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SUMMARY

A challenge in solving the genotype-to-phenotype
relationship is to predict a cell’s metabolome,
believed to correlate poorly with gene expression.
Using comparative quantitative proteomics, we
found that differential protein expression in 97
Saccharomyces cerevisiae kinase deletion strains is
non-redundant and dominated by abundance
changes in metabolic enzymes. Associating differen-
tial enzyme expression landscapes to corresponding
metabolomes using network models provided
reasoning for poor proteome-metabolome correla-
tions; differential protein expression redistributes
flux control between many enzymes acting in con-
cert, amechanism not captured by one-to-one corre-
lation statistics. Mapping these regulatory patterns
using machine learning enabled the prediction of
metabolite concentrations, as well as identification
of candidate genes important for the regulation of
metabolism. Overall, our study reveals that a large
part of metabolism regulation is explained through
coordinated enzyme expression changes. Our quan-
titative data indicate that this mechanism explains
more than half of metabolism regulation and under-
lies the interdependency between enzyme levels
and metabolism, which renders the metabolome a
predictable phenotype.

INTRODUCTION

Despite the fact that metabolism is intensively studied, one still

debates about how much of metabolic regulation is explained

by metabolic self-regulation and by regulation of enzyme activity

and how much is dependent on enzyme abundance changes.

The current literature is split, in essence, between two seemingly
Cell Systems 7, 269–283, Septem
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contrasting observations. On the one hand, available quantita-

tive models can explain only a minor fraction of metabolite con-

centrations on the basis of gene expression data (Fendt et al.,

2010; Kresnowati et al., 2006; Zelezniak et al., 2014). Moreover,

metabolite concentrations seem to correlate much better with

metabolic fluxes than with enzyme expression levels (Chubukov

et al., 2013; Hackett et al., 2016; Millard et al., 2017). These re-

sults seem to suggest that the post-translational regulation,

metabolic self-regulation, and allostery are dominant in meta-

bolism regulation.

On the other hand, however, large fractions of the transcrip-

tome respond to changes in metabolism (Alam et al., 2016;

Bradley et al., 2009; Chechik et al., 2008; Kresnowati et al.,

2006; Murray et al., 2007; Tu et al., 2005; Urbanczyk-Woch-

niak et al., 2003). The expression changes are centered on

metabolites that change in concentration (Patil and Nielsen,

2005; Zelezniak et al., 2010), while systematically recorded

transcriptomes and proteomes of metabolically perturbed

yeast correlate with metabolic flux distributions (Alam et al.,

2016). Hence, despite poor correlation values between indi-

vidual enzyme levels and metabolism, changes in metabolism

seem tightly intertwined with gene expression changes.

Indeed, all metabolism-regulating transcriptional and signaling

networks identified to date, such as AMP-activated protein ki-

nase (AMPK) (Mihaylova and Shaw, 2011), mechamTOR (Gon-

zález and Hall, 2017), or GCN2/4 (Zaborske et al., 2010),

trigger metabolic gene expression changes.

A potential explanation for this apparent paradox could be

provided by the nature of enzyme-metabolite relationships. Re-

action mechanisms (Braakman and Smith, 2013), the self-regu-

latory nature of metabolic networks (Alam et al., 2017; Chubukov

et al., 2013; Hackett et al., 2016; Millard et al., 2017), post-trans-

lational regulation (Daran-Lapujade et al., 2007; Gonçalves et al.,

2017; Nilsson et al., 2017; Oliveira et al., 2012), and the topolog-

ical organization of metabolism that routes evolutionarily in the

underlying chemistry (Burgard et al., 2004; Keller et al., 2015; Ze-

lezniak et al., 2014) all dictate that the relationship between

enzyme function and metabolites is both multifactorial and

dynamic.
ber 26, 2018 ª 2018 The Author(s). Published by Elsevier Inc. 269
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We selected a genome-spanning collection of 97 kinase gene

deletion (‘‘knockout’’) Saccharomyces cerevisiae strains, known

to exhibit differences in metabolism (Bodenmiller et al., 2010;

Schulz et al., 2014; van Wageningen et al., 2010; Winzeler

et al., 1999), noting that the gene expression changes in these

strains remained uninvestigated in the context of their metabo-

lome. A recently developed high-throughput proteomic platform

(Vowinckel et al., 2018) was used to quantify enzyme expression

and link enzyme expression changes to metabolite concentra-

tions measured.

All kinase deletions triggered enzyme expression changes.

Moreover, enzyme abundance changes dominated quantita-

tively over other differentially expressed functional protein

categories in the kinase knockout proteomes. Using metabolic

control analysis (MCA), we then revealed the importance of

largely overlookedmechanisms inmetabolic regulation. The pro-

teomic changes detected were so broad that metabolic control

shifts between different sets of enzymes. As a consequence,

metabolic regulation becomes sensitive to global changes in

gene expression, rather than being correlated to individual en-

zymes. To capture themultifactorial relationships, we developed

a data-driven framework based on machine learning (ML).

Training the algorithms on the basis of the metabolic network

topology, we achieved the quantitative prediction of entire

cellular metabolomes, thereby quantifying the role of enzyme

abundance changes in metabolism regulation.

RESULTS

Kinase Knockout Proteomes Are Dominated by
Differential Enzyme Expression
S. cerevisiae kinase gene knockout strains (Winzeler et al., 1999)

were rendered prototrophic by introducing the pHLUMminichro-

mosome (M€ulleder et al., 2012) and cultivated in the absence of

amino acid supplementation (STAR Methods; Figure S1 for

growth rates). The measurement of the 97 proteomes mounted

to 397 whole-proteome samples (triplicates plus controls)

processed using the data-independent acquisition method

SWATH-MS (Gillet et al., 2012) and the workflow optimized for

achieving high quantification precision at large sample numbers

(Vowinckel et al., 2018). The median coefficient of variation of

protein abundance obtained was 19% (Figures 1A and S2). Cut-

off values for differential protein expression were determined

experimentally and defined as a 40% change, and we used a

Benjamini-Hochberg (BH) adjusted p value cutoff of 0.01

(STAR Methods). To confirm that differentially expressed genes

were specific to kinase deletions, a subset of 10 strains was

mated to a wild-type (WT) strain or to a complementary kinase-

knockout; in all cases, the proteomes in which the kinases

were reintroduced centered closer to the WT proteomes and

were different from homozygous mutants (Figure S3).

Tocaptureenzymeexpressionvalues,weprocessedall SWATH

proteomes using a spectral library generated from a soluble yeast

protein extract and obtained a matrix that connects the 97 kinase

deletions to the abundance of 286 metabolic enzymes (median q

value < 0.01, hereafter called the ‘‘kinase-metabolic enzyme ma-

trix’’). These represent over 75% of the metabolic reactions that

are coupled to biomass growth (STAR Methods; Figure 1B) and

capture cytoplasmic metabolism close to completion (Figure 1C).
270 Cell Systems 7, 269–283, September 26, 2018
Each proteome was characterized by strong differential

enzyme expression (Figure 1D). By comparing the kinase-meta-

bolic enzyme matrix of each knockout strain to the full SWATH

proteomes, we observed that 39% of all detected protein

expression changes were attributable to metabolic enzymes.

On average, a kinase deletion affected the abundance of 56

metabolic enzymes; the minimum was 7 enzymes differentially

expressed upon deletion of DBF2, and the maximum was 140

enzymes upon deletion ofMEK1 (Figure 1E). Expressed in abso-

lute protein copy numbers, up to 25% of the total cell protein

abundance is affected by kinase deletions acting on enzyme

abundance (Figure 1E). It is unlikely that these changes reflect

a common pleiotropic mechanism. For example, although yeast

growth rate itself is understood to control gene expression

(Gasch et al., 2000), less than 10% of the total proteome

changes in our kinase knockout strains could be explained by

changes in growth rate (Figure S4). Moreover, there was no

strong correlation (r = 0.22, p = 0.04) between the total number

of differentially expressed proteins and the fraction of differen-

tially expressed metabolic enzyme genes (Figure 1F).

We then compared protein expression levels to microarray-

based transcriptional profiles (van Wageningen et al., 2010).

The transcriptional profiles correlated significantly with the

enzyme expression proteomes (Figure 1G; STAR Methods; Fig-

ure S5). Most likely, as the strains in the microarray-study were

cultivated in amino-acid-supplemented media, the absolute cor-

relation values were lower than previous studies in which yeast

cells are grown under the exact same condition (Alam et al.,

2016; Lahtvee et al., 2017;Marguerat et al., 2012). The significant

correlation nonetheless indicates that transcriptional regulation

is implicated in the protein abundance changes as detected.

This analysis further revealed that enzymes differentially ex-

pressed are enriched among the highly expressed genes, while

in the low abundant fraction of the transcriptome, differential

enzyme expression is also significant but less prevalent (Fig-

ure 1F; STAR Methods). In parallel, a weak but significant corre-

lation was obtained between protein degradation rates (Christi-

ano et al., 2014) and the likelihood of an enzyme to be

differentially expressed (Figure S6). Kinase deletions hence

affect enzyme abundance both via hierarchical regulation, as

well as via mechanisms that affect protein turnover.

Enzyme Expression Signatures Reveal a High Degree of
Specificity in Kinase Function
In a few cases, we observed a significant overlap between the

enzyme proteomes, which seems to suggest common biological

function. For example, deletion of MAPK kinases HOG1 and

KSS1, which share upstream signaling components (Saito and

Tatebayashi, 2004), caused enzyme proteomes that did overlap

in 25% and 33% of up- and down-regulated enzymes, respec-

tively. Moreover, kinases of the same protein family were signif-

icantly more likely to also affect similar enzyme targets (one-way

ANOVA p = 0.0092). For instance, the Ca2+/calmodulin-depen-

dent protein kinase (CamK) and Casein kinase I (CKI) families

revealed significant co-regulation in enzyme abundances (p =

0.0091) (Figure S10).

For most kinase deletions, however, the precise proteome

data revealed a high degree of specificity. Moreover, the pro-

teomes suggest that enzyme expression regulation is too
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Figure 1. A Deletion of Each of the 97 Non-essen-

tial Yeast Protein Kinases Triggers Broad and

Quantitatively Strong Changes in Metabolic

Enzyme Expression

(A) Biological versus technical variability in a large-scale

proteomic experiment. The coefficient of variation (CV) of

enzymes at whole-process technical and biological

levels. Cyan dots indicate CVs of a standardized prote-

ome digest (quality control [QC] sample) that was used to

monitor instrument performance over a 4-month acqui-

sition period. QCs were used to normalize for batch ef-

fects, as well as to determine adequate cutoff values for

determining differential protein expression. See also

Figure S2 and STAR Methods.

(B) Projection of quantified enzymes on the KEGG

metabolic pathwaymap using iPath (Yamada et al., 2011)

illustrates a connected network coverage, indicating

comprehensive coverage of the active metabolic re-

actions by the proteome data. The black lines represent

reactions catalyzed by at least one quantified enzyme;

gray lines represent enzymatic reactions for which no

enzyme was quantified. Circle plot: obtained coverage in

comparison to all metabolic pathways’ theoretically

active reactions (reactions that couple to biomass

growth) in yeast as determined by flux-coupling analysis

(Burgard et al., 2004) and compared to all KEGG-anno-

tated reactions of the yeast metabolic network.

(C) MicroLC-SWATH-MS proteomes capture large parts

of the active enzymome. The representation of KEGG

metabolic pathways by enzymes quantified in each pro-

teome, shown as average coverage of metabolic path-

ways per KEGG metabolism category (KEGG BRITE

hierarchy level B). A reaction was considered covered

if >1 enzyme with the corresponding EC number was

quantified.

(D) Each of the 97 kinase deletions affects enzyme

expression levels (volcano plot). Differential enzyme

expression in all mutants is compared to the parental

strain. Cutoffs were determined using repeated mea-

surements on the control sample (STAR Methods) and

determined as a fold change cutoff > jlog2(1.4/0.714)j,
Benjamini-Hochberg (Benjamini and Hochberg, 1995)

adjusted p < 0.01, cyan colors indicate differentially ex-

pressed enzymes. Inset: the distribution of fold change

values between mutants and parental strains.

(E) The total number of metabolic enzymes affected by

kinase deletions illustrated for each kinase. Red line: in-

fluence of the individual kinase deletion in relation to the

total enzyme copy number in percent. Copy number

changes were obtained by calibrating the proteome data

according to the absolute values of protein expression

(Kulak et al., 2014) (Details are given in the STARMethods

section).

(F) Enzyme abundance changes account for a major

fraction of all differentially expressed proteins as quan-

tified in the kinase knockouts, and the relative contribu-

tion of enzymes has a low correlation with the total size of

the proteomic perturbation. The y axis represents the

fraction of the differentially expressed metabolic en-

zymes out of all quantified proteins. Inset: kinase de-

letions affect up to 49% of all quantified enzymes as

denoted by the total of the metabolic network, summing

up in all strains to 39% of the measured impact of the

total kinome on protein expression.

(G) Correlation of metabolic enzymes between proteome

and transcriptomes (van Wageningen et al., 2010) ex-

pressed as fold changes.

See also Figure S5.
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complex to be explained by linear signaling pathways. A Jaccard

distance calculated between each kinase pair’s enzyme expres-

sion signature, as well as hierarchical clustering using complete

linkage agglomeration (Figure 2A), revealed that 98% of kinase

pairs have less than 50% overlap in differential enzyme expres-

sion. On average, two kinase enzyme proteomes overlap by less

than 12% (Figure 2B). If expressed as a Pearson’s correlation,

three-quarters of the proteome changes in the typical kinase

deletion were specific (Figure S7). A sensitivity analysis ruled

out a thresholding artifact; indeed, with more conservative

thresholds, the specificity of kinase proteomes is revealed

more robustly (Figure S7).

Consistently, the signaling pathway annotations as assembled

in both KEGG and Reactome databases (Fabregat et al., 2016;

Kanehisa et al., 2016) could not explain enzyme co-expression

and indeed were not more predictive about enzyme co-expres-

sion as random networks (identical Pearson’s correlation coeffi-

cient,Wilcoxon rank-sum test, p > 0.05 [Figures 2D andS8]). This

result was corroborated by comparing the overlaps of differen-

tially expressed enzymes. A borderline significant association

with the Reactome database pathways was explained because

in the database, one pair of paralogous serine/threonine kinases

(YPK1 and YPK2, overlapping in 31%of their enzyme expression

changes) is associated with 42% of signaling pathways (Wil-

coxon rank-sum test, p = 0.03; Figure S9). When this pair is

removed, no significant correlation of signaling pathway associ-

ations and enzyme co-expression was observed.

Enzyme Expression Affects Steady-State
Metabolite Pools
MCA was then used to assess how the observed rearrange-

ments in enzyme levels interact with central metabolism. We

generated a specific glycolytic model for each kinase knockout

by adjusting enzyme concentrations in a highly curated glyco-

lytic model (Smallbone et al., 2013) according to our measure-

ments. Flux (CJE) and concentration control (CSE) coefficients

were determined to measure the relative steady-state change

in the global system variables, i.e., flux (J) or metabolite concen-

tration (S), in response to differential enzyme expression (E)

(Kacser and Burns, 1973). Differential enzyme expression altered

the overall flux control coefficients (FCCs) by more than 50%, for

two-thirds of glycolytic enzymes in 78% of the kinase knockout

strains. Similarly, the enzyme abundance changes as measured,

altered the overall concentration control coefficients by more

than 50% (Figure 3A). Differential enzyme expression does

hence redistribute the control over glycolytic flux between

different metabolic enzymes. We illustrate this situation for
Figure 2. The Deletion of Each Yeast Kinase Triggers a Unique Recon
(A) Similarity and overlap between enzyme expression proteomes obtained upon

pendium of differentially expressed enzymes (relative to the parental strain BY47

differentially expressed if the fold change > jlog2(1.4/0.714)j, BH adj. p < 0.01. Th

and downregulated (blue, lower left part) enzymes. For illustration purposes, row

proteomes, disregarding the directionality of the expression changes. The overla

(B) The fraction of differentially expressed metabolic enzymes in comparison to to

average similarity of kinase deletion enzyme proteomes, across all kinasemutants

expression signature, with a median dissimilarity between kinase proteome pairs

(C) The typical overlap of perturbed enzyme proteomes in kinases mutants is no

(D) Enzyme expression changes (log2-fold change) are not better explained by the

compared to randomly assembled pathways. More comparisons are provided in
the metabolic flux going through alcohol dehydrogenase

(ADH_ADH1, reaction abbreviation were kept as in Smallbone

et al. [2013]). In theWT situation, the highest control over ethanol

production is attributable to glucose phosphorylation by hexoki-

nase 2 (HXK2) (Figure 3B). Due to differential enzyme levels, the

flux control shifts to other enzymes in the mutants (Figures 3B

and S11), altering steady state by more than 2-fold in 48% of

the kinase knockouts. The model predicts that in 55% of the ki-

nasemutants, this re-shuffling affects metabolite concentrations

(Figure 3A insets).

A principal-component analysis (PCA) of the FCCs yielded four

distinct clusters. The cluster division was mainly attributable to

the control of HXK2, phosphofructokinase 2 (PFK2), and ADH1

on glycolysis and energy metabolism (Figure S12), of which

glucose phosphorylation by HXK2 was the most dominating

(HXK_GLK1 flux) (Figures 3C, inset, and S12). This result is

consistent with experimental observations. HXK2 is a known

regulator of GLK1, alternatively expressed under different car-

bon sources (Rodrı́guez et al., 2001). Indeed, the ratio of

HXK2/GLK1 expression differs between the clusters (Figure 3D).

In cluster 2, HXK was more than two times lower expressed as

GLK1. Despite being the strongest contributor, however, the ra-

tio ofHXK2/GLK1 expression alone is not sufficient to explain the

differences, underlining that even in central metabolism, differ-

ential enzyme expression acting in concert is required to explain

metabolic regulation (Figure 3E). Therefore, we simulated the

impact of multifactorial enzyme expression changes on glyco-

lytic flux. Altering the expression level of as little as 7 enzymes,

as detected in the kinase knockouts, can change the median

of all control coefficients by up to 100% (Figure 3H). Taken

together, these analyses predict that differential enzyme expres-

sion affects central metabolism significantly andmainly by redis-

tributing flux control between different sets of enzymes.

To test the predictions, we used liquid chromatography-selec-

tive reaction monitoring (LC-SRM) to quantify ATP, ADP, and

AMP; glycolytic and pentose phosphate pathway (PPP) interme-

diates; as well as amino acids and Krebs cycle metabolites (Fig-

ure S13; STARMethods). On this set of central metabolites, 34 of

the 97 kinase knockouts exhibited one or more strong concen-

tration changes (± 2 SDs from mean concentration levels;

Figure S14). These measured concentrations correlated signifi-

cantly with the predictions (Figures 3F and 3G).

Predicting the Metabolome from the Enzyme
Expression Data
Next, we askedwhether proteomic data could be used to explain

the variation metabolite concentrations also at the scale of the
figuration of Enzyme Expression in the Cell
kinase deletion in S. cerevisiae. Each cell represents the overlap in the com-

41-pHLUM) between any pair of kinase knockouts. An enzyme is considered

e matrix distinguishes between upregulated (red, upper right part of the matrix)

s and columns are clustered according to the Jaccard distance between the

p between each pair of proteomes is shown as Jaccard similarity.

tal differential protein expression in all kinase mutants (bar chart). The absolute

, is depicted as a black line. The typical kinase deletion causes a unique enzyme

of 88% (average overlap between enzymes differentially expressed = 12%).

t more than �25% (dotted median line).

signaling pathway annotations as obtained fromKEGGor Reactome databases

Figures S9 and S10.
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Figure 3. Enzyme Expression Affects Steady-

State Metabolism through Redistributing Flux

Control

(A) Overall control coefficients of concentrations

(CCC) and fluxes (FCC) are changed in kinase deletion

strains comparing to WT due to the differential

expression of multiple enzymes. The overall FCCs

were calculated as described in Millard et al. (2017),

i.e., taking for every enzyme the second norm

over all its concentrations and FCCs that were

parameterized on it (STAR Methods). Insets: simu-

lated steady-state changes of fluxes and metabolite

levels in kinase mutants in comparison to WT.

(B) FCCs (CJE) over alcohol dehydrogenase (EC

1.1.1.1) reaction (y axis) by corresponding glycolytic

enzymes (x axis) upon adjusting protein expression

levels in a yeast glycolysis model as measured in each

kinase knockout. Red dots indicate the WT strain

values. To preserve the original scales, the control

coefficients for HXK2 are plotted on a separate y axis.

Differential enzyme expression substantially re-

distributes control coefficients in multiple kinases to

different enzymes.

(C) Principal-component analysis (PCA) of FCCs for

every kinase gene deletion mutant reveals a distinct

set of expression patterns that influences control over

glycolysis. FCCs are not scaled (See also Figure S12).

Axes labels represent the percentage of total variance

explained by each of the PCs. Colors represent es-

tablished flux regulatory clusters (STAR Methods).

Cluster separation is mainly driven (inset) by control of

HXK2 on GLK1 reaction.

(D) Within each flux regulatory cluster, large differ-

ences between the GLK1/HXK2 expression ratio are

observed. Corresponding p values for each pair of

clusters using Wilcoxon rank-sum test (1 versus

2 p = 5.4e�05; 1 versus 3 p = 1.5e�02; 1 versus 4 p =

6.01e�01; 2 versus 3 p = 6.35e�05; 2 versus 4 p =

2.01e�03; 3 versus 4 p = 3.39e�01).

(E) Flux control is a systemic property that depends on

the coordinated expression of multiple enzymes. Even

the most dominant single contributor (GLK1/HXK2

ratio, [x axis]) alone cannot explain the variation of flux

control coefficients (y axis) as a result of differential

enzyme expression.

(F) Measured metabolite concentrations correlate

with steady-state predictions by the enzyme-level

adjusted kinetic models.

(G) Correlation of model predictions and experimen-

tally measured metabolite concentrations in the top

10 kinase mutants from (F).

(H) The systems-nature of metabolism control: differ-

ential expression of a few individual pathway enzymes

is sufficient to induce a redistribution of flux control

among a broad set of enzymes. Fractions of differ-

entially changed enzymes from the model are plotted

on the x axis. The y axis shows the median change

of control coefficient for each parameter comparing

to the parental strain divided into 4 groups. Group

(0.75, 1) has coefficients with the median change up

to >100% in comparison to WT.
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metabolic network. First, we generated a network graph con-

necting the metabolites to enzymes according to a genome-

scale reconstruction of the yeast metabolic network (Herrgård

et al., 2008). The 46 metabolites quantified connect as a

substrate, product, or cofactor to 192 enzymes (= 1st order

neighbors). Each of these metabolite-enzyme relationships

was expressed as a multiple linear regression (MLR) problem

(Figure 4A). Then, we used exhaustive feature selection and

ranked all possible models (>1012) according to minimal Akaike

information criterion (AIC) (Akaike, 1974). To minimize the risk

of overfitting, we repeated the procedure 1,000 times for each

metabolite using random subsets of the data and retained the

top 5 most frequently identified metabolite-enzymes relation-

ships from all random subsets (Figure S15), ranked them accord-

ing to the best agreement between predicted and measured

metabolite concentration, and calculated their explanatory po-

wer (as adjusted R2). The models with the best fit were diag-

nosed for outliers, influential observations, residual structure,

and the presence of autocorrelation. All models that violated

this set of criteria were discarded. The statistical models

obtained in this way show that changes in enzyme abundance

do explain metabolite concentration (Figure 4B). Fructose-6-

phosphate, glutamate, glutamine, ATP, ADP, and AMP levels

as estimated from enzyme abundance correlate with their exper-

imentally measured concentrations (adj. R2 > 0.4; Figure 4B). We

illustrate the model performance for ATP, ADP, AMP (Figure 4C),

and glutamine, the metabolites for which the simple linear

regression model provided the best results (Figures 4D and

4E). Thus, when accounting for metabolic network topology

and multifactorial relationships, enzyme expression is informa-

tive of metabolite concentrations.

By being applied over the actual metabolic network topology,

the feature selection approach identifies the predictive enzymes.

For example, glutamine is connected to 28 of the quantified

enzymes. Multiple feature selection identified 9 of them (GLN4,

CPA2, URA2, HIS7, ADE4, ADE6, ASN2, URA7, and GLT1) to

be significant contributors to its concentration (Figure 4E, in

order of weight in the model), and together, their differential

expression explains 68% (adj. R2) of the experimentally detected

glutamine concentration changes (Figure 4D). The strongest

predictor of glutamine levels was GLN4, the glutamine amino-

acyl-tRNA synthetase, indeed already known to be important

for glutamine regulation (Murray et al., 1998). Of note, MLR iden-

tified aminoacyl-tRNA synthetases as the strongest predictors

also for aspartate, glycine, proline, and tyrosine (Figure S15).

MLR hence confirmed that tRNA loading is a major factor in

amino acid concentration regulation (Wegrzyn and Wegrzyn,

2008; Whitney et al., 2007) and revealed that it is quantitatively

one of the strongest single contributors to amino acid concentra-

tions in general.

Other illustrative examples are ATP, ADP, and AMP (Figure 4C)

that are among the most connected metabolites (Zomorrodi and

Maranas, 2010). From the 88 ATP, ADP, or AMPmetabolizing en-

zymes quantified, 33 were found predictive about their levels

(Figure S15). This list contains many of the high-flux enzymes

associated with the cellular energy charge, includingHXK2, sub-

units of the electron transport chain ATPase (Complex V, ATP2)

or the vacuolar ATPase (VMA1), a major consumer of cellular

ATP (Beyenbach and Wieczorek, 2006).
Predictive and non-predictive enzymes were not different in

their average abundance (Figure S16) but were so in saturation

(substrate concentration > KM) according to in vitro determined

KM values obtained from the Braunschweig Enzyme Database

(BRENDA) (Chang et al., 2015). Considering the cell-average

metabolite concentrations as measured in our study, enzymes

identified by MLR were more than three times closer to the satu-

ration than all other enzymes connected to the same substrates

(Figure 3F; Wilcoxon rank-sum test, p < 10�16). 45% of these

enzymes appear saturated. Moreover, 40% of metabolites

were associatedwith at least one enzymewith a KM value at least

ten times below the metabolite concentration. Amino acid

metabolizing enzymes were >8-fold (comparing medians) (Wil-

coxon rank-sum test, p < 10�16) more saturated than predictors

for other metabolites (Figure 4G). In accordance with the MLR

analysis (Figure S15), we find that aminoacyl-tRNA synthetases

were among the most saturated enzymes (Figure 4H).

In order to make use of the full metabolic enzyme expression

matrix to predict metabolite concentrations, we implemented a

pipeline thatmakesuseof 12MLalgorithms. This analysis is sum-

marized graphically in Figure 5A and detailed in the STAR

Methods. In brief, we reduce the dimensionality of the proteome

dataset, divide the data into training and testing sets using cross-

validation to obtain best predictive regression model for each

metabolite. Our ML approach predicted metabolite concentra-

tions that on average correlatedwith themeasuredconcentration

values with a cross-validated R2 value of 0.55. The highest pre-

dictability from enzyme abundance was revealed for tryptophan,

ornithine, and citrulline, for which the predictions correlated with

cross-validated R2 of 0.75, 0.75, and 0.73, respectively, with their

experimentally measured concentrations (Figure 5B).

The size of the metabolite’s network neighborhood had only

minimal influence on predictability. Several of the metabolites

(ATP, 2-oxoglutarate, tryptophan, glutamine, and methionine)

remained exclusively predicted by their directly metabolizing en-

zymes, (Figure 5C). For all other metabolites, predictability

increased upon incorporation of the second-order neighbors

but not anymore upon further network expansion (Figure 5C).

Metabolite concentrations are therefore most sensitive to

enzyme abundance changes occurring in their immediate neigh-

borhood (Figures 5D and 5E). Of note, the best overall perform-

ing ML algorithm on our dataset was ridge regression with

greedy variable selection (Zhang, 2011) (Figures 5B and S17).

Finally, we tested the power of the ML model to predict not

only the individual metabolites but also entire metabolomes.

For this, we repeated the whole procedure ninety-seven times,

using leave-one-out cross-validation for the entire dataset. The

metabolomes predicted agreed with the metabolomes as

measured experimentally (Figure 5F): 70% of absolute metabo-

lite concentrations were predicted with less than 25% relative er-

ror (Figure 5G).

To test the validity of the predictions also on an independently

generated dataset, we made use of amino acid concentrations

that have been determined upon the systematic deletion of all

non-essential yeast genes (M€ulleder et al., 2016a).We compared

the range of amino acid concentration changes, measured upon

the deletion of (1) the subset of non-essential enzymes for which

ML had attributed an important regulatory role (defined as >50%

maximum weight of predictor variable; see STAR Methods) and
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A

B

C

E

F G H

Figure 4. Multiple Linear Regression Identifies

Multivariate Metabolite-Enzyme Relationships

That Are Informative aboutMetabolite Concen-

tration

(A) Scheme: multiple linear regression (MLR) applied

over the metabolic network topology to connect

enzyme levels with metabolite concentrations.

Metabolite concentrations (y) are expressed as a

function of expression levels (x) of the closest enzyme

neighbors in the metabolic network. Informative

multivariate relationships between enzyme and

metabolite concentrations are identified by exhaus-

tive feature selection by computing all possible linear

models and ranking them according tominimal Akaike

information criterion (STAR Methods).

(B) MLR reveals multivariate enzyme-metabolite re-

lationships that explain metabolite concentrations in

kinase knockouts. The bar plots indicate the coeffi-

cient of determination (adjusted R2) between pre-

dicted and experimentally determined metabolite

concentrations across the kinase deletion strains. See

also Figure S15.

(C) The correlation of predicted and measured ATP,

ADP, and AMP levels across kinase knockouts. x axis:

predicted concentration from enzyme expression

profiles, y axis: concentration as measured by liquid

chromatography-selective reaction monitoring (LC-

SRM).

(D) The predicted and experimentally measured

glutamine concentrations in kinase deletions correlate

with an adjusted R2 = 0.68. Red dots highlight ex-

amples of enzyme expression patterns from (E) for

representative in quartile of glutamine concentrations.

(E) Left: graphical illustration of the 9 (out of 15)

glutamine-metabolizing enzymes that are associated

by the MLR approach to glutamine concentration.

Right: as glutamine participates in multiple metabolic

reactions, a correlation of the expression level of one

glutamine-metabolizing enzyme at a time, as applied

in many multi-omic studies, would fail to detect any

correlation between enzyme expression and meta-

bolism.

(F) Enzymes that influence metabolite concentrations

across kinase knockouts are more likely saturated

compared to other enzymes connected to the same

metabolites; KM values, as obtained from BRENDA

(Chang et al., 2015), are compared to the concentra-

tion of the metabolites as measured in our study by

LC-SRM. The level of saturation is expressed as a

ratio between metabolite concentration and the en-

zyme’s KM value.

(G) Enzymes that affect amino acid concentrations are

more saturated compared to other enzymes associ-

ated with the rest of the metabolites.

(H) Aminoacyl-tRNA synthetases, which are predictive

of multiple amino acid concentrations, are typically

saturated based on their in vitro kinetics.
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(2) the rest of the enzymes that metabolize the same amino

acids. ML had correctly identified genes whose deletion affected

affect amino acid concentrations (Figure 6A, Bartlett’s test, sym-

bols * and ** correspondingly denote p < 0.05 and p < 0.01,

respectively; Figure 6B, Wilcoxon rank-sum test, p = 1.6e�06).

Hence, on the basis of enzyme abundance, ML is able to esti-

mate entire metabolomes as well as identify genes important

for the cell’s metabolic phenotype.

Interpreting the Machine Learning Models to Draw
Genotype-Phenotype Maps
We made use of the metabolic network topology to interpret

the ML models and to gain insights into the biological mecha-

nisms. Each metabolite was connected to the top 5 loading en-

zymes of highly predictive principal component features (90%

of highest predictors weight) to reveal enzymes with the most

active role (Figure 6C). The obtained graph reveals that some

of the most active regulators, including glucokinase (GLK1),

phosphoglycerate mutase (PGM2), glyceraldehyde 3-phos-

phate dehydrogenase (GAPDH gene TDH3), and argininosucci-

nate synthetase (ARG1), exert distal regulation over multiple

metabolite concentrations. In particular, glucokinase GLK1

levels are associated with concentration changes in many

metabolites, including aspartate, leucine, and glycine. GLK1

was positively associated (r = 0.38, p = 0.00511) with the

tricarboxylic acid (TCA) cycle metabolite oxaloacetate, indi-

cating the coordinated regulation of glycolysis and the TCA

cycle. In contrast, GLK1 expression was negatively associ-

ated with aspartate, glycine, and threonine concentrations

(r = �0.49; �0.46; �0.38, p = 0.000762; 0.00158; 0.0115,

respectively). Hierarchical metabolite regulation by GLK1 and

PGM2 expression has also been independently identified using

Bayesian analysis (Bradley et al., 2009). Another example is the

identification of GAPDH, in which abundance or activity

changes have been shown to regulate the PPP to achieve yeast

redox balance (Gr€uning et al., 2011). Indeed, a PCA of all meta-

bolic changes detected reveals PPP metabolites to be the

strongest separator; changes in the PPP are the most frequent

metabolic response in kinase knockouts (Figure S14).
Figure 5. Machine Learning Regression Predicts the Concentration of

(A) Scheme: mapping the dependency of metabolite concentrations on enzyme

genome-scale application of machine learning (ML). Different data transformation

topology, and the obtained models were ranked according to their ability to predic

cross-validated root-mean-square error [RMSE]). In comparison to MLR (Figure

neighbors, upon which enzyme expression changes across the full metabolic ne

(B) ML enables the predictions of metabolite concentrations in the kinase knockou

of measured metabolite concentrations in relation to the predicted metabolite c

validated R2 is 0.549, implying that at least half of metabolite concentration cha

predictive power achieved with the directly metabolizing enzymes; the color indic

order enzyme neighbors.

(C) For most metabolites, the predictive power is concentrated within the direc

incorporating also the 2nd order neighbors. Ruling out overfitting, the predictions d

metabolic network. ** = Wilcoxon rank sum test p value < 0.01.

(D) The commonality of enzyme predictors for the different metabolites, accounti

that can regulate metabolite abundance.

(E) The total fraction of enzymes associated with metabolite concentrations acco

(F) Metabolic phenotype (all metabolites per mutant) predictions by ML in unobs

phenotype prediction is based on individual metabolite models; the top 30 predi

(G) Distribution of relative errors (in%) in the prediction compared to experimental

predicts metabolite concentrations accurately.
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Finally, we assessed to what extent enzyme expression

patterns are recurrent to explain changes in the metabolome.

Comparing the profiles of predictive enzyme expression

changes, we obtain a wide range of regulation patterns, ranging

from specific to general patterns. For example, the enzyme

expression landscape leading to a concentration change in dihy-

droxyacetone phosphate, phosphoenolpyruvate, leucine, and

acetyl-CoA were substantially specific to each of the kinase

knockouts (Figures 6D and S18). On the other hand, the enzyme

expression landscape associated with concentration changes in

amino acids such as tyrosine, methionine, and ornithine was

observed in multiple knockouts (Figures 6D and S18)

DISCUSSION

Here, we address an apparent contradiction in the current litera-

ture about the regulation of metabolism. On the one hand, many

investigations attribute an important role to gene expression in

the regulation of metabolism. On the other hand, the prediction

of metabolomes from gene expression data has so far proven

challenging, and several multi-omic studies reported low corre-

lation values of enzyme expression and metabolite levels as

well as fluxes (Chubukov et al., 2013; Daran-Lapujade et al.,

2007; Fendt et al., 2010; Millard et al., 2017). So how can gene

expression regulation be of utmost importance for metabolism

and at the same not be correlated with metabolism and not

explain metabolite levels?

The reason for this discrepancy is implied by a Gedankenex-

periment, in which metabolite levels are calculated upon chang-

ing enzyme abundance values in a kinetic model of glycolysis

(Smallbone et al., 2013). In this hypothetical simulation, all metab-

olite concentration changes are caused by enzyme abundance

changes. Yet, a typical correlation analysis would have yielded

low scores (cophenetic correlation coefficient = 0.35) between

enzyme abundance and metabolite concentration (Figure S19).

In contrast, the metabolite concentrations were highly correlated

with the calculated fluxes (cophenetic correlation coefficient >

0.8, Figure S20). In other words, even in this theoretical simulation

in which metabolite concentration changes are fully caused by
Metabolite Pools from Enzyme Abundance

expression levels by incorporating the structure of the metabolic network in a

techniques and twelve ML algorithmswere applied over the metabolic network

t metabolite concentrations from the enzym abundance (expressed asminimal

4), the inclusion of ML enabled network expansion to the 2nd and 3rd order

twork are incorporated (E).

ts on the basis of the enzyme abundances measured. Shown is the correlation

oncentrations, expressed as 10-fold cross-validated R2. The median cross-

nges are explained by changes in enzyme abundance. The dots indicate the

ates whether maximal predictability was reached upon including 1st, 2nd or 3rd

tly metabolizing enzymes (1st order neighbors) or is partially improved upon

id not improve upon further expansion of the predictor variable space to the full

ng for network diameter, reveals a spectrum of enzyme expression signatures

unting for network distance.

erved kinase knockout strains on the basis of their quantitative proteome. The

cted kinase metabolomes are shown.

measurements ofmetabolite concentrations in all kinases knockout strains; ML
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enzyme abundance changes, consistent with previous reports

(Hackett et al., 2016;Millard et al., 2017), the one-to-onemapping

would report low correlation values between enzyme abun-

dances and metabolite concentrations (Figures S21 and S22).

Taken the other way, a low one-to-one correlation between

enzyme and metabolite abundance is not due to metabolite con-

centrations that would behave independently to changes in

enzyme expression; the low values are the consequence of the

more complex, multifactorial relationships that describe the inter-

dependence of enzyme abundance and metabolite levels.

Our results show that metabolic gene expression regulation is

achieved through many enzyme expression changes acting in

concert. Once these multifactorial relationships are identified—

in our study through the use of multivariate statistical learning—

enzyme expression landscapes become predictive about the

cellular metabolome, even at the network scale, that is currently

not to be covered by mechanistic models as they are available,

i.e., for individual metabolic pathways, such as glycolysis. To

our knowledge, this is the first successful attempt to predict a

complex, quantitative metabolic phenotype from enzyme

expression without taking into account predetermined enzyme

reaction mechanisms, phosphorylation states, or kinetics.

Applied over the topological organization of the metabolic

network, the predictive models are further rendered interpret-

able, which, as we have shown, enables to draw genotype-

phenotype maps. Taken together, these results demonstrate

that enzyme expression landscapes are regulated to control

metabolite concentrations and as a consequence, fluxes. On

average, the metabolome predictions achieved on the basis of

enzyme levels correlated with experimental values with a cross-

validated R2 of 0.55. This suggests that more than half of metab-

olite concentration regulation, at least as observed in kinase

knockouts, is attributable to changes in enzyme abundance.
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Yeast kinase signaling pathway annotations
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Yeast protein degradation rates Christiano et al. (2014) https://ars.els-cdn.com/content/image/
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Experimental Models: Organisms/Strains

Prototrophic Saccharomyces cerevisiae

kinase deletion collection (MATa,

prototrophy restored episomally)

Winzeler et al. (1999); M€uelleder

et al. (2012)

http://www.euroscarf.de/

Selected Saccharomyces cerevisiae kinase

deletion strains (MATa, prototrophy

restored episomally)

Winzeler et al. (1999) http://www.euroscarf.de/

Recombinant DNA

Plasmid: pHLUM M€uelleder et al. (2016a) In addgene.org: #40276

Plasmid: pHLU M€uelleder et al. (2016a) In addgene.org: #64181
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Continued
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Software and Algorithms

Scripts to reproduce main figures This study https://github.com/zelezniak-lab/
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Proteomics data analysis Spectronaut

(8.0.9600)

Biognosys Sw-3001

Proteomics data analysis via Deep Neural

Networks, DIA-NN

Demichev et al. (2018) https://github.com/vdemichev/DiaNN

caret R package (6.0-78) for regression

modeling

Kuhn (2008) http://topepo.github.io/caret/index.html

LP solver IBM ILOG CPLEX Optimization

Studio 12.7.1 for flux coupling analysis

IBM CJ1HQML

libRoadRunner (1.4.8) for metabolic control

analysis

Somogyi et al. (2015) https://github.com/sys-bio/roadrunner

MassHunter software suite for metabolite

analysis

Agilent Technologies N/A

grofit R package (1.0) for growth curves

analysis

Kahm et al. (2010) http://CRAN.R-project.org/package=grofit

sva R package (3.26.0) for batch correction

of data

Leek et al. (2012) https://doi.org/10.18129/B9.bioc.sva
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Markus

Ralser (Markus.Ralser@crick.ac.uk)

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Strains and Culture
Yeast strains used in this study were obtained from our published prototrophic gene deletion collection (M€ulleder et al., 2012). Ki-

nases were identified following the strategy of Sharifpoor et al. (2012), expanded by the annotation in the yeast kinome and yeast

genome database (Breitkreutz et al., 2010; Cherry et al., 2012) and including genes associated to Gene Ontology term 0004672 (pro-

tein kinase activity). 97 of the strains grew in triplicates (n=3) in minimal mediumwithout a substantial growth defect (Figure S1), were

pre-cultured overnight in 10 ml minimal medium, at 30�C, and diluted them to an OD600 of 0.2 in 30 ml main culture.

Growthwasmonitored, and the strains were sampled by coldmethanol quenching at anOD600 1.5 +/- 0.1, before the cultures enter

the diauxic shift, for metabolic and proteomic analysis. The growth curves were fitted using non-parametric (without growth law

assumption) spline model as implemented in R growFit package (Kahm et al., 2010). Exponential growth rate was estimated as

maximal slope of the growth curve (Figure S1).

To generate heterozygous and homozygous diploid strains of the kinase mutants we inoculated the respective MATa and MATa

strains in 150 ml YPGlucose (2%) medium and incubated them overnight before 2 consecutive selection steps on synthetic complete

medium (SC) lacking lysine andmethionine. For heterozygous strains aHIS3 deletion strain of the oppositemating typewas selected.

Prototrophy was restored in the haploid parents and the diploid progeny by transformation with a single copy plasmids containing the

required genes (pHLUK, pHLUMv2 and pHLU (M€ulleder et al., 2016b). All 5 versions of 10 randomly chosen kinase mutants (the two

parental haploid MatA and Mata, 2 heterozygous and 1 homozygous diploid) strains were grown on synthetic minimal (SM) and

collected in exponential phase.

METHOD DETAILS

Metabolomics
Free intracellular metabolite pools were quantified by liquid chromatography - selective reaction monitoring (LC-SRM) by protocols

described previously. The method used to obtain Dataset 1 (Figure S13) is described in Keller et al. (2014) for the quantification of

glycolytic and pentose phosphate pathway metabolites and was expanded with additional transitions for ATP, ADP and AMP.

Analytes were separated by gradient elution using 10% and 50% acetonitrile, containing 750 mg l�1 octylammonium acetate as sol-

vents A and B at a flow rate of 0.6ml/min and column temperature of 20�C. The gradient program was as follows: 5% B for 3.5 min,

then ramping to 70%Bwithin 2.5min, followed bywashingwith 80%B for 0.5min and re-equilibration at 5%B for 0.5min, resulting in

a total cycle time of 7.5 min on a Zorbax SB-C8 Rapid Resolution HD, 2.1x100mm, 1.8 Micron (Agilent) column.
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For Dataset 2 and 3we adapted chromatographic parameters fromBuescher et al. (2010) and added a SRM set that has previously

been established by individually optimising ion optics and fragmentation settings using commercially available standards on an 6460

or 6470 Triple Quadrupole Mass Spectrometer (Agilent) coupled to UPLC (1290 Infinity, Agilent).

In Dataset 2 analytes were separated by gradient elution using 10 mM TBA 15 mM acetic acid in water and 5% methanol as sol-

vents A and B at a flow rate of 0.5 ml/min and column temperature of 30�C. The gradient program was as follows: 0% B for 4.5 min,

increase to 20% B (5 min), 70% B (9.5 min), 90% B (10 min), kept constant until 12 min and returned to initial conditions at 12.5 min

followed by 1.5 min equilibration, resulting in a total cycle time of 14 min on a Zorbax Eclipse Plus C18 2.1x50 mm, 1.8 mm column

(Agilent).

In Dataset 3 (Figure S13), free amino acids were separated by hydrophilic interaction liquid chromatography (HILIC) using an

ACQUITY UPLC BEH amide column (130Å, 1.7 mm, 2.1 mm X 100 mm) by gradient elution at a constant flow rate of 0.9 ml/min

and a column temperature of 25�C. Eluents A and B were prepared at 10 mM ammonium formate, 0.176% formic acid and in

95/5/5 acetonitrile/MeOH/water and in 50/50 acetonitrile/water respectively, all of UPLC grade. Chromatographic conditions for

the gradient elution were following: solvent A was kept for 0.7 min at 85% before a steady decrease to 5% A until 2.55 min. A

was kept at 5% for 0.05 min before returning to the initial conditions of 85% A within 0.05 min. This was followed by and an equil-

ibration step until 3.25 min before injection of the next sample. All metabolites were identified by matching retention time and frag-

mentation pattern with the commercially obtained standards and were quantified by external calibration (except Dataset 1) with stan-

dards prepared at serial dilution from 500 mM to 100 nM.

Dataset 1 was created from the same cells as grown for the proteomic experiments. Metabolomics datasets 2 and 3were obtained

by re-growing 3 independent cultures from strains with highly variable metabolite concentrations based on dataset 1 and a previous

genome-scale metabolism study (M€ulleder et al., 2016a). Mass spectrometry signals for all metabolites were acquired in dynamic

SRMmode in Masshunter software. All preprocessed metabolomics data (integrated SRM transition peaks after external calibration

(where applicable)) were corrected for batch effects usingComBat approach as implemented in sva (Leek et al., 2012) R package. For

visualization purposes (Figure S14) missing metabolite concentrations were imputed using amelia approach (Honaker et al., 2011).

Proteomics
The proteomic method has been published in parallel (Vowinckel et al., 2018). In brief, tryptic digests for the analysis by SWATH-MS

were prepared by the RapiGest method as described previously (Vowinckel et al., 2013), and analysed on on a Tandem Quadrupole

Time-of-Flight mass spectrometer (SCIEX TripleTOF5600) coupled to DuoSpray Ion Source (SCIEX) and Eksigent 425 HPLC system

running in microflow mode. Before the injection into the mass spectrometer, total protein concentrations were adjusted by dilution.

SWATH assay libraries were built following Schubert et al. (2015) by pre-fractionation of the tryptic digest. Unless otherwise indi-

cated, SWATH data quantification was performed in Spectronaut (Biognosys, v. 8.0.9600). Post-processing was conducted in R

(R Core Team, 2015) by first removing precursors from all samples where the median peak group Q-value was > 0.01 obtained

frommProphet algorithm as implemented in Spectronaut. For label free quantification, we considered only the precursors originating

from uniquely mapping peptides. Next, we chose peptides by correlation quantity following our approach as developed previously

(Alam et al., 2016; Vowinckel et al., 2018). This strategy assumes that the best quantitation-informative peptides, as they are derived

from the same protein, correlate in their abundance. Pearson’s correlation coefficients were calculated between each pair of pep-

tides (summed precursor’s MS2 peak areas) belonging to the same protein across all samples. Peptides displaying overall low cor-

relation (<0.3) were removed from subsequent analysis. This selection therefore excludes non-specific peptides or precursors which

are not linearly responsive for other reasons, e.g. due to post-translational modifications. Furthermore, to account for confounding

effects related to acquisition dates, we performed batch correction using the sva approach (Leek et al., 2012). Supervised surrogate

variable analysis (with 1 variable) was applied without specifying experimental factors (Nygaard et al., 2016) using 50% of least vary-

ing peptides as controls. Estimated surrogate effects were regressed out from the peptide signal. Finally, for each protein, the signals

of all peptide groups were geometrically averaged. External standard quality control (QC) samples were prepared as a mixture of all

proteomes and were measured every 8-12 injections. After applying batch correction, QC samples are clustered together around

0 on a scaled PCA plot, showing that the batch correction strategy has removed most of the confounding effects Figure S2.

Diploid strains were analysed with a slightly modified proteomics workflow (Demichev et al., 2018). Briefly, proteins were extracted

in 6M urea/ 0.1M ammonium bicarbonate using a bead beater (Spex Geno/Grinder). After reduction and alkylation with dithiothreitol

(5mM) and iodoacetamide (10mM), respectively, proteins were digested overnight with trypsin. The resulting peptides were cleaned-

up using 96-well MACROSpin plates (Nest Group). Samples were measured on aWaters nanoAcquity coupled to a SCIEX TripleTOF

6600. The peptides were separated with a 20min gradient on a Waters HSS T3 column (300um x 150mm, 1.8um) using a flow rate of

5ul/min. SWATH MS/MS acquisition scheme with 40 variable size windows and 35ms accumulation time was used. Raw data were

processed with DIA-NN (version 1.2) using the default settings and mass accuracy set to 20 ppm and 12 ppm at the MS2 and MS1

level, respectively.

Enzyme Expression Analysis
After correction for batch effects, differential protein expression analysis was performed using limma (Smyth, 2005). Geometri-

cally averaged fold-changes as outputted by limma were omitted, instead fold-change ratio of mean signals between mutant and

parental strain were used throughout the manuscript. The Benjamini-Hochberg (BH) false discovery rate (FDR) control procedure

(Benjamini and Hochberg, 1995) was applied after performing all comparisons using p.adjust as implemented in R-core stats
e3 Cell Systems 7, 269–283.e1–e6, September 26, 2018



package. Additionally, we used a cut-off of 40% change noted as log2(fold-change) of ±0.485 which we refer over the

manuscript as log2(1.4/0.714) up-/down regulated empirically determined cut-off to account for any potentially unaccounted

batch-to-batch variation left to further eliminate any potential false discoveries. For this, we calculated protein expression

fold-changes for each protein in the QC sample (a mixture of all samples) and identified a tiny fraction of proteins that was signif-

icantly (adj P-value < 0.01) differentially expressed between different batches. The fold-change exceeding the median obtained

from the distribution of these extreme cases was used as the cut-off throughout the analysis.

To estimate enzyme copy numbers, we compared two datasets recorded by fluorescence microscopy (Ghaemmaghami et al.,

2003) and one by mass spectrometry (Kulak et al., 2014), showing overall agreement of enzyme copy number fraction of the total

yeast proteome (�35% and �36% respectively). To calibrate the relative abundance changes (Figure 1E) for each mutant, every

enzyme’s copy number (Kulak et al., 2014) was multiplied by the fold-change if it was differentially expressed (BH adjusted

p-value <0.01) compared to a WT strain. We then calculated the percentage change of total enzyme copy numbers in mutant

comparing to the parental strain.

Flux Coupling Analysis
To identify active metabolic reactions, the reactions that are important for cellular growth, we performed flux coupling analysis (FCA)

(Burgard et al., 2004) under several growth conditions, i.e. minimal media conditions, synthetic complete with and without oxygen.

Physiological data for constraints were obtained fromVan Hoek et al. (1998). Simulations were performed using an improved iMM904

model (Zomorrodi and Maranas, 2010). Reactions that were fully or partially coupled to biomass growth were considered as active.

The flux coupling analysis procedure was implemented in C++ and solved using the IBM ILOG CPLEX Optimization Studio 12.7.1.

Metabolic Control Analysis
Metabolic control analysis was performed on the basis of the S. cerevisiae kinetic model (Smallbone et al., 2013), which was down-

loaded from the BioModels database (http://www.ebi.ac.uk/biomodels-main/) under ID MODEL1303260018. Enzyme abundances

in the model were adjusted by multiplying original model’s enzyme values by kinase mutants enzyme fold-changes, considering only

significantly changed enzymes (BH adjusted p-value < 0.01), resulting in a model for every mutant. The steady-state simulations and

calculations of control coefficients were performed with libRoadRunner (Somogyi et al., 2015) using the Python API. Metabolites and

fluxes were considered to be in steady-state if there was less than a 10-6 increment in the solution. The overall flux control coefficients

were calculated as described inMillard et al. (2017), i.e. taking for every enzyme the second norm over all its concentrations/flux con-

trol coefficients that were parameterised on it, e.g. for flux CJoverallE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
j

ðCJ
EÞ

2
s

analogously, overall concentrations control coeffi-

cients were calculated using CCoverall
E =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
s
ðCS

EÞ
2

r
.

Metabolic regulation clusters were identified by first transforming all flux control coefficients across samples into PCA space, then

calculating Euclidean distance using the first 10 components (retaining over 90% of variance) and performing Ward’s hierarchical

agglomerative clustering. The number of cluster was then identified using two independent graphical methods ‘‘dindex’’ and ‘‘huber’’

as implemented in NbClust R package (Charrad et al., 2014).

Statistical Modelling
Data Preparation

Depending on the metabolomics experiment (Figure S13), we assigned a proteome measurement of matching genotype to each

metabolite sample. For Dataset 1, replicates of proteomics experiments were averaged per genotype. For Datasets 2 and 3, where

multiple biological replicates were available, we assigned random proteomemeasurements to the corresponding genotype. Thenwe

only kept metabolic enzymes, as annotated in genome-scale yeast metabolic network reconstruction (Herrgård et al., 2008). Next,

the metabolic network was converted to a bipartite metabolite-enzyme graph. Based on metabolic network topology, we selected

enzyme neighbours at various metabolite network neighbourhood radii (Figures 4 and 5) for each measured metabolite. In total, for

each modelled metabolite we created 3 response-predictor data matrices corresponding to different metabolic network radii. These

were then used as basis for modelling of metabolite concentration data. For this, we used the batch corrected label-free protein

quantifications andmetabolite concentrationmeasurements. Network manipulations were performed by calling routines from igraph

library R package (Csardi and Nepusz, 2006).

Data Transformation

To each of the response-predictor matrices, a combination of data transformation methods were applied, specifically quantile

normalization (Smyth, 2005), log-transformation, Box-Cox (Sakia, 1992) for predictors (enzyme levels), and log and Box-Cox trans-

formations for responses (metabolite levels/concentrations). Both predictors and responses were standardized to have zero mean

and unit variance. To reduce the dimensionality within the predictor space, predictors were transformed onto principal component

space (PCA) for metabolite concentration modelling by machine learning. The choice of of number of principal components to retain

was based on cumulative coverage of 99%of predictors variation. All data transformations were performed either using R base func-

tions or the preProcess function as implemented in caret R package (Kuhn, 2008).
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Metabolite Concentration Regression Modelling
The computational analysis is divided in the use of multiple linear regression (MLR), ‘explanatory part’, Figure 4), and using machine

learning regression algorithms (‘predictive part’, Figures 4 and 5).

MLR modelling with exhaustive feature selection mainly was applied for exploratory purposes to identify readily-interpretable bio-

logically meaningful associations while more advanced regression algorithms were used for metabolite concentration predictions.

Model selection for MLR case was performed using the following procedures:

For eachmetabolite sample (without replacement) we created 1000 random subsets, each of them having 90%of the original data.

1) For each subset, we exhaustively evaluated all possible multiple regression models and chose the one with minimum Akaike

information criterion (AIC) (as implemented by regsubsets function from the leaps R package) (Lumley and Miller, 2004)

2) We kept the top 5 most frequent models among all subsets

3) and remove outlier points based on Studentized residuals, exceeding Bonferroni adjusted p-value < 0.05 as implemented in

outlier Test function in the car R package (Fox and Weisberg, 2011).

4) We removed influence points if any exceeded Cook’s distance thresholds, as calculated based on 4/(N�k�1), where N is the

number of observations and k is the number of explanatory variables.

5) We tested for the presence autocorrelation using Breusch-Godfrey test (Bonferroni adjusted p-value < 0.05) (as implemented

in bgtest function in lmtest package (Zeileis and Hothorn, 2002);

6) and determined how the obtained models explain the data by calculating the adjusted R2 value to assess the model fit.

7) To account for finite sample size, AIC was calculated according to the formula N*log(RSS/N) + 2*k (Faraway, 2016), where N is

the number of observations, k is the number of explanatory variables, RSS is the residual sum of squares of linear model. Such

ranking is not based on hypothesis testing, wherefore does not require FDR correction (Faraway, 2016). Models displaying the

highest adjusted R2 are presented in the main text (Figure 4), the rest of the candidate models are present in Figure S15.

For MLR in the explanatory part, we used only the expression of the first enzyme neighbours of metabolites as features for the

metabolite concentration modelling. Scaling was applied to predictors and responses without applying PCA transformation with

exception of ATPwhere the number of predictors exceeded the number of samples. For machine learning (ML) regression (predictive

part), we tested 12 algorithms. These are a generalised linear model with stepwise AIC feature selection, ridge regression with foba

sparse learning algorithm, partial least squares regression, elastic net regression, lasso, multivariate adaptive regression spline, sup-

port vector machine regression, model averaged neural network for regression, recursive partitioning tree, bagged recursive partition

tree, conditional inference tree and tree with stochastic gradient boosting. These ML methods were combined with the all possible

data transformation strategies as described above. To identify the best predictive model, for each metabolite and data transforma-

tion, we optimised each model’s hyperparameters by retaining the model having the minimal average 100 times repeated 10-fold

cross-validated root-mean-square error between the prediction and metabolite concentration measurement. The model’s

hyperparameters were optimised using the unified caret interface (Kuhn, 2008). Then, the algorithm and the combination of data

transformations demonstrating the best predictive performance was expressed as cross-validated R2 and used to compute metab-

olite concentrations with the all the proteomic data as input. Each metabolite was finally assigned the algorithm demonstrating the

best predictive performance (Figure S17). Source code with grid ranges of hyperparameters for each algorithm are available through

GitHub (https://github.com/alzel/regression_models).

The importance of variables was estimated by calling varImp function as implemented in caret R package (Kuhn, 2008). Variable

importance is dependent on the particular algorithm (Kuhn, 2008). Coefficients are scaled to 100% based on the most important var-

iable. In the present analysis, variables are principal components of the enzyme abundancematrix and we considered the variable to

be important if it had an importance coefficient >50% and up to 10 enzymes with the highest absolute loading from each of the the

components were chosen. In Figure 6C, for visualization purpose we displayed only enzymes with importance coefficient >90% and

with up to 5 enzymes with highest absolute loading per component.

Enzyme Saturation
KM values of enzymes for S. cerevisiae were obtained from the BRENDA database (Chang et al., 2015; Schomburg et al., 2000) ac-

cessed via its Python API on 1.10.2015. Metabolite namesweremanually mapped to substrate names of BRENDA records. Since the

database contains the records of multiple enzymes, including recombinant and modified proteins, only the enzymes that did not

match "mutantjrecombinant" pattern in the comment section were used for the analysis. For absolute concentration determination

we used calibration as described previously (M€ulleder et al., 2016a), i.e. by adjusting for dilution used in metabolite extraction pro-

tocols and normalising by cell volume (Figures 4F–4H). For analysis we collected 5ml cultures at OD595 1.5, the extraction volume

(100 ml for Dataset 2 and 400 ml for Dataset 3) and used the values for cells/OD595 (3.2*107) and cell volume (45.54 fL) for the strain

BY4741 in synthetic minimal medium. Cell volume estimates were obtained from Petrezselyova et al. (2010).

Note on the Relationship between Enzyme Expression Changes in the High and Low Abundant Fraction of the
Proteome
AsmicroLC-SWATH-MS captures preferentially the high abundant fraction of the the proteome (Vowinckel et al., 2018) wemade use

of transcriptional profiles as previously recorded for the kinase deletion strains in exponentially growing cells (van Wageningen et al.,
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2010), in order to assess enzyme expression alsowithin the genes of lower expression level. Enzyme encoding transcripts on average

account for 15%of the total transcriptomic impact of kinase deletion (using the thresholds for differential expression as defined in van

Wageningen et al. [2010]) (Figure S5).

In the subset of transcripts that directly correspond to the proteins as quantified by microLC-SWATH-MS, this value is 27%; in the

subset of transcripts where no protein values are available (largely representing the low abundant fraction of the proteome), this value

is 11%. Kinase-dependent enzyme level changes hence dominate to 1/3rd the highly abundant fraction of the proteome, while they

are also significant, but less dominating factor, in differential gene expression in the low abundant transcript fraction.The comparison

of our proteomes with this transcriptional data needs to be seen in the context that the transcriptional profiles were recorded from

yeast grown in amino acid supplemented media. This fact yielded some interesting observations from the comparison on its own.

Indeed, the difference between amino-acid supplemented andminimal media was reflected in a lower correlation between transcrip-

tional and proteomic data as it is typically reported in exponentially growing yeast. This confirms our recent study revealing the

importance of biosynthetic metabolism as global factor in cellular gene expression (Alam et al., 2016). Although transcriptome

and proteome fold-changes correlated significantly in many of the kinase knock-outs (Pearson r > 0.25, p-value < 0.01, Figure S5),

none of the Pearson correlation coefficients (PCCs) exceeded a value of >0.5 (Figure 1G); the median value, 0.12, was much lower,

and in several strains the correlation was insignificant (Figures 1G and S5). Furthermore, we find that the proximity of kinases to

transcription factors in protein-protein interaction networks (Szklarczyk et al., 2015) is a negative indicator of enzyme level changes

(Wilcoxon rank sum test, p-value < 0.05). Hence, themore upstream a kinase is compared to a transcription factor, themore enzymes

are affected (Figure S6). In contrast, the number of protein-protein interactions reported for each kinase, and the betweenness in the

protein-protein interaction networks, did not show significant correlations with number of affected enzymes (Figure S6).

QUANTIFICATION AND STATISTICAL ANALYSIS

All statistical analyses were done in R (R Core Team, 2015) with specific packages as indicated in each methods section. For the

basic data manipulation and visualization we used the R tidyverse package compilation (Wickham and Grolemund, 2016). Hypoth-

esis testing to assess means of population differences were mainly done using non-parametric Wilcoxon Rank Sum test, unless indi-

cated otherwise in specific cases. Sample size estimation were not performed in any of the experiments. For growth experiments at

least n=3 biological replicates were analysed unless stated otherwise.

DATA AND SOFTWARE AVAILABILITY

The raw proteomics mass spectrometry data have been deposited to the ProteomeXchange Consortium via the PRIDE (Vizcaı́no

et al., 2016) partner repository with the dataset identifier PRIDE: PXD010529. All code used to generate figures in the manuscript

are available through Github repository: https://github.com/zelezniak-lab/kinase_metabolism. All data from this manuscript is

deposited at: https://doi.org/10.5281/zenodo.1320288.
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