
Constructing Independently Verifiable Privacy-Compliant Type
Systems for Message Passing between Black-Box Components

Downloaded from: https://research.chalmers.se, 2019-05-11 11:35 UTC

Citation for the original published paper (version of record):
Adams, R., Schupp, S. (2018)
Constructing Independently Verifiable Privacy-Compliant Type Systems for Message Passing
between Black-Box Components
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology.
It covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004.
research.chalmers.se is administrated and maintained by Chalmers Library

(article starts on next page)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Chalmers Research

https://core.ac.uk/display/198051341?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Constructing Independently Verifiable
Privacy-Compliant Type Systems for Message

Passing between Black-Box Components

Robin Adams1 and Sibylle Schupp2

1 Chalmers University of Technology
robinad@chalmers.se

2 Technische Universität Hamburg-Harburg
sibylle.schupp@tuhh.de

Abstract. Privacy by design (PbD) is the principle that privacy should
be considered at every stage of the software engineering process. It is
increasingly both viewed as best practice and required by law. It is there-
fore desirable to have formal methods that provide guarantees that cer-
tain privacy-relevant properties hold. We propose an approach that can
be used to design a privacy-compliant architecture without needing to
know the source code or internal structure of any individual component.
We model an architecture as a set of agents or components that pass
messages to each other. We present in this paper algorithms that take as
input an architecture and a set of privacy constraints, and output an ex-
tension of the original architecture that satisfies the privacy constraints.

1 Introduction

Privacy by Design is the principle that privacy should be a consideration at every
stage of the software design process[8]. It is increasingly seen as best practice for
privacy protection, including by the International Conference of Data Protection
and Privacy Commissioners[9] and the US Federal Trade Commission[14], and
is a legal requirement in the EU since the General Data Protection Regulation
(GDPR) came into force on 25 May 2018[13].

It is therefore desirable to create methods that will provide a guarantee that
software satisfies certain privacy-relevant properties. To this end, a substantial
amount of research (both formal methods and other approaches) has been de-
voted to this problem, including static analysis of source code (e.g. [15],[11]);
real-time “taint tracking” of the data released by apps on a mobile device
(e.g. [19],[12]); refinement techniques that preserve privacy properties as we re-
fine in stages from a high-level design to code (e.g. [1],[10]); or the creation of
new programming languages which include representations of privacy-relevant
properties in types or annotations (e.g. [18],[16]).

We can thus design a privacy-safe application, or verify that a given appli-
cation is privacy-safe, provided we can access and/or change its source code.
However, in practice, many systems involve the interaction of different compo-
nents, each controlled by a different person or organisation. The source code



might not be available, or it might not be possible for us to change it. New
versions of each component may come out regularly, so that a privacy analysis
we did using an old component quickly becomes obsolete.

In this paper, we will show how we can design a type system for the messages
that the components pass to each other, in such a way that we can formally
prove that, if every message passed is typable under this typing system, then
the privacy property must hold. We indicate how an existing unsafe component
can be adapted into a component that uses this typing system by providing each
component with an interface through which all messages must pass, without
needing to read or modify the component’s source code.

The structure of the paper is as follows. In Section 2, we give a relatively
simple but realistic example of privacy constraints that we may wish to hold,
and show the architecture that our algorithms generate. In Section 3, we provide
the formal definition of architecture that we use. In Section 4, we define the
algorithm for a simple constraint language and prove it correct. In Section 5, we
do the same development again for a stronger language of constraints, of the form
α 3 A ⇒ β 3 B (‘if α possesses a term of type A then β must previously have
possessed a term of type B’). Finally we survey some related work in Section 6,
and conclude in Section 7.

2 Motivating Example

We now give an example of realistic privacy constraints that we might wish
to introduce, and the architectures that are produced by our algorithms. The
example is similar to an example considered by Barth et al. [4].

The US Children’s Online Privacy Protection Act (COPPA) includes the
clause:

When a child sends protected information to the website, a parent must
have previously received a privacy notice from the web site operator,
[and] granted consent to the web site operator.

We propose to model a system as being composed of agents or components
who pass messages to each other. The possible messages are provided by a type
system, which consists of a set of types and a set of constructors. These two sets
determine the set of terms, each of which has a type. We write t : A to denote
that the term t has type A.

A message is a triple (α, t, β), where α and β are agents and t is a term; this
represents the agent α sending the piece of data t to β. If t : A, then we write

this message as α
t→ β or α

t:A→ β.
For the COPPA example, Figure 1 suggests an architecture with three agents,

Child, Website, and Parent. In the initial state, Child possesses a term info :
INFO, Website possesses policy : POLICY, and Child may send messages of
type INFO to Website, etc. This represents a website which can send its privacy
policy to the parent; the parent may send consent for the website to collect the



child’s protected info; and the child may send their protected info to the website.
However, at the moment, there is nothing to prevent the protected info being
sent to the website without either policy or consent having been sent.

Formally, an architecture is described by specifying the following (see Defi-
nition 2):

– for any agent α, which constructors an agent possesses in the initial state;

– for any two agents α, β, the set of types A such that α may pass a message
of type A to β.

If A is a type, we shall sometimes say ’α can send A to β’ to mean ’α may send
messages of type A to β’.

We envision the designer beginning with a set Ag of agents and a type system
T which describes the pieces of data they are interested in. They write down
the set C of privacy constraints that they wish the finished system to have. For
now, we consider constraints of these two forms (see Definitions 4 and 6):

– α 3 A⇒ B: If agent α has a piece of data of type A, then a piece of data of
type B must have previously been created.

– α 3 A⇒ β 3 B: If agent α has a piece of data of type A, then agent β must
previously have had a piece of data of type B.

The privacy constraints that we require for the architecture in Figure 1 in-
clude

Website 3 INFO ⇒Website 3 CONSENT

Website 3 CONSENT ⇒ Parent 3 POLICY

The first constraint specifies that agent Website possesses INFO only if it
previously has received data of type CONSENT. The second constraint specifies
that agent Website possesses CONSENT only if the Parent agent has received
the POLICY before. (We will add a third constraint later, in Section 5.1.)

Fig. 1. An Architecture That Allows Privacy Breach

Given privacy constraints, we show how to extend T to a type system TC.
The type system TC includes a set of new types Cα(A). A term of type Cα(A)
is called a certified term. As well as the plain INFO type, for example, the safe
architecture contains the type CWebsite(INFO). A term of this type represents
a piece of data from which Website can extract a term of type INFO, but no



other agent can.3 There are no restrictions on which agents may receive them
or send certified terms.

The type system TC also has types Pα(A), and constructors pα that construct
terms of type Pα(A). We may think of a term of type Pα(A) as a proof that α
possesses a term of type A.

The architecture created by our Algorithm 2 is shown in Fig. 2. (For space
reasons, we have listed only some of the constructors and messages, and omit-
ted the subscripts on the types Cα(A) and Pα(A).) The algorithm creates new
components IWebsite, the input interface to Website, and OWebsite, the output
interface for Website; and similarly input and output interfaces for Parent and
Child .

The constructor pPOLICY takes a term of type POLICY and constructs a
term of type PParent(POLICY ) — a proof that Parent has received a term of
type POLICY . The constructor mCONSENT constructs a certified term of type
CWebsite(CONSENT ) out of a term of type CONSENT , plus the proof that
the preconditions for Website to be allowed to read a term of type CONSENT ,
namely a term of type PParent(POLICY ). The constructor πCONSENT then
extracts the term of type CONSENT from the certified term. Similar comments
hold for mPOLICY and πPOLICY , and the other new constructors in Fig. 2.

It can be seen that, while Child may send INFO to OChild at any time, the
only way for the data to travel any further is for a term of type CWebsite(INFO)
to be created; this can only happen if a term of type PWebsite(CONSENT )
has been created; this can only happen if a term of type CONSENT reaches
OWebsite; and this can only happen if Website has a term of type CONSENT .
Similar considerations hold for our other negative constraint.

Fig. 2. A Privacy-Safe Architecture

We can partition the agents in Fig. 2 into three sets: {Child, IChild,OChild},
{Website, IWebsite,OWebsite}, {Parent, IParent,OParent}. Each set thus
consists of one of the agents from Fig. 1, plus its two new interfaces. Note that,
if an agent from one set passes a message to an agent in another set, then that

3 In practice, this would presumably be achieved by encryption, but we abstract from
these implementation details here. See Section 2.1 for more discussion.



message has type Cα(A) or Pα(A) for some α, A. In the rest of this paper, we
will prove two results (Theorems 1 and 2) that give general conditions such that,
if an architecture can be partitioned in a way that satisfies these conditions, then
a given set of privacy constraints are satisfied.

2.1 Note on Implementation

In practice, certification on the one hand, access on the other hand, could be
implemented through encryption and decryption. But, other mechanisms possi-
bly exist as well. The type systems we present in this paper abstract from these
details. They specify which agents may and may not access which data, without
specifying how this is to be done.

The terms of type Pα(A) should, in practice, ideally be an appropriate zero-
knowledge proof which guarantees that α possesses a term of type A, without
revealing the value of the term of type A. Again, in this paper we abstract from
the details of how this would be implemented.

However, we expect it to be possible to implement these types in such a way
that the designer could publish both the set of constraints C and the type system
TC, and an independent third party (the user, a regulatory authority, or anyone
else) to verify both that our algorithm maps C to TC, and that any given message
is typable under TC. This would greatly increase the trust that all parties can
have that the global privacy policies C hold true.

We also note that, if there are large numbers of agents in our system, we
will need a large number of types. In our motivating example, if we have many
children and many parents, then we will need types CCHILD1

(CONSENT ),
CCHILD2

(CONSENT ), etc. and a way to ensure that παA accepts terms of
type Cα′(A) only if α = α′, requiring the use of dependent types. For now, this
is left as work for the future.

3 Architectures

We now describe the language we use for specifying architectures. This system
was inspired by work by le Métayer et al [3] and Barth et al [4].

An architecture consists of agents who pass messages to each other. Each
message is a term that can be typed in a type system.

Definition 1 (Type System). A type system is given by the following:

– A set of atomic types. The set of types is the defined inductively by:
• Every atomic type is a type.
• If A and B are types, then A→ B is a type.

– A set of constructors, each with an associated type.

The set of terms of each type is then defined inductively by:

– Every constructor of type A is a term of type A.



– If s is a term of type A→ B and t is a term of type A, then st is a term of
type B.

We write t : A to denote that t is a term of type A.

In the example in Figure 1, the atomic types are INFO, CONSENT and
POLICY . The constructors are info which has type INFO, policy which
has type POLICY , and consent which has type CONSENT . In the exam-
ple in Figure 2, the architecture has been extended with new atomic types such
as CWebsite(INFO), and new constructors such as pPOLICY , which has type
POLICY → PParent(POLICY ).

Definition 2 (Architecture). Given a type system T , an architecture A over
T consists of:

– a set Ag of agents or components;
– for every agent α, a set Hα of constructors that α initially possesses or

initially has;
– for every ordered pair of distinct agents (α, β), a set Mαβ of atomic types

that α may send in a message to β.

We shall write α
A→ β to denote that A ∈Mαβ.

(Note that only terms of atomic type can be passed between agents.)
In the example in section 2, we have Ag = {Child,Website, Parent}. The

agent Child initially possesses the constructor info, and Website initially pos-
sesses policy, and Parent initially possesses consent. We have MChild,Website =
{INFO}; thus, Child may send messages of type INFO to Website. We also
have MWebsite,Parent = {POLICY } and MParent,Website = {CONSENT}.

We will use lower-case Greek letters α, β, . . . for agents, lower-case Roman
letters s, t, . . . for terms, and capital Roman letters A, B, . . . for types. The letter
c is reserved for constructors.

Let us say that an agent α can compute terms of type A iff it possesses a
constructor of type B1 → · · · → Bn → A for some B1, . . . , Bn.

Definition 3. Let A be an architecture.

1. An event or message is an expression of the form α
t:A→ β, to be read as ‘α

passes the term t of type A to β.’
2. A trace τ is a finite sequence of events.
3. A judgement is an expression of the form τ ` α 3 t : A, which we read as

“After the trace τ , α has the term t of type A.”

We write τ1, τ2 for the concatenation of traces τ1 and τ2. We write τ1 v τ ′ iff
τ1 is a prefix of τ ′, i.e. there exists τ2 such that τ ′ = τ1, τ2.

The derivable judgements are given by the rules of deduction in Figure 3.
We say that τ is a valid trace through A iff τ ` α 3 t : A is derivable for some
α, t, A. We say that an agent α possesses a term of type A after τ , and write



(init) ` α 3 c : A
(c : A ∈ Hα) (message1)

τ ` α 3 t : A

τ, α
t:A→ β ` β 3 t : A

(A ∈Mαβ)

(message2)
τ ` α 3 t : A τ ` γ 3 s : C

τ, α
t:A→ β ` γ 3 s : C

(A ∈Mαβ)

(func)
τ ` α 3 f : A→ B τ ` α 3 t : A

τ ` α 3 ft : B

Fig. 3. Rules of Deduction

τ ` α 3 A, iff there exists a term t such that τ ` α 3 t : A. We say that there
exists a term of type A after τ , and write τ ` A, iff τ ` α 3 t : A for some α, t.

The rule (init) states that, if α initially possesses c, then α possesses c in the
initial state. The rule (func) states that, if an agent possesses both a function
f and term t of the appropriate types, it may compute the term ft. The rule
(message1) states that, after α has sent t to β, then β possesses t. The rule
(message2) states that, if γ possesses s before α sends a message to β, then γ
still possesses s after the message is sent.

3.1 Metatheorems

We can establish the basic properties that our typing system satisfies.

Lemma 1.

1. Weakening Suppose τ1 ` α 3 t : A and τ1, τ2 is a valid trace. Then τ1, τ2 `
α 3 t : A.

2. If τ1, α
t:A→ β, τ2 is a valid trace, then A ∈Mαβ, and τ1 ` α 3 t : A.

3. Generation Suppose τ ` β 3 t : B. Then there exist terms t1 : A1, . . . ,
tm : Am (m ≥ 0) and agents α1, . . . , αn (n ≥ 1) such that t ≡ ft1 · · · tm,
β = αn, and the following events occur in τ in order:

α1 3 f : A1 → · · · → An → B, α1
t:B→ α2, · · · , αn−1

t:B→ αn

Further, we have τ ` α1 3 t1 : A1, . . . , τ ` α1 3 tm : Am.

4. If τ ` β 3 t : B, then either β can compute B, or there is an event α
t:B→ β

in τ for some α.

Intuitively, Generation says that if agent β possesses a piece of data of type
B, then it must have been computed by an agent α1 that can compute terms of
type B, and then passed to β in a sequence of messages.

The proofs of the first three properties are by straightforward induction on
derivations. Part 4 follows easily from part 3.



4 The First Algorithm

In the rest of this paper, we will consider different sets of constraints that we
may wish to place on our architectures. In each case, we shall show how, given
an architecture A and a set of constraints C, we can construct an architecture B,
which we call a safe architecture, that extends A and satisfies all the constraints.

For our first algorithm, we consider the following constraints:

Definition 4 (Constraint).

1. A negative constraint has the form α 3 A⇒ B, where A and B are atomic
types. We read it as: “If α receives a message of type A, then a term of type
B must have previously been created.” A trace τ complies with this constraint
iff, for every τ1 v τ , if τ1 ` α 3 t : A for some t, then τ1 ` β 3 s : B for
some β, s.

2. A positive constraint has the form Pos(α,A), where A is an atomic type.
We read it as: “It must be possible for α to have a term of type A.” A trace
τ complies with this constraint iff τ ` α 3 t : A for some term t.

Note To understand part 1 of this definition, note that, if it is possible to create
a term t : A without first creating a term s : B, then there is a trace τ such
that τ ` α 3 t : A for some α, and τ 0 β 3 s : B for all β. Thus, the condition
“For every τ1 v τ , if τ1 ` α 3 t : A for some t, then τ1 ` β 3 s : B for some β,
s” captures the idea “If α receives a message of type A, then a term of type B
must have previously been created.”

Example Consider an accountancy firm collecting personal data from the em-
ployees of a company in order to prepare a tax report. The principle of data
minimization [13, Section 25] states that the accountancy firm should collect
only the data that is necessary for this purpose. We can model this as follows:
assume there are two types of tax return that can be prepared, TRA and TRB .
Let Employee initially possess a : A and b : B, where a is required to prepare
TRA and b is required to prepare TRB . The company can send requests QA and
QB to Accountancy, requesting a tax return of one of the two types. We could
then write constraints Accountancy 3 A⇒ TRA and Accountancy 3 B ⇒ TRB
to express that the accountancy firm may only possess an employee’s personal
data if it is necessary for a tax return that it has been requested to prepare.

We now construct the type system that the safe architecture will use:

Definition 5 (Safe Type System). Let T be a type system and Ag a set of
agents. Let C be a finite set of negative constraints over T and Ag. The safe type
system TC is defined as follows.

– The atomic types of TC are the atomic types of T together with, for every
agent α ∈ Ag and atomic type A in T , a type Cα(A), the type of certified
terms of type A that may only be read by α.

– Every constructor of T is a constructor of TC.



– For every α ∈ Ag and type A of T , let the constraints in C that begin with
‘α 3 A’ be

α 3 A⇒ B1, . . . , α 3 A⇒ Bn .

Then the following are constructors of TC:

mβ1···βn
αA : A→ Cβ1

(B1)→ · · · → Cβn(Bn)→ Cα(A) for all β1, . . . , βn ∈ Ag;

παA : Cα(A)→ A

The intention is that mβ1···βn
αA constructs a term of type Cα(A) out of a term

of type A and n other terms which prove that the preconditions to α 3 A are
all satisfied. The constructor παA then extracts the term of type A again.

Using the type system, we can state a set of conditions that guarantee that
an architecture satisfies the negative constraints in C.

Theorem 1. Let T be a type system, Ag a set of agents, and C a set of negative
constraints over T and Ag. Let B be an architecture over TC with set of agents
Ag′, where Ag ⊆ Ag′. Suppose there is a partition {Pα ⊆ Ag′}α∈Ag of Ag′ indexed
by Ag such that:

1. α ∈ Pα for all α ∈ Ag;

2. If β
A→ β′ and β, β′ are in different sets of the partition, then A has the

form Cγ(B) for some γ, B;
3. If β possesses παA then β ∈ Pα;
4. For every constraint α 3 A ⇒ B in C, if an agent β ∈ Pα possesses a

constructor with target A, then this constructor is παA.

Then every trace through B satisfies every negative constraint in C.

The intuition behind the premises is this: the partition divides the system
into parts. The part Pα is the only part of the system that is allowed to look
inside a term of type Cα(A) and extract the underlying term of type A. Only
certified terms may be passed between the parts. Thus, the only way for an agent
in Pα to possess a term of type A is either for it to be computed within Pα, or
for a term of type Cα(A) to be passed in from another part of the system.

Proof. Let τ be any trace through B and let α 3 A⇒ B be one of the constraints
in C. We must show that, if τ ` α 3 t : A, then τ ` B. We shall prove the more
general result:

If τ ` β 3 t : A for some β ∈ Pα, then τ ` B.

So suppose τ ` β 3 t : A for some β ∈ Pα. We may also assume without loss of
generality that τ is the shortest trace for which this is true. By Generation and
the minimality of τ , β possesses a constructor with target A. By our hypotheses,
this is παA, and t = παA(t′) for some t′. Hence τ ` β 3 t′ : Cα(A) for some t′.

Now, looking at the construction of TC, the only constructor with target
Cα(A) is

mβ1···βn
αA : A→ Cβ1

(B1)→ · · · → Cβn(Bn)→ Cα(A) .



So applying Generation again, we must have t ≡ mβ1···βn
αA st1 · · · tn and there

must be an agent γ which possesses mβ1···βn
αA with

τ ` γ 3 s : A, τ ` γ 3 t1 : B1, . . . , τ ` γ 3 tn : Bn .

Now, B is one of the types B1, . . . , Bn; let it be Bi. Then τ ` γ 3 Cβi(B). By
similar reasoning, there must be an agent δ that possesses one of the constructors
mβiB , and τ ` δ 3 B. ut

We are now ready to construct the safe architecture.

Algorithm 1 Given an architecture A and a finite set of constraints C, con-
struct the architecture Safe(A,C) as follows:

1. The agents of Safe(A,C) are the agents of A together with, for every agent
α of A, an agent Iα, which we call the interface to α.

2. The type system of Safe(A,C) is TC.
3. If an agent α possesses a constructor c in A, then α possesses c in Safe(A,C).
4. For every type A of A, let the negative constraints that begin with α 3 A be

α 3 A⇒ B1, . . . , α 3 A⇒ Bn .

– Every interface Iγ possesses mβ1···βn
αA for all β1, . . . , βn.

– Iα posseses παA
5. For every atomic type A, the agents α and Iα may send A to each other.
6. Any two interfaces may send messages of type Cα(A) to each other for any

α, A.

Thus, in order to construct a certified term of type A readable by α, an
interface must first obtain certified terms of all the types which the constraints
require. The only way α can receive a term of type A is through its interface
obtaining a term of type Cα(A). Interfaces may pass certified terms between
each other at will. An agent and its interface may exchange uncertified terms at
will.

Theorem 2. Let A be an architecture and C a set of constraints. Suppose that:

1. For every negative constraint α 3 A ⇒ β 3 B in C, we have that α cannot
compute terms of type A.

2. For every positive constraint Pos(α,A) ∈ C, there exists a trace through A
that satisfies Pos(α,A) and all the negative constraints in C.

Then the architecture Safe(A,C) has the following properties:

1. Every trace through Safe(A,C) satisfies every negative constraint in C.
2. For every positive constraint Pos(α,A) ∈ C, there exists a trace through

Safe(A,C) that satisfies Pos(α,A).

Proof. Part 1 follows from the previous theorem, taking Pα = {α, Iα}.
We now show that Safe(A,C) has the following property. Part 2 of the

theorem follows immediately.



If τ ` α 3 t : A in A, A is an atomic type, and τ satisfies every negative
constraint in C, then there exists a valid trace τ ′ through Safe(A,C)
such that τ ′ ` α 3 t : A and τ ′ ` Iα 3 t′ : Cα(A) for some t′.

The proof is by induction on τ , then on the derivation of τ ` α 3 t : A. We
deal here with the case where the last rule in the derivation was (message1):

τ ` β 3 t : A

τ, β
t:A→ α ` α 3 t : A .

By the induction hypothesis, there exists τ ′ such that τ ′ `Safe(A,C) β 3 t : A.
By the construction of Safe(A,C), we have A ∈ CβIβ and A ∈ CIαα. Hence

τ, β
t:A→ Iβ `Safe(A,C) Iβ 3 t : A.

Now, let the negative constraints in C that begin with α 3 A be α 3 A ⇒
B1, . . . , α 3 A ⇒ Bn. By hypothesis, τ, β

t:A→ α satisfies all these constraints.
Therefore, τ `A B1, . . . , τ `A Bn.

Hence, by the induction hypothesis, there exists τ ′′ such that τ ′′ `Safe(A,C)
B1, . . . , τ

′′ `Safe(A,C) Bn. Therefore,

τ ′′ `Safe(A,C) Iβ1
3 t1 : Cβ1

(B1), . . . , τ ′′ `Safe(A,C) Iβn 3 tn : Cβn(Bn) ,

for some t1, . . . , tn. By Weakening, we may assume τ ′ v τ ′′.
After extending τ ′′ by passing t1, . . . , tn as messages to Iβ , we have that Iβ

can construct a term of type Cα(A). After passing this term to Iα, we have that
Iα(A) possesses a term of type Cα(A). From this, it can construct a term of type
A which it may then pass to α, completing the required trace. ut

5 The Second Algorithm

Supposing it is important to us, not merely that a piece of data has been created,
but that a particular agent has seen it. We can extend our system to handle this
type of constraint as follows.

Definition 6. In this section of the paper:

– a negative constraint is an expression of the form α 3 A⇒ β 3 B. A trace
τ satifies this constraint iff, for every τ ′ v τ , if τ ′ ` α 3 A then τ1 ` β 3 B.

– Positive constraints are as in Section 4.

Note If (α,A) 6= (β,B), then the constraint α 3 A⇒ β 3 B is to be read as “if
α possesses a term of type A, then β must previously have possessed a term of
type B”. (The condition α 3 A⇒ α 3 A is trivial.)

We show how to extend a given architecture A to an architecture that uses
the new privacy-safe type system. Unfortunately, we have not found a way to
do this that requires no modifications to the agents in A. We present below
(Algorithm 2) an algorithm that requires modifications which we expect would
be minor in practice, and discuss in Section 5.2 ways in which this situation
could be improved in future work.



Definition 7. Given a type system T , a set of agents Ag, and a set of negative
constraints C over T and Ag, define the type system TC as follows.

– The types of TC are the types of T together with, for every agent α and atomic
type A of T , a type Cα(A) and a type Pα(A). (Intuition: a term Cα(A) is a
certified term of type A that α is permitted to read. A term Pα(A) is proof
that α has held a term of type A.)

– Every constructor of T is a constructor of TC.
– For every agent α and type A, let the negative contraints in C that begin with
α 3 A be

α 3 A⇒ β1 3 B1, . . . , α 3 A⇒ βn 3 Bn .

Then the following are constructors of TC:

mαA : A→ Pβ1
(B1)→ · · · → Pβn(B)→ Cα(A)

παA : Cα(A)→ A

pαA : A→ Pα(A)

Theorem 3. Let T be a type system, Ag a set of agents, and C a set of negative
constraints over T and Ag. Let B be an architecture over TC with set of agents
Ag′, where Ag ⊆ Ag′. Suppose that there is a partition {Pα}α∈Ag of the agents of
B such that:

– α ∈ Pα;

– If β
A→ β′ and β and β′ are in different sets in the partition, then A has

either the form Cγ(T ) or Pγ(T );
– If β initially possesses παA then β ∈ Pα;
– If β initially possesses pαA then β cannot compute A.

– If β initially possesses pαA and γ
A→ β then γ = α.

Then every trace through B satisfies every constraint in C.

Proof. Let τ be a trace through B and α 3 A⇒ β 3 B be a constraint in C. We
must show that, if τ ` α 3 A, then τ ` β 3 B. We shall prove the more general
result:

If τ ` γ 3 A for any γ ∈ Pα, then τ ` β 3 B.

So suppose τ ` γ 3 A for some γ ∈ Pα. We may assume without loss of
generality that τ is the shortest such trace. By Generation and the minimality
of τ , γ must possess a constructor with target A. By our hypotheses, this is παA.
Hence τ ` γ 3 t : Cα(A) for some t. Now, let the constraints in C that begin
with α 3 A be

α 3 A⇒ β1 3 B1, · · · , α 3 A⇒ βn 3 Bn .

Applying Generation, we must have t ≡ mαAst1 · · · tn, and there must be an
agent γ′ that possesses mαA such that

τ ` γ′ 3 s : A, τ ` γ′ 3 t1 : Pβ1
(B1), . . . , τ ` γ′ 3 tn : Pβn(Bn) .



Now, there is some i such that βi = β and Bi = B. We have τ ` γ′ 3 ti : Pβ(B).
Since a term of type Pβ(B) has been constructed, it must be that τ ` β 3 B, as
required.

We now show again how, given an architecture A, we can construct an ar-
chitecture that is privacy-safe.

Algorithm 2 Given an architecture A and a finite set of constraints C, con-
struct the architecture Safe(A,C) as follows:

1. The agents of Safe(A,C) are the agents of A together with, for every agent
α of A:
– an agent Iα, which we call the input interface to α;
– an agent Oα, which we call the output interface to α

2. The type system of Safe(A,C) is TC.
3. If an agent α has a constructor c in T , then it has the constructor c in TC.
4. For any agent α and type A:

– Every output interface Oγ possesses mαA

– Iα possesses παA : CαA → A
– Oα possesses pαA : A→ PαA

5. For any atomic type A of T , Iα may send A to α, and α may send A to Oα.
6. Any two interfaces may send messages of type Cα(A) or Pα(A) to each other

for any α, A.

Theorem 4. Let A be an architecture and C a set of constraints. Suppose that:

1. For every negative constraint α 3 A ⇒ B in C, we have that α cannot
compute terms of type A.

2. For every positive constraint Pos(α,A) ∈ C, there exists a trace through A
that satisfies Pos(α,A) and all the negative constraints in C.

Then the architecture Safe(A,C) has the following properties:

1. Every trace through Safe(A,C) satisfies every negative constraint in C.
2. For every positive constraint Pos(α,A) ∈ C, there exists a trace through

Safe(A,C) that satisfies Pos(α,A).

Proof. Part 1 follows from Theorem 3, taking Pα = {α, Iα, Oα}.
We shall now prove the following property, from which part 2 of the theorem

follows.

If τ ` α 3 t : A in A and τ satisfies every negative constraint in C, then
there exists a trace τ ′ through Safe(A,C) such that τ ′ ` α 3 t : A.

The proof is by induction on τ , then on the derivation of τ ` α 3 t : A. We
deal here with the case where the final step in the derivation is an instance of
(message1):

τ ` β 3 t : A

τ, β
t:A→ α ` α 3 t : A



By the induction hypothesis, there is a trace τ ′ such that τ ′ `Safe(A,C) α 3 A.
Let the negative constraints beginning with α 3 A be

α 3 A⇒ β1 3 B1, . . . , α 3 A⇒ βn 3 Bn .

Then, by hypothesis,

τ, β
t:A→ α `A β1 3 B1, · · · , τ, β

t:A→ α `A βn 3 Bn .

Using the fact that (α,A) 6= (βi, Bi) for all i, the last step in each of these
derivations must have been (message2). Therefore,

τ `A β1 3 B1, · · · , τ `A βn 3 Bn .

We may therefore apply the induction hypothesis to obtain traces τ1, . . . , τn
such that

τ1 `Safe(A,C) β1 3 t1 : B1, · · · , τn `Safe(A,C) βn 3 tn : Bn .

Now, let τ ′′ be the trace τ ′, τ1, . . . , τn followed by these events:

β
t:A−→ Oβ , β1

t1:B1−→ Oβ1 , · · · , βn
tn:Bn−→ Oβn ,

Oβ1

pβ1B1
t1−→ Oβ , · · · , Oβn

pβn,Bn tn−→ Oβ ,

Oβ
cαAt(pβ1B1

t1)···(pβnBn tn)−→ Iα,

Iα
πβA(cαAt(pβ1B1

t1)···(pβnBn tn))−→ α

(Informally: the agent Oβ collects the term of type A from β and all the necessary
proofs, assembles the term of type CαA, and passes it to Iα, who decodes it with
παA and passes the value of A to α.)

We thus have τ ′′ ` α 3 A in Safe (A,C), as required. ut

5.1 Example Revisited

We return to the example we presented in Section 2. We are now ready to
formulate our third, positive constraint. We want to ensure it is possible for the
website to receive the child’s information once all legal requirements have been
met. So the privacy constraints that we require for this architecture are:

Negative Constraint Website 3 INFO ⇒Website 3 CONSENT
Negative Constraint Website 3 CONSENT ⇒ Parent 3 POLICY
Positive Constraint Pos (Website, INFO)

We can verify that the first constraint holds. The child can send the pro-
tected info to the interface OChild, but it cannot then be sent to another agent
unless OChild receives a term of type P (CONSENT ). And for a term of type



P (CONSENT ) to be constructed, the parent must have sent consent to the
website (via OParent and IWebsite).

We can also verify that, in the architecture in Figure 2, it is possible for the
website to send the privacy policy to the parent, the parent to send consent to
the website, and the child to send the protected info to the website. Formally, we
describe a valid trace τ through the architecture that represents this sequence
of events. The trace τ begins

Website
policy:POLICY−→ OWebsite,

OWebsite
mPOLICY (policy):C(POLICY )−→ IParent,

IParent
πPOLICY (mPOLICY (policy)):POLICY−→ Parent,

Parent
consent:CONSENT−→ OParent,

Parent
πPOLICY (mPOLICY (policy)):POLICY−→ OParent

Let p = πPOLICY (mPOLICY (policy). The trace τ continues:

OParent
mCONSENT (consent,p):C(CONSENT )−→ IWebsite,

IWebsite
πCONSENT (mCONSENT (consent,p)):CONSENT−→ Website,

Website
πCONSENT (mCONSENT (consent,p)):CONSENT−→ OWebsite,

Let c = πCONSENT (mCONSENT (consent, p)). The trace τ continues:

OWebsite
pCONSENT (c):P (CONSENT )−→ OChild,

Child
info:INFO−→ OChild,

OChild
mINFO(info,pCONSENT (c)):C(INFO)−→ IWebsite,

IWebsite
πINFO(mINFO(info,pCONSENT (c))):INFO−→ Website

This ends the trace τ which verifies that it is possible for Website to receive a
term of type INFO.

5.2 Note

In Fig. 2, we have had to modify the agents from Fig. 1. The agent Parent
needs to be able to output messages of type POLICY , and Website needs to be



able to output messages of type CONSENT . We believe these would be minor
changes in practice. However, this is still unfortunate, because as discussed in the
Introduction, we want our algorithms to apply in cases in which we are unable
to change the source code of the agents in A.

In practice, we could implement this by allowing IParent to send POLICY to
OParent , and IWebsite to send POLICY to OWebsite, and adding the following
local constraints to their behaviour:

– If IParent sends t : POLICY to OParent , then IParent must previously
have sent t to Parent .

– If IWebsite sends t : POLICY to OWebsite, then IWebsite must previously
have sent t to Website.

Obtaining a formal proof of correctness for this construction requires an
architecture language in which this sort of local constraint can be expressed,
and we leave this for future work.

6 Related Work

Le Métayer et al. [3, 2, 7, 6] have described several languages for describing ar-
chitectures and deciding privacy-related properties over them. Barth et al. [4]
also give a formal definition of architectures, and show how to decide proper-
ties defined in temporal logic. Our work was heavily inspired by these systems;
however, our aim was to give a method to design an architecture starting from a
set of privacy properties, and not to decide whether a property holds of a given
architecture.

Basin et al. [5] show how to describe privacy policies in metric first-order
temporal logic (MFOTL), and how to build a component that monitors in real-
time whether these policies are being violated. Nissenbaum et al [4] also describe
privacy policies using linear temporal logic (LTL), and this has inspired a lot of
research into systems such as P-RBAC, which enforces low-level privacy-related
conditions at run-time [17]. Most of this research has concentrated on verifying
at run-time whether or not a given action is permitted by a given set of privacy
policies. The work presented here concentrates instead on design-time, and en-
sures that a high-level privacy policy is followed, no matter what actions each
individual component performs with the data it receives, as long as all messages
follow the given type system.

Jeeves [20] is a constraint functional language motivated by separating busi-
ness logic and confidentially concerns. We could implement our (architectural)
constraints in Jeeves, but would no longer have static guarantees. Other work
in formal methods for privacy includes static analysis of source code [11, 15] and
refinement techniques for deriving low-level designs from high-level designs in a
way that preserves privacy properties [1, 10]. These approaches complement ours
well, addressing properties for individual components that cannot be expressed
in our constraint language, while our algorithms provide formal guarantees of
global properties of the system as a whole.



Other work in formal methods for privacy has tended to concentrate either
on static analysis of source code [15, 11] or on refinement techniques for deriving
low-level designs from high-level designs in a way that preserves privacy prop-
erties [1, 10]. These approaches should complement ours well, providing formal
guarantees for individual components of properties that cannot be expressed
in our constraint language, while our algorithms provide formal guarantees of
global properties of the system as a whole.

7 Conclusion

We have given two algorithms which take an architecture, and a set of constraints
on that architecture, and show how the architecture may be extended in such a
way that we can produce a formal proof that the negative constraints hold on
every trace through the architecture, and the positive constraints are satisfiable.
Moreover, we do not need to read or modify the source code of the components
from the original architecture in order to do this. We believe this is a promising
approach to designing large, complex systems, with many different parts designed
and maintained by different people, such that we can provide a formal proof of
privacy-relevant properties.

For the future, we wish to expand the language that may be used for our
constraints, for example by allowing the designer to express constraints using
propositional, predicate or temporal logic. We hope then to express other prop-
erties that are desirable for privacy, such as the obligation to delete data. This
will require in turn expanding our type systems TC. We also plan to construct a
prototype implementation of the interfaces described in this paper.

References

1. Alur, R., Černỳ, P., Zdancewic, S.: Preserving secrecy under refinement. Automata,
Languages and Programming pp. 107–118 (2006)

2. Antignac, T., le Métayer, D.: Privacy architectures: Reasoning about data min-
imisation and integrity. In: Security and Trust Management — 10th International
Workshop, STM 2014. pp. 17–32 (2014)

3. Antignac, T., le Métayer, D.: Privacy by design: From technologies to architectures.
In: Privacy Technologies and Policy — Second Annual Privacy Forum, APF 2014.
pp. 1–17 (2014)

4. Barth, A., Datta, A., Mitchell, J.C., Nissenbaum, H.: Privacy and contextual in-
tegrity: Framework and applications. In: IEEE Symposium on Security and Pri-
vacy. pp. 184–198 (2006)

5. Basin, D., Klaedtke, F., Müller, S.: Monitoring security policies with metric first-
order temporal logic. In: ACM SACMAT ’10 (2010)

6. Butin, D., Chicote, M., le Métayer, D.: Log design for accountability. In: IEEE
Symposium on Security and Privacy Workshops. pp. 1–7 (2013)

7. Butin, D., Chicote, M., le Métayer, D.: Reloading data protection, pp. 343–369
(2014)

8. Cavoukian, A.: Privacy by design. IEEE Technology and Society Magazine 31(4),
18–19 (2012)



9. Cavoukian, A., Stoddart, J., Dix, A., Nemec, I., Peep, V., Shroff, M.: Resolution
on privacy by design. In: 32nd International Conference of Data Protection and
Privacy Commissioners (2010)

10. Clarkson, M.R., Schneider, F.B.: Hyperproperties. Journal of Computer Security
18(6), 1157–1210 (2010)

11. Cortesi, A., Ferrara, P., Pistoia, M., Tripp, O.: Datacentric semantics for verifica-
tion of privacy policy compliance by mobile applications. In: International Work-
shop on Verification, Model Checking, and Abstract Interpretation. pp. 61–79.
Springer (2015)

12. Enck, W., Gilbert, P., Han, S., Tendulkar, V., Chun, B.G., Cox, L.P., Jung, J.,
McDaniel, P., Sheth, A.N.: Taintdroid: an information-flow tracking system for re-
altime privacy monitoring on smartphones. ACM Transactions on Computer Sys-
tems (TOCS) 32(2), 5 (2014)

13. Regulation (EU) 2016/679 of the European Parliament and of the Council of
27 April 2016 on the protection of natural persons with regard to the pro-
cessing of personal data and on the free movement of such data, and repeal-
ing Directive 95/46/EC (General Data Protection Regulation). Official Journal
of the European Union L119, 1–88 (May 2016), http://eur-lex.europa.eu/legal-
content/EN/TXT/?uri=OJ:L:2016:119:TOC

14. Federal Trade Commission: Protecting consumer privacy in an era of rapid change.
FTC report (2012)

15. Ferrara, P., Tripp, O., Pistoia, M.: Morphdroid: fine-grained privacy verification.
In: Proceedings of the 31st Annual Computer Security Applications Conference.
pp. 371–380. ACM (2015)

16. Myers, A.C., Zheng, L., Zdancewic, S., Chong, S., Nystrom, N.: Jif: Java informa-
tion flow (2001)

17. Ni, Q., Bertino, E., Lobo, J., Brodie, C., Karat, C.M., Karat, J., Trombeta, A.:
Privacy-aware role-based access control. ACM Transactions on Information and
System Security (TISSEC) 13(3), 24 (2010)

18. Pottier, F., Simonet, V.: Information flow inference for ml. ACM Transactions on
Programming Languages and Systems (TOPLAS) 25(1), 117–158 (2003)

19. Schreckling, D., Köstler, J., Schaff, M.: Kynoid: real-time enforcement of fine-
grained, user-defined, and data-centric security policies for Android. Information
Security technical report 17(3), 71–80 (2013)

20. Yang, J., Yessenov, K., Solar-Lezama, A.: A language for automatically enforcing
privacy policies. In: Proceedings of the 39th ACM SIGPLAN-SIGACT Symposium
on Principle of Programming Languages, POPL 2012, Philadelphia, Pennsylvania,
USA, January 22-28, 2012. pp. 85–96 (2012)


