON1T, PICO and CRESST results. We
calculate the cross section for inelastic DM-nucleon scattering within an extension of the
effective theory of DM-nucleon interactions which applies to the case of inelastic DM models
characterised by a mass splitting between the incoming and outgoing DM particle. We find
that for values of the mass splitting parameter larger than about 200 keV, neutrino telescopes
place limits on the DM-nucleon scattering cross section which are stronger than the ones from
current DM direct detection experiments. The exact mass splitting value for which this occurs
depends on whether DM thermalises in the Sun or not. This result applies to all DM-nucleon
interactions that generate DM-nucleus scattering cross sections which are independent of the
nuclear spin, including the “canonical” spin-independent interaction. We explicitly perform
our calculations for a DM candidate with mass of 1 TeV, but our conclusions qualitatively
also apply to different masses. Furthermore, we find that exclusion limits from IceCube on
the coupling constants of this family of spin-independent interactions are more stringent than
the ones from a (hypothetical) reanalysis of XENON1T data based on an extended signal
region in nuclear recoil energy. Our results should be taken into account in global analyses of
inelastic DM models.
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1 Introduction

The existence of invisible mass, or dark matter (DM), in our Universe is supported by observa-
tions performed on very different physical scales. These include the anomalous motion of stars
and galaxies, gravitational lensing events in cluster of galaxies, patterns in the anisotropies
of the cosmic microwave background radiation, and the observed large scale structure of the
Universe (see [1] and references therein for a comprehensive review). In the leading paradigm
of modern cosmology DM is made of hypothetical particles with interactions at the weak scale
or below [2]. This class of DM particles is currently searched for using, e.g., direct detection
experiments [3], which look for nuclear recoils induced by the non-relativistic scattering of
DM particles in low-background detectors, and indirect detection experiments, which search
for DM annihilation signals produced in space or at the centre of the Sun or of the Earth [4, 5],
where DM is expected to accumulate by losing energy while scattering off nuclei in the solar
and terrestrial interiors. Among the indirect detection experiments, neutrino telescopes, such
as IceCube [6], which search for neutrinos from DM annihilation in the Sun are of special
interest for this work.

Interpreting the null result of current experiments, DM is commonly assumed to scatter
off nuclei elastically, i.e. the DM particle is in the same state before and after scattering,
e.g. [7]. While this assumption is often fulfilled by popular models for DM [8], it is not
always true. For example, in DM-nucleus collisions a DM particle could scatter to an excited
state of higher mass (endothermic reaction), or scatter from an excited state to a different
state of lower mass (exothermic reaction) [9]1. The family of models where DM scatters off
nuclei inelastically is collectively referred to as inelastic DM. Inelastic DM has initially been
proposed as an attempt to reconcile the observation of an annual modulation in the rate
of nuclear recoil events recorded by the DAMA collaboration with the null result reported
by other experiments [9]. In this context, it has also been noticed that inelastic DM-nucleus
scattering can occur in a variety of theories, including supersymmetric models of nearly pure
Higgsinos [10], magnetic inelastic DM [11], and dark photon mediated DM [12]. While the
initial motivation based on reconciling DAMA with the null result from other experiments has

1An alternative scenario is the one where the target nucleus is scattered off to an excited state [3]. This
scenario will not be discussed here.
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become less attractive due the strong exclusion limits presented by the LUX, XENON and
PandaX collaborations, the fact that inelastic DM appears naturally in a variety of frameworks
holds true. Furthermore, it has been shown that within specific realisations of inelastic DM,
the range of mass splittings between incoming and outgoing DM particles can be broader
than initially proposed [13]. The large mass splitting limit of inelastic DM is known as the
“inelastic frontier”.

The kinematics of inelastic DM-nucleus scattering is significantly different from the one of
elastic interactions [14–20]. In particular, for DM particles heavier than atomic nuclei, e.g. of
mass 1 TeV, the inelastic DM-nucleus scattering is characterised by: 1) A finite minimum
velocity the DM particle must have for the scattering to be kinematically allowed which scales
like the inverse of the square root of the target nucleus mass; 2) A minimum nuclear recoil
energy required for the scattering to occur which is approximately equal to the mass splitting
between the incoming and outgoing DM particle. These properties imply that inelastic DM-
nucleus scattering is kinematically favoured for target nuclei with large mass numbers, and
that only direct detection experiments which record nuclear recoil energies larger than the
inelastic DM mass splitting parameter can effectively probe this scenario. Based on these
properties, it has been found in [13] that an experiment like CRESST, which probes a range
of nuclear recoil energies larger than, e.g., XENON1T, is effective in setting limits on the
DM-nucleon scattering cross-section in the large mass splitting limit. On the other hand, as
far as neutrino telescopes are concerned, the inelastic frontier of DM models remains as of
yet unexplored.

In this article we set constraints on the DM-nucleon scattering cross section of inelastic
DM models in the large mass splitting limit using data from neutrino telescopes [6] and direct
detection experiments [21–23]. The DM-nucleon scattering cross section is computed within
the non-relativistic effective theory of DM-nucleon interactions, formulated in [24], applied to
the analysis of neutrino telescope data and DM capture in the Sun and Earth in [25–32], and
extended to inelastic DM in [33]. Our constraints from neutrino telescopes are compared with
those we obtain from an analysis of XENON1T, PICO and CRESST results. We find that
in the inelastic frontier, exclusion limits from neutrino telescopes can be stronger than those
from direct detection, even for canonical spin-independent DM-nucleon interactions. This
result should be taken into account in the analysis of IceCube data within inelastic DM
models.

This article is organised as follows. In Sec. 2 we introduce the theory of inelastic DM,
focusing on kinematical aspects (Sec. 2.1), and on the expected signals at direct detection
experiments (Sec. 2.2) and neutrino telescopes (Sec. 2.3). Sec. 3 focuses on our limits from
neutrino telescopes and direct detection experiments on the DM-nucleon scattering cross
section of inelastic DM models in the large mass splitting limit. We comment on our results
and conclude in Sec. 4.

2 Inelastic dark matter

In this section we review the kinematics of DM-nucleus scattering in inelastic DM models
characterised by two DM particle states of different mass (Sec. 2.1). In the same framework,
we also review the theory of DM direct detection (Sec. 2.2), and the process of DM capture
in the Sun (Sec. 2.3).
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2.1 Kinematics

We are interested in models with two DM particle states, denoted here by χ and χ∗. The
two states have masses mχ and mχ∗ , respectively, differing by a mass splitting mχ∗ −mχ ≡
δ � mχ. In the nucleus rest frame, the energy and momentum conservation equations that
govern the non-relativistic scattering process χN → χ∗N , where N is a nuclear state, take
the following form

1
2mχw

2
i = 1

2mT v
2
N + 1

2mχ∗w2
f + δ, (2.1)

mχwi = mTvN +mχ∗wf , (2.2)

where mT is the target nucleus mass, vN its final velocity, and wi (wf ) the initial (final)
DM velocity. Squaring the momentum conservation equation, and denoting by θ the angle
between vN and wi, we get

1
2mχ∗w2

f =
m2
χw

2
i +m2

T v
2
N − 2mTmχwivN cos θ

2mχ∗
. (2.3)

By replacing this relation into Eq. (2.1), we find the following equation for the nuclear recoil
energy ER = 1

2mT v
2
N :

ER

(
mT

mχ∗
+ 1

)
−
√

2mTER
mχ

mχ∗
wi cos θ + δ − 1

2mχw
2
i

δ

mχ∗
= 0. (2.4)

Squaring Eq. (2.4) gives

E2
R + ER

µ∗
mT

(
2δ − mχ

mχ∗
δw2

i − 2
m2
χ

m2
χ∗

cos2θ µ∗w
2
i

)
+ δ2

µ2∗
m2
T

(
1− mχ

mχ∗
w2
i +

m2
χ

m2
χ∗

w4
i

4

)
= 0,

(2.5)

where µ∗ = mTmχ∗/(mT +mχ∗) is the χ∗-nucleus reduced mass. In the non-relativistic limit,
and considering only terms which are at most quadratic in δ/mχ and wi, Eq. (2.5) can be
simplified as follows

E2
R + ER

µ

mT

(
2δ − 2µw2

i cos2θ
)

+ δ2
µ2

mT
= 0, (2.6)

where, in analogy with µ∗, µ = mTmχ/(mT+mχ). This equation has maximum and minimum
solutions for ER given by

Emax
R =

µ2

mT
w2
i

(
1 +

√
1− 2δ

µw2
i

)
− µ

mT
δ , (2.7)

Emin
R =

µ2

mT
w2
i

(
1−

√
1− 2δ

µw2
i

)
− µ

mT
δ . (2.8)

These solutions are real only for

wi ≥ <

√
2δ

µ
, (2.9)

which is equivalent to requiring that the initial χ-nucleus center of mass energy is larger than
the mass splitting δ. Eq. (2.9) gives the lowest possible DM speed for the scattering to be
kinematically allowed.
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Ô1 = 1χ1N Ô10 = iŜN · q̂
mN

1χ

Ô3 = iŜN ·
(

q̂
mN
× v̂⊥

)
1χ Ô11 = iŜχ · q̂

mN
1N

Ô4 = Ŝχ · ŜN Ô12 = Ŝχ ·
(
ŜN × v̂⊥

)
Ô5 = iŜχ ·

(
q̂
mN
× v̂⊥

)
1N Ô13 = i

(
Ŝχ · v̂⊥

)(
ŜN · q̂

mN

)
Ô6 =

(
Ŝχ · q̂

mN

)(
ŜN · q̂

mN

)
Ô14 = i

(
Ŝχ · q̂

mN

)(
ŜN · v̂⊥

)
Ô7 = ŜN · v̂⊥1χ Ô15 = −

(
Ŝχ · q̂

mN

) [(
ŜN × v̂⊥

)
· q̂
mN

]
Ô8 = Ŝχ · v̂⊥1N Ô17 = i q̂

mN
· S · v̂⊥1N

Ô9 = iŜχ ·
(
ŜN × q̂

mN

)
Ô18 = i q̂

mN
· S · ŜN

Table 1. Quantum mechanical operators defining the non-relativistic effective theory of DM-nucleon
interactions [24]. The operators are expressed in terms of the basic invariants under Galilean transfor-
mations: the momentum transfer, q̂, the transverse relative velocity operator v̂⊥, the nucleon and DM
spin operators, denoted by ŜN and Ŝχ, respectively, and the identities in the nucleon and DM spin
spaces, 1χ and 1N . All operators have the same mass dimension, and mN is the nucleon mass. In the
case of inelastic DM, v̂⊥ and the DM-nucleus relative velocity operator, v̂, are related by the equa-
tion v̂⊥ = v̂ + q̂/(2µN ) + δ q̂/q2, where µN is the DM-nucleon reduced mass and q the momentum
transfer [33]. Standard spin-independent and spin-dependent interactions correspond to the operators
Ô1 and Ô4, repsectively, while S is a symmetric combination of spin 1 polarisation vectors [34]. The
operators Ô17 and Ô18 can only arise for spin 1 DM. Following [24], here we do not consider the
interaction operators Ô2 and Ô16: the former is quadratic in v̂⊥ (and the effective theory expansion
in [24] is truncated at linear order in v̂⊥ and second order in q̂) and the latter is a linear combination
of Ô12 and Ô15.

2.2 Direct detection

The differential rate of nuclear recoil events per unit detector mass in a DM direct detection
experiment is given by

dR

dER
=
∑
T

ξT
ρχ

mχmT

∫
|w|≥wmin

d3v |w|f(w)
dσT
dER

(w2, ER) , (2.10)

where w ≡ wi, and wmin is the minimum kinematically allowed DM speed for a given nuclear
recoil energy ER. In Eq. (2.10), ρχ is the local DM density, f(w) is the DM velocity distribu-
tion in the detector rest frame, and the sum runs over all elements in the detector, each giving
a contribution weighted by the corresponding mass fraction ξT . We calculate the differential
cross section for DM-nucleus scattering in Eq. (2.10), dσT /dER, within the non-relativistic ef-
fective theory of DM-nucleon interactions [24]. The theory is characterised by 16 DM-nucleon
interaction operators, labelled by an index j and listed in Tab. 1, and 8 nuclear response
functions describing the response of nuclei to the interactions in Tab. 1 [26, 35]. In general,
dσT /dER depends on the velocity w, on the nuclear recoil energy ER, on the mass splitting
parameter δ, on the DM mass, on the DM and nuclear spins, and on isoscalar and isovector
coupling constants, c0j and c1j , respectively. For further details, and an explicit expression
for dσT /dER which applies to the case of inelastic DM, see [35]. For the local DM density,
we assume the value ρχ = 0.4 GeV cm−3, e.g. [36]. For the DM velocity distribution in the
detector rest frame, we adopt a Maxwellian distribution with a Galactic escape velocity of
544 km s−1 and a circular speed of 220 km s−1 for the local standard of rest (i.e. the so-called
Standard Halo Model [37]).
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In the case of inelastic DM, the minimum kinematically allowed DM speed, wmin, can
be found from Eq. (2.4), which in the non-relativistic limit, and assuming δ/mχ � 1, reads
as follows

ER
mT

µ
− wi cos θ

√
2mTER + δ = 0 . (2.11)

For a given ER, the minimum speed is given by

wmin =
ER

mT
µ + δ

√
2mTER

, (2.12)

which, as a function of ER, has an absolute minimum at

Emin
R =

µ

mT
δ (2.13)

given by Eq. (2.9):

wmin(Emin
R ) = <

√
2δ

µ
. (2.14)

Since wmin(Emin
R ) 6= 0 for δ > 0, and wmin → ∞ for ER → 0 and ER → ∞ (neglecting

corrections due to a finite escape velocity), in the case of endothermic scattering the rate of
DM-nucleus scattering events exhibits a maximum at finite recoil energies. This conclusion
does not apply to the case δ ≤ 0, unless the DM-nucleus scattering cross section scales with
a positive power of ER.

From Eqs. (2.14) and (2.13), one finds that formχ � mT , e.g.mχ = 1 TeV, wmin(Emin
R ) '

<
√

2δ/mT and Emin
R ' δ. This implies that DM-nucleus scattering is kinematically favoured

in the limit of large mass number for the target nucleus, and that only direct detection ex-
periments which record nuclear recoil energies larger than δ can be sensitive to inelastic DM
models.

2.3 Neutrino telescopes

For the particles forming the Milky Way DM halo, the rate of scattering from a velocity w
to a velocity less than the local escape velocity at a distance r from the Sun’s centre, v(r), is
given by

Ω−v (w) =
∑
i

niwΘ(u− um,i)Θ(E i
H − EC)

∫ E i
H

E i
L

dER
dσ(w2, ER)

dER
, (2.15)

where the index i in the sum runs over the 16 most abundant elements in the Sun, namely H,
3He, 4He, 12C, 14N, 16O, 20Ne, 23Na, 24Mg, 27Al, 28Si, 32S, 40Ar, 40Ca, 56Fe, and 58Ni. The
density of the i-th element at a distance r from the Sun’s centre is denoted by ni(r) and
modelled as in the darksusy package [38]. Here w =

√
u2 + v2(r) is the DM particle velocity

in the target nucleus rest frame at a distance r from the centre of the Sun, while u is the speed
such a particle would have at infinity, which, consistently with Eq. (2.14) must be larger than
the lower bound

um,i ≡ <

√
2δ

µi
− v2(r) . (2.16)
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Following [38], we compute the local escape velocity at r, v(r), from the Sun’s gravitational
potential. Finally, E i

H is the maximum recoil energy, Eq. (2.7), evaluated at the i-th target
nucleus mass, mi, i.e. E i

H = Emax,i
R ≡ Emax

R (mT = mi). Similarly, E i
L = max(Emin,i

R , EC),
where Emin,i

R ≡ Emin
R (mT = mi) and EC is the minimum energy a DM particle has to deposit

in the scattering to become gravitationally bound to the Sun, i.e. to scatter from w to a
velocity less than v(r):

EC = 1
2mχu

2 − δ . (2.17)

Multiplying Eq. (2.15) by the rate of DM particles crossing an infinitesimal solar shell at r
and the time spent by each DM particle on the shell, and, finally, integrating over all radii
and velocities that can contribute to the capture, one finds the known expression for the rate
of DM capture in the Sun [39]:

C� =
ρχ
mχ

∫ r�

0
dr 4πr2

∫ ∞
0

du
f(u)

u
wΩ−v (w) , (2.18)

which, using Eq. (2.15), in the case of inelastic DM can be rewritten as follows

C� =
ρχ
mχ

∑
i

∫ rL,i

0
dr4πr2ni(r)

∫ ui2(r)

ui1(r)
du
f(u)

u
w

∫ EiH(u,r)

EiL(u,r)
dER

dσ(w2, ER)

dER
. (2.19)

In the above expression, the upper and lower bound in the velocity integral arise from the
Heaviside step functions in Eq. (2.15). If the equation Emax,i

R = EC has two positive solutions,
denoted here by ui+ and ui−, the velocity integral in Eq. (2.18) must be performed between
ui1 = ui− > um,i and ui2 = ui+. In this case, the Heaviside step function Θ(u−um,i) in Eq. (2.15)
is redundant, since integrating from um,i to ui− would give zero, in that EC > Emax,i

R in this
range. If ui± exist, they can be found explicitly by solving Emax,i

R = EC for u. They read as
follows

ui± = v(r)

√
2mχmi

|mχ −mi|

√√√√1 + δ
mi −mχ

m2
χv

2(r)
±
√

1 + 2δ
mi −mχ

mimχv2(r)
. (2.20)

When the equation Emax,i
R = EC has one positive solution only, ui+, the velocity integral in

Eq. (2.19) must be computed between ui1 = um,i and ui2 = u+. The lower bound is in this case
determined by the Heaviside step function Θ(u− um,i), and ui− is the only positive solution
to the equation Emin,i

R = EC . Finally, the capture rate is zero when Emax,i
R = EC has no

solutions. This occurs if

v(r) < vL,i ≡ <

√
2δ (mχ −mi)

mχmi
, (2.21)

which implies an upper bound for the radial integral given by rL,i = r(vL,i), where v → r(v)
is the inverse of the monotonic function r → v(r). Notice that rL,i = 0 for vL,i > v(0), and
rL,i = r� for vL,i < v(r�). From a practical point of view, it is convenient to perform the
velocity integral in Eq. (2.19) by assuming ui1 equal to um,i, and setting C� = 0 whenever
EC > Emax,i

R .
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Assuming equilibrium between capture and annihilation, the rate of DM annihilations in
the Sun is given by Γa = C�/2. While this assumption applies to the case of DM capture via
elastic DM-nucleus scattering, it is not generically fulfilled by inelastic DM models, where DM
could have a non-thermal distribution in the Sun implying Γa < C�/2 [40]. In this latter case,
one has to multiply Γa by a correction factor, η(mχ, δ), which accounts for the lack of DM
thermalisation in the Sun and the associated changes in the radial distribution of captured
DM particles. The correction factor η(mχ, δ) has been computed in [40] for 0 ≤ δ ≤ 200 keV,
100 ≤ mχ ≤ 500 GeV and assuming a fully inelastic spin-independent cross section in the
range 10−42-10−45 cm2. Presenting our constraints on inelastic DM from IceCube we will
need values for η outside this range of δ and mχ. Furthermore, we will need η for DM-
nucleon interactions different from the standard spin-independent interaction. While a Monte
Carlo simulation of the thermalisation process would be the best approach to estimate η
in the large δ and mχ limits, and for all DM-nucleon interactions considered here, such a
detailed calculation goes beyond the scope of the present article. Instead, we will perform
a 2-dimensional linear extrapolation in the plane spanned by ln δ and lnmχ of the function
η(mχ, δ) obtained in [40] for an inelastic spin-independent DM-nucleon scattering cross section
of 10−45 cm2. This estimate for η is expected to be conservative, i.e. smaller than its actual
value, for standard spin-independent interactions. One of the reasons is that it relies on an
inelastic DM-nucleon scattering cross section of 10−45 cm2, which is smaller than the cross
section values IceCube can constrain, and, in general, a larger inelastic DM-nucleon scattering
cross section would lead to a larger η [40]. A second reason is that it assumes that the elastic
cross section for DM-nucleon scattering is exactly zero, which is in general not true in concrete
models for inelastic DM (see for example [13]). This observation is important, since DM is
expected to thermalise in the Sun for inelastic models where the contribution to the elastic
scattering cross section is larger than about 1048 cm2 [14]. On the other hand, for DM-nucleon
interactions which generate values of η smaller than the ones associated with the standard
spin-independent interaction, our choice of η is an overestimate. This overestimate could
however be compensated by a non-zero contribution to the elastic DM-nucleus scattering
cross section. By using the same η for all interactions, we are implicitly assuming that such
compensation occurred.

The differential neutrino flux from DM annihilation in the Sun depends linearly on Γa
and is given by [41]

dΦν

dEν
=

Γa
4πD2

∑
f

Bf
χ

dNf
ν

dEν
. (2.22)

In Eq. (2.22), Bf
χ is the branching ratio for DM pair annihilation into the final state f ,

dNf
ν /dEν is the neutrino energy spectrum at the detector from the decay of Standard Model

particles into the final state f , Eν is the neutrino energy and D is the detector’s distance to
the Sun’s centre. The associated DM-induced differential muon flux at neutrino telescopes is
given by

dΦµ

dEµ
= NT

∫ ∞
Eth
µ

dEν

∫ ∞
0

dλ

∫ Eν

Eµ

dE′µ P(Eµ, E
′
µ;λ)

dσCC(Eν , E
′
µ)

dE′µ

dΦν

dEν
, (2.23)

whereNT is the number of nucleons per cubic centimetre, Eth
µ is the detector energy threshold,

λ is the muon range, P(Eµ, E
′
µ;λ) is the probability for a muon of initial energy E′µ to be

detected with a final energy Eµ after traveling a distance λ inside the detector, and dσCC/dE
′
µ
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Figure 1. Capture rate as a function of the mass splitting for the isoscalar operators in Tab. 1. We
set DM particle spin and mass to 1/2 and 1 TeV, respectively. For the coupling constants, we assume
c0j = 10−3 (246.2 GeV)−2.

is the weak differential cross section for production of a muon of energy E′µ. In our analysis,
we evaluate Eq. (2.23) using neutrino yields generated by WimpSim [42], and tabulated in
darksusy [38].

3 Constraining the large mass splitting limit

In this section we evaluate our expression for the capture rate, Eq. (2.19), under different
assumptions (Sec. 3.1) and use these results to set constraints on inelastic DM from the
IceCube neutrino telescope (Sec. 3.2). Such constraints will be compared with those from
direct detection experiments. In the analysis, emphasis will be placed on the large mass
splitting limit.

3.1 Generalised solar capture rate

Fig. 1 shows the capture rate C� in Eq. (2.19) for the isoscalar component of the operators
Ôj , j = 1, 3, . . . , 15 in Tab. 1 as a function of the mass splitting parameter δ. Here we focus on
spin 1/2 DM and mχ = 1 TeV, and do not consider the operators Ô17 and Ô18 which can only
arise for spin 1 DM. The operators in Fig. 1 naturally divide into two families of 7 operators
each. The first family consists of the operators that generate scattering cross sections which
are not zero for spin 0 nuclei. In this case, DM can effectively be captured in the Sun for mass

– 8 –



-300 -200 -100 0 100 200 300 400 500

10
4

10
6

10
8

10
10

10
12

10
14

10
16

10
18

-300 -200 -100 0 100 200 300 400 500

10
2

10
4

10
6

10
8

10
10

10
12

10
14

10
16

10
18

Figure 2. Same as Fig. 1, but now for the isovector component of the operators in Tab. 1. We set
c1j = 10−3 (246.2 GeV)−2.

splittings larger than 500 keV due to the relatively large mass numbers of the spin 0 nuclei
56Fe and 58Ni (see discussion at the end of Sec. 2.1). Operators belonging to this family are
Ô1, Ô3, Ô5, Ô8, Ô11, Ô12, and Ô15. The second family consists of operators that generate
cross sections which are zero for spin 0 nuclei. The fact that the heaviest nucleus in the Sun
with spin different from zero (and sufficiently abundant) is 27Al explains the sharp decrease in
the capture rate found for δ below 300 keV in the bottom panel of Fig. 1. Operators belonging
to this second family are Ô4, Ô6, Ô7, Ô9, Ô10, Ô13, and Ô14. We find similar conclusions for
the isovector component of the operators in Tab. 1. Results for the isovector couplings are
illustrated in Fig. 2.

Depending on the interaction type, and on the value of the mass splitting parameter,
different elements in the Sun give the largest contribution to the capture rate. For a sample
of (positive and negative) values of δ, these elements are listed in Tab. 2 for the isoscalar
interactions, and in Tab. 3 for the isovector interactions. In both tables, we assume spin 1/2
DM and mχ = 1 TeV.

3.2 Exclusion limits from IceCube (and direct detection)

In this subsection, we use Eqs. (2.10) and (2.23), and the results in Sec. 3.1, to set 90% C.L. ex-
clusion limits on the coupling constants for isoscalar and isovector DM-nucleon interactions, c0j
and c1j , respectively. Limits are computed using results from the XENON1T [21], PICO-60 [22]
and CRESST-II [23] direct detection experiments, as well as data from the IceCube neutrino
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Ôj

δ
-300 -213 -147 -60 5 92 158 245 310 397 463 550

Ô1
4He O O O O O Fe Fe Fe Fe Fe Fe

Ô3 Si Si Si Fe Fe Fe Fe Fe Fe Fe Fe Fe
Ô4 H H H H H N Al Al – – – –
Ô5 N N N N N Fe Fe Fe Fe Fe Fe Fe
Ô6 N N N N N N Al Al – – – –
Ô7 H H H H H N Al Al – – – –
Ô8 N N N N N Fe Fe Fe Fe Fe Fe Fe
Ô9 H H H N N N Al Al – – – –
Ô10 N N N N N N Al Al – – – –
Ô11 O O O O O Fe Fe Fe Fe Fe Fe Fe
Ô12 Si Si Si Fe Fe Fe Fe Fe Fe Fe Fe Fe
Ô13 N N N N N N Al Al – – – –
Ô14 H H H N N N Al Al – – – –
Ô15 Si Fe Fe Fe Fe Fe Fe Fe Fe Fe Fe Fe

Table 2. Elements in the Sun with the largest capture rate for the isoscalar operators in Tab. 1 as a
function of δ, in keV, and for mχ = 1 TeV. When capture is kinematically not allowed, that entry is
filled in with a dash.

Ôj

δ
-300 -213 -147 -60 5 92 158 245 310 397 463 550

Ô1 H H H H H Fe Fe Fe Fe Fe Fe Ni
Ô3 Fe Fe Fe Fe Fe Fe Fe Fe Fe Fe Fe Fe
Ô4 H H H H H Al Al Al – – – –
Ô5 Al Al Al Al Al Al Al Al Fe Fe Fe Ni
Ô6 Al Al Al Al Al Al Al Al – – – –
Ô7 H H H H H Al Al Al – – – –
Ô8 Al Al Al Al Al Al Al Al Fe Fe Fe Ni
Ô9 H H H H Al Al Al Al – – – –
Ô10 H H H H Al Al Al Al – – – –
Ô11 H H H Fe Fe Fe Fe Fe Fe Fe Fe Ni
Ô12 Fe Fe Fe Fe Fe Fe Fe Fe Fe Fe Fe Fe
Ô13 Al Al Al Al Al Al Al Al – – – –
Ô14 H H H H Al Al Al Al – – – –
Ô15 Fe Fe Fe Fe Fe Fe Fe Fe Fe Fe Fe Fe

Table 3. Same as Tab. 3, but now for the isovector interactions.

telescope [6]2. Computing the expected number of signal events at XENON1T, PICO-60 and
CRESST-II, we assume the following exposures and nuclear recoil energy intervals: 1300×279
kg×day and 5-40 keV for XENON1T, 52 kg×day and 10-1000 keV for PICO-60, and 1300

2The PandaX experiment has also set limits on the inelastic spin-independent scattering cross section for
δ < 300 keV [43].
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Figure 3. Constraints on the isoscalar coupling constants for operators Ô1 to Ô8 for 1 TeV DM at
a 90% confidence level from XENON1T, a hypothetical high-recoil analysis of XENON1T, PICO-60,
CRESST-II and IceCube.

kg×day and 0.3-120 keV for CRESST-II. We also implement a hypothetical high-recoil en-
ergy analysis of XENON1T, with energy range 5-240 keV [44]. We intentionally do not use the
more recent PICO results based on a C3F8 detector [45], since C3FI (used in [22]) is a better
target material to set constraints on inelastic DM, because of the large mass number of iodine
(see discussion at the end of Sec. 2.1). Similarly, we do not use CRESST-III results [46], since
CRESST-II has a larger exposure. Exclusion limits from IceCube are computed by requiring
that the total muon flux obtained from Eq. (2.23) is smaller than the corresponding upper
bound in Tab. IV of [6]. For definiteness, here we focus on two limiting cases: 1) A first one
where DM thermalises in the Sun (e.g. via sub-leading elastic interactions) and annihilates
into a τ−τ+ pair; 2) A second one where DM does not thermalise, Γa must be multiplied by
the correction factor η, and the annihilation channel is bb̄. We refer to the first and second
scenario as “best case” and “worst case”, respectively. Strictly speaking, the actual worst case
scenario would be the one where DM primarily annihilates into channels that do not produce
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Figure 4. Constraints on the isoscalar coupling constants for operators Ô9 to Ô15 for 1 TeV DM at
a 90% confidence level from XENON1T, a hypothetical high-recoil analysis of XENON1T, PICO-60,
CRESST-II and IceCube.

neutrinos at all, such as e+e−. Exclusion limits from direct detection experiments are com-
puted by requiring that the total number of signal events is less than 2.3 in PICO-60, and is
less than 7.99 in XENON1T and CRESST-II. This procedure corresponds to assuming Pois-
son statistics for the observed number of nuclear recoil events in the signal region, which we
set to 0 in the case of PICO-60, and to 4 in the case of XENON1T and CRESST-II. Finally,
exclusion limits are presented as a function of the mass splitting parameter δ, focusing on a
DM candidate of mass 1 TeV and spin 1/2, and on the range 0 ≤ δ ≤ 550 keV. Here we are
assuming that the galactic halo abundance of the state χ∗ is negligible. Notice that this is a
model-dependent constraint on χ∗, and it is not a priori obvious whether it is fulfilled or not.
For a concrete model where the galactic halo abundance of χ∗ is negligible, see for example
[47].

Figs. 3 and 4 (5 and 6) show our exclusion limits on the coupling constants c0j (c1j ). In
the case of CRESST, we only compute the exclusion limits for the operators Ô1, Ô5, Ô8 and
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Figure 5. Constraints on the isovector coupling constants for operators Ô1 to Ô8 for 1 TeV DM at
a 90% confidence level from XENON1T, a hypothetical high-recoil analysis of XENON1T, PICO-60,
CRESST-II and IceCube.

Ô11. The reason is that for mχ = 1 TeV tungsten gives the largest contribution to the event
rate at CRESST, and nuclear response functions for W are not available for operators different
from the ones listed above. For these operators, the use of Helm form factors is a good first
approximation. In order to describe the results in Figs. 3, 4, 5 and 6, let us examine the
case of isoscalar DM-nucleon interactions of type Ô1 in some detail. This example illustrates
one of the main results of this article: in the large mass splitting limit, neutrino telescopes
place the most stringent limits on the coupling constants of all spin-independent DM-nucleus
interactions. In the specific case under consideration, XENON1T places the strongest direct
detection exclusion limits on c01 for δ ≤ 210 keV. However, for δ > 210 keV, a large fraction
of the predicted DM-nucleus scattering events lie outside the XENON1T signal region, and
PICO places the strongest direct detection limits on c01, since it records data up to ER =
1000 keV. On the other hand, above δ = 320 keV, it is CRESST that sets the strongest
direct detection limits on c01 because of the large mass number of tungsten. Our results also
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Figure 6. Constraints on the isovector coupling constants for operators Ô9 to Ô15 for 1 TeV DM at
a 90% confidence level from XENON1T, a hypothetical high-recoil analysis of XENON1T, PICO-60,
CRESST-II and IceCube.

show that a hypothetical high-recoil energy analysis of XENON1T data would give the most
stringent direct detection limits on c01 for δ < 360 keV, but would not improve CRESST
constraints above δ = 360 keV. Furthermore, we find that for the interaction operator Ô1 (as
well as for the other momentum transfer-independent operators) the advantages of a high-
recoil energy analysis are only significant for δ larger than around 100 keV. Finally, we find
that IceCube sets the strongest exclusion limits on the coupling c01 in a wide range of values
for the mass splitting parameter. Specifically, for the “worst case” scenario, IceCube gives the
most stringent limits for δ > 360 keV, and for the “best case” scenario, IceCube places the
strongest limits already for δ > 150 keV.

In order to separately illustrate the impact of changing annihilation channel and account-
ing for η corrections on our results, in Fig. 7 we compute the exclusion limits on the coupling
constants c01 (top panel) and c04 (bottom panel) under different assumptions, namely: 1) set-
ting the channel to bb̄, and accounting for η corrections (dashed magenta line); 2) setting
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Figure 7. Constraints on the isoscalar coupling constants for operators Ô1 (top panel) and Ô4

(bottom panel) under four different assumptions regarding η and the annihilation channel: 1) setting
the channel to bb̄, and accounting for η corrections (dashed magenta line); 2) setting the channel to
bb̄, and neglecting η corrections (dashed cyan line) 3); setting the channel to τ+τ−, and accounting
for η corrections (solid magenta line); 4) setting the channel to τ+τ−, and neglecting η corrections
(solid cyan line).

the channel to bb̄, and neglecting η corrections (dashed cyan line); 3) setting the channel to
τ+τ−, and accounting for η corrections (solid magenta line); 4) setting the channel to τ+τ−,
and neglecting η corrections (solid cyan line). Within our assumptions, accounting for η cor-
rections has a larger impact on the exclusion limits for large mass splittings than changing
the annihilation channel.

The exclusion limits on inelastic DM that we obtain from IceCube have a significant
impact on DM models. As an example of a specific model constrained by our results, let us
mention a nearly pure higgsino DM. Such a DM candidate is expected to have a sufficiently
large elastic DM-nucleus scattering cross section to thermalise in the Sun, which implies an
unsuppressed muon flux [10]. Once constraints on the present DM cosmological density have
been imposed, the expected value for c01 is in this case c01 ' 0.35 (246.2 GeV)−2 [13]. Therefore,
this model is excluded by the limits presented here for mass splittings up to 530 keV. On the
other hand, previous analyses which only accounted for direct detection results could not
exclude a pure higgsino as a DM candidate for values of the mass splitting parameter larger
than δ = 220 keV. A high-recoil energy analysis of XENON1T data would only rule out this
model for δ < 320 keV.
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Inspection of the results in Figs. 3, 4, 5 and 6 shows that interaction operators can
be divided into two families (as in the previous subsection). The first family consists of the
operators that generate DM-nucleus scattering cross sections that are not zero for spin 0
nuclei, namely Ô1, Ô3, Ô5, Ô8, Ô11, Ô12 and Ô15. For these operators, the most stringent
exclusion limits on c0j and c1j come from direct detection experiments in the small mass
splitting limit, and from neutrino telescopes for large mass splittings. This change in the
hierarchy of constraints is due to kinematical reasons. Indeed, while even for large δ DM
can still be captured in the Sun (as long as the kinematic constraints in Sec. 2 are fulfilled),
for sufficiently large δ most of the DM particles in the Milky Way halo move with a speed
smaller than wmin in Eq. (2.14), and cannot induce observable recoils at direct detection
experiments. The second family consists of the operators that generate DM-nucleus scattering
cross sections which are zero for spin 0 nuclei, namely Ô4, Ô6, Ô7, Ô9, Ô10, Ô13 and Ô14. For
these operators, the capture of DM in the Sun can only occur via scattering on H, 3He, 14N,
23Na and 27Al, since other elements have spin 0. Based on the results of Sec. 3.1, this implies
that IceCube is not sensitive to such interactions as long as δ is larger than 285 keV. Indeed,
for δ > 285 keV, 27Al, the heaviest element in the Sun with spin different from zero, is no
longer able to capture DM.

Let us now focus on the comparison of our exclusion limits on the isoscalar coupling
constants with the corresponding exclusion limits on the isovector couplings. We find that
limits on the isovector couplings from IceCube are less competitive than the ones on their
isoscalar counterparts. The reason is that spin-idependent isovector interactions probe the
proton-neutron difference within nuclei in the Sun, and the latter is comparatively small. For
many of the most abundant nuclei in the Sun this difference is 0, and the maximum difference
is 4 (for iron and argon). In contrast, all xenon (tungsten) isotopes have a difference of at
least 16 (32).

We conclude this section by briefly commenting on how our results would qualitatively
change if we considered a different value for the DM particle mass. We have checked nu-
merically that for mχ 6= 1 TeV our results remain qualitatively unchanged. For example, for
mχ 6= 1 TeV, and assuming DM-nucleon interactions of type O1, O3, O5, Ô8, Ô11, Ô12 or
Ô15, neutrino telescopes still set exclusion limits on isoscalar and isovector coupling constants
that are more stringent than the ones from direct detection experiments for sufficiently large
values of δ. This hierarchy of constraints has a kinematical origin: neutrino telescopes can
probe values of wmin(Emin

R ) larger than those accessible to direct detection experiments (see
Eq. (2.14)), because of the acceleration experienced by DM particles when crossing the Sun’s
gravitational field.

4 Conclusion

We have studied the capture and subsequent annihilation of inelastic DM in the Sun, placing
constraints on the DM-nucleon scattering cross section (which is quadratic in c0j and c1j )
from the null result of IceCube. The cross section for inelastic DM-nucleon scattering has
been calculated within an extension of the effective theory of DM-nucleon interactions which
applies to the case of inelastic DM. We have explicitly performed our calculations assuming
a DM particle mass of 1 TeV, but our conclusions qualitatively also apply to DM particle
candidates with different masses. We find that for values of the mass splitting parameter
larger than about 200 keV neutrino telescopes place limits on the DM-nucleon scattering cross
section which are stronger than the ones from current DM direct detection experiments. The
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exact mass splitting value depends on whether DM thermalises in the Sun or not. This result
applies to all DM-nucleon interactions that generate DM-nucleus scattering cross sections
which are not zero for spin 0 nuclei, including the “canonical” spin-independent interaction,
i.e. operator Ô1 in Tab. 1. Indeed, for these interactions IceCube exclusion limits on the
corresponding coupling constants remain relatively flat up to mass splittings of about 300
keV. Furthermore, we find that exclusion limits from IceCube on the coupling constants of
this family of interactions are more stringent than the ones from a (hypothetical) reanalysis
of XENON1T data based on an extended signal region in nuclear recoil energy. Our results
should be taken into account in the analysis of neutrino telescope data, and in global statistical
analysis of inelastic DM models.
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