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Abstract: Evaluation of manufacturing systems requires large amounts of accurate data from
the factory floor. This data is then processed to calculate Key Performance Indicators (KPIs),
evaluation metrics used within the manufacturing industry by engineers and managers in order
to make data-driven decisions. Mechanisms to capture large scales of usable data, which is both
reliable and scalable is, more often than not, scarce. In this paper, we provide an approach to
capture data from robot actions, which can be applied to both legacy and current state-of-the-
art manufacturing systems. By exploiting the robot code structure, robot actions are converted
to event streams that are transformed into a higher usable abstraction of data. Applicability of
this data is demonstrated, primarily, by visualizations. The described approach is developed in
Sequence Planner – a tool for modeling and analyzing production systems – and is currently
implemented at an automotive company as a pilot project to visualize and examine what goes
on on the factory floor.

Keywords: Performance evaluation, Manufacturing systems, Data acquisition, Industrial
robots, Data streams, Sequence estimation

1 Introduction

Access to data from the factory floor is crucial in order
to evaluate the performance of any manufacturing station.
This data is used to calculate Key Performance Indicators
(KPIs) which, in turn, are used by engineers and managers
to evaluate manufacturing systems. These KPIs include,
for example: cycle times, machine downtime, resource
utilization, productivity etc. To be able to use these KPIs
to make reliable decisions, accuracy of the collected data
is vital.

Often, to enable the process of collecting data and calculat-
ing KPIs, additional resources and software programs are
added to the existing systems. However, additional tools
used are typically rigid and, more often than not, hard-
coded. This hard-coding has several challenging effects,
especially as it relates to maintenance.

One major challenge within the automotive manufacturing
industry has been to, conveniently, access and extract
data from operating robots that could contribute to KPI
calculations. One reason for this has been restrictions to
access data imposed by robot vendors. Today, based on
requirements, robots are programmed to send data to the
PLC. This data usually includes alarms, warnings, and
measurements made during execution. The PLC further
aggregates the data and saves it in a central database.
KPIs are then calculated using data stored in the database
off-line at distinct time instances. To make this possible
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each robot needs additional code, in the robot and PLC,
that has to be manually added and maintained. Therefore,
it is currently not possible to visualize real-time perfor-
mance for robots. These, real-time visualizations, help
operators and engineers tune and improve performance of
the system; and also enable data-driven approaches for
preemptive maintenance.

The main contribution of this paper, is a method to gather
useful data from robots to enable real-time visualization of
robot operations within manufacturing systems. In order
to do this, this paper provides a data processing pipeline
that starts with a generic and non-intrusive approach to
capture low level data from an existing robot station, fol-
lowed by, transforming this data into a higher abstraction
which can be used to further analyze the station. The
end result, in this paper, is the real-time visualization of
robot sequences by processing the abstracted data. The
transformed data can also be used, in an on-line or off-line
manner, to further calculate desired KPIs.

This paper also provides an insight into the tool Sequence
Planner (Dahl et al., 2017) used to capture and process
data from a demo station at an automotive manufacturing
plant. However, for practical details of the application
setup and configuration the interested reader is referred
to Nord and Wahlqvist (2016).

The rest of the paper is organized as follows: The ideas
and definitions used throughout the paper are discussed in
Section 2. Section 3 takes a live robot station and provides
implementation details for it. Section 4 provides insight



into the use of live data; specifically, visualization of robot
sequences. Finally, the paper concludes in Section 5.

2 Background

Within the manufacturing community different production
paradigms exist, like: Reconfigurable, Flexible, Adaptive,
Multi-agent, Holonic, manufacturing systems, to name a
few (Ribeiro and Barata, 2011). At the core of these
systems lies the idea that each subsystem performs one
specific function. Similarly, in the computer science com-
munity the last few years have seen the development of
Service Oriented Architectures (SOA), where each service
performs one specific task. This parallelism in the two
communities allows for easy integration of ideas between
them.

Theorin et al. (2015) provide a broader discussion on
various architectures available, and introduce the Line
Information System Architecture (LISA) that uses an
Event-driven Service Architecture (EDA). We use the
ideas from LISA to build a streaming data pipeline; which
is basically, a series of steps that transform real-time data
between different formats and abstraction levels.

2.1 Pipeline components

A data pipeline broadly consists of two types of compo-
nents, namely a message bus, responsible for communica-
tion and endpoints, data processing modules connected to
the message bus that process the streaming data. In this
method, data is passed through a pipeline in the following
order for the desired result:

(1) Virtual Device Endpoints: VD endpoints provide an
entry point to generate event streams from the phys-
ical hardware such as robots, PLCs, scanners etc.,
onto the message bus. Implementing communication
details inside each low level systems with the message
bus is a hard task, and not always feasible. Instead,
the VD is a wrapper that provides a message-based
interface; it thereby simplifies the architecture and al-
lows plug-and-play design for hardware components,
providing seamless integration for new devices.
The output from a VD endpoint is a stream of simple,
low level messages that can be interpreted and used
by all other endpoints.

(2) Transformation Endpoints: Low level systems com-
municate with simple messages which are sent by the
VD onto the bus. Transformation endpoints convert
such low level data, and generally data on a low
abstraction level, into higher abstractions, thereby
making the data more usable for other endpoints in
the pipeline.

(3) Service Endpoints: Service Endpoints provide a ser-
vice – one specific function – with the incoming data
as input and may or may not send processed data on
the bus. That is to say, services consume data from
one or more transformations; then use this data to
compute a result. Since services are based on user
needs, the pipeline allows integration of new services
without hampering the existing process. For example,
services may include aggregation services, prediction
services, calculation of KPIs, or visualization services.

2.2 Message bus

The message bus forms the communication layer allowing
interaction between all endpoints. There exist, in literature
and in practice, a number of possible configurations to
create a message bus. While configuring a bus, the main
objective is to aim for low complexity and high scalability.
Ideally, it must be possible to change or upgrade the
message bus without major changes to the code.

Services, in the pipeline, are triggered to execute when a
message arrives for it. To make this possible, messages on
the bus are structured into topics, and each service sub-
scribes to one or more topics. When a message arrives on
a specific topic subscribed by the service, that particular
service is executed once.

To keep the implementation simple, the Apache Ac-
tiveMQ (AMQ, 2017) message bus was chosen. The bus
was tested with a total of about 20 interacting resources
and several services running online; no issues related to
performance were noticed. However, if higher throughput
and a distributed nature is required, Apache Kafka (kaf,
2017) or any other compatible bus can be used with min-
imal changes to the existing system.

Figure 1 shows an overview of the general computational
pipeline presented in this section, along with their sub-
functions. Section 3 elaborates the functions with an
example applied to a real station.
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Fig. 1. Image of the complete pipeline

2.3 Example station

The approach presented in this paper has been imple-
mented at a body-in-white production station at an auto-
motive company. The station performs spot welding using
four robots on a variety of different car models produced
by the company. Once the car body enters the station and
is in position, the robots choose the appropriate prede-
fined program depending on the car model; and then, by
moving in the workspace between pre-programmed spatial
positions where they perform operations such as welding;
during these movements they might need to wait for each
other when entering common shared zones. Apart from
this, tip dressing operations – the process of cleaning the
welding tip – are also performed regularly by the robots
to maintain weld quality.

ABB robots are used in this station which are programmed
using a high-level programming language – RAPID – de-
veloped by ABB for their industrial robots. This language
supports modular programming, that is, these programs



are divided into, smaller, self-contained, modules that con-
tain a set of instructions corresponding to some physical
division in the system. Each module is further divided
into routines which correspond to a unit task performed
by the robot. Each line in the program corresponds to
an action by the robot, which is performed sequentially.
That is, there are entry and exit points defined for the
robot program. The line being executed is referred to by
the program pointer. Apart from robot movements, the
program also interfaces with the signals which provide
input/output functionality. This code structure will prove
beneficial when transforming the generated data into a
different abstraction.

3 Event pipeline

Having defined the general framework let us now look
at a real implementation on the example station. To
simplify and understand the system, this paper will focus
on connection and data from robots, specifically ABB
industrial robots. The following section will elaborate on
Figure 1.

The implementation is done using Sequence Planner
(SP) (Dahl et al., 2017), a tool developed at Chalmers Uni-
versity for modeling and analyzing automation systems.
SP is developed as a micro-service architecture, where ser-
vices interact with each other by passing messages. This,
micro-service architecture of SP, is exploited to implement
the discussed pipeline.

3.1 ABB endpoint

A virtual device is required to interface with the ABB
robots. Communication to the robots is done using the
Robot SDK (ABB, 2017) provided by the manufacturer.
This software provides a mechanism to subscribe to both
the program pointer and the signals. The virtual device
endpoint connected to the robot uses this SDK to sub-
scribe and get notified for changes in either the program
pointer or signals; which is followed by sending a message
– after appending a header – on the message bus with
the appropriate contents. An example robot message for a
program pointer position is shown in Listing 1.

The message consists of a program pointer position, an
address, and a header. The programPointerPosition block
contains information regarding the position of the program
pointer. It contains the names of the module and routine
currently executed by the robot. Additional information
pointing to the exact line number is available under range.
The value of time contained here is the time stamp when
this event was created. The address block differentiates
the message as either a signal or program pointer.

The header block (the bottom three lines) contains infor-
mation that helps identify the source of each message. It
consists of a workCellId, a unique number to represent the
manufacturing station where the message was generated;
a time stamp for when the endpoint received the pointer
change information is defined by time; and a robotId to
identify the robot that generated the event.

If the event was generated when a signal value changes
a signal message is created. The signal message, similar

to a program pointer position message, consists of the
header and a Signal block with the name of the signal
and its corresponding updated value. Correspondingly, the
address block refers to the signal address.

Listing 1. Program pointer message sent for every change
in pointer position

{
" programPointerPos i t ion " : {

" po s i t i o n " : {
"module " : "LD930R8119" ,
" rou t ine " : "D931SchDefault " ,
" range " : {

" begin " : {
"column " : 5 ,
"row " : 250

} ,
"end " : {

"column " : 28 ,
"row " : 250

}
}

} ,
" time " : "2017−01−12T17 :03 :54 .942+01 :00" ,
" task " : "T_ROB1"

} ,
" address " : {

"kind " : "programPointer " ,
"path " : [

"T_ROB1"
] ,
"domain " : " rap id "

} ,
" robotId " : " r8119 " ,
" time " : "2017−01−12T17 :03 :54 .942+01 :00" ,
"workCel l Id " : "1736070"

}

3.2 Transformation endpoints

As mentioned earlier, transformation endpoints transform
data from one abstraction to another. The incoming raw
data from a robot as seen in Listing 1 needs to be refined
into something more understandable. One sufficiently good
abstraction to use is that of an operation (Bengtsson et al.,
2009). The robot structure defined in Section 2.3 is made
use of here. Routines in the program represent the tasks
performed by the robot, these constitute “move from a
to b”, “grip”, or “weld”, and hence they are abstracted
as operations for us to understand. Waiting for shared
resources is accomplished using the keyword “WaitSignal”
in the robot programs. Using this information, the fol-
lowing subsections provide a step by step approach to
transforming the raw data into operations.

3.2.1 Naming and Categorizing events The first step in
the transformation is to be able to differentiate between
the incoming events. We do this by naming them according
to the routine they are generated from. Furthermore, an
event due to a wait must be differentiated from other tasks.
For every robot message that arrives, text corresponding
to the range specified by the program pointer is extracted
from the robot program; this text is the instruction the
robot currently performs. If the extracted instruction reads
“WaitSignal” then the event is categorized as a “wait”
event, else it belongs to a “routine”. A new message is
then sent out appending the original message with tags
“instruction”, containing the instruction extracted from the



program, and “isWaiting” with a value true if the event is
categorized as a “wait” else a value false.

Listing 2. Three different operation events
{

" a c t i v i t y I d " : "80b1a21e−4535−4797−ad65−
d0ec47e2 fc99 " ,

" i s S t a r t " : true ,
"name" : "WaitSignal Re l ea seSta t i on2 ; " ,
" robotId " : " r8121 " ,
" time" : "2017−01−13T12 :37 :01 .907+01 :00" ,
" type" : "wait " ,
"workCel l Id " : "1736070"

} ,
{
" a c t i v i t y I d " : "80b1a21e−4535−4797−ad65−

d0ec47e2 fc99 " ,
" i s S t a r t " : f a l s e ,
"name" : "WaitSignal Re l ea seSta t i on2 ; " ,
" robotId " : " r8121 " ,
" time" : "2017−01−13T12 :37 :02 .311+01 :00" ,
" type" : "wait " ,
"workCel l Id " : "1736070"

} ,
{
" a c t i v i t y I d " : "048266 f1−a071−4f1e−b77e−0

e5de57a8c23 " ,
" i s S t a r t " : true ,
"name" : "B940ToPutFixt071_3 " ,
" robotId " : " r8119 " ,
" time" : "2017−01−13T12 :36 :34 .951+01 :00" ,
" type" : " r ou t i n e s " ,
"workCel l Id " : "1736070"

}

3.2.2 Aggregate events to operations The named and
categorized messages need to be further processed to make
them usable. The next step in the pipeline is to aggregate
the different messages into operations. This endpoint lis-
tens to named and categorized events generated as de-
scribed in the previous section. It also keeps track of
all available resources and the routines being currently
executed by each of them. The output from this endpoint
generates operation events – i.e. the start and stop events
for operations. An operation event has a name, a time
stamp, a resource where it is executed, and a flag that
defines if this is a start or stop event. Listing 2 shows three
different operation events, two events for a wait operation
and a start event for a routine, running on two different
robots. The start and stop operation events are also shown
with their respective time stamps. Furthermore, operation
events can be aggregated to view a complete operation as
seen in listing 3. However, there is an advantage to preserve
operation events instead of merging them into operations,
since start-stop events can be processed to understand
underlying relations between operations.

Listing 3. An aggregated operation
{

" a c t i v i t y I d " : "80b1a21e−4535−4797−ad65−
d0ec47e2 fc99 " ,

"name" : "WaitSignal Re l ea seSta t i on2 ; " ,
" robotId " : " r8121 " ,
" startTime " : "2017−01−13T12 :37 :01 .907+01 :00" ,
" stopTime" : "2017−01−13T12 :37 :02 .311+01 :00" ,
" type" : "wait " ,
"workCel l Id " : "1736070"

}

4 Services

Having real-time data from factory floors abstracted into
operations, one can run various algorithms – in the form
of services – to understand and visualize the tasks on the
factory floor. The following section describes some service
endpoints that uses the generated data.

4.1 Real-time resource based operation visualization

Information such as, execution time for each cycle, exe-
cution time for each operation, total waiting time, op-
erations where robots wait for each other, are, among
others, important to maintain and develop the station.
An overview of ongoing operations can be visualized using
real-time Gantt charts. Operators and engineers responsi-
ble for maintaining and developing the station use these
charts to keep track of on-going processes at the station.
Figure 2 shows a snapshot of a real-time Gantt chart of on-
going operations in all resources, appended with additional
information such as execution time for each operation.
Similarly, it is also possible to visualize historical cycles, as
shown in Figure 3. In both figures, each robot is identified
by its name and has two rows corresponding to it. The
first row traces “routines” while the second traces “wait”
operations.

4.2 Real-time operation-centered visualization

Relations between various operations are of interest; cer-
tain combinations might not be desired during execution.
These relations between operations also serve as an input
during analysis and optimization of the system. Instead
of using a resource-centered view, one can visualize op-
erations and their relations in a Gantt view as seen in
Figure 4.

Take as an example robot r8255 highlighted within a box
in the same figure. We see that r8255_ArcSoftServoTrap,
which is the operation to ‘close’ or ‘open’ the welding tip,
runs after operations, r8255_D910WeldDefault2 and
r8255_D910WeldDefault3. Also, operations
r8255_D910WeldDefault2, r8255_D910WeldDefault3 and
r8255_D911WeldDefault1 run in a sequence, this rela-
tion can be deduced by a quick visual inspection of the
Gantt chart. Though visual inspections, such as these, are
possible, they are highly time-consuming and inaccurate.
As number of interacting resources increase, so does the
complexity in finding relations. Computational methods,
in this scenario, will be helpful in performing the same
analysis, but, with a higher degree of accuracy; this is
performed as part of sequence identification.

4.3 Sequence identification

Visualization of robot operations are useful when inter-
preted by a human operator with sufficient understanding
of the system. It would be of interest if a service could
create, from available data, a model that captures the pro-
cess behavior, and then to apply model-based algorithms
that analyze the system and its performance. Building a
general model – that defines the nominal operation of the
station – can be done by Process Mining (van der Aalst,
2016) or Grammar Inference (de la Higuera, 2005; Bugalho



Fig. 2. A real-time Gantt view of operations running in the station.

Fig. 3. Historical cycles with additional details

and Oliveira, 2005; Parekh and Honavar, 2000) from gath-
ered data. The service employing such algorithms takes
a stream of operations with start and stop times as in-
puts. By analyzing operation streams over several cycles,
generic models describing the different operation sequences
performed by each robot and of the complete station are
generated; which can then be visualized using the language
of Sequence of Operations (SOPs) introduced by Bengts-
son et al. (2010). Farooqui et al. (2018) use the data from
robots to infer the sequence of operations performed by
the robots. These models are then used to further analyze,
improve, and optimize the robot station. Furthermore, the
models can be used to trace the behavior of the robots to
detect errors.

4.4 Additional Services

The data generated and the messaging structure can
be used to create different services which are briefly
elucidated in this subsection.

Optimization services can use the models generated to
optimize and find optimal sequences based on certain con-
straints. Dahl et al. (2017) discuss a method to optimize

the sequence of operations with the aim of reducing cycle
time. On the other hand, Riazi et al. (2017) and Sundström
et al. (2017) focus on optimizing energy consumed by the
robots by finding optimal operation sequences, such that
the overall cycle time is constant while specific operations
run at lower speeds; thereby saving energy. As these meth-
ods rely on the idea of operations they can be integrated
in the defined architecture to use the messaging structure.

Prediction services can use past and present data to
make certain predictions regarding the factory floor. Pre-
dicting potential errors and failures can help prepare
operators early thereby mitigating downtime. One such
example is to predict the replacement of the welding tip
by analyzing tipdress operations which are responsible for
cleaning the welding tip elucidated by Nord and Wahlqvist
(2016). Similarly, access to several cycles of historic data
opens up possibilities to predict a variety of KPIs such
as cycle times, delays, maintenance requirement etc, that
help in evaluation and maintenance of the station.



Fig. 4. Real-time view of ongoing operations and the number of times they have run

5 Conclusion

In conclusion, a robot agnostic approach that enables gen-
eration of data from, new and existing, robot operations
is provided. This data, is streamed as events to a data
processing pipeline transforming raw data to a usable ab-
straction of operations. These operations are then used to
visualize the manufacturing system in different views that
equip operators and engineers with a better understanding
of the system. Additionally, access to more detailed data
from robots has also paved way for advancement in the
ways to calculate KPIs in a live production environment.
Furthermore, access to detailed operation level data has
made it possible to analyze the system by calculating a
generic operating model for the station and then trace its
behavior in real-time.
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