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Asymptotic Analysis and Spatial Coupling of
Counter Braids

Eirik Rosnes, Senior Member, IEEE and Alexandre Graell i Amat, Senior Member, IEEE

Abstract—A counter braid (CB) is a novel counter architecture
introduced by Lu et al. in 2007 for per-flow measurements on
high-speed links which can be decoded with low complexity using
message passing (MP). CBs achieve an asymptotic compression
rate (under optimal decoding) that matches the entropy lower
bound of the flow size distribution. In this paper, we apply the
concept of spatial coupling to CBs to improve the performance
of the original CBs and analyze the performance of the resulting
spatially-coupled CBs (SC-CBs). We introduce an equivalent
bipartite graph representation of CBs with identical iteration-
by-iteration finite-length and asymptotic performance. Based on
this equivalent representation, we then analyze the asymptotic
performance of single-layer CBs and SC-CBs under the MP
decoding algorithm proposed by Lu et al.. In particular, we derive
the potential threshold of the uncoupled system and show that
it is equal to the area threshold. We also derive the Maxwell
decoder for CBs and prove that the potential threshold is an
upper bound on the Maxwell decoding threshold, which, in turn,
is a lower bound on the maximum a posteriori (MAP) decoding
threshold. We then show that the area under the extended MP
extrinsic information transfer curve (defined for the equivalent
graph), computed for the expected residual CB graph when a
peeling decoder equivalent to the MP decoder stops, is equal to
zero precisely at the area threshold. This, combined with the
analysis of the Maxwell decoder and simulation results, leads us
to the conjecture that the potential threshold is in fact equal
to the Maxwell decoding threshold and hence a lower bound
on the MAP decoding threshold. Interestingly, SC-CBs do not
show the well-known phenomenon of threshold saturation of the
MP decoding threshold to the potential threshold characteristic
of spatially-coupled low-density parity-check codes and other
coupled systems. However, SC-CBs yield better MP decoding
thresholds than their uncoupled counterparts. Finally, we also
consider SC-CBs as a compressed sensing scheme and show that
low undersampling factors can be achieved.

Index Terms—Compressed sensing, counter braids, density
evolution, Maxwell decoder, spatial coupling.

I. INTRODUCTION

Traffic measurement in large scale networks is key to
network operators for network management, for example, in
terms of pricing, billing, and diagnosing of network problems.
Traffic measurement consists of measuring the size of network
flows. A network flow is defined as a sequence of packets that
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traverse the network and that share a number of properties,
e.g., the same source and destination. The size of a flow is
the number of packets of a particular kind. On high-speed
links, the inter-arrival time between packets can be as short
as 40 nanoseconds for a 10 Gbps link. Therefore, an exact
estimation of the flow sizes is technologically challenging and
even expensive to build, since it requires large arrays of high-
speed counters. Thus, the design of efficient, low-complexity
algorithms to measure the size of active flows in high-speed
networks is of great practical interest.

Recently, Lu et al. proposed a novel counter architecture,
inspired by sparse graph codes, for measuring network flow
sizes, nicknamed Counter Braid (CB) [1]–[3]. CBs address the
problem of cheap high-speed memory-efficient approximate
counting. In particular, they use less memory space than other
approximate counting techniques, since the flow sizes are
compressed on-the-fly. CBs are asymptotically optimal (under
some mild conditions) [3], i.e., the average number of bits
needed to store the size of a flow tends to the information-
theoretic limit (under maximum-likelihood (ML) decoding)
when the number of flows goes to infinity. Furthermore, they
are characterized by a layered structure which can be de-
scribed by a graph. In [3], a low-complexity message passing
(MP) decoding algorithm working on the resulting graph was
proposed, where the messages exchanged within the graph
are positive integers. In this sense, no reliability information
is exchanged in the iterative process and the algorithm can
be assimilated to hard-decision MP decoding algorithms for
low-density parity-check (LDPC) codes. In general, good
performance can be achieved with a small number of layers.

A single-layer CB can also be regarded as a compressed
sensing (CS) scheme for nonnegative (integer) signals [2]. CS
establishes that sparse signals can be recovered from signif-
icantly fewer samples as compared to conventional Nyquist
sampling. Indeed, the decoding of single-layer CBs can also
be seen as a sparse signal recovery problem. In particular, if
we set to zero the entries of minimum flow size in the vector
of flow sizes, then it can be interpreted as a nonnegative t-
sparse vector with t nonzero (integer) entries. In this setup, the
counters of the CB architecture perform linear measurements
of the sparse signal, i.e., each counter corresponds to a
linear measurement in the CS context. In [2], the authors
analyzed the threshold (when the number of flows goes to
infinity) on the undersampling factor (the number of counters
per flow, corresponding to the ratio between the number of
measurements and the length of the sparse vector) of CBs
above which recovery of the sparse vector is possible. It was
shown that it is very close to the corresponding threshold
by Donoho and Tanner [4] on the undersampling factor such
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that most signals of a given sparsity can be recovered exactly
using `1-norm minimization reconstruction, assuming random
Gaussian measurement matrices and nonnegative real signals.

Spatial coupling of LDPC codes [5]–[7] has revealed as
a powerful technique that improves the belief propagation
decoding threshold of the spatially-coupled LDPC (SC-LDPC)
code to the maximum a posteriori (MAP) decoding threshold
of the underlying block code ensemble, a phenomenon known
as threshold saturation. The concept of spatial coupling is not
exclusive of LDPC codes, and it applies to other classes of
codes such as turbo-like codes [8], [9] and to iterative hard-
decision decoding (HDD) of spatially-coupled (SC) general-
ized LDPC codes [10], [11] as well as to other scenarios,
such as relaying [12], lossy compression [13], joint iterative
decoding of LDPC codes on intersymbol-interference channels
with erasure noise where decoding is performed on a large
graph representing both the channel and the code constraints
[14], code-division multiple-access [15], and CS [16]. In all
these cases, threshold saturation to the so-called potential
threshold has been proven or observed numerically, while
threshold saturation to the so-called condensation threshold
was observed for lossy compression in [17]. In [18], it was
observed that the survey propagation threshold increases and
saturates towards to the phase transition threshold for SC
constraint satisfaction problems, as well as saturation of the
dynamic threshold towards the condensation threshold.

In this paper, we apply the concept of spatial coupling to
CBs, and show that they yield improved MP decoding thresh-
olds as compared to uncoupled CBs. Furthermore, we analyze
the asymptotic performance of single-layer spatially-coupled
CBs (SC-CBs). We derive an equivalent bipartite graph rep-
resentation of CBs, with identical iteration-by-iteration finite-
length performance and asymptotic behavior to that of CBs
decoded on the original bipartite graph. Based on this equiv-
alent representation, we prove that the potential threshold,
introduced by Yedla et al. in [19], and the area threshold are
equal. We further derive the Maxwell decoder [20] for CBs and
prove that the area threshold is an upper bound on the Maxwell
decoding threshold, which, in turn, is a lower bound on the
MAP decoding threshold. We also show that the area under
the extended MP (EMP) extrinsic information transfer (EXIT)
curve (defined for the equivalent graph), computed for the
expected residual CB graph when a peeling decoder equivalent
to the MP decoder stops, is equal to zero precisely at the area
threshold. This result, combined with an asymptotic analysis
of the Maxwell decoder, leads us to formulate the conjecture
that the potential threshold is equal to the Maxwell decoding
threshold and hence a lower bound on the MAP decoding
threshold. This conjecture is also supported by simulation
results.

Interestingly, we observe that SC-CBs do not show thresh-
old saturation of the MP decoding threshold to the potential
threshold. Indeed, when coupling the original (or the equiv-
alent) graph, there is a remaining gap between the potential
threshold (conjectured to be equal to the Maxwell decoding
threshold) and the MP decoding threshold of SC-CBs even in
the limit of large coupling chain length and smoothing param-
eter. The lack of threshold saturation seems to be fundamental

and due to the fact that the flow node update rule for even and
odd iterations is different. To the best of our knowledge, this
is one of the rear coupled systems where threshold saturation
does not occur.

We also discuss the construction of multilayer SC-CBs and
the extension of the density evolution (DE) analysis to this
case. Finally, we discuss single-layer SC-CBs in the context
of CS. We compare the threshold on the undersampling factor
of SC-CBs with that of CBs [2] and with the threshold in [4],
and we show that lower thresholds can be achieved.

The remainder of the paper is organized as follows. In
Section II, we briefly review CBs and the corresponding MP
decoding algorithm. In Section III, we introduce an equivalent
bipartite graph representation of CBs. In Section IV, we
give an asymptotic analysis of single-layer CBs, based on
the equivalent graph representation of Section III, and show
that the area threshold and the potential threshold are equal.
In Section V, we derive the Maxwell decoder for CBs and
formulate the conjecture that the potential threshold is a lower
bound on the MAP decoding threshold. Section VI introduces
SC-CBs, and Section VII gives numerical results on their
asymptotic and finite-length performance. A discussion on
the lack of threshold saturation is provided in Section VIII.
Finally, the connection with CS is discussed in Section IX,
and Section X draws some conclusions.

II. COUNTER BRAIDS

A CB is a counter architecture consisting of L ≥ 1 layers.
At layer l = 1, . . . , L, it has ml counters of depth dl bits,
with mi < mj for i > j. The number of distinct flows to be
counted is denoted by m0.

The l-th layer of a CB can be represented by a bipartite
graph Gl = Gl(Fl ∪ Cl, El), where Fl (of size ml−1) denotes
the set of flow nodes, and Cl (of size ml) denotes the set of
counter nodes. The set of edges of the graph is denoted by
El. The l-th layer is connected to the (l − 1)-th layer by a
bijective mapping Ξl(f) = c on the set of flow nodes of the
l-th layer, where f ∈ Fl and c ∈ Cl−1, l = 2, . . . , L. For
notational convenience, the neighborhood of a node a (either
a counter node c or a flow node f) is denoted by Γ(a).

When a flow is encountered (for instance, on a high-
speed link), all connected counter nodes of the first layer
are incremented modulo 2d1 . If a counter node c of the first
layer overflows, all connected counter nodes of the second
layer (formally the counter nodes in the set Γ(Ξ−1

2 (c))), are
incremented modulo 2d2 . Furthermore, if a counter node in
the second layer overflows, all connected counter nodes of
the third layer are incremented modulo 2d3 . This process is
repeated for each level until we reach the final layer L. We
denote by φ(c) the final value of a counter node c prior to
decoding, and by φ̂(f) the estimated value (after decoding) of
a flow node f. The corresponding actual flow size is denoted
by φ(f).

An example of a two-layer CB is shown in Fig. 1, where
flow nodes are represented by empty circles and counter
nodes by filled squares. Fig. 1(a) shows the bipartite graphs
G1 and G2 of the two-layer CB, while Fig. 1(b) depicts an
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Fig. 1. The graph of a two-layer CB. (a) The bipartite graphs G1 and G2;
(b) the combined graph.

equivalent graph where a flow node of the second layer and
its corresponding counter node of the first layer in Fig. 1(a)
are represented using a single combined counter node due to
the bijective mapping Ξ2(·).

In the following, we will assume that the bipartite graphs
Gl, l = 1, . . . , L, are left-regular, i.e., |Γ(f)| = kl, for some
integer kl ≥ 2, and for all f ∈ Fl. The assignment of graph
sockets of flow nodes to graph sockets of counter nodes, i.e.,
the connections in the graph, is done in a random fashion. This
means that, asymptotically as the number of flow nodes tends
to infinity (while |Cl|

|Fl| is kept fixed), the distribution of the
fraction of edges connected to a given counter node approaches
a Poisson distribution [1]. We can now formally define the flow
and counter node degree distributions. For counter nodes, we
assume the asymptotic Poisson distribution. Let

Ll(z) = zkl , kl ≥ 2,

and

Rl(z) =

∞∑
i=0

R
(l)
i z

i =

∞∑
i=0

e−γl(γlz)
i

i!

denote the node-perspective flow node and counter node
degree distributions of the l-th layer, respectively. Here, γl =
ml−1kl
ml

is the average counter node degree. The corresponding
edge-perspective degree distributions are

λl(z) =
L′l(z)

L′l(1)
= zkl−1

and

ρl(z) =
R′l(z)

R′l(1)
=

∞∑
i=0

e−γl(γlz)
i

i!
= Rl(z),

respectively. Finally, we denote by βl = ml
ml−1

the fraction of
the number of counter and flow nodes of the l-th layer.

A. Message Passing Decoder

CBs can be decoded using an MP decoding algorithm
[1] on the corresponding graph. In this section, we present
the low-complexity MP decoding algorithm proposed in [1].
We consider first the sum-product (SP) algorithm to decode
CBs and motivate the derivation of the algorithm in [1]. The
derivation was not discussed in [1] (or in [2], [3], [21]), but
may help in gaining some insight into the algorithm.

For simplicity, we consider a single-layer CB, and denote
its set of edges by E = E1. The optimality criterion behind
the SP algorithm for CBs is the symbol-wise MAP,

φ̂MAP(fi) = arg max
φ(f)

Pr(φ(fi) = φ(f)|φ(c)), (1)

where φ(c) = (φ(c1), . . . , φ(cm1)).
Implementing the MAP decoder to solve (1) directly is

computationally infeasible. The SP algorithm attempts to solve
(1) approximately operating on the factor graph of the CB. Let
ψ

SP,(`)
c→f (a) denote the message sent from counter node c to

flow node f at iteration ` of the SP algorithm, corresponding
to the probability that the flow f is of size a, i.e., φ(f) = a.
Note that a is a nonnegative integer that runs from fmin to
φ(c)− (|Γ(c)|−1)fmin, where fmin is the minimum flow size
(from the flow size distribution) of a flow node. Furthermore,
let µSP,(`)

f→c (a) denote the message sent from flow node f to
counter node c at iteration `, corresponding to the probability
that the flow f is of size a. The update rules for ψSP,(`)

c→f (a)

and µSP,(`)
f→c (a) can be written as [22]

ψ
SP,(`)
c→f (a) =

∑
(af′ : f′∈Γ(c)\f) : af′≥fmin

and
∑

f′∈Γ(c)\f af′=φ(c)−a

∏
f′∈Γ(c)\f

µ
SP,(`−1)
f′→c (af′)

(2)
and

µ
SP,(`)
f→c (a) =

∏
c′∈Γ(f)\c

ψ
SP,(`)
c′→f (a), (3)

respectively. More precisely, the message ψ
SP,(`)
c→f (a) repre-

sents the probability that φ(f) = a given the incoming
messages µSP,(`−1)

f′→c (af′) from all adjacent edges to counter
node c (except the edge from f) and the constraint of the
counter node itself.

Replacing the outer summation in (2) with a maximum
gives the max-product algorithm (or, equivalently, the min-sum
algorithm in the logarithmic domain),

ψ
MaxP,(`)
c→f (a)

= max
(af′ : f′∈Γ(c)\f) : af′≥fmin

and
∑

f′∈Γ(c)\f af′=φ(c)−a

∏
f′∈Γ(c)\f

µ
MaxP,(`−1)
f′→c (af′) (4)

and
µ

MaxP,(`)
f→c (a) =

∏
c′∈Γ(f)\c

ψ
MaxP,(`)
c′→f (a). (5)

Both the SP algorithm and the max-product algorithm are
soft-decision decoding algorithms which entail a high com-
plexity.1 To reduce decoding complexity, one may consider
HDD. Assuming a uniform flow size distribution (i.e., not
exploiting any information about the flow size distribution)
the max-product algorithm above boils down to the low-
complexity MP algorithm proposed in [1], which indeed can
be seen as an HDD algorithm. In the following, we only give
the update rules of the MP algorithm in [1]. Its derivation from
(4) and (5) is given in Appendix A.

1The update rules in (2) and (4) can be implemented in each counter node
using the BCJR algorithm working on a trellis where each trellis section would
be a complete bipartite graph with at most φ(c)− |Γ(c)|fmin + 1 states.
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We define the messages exchanged in the MP decoding
algorithm as follows. Let µ(`)

f→c ∈ N, where N is the set of
natural numbers and (f, c) ∈ E , denote the message sent from
flow node f to counter node c during the `-th iteration of the
MP decoding algorithm. Likewise, let ψ(`)

c→f ∈ N, (f, c) ∈ E ,
denote the message sent from counter node c to flow node f
during the `-th iteration of the algorithm. The counter node
and flow node update rules (for ` = 1, . . . , `max) are given as
follows [1],

ψ
(`)
c→f = max

φ(c)−
∑

f′∈Γ(c)\f

µ
(`−1)
f′→c , fmin

 , (6)

µ
(`)
f→c =

{
minc′∈Γ(f)\c ψ

(`)
c′→f , if ` is odd

maxc′∈Γ(f)\c ψ
(`)
c′→f , if ` is even

, (7)

where `max is the maximum number of iterations and µ(0)
f→c =

fmin for all (f, c) ∈ E . The final estimate of the flow sizes of
the flow nodes is according to

φ̂(f) =

{
minc∈Γ(f) ψ

(`max)
c→f , if `max is odd

maxc∈Γ(f) ψ
(`max)
c→f , if `max is even

.

The MP algorithm in (6)–(7) can be seen as an HDD
algorithm where only integer values are exchanged between
flow and counter nodes. Despite this, as shown in [1, Th. 1],
the output of the MP decoder converges to the exact flow size
vector when the underlying CB graph is a tree.

For a multi-layer CB, decoding proceeds starting with the
right-most layer. After decoding the l-th layer, represented by
the bipartite graph Gl, the counter nodes of the (l−1)-th layer
are updated (for all f ∈ Fl) based on the mapping Ξl(·) as

φ(Ξl(f))← φ̂(f) · 2dl−1 + φ(Ξl(f)).

Decoding proceeds layer-by-layer until the first layer is de-
coded.

B. Peeling Decoder

In this subsection, we introduce a peeling decoder version
of the MP decoder mentioned above. The reason for doing this
is that we need the concept of a residual graph and residual
degree distributions in Section V.

Note that the MP decoder with the update rules in (6)–(7)
will always stop, i.e., at some point the flow size estimates
of the flow nodes will be the same at iterations ` and ` −
2 for some `. This is due to the monotonicity property of
the messages, i.e., for each edge (f, c) ∈ E , the messages
µ

(2`)
f→c, ` ≥ 0, are monotonically nondecreasing lower bounds

on φ(f), and the messages µ(2`+1)
f→c , ` ≥ 0, are monotonically

nonincreasing upper bounds on φ(f). This can be verified by
induction [21]. When the decoder stops, either the flow size
estimates for a flow node at iterations ` and `−1 are the same
(i.e., we have convergence (upper and lower bounds are the
same and thus we have the correct value for the flow size)),
or we have oscillation (i.e., the estimates for iterations ` and
`− 2 are the same, but the estimates for iterations ` and `− 1
are not the same).

The MP decoder can be turned into a peeling decoder in
the following way. Run the MP decoder and in addition apply
the following two peeling rules:2

1) In case |Γ(c)| = 1 for a counter node c, then remove c
and the connected flow node f ∈ Γ(c) and all its adjacent
edges from the graph. Decrease the values of the counter
nodes of Γ(f) \ c by the value of c.

2) For odd iterations, if a message from a counter node c to
a flow node f is equal to fmin, then remove the flow node
f and all its adjacent edges from the graph. Decrease the
values of the counter nodes of Γ(f) by fmin.

The MP and the peeling decoders are equivalent, in the
sense that the set of converged flow nodes for the MP decoder,
i.e., the set of flow nodes for which the flow size estimates
for even and odd iterations are the same, is equal to the set of
peeled flow nodes for the peeling decoder, i.e., the set of flow
nodes that have been removed from the graph when running
the peeling decoder.

C. A Note on Notation

In the rest of the paper, except for Section VI-C, we assume
a single-layer system and frequently omit, for notational
convenience, the subscript/superscript l. Also, we assume that
the depth of the counters of the single-layer CB, d1, is
large enough so that they do not overflow. Note that if the
counters overflow, one should consider multilayer CBs. This
is discussed in Section VI-C.

III. EQUIVALENT BIPARTITE GRAPH REPRESENTATION OF
COUNTER BRAIDS

In this section, we construct an equivalent bipartite graph
representation of a single-layer CB, i.e., of the graph G, and a
corresponding MP decoding algorithm, which gives identical
iteration-by-iteration finite-length and asymptotic performance
to that of the original graph. The new graph has the same
flow nodes as the original graph and the same number of
counter nodes, but each counter node represents now a tree
of depth three grown from the corresponding counter node
in the original graph (a so-called computation tree of depth
three, see [23, p. 27]), and the update rules are different. This
graph transformation enables us to bypass the fact that to apply
the potential function framework of [19], a bipartite graph
with left and right update rules that do not change over the
iterations is required. Note that for the original bipartite graph,
this property does not hold.

The computation tree of depth three comes from the fact
that, to obtain a bipartite graph with update rules that do not
change with iterations, we combine two successive iterations
(on the original graph) into a single one. Thus, the message
from counter nodes to flow nodes of the transformed graph
corresponds to the sequence (for the original graph) counter
nodes – flow nodes – counter nodes – flow nodes, which leads
to a computation tree of depth three.

2Note that we can peel all neigboring flow nodes of a counter node c if its
value φ(c) is equal to fmin times its degree Γ(c), i.e., if φ(c) = fmin ·Γ(c).
This follows from the second peeling rule.
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Algorithm 1: Construction of the equivalent graph
Input : Original CB graph G = (F ∪ C, E)

Output: Equivalent CB graph G̃ =
(
F̃ ∪ C̃, Ẽ

)
1 F̃ ← ∅ . F̃ is a set
2 C̃ ← ∅ . C̃ is a set
3 Ẽ ← ∅ . Ẽ is a multiset
4 for f ∈ F do
5 F̃ ← f
6 end
7 for c ∈ C do
8 C̃ ← c
9 for f ∈ F1(c) ∪ F3(c) do

10 Ẽ ← (c, f) with label equal to the length of
P(c, f)

11 end
12 end
13 return

(
F̃ ∪ C̃, Ẽ

)

For simplicity, we will first consider the example graph G
shown in Fig. 2(a) for the construction of the equivalent graph
in Section III-A, before presenting the general construction
algorithm (Algorithm 1). The MP decoder for the equivalent
graph is described in Section III-B for the example graph G̃
shown in Fig. 2(c), from which the general case follows in a
straightforward manner.

A. Construction

The equivalent graph, denoted by G̃, is constructed as
follows for the example graph G shown in Fig. 2(a). First,
for each counter node c ∈ C in the graph in Fig. 2(a), we
build a (computation) tree T (c) of depth three [23, p. 27], as
illustrated in Fig. 2(b) for the counter node c1 (for notational
convenience this counter node is labeled with the integer 1
instead of c1 in the figure). Then, for each counter node c ∈ C
we make a new counter node c̃ in the new bipartite graph G̃
(see Fig. 2(c)). Furthermore, in the new graph, we make a
copy f̃ of each flow node f ∈ F in the original graph. Counter
nodes and flow nodes in the new graph are connected using
two types of edges, type-1 and type-2, as explained in the
following. Consider the counter node c1 in Fig. 2(a). For this
counter node, we make a new counter node c̃1 in the equivalent
graph in Fig. 2(c). Then, we connect c̃1 to a flow node f̃i with
a type-2 edge if fi is a leaf in the tree of c1. Furthermore, we
connect c̃1 to a flow node f̃i with a type-1 edge if fi is a flow
node at depth one in the tree of c1. In this way there is an
edge for each path in T (c1) from c1 to a flow node. When
the path has length three, the edge is a type-2 edge, and when
the path has length one, the edge is a type-1 edge.

In Fig. 2(c), type-1 edges are represented by nonbold edges
and correspond each to a distinct path of length one from c1 or
c2 to a flow node at depth one in T (c1) or T (c2), respectively.
On the other hand, bold edges represent edge bundles of type-
2 edges. For the example in Fig. 2(c), an edge bundle between
counter node c̃1 and flow node f̃i, i = 1, 2, 3, 4, consists of
three type-2 edges corresponding to the three distinct paths of
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Fig. 2. (a) The graph G of an example CB. (b) The tree T (c1) of depth
three grown from the counter node c1 (for notational convenience the counter
node is labeled with the integer 1 instead of c1 in the figure) from the original
graph G in (a). (c) Equivalent bipartite graph representation G̃ of the example
CB from (a).

length three in the tree T (c1) between c1 and flow node fi,
at depth three. For notational convenience, these flow nodes
are labeled with the integers i instead of f̃i in Fig. 2(c) and
instead of fi in Figs. 2(a) and 2(b). Likewise, c̃1 is labeled
by the integer 1 in Fig. 2(c). Note that for a given bipartite
graph G, the number of type-2 edges in each edge bundle of
the equivalent bipartite graph G̃ depends on the connectivity
of G. Also, in the asymptotic limit there will be no duplicate
flow nodes in the trees T (c) for any counter node c ∈ C and
the equivalent graph will be locally tree-like.

For the general case, let T (c) = (V(c), E(c)) denote the
(computation) tree for node c, where V(c) = c ∪ F1(c) ∪
C2(c) ∪ F3(c), F1(c) is the set of neighboring flow nodes
of c (distance-1 nodes from c), C2(c) is the set of distance-
2 nodes from c (all counter nodes), and F3(c) is the set of
distance-3 nodes from c (all flow nodes). The set of edges
of the computation tree is denoted by E(c). For notational
convenience, the (unique) path between two nodes v1 ∈ V(c)
and v2 ∈ V(c) is denoted by P(v1, v2). The construction of the
equivalent graph G̃ = (F̃∪C̃, Ẽ), which is a graph with parallel
edges (or a multigraph), can be described by Algorithm 1. For
a multigraph, the edge set Ẽ is a multiset, i.e., unlike a set,
it allows multiple instances of the elements of the multiset. If
the label of an edge in G̃ is 1, then the edge is a type-1 edge.
Otherwise, it is a type-2 edge. Since the original CB graph
G does not contain parallel edges, there are no parallel type-
1 edges in G̃. However, there might be parallel type-2 edges,
and these can be grouped together in edge bundles, where each
edge bundle contains all parallel edges between a given pair
of endpoints.

B. Message Passing Decoding

We have the following update rules for the new graph. For
the flow nodes f̃ ∈ F̃ we use the same update rule as in (7)
for type-1 edges, using the maximum only, over all incoming
messages on all connected edges (except the one on which
the outgoing message is transmitted). For the type-2 edges
in an edge bundle, the update rule is a bit different. Note
that each edge bundle is in one-to-one correspondence with
paths of length three from the root node in the tree to the
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leaf nodes. Thus, we can label each type-2 edge in the bundle
from flow node f̃ to counter node c̃ with the counter node in
the new graph that corresponds to the parent counter node of
the corresponding leaf node f in the tree. Then, the output
message on a type-2 edge in the bundle will be the same as
the output message on the type-1 edge of G̃ that connects flow
node f̃ to the counter node that labels the type-2 edge in the
bundle which is being considered. Equivalently, we can use the
update rule in (7), using the maximum only, over all incoming
messages on all connected edges except the particular type-1
edge connected to the counter node that labels the type-2 edge
in the bundle under consideration.

For the counter nodes c̃ ∈ C̃ in the new graph, the update
rule is a bit more complicated and the corresponding tree T (c)
must be used. The procedure consists of three steps as follows:

1) First, the outgoing message on an edge from a flow node
f̃ to a counter node c̃ in the new graph is assigned as an
outgoing message to the corresponding edge emanating
from the corresponding node f in the tree T (c). Then,
run the update rule in (6) for all counter nodes in the
tree T (c) using all incoming messages (except the one
on which the outgoing message is transmitted). Outgoing
messages are sent to all connected flow nodes at depth
one in the tree T (c) (i.e., upward towards the root node).

2) Secondly, run the update rule in (7) for all flow nodes
at depth one in the tree T (c) (using the minimum
only) using all incoming messages (except the one on
which the outgoing message is transmitted). Outgoing
messages are sent only to the root node c in the tree
T (c) (i.e., upward to the root node).

3) Finally, apply the update rule in (6) on the root node us-
ing all incoming messages (except the one on which the
outgoing message is transmitted). Outgoing messages to
all connected flow nodes at depth one are computed and
assigned to the corresponding type-1 edges in the new
graph, i.e., a message from the root node c to a flow
node f at depth one is assigned as an outgoing message
on a type-1 edge from counter node c̃ to flow node f̃ in
the new graph G̃.

Note that the three-step procedure above only assigns outgoing
messages to type-1 edges connected to c̃ in the new graph. The
outgoing messages on the type-2 edges in the edge bundles are
set to −∞.

Decoding on the equivalent graph G̃ is performed as in
the standard flooding schedule, i.e., all counter nodes in G̃
should be processed as outlined above before processing all
flow nodes. On the other hand, encoding can be done using
the equivalent graph as well by ignoring the type-2 edges and
using the encoding method of the original graph, i.e., the value
of a counter node is the sum modulo 2d1 of the values of the
connected flow nodes (considering only type-1 edges). Notice
that for any CB graph G we can construct an equivalent graph
G̃ using the construction above, and viceversa (removing the
edge bundles in G̃).

Let φ̂(`)
G (f) denote the estimated flow size at flow node f ∈ G

at iteration ` under MP decoding on the original CB graph
G (see Section II-A). The corresponding estimated flow size

at iteration ` and flow node f̃ ∈ G̃ (corresponding to flow
node f in the original graph G) under MP decoding on the
equivalent graph G̃ (as described above) is denoted by φ̂(`)

G̃ (̃f).
Based on the above discussion, the proposition below follows
by inspection.

Proposition 1. For any given CB graph G and iteration
number ` ≥ 1 (with respect to the original graph G),

φ̂
(2`)
G (f) = φ̂

(`)

G̃ (̃f), ∀f ∈ G,
i.e., the two graphs are iteration-by-iteration equivalent.

IV. ASYMPTOTIC ANALYSIS OF SINGLE-LAYER COUNTER
BRAIDS

Consider a single-layer CB with m0 flow nodes and m1

counter nodes of depth d1. When m0 → ∞, the asymptotic
performance of CBs can be analyzed by means of DE. Denote
by x(`) and y(`) the error probability of an outgoing message
from a flow node and a counter node, respectively, at the `-
th iteration. The flow node and counter node DE updates at
iteration ` are described by the equations [1], [2]

x(`) = f̃
(
y(`); ε

)
, y(`) = g̃

(
x(`−1)

)
, (8)

where

f̃(y; ε) =

{
yk−1, if ` is odd
ε · yk−1, if ` is even

, (9)

g̃(x) = 1− ρ (1− x) , (10)

and ε is the probability of observing a flow of size strictly
larger than fmin. Note that ε depends on the flow size
distribution, denoted by pΦ.

In the following, we denote by X = [0, 1] and Y = [0, 1]
the set of possible values for x and y, respectively, and by E
the set of possible values for ε.

For a given flow size distribution, or more precisely, for a
given ε, a relevant parameter for the performance of single-
layer CBs is the number of counters per flow, β = m1

m0
=

k
γ . The average number of bits needed to represent a flow is
therefore βd1, hence β is directly related to the compression
rate. In particular, we are interested in the minimum value of
β so that decoding is successful,

βMP = βMP(ε) , inf
{
β > 0 | x(∞)(β, ε) = 0

}
.

Alternatively, we can analyze the asymptotic behavior of CBs
by fixing β and finding the maximum value of ε such that
decoding is successful,

εMP = εMP(β) , sup
{
ε ∈ E | x(∞)(β, ε) = 0

}
,

since for a fixed k and any ε it follows that εMP(βMP(ε)) =
β−1

MP(βMP(ε)) = ε. In this case, εMP has a similar meaning as
the MP decoding threshold for LDPC codes over the binary
erasure channel (BEC), where ε can now be interpreted as the
channel parameter.

Combining two successive iterations into a single one, we
can rewrite the DE in an equivalent form as

x(2`) = f
(
y(2`); ε

)
, y(2`) = g

(
x(2`−2)

)
, (11)
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where

f(y; ε) = ε · yk−1, (12)

g(x) = 1− ρ
(

1− (1− ρ (1− x))
k−1
)
. (13)

Clearly, the DE recursions in (8)–(10) and (11)–(13) give
the same MP decoding threshold. Furthermore, it is easy to
verify that the DE in (11)–(13) corresponds to the DE of the
equivalent graph introduced in the previous section. Therefore,
from this and Proposition 1, we can analyze CBs based on the
equivalent graph and the DE recursion in (11)–(13).

Lemma 1. The functions f(y; ε) (for a fixed value of ε > 0)
and g(x), k ≥ 2, are strictly increasing in y and x, respec-
tively.

Proof: From the definition above it follows directly that
f(y; ε) is strictly increasing in y for a fixed value of ε > 0.
Also, since ρ(x) is strictly increasing in x and both 1− ρ(x)
and ρ(1 − x) are strictly decreasing in x, it follows directly
that g(x) is strictly increasing in x.

As a result of Lemma 1, it follows that the DE recursion
in (11)–(13) (and thus the DE recursion in (8)–(10)) for
uncoupled CBs converges to a fixed-point. The fixed-point DE
equation for x = x(∞)(β, ε) is

x = f(g(x); ε). (14)

Decoding is successful if the fixed-point is x(∞)(β, ε) = 0.
We will need the definition of an admissible system [19].

Definition 1 (Admissible System). An admissible system is
a system where the functions f(y; ε) and g(x) satisfy the
following properties.

1) The first derivative of f(y; ε) exists and is continuous on
Y×E , the first derivative of g(x) exists and is continuous
on X ,

2) f(y; ε) is nondecreasing in both y and ε,
3) g(x) is strictly increasing in x, and
4) the second derivative of g(x) exists and is continuous

on X .

In addition, an admissible system is said to be proper if the
derivative of h(x; ε) , f(g(x); ε) with respect to ε is strictly
positive for all (x, ε) ∈ (0, 1]× E [19].

Lemma 2. The system defined in (12)–(13) is a proper
admissible system.

Proof: It is easy to show that the DE updates in (12)–(13)
satisfy Properties 1 to 4 in Definition 1. Properties 2 and 3
have already been proven in Lemma 1. Now, the derivative of
h(x; ε) with respect to ε is(

1− ρ
(

1− (1− ρ (1− x))
k−1
))k−1

,

and the result follows from the fact that ρ(x) for x ∈ (0, 1]
and k ≥ 2 is strictly positive.

A. Extended Message Passing Extrinsic Information Transfer
Curve

The EMP EXIT curve of a single-layer CB is given in
parametric form by

(ε, hEMP) = (ε(x), (1− ρ(1− (1− ρ(1− x))k−1))k), (15)

where

ε(x) =
x

(1− ρ(1− (1− ρ(1− x))k−1))k−1

is the solution of (14) for ε, and x ∈ X . The curve is a trace
of all fixed-points of the DE recursion in (14) (both stable and
unstable).

We have the following theorem related to the EMP EXIT
curve, adapting [20, Th. 8] to the recursion in (12)–(13).

Theorem 1. The EMP EXIT curve satisfies∫ 1

0

hEMP(x) dε(x) =

1− ρ(1− (1− e−γ)k−1) + k
(
ρ(1− (1− e−γ)k−1)−∫ 1

0

ρ(1− (1− ρ(1− z))k−1) dz

)
.

Proof: The result follows by applying integration by parts
twice as in the proof of [20, Th. 8]. Details are omitted for
brevity.

Note that, contrary to the case of standard (both regular and
irregular) LDPC code ensembles on the BEC, the area is not
equal to the rate (in number of counters per flow) and the
curve does not start at the (1, 1) point for x = 1. In fact, the
EMP EXIT curve starts (for x = 1) at the point (1/(1−ρ(1−
(1 − e−γ)k−1))k−1, (1 − ρ(1 − (1 − e−γ)k−1))k), where the
first coordinate is larger than 1 and the second coordinate is
smaller than 1. Also, as x approaches 0, when k ≥ 3, the
curves approach the point (∞, 0) (as could also be the case
for LDPC code ensembles).

Definition 2 (Area Threshold). Let (ε(x∗), hEMP(x∗)) be a
point on the EMP EXIT curve hEMP of a single-layer CB such
that ∫ 1

x∗
hEMP(x) dε(x) =

∫ 1

0

hEMP(x) dε(x)

and assume that there exist no x′ ∈ (x∗, 1] such that ε(x′) =
ε(x∗). Then, the area threshold, denoted by ε̄, is defined as
ε̄ = ε(x∗).

Lemma 3. For k = 2 the area threshold is equal to ε̄ = 1/γ2.

Proof: For k = 2, ε(x) = x
1−ρ(ρ(1−x)) is an increasing

function of x. Thus, x∗ = 0, and the area threshold becomes

ε̄ = lim
x→0

x

1− ρ(ρ(1− x))
=

1

ρ′(ρ(1− 0))ρ′(1− 0)

=
1

γρ(ρ(1))γρ(1)
=

1

γ2
,

where ρ′(x) denotes the derivative of ρ(x) with respect to x,
and the result follows.

Note that this threshold corresponds to the stability thresh-
old from the theory of LDPC codes on the BEC.

In Section V, we will prove that the area threshold ε̄ is an
upper bound on the Maxwell decoding threshold.
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B. Potential Function, Potential Threshold, and Area Thresh-
old

Since the DE recursion in (11)–(13) describes an admissible
system (see Definition 1), we can define a corresponding
potential function as in [19].

Definition 3. The potential function U(x; ε) of the system de-
fined by the functions f and g from (12) and (13), respectively,
is given by

U(x; ε) , xg(x)−
∫ x

0

g(z) dz −
∫ g(x)

0

f(z; ε) dz

= xg(x)−
∫ x

0

g(z) dz − ε

k
g(x)k.

Following [19, Def. 32], we make the following definitions,

Ψ(ε) , min
x∈X

U(x; ε),

X∗(ε) , {x ∈ X | U(x; ε) = Ψ(ε)}, and

x̄∗(ε) , maxX∗(ε).

Now, we can define the potential threshold ε∗p as [19, Def. 35]

ε∗p , sup {ε ∈ E | x̄∗(ε) = 0} . (16)

Definition 4. The fixed-point potential Q(x) is given by [19,
Def. 41]

Q(x) , U(x; ε(x))

= xg(x)−
∫ x

0

g(z) dz − 1

k
· x

g(x)k−1
· g(x)k

=

(
1− 1

k

)
xg(x)−

∫ x

0

g(z) dz.

Definition 5. The trial entropy is given by

P (x) ,
∫ x

0

hEMP(z)ε′(z) dz =

∫ x

0

g(z)kε′(z) dz.

The following theorem shows that the area threshold and
the potential threshold are equal, ε̄ = ε∗p.

Theorem 2. The area threshold from Definition 2 is equal to
the potential threshold from (16).

Proof: It follows that

g(z)kε′(z) = g(z)k
(
g(z)k−1 − (k − 1)g(z)k−2g′(z)z

g(z)2(k−1)

)
= g(z)− (k − 1)zg′(z).

Thus,

P (x) =

∫ x

0

g(z) dz − (k − 1)

∫ x

0

zg′(z) dz

=

∫ x

0

g(z) dz − (k − 1)

(
zg(z)

∣∣∣x
0
−
∫ x

0

g(z) dz

)
= k

∫ x

0

g(z) dz + (1− k)xg(x)

= −kQ(x). (17)

We have∫ 1

x

hEMP(z) dε(z) =

∫ 1

0

hEMP(z) dε(z)

−
∫ x

0

hEMP(z) dε(z)

(a)
=

∫ 1

0

hEMP(z) dε(z)− P (x), (18)

where (a) follows from the definition of the trial entropy
in Definition 5. Now, using Definition 2 it follows that
P (x∗) = 0. Using (17) this implies that Q(x∗) = 0. From
[19, Lem. 46], for a proper admissible system, which is the
case here as shown in Lemma 2, the corresponding value
ε̄ = ε(x∗) is indeed equal to the potential threshold, and the
result follows.

In the next section, we derive the Maxwell decoder for
CBs and prove that the area threshold ε̄ is an upper bound
on the Maxwell decoding threshold (formally defined below),
which, in turn, is a lower bound on the MAP decoding
threshold (which is also formally defined below). We then
give a conjecture, supported by simulation results, that the area
threshold is in fact equal to the Maxwell decoding threshold,
and thus a lower bound on the MAP decoding threshold.

V. MAXWELL DECODER

Similar to LDPC codes, a Maxwell decoder [20] can be
constructed for CBs, and it can be analyzed asymptotically
using DE on the equivalent graph representation introduced
in Section III. For LDPC codes, the Maxwell decoder is a
MAP decoder, thus the MAP decoding threshold is equal to
the Maxwell decoding threshold. However, it is important to
notice that, in general, for CBs the Maxwell decoder is not
a MAP decoder, since the flow size distribution is typically
nonuniform. Thus, the Maxwell decoding threshold (on ε) is
in general a lower bound on the MAP decoding threshold.

The MAP EXIT curve of a single-layer CB is defined as

hMAP(ε) = lim sup
m0→∞

E

[
1

m0

∑
f∈F

H(φ(f)|{φ(c) : c ∈ C})
]
,

where H(·|·) denotes conditional entropy and the expectation
E[·] is taken with respect to the ensemble of bipartite graphs G
of the underlying CBs. The MAP decoding threshold, denoted
by εMAP, is defined as

εMAP , sup
{
ε ∈ E | hMAP(ε) = 0

}
.

The Maxwell decoding threshold (and EXIT chart) can be
defined in an analogue manner under the constraint of a
uniform flow size distribution.

A. Maxwell Decoder on the Original Graph

The Maxwell decoder is an MP decoder with guesses,
inspired from statistical mechanics and the theory of phase
transitions, which was outlined in [20] in the context of
LDPC codes. The concept of an MP decoder with guesses
was considered in various works prior to [20], with the more
practical motivation of improving the performance of the
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standard MP decoder for finite-length codes [24], [25]. The
motivation in [20], on the contrary, was an asymptotic analysis.

The Maxwell decoder works in the following way. First,
standard MP decoding as described in Section II-A is run
until the algorithm stops, i.e., there is no further progress
from one iteration to the next one. Then, the value of an
unknown (to be defined below) flow node is guessed and all its
outgoing messages (more precisely, the second component of
the messages, see below for details) are set to ’g’. Moreover,
the label of the flow node is changed from unknown to guessed.
Decoding is performed again until there is no further progress.
If there are still unknown flow nodes when the algorithm
stops, a second unknown flow node is guessed, its label is
changed to guessed and, finally, all its outgoing messages (the
second component of the messages) are set to ’g’. This process
continues until there is no more unknown flow nodes to guess.
In the end we end up with a system of linear equations for
the values of the guessed flow nodes that can be solved. The
system of equations may or may not have a unique solution.
In case there is no unique solution, ML decoding will also
fail.

Let ψ(`),M
c→f denote the message from counter node c to flow

node f at iteration ` ≥ 1 of the Maxwell decoder. Likewise,
let µ(`),M

f→c denote the corresponding message from flow node
f to counter node c at iteration ` ≥ 0. The messages in the
Maxwell decoder are 2-tuples defined as

ψ
(`),M
c→f = (ψ

(`),M
1,c→f , ψ

(`),M
2,c→f),

µ
(`),M
f→c = (µ

(`),M
1,f→c, µ

(`),M
2,f→c).

The first component of the messages is updated according
to the update rules of the standard MP decoder described in
Section II-A. The second component of the messages takes
values in the set {0, ∗, g}. The meaning of a 0-message is
that the value of the flow node from which this message
emanates is known, the meaning of the ∗-message is that the
value of the flow node is unknown and, finally, the meaning
of a g-message is that the value of the flow node has been
guessed or that the value of the flow node can be expressed
as a linear combination of the values of other flow nodes that
all have been guessed. Operationally, we can think of a g-
message emanating from a flow node f as a shorthand nota-
tion for a nonempty list {fj1 , . . . , fjl , bj1 , . . . , bjl ,K}, where
{fj1 , . . . , fjl} is a list of flow nodes whose values have been
guessed, {bj1 , . . . , bjl}, with bji ∈ Z, where Z is the set of
integers, is a corresponding list of integer coefficients, and
K is an integer that indicates that φ(f) can be expressed as
φ(f) = K− bj1φ(fj1)− · · · − bjlφ(fjl).

For the second component of the counter-to-flow node mes-
sages we have the following update rule, for ` = 1, . . . , `max,

ψ
(`),M
2,c→f =


0, if ∀f ′ ∈ Γ(c) \ f, µ(`−1),M

2,f′→c = 0

∗, if ∃f ′ ∈ Γ(c) \ f, µ(`−1),M
2,f′→c = ∗

g, if ∀f ′ ∈ Γ(c) \ f, µ(`−1),M
2,f′→c 6= ∗ and

∃f ′ ∈ Γ(c) \ f, µ(`−1),M
2,f′→c = g

. (19)

Initially, we set µ(0),M
2,f→c = ∗ for all (f, c) ∈ E . The last rule in

(19) states that we will get a g-message if for all connected

flow nodes (except the one to which the outgoing message
is transmitted) the value is either known, has been guessed,
or can be expressed as a linear combination of the values
of guessed flow nodes, and at least one connected flow node
sends a g-message. Since the outgoing message from a counter
node is the difference of the value of the counter node and the
sum of the values of all its neighboring flow nodes (except the
one to which the outgoing message is transmitted) (see (6)), it
follows that the outgoing message can also be expressed as a
linear combination of guessed flow node values. Operationally,
we have several lists entering the counter node c. The outgoing
list of flow nodes will be the union of the incoming lists, where
the coefficient of flow nodes that occur a multiple number of
times in the incoming lists is replaced by the corresponding
sum of coefficients multiplied by −1. If the sum is equal to
zero, the flow node is eliminated from the outgoing list. Also,
the integer K of the outgoing list is φ(c) minus the sum of all
K’s of the incoming lists.

For the flow-to-counter node messages, the first component
is again updated according to the update rule of the standard
MP decoder described in Section II-A. For the second compo-
nent, we have the following update rule, for ` = 1, . . . , `max,

µ
(`),M
2,f→c =



0, if ∃c′ ∈ Γ(f) \ c, ψ(`),M
2,c′→f = 0 or

µ
(`),M
1,f→c = µ

(`−1),M
1,f→c

∗, if ∀c′ ∈ Γ(f) \ c, ψ(`),M
2,c′→f = ∗

g, if ∀c′ ∈ Γ(f) \ c, ψ(`),M
2,c′→f 6= 0 and

∃c′ ∈ Γ(f) \ c, ψ(`),M
2,c′→f = g

, (20)

where we assume that the first component of the messages,
i.e., µ(`),M

1,f→c is updated first.

B. Maxwell Decoder on the Equivalent Graph

The Maxwell decoder can also be implemented on the
equivalent graph introduced in Section III. In this case, the
first component of the messages is updated according to the
update rules of the MP decoder on the equivalent graph, as
described in Section III-B. The update rules for the second
component are as follows.

For the flow nodes f̃ ∈ F̃ in the equivalent graph, we use
the same update rule as in (20) for type-1 edges over all
incoming messages on all connected edges (except the one
on which the outgoing message is transmitted). On the other
hand, for type-2 edges in an edge bundle, the update rule is
a bit different. Similar to the MP decoder (see Section III),
we can use the same update rule as for type-1 edges, i.e., the
update rule in (20), applied over all incoming messages on all
connected edges except the particular type-1 edge connected
to the counter node that labels the type-2 edge in the bundle
under consideration.

For the counter nodes c̃ ∈ C̃ in the equivalent graph, the
update rule follows a three-step procedure, similar to that of
the MP decoder described in Section III-B. In particular, the
three-step procedure is the same as for the MP decoder, with
the difference that the update rule in (19), the update rule
in (20), and the update rule in (19) are used in steps 1, 2,
and 3, respectively, of the three-step procedure described in
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Section III-B (instead of (6), (7), and (6), respectively, for
the MP decoder). Furthermore, as for the MP decoder on
the equivalent graph, this three-step procedure only assigns
outgoing messages on the type-1 edges connected to c̃ in
the equivalent graph. The second component of the outgoing
messages on the type-2 edges in the edge bundles is set to ∗.

Now, let φ̂(`),M
G (f) denote the estimated flow size at flow

node f ∈ G at iteration ` under Maxwell decoding on
the original CB graph G and l

(`),M
G (f) its label (“guessed”,

“unknown”, or “known”). The corresponding estimated flow
size at iteration ` and flow node f̃ ∈ G̃ (corresponding to
flow node f in the original graph G) under Maxwell decoding
on the equivalent graph G̃ is denoted by φ̂

(`),M

G̃ (̃f). Its label

is denoted by l
(`),M

G̃ (̃f). Based on the above discussion, the
proposition below (which is analogous to Proposition 1 for
the MP decoder) follows by inspection.

Proposition 2. For any given CB graph G and iteration
number ` ≥ 1 (with respect to the original graph G),

l
(2`),M
G (f) = l

(`),M

G̃ (̃f), ∀f ∈ G,

and for all f ∈ G that are labeled as “known”,

φ̂
(2`),M
G (f) = φ̂

(`),M

G̃ (̃f),

i.e., the two graphs are iteration-by-iteration equivalent.

We have the following result.

Theorem 3. The area threshold from Definition 2, ε̄, is an
upper bound on the Maxwell decoding threshold.

Proof: See Appendix B.

Remark 1. The proof of Theorem 3 in Appendix B is based
on DE of the Maxwell decoder as outlined above. As in
Section IV, two consecutive iterations are combined into a
single one, i.e., we perform the analysis on the equivalent
graph of Section III. From Proposition 1, Proposition 2, and
the equivalence of the DE on the two graphs, it follows directly
that the upper bound from Theorem 3 applies also to the
original CB graph.

Below, we provide an analogue to [26, Th. 3.121] for the
special case of ε = ε̄ for the first statement of the theorem. The
theorem below, together with Theorem 3 and the simulation
results from Section VII of the Maxwell decoder, lead to
the conjecture that the area threshold is in fact equal to the
Maxwell decoding threshold.

Theorem 4. The EMP EXIT curve (defined for the equivalent
graph as in (15)) for the expected residual CB graph when
the peeling decoder stops is given in parametric form by

(ε̃, h̃EMP) = (ε̃(z;x), (1− ρ̃(1− z;x))k),

where

ε̃(z;x) =
z

(1− ρ̃(1− z;x))k−1
and ρ̃(z;x) = 1− g(x− zx)

g(x)
,

and where x = x(ε) is the largest fixed-point of the DE recur-
sion in (14) for a given ε. Furthermore, for ε = ε̄ (the area

threshold from Definition 2), the area
∫ 1

0
h̃EMP(z;x) dε̃(z;x)

is equal to zero.

Proof: See Appendix C.

Conjecture 1. The area threshold from Definition 2, ε̄, is equal
to the Maxwell decoding threshold and thus a lower bound on
the MAP decoding threshold.

Note that ML decoding of CBs is equivalent to solving a
system of linear equations (with binary coefficient matrix) over
the set of positive integers larger than or equal to fmin. This
problem resembles the well-known integer knapsack problem,
which is known to be NP-hard. It can be shown that having
a polynomial-time algorithm for the decoding of CBs implies
having a polynomial-time algorithm for the integer knapsack
problem. Thus, ML decoding of CBs is an NP-hard problem.
This is in contrast to ML decoding of LDPC codes on the BEC
which can be done in polynomial time, since it is equivalent
to solving a system of linear equations over the binary field.
Note that the ML decoding problem (which is equivalent in
terms of error performance to the Maxwell decoding problem)
of CBs can be cast as a linear integer program as follows,

maximize
∑

f∈F φ(f)
s. t.

∑
f∈Γ(c) φ(f) = φ(c), ∀c ∈ C and

φ(f) ≥ fmin, ∀f ∈ F
. (21)

Thus, when simulating the Maxwell decoder in Section VII,
we do not implement it using the guessing framework above
(which is very useful for asymptotic analysis using DE as
shown in Appendix B), but instead solve the linear integer
program in (21) using the commercial Gurobi software [27].

VI. SPATIALLY-COUPLED COUNTER BRAIDS

We consider the ensemble (λ, ρ,N,w) of single-layer SC-
CBs (coupling the original bipartite graph), where N is the
coupling chain length and w, 1 ≤ w ≤ N + 1, is a smoothing
parameter [7]. The corresponding ensemble of SC graphs is
denoted by Gc(λ, ρ,N,w). The ensemble is constructed as
follows. A collection of N flow-node groups are placed at
positions {1, 2, . . . , N}, each containing κ nodes of degree k,
such that κ = m0

N (the total number of flow nodes, i.e., the
number of distinct flows to be counted, is m0). Furthermore, a
collection of M = N +w− 1 counter-node groups are placed
at positions {1, 2, . . . ,M}, each containing κRjL

′(1)
R′(1) =

κRjk
γ

nodes of degree j (we implicitly assume that N is chosen such
that κRjk

γ and also m0

N are integers).
The κk edge sockets in each group of flow and counter

nodes are partitioned into w equally-sized subgroups (assum-
ing that κkw is an integer) using a uniform random interleaver.
We denote by P(f)

n,i and P(c)
n,i the set of flow and counter node

sockets, respectively, in the i-th subgroup, i = 0, 1, . . . , w−1,
at position n, where n = 1, . . . , N for flow node sockets and
n = 1, . . . ,M for counter node sockets. The SC ensemble
is constructed by adding edges that connect the sockets in
P(f)
n,i to the sockets in P(c)

n+i,i. Different graphs are obtained by
different socket associations. Note that this construction leaves
some sockets of the counter-node groups at the boundary
unconnected and these are removed. In the following, we will
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ξi(k, γ,N,w,x
(2`−2)) =

N∑
g=1

Ag,i

 M∑
h=1

Ag,h

1− ρ

1−
N∑
p=1

Ap,h

{
M∑
q=1

Ap,q

[
1− ρ(1− x(2`−2)

q )
]}k−1

k−1

. (22)

ξ̃i(k, γ,N,w,x
(2`−2)) =

N∑
g=1

Ag,i

 M∑
h=1

Ag,h

1− ρ

1−
N∑
p=1

Ap,h

{
M∑
q=1

Ap,q

[
1− ρ(1− x(2`−2)

q )
]}k−1

k . (23)

denote the coupled ensemble Gc(λ, ρ,N,w) by the alternative
notation Gc(k, γ,N,w).

A. Density Evolution Recursion

Denote by x
(`)
i , i = 1, . . . ,M , the error probability of an

outgoing message from a flow node at position i at iteration
`. Note that since there are no flow-node groups at positions
i > N , initially x

(0)
i = 0 for N < i ≤ M . Furthermore, let

x(`) = (x
(`)
1 , . . . , x

(`)
M ). Using the ensemble defined above, we

get the recursion x(2`)
i = ε · ξi(k, γ,N,w,x(2`−2)) where the

function ξi(k, γ,N,w,x(2`−2)) is given in (22) at the top of
the page, and where A = {Ap,q} is the N×M matrix defined
by

Ap,q = [A]p,q =

{
1
w , if 1 ≤ q − p+ 1 ≤ w
0, otherwise

.

Note that, contrary to SC-LDPC codes, for which the SC
recursion contains two summations (an outer summation over
N terms and an inner summation over M terms), the recursion
for SC-CBs contains four summations3 (two summations over
N terms and two summations over M terms), since the update
rule for the flow nodes is different for odd and even iterations.
As a result, SC-CBs do not fit within the general framework
of coupled scalar recursions outlined in [19].

The MP decoding threshold of the coupled ensemble
Gc(k, γ,N,w) is defined (analogous to the uncoupled case)
as εcMP = εcMP(k, γ,N,w), where

εcMP(k, γ,N,w) , sup
{
ε ∈ E | x(∞)(k, γ, ε,N,w) = 0

}
.

Alternatively, we can analyze the asymptotic behavior of SC-
CBs by fixing ε and finding the minimum value of β, denoted
by βc

MP = βc
MP(k, ε,N,w), such that decoding is successful,

where

βc
MP(k, ε,N,w) , inf

{
β > 0 | x(∞)(k, k/β, ε,N,w) = 0

}
.

Lemma 4. The design rate Rc(k, γ,N,w, d) (in bits per flow)
of the coupled ensemble Gc(k, γ,N,w) with w ≤ N + 1 is

Rc(k, γ,N,w, d)

=

dk
∑∞
i=0

e−γγi

i!

[
N − w + 1 + 2

∑w−1
j=1

(
1−

(
j
w

)i+)]
γN

,

where i+ = i for i > 0, i+ = 1 for i = 0, and d is the depth
(in number of bits) of the counters.

3Due to the band-structure of the matrix A, there are only w nonzero terms
in all four summations.
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Fig. 3. EMP EXIT curves for CBs and SC-CBs with k = 3 and γ =
4.233585. For the coupled ensembles, the EMP EXIT curve of the midpoint
i =

⌊
M
2

⌋
is given.

Proof: The proof is along the same lines as the proof
of [7, Lem. 3] for the design rate of regular SC-LDPC code
ensembles. Details are omitted for brevity.

For the uncoupled ensemble Gc(k, γ, 1, 1), the design rate
reduces to dk

γ = dβ. Not surprisingly, the coupling mechanism
yields a rate increase that vanishes in the limit N → ∞ (for
w fixed).

Finally, we define

βc = βc(k, γ,N,w) ,
Rc(k, γ,N,w, d)

d
(24)

for a coupled system (as in the uncoupled case) to be the
fraction of the number of counter and flow nodes.

B. Extended Message Passing Extrinsic Information Transfer
Curve

As for the uncoupled system, we can define EMP EXIT
curves (ε(x), hEMP

i (x)) for each position i, i = 1, . . . ,M ,
for a SC system based on fixed-points of the coupled
DE recursion x

(2`)
i = ε · ξi(k, γ,N,w,x(2`−2)), where

ξi(k, γ,N,w,x
(2`−2)) is given in (22), and where ε(x) =

xi
ξi(k,γ,N,w,x) , hEMP

i (x) = ξ̃i(k, γ,N,w,x) (defined in (23)
at the top of the page), and x is a fixed-point of the coupled
recursion.

As an example, in Fig. 3 we plot the EMP EXIT curve
hEMP
bM2 c

(as a function of ε) for k = 3 and γ = 4.233585 for the
pairs (N,w) = (8, 5), (32, 5), and (128, 10). As we can clearly
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see from the figure, SC-CBs exhibit improved MP decoding
thresholds. Furthermore, the thresholds saturate to some fixed
value when N and w become large. In fact, the curves for the
(k, γ, 32, 5) SC-CB (the green curve) and the (k, γ, 128, 10)
SC-CB (the red curve) are almost indistinguishable. We also
plot the Maxwell curve from the potential function framework
of [19] (i.e., hEMP(x̄∗(ε)) versus ε where x̄∗(ε) is taken from
[19, Def. 28]). Interestingly, there is a remaining gap between
ε̄ (from Definition 2) and the MP decoding thresholds of SC-
CBs when N and w become large. This gap is discussed in
Section VIII below.

C. Extension to More Layers

We remark that SC-CBs with more than one layer can be
easily constructed by applying the spatial coupling procedure
described above to each layer. As for multilayer CBs, the
decoding of multilayer SC-CBs is performed layer-by-layer
(see Section II-A), from the inner-most layer to the outer-
most layer. Furthermore, there are no iterations between layers.
Decoding is successful if the decoding of each layer (starting
from the inner-most layer) is successful. Accordingly, the
corresponding DE is also performed layer-by-layer.

Denote by x(`)
i,l the error probability of an outgoing message

from a flow node at spatial position i at layer l at the
`-th iteration, and let x(`)

l = (x
(`)
1,l , . . . , x

(`)
M,l). Here, we

assume that the coupling chain length N and the smoothing
parameter w are the same for all layers. Also, denote by εl
the probability of observing a flow at layer l of size strictly
larger than fmin,l (ε1 = ε). For layer one, fmin,1 = fmin (see
Section II-A). On the other hand, for a layer l > 1, fmin,l = 1,
which corresponds to the case when a counter at layer l − 1
overflows only once (the probability of this event is nonzero).
Furthermore, let εc,lMP be the coupled MP decoding threshold
of layer l, i.e.,

εc,lMP = εc,lMP(kl, γl, N,w)

, sup
{
εl ∈ E | x(∞)

l (kl, γl, εl, N,w) = 0
}
.

It is important to note that the input flow size distribution
pΦ will induce a certain flow size distribution at layer 2, and
subsequently at the next layers. We denote by pi

Φ,l the flow
size distribution at layer l induced by pΦ. Asymptotically,
for each layer, we can find the (induced) probability εil of
observing a flow size strictly larger than fmin,l from pi

Φ,l. To
show the dependency of εil on pΦ we will write εil(pΦ). The
MP decoding threshold of the multilayer SC-CB can then be
computed in two steps.

1) For each layer l, compute the corresponding MP decod-
ing threshold εc,lMP.

2) The MP decoding threshold of the multilayer SC-CB is
then

εcMP = εcMP(k,γ, N,w)

, sup
{
ε ∈ E | x(∞)

1 (k1, γ1, ε,N,w) = 0,

εi2(pΦ) ≤ εc,2MP, . . . , ε
i
L(pΦ) ≤ εc,LMP

}
,

where γ = (γ1, . . . , γL) and k = (k1, . . . , kL).

For a given depth of the counters at layer l, dl, the induced
flow size distribution at layer l + 1 can be easily computed.
With some abuse of notation, for an arbitrary counter node cl

at layer l, l = 1, . . . , L, let φ(cl) =
∑

f∈Γ(cl) φ(f) (i.e., φ(cl)
ignores the fact that the counter node has finite depth). Also,
let φ(fl) be the size of an arbitrary flow node fl at layer l,
l = 2, . . . , L. We have

Pr
(
φ(fl) = a

)
= Pr

(
a2dl−1 ≤ φ(cl−1) < (a+ 1)2dl−1

)
,

and

Pr
(
φ(cl) = a

)
=

⌊
a

fmin,l

⌋∑
b=1

Pr
(
φ(cl) = a | deg(cl) = b

)
Pr
(
deg(cl) = b

)
,

where deg(c) = |Γ(c)| is the degree of counter node c. Note
that Pr

(
deg(cl) = b

)
follows directly from the counter node

degree distribution.
To compute Pr

(
φ(cl) = a | deg(cl) = b

)
we need to enu-

merate all order-b integer partitions of a (i.e., all different ways
of writing a as a sum of b positive integers not considering
the order of the summands) in which each summand is larger
than or equal to fmin,l. Let A(a, b) be the set of such integer
partitions of a. Then,

Pr
(
φ(cl) = a | deg(cl) = b

)
=

∑
A∈A(a,b)

Pr(A),

where the probability of partition A ∈ A, Pr(A), follows
directly from the induced flow node degree distribution pi

Φ,l

at layer l. The induced probability εil is obtained as

εil = 1− Pr
(
φ(fl) = 0

)
− Pr

(
φ(fl) = 1

)
= 1− Pr

(
0 ≤ φ(cl−1) < 2dl−1

)
− Pr

(
2dl−1 ≤ φ(cl−1) < 2dl−1+1

)
= 1− Pr

(
0 ≤ φ(cl−1) < 2dl−1+1

)
.

For the particular case of two layers, the induced probability
εi2 is easily obtained, since only the two first terms of the first
induced probability distribution pi

Φ,2 are needed.
Finally, we remark that the procedure above to derive the

induced flow size distributions is general and applies also to
multilayer CBs (by setting the coupling chain length to N = 1
and the smoothing parameter to w = 1).

VII. NUMERICAL RESULTS

In this section, we present several numerical results that
show threshold improvement, but lack of threshold saturation.
In addition, we present simulation results for both the MP and
the Maxwell decoder of CBs that show that, in fact, there is
no threshold saturation.

We assume the power law Pr(φ(f) > η) = η−α, where η is
a positive integer, for the flow size distribution [28]. Typically,
flow size distributions from real Internet traces have α ≈ 2,
while for distributions with a heavier tail a smaller value of
α should be used [28]. Due to the nature of the power law
distribution, fmin = 2 for all exponents α. The particular value
of ε is related to α, since ε = 2−α. As an example, α = 1.5
gives ε = 2−1.5. We use this value for ε in the simulations
below.



13

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

β

G
ap

to
ar

ea
th

re
sh

ol
d

(k,N,w) = (3, 128, 5)

(k,N,w) = (3, 1, 1)

(k,N,w) = (6, 128, 5)

(k,N,w) = (6, 1, 1)

(k,N,w) = (8, 128, 5)

(k,N,w) = (8, 1, 1)

Fig. 4. The difference ε̄−εcMP, where ε̄ is the area threshold from Definition 2
and εcMP is the MP decoding threshold of SC-CBs, as a function of β for
different values of the left-degree k with (N,w) = (128, 5) and (1, 1)
(uncoupled).

A. Comparison of Area and Message Passing Decoding
Thresholds

In Fig. 4, we plot the difference between the area threshold
from Definition 2 (conjectured to be a lower bound on the
MAP decoding threshold, see Conjecture 1) and the MP
decoding threshold of SC-CBs, ε̄−εcMP, as a function of β = k

γ
for different values of the left-degree k. The SC-CBs have
parameters (N,w) = (128, 5). For comparison purposes, we
also plot ε̄ − εMP for the uncoupled CBs ((N,w) = (1, 1)).
As we can observe from the figure, there is a gap between the
MP decoding threshold of SC-CBs and the conjectured lower
bound on the MAP decoding threshold. Thus, surprisingly,
threshold saturation does not occur for SC-CBs. However, the
gap to the conjectured lower bound is significantly larger for
uncoupled CBs, meaning that spatial coupling indeed improves
performance. Note that the gap varies with β and depends on
k.

We remark that when β becomes large (in the sense of
approaching one), the area threshold ε̄ becomes larger than
one. The minimum value of β for which ε̄ is larger than
one, referred to as the transition point, depends on k (larger
k implies a lower transition point). From the perspective of
the DE this is not really a problem (the recursion is a valid
recursion also for values of ε above one), but of course there is
no physical system corresponding to such values of ε (since ε
is a probability). From a practical perspective, however, there
is no need to design a system with a value of β above its
transition point.

B. Simulation Results

In Fig. 5, we give symbol error rate (SER) results for CBs
decoded using the MP decoding algorithm and the Maxwell
decoder, for k = 6 and ε = 2−1.5, as a function of β. In
the figure we also plot the SER for several SC-CBs with
parameters (N,w,m0) = (16, 3, 4096), (16, 3, 16384), and
(64, 3, 65536), for the same k and ε. The Maxwell decoder
has been implemented as described at the end of Section V,
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Fig. 5. SER performance of CBs and SC-CBs as a function of β for k = 6
and ε = 2−1.5.

and due to its high computational complexity (the problem
is indeed NP-hard) only a short block length (m0 = 100)
has been considered (the green curve in Fig. 5). For MP
decoding of CBs, we have considered the block lengths
m0 = 1024 and 4096. The four black vertical lines show
different thresholds as follows (in the order from left to right):
The conjectured Maxwell decoding threshold (or the area
threshold) and the coupled MP decoding thresholds βc

MP for
w = 3 and N = 128, 64, and 16.

For both CBs and SC-CBs, we can clearly see how the
performance improves as the block length increases (for a
given coupling chain length and smoothing parameter) and
approaches the corresponding MP decoding threshold. As
expected, there is a larger gap to the MP decoding threshold for
SC-CBs than for uncoupled CBs for a given fixed overall block
length due to the fact that the block length at each position
becomes shorter as the coupling chain length increases. SC-
CBs achieve significantly better performance than uncoupled
CBs. In particular, the threshold is improved from βMP = 0.88
to βc

MP = 0.57 for coupling length N = 128 and w = 3.
However, it is apparent from the figure that the MP decoding
threshold for the coupled ensembles does not saturate to
the area threshold (it remains a gap to the area threshold
ε̄ = 0.43). The lack of threshold saturation is also supported by
the simulation results of the Maxwell decoder (green curve).
Despite of the short block length, the Maxwell decoder for the
uncoupled CB performs significantly better than MP decoding
of SC-CBs.

C. Rate Gap to Entropy Lower Bound

In Fig. 6, we depict the rate gap of an optimized (over
γ) single-layer SC-CB to the entropy lower bound of the
flow size distribution (in bits per flow) as a function of α
for different values of the flow node degree k. The number
of spatial positions is fixed to N = 128 and the smoothing
parameter is fixed to w = 5, while α is sampled from 0.5 to 2.5
in steps of 0.2. The depth d of the counters has been chosen
such that the average asymptotic probability that a counter
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lower bound of the flow size distribution (in bits per flow) as a function of α
for different values of the flow node degree k. The number of spatial positions
is fixed to N = 128 and the smoothing parameter is fixed to w = 5.

node overflows (computed from simulations for a large value
of m0) over the ensemble of possible CBs (for given values
of k, γ, and α) is at most 10−4. Degree k = 6 gives the
lowest gap for all values of α. Moreover, k = 8 gives a larger
gap than k = 3 when α is small. The reason is that a larger
depth d is required to maintain the same average asymptotic
overflow probability. The same observation was made in [29]
for α = 1.5.

For α = 1.5, the optimized SC-CB with (k,N,w) =
(6, 128, 5) has a gap to the entropy lower bound of approxi-
mately 4.5 bits per flow. For an uncoupled CB with k = 3
(which gives the best performance, since the performance
degrades with increasing k as shown in [29, Fig. 3]) the
corresponding rate gap (with the same overflow probability) is
approximately 5.3 bits per flow,4 meaning that spatial coupling
gives a gain of approximately 0.8 bits per flow.

The rather large gap to the entropy lower bound in Fig. 6
is due to having only a single-layer system. To increase
performance, more layers are needed. As shown in Figs. 4, 5,
and 6, spatial coupling significantly improves performance of
single-layer uncoupled CBs. Since the decoding of multilayer
CBs proceeds layer-by-layer, we also expect multilayer SC-
CBs to significantly improve the performance of their uncou-
pled counterparts: Spatial coupling will improve the decoding
threshold for each layer and hence a better overall decoding
threshold (see Section VI-C) is expected.

VIII. DISCUSSION ON THE GAP TO THE AREA
THRESHOLD

As shown in the previous section, we observe an improve-
ment of the MP decoding threshold with spatial coupling, but

4The gap of approximately 5.3 bits per flow to the entropy lower bound
matches well with the results in [1, Fig. 12]. Note that in [1, Fig. 12] the
entropy lower bound is shown to be slightly below 3 bits per flow. However,
this seems to be a misprint, as it is just below 2 bits per flow for α = 1.5.
Moreover, the explicit overflow probability used when calculating the rate is
not explicitly stated in [1].
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Fig. 7. The difference ε̄−εcMP, where ε̄ is the area threshold from Definition 2
and εcMP is the MP decoding threshold of regular SC-CBs, as a function of
the left-degree k for different values of β with (N,w) = (128, 5) and (1, 1)
(uncoupled).

no threshold saturation to the potential threshold by coupling
the original bipartite graph (see Section VI). The gap to the
area threshold seems to be fundamental and is still present
even for other more structured ways to do spatial coupling.
For instance, the gap is still present with regular right degree
distributions, i.e., for SC-CBs where the underlying uncoupled
ensemble has a regular right degree distribution, as can be seen
in Fig. 7. Different curves correspond to different values of β.
For instance, for the two blue curves (the dash-dotted curve is
for uncoupled CBs, while the solid curve is for SC-CBs), the
left-degree k increases from 3 to 8, while the right-degree is
equal to 2k, which results in β = 1/2. Again, we observe a
gap between the MP decoding threshold of (k, γ, 128, 5) SC-
CBs and the area threshold. Note that the gap grows with k
and depends on β, as also shown in Fig. 4. Also, as shown
in Fig. 4, the gap to area threshold is significantly larger for
uncoupled CBs, meaning that spatial coupling indeed improves
performance for regular CBs.

We remark that coupling the equivalent graph repre-
sentation of Section III gives exactly the same coupled
DE recursion x

(2`)
i = ε · ξi(k, γ,N,w,x(2`−2)), where

ξi(k, γ,N,w,x
(2`−2)) is given in (22). However, interestingly,

if we consider the coupled version of (11)–(13), i.e., we
substitute y and x in (12) and (13), respectively, by an
average over spatial positions, we do indeed observe threshold
saturation to the potential threshold. The DE recursion derived
below corresponds to the coupled version of (11)–(13), split
into two steps.

Let x(`)
i and y(`)

i , i = 1, . . . ,M , denote the output message
error probability at a flow and counter node, respectively, at
the `-th iteration at coupling chain position i. As before, we
initialize x(0)

i = 0 for N < i ≤M . Now, define the following
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DE equations at iteration `,

y
(`)
i =

1− ρ
(

1− 1
w

∑min(i−1,w−1)
j=0 x

(`−1)
i−j

)
, if ` is odd

1− ρ
(

1− x(`−1)
i

)
, if ` is even

,

x
(`)
i =


(
y

(`)
i

)k−1

, if ` is odd

ε
(

1
w

∑min(M−i,w−1)
j=0 y

(`)
i+j

)k−1

, if ` is even
.

With this modified DE, threshold saturation to the potential
threshold, which (from Conjecture 1) is a lower bound on the
MAP decoding threshold, can be proved using the potential
function framework by Yedla et al. outlined in [19]. This DE
is characterized by an average only for odd and even iterations
for the counter node and flow node updates, respectively.
However, when coupling the original (or the equivalent) graph
in the standard way, the average appears for all iterations
(hence the four summations in (22)). This effect, which is
due to the fact that, as opposed to LDPC codes, the flow node
update is different for odd and even iterations, seems to be the
responsible for the lack of threshold saturation.

A question that remains open is whether the DE equations
above correspond to a physical system, i.e., whether threshold
saturation can be achieved with an alternative coupling.

The lack of threshold saturation has been observed in the
past for other coupled systems. For example, SC-LDPC codes
decoded using the corrected min-sum decoding algorithm
show no threshold saturation, albeit some improvement to the
threshold [30]. The lack of threshold saturation has also been
observed from simulation of linear programming decoding
of long SC codes using the alternating direction method of
multipliers [30].

It is interesting to remark, however, that threshold saturation
has been numerically observed in [10] for iterative HDD of
SC generalized LDPC codes even with sub-optimal (bounded
distance) component decoding, which shows that the lack of
saturation cannot by itself be explained by the hard-decision
nature of the MP decoding algorithm. In fact, a soft-decision
SP decoding algorithm as outlined in (2)–(3) could possibly
perform better than the MP decoding algorithm studied in
this paper. However, the complexity of such an algorithm is
significantly higher.

IX. CONNECTION WITH COMPRESSED SENSING

In this section, we explore the connection of CBs to CS as
established in [2].

We consider a single-layer SC-CB with m0 flow nodes,
f1, . . . , fm0

, corresponding to the distinct flows whose sizes are
to be measured, and m1 counter nodes. We define the flow size
vector φ = (φ1, . . . , φm0), of length m0, where φi = φ(fi) is
the actual flow size of flow i. As in Section IV, the minimum
flow size is fmin, i.e., φi ≥ fmin ∀i. Now, if fmin = 0, the
vector φ has a number of zero entries and the rest are nonzero
positive integers. Thus, φ can be interpreted as a nonnegative
(integer) signal vector. In this case, the m1 counters can be
also regarded as m1 linear measurements of φ. If the number
of nonzero entries in φ, denoted by t, is small (as compared
to m0), φ is a t-sparse vector. Thus, the CB architecture can
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Fig. 8. Undersampling-sparsity phase transition trajectory (under MP decod-
ing) of SC-CBs compared to two bounds from [2] and the Donoho-Tanner
phase transition trajectory for random Gaussian measurement matrices with
`1-norm minimization reconstruction.

be regarded as a CS scheme with the important difference that
for CBs, the signal is nonnegative. The MP decoding of the
CB corresponds now to the recovery of the vector φ based on
the m1 linear measurements. We remark that, while for CBs
φ is a vector with nonnegative integer entries, the asymptotic
analysis in Section IV depends only on the properties of the
CB graph and ε, and not on the exact value of fmin or the fact
that the flow sizes are integers. Thus, our previous analysis is
also valid for CS of nonnegative real signals.

Let R≥0 denote the set of nonnegative real numbers. Given a
vector φ ∈ Rm0

≥0 , of size m0, with t nonzero entries, we define
the sparsity ratio τ = t

m0
as the probability that a given entry

of the signal vector φ is nonzero. Note that τ = ε, i.e., the
probability of observing a flow size strictly larger than fmin =
0 (see Section IV). Furthermore, we define the undersampling
ratio (or factor) as the number of measurements over the signal
dimension, m0. This corresponds precisely to the parameter
β = m1/m0 defined in Section IV for uncoupled CBs. For
SC-CBs the undersampling ratio is equal to βc (taking into
account the rate increase due to edge effects (or termination)
for SC-CBs) defined in (24). We also define the undersampling
threshold, βth, as the lowest βc (for a given sparsity ratio τ )
such that the error probability for recovering t-sparse vectors
goes to zero as m0 → ∞ and t → ∞, while the ratio t

m0
is

fixed and equal to τ .
In Fig. 8, we plot βth as a function of τ for single-layer SC-

CBs, with parameters (k,N,w) = (6, 128, 5) and (8, 256, 5).
The curve βth(τ) is commonly known as the phase transition
curve in the CS literature. For comparison purposes, we also
report in the figure the corresponding threshold βth for the
two explicit constructions of CBs from [2], which we refer
to as sparse bound and dense bound (see [2]), respectively.
The sparse bound is for a family of left-regular CBs with γ =
ln(2)/ε, k = ln(1/ε)/ ln(2), and β(ε) = 1/(ln 2)2 · ε · ln(1/ε)
(see [2, Th. 5] for details). The dense bound is for a family
of irregular CBs (found by making use of results from the
optimization of LDPC code ensembles over the BEC) and has
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β(ε) =
√
ε (see [2, Th. 6]). It is observed that SC-CBs yield

a significant improvement of βth.
In Fig. 8, we also compare the phase transition curve of SC-

CBs to that of the ensemble of random Gaussian measurement
matrices with `1-norm minimization reconstruction by Donoho
and Tanner [4]. The curve is taken from [4] (see also [31],
which contains the actual data in Matlab format). Surprisingly,
SC-CBs give an improved phase transition trajectory in the
sparse region. As compared to the `1-norm minimization
reconstruction algorithm in [4], CS with CBs has the advantage
of using sparse measurement matrices, i.e., measurements can
be taken in O(1) operations, and of a corresponding MP
decoding algorithm of low complexity (linear in the signal
dimension, O(m0)), where O(·) is the standard O-notation.

Finally, we remark that iterative decoding for CS has also
been considered in the literature in [16], [21], [32]–[36]. One
such algorithm is the interval-passing algorithm by Chandar et
al. [21] for binary measurements matrices, which was further
generalized to nonbinary measurements matrices in [33]. In
fact, for CBs the interval-passing algorithm is equivalent to
the MP decoding algorithm outlined in [1] and presented here
in Section II-A.

X. CONCLUSION

We proposed spatial coupling of CBs as a means of im-
proving the MP decoding performance of (uncoupled) CBs.
As expected, SC-CBs yield significantly better MP decoding
thresholds than uncoupled CBs. However, surprisingly, our
results suggest that the well-known phenomenon of threshold
saturation does not occur for SC-CBs. We therefore analyzed
the asymptotic performance of single-layer CBs. In partic-
ular, we introduced an equivalent graph representation of
CBs with identical asymptotic and iteration-by-iteration finite-
length performance to that of the original CB graph, which
makes the analysis more amenable. Based on this equivalent
representation, we showed that the area threshold and the
potential threshold of CBs are equal. We also derived the
Maxwell decoder for CBs and formulated the conjecture that
the area threshold is equal to the Maxwell decoding threshold
and therefore a lower bound on the MAP decoding threshold.
There is a gap between the MP decoding threshold of SC-
CBs and the conjectured MAP decoding threshold, showing
that threshold saturation does not occur. Simulation results
of the Maxwell decoder for finite length, which show better
performance than MP decoding of SC-CBs for larger block
lengths, support the conjecture. Finally, we also considered
SC-CBs for CS and showed that they can yield very low
undersampling thresholds.

APPENDIX A
DERIVATION OF THE MESSAGE PASSING DECODING

ALGORITHM IN [1]

We derive the MP decoding algorithm proposed in [1] start-
ing from the flow node and counter node updates µMaxP,(`)

f→c (a)

and ψ
MaxP,(`)
c→f (a) of the max-product algorithm in (5) and

(4), respectively. We call the support of a probability dis-
tribution h(a) the set A of values for which h(a) 6= 0,

i.e., A = {a : h(a) 6= 0}. Note that for CBs a is a
nonnegative integer. Furthermore, it follows that the support
A(`)
µ of µ

MaxP,(`)
f→c (a) is the set of all integers in a given

range [L
(`)
f→c, U

(`)
f→c]. Initially, A(`)

µ is the set of all integers
in [fmin,∞) (we know that the minimum flow size is fmin

and there is no limit in the maximum flow size). Likewise,
the support A(`)

ψ of ψ
MaxP,(`)
c→f (a) consists of all integers

within a range [L
(`)
c→f , U

(`)
c→f ]. Therefore, the supports A(`)

µ and
A(`)
ψ are completely defined by the ranges [L

(`)
f→c, U

(`)
f→c] and

[L
(`)
c→f , U

(`)
c→f ], respectively, and as a consequence by the left

and right limits of the ranges. Equivalently, we will write
L

(`)
f→c ≤ a ≤ U

(`)
f→c and L(`)

c→f ≤ a ≤ U
(`)
c→f . We would like to

remark that the supports A(`)
µ and A(`)

ψ are iteration-dependent.
In particular, the limits of the corresponding ranges change
with iterations. In the following, with some abuse of language,
we will refer to the range on which a support is defined as the
support itself.

Assuming that the decoder does not exploit any information
about the flow size distribution, the message from flow node
f to counter node c at iteration ` = 0 can be initialized as

µ
MaxP,(0)
f→c (a) =

{
1

φ(c)−fmin+1 , if L(0)
f→c ≤ a ≤ U

(0)
f→c

0, otherwise
,

where L(0)
f→c = fmin and U (0)

f→c = φ(c), i.e., the flow size distri-
bution is assumed to be uniform over its support [L

(0)
f→c, U

(0)
f→c].

For notational simplicity, we define Kc , 1
φ(c)−fmin+1 .

Consider now the first iteration, ` = 1, of the max-product
algorithm. The update rule (4) can now be rewritten as

ψ
MaxP,(1)
c→f (a) =

{
K
|Γ(c)|−1
c , if L(1)

c→f ≤ a ≤ U
(1)
c→f

0, otherwise
,

where L(1)
c→f = max{φ(c)−∑f′∈Γ(c)\f U

(0)
f′→c, fmin}, U (1)

c→f =

max{φ(c) −∑f′∈Γ(c)\f L
(0)
f′→c, fmin}, and the support of the

distribution ψMaxP,(1)
c→f (a) is [L

(1)
c→f , U

(1)
c→f ]. The values L(1)

c→f and
U

(1)
c→f come directly from the fact that the value of a counter

node is equal to the sum of the values of its neighboring flow
nodes. On the flow node side, the update rule in (5) can be
written as

µ
MaxP,(1)
f→c (a) =


(
K
|Γ(c)|−1
c

)|Γ(f)|−1

, if L(1)
f→c ≤ a ≤ U

(1)
f→c

0, otherwise

where L
(1)
f→c = maxc′∈Γ(f)\c L

(1)
c′→f and U

(1)
f→c =

minc′∈Γ(f)\c U
(1)
c′→f . The new support [L

(1)
f→c, U

(1)
f→c] comes

directly from the fact that the update rule of (5) is the product
of the incoming messages.

Consider now the second iteration from counter nodes to
flow nodes. We get

ψ
MaxP,(2)
c→f (a)

=


((

K
|Γ(c)|−1
c

)|Γ(f)|−1
)|Γ(c)|−1

, if L(2)
c→f ≤ a ≤ U

(2)
c→f

0, otherwise
,
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where L
(2)
c→f = max{φ(c) − ∑f′∈Γ(c)\f U

(1)
f′→c, fmin} and

U
(2)
c→f = max{φ(c) −∑f′∈Γ(c)\f L

(1)
f′→c, fmin}. Similarly, one

can derive the messages ψMaxP,(`)
c→f (a) and µ

MaxP,(`)
f→c (a) for a

generic iteration `,

ψ
MaxP,(`)
c→f (a) =

{
A(`), if L(`)

c→f ≤ a ≤ U
(`)
c→f

0, otherwise
, (25)

µ
MaxP,(`)
f→c (a) =

{
B(`), if L(`)

f→c ≤ a ≤ U
(`)
f→c

0, otherwise
, (26)

where A(`) and B(`) are constants and

L
(`)
c→f = max

φ(c)−
∑

f′∈Γ(c)\f

U
(`−1)
f′→c , fmin

 , (27)

U
(`)
c→f = max

φ(c)−
∑

f′∈Γ(c)\f

L
(`−1)
f′→c , fmin

 , (28)

L
(`)
f→c = max

c′∈Γ(f)\c
L

(`)
c′→f , (29)

U
(`)
f→c = min

c′∈Γ(f)\c
U

(`)
c′→f . (30)

It is important to observe that the messages exchanged
between flow nodes and counter nodes in each iteration (see
(25)–(26)) are constant within a given support and 0 otherwise.
Therefore, it is enough to exchange the limits of the supports
L

(`)
f→c, U

(`)
f→c and L

(`)
c→f , U

(`)
c→f at each iteration, and we can

simplify the update rules of the max-product algorithm (25)–
(26) as

ψ
MaxP,(`)
c→f = (L

(`)
c→f , U

(`)
c→f), (31)

µ
MaxP,(`)
f→c = (L

(`)
f→c, U

(`)
f→c), (32)

i.e., each message is a two-dimensional vector. Note that these
vectors convey all relevant information. Furthermore, it can be
easily shown by induction that, for ` ≥ 1,

L
(2`−1)
f→c = L

(2`−2)
f→c , U

(2`)
f→c = U

(2`−1)
f→c ,

L
(2`−1)
c→f = L

(2`−2)
c→f , U

(2`)
c→f = U

(2`−1)
c→f ,

where L
(0)
c→f , fmin. Thus, for odd iterations it is only

necessary to exchange the upper limits U (2`−1)
f→c and U (2`−1)

c→f .
Similarly, for even iterations it is only necessary to exchange
the lower limits L(2`)

f→c and L
(2`)
c→f . Therefore, we can rewrite

(31) and (32) as

ψ
MaxP,(`)
c→f =

{
U

(`)
c→f , if ` is odd

L
(`)
c→f , if ` is even

, (33)

µ
MaxP,(`)
f→c =

{
U

(`)
f→c, if ` is odd

L
(`)
f→c, if ` is even

. (34)

Finally, using (27)–(30) and observing that the structure of the
update rules in (27) and (28) is the same, (33) and (34) can
be rewritten as

ψ
MaxP,(`)
c→f = max

φ(c)−
∑

f′∈Γ(c)\f

µ
MaxP,(`−1)
f′→c , fmin

 ,

µ
MaxP,(`)
f→c =

{
minc′∈Γ(f)\c ψ

MaxP,(`)
c′→f , if ` is odd

maxc′∈Γ(f)\c ψ
MaxP,(`)
c′→f , if ` is even

,

which is the MP decoding algorithm proposed in [1].
Notice that if the summation within the counter nodes had

been over some group, i.e., the flow node values were elements
of some group, then the support of the flow size distribution
would have stayed the same throughout the iterations, and
thus the MP algorithm would not work at all. Also, in this
case, both the SP and the max-product algorithms would have
been identical. The crucial point for reducing the support
of the flow size distribution throughout the iterations of the
algorithm is the nonexistence of additive inverses. Thus, in a
pure lossy source coding setup, more sophisticated algorithms,
for example the one in [17] (in this context for encoding), are
required.

APPENDIX B
ASYMPTOTIC ANALYSIS OF THE MAXWELL DECODER

In this appendix, we perform an asymptotic analysis (using
DE) of the Maxwell decoder introduced in Section V which
ultimately results in the proof of Theorem 3. The derivations
parallel and extend those performed in [20] for the Maxwell
decoder of LDPC codes on the BEC, highlighting the main
differences in the derivations. We assume in the following that
the reader is already to some extent familiar with the proof
given in [20].

A. Density Evolution Analysis

Let x(`)
0 , x(`)

∗ , and x
(`)
g denote the probability that the

second component of a message from a flow node to a
counter node at iteration ` ≥ 0 is 0, ∗, or g, respectively,
according to the update rules of the Maxwell decoder outlined
in (20). Likewise, let y(`)

0 , y(`)
∗ , and y

(`)
g , ` ≥ 1, denote the

corresponding probabilities for the second component of a
message from a counter node to a flow node, according to
the update rules of the Maxwell decoder outlined in (19). The
counter node DE updates are

y
(`)
0 = ρ

(
x

(`−1)
0

)
,

y
(`)
∗ = 1− ρ

(
x

(`−1)
0 + x(`−1)

g

)
= 1− ρ

(
1− x(`−1)

∗

)
,

y(`)
g = 1− y(`)

0 − y
(`)
∗ .

(35)

On the other hand, the flow node DE updates for odd iterations
are

x
(2`−1)
0 = 1− λ

(
y(2`−1)

g + y
(2`−1)
∗

)
= 1− λ

(
1− y(2`−1)

0

)
,

x
(2`−1)
∗ = λ

(
y

(2`−1)
∗

)
,

x(2`−1)
g = 1− x(2`−1)

0 − x(2`−1)
∗ ,
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and for even iterations

x
(2`)
0 = 1− ελ

(
y(2`)

g + y
(2`)
∗

)
= 1− ελ

(
1− y(2`)

0

)
,

x
(2`)
∗ = (1− δ)ελ

(
y

(2`)
∗

)
,

x(2`)
g = 1− x(2`)

0 − x(2`)
∗ ,

where δ represents the fraction of guesses performed so far.
Combining odd and even iterations, we get

x
(2`)
0 = 1− ελ

(
1− ρ

(
1− λ

(
1− ρ

(
x

(2`−2)
0

))))
= 1− ελ

(
g(1− x(2`−2)

0 )
)
, (36)

x
(2`)
∗ = (1− δ)ελ

(
1− ρ

(
1− λ

(
1− ρ

(
1− x(2`−2)

∗

))))
= (1− δ)ελ

(
g
(
x

(2`−2)
∗

))
, (37)

x(2`)
g = 1− x(2`)

0 − x(2`)
∗ . (38)

To settle the notation, when ` tends to infinity, we define

x , (x0, x∗, xg) ,
(
x

(∞)
0 , x

(∞)
∗ , x(∞)

g

)
,

y , (y0, y∗, yg) ,
(
y

(∞)
0 , y

(∞)
∗ , y(∞)

g

)
.

Now, since (y0, y∗, yg) is a function of (x0, x∗, xg) (see (35)),
any function of (x,y) is indeed just a function of x.

Note that the DE recursion in (36)–(38) is for the Maxwell
decoder on the equivalent graph introduced Section III. How-
ever, according to Proposition 2, the original and equivalent
graphs are iteration-by-iteration equivalent for the Maxwell
decoder. Thus, we can equivalently base our analysis on the
DE recursion in (36)–(38).

B. Analysis

For the Maxwell decoder we choose the following guessing
strategy. Set δ = 0 and run the ordinary MP decoding
algorithm for CBs (with the update rules in (6) and (7)), until
there is no further progress from one iteration round to the
next. Then, for each unknown flow node, assign g-messages
as outgoing messages to all its adjacent edges with probability
∆δ/(1 − δ), after which δ is incremented by ∆δ. Now, run
the Maxwell decoder (with the update rules in (19) and (20)),
until it stops. This whole procedure is repeated until δ = 1,
or until there are no more unknown flow nodes.

Let G be the total number of performed guesses and
m0∆G the number of newly guessed flow nodes when δ is
incremented by ∆δ. In more detail, for each i ∈ {1, . . . ,m0},
i is chosen independently with probability ∆δ/(1−δ). Then, if
the i-th selected flow node is unknown, then assign g-messages
as outgoing messages to all its edges and increase the number
of newly guessed flow nodes by one. It can be shown that [20]

E[∆G] = εL(y∗)∆δ. (39)

As explained above, after δ has been incremented by ∆δ and
g-messages have been assigned as outgoing messages to all
edges connected to the m0∆G newly guessed flow nodes, the
Maxwell decoder is run again until no further progress can be
made.

For each iteration of the Maxwell decoder there could be
flow nodes for which more than one of the incoming messages
is a g-message. As explained in Section V, a g-message is
just a nonempty list of flow nodes, a corresponding list of
coeffcients, and an integer K, giving an explicit resolution rule
for the value of the flow node (the value of the flow node is
equal to K minus the sum of the values of the flow nodes in
the list weighted by their respective coefficients). The fact that
there are several incoming g-messages imposes some linear
conditions and the number of independent conditions (over all
flow nodes) can be lower-bounded using [20, Lem. 11]. As
an example, if there are two incoming g-messages to a flow
node f5 and they are represented by the lists {f1, f3, 1, 1, 3}
and {f1, f2, f4, 1, 1, 1, 2}, respectively, then we get the linear
condition 3 − φ(f1) − φ(f3) = 2 − φ(f1) − φ(f2) − φ(f4),
which simplifies to φ(f3) = 1 + φ(f2) + φ(f4), and φ(f5) =
3−φ(f1)−φ(f3). Let lgi be the number of incoming g-messages
at a flow node of index i (i.e., fi), including the flow node
itself if it has been guessed. Now, it is not so hard to see
that the number of imposed conditions (over all flow nodes)
is
∑m0

i=1 (lgi − 1). On the other hand, some of these conditions
may also be dependent. Suppose that there are three incoming
g-messages to a counter node (from the flow nodes f1, f2,
and f3, respectively) and that they are represented by the lists
{f1,−1, 0}, {f2,−1, 0}, and {f3,−1, 0}, respectively, i.e., the
i-th g-message indicates that φ(fi) = 0 − (−1 · φ(fi)) =
φ(fi), i = 1, 2, 3. Then, the g-message from counter node
c to flow node f1 is {f2, f3, 1, 1, φ(c)}, to flow node f2 is
{f1, f3, 1, 1, φ(c)}, and to flow node f3 is {f1, f2, 1, 1, φ(c)},
from which we get the condition φ(c) = φ(f1)+φ(f2)+φ(f3)
at all three flow nodes. In particular, using the operational
update rule described in the paragraph following (19), the list
of flow nodes of the g-message from c to f1 is the union of {f2}
and {f3}, the corresponding list of coefficients is the sum of
the corresponding coefficients of the incoming lists multiplied
by −1, i.e., {−(−1),−(−1)} = {1, 1}, while the integer K
of the outgoing list is φ(c) minus the sum of all K’s of the
incoming lists, i.e., K = φ(c)− (0 + 0) = φ(c), which results
in the g-message {f2, f3, 1, 1, φ(c)} from c to f1. The other two
g-messages from c to f2 and from c to f3, respectively, follow
by symmetry. Thus, the number of independent imposed linear
conditions (over all flow nodes) is in general lower than the
number of conditions from the formula

∑m0

i=1 (lgi − 1). The
correction term can be upper-bounded (see [20, Lem. 11]) by∑

c∈Cg (Γ(c)− 1), where Cg is the subset of all counter nodes
all of whose incoming messages are g-messages. Note that
this is a worst-case situation in which all incoming messages
to a counter node are g-messages (see the example above).

Now, we can compute the expected value of the lower bound
from [20, Lem. 11] on the number of independent imposed
conditions after any stage of the Maxwell decoder (right-hand
side of [20, Lemma 11, Eq. (21)], excluding the term G). We
perform the same steps as in the analysis in [20, Sec. VI-G].
In fact, the analysis of the Maxwell decoder carried out in [20,
Sec. VI-G] is valid also in the context of CBs, except that [20,
Eqs. (22) and (23)] need to be properly modified following the
DE equations in (36) to (38). In particular, the right-hand side
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of [20, Eq. (22)] becomes

ε · (1− δ) {L′(y∗ + yg)yg − L(y∗ + yg) + L(y∗)}
+ εδL′(y∗ + yg)yg

= k [x∗ (1− y∗)− (1− x0) y0]

− ε · (1− δ) [L(1− y0)− L(y∗)]

+ k(1− y∗)xg,

(40)

and the right-hand side of [20, Eq. (23)] becomes

L′(1)

R̄′(1)

{
R̄′(1− x∗)xg − R̄(1− x∗) + R̄(1− x∗ − xg)

}
=

k

R̄′(1)

[
−R̄(1− x∗) + R̄(x0)

]
+ k(1− y∗)xg,

(41)

where

R̄(x) =

∫ x
0

(1− g(1− z)) dz∫ 1

0
(1− g(1− z)) dz

. (42)

As in [20], let the function F (x, ε, δ) denote the difference of
(40) and (41). We get

F (x, ε, δ) , k [x∗ (1− y∗)− (1− x0) y0]

− ε · (1− δ) [L(1− y0)− L(y∗)]

+
k

R̄′(1)

[
R̄(1− x∗)− R̄(x0)

]
= kx∗ (1− y∗) + ε · (1− δ)L(y∗) + k

R̄(1− x∗)
R̄′(1)

+ F̄ (x0, ε, δ),

where

F̄ (x0, ε, δ) , −k(1− x0)y0 − ε · (1− δ)L(1− y0)− k R̄(x0)

R̄′(1)

depends only on x0. The function F (x, ε, δ) is the expected
value of the number of independent imposed conditions after
any stage of the Maxwell decoder. Since y∗ = g(x∗) and
ε · (1− δ)L(g(x∗)) = x∗g(x∗) (from (37)), we have

F (x, ε, δ) = kx∗ (1− g(x∗)) + ε · (1− δ)L(g(x∗))

+ k
R̄(1− x∗)
R̄′(1)

+ F̄ (x0, ε, δ)

= kx∗ (1− g(x∗)) + x∗g(x∗) + k
R̄(1− x∗)
R̄′(1)

+ F̄ (x0, ε, δ)

= kx∗ (1− g(x∗)) + x∗g(x∗)

+ k

∫ 1−x∗

0

(1− g (1− z)) dz + F̄ (x0, ε, δ)

= kx∗ (1− g(x∗)) + x∗g(x∗)

+ k

[∫ 1

0

(1− g (z)) dz −
∫ x∗

0

(1− g (z)) dz

]
+ F̄ (x0, ε, δ)

(a)
= P (x∗) + k

∫ 1

0

(1− g (z)) dz + F̄ (x0, ε, δ),

where (a) follows from the definition of the trial entropy in
Definition 5. Thus,

F (x1, ε, δ)− F (x2, ε, δ) = P (x1
∗)− P (x2

∗)

when x1 = (x1
0, x

1
∗, x

1
g) and x2 = (x2

0, x
2
∗, x

2
g) have the same

x0-component, i.e., x1
0 = x2

0. This will become important in
the next subsection in the proof of Theorem 3.

Now, if δ is incremented by ∆δ, the normalized (with
respect to the number of flow nodes m0) expected number
of new independent conditions on the values of the newly
guessed flow nodes, denoted by ∆C, can be upper-bounded
by the difference

E[∆C] , F (x(ε, δ+ ∆δ), ε, δ+ ∆δ)−F (x(ε, δ), ε, δ+ ∆δ).
(43)

Following [20, Sec. VI-G], we can consider two separate
cases:

• x(ε, δ) is continuous (in the second component) in the
interval [δ, δ + ∆δ], from which it follows (using Taylor
series expansion) that

E[∆C] = O((∆δ)2), (44)

since it can be shown that the gradient is zero for x =
x(ε, δ + ∆δ).

• There is a discontinuity point at δ = δj where δj ∈
[δ, δ + ∆δ], in which case we get

E[∆C]−O(∆δ) = ∆Fj

, F

(
lim
δ↓δj

x(ε, δ), ε, δj

)
− F

(
lim
δ↑δj

x(ε, δ), ε, δj

)
(45)

(a)
= P

(
lim
δ↓δj

x∗(ε, δ)

)
− P

(
lim
δ↑δj

x∗(ε, δ)

)
(46)

(b)
=

∫ limδ↓δj x∗(ε,δ)

limδ↑δj x∗(ε,δ)

hEMP(z) dε(z), (47)

where (a) follows since the x0-component does not
depend on δ (see (36)), and (b) follows from (18).

C. Proof of Theorem 3

We follow the guessing strategy explained above in which
for each stage the Maxwell decoder is stuck, δ in incremented
by ∆δ and then new unknown flow nodes are guessed with
probability ∆δ/(1 − δ). Assume that at a given stage the
Maxwell decoder has reached a fixed-point. The normalized
(with respect to the number of flow nodes m0) number of
new guessed flow nodes at this stage is ∆Gδ (see (39)) and
the normalized number of new imposed conditions is upper-
bounded by ∆Cδ (see (43)). Note that we have made an
explicit reference to the specific value of δ by including it as a
subscript. We assume the procedure continues until δ = 1 from
δ = 0 in small increments of ∆δ. When the algorithm stops,
each assignment of integer values to the guessed flow nodes
compatible with the imposed conditions at the end yields a
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valid flow node size configuration. Thus, we can lower bound
the Maxwell EXIT curve as (see [20, Lem. 11])

hMaxwell(ε) ≥
∑
δ

E[∆Gδ]−
∑
δ

E[∆Cδ]

(a)
=

∫ 1

0

εL(y∗(ε, δ)) dδ −
∑
δj

∆Fj +O(∆δ)

(48)
(b)
=

∫ ε

0

L(y(ε′)) dε′ −
∑
δj

∆Fj +O(∆δ), (49)

where the summations in (48) and (49) are over all disconti-
nuity points δj (see (45)). The (a) follows from (39), (44),
and (45), while (b) follows from the fact that y∗(ε, δ) =
y(ε · (1− δ)), where y(ε′) corresponds to a fixed-point of the
standard MP decoder of a CB with a probability of observing
a flow of size strictly larger than fmin equal to ε′ (see (37)).

Now, since hMaxwell(ε) does not depend of ∆δ, we can take
the limit ∆δ → 0 in (49) and we get the lower bound

hMaxwell(ε) ≥
∫ ε

0

L(y(ε′)) dε′ −
∑
δj

∆Fj

(a)
=

∫ ε

0

L(y(ε′)) dε′

−
∑
δj

∫ limδ↓δj x∗(ε,δ)

limδ↑δj x∗(ε,δ)

hEMP(z) dε(z)

=

∫ ε

0

L(y(ε′)) dε′ −
∫ 0

xMP

hEMP(z) dε(z),

(50)

where xMP corresponds to the MP decoding threshold, i.e.,
ε(xMP) = εMP, and (a) follows from (45)–(47). Now, the
first term in (50) is just the area under the MP EXIT curve
from 0 to ε, while the second term is the area under the EMP
EXIT curve from the MP decoding threshold to infinity. Since∫ 1

0

hEMP(z) dε(z) =

∫ ε(x∗)

0

L(y(ε′)) dε′

+

∫ ε(1)

ε(x∗)

L(y(ε′)) dε′ −
∫ 0

xMP

hEMP(z) dε(z),

where x∗ is taken from Definition 2, it follows that the right-
hand side of (50) (with ε = ε(x∗)) simplifies to∫ ε(x∗)

0

L(y(ε′)) dε′ +

∫ xMP

0

hEMP(z) dε(z)

=

∫ 1

0

hEMP(z) dε(z)−
∫ ε(1)

ε(x∗)

L(y(ε′)) dε′

(a)
=

∫ 1

0

hEMP(z) dε(z)−
∫ 1

x∗
hEMP(z) dε(z)

(b)
= 0.

Equality (a) follows from∫ ε(1)

ε(x∗)

L(y(ε′)) dε′ =

∫ 1

x∗
hEMP(z) dε(z),

which again is true because there is no x′ in the interval (x∗, 1]
such that ε(x′) = ε(x) (see Definition 2), and (b) follows from
Definition 2. Now, the statement of the theorem follows, since
hMaxwell(ε) ≥ 0 for ε = ε(x∗), which again gives the desired
upper bound on the Maxwell decoding threshold since there
is no x′ in the interval (x∗, 1] such that ε(x′) = ε(x∗) (which
follows from Definition 2).

APPENDIX C
PROOF OF THEOREM 4

Run the peeling decoder on the original CB graph until it
stops. Then, g(z) for the equivalent residual graph, denoted
by g̃(z;x), is given by g̃(z;x) = 1− ρ̃(z;x) where

ρ̃(z;x) =
R̃′(z;x)

R̃′(1;x)
,

and where

R̃(z;x) =
R̄(1− x+ zx)− R̄(1− x)− zxR̄′(1− x)

1− R̄(1− x)− xR̄′(1− x)
,

(51)

x is the largest fixed-point of the DE recursion in (14), and
R̄(z) is defined in (42). This can be seen from the analysis of
the peeling decoder found in [37, Sec. 2.10]. In particular, the
expression for the residual right degree distribution from [26,
Eq. (3.124)] is properly adapted to (51).

Now, using (51), after some calculations, we end up with
the following simplifed expression

ρ̃(z;x) = 1− g(x− zx)

g(x)
, (52)

which immediately leads to the expression given in the the-
orem for the EMP EXIT curve (defined for the equivalent
graph as in (15)) for the expected residual CB graph when the
peeling decoder stops.

For the second part of the proof, from Theorem 1, the area
under the EMP EXIT curve (for the equivalent graph using the
expected counter node degree distribution in (51) with x = x∗

(corresponding to the area threshold)) can be written as

1− ρ̃(0;x∗) + k

(
ρ̃(0;x∗)−

∫ 1

0

ρ̃(1− z;x∗) dz

)
, (53)

where ρ̃(z;x∗) is given in (52) with x = x∗. Now,∫ 1

0

ρ̃(1− z;x∗) dz =

∫ 1

0

ρ̃(z;x∗) dz

=

∫ 1

0

(
1− g(x∗ − zx∗)

g(x∗)

)
dz

= 1− 1

g(x∗)

∫ 1

0

g(x∗ − zx∗) dz

= 1− 1

x∗g(x∗)

∫ x∗

0

g(z) dz.
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From the proof of Theorem 2, the fixed-point potential Q(x)
from Definition 4 for x = x∗ is equal to zero. Thus,∫ x∗

0

g(z) dz =

(
1− 1

k

)
x∗g(x∗),

from which it follows that∫ 1

0

ρ̃(1− z;x∗) dz = 1− 1

x∗g(x∗)
·
(

1− 1

k

)
x∗g(x∗) =

1

k
.

Since ρ̃(0;x∗) = 0, (53) reduces to

1− 0 + k

(
0− 1

k

)
= 0

and the result follows.
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