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Abstract
Mobile moving agents as part of a multi-agent system (MAS) utilize the wireless com-
munication channel to disseminate information and to coordinate between each other.
This channel is error-prone and the transmission quality depends on the environment as
well as on the configuration of the transmitter and the receiver. For resource allocation
and task planning of the agents, it is important to have accurate, yet computationally
efficient, methods for learning and predicting the wireless channel. Furthermore, agents
utilize on-board sensors to determine both their own state and the states of surrounding
objects. To track the states over time, the objects’ dynamical models are combined with
the sensors’ measurement models using a Bayesian filter. Through fusion of posterior
information output by the agents’ filters, the awareness of the agents is increased. This
thesis studies the uncertainties involved in the communication and the positioning of
MASs and proposes methods to properly handle them.

A framework to learn and predict the wireless channel is proposed, based on a Gaus-
sian process model. It incorporates deterministic path loss and stochastic large scale
fading, allowing the estimation of model parameters from measurements and an accu-
rate prediction of the channel quality. Furthermore, the proposed framework considers
the present location uncertainty of the transmitting and the receiving agent in both the
learning and the prediction procedures. Simulations demonstrate the improved channel
learning and prediction performance and show that by taking location uncertainty into
account a better communication performance is achieved.

The agents’ location uncertainties need to be considered when surrounding objects
(targets) are estimated in the global frame of reference. Sensor impairments, such as an
imperfect detector or unknown target identity, are incorporated in the Bayesian filtering
framework. A Bayesian multitarget tracking filter to jointly estimate the agents’ and
the targets’ states is proposed. It is a variant of the Poisson multi-Bernoulli filter and
its performance is demonstrated in simulations and experiments. Results for MASs
show that the agents’ state uncertainties are reduced by joint agent-target state tracking
compared to tracking only the agents’ states, especially with high-resolution sensors.

While target tracking allows for a reduction of the agents’ state uncertainties, high-
resolution sensors require special care due to multiple detections per target. In this
case, the tracking filter needs to explicitly model the dimensions of the target, leading
to extended target tracking (ETT). An ETT filter is combined with a Gaussian process
shape model, which results in accurate target state and shape estimates. Furthermore,
a method to fuse posterior information from multiple ETT filters is proposed, by means
of minimizing the Kullback-Leibler average. Simulation results show that the adopted
ETT filter accurately tracks the targets’ kinematic states and shapes, and posterior fusion
provides a holistic view of the targets provided by multiple ETT filters.

Keywords: Multi-agent system, channel prediction, Gaussian processes, lo-
cation uncertainty, multitarget tracking, extented target tracking, posterior
fusion.
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CHAPTER 1

Introduction

1.1 Motivation
Mobile agents that communicate and perceive the environment through their on-board
sensors form a multi-agent system (MAS). They disseminate information and coor-
dinate with each other using the wireless channel. Typical examples of MAS include
mobile wheel-driven robots for surveillance and search-and-rescue operations, or un-
manned aerial vehicless (UAVs) for remote sensing, e.g., to detect forest fires [1] or for
chemical plume tracking [2]. Examples within the context of intelligent transportation
systems (ITSs) include autonomous cars cooperating on sensor data or for throughput
maximization at an intersection [3], [4].

Since mobile agents employ the wireless medium for communication, it is important
to have accurate, yet computationally efficient, methods to learn and predict the wire-
less channel allowing them to pursue their higher-level tasks successfully. This includes
channel prediction, i.e., when knowledge of the channel is needed for configurations of
the agents where no measurements are available. The wireless channel depends on the
environment as well as the positions of transmitter (TX) and receiver (RX). Its prop-
erties have been well studied and accurate channel and propagation models have been
developed, mainly for cellular communication systems [5]. Channel models for commu-
nication between mobile agents are less explored [6]–[10]. One reason for this was the
lack of use cases. Such a channel model is more complex, since it needs to consider
mobility of both link endpoints. Accurate channel prediction and parameter estimation
requires the location of the mobile agents (equipped with TX/RX units) to be known
exactly. In reality however, mobile agents estimate their location based on measure-
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Chapter 1 Introduction

ments provided by sensors such as a Global Positioning System (GPS) receiver. Due to
measurement errors, the true location of the agent is not known exactly. Uncertainty
about the agent’s location should therefore be incorporated into the channel learning and
prediction process.

Furthermore, the agents utilize their on-board sensors to observe the environment.
Examples include radars, lidars, or stereo vision cameras. The state (e.g., position and
velocity) of mobile objects present in the environment can be tracked with the help of
a tracking filter, which combines the object’s dynamical model with the sensor’s mea-
surement model in a Bayesian framework. An example is the Kalman filter for Gaussian
linear models [11].

With potentially multiple objects (targets) present, a multitarget tracking (MTT)
filter can be employed to estimate the presence and the kinematic state of multiple
(independently) moving objects from measurements [12], [13]. Typically, the estimated
state of the objects is represented in the sensor’s (relative) coordinate frame. When
the object’s state should be represented in the global (absolute) coordinate frame, e.g.,
for sharing of environment information within the MAS, the location uncertainty of the
platform, where the sensor is mounted on, needs to be considered in the tracking filter.

Traditionally, MTT has been developed for sky surveillance using ground-to-air radars.
The resolution of such a radar was low compared to the size of an airplane observed at
a large distance. It was sufficient to assume that each measurement may be caused by
one airplane. In contrast, with novel automotive radars and lidars, a single object can
produce multiple measurements within one measurement scan (one measurement round).
Using such high-resolution sensors, requires the incorporation of the shape of the tracked
objects within the tracking filter. An extended target tracking (ETT) filter considers,
additionally to an MTT filter, the extent of each object [14]. Several ETT filters have been
proposed in literature, often as extensions of their MTT filter counterpart. Depending
on the application, more or less detailed models can be used to describe and estimate
the target’s extent with a ETT filter.

Agents then utilize the wireless channel to disseminate target information within the
MAS. Due to the limited bandwidth available of the communication channel, it is not
attractive to directly share raw measurement data obtained by a high-resolution sensor.
Instead, filtered information as output from a tracking filter can be shared, e.g., in
the form of parameter values of a known distribution [15]. The agent then fuses the
received target information with information provided by its own tracking filter. To not
deteriorate estimation performance, any correlation among the target estimates need to
be considered in the fusion process.

1.2 Challenges and Proposed Solutions
This thesis considers challenges involved in agent-to-agent communication and target
tracking, relevant for mobile MAS. The addressed challenges and proposed solutions are
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1.2 Challenges and Proposed Solutions

listed below.

• Both communication and positioning are affected by uncertainties. In Paper A
and B, we propose a framework based on Gaussian processs (GPs) to model, learn,
and predict the wireless channel between mobile agents (modeling deterministic
path-loss and spatially correlated shadowing). It allows to naturally incorporate
the agents’ location uncertainty for estimation of the channel parameters and for
channel prediction. We apply the proposed channel prediction framework to an
agent placement problem, where we demonstrate, in simulations, that incorporat-
ing location uncertainties, through the proposed model, leads to a better average
communication performance compared to neglecting them.

• In MTT, location uncertainty of the platform, where the sensor is mounted on,
needs to be considered when the target state should be estimated in the global
coordinate frame. In Paper C, we propose a factor graph (FG) based approach
for joint sensor-target state tracking with known number of targets, but unknown
measurement-to-target association. Simulation results show that with the proposed
approach the unknown associations are resolved and target tracking with uncer-
tain sensor locations is possible. Furthermore, we observe that in a multi-agent
scenario, the agents benefit by a reduced location uncertainty when local sensor
state information is combined with target tracking information, compared to only
using local sensor state information.
In Paper D and E, we propose a Poisson multi-Bernoulli filter for joint sensor-target
state tracking. Thereby, local sensor state information is fused with multisensor
MTT information. We demonstrate the improved target tracking performance, in
simulations and with real vehicular sensor data, when the uncertain sensor state is
accounted for. Furthermore, we observe like in the FG based approach of Paper C,
that in a multi-agent scenario, the location uncertainty of agents can be reduced
through target tracking compared to agent state tracking alone, especially with
high-resolution sensors.

• In ETT, the sensor obtains potentially multiple detections per target, which re-
quires modeling of the target shape. Furthermore, information collected by multiple
filters need to be fused correctly to produce reliable estimates. In Paper F, we apply
a Gaussian process model in a novel ETT filter (c.f. [16], [17]) to estimate and track
the shape and kinematic state of multiple extended targets (ETs). Furthermore, we
propose a method for robust fusion of posterior information, collected by multiple
independent ETT filters, in the minimum Kullback-Leibler average (KLA) sense.
Simulation results show the proposed filter accurately tracks the targets presence,
kinematic state and shape. Furthermore, we observe that posterior fusion allows
to provide a holistic view of the targets. The result is an improved tracking perfor-
mance compared to the performance achieved by each individual ETT filter alone.
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1.3 Thesis Outline
This thesis is divided into two parts. Part I provides an overview of the concepts used in
the appended papers. In particular, Chapter 2 discusses the wireless propagation channel.
Indoor channel measurements, which were used in Paper A, are presented. In Chapter 3,
Gaussian process regression is discussed. It is utilized for channel prediction in Papers A
and B, as well as in Paper F to describe the star-convex shape of extended targets. In
Chapter 4, vector-based Bayesian target tracking is introduced. Different estimators and
linear filters are discussed. Also addressed are incorporation of an uncertain sensor state
and fusion of information. The discussion is extended in Chapter 5 to set-based MTT,
where a small background on random finite sets (RFSs) is given, together with relevant
RFS based MTT filters. Furthermore, ETT is briefly discussed in the chapter. Related
to this chapter, Paper E presents a RFS based MTT filter, and Paper F presents a
decentralized RFS based ETT filter. Chapter 6 summarizes the scientific achievements,
presents the conclusions of this thesis and gives directions for future work. Part II of this
thesis consists of the appended Papers A–F.

6



CHAPTER 2

The Wireless Propagation Propagation Channel

In this chapter, we present indoor channel measurements for the wireless propagation
channel, where both the transmitter (TX) and the receiver (RX) are mobile. This is
followed by the presentation of a known empirical statistical channel model, which we
relate to the collected measurements and discuss briefly its validity. Following that, we
highlight two spatial correlation models, one where only the RX is mobile, and one where
both, the TX and the RX are mobile. This forms the basis for the channel prediction
framework proposed in Papers A and B.

2.1 Overview
In general, the wireless channel can be considered as being composed of three parts: a
part due to path-loss, a part due to shadowing because of obstacles, and a part due to
multi-path [5]. Shadowing is spatially correlated and measurements have shown that it
decorrelates in the order of 50–100 m outdoors [5] and 1–5 m indoors [18], [19]. Multi-
path, on the other hand, decorrelates on a much smaller scale within a few wavelengths
[5]. Based on this, several different channel models have been developed. The most
simple model is the disc model, where communication quality is assumed good if the RX
is located within a radius r of the TX and bad otherwise. The next step towards a more
accurate model considers deterministic path-loss. More sophisticated channel models
incorporate also shadowing and multi-path. These components are modeled either in
a probabilistic or a deterministic way (e.g., through ray-tracing [5]). Although more
accurate, such models come with some drawbacks. For instance, an accurate ray-tracing
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Figure 2.1. Floorplan together with TX and RX locations where channel measure-
ments have been recorded. All walls consist of reinforced concrete. For ev-
ery TX position, the RX moved along the indicated RX trajectory recording
every 0.02 m the received signal power in dBm.

based channel model may not be applicable in real-time applications due to the high
computational demand. Furthermore, it is not always possible to estimate all model
parameters from measurements, e.g., for ray-tracing this means that reflection properties
of all surfaces in the environment need to be estimated. This becomes infeasible in
complex operating environments and one then needs to restrict to simplified environment
models, which as a result, reduce the accuracy of ray-tracing.

2.2 Indoor Channel Measurements
In order to justify any model assumptions in the development of our channel prediction
framework of Papers A and B, we have performed a measurement campaign, where we
recorded indoor channel measurements in a hallway at the Department of Electrical En-
gineering at Chalmers University of Technology. For this campaign, we placed the RX at
several different positions along a line following the hallway. On a hallway perpendicular
to it, we placed the TX on several different positions also along a line, where the first
location thereby corresponds to position 6.5 m on the RX line. The full measurement
scenario is outlined in Fig. 2.1. For every position of the TX and RX, the received power
in dBm was recorded using commodity hardware radios of type Netgear N150 Wireless
adapter. The measurement parameters are stated in Table 1.
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Table 2.1. Measurement parameters

Parameter Value
Total number of different RX positions 10,900
Total number of different TX positions 11
Spatial resolution RX positions 0.02 m
Spatial resolution TX positions 1 m
Shortest TX-RX distance 1 m
Transmit power PTX 20 dBm
Antenna height 0.85 m
Carrier frequency 2.422 GHz
Transmission bandwidth 20 MHz
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Figure 2.2. Measured received power in dBm with respect to TX-RX Euclidean dis-
tance. The received power following model (2.2) and ignoring any present
spatial correlation is plot in red.

In Fig. 2.2, the received signal power in dBm is plotted over the distance between
the TX and RX locations. Note that the hardware used provides the received power
readings only in integer dBm values. From the figure, we can observe a power loss with
increasing distance, but due to the complexity of the indoor propagation environment it
is difficult to come up with an accurate and computationally efficient channel model. We
are therefore interested in a simple channel model, which captures the signal propagation
sufficiently well with respect to its application. It should be noted that any such model
is only an approximation of the real channel.
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Figure 2.3. Left: The Gudmundson correlation model considers wireless communica-
tion links between different RX locations for a common TX location. Right:
A correlation model suitable for mobile agent to mobile agent communica-
tion needs to consider wireless communication links where the TX locations
differ as well.

2.3 Statistical Channel Model
Consider a workspace W ⊂ R2. The TX located at qTX ∈ W emits a signal with
power P lin

TX through the wireless channel. Until the signal is received at the RX located
at qRX ∈ W, it experiences distance-dependent path-loss, large-scale fading caused by
obstacles in the propagation path, and small-scale fading due to multi-path. The received
signal power can be expressed as [20]

P lin
RX(qTX, qRX) = P lin

TXg0 ||qTX − qRX||−η
2 ψ(qTX, qRX) |h(qTX, qRX)|2, (2.1)

where g0 is a constant capturing antenna and other propagation gains, η is the path-loss
exponent, ψ is the position dependent shadowing and h captures small-scale fading. Let
us assume that measurements average out small-scale fading, either in time (measure-
ments taken over a time window), frequency (measurements represent average power over
a large frequency band), or space (by using multiple antennas) the received signal power
in dBm is then expressed as

PRX(qTX, qRX) = L0 − 10η log10 ||qTX − qRX||2 + Ψ(qTX, qRX), (2.2)

where L0 is the average received power in dBm at distance d0, and Ψ(qTX, qRX) =
10 log10 ψ(qTX, qRX). We assume that large-scale fading (shadowing) follows a log-
normal distribution, i.e., Ψ(qTX, qRX) ∼ N (0, σ2

Ψ), where σ2
Ψ is the shadowing variance

[5].
Remark: For a static propagation environment and homogeneous TX and RX units,

the transmission channel can be considered reciprocal [21]. This means if the roles of
TX and RX units are interchanged, the instantaneous channel characteristics remain the
same. In (2.2), the part due to path-loss only depends on the distance between TX and
RX and is therefore independent of the TX/RX roles. The second part of (2.2) models
shadowing and to ensure channel reciprocity holds, we need to ensure that Ψ(qTX, qRX) =
Ψ(qRX, qTX) (c.f. [5], [20]).
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Figure 2.4. Empirical pdf of zero-mean measurements yc plot in blue bars. A Gaussian
approximation is plot in red.

Shadowing is, in general, spatially correlated, i.e., RX locations which are spatially
close to each other experience similar shadow fading. For instance, if the TX-RX propa-
gation path is blocked at one RX location, it may be also blocked at close-by RX locations
with respect to the obstacle dimensions.

For a common TX endpoint qTX ∈ W, a well-known correlation model is the Gud-
mundson model for different RX locations qRX,i, qRX,j ∈ W [22]. This case is illustrated
in Fig. 2.3a. The covariance between RX i and j with zero-mean measurements yc,i and
yc,j follows an exponential decay, i.e.,

CG
ij (dij) = σ2

Ψ exp
(

−dij

dc

)
, (2.3)

where dij = ‖qRX,i − qRX,j‖ and dc is the decorrelation distance.
This model can be extended to account for communication links with non-common

TX endpoints qTX,i, qTX,j ∈ W (see, for example [23], [24]), under the assumption that
the TX–RX distance is large compared to the displacement between the TX endpoints
and the RX endpoints. This case is illustrated in Fig. 2.3b. The covariance under this
model becomes [23]

CW
ij (dTX,ij , dRX,ij) = σ2

Ψ exp
(

−dTX,ij

dc

)
exp

(
−dRX,ij

dc

)
, (2.4)

where dTX,ij = ‖qTX,i−qTX,j‖ and similarly for the RX. For brevity, we omit a discussion
on the validity of these correlation models and instead refer the reader to [22]–[24]. Note,
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Figure 2.5. Recorded received power in dBm for different TX and RX positions. The
TX moved perpendicular to the RX starting at RX position 6.5 m. Mea-
surements have been spatially averaged to remove small-scale fading.

both presented models only depend on the distances between the link endpoints thus
maintaining channel reciprocity.

2.4 Measurement-Model Relationship
We assume the RX provides us with a noisy observation of the received signal power in
dBm such that

y = PRX(qTX, qRX) + n, (2.5)

where n ∼ N (0, σ2
n) and σ2

n is the measurement noise variance. In order to make (2.2)
applicable, we need to ensure multi-path is not present in y. For this, we have performed
spatial averaging over a distance of 0.4 m along the RX trajectory, where the wavelength
of the transmitted signal is approx. 0.12 m. Assuming now (2.2) holds, we can determine
the channel constants L0 and η via least-squares (LS) estimation. From our measure-
ments, we have obtained L̂0 = −19.88 dBm and η̂ = 3.65. The model (2.2) is plot in red
in Fig. 2.2 using the estimated parameters. In (2.2), shadowing Ψ is assumed Gaussian
with variance σ2

Ψ. To verify this is valid, we remove the mean from the measurements
and plot in Fig. 2.4 the empirical pdf on the mean removed received power together with
a Gaussian fit, where we found Ψ ∼ N (0.04, 6.882).1 From the figure, we observe that
shadowing is not exactly Gaussian distributed. It has a positive skew but, with respect

1Note, the used hardware radios did not provide access to σ2
n as stated in (2.5). Therefore, the

measurement noise variance is absorbed σ2
Ψ.
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to accuracy and complexity of the channel model, a Gaussian approximation may still
be reasonable.

The spatial correlation of shadowing can be well observed in the recorded measure-
ments. In Fig. 2.5, the received signal power in dBm is plot in color for different TX
and RX positions. The RX position indicates the position along the RX trajectory (in
vertical direction) as shown in Fig. 2.1, and similarly for the TX position (in horizontal
direction). A line-of-sight (LOS) situation occurs when the RX is around position 6.5 m
(corresponding to x = 0 m and y = 6.5 m in Fig. 2.1) resulting in high received signal
power. For RX positions more distant than 6.5 m a non-LOS (NLOS) situation occurs
due to the blockage from the wall.

2.5 Summary
We observed from indoor channel measurements that a deterministic path-loss model
alone is not sufficient to explain the received signal power accurately. Furthermore, we
saw that received signal power is spatially correlated depending on the environment and
the positions of the TX and RX. These facts are utilized in Papers A and B, where we
exploit the spatial correlation of shadowing additional to the deterministic path-loss for
channel gain prediction. The Gaussian nature of shadowing as defined in (2.2) allows to
utilize Gaussian processs (GPs), which are described in the next chapter.
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CHAPTER 3

Gaussian Process Regression

In this chapter, we introduce Gaussian process (GP) regression, which has been used in
Papers A, B and F. First, we define the GP model and address then the two important
phases of GPs: (i) learning of the underlying model parameters, and (ii) prediction of a
(non-linear) function at an unvisited location with the help of a measurement database.
Second, we make use of the GP framework in the context of channel prediction ad-
dressing both, the learning phase to determine the underlying channel parameters from
measurements, and the prediction phase allowing to predict the wireless channel between
arbitrary transmitter and receiver locations. Finally, we show how GPs can be utilized
to model star-convex object shapes.

3.1 Standard Gaussian Process

3.1.1 Model
According to [25], a GP is defined as a probability distribution over functions f(x) such
that the set of values f(x) evaluated at an arbitrary set of points x1, x2, . . . , xN jointly
have a Gaussian distribution.

We write the GP of a real stochastic process f(x) ∈ R with input x ∈ RD as [26]

f(x) ∼ GP(μ(x), k(x, x′)) (3.1)

with mean function
μ(x) = E[f(x)] (3.2)
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and covariance function (also called kernel function)

k(x, x′) = E[(f(x) − μ(x)(f(x′) − μ(x′)]. (3.3)

Many choices of kernel functions are available of which the γ-exponential family is com-
monly selected. It is given by [26]

k(x, x′) = exp
(

−
(‖x − x′‖

l

)γ)
, (3.4)

where l denotes the characteristic length-scale and 0 < γ ≤ 2. The exponential kernel
is obtained for γ = 1 and the squared exponential kernel for γ = 2. A necessary and
sufficient condition for a kernel to be valid is that the resulting Gram matrix K with
entries Kij = k(xi, xj), ∀xi, xj is positive semidefinite [25]. A way of constructing valid
new kernels is to combine valid (simpler) kernels following some rules. As an example,
consider two valid kernels k1(x, x′) and k2(x, x′). Then valid kernels are constructed by
[25]

k3(x, x′) = ck1(x, x′), (3.5)
k4(x, x′) = k1(x, x′) + k2(x, x′), (3.6)
k5(x, x′) = k1(xa, x′

a)k2(xb, x′
b), (3.7)

where c > 0 is a positive constant and x = [xT
a , xT

b ]T (not necessarily disjoint). There
exist more rules to construct valid kernels, but rules (3.5), (3.6), and (3.7) will turn out
to be sufficient for our studies.

In order to incorporate measurements of the function f(x) in the GP model, e.g., for
regression, we need to consider any present measurement noise. The measurement model
is given by

y = f(x) + n, (3.8)

where we assume n ∼ N (0, σ2
n). The GP model parameters are collected in a vector θ

and comprise the parameters of the mean function μ(x), the kernel function k(x, x′), as
well as the measurement noise standard deviation σn.

The joint distribution of measurements y = [y1, y2, . . . , yN ]T with inputs
X = [x1, x2, . . . , xN ] is Gaussian with

p(y|X, θ) = N (μ(X), C), (3.9)

where μ(X) = [μ(x1), μ(x2), . . . , μ(xN )]T and Cij = Kij + 1{i=j}σ2
n. Here, 1{I=J} = 1

for I = J and 0 otherwise. The measurement database comprising all N measurements
is denoted by D = {X, y}. With D, the GP model parameters θ can be learned. Once
the learning phase is complete, the function value f(x∗) for an arbitrary input x∗ can
be predicted. Learning and prediction phases are explained next.
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3.1.2 Learning Phase

Here, we are interested in estimating θ from D. The maximum likelihood (ML) estimator
for θ is obtained by minimizing the negative log-likelihood with respect to θ. It can be
written as

θ̂ = arg min
θ

{− log p(y|X, θ)} (3.10)

= arg min
θ

{
log |C| + (y − μ(X))TC−1(y − μ(X))

}
, (3.11)

where C and μ depend on θ. Note that the negative log-likelihood is in general non
convex.

Although a global search is optimal, it comes with the drawback of a high computa-
tional cost. A computationally more attractive approach is to perform a local search via
a gradient based method. In [27], it is pointed out that such an approach often leads to
a local minimum which might not explain the data well. This can be minimized by per-
forming an maximum a posteriori (MAP) estimation over the hyperparameters instead
of ML estimation. In doing so, the hyperparameter vector is treated as a random vec-
tor (RV) with known prior probability density function (PDF) p(θ). The MAP estimator
is

θ̂MAP = arg max
θ

p(θ|y, X) = arg max
θ

p(y|X, θ)p(θ). (3.12)

In this way, the prior on the hyperparameters will act as a regularization term such
that unlikely hyperparameters will not lead to a local minimum. Since we assume there
is no prior knowledge on θ available, we cannot follow this approach here.

3.1.3 Prediction Phase

With the GP model parameters θ and the training database D at hand, we are ready to
determine the predictive distribution of f(x∗) for the arbitrary input x∗. It is given by
[26]

p(f(x∗)|D, θ) = N (m(x∗), σ2(x∗)) (3.13)

with mean
m(x∗) = μ(x∗) + kT

∗ C−1(y − μ(X)) (3.14)

and variance
σ2(x∗) = k∗∗ − k∗C−1kT

∗ , (3.15)

where k∗∗ = k(x∗, x∗) and k∗ = [k(x1, x∗), k(x2, x∗), . . . , k(xN , x∗)]T.
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Chapter 3 Gaussian Process Regression

3.2 Gaussian Process with Uncertain Inputs

So far, we have considered the input x of a GP to be known and hence deterministic. In
practice, this is seldom the case. Consider for instance that x represents the position of
an agent. This quantity needs to be estimated from (noisy) measurements and therefore,
we need to model it as a random variable. Then, the earlier presented GP framework,
which considers x to be deterministic, cannot be applied anymore.

To see this, consider x∗ ∼ N (u∗, Σx∗). The predictive distribution f(u∗) is obtained
by [28]

p(f(u∗)|D, u∗, Σx∗ , θ) =
∫

p(f(x∗)|D, x∗, θ)p(x∗|u∗, Σx∗)dx∗, (3.16)

which is not Gaussian anymore since

p(f(x∗)|D, x∗, θ) =
1√

2πσ2(x∗)
exp

(
− (f(x∗) − m(x∗))2

2σ2(x∗)

)
, (3.17)

which is nonlinear in x∗. According to [27], [28], we can approximate the predictive
distribution by a Gaussian PDF

p(f(u∗)|D, u∗, Σx∗ , θ) ≈ N (m(u∗, Σx∗), σ2(u∗, Σx∗)), (3.18)

where m(u∗, Σx∗) and σ2(u∗, Σx∗) are obtained by computing the mean and variance of
(3.16), i.e.,

m(u∗, Σx∗) =
∫

a p(a|D, u∗, Σx∗ , θ)da, (3.19)

σ2(u∗, Σx∗) =
∫

a2 p(a|D, u∗, Σx∗ , θ)da − m(u∗, Σx∗)2. (3.20)

Note, for the special case of the squared exponential kernel, where γ = 2 in (3.4) and
the PDF of x∗ is Gaussian, closed form expressions for the expected moments exist.
Furthermore, uncertainty in the input x∗ not only occurs in the prediction phase as we
have highlighted here. Also uncertainty in the training set X might be present, which
affects both learning of the model parameters and prediction. For ease of discussion,
we omit the implications of uncertainty in the training set. However, we address this in
detail in the appended Papers A and B.

3.3 GP Regression for Channel Gain Prediction

Here, we are interested in modeling the received signal power (in dBm) as a GP with
inputs x = [qT

TX, qT
RX]T consisting of the transmitter (TX) location qTX ∈ W and the
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qTX

q
′

TX

qRX

q
′

RX

dTX

dRX

Figure 3.1. Illustration of TX distance dTX and RX distance dRX between two links x
and x′.

receiver (RX) location qTX ∈ W, respectively. Then

PRX(x) ∼ GP(μcGP(x), ccGP(x, x′)). (3.21)

The mean μcGP(x) is obtained by computing the expectation of (2.2) with respect to the
large-scale fading Ψ(x), yielding

μcGP(x) = L0 − 10η log10 ||qTX − qRX||2. (3.22)

Under the assumption that spatial channel correlation is isotropic, it can be characterized
by the Euclidean distance dTX between the TX locations of two communication links x

and x′, and by their RX distance dRX, respectively. This relationship is illustrated in
Fig. 3.1. Therefore, we adapt the covariance function of [29] to incorporate the TX state
by

k(x, x′) = σ2
Ψ exp

(
−dγ

TX
dγ

c

)
exp

(
−dγ

RX
dγ

c

)
, (3.23)

where dTX = ‖qTX − q′
TX‖, dRX = ‖qRX − q′

RX‖, parameter σ2
Ψ denotes the variance

of the shadowing process. The parameter dc is the decorrelation distance. For γ = 1
we have the model of [23], and if one of the link endpoints distance is zero, which is the
case if qTX = q′

TX or qRX = q′
RX, we obtain the Gudmundson model [22]. Assuming the

noise power σ2
n is known, the hyper-parameter vector is θ = [L0, η, σΨ, dc]T.

Remark: The GP framework as introduced previously does not consider channel reci-
procity per se. The reason for this is that, through the definition of the input vector
x = [qT

TX, qT
RX]T, an implicit ordering has been introduced. There are several ways how

channel reciprocity can be ensured: by applying an operator on the input vector x to make
it independent from the link direction, by modifying the kernel function, or by extending
the measurement database by its reciprocal counterpart. In our work, we have chosen the
latter approach, where for every measurement yi recored at TX-RX location pair xi an
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additional entry in the database D is made with the same measurement, but where the
role of TX and RX are interchanged in xi.

3.4 GP Regression for Modeling Star-Convex Shapes
A GP can also be used to model the shape of a star convex object. A set S is star-convex
if all possible line segments from the center to any point in S are in the set. We follow
the approach proposed by [30]. Assuming the object is centered at the origin, the GP is
defined

f(φ) ∼ GP(μ(φ), k(φ, φ)), (3.24)

where φ is the input angle and f(φ) the object boundary. Assuming an a priori object
shape of a circle, the mean function is defined μ(φ) = r, where r is the known object
radius. The proposed covariance function is defined as [30]

k(φ, φ′) = σ2
f exp

⎛
⎝−

2 sin2
(

|φ−φ′|
2

)
l2

⎞
⎠ , (3.25)

where σf , and l are the (known) model hyper-parameters. Note that this function is 2π

periodic, i.e., k(φ + 2π, φ′) = k(φ, φ′). When the radius r is unknown, we can adjust the
GP model (3.24). Let

r ∼ N (r0, σ2
r) (3.26)

with mean r0 and variance σ2
r . Then (3.24) can be rewritten as

f(φ) ∼GP(r0, k̃(φ, φ′)), (3.27)
k̃(φ, φ′) =k(φ, φ′) + σ2

r . (3.28)

In Fig. 3.2 the covariance function k̃(φ, 0) is plotted for different values of φ. From the
figure, we observe that the covariance is highest for φ = φ′ and decreases as |φ − φ′|
increases from 0 to π. The hyperparameter vector of this GP model is θ = [l, σf , σr]T.
We utilize this GP model in Paper F to describe the shape of objects tracked by an
extended target tracking (ETT) filter.

3.5 Summary
GPs are an attractive tool for modeling stochastic processes. Measurements of the pro-
cess are incorporated in the form of a database, and by conditioning on it, the predic-
tive distribution of the process for an arbitrary input value is obtained in closed form.
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Figure 3.2. The covariance function k̃(φ, 0) is plot for hyperparameters σf = 2, σr = 2,
and l =

√
π/2.

Furthermore, the underlying hyperparameter of the GP model can be learned from mea-
surements. We saw that a GP can be used to model deterministic path-loss and spatial
correlation of large scale fading of the wireless communication channel between mobile
agents. This is used in Papers A and B, where we adapt the GP to incorporate any
present location uncertainty of the TX and RX. Furthermore, we saw that a GP can be
used to describe the (unknown) shape of a star-convex object. In Paper F, we utilize a
GP to model the shape of extended targets (ETs) inside an ETT filter.
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CHAPTER 4

Bayesian Target Tracking

In this chapter, we introduce the reader to the concept of Bayesian state estimation.
Different estimators as well as an exact solution for the state estimation problem, in the
form of the Kalman filter (KF), and an approximate filter, in the form of the extended
Kalman filter (EKF), are presented. We also discuss how uncertainty of the sensor
state, e.g., an uncertain location of the platform on which the sensor is mounted, can
be incorporated in the state estimation problem. Furthermore, we discuss two different
approaches for Bayesian state estimation to handle a multi-sensor setup depending on
the available computation and communication resources.

4.1 Optimal Bayesian Estimation
In target tracking, we are interested in estimating the time-varying state of a target (i.e.,
the object of interest) from measurements. Let the target state at discrete time k ∈ N

be described by the random vector (RV) xk ∈ Rnx .1 Its evolution over time can be
described by [31]

xk = fk−1(xk−1, vk−1), (4.1)

where fk−1 is a known possibly non-linear function and vk−1 is independent identically
distributed (IID) process noise. Furthermore, the state xk is observed by a sensor pro-

1For brevity, we limit the discussion here to discrete-time systems. See, e.g., [11] for a discussion on
state estimation in continuous-time systems.
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viding measurement zk ∈ Rnz with measurement model

zk = hk(xk, nk), (4.2)

where hk is a known possibly non-linear function and nk is IID measurement noise.
We are interested in the state xk in every discrete time step k from all measurements
z1:k = [zT

1 , . . . , zT
k ]T up to time k. This Bayesian estimation problem is illustrated

Fig. 4.1. With a known prior belief of the state x at time k = 0 in the form of the
probability density function (PDF) p(x0), we can cast the tracking problem recursively
in a Bayesian framework. Hence, we seek to calculate the posterior PDF p(xk|z1:k) in
every time step k, which can be calculated by alternating a prediction and an update
step, i.e., we seek a filtered estimate of xk from measurements z1:k. The prediction step
utilizes the process model (4.1) via the Chapman-Kolmogorov equation to obtain the
prior PDF at time step k. It is given by

p(xk|z1:k−1) =
∫

p(xk, xk−1|z1:k−1)dxk−1 (4.3)

=
∫

p(xk|xk−1, z1:k−1)p(xk−1|z1:k−1)dxk−1 (4.4)

=
∫

p(xk|xk−1)p(xk−1|z1:k−1)dxk−1, (4.5)

where the last equality comes from the fact that (4.1) describes a first-order Markov
model. With the measurement zk, provided by the sensor, the predicted prior PDF is
updated via the Bayes rule. The obtained posterior PDF is

p(xk|z1:k) =
p(zk|xk)p(xk|z1:k−1)

p(zk|z1:k−1)
(4.6)

with

p(zk|z1:k−1) =
∫

p(zk|xk)p(xk|z1:k−1)dxk. (4.7)

Here, the measurement likelihood function p(zk|xk) is described by the measurement
model (4.2) and the known statistics of nk. Note that this implies p(zk|xk, z1:k−1) =
p(zk|xk). The prediction and update step form the basis of recursively calculating the
Bayesian optimal solution for which, in general, no analytical solution exist.

4.2 Bayesian Estimators
Here, we review different estimation approaches for xk. The source of this is [32].

The minimum mean square error (MMSE) estimator assumes that the joint PDF
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xk−1

hk−1

fk−1 xkpk−1 pk

hk

Figure 4.1. Illustration of the Bayesian estimation problem. The prior PDF is given by
pk−1(xk−1) � p(xk1 |z1:k−1) and the posterior PDF is given by pk(xk) �
p(xk|z1:k), respectively.

p(xk, z1:k) is known. The estimator is defined with respect to (w.r.t.) the posterior
p(xk|z1:k) as

x̂MMSE
k =

∫
xkp(xk|z1:k)dxk. (4.8)

For general PDFs, this estimator is difficult to implement and approximate methods
need be used, e.g., particle filters [31], [33]. The KF can be seen as a particular imple-
mentation of the linear MMSE (LMMSE) estimator defined recursively (c.f. [11]), thus
providing a closed form solution of (4.1) and (4.2) for Gaussian linear state evolution
and measurement models.

The maximum a posteriori (MAP) estimator has the same model assumption as the
MMSE estimator. The MAP estimator is defined as

x̂MAP
k = arg max

xk

p(xk|z1:k) = arg max
xk

p(z1:k|xk)p(xk). (4.9)

The MAP and MMSE estimators are identical for PDFs where the mean and mode is
the same.

4.3 LMMSE Filters
Here, we review the KF and EKF, both yielding the best linear estimate in the MMSE
sense either exact or approximately. The source of this is [11]. Other LMMSE filters not
reviewed here include the cubature Kalman filter (CKF) [34], and the unscented Kalman
filter (UKF) [35], [36].

4.3.1 Kalman Filter
The KF assumes a linear Gaussian model for the process model (4.1) and measurement
model (4.2). The state evolution is described by

xk = Fk−1xk−1 + vk−1, (4.10)
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where Fk−1 is a known matrix and vk−1 is white, zero-mean, uncorrelated noise with
covariance matrix Vk−1. The state xk is observed by

zk = Hkxk + nk, (4.11)

where Hk is a known matrix, and nk is white, zero-mean, uncorrelated noise with co-
variance matrix Nk. Additionally, vk−1 and nk are uncorrelated, i.e., E[vk−1nT

k ] = 0.
With this model, the KF provides the Bayesian optimal solution to (4.5) and (4.6). The
filter consists of alternating prediction and update steps. It is initialized as [11]

x̂0 =E[x0], (4.12)
P +

0 =E[(x0 − x̂0)(x0 − x̂0)T]. (4.13)

The prediction step is given by

P −
k =Fk−1P +

k−1F T
k−1 + Vk−1, (4.14)

x̂−
k =Fk−1x̂+

k−1 (4.15)

calculating the a priori state estimate x̂−
k with covariance P −

k . The update step corrects
the state estimate with measurement zk. It is given by

Kk =P −
k HT

k (HkP −
k HT

k + Nk)−1, (4.16)
x̂+

k =x̂−
k + Kk(zk − Hkx̂−

k ), (4.17)
P +

k =(I − KkHk)P −
k , (4.18)

where I is the identity matrix of proper dimension. The update step calculates the a
posteriori state estimate x̂+

k with covariance P +
k .

4.3.2 Extended Kalman Filter

The EKF allows to incorporate non-linear process and measurement models through
approximation. The models are linearized via first-order Taylor series expansion around
the prior and the predicted prior. The process and measurement model are of form (4.1)
and (4.2). The process noise vk−1 is zero mean with covariance matrix Vk−1 and similarly
the measurement nk is zero mean with covariance matrix Nk. The filter initialization is
the same as in the KF. The prediction step first linearizes the process model through a
first-order Taylor series expansion around xk−1 = x̂+

k−1 and vk−1 = 0, and then applies
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the KF prediction step. It is described as follows [11]

Fk−1 =
∂fk−1

∂x

∣∣∣∣
x̂+

k−1

, (4.19)

Lk−1 =
∂fk−1

∂v

∣∣∣∣
x̂+

k−1

, (4.20)

P −
k =Fk−1P +

k−1F T
k−1 + Lk−1Vk−1LT

k−1, (4.21)
x̂−

k =fk−1(x̂+
k−1, 0), (4.22)

where Fk−1 and Lk−1 are the Jacobians w.r.t. the state and the process noise, respectively.
The update step first linearizes the measurement model around xk = x̂−

k and nk = 0,
and then applies the KF update step. It is described as follows [11]

Hk =
∂hk

∂x

∣∣∣∣
x̂−

k

, (4.23)

Mk =
∂hk

∂n

∣∣∣∣
x̂−

k

, (4.24)

Kk =P −
k HT

k (HkP −
k HT

k + MkNkMT
k )−1, (4.25)

x̂+
k =x̂−

k + Kk(zk − hk(x̂−
k , 0)), (4.26)

P +
k =(I − KkHk)P −

k . (4.27)

It should be pointed out that the EKF is only suitable for mildly non-linear system
models due to the first-order Taylor approximation.

4.4 Uncertain Sensor State
Usually, it is assumed that the sensor state (e.g., position and orientation) is known when
performing target tracking. However in reality, the sensor deployment can introduce
an unknown bias, e.g., due to mounting tolerances. Furthermore, when the sensor is
mounted on a moving platform, e.g., a vehicle, the position of the platform may not
be known precisely. This can be problematic when the target state is represented in
global frame of reference and not in the sensor frame of reference. When the sensor state
uncertainty is non-negligible, it can be modeled in a stochastic manner, e.g., by treating
it as an additional nuisance parameter when the sensor state itself is not of interest [37,
Ch. 16], [38], or the (target) state vector xk is augmented by the unknown sensor state
leading to joint target-sensor state tracking [39], [40].

For the latter case, we are interested in the posterior p(xT,1:k, xS,1:k|z1:k), where xT,1:k
denotes the target state and xS,1:k the sensor state up to time k. In the following, we
highlight two approaches for joint target-sensor state tracking.
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4.4.1 Rao-Blackwellization Approach
Using the general product rule for probability, we can decompose the posterior PDF into

p(xT,1:k, xS,1:k|z1:k) = p(xT,1:k|xS,1:k, z1:k)p(xS,1:k|z1:k), (4.28)

which can be computed efficiently using a Rao-Blackwellized particle filter, where the
sensor state is represented by a set of weighted samples and the target state is estimated
conditioned on the sensor state [41]–[43].

The multitarget case with M number of known targets can be handled by augmenting
the state vector to xT,1:k = [xT

T,1:k,1, . . . , xT
T,1:k,M ]T. Since the conditioning of the tar-

gets is on the whole sensor trajectory, and under the assumption that the targets move
independently, the targets in (4.28) become independent leading to [40]

p(xT,1:k|xS,1:k, z1:k) =
M∏

m=1

p(xT,1:k,m|xS,1:k, z1:k). (4.29)

For the special case of stationary targets (denoted landmarks), i.e., xT,k,m = xT,m for
all k and all m, we obtain the simultaneous localization and mapping (SLAM) problem
[40], [44]. The fact that landmarks are independent when conditioned on the whole
sensor trajectory is utilized in the well-established FastSLAM algorithm where the sensor
trajectory is tracked with the help of a particle filter and for each particle an independent
EKF is used to estimate the landmarks [40].

4.4.2 Message-Passing Approach
Utilizing the mobility model (4.1), the measurement model (4.2), and under the assump-
tion that targets move independently, we can rewrite (4.28) for M targets as

p(xT,1:k, xS,1:k|z1:k) ∝ p(xS,0)
M∏

m=1

p(xT,0,m)
k∏

t=1

p(xS,t|xS,t−1)

×
M∏

m=1

p(xT,t,m|xT,t−1,m)p(zt,m|xS,t, xT,t,m), (4.30)

where zt,m denotes the measurement of the m-th target at time t and zk = [zT
k,1,

. . . , zT
k,M ]T. The MMSE estimator for the m-th target at time k is (c.f. (4.8))

x̂MMSE
T,k,m =

∫
xT,k,mp(xT,k,m|z1:k)dxT,k,m, (4.31)

and similarly for the sensor state xS,k. The equation above involves the marginal PDF
p(xT,k,m|z1:k), which can be obtained by marginalizing the joint PDF (4.28). Note
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Figure 4.2. FG representation with M targets and a single sensor with uncertain
state. Here, hm = p(xT,k,m|xT,k−1,m), f = p(xS,k|xS,k−1), and vm =
p(zk,m|xS,k, xT,k,m). The time index has been omitted for brevity.

that the dimension of the joint PDF increases with time and direct calculation becomes
infeasible. This problem can be obviated by direct calculation of the marginal PDFs
with the help of message passing on the factor graph (FG) resulting of the factorization
(4.30).2

The FG resulting (4.30) is illustrated in Fig. 4.2 for one time step. In the figure,
variable nodes are drawn as circles and factor nodes, which take the RVs as arguments
indicated by edges, are drawn as rectangles. The input at time k is the belief b(·), an
approximation of the marginal PDF of the RV at time k − 1 with associated edge. The
beliefs at time k are then computed through message passing on the FG.

4.5 Data association
Until now, we assumed that it is known which measurement index in zk belongs to
which target at a particular time step. When this information is not present, a data
association (DA) step needs to be performed. According to [37], there can be two different
approaches for DA identified: non-Bayesian DA and Bayesian DA. In non-Bayesian DA,
a decision is made based on a heuristic criterion, e.g., Euclidean distance, or based on

2See, e.g., [25, Ch. 8] or [45, Ch. 4] for an introduction on FGs.
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a statistic tool like maximum likelihood (ML) or hypothesis testing. In Bayesian DA,
probabilities of associations are computed and utilized throughout the estimation process.

An example for the non-Bayesian DA is to associate the target with maximum like-
lihood value among all measurements. Based on this hard decision, the measurement
source is assumed known and can be used in the measurement update (4.6). Hence, DA
is handled outside the Bayesian filtering framework. The DA step is executed in every
time step prior to the measurement update.

An example for the Bayesian DA is probabilistic DA (PDA), which calculates the
association probabilities for each measurement and the target, and if used in a tracking
filter the PDA filter [12], [37]. In this filter, the prior target state is represented by a
Gaussian PDF. After updating by M measurements, the posterior becomes a Gaussian
mixture distribution with weights representing the DA. The algorithm then approximates
the Gaussian mixture distribution by a single Gaussian in order to limit computational
complexity.

The joint probability data association (JPDA) algorithm marginalizes over the joint
DA to obtain the marginal DA for each target. This can be efficiently computed using
loopy belief propagation (BP) on the corresponding FG [46]. We proceed with illustrating
this method.

Let there be M targets with state xT,k,m for m = 1, . . . , M at time k. For brevity,
we further assume a perfect detection and no false alarm measurements, i.e., at each time
step a measurement is generated from each target collected in vector zk = [zT

t,1, . . . , zT
t,M ]T

whose origin is unknown w.r.t. to the targets. Let variable ak,n = m ∈ {1, . . . , M} in-
dicate which measurement m at time k is hypothesized to target n, and let variable
bk,m = n ∈ {1, . . . , M} indicate which target n at time k is hypothesized to mea-
surement m. Note that ak,n can be seen as a target oriented formulation of the DA
and bk,m as a measurement oriented formulation, respectively. This formulation gives
a one-to-one mapping between ak,n and bk,m, i.e., if ak,n is known so is bk,m. Let
ak = [ak,1, . . . , ak,M ]T, and similarly for bk.

To ensure global consistency, in the sense that each measurement is associated to one
and not more targets, we introduce the function [46]

ψ(ak,n, bk,m) =

{
0, ak,n = m, bk,m �= n or ak,n �= m, bk,m = n,

1, otherwise.
(4.32)

We are now ready to update the joint posterior PDF of (4.30) to include the DA
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Figure 4.3. FG representation with M targets and measurements following the
DA approach of [47]. Here, hm = p(xT,t,m|xT,t−1,m) and vm =
p(zt,ak,m

|xS,t, xT,t,m). The time index has been omitted for brevity.

variables by

p(xT,1:k, xS,1:k, a1:k, b1:k|z1:k) ∝ p(xS,0)
M∏

m=1

p(xT,0,m)
k∏

t=1

p(xS,t|xS,t−1)

×
M∏

m=1

p(xT,t,m|xT,t−1,m)

×
M∏

m′=1

p(zt,ak,m
|xS,t, xT,t,m)ψ(ak,m, bk,m′), (4.33)

where the measurement with index ak,m is used in the measurement likelihood. Similar
to the message-passing approach of Sec. 4.4.2, the MMSE estimates of the sensor/target
states require the knowledge of the marginal PDFs, computed by running loopy BP on
the FG resulting of (4.33). The FG for a single time step is illustrated in Fig. 4.3. The
FG part responsible for the DA (with variables ak,m and bk,m) contains cycles and we
solve this using loopy BP which iterates messages through the FG. After a fixed number
of iterations or upon convergence, the outgoing message from ak,m to vk,m is found, which
contains the approximate DA information considering the global consistency constraints.
With the DA information, the updated beliefs of the sensor/target states can then be
computed.

In Paper C, we consider a multisensor scenario with a factorization similar to (4.33).
More details on the message passing solution can be found there. A limitation of this
work is that the number of targets need to be a priori known. Related to this, [48]
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S1

S2

SN

Sensor

Tracking filter Posterior PDF

Figure 4.4. Illustration of likelihood fusion. At every time step k, each sensor Ss with
s = 1, . . . , N obtains a measurement zs,k and forwards it to the tracking
filter, which outputs the posterior PDF p(xk|z1,1:k, . . . , zN,1:k).

performs target tracking for an unknown number of targets, though the sensor state was
assumed known.

4.6 Information Fusion
In a multisensor measurement scenario, measurements from all sensors are utilized for
the calculation of the posterior PDF defined in (4.6). We can distinguish two setups:

• multiple sensors provide measurements to a single tracking filter, and where

• each sensor is equipped with a single tracking filter.

The former, called likelihood fusion, is illustrated in Fig. 4.4 and the later, called posterior
fusion, is illustrated in Fig. 4.5.

4.6.1 Likelihood Fusion
With only one tracking filter, measurements from all sensors have to be incorporated in
the measurement update step of the filter. Let zs,k be the measurement from sensor s for
s = 1, . . . , N received in time step k. We are therefore interested in the posterior PDF
conditioned on measurements from all sensors, i.e., p(xk|z1,1:k, . . . , zN,1:k). With only
one tracking filter, and therefore only one prediction step, the measurement likelihood in
(4.6) becomes

p(zk|xk) = p(z1,k, . . . , zN,k|xk). (4.34)
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S1

S2

SN

...

Sensor

Tracking filter 1

Tracking filter 2

Tracking filter N

Posterior fusion Posterior PDF

Figure 4.5. Illustration of posterior fusion. At every time step k, each sensor Ss with
s = 1, . . . , N obtains a measurement zs,k and forwards it to its track-
ing filter, which computes the posterior PDF p(xk|zs,1:k). This is then
send to the posterior fusion block, which computes the posterior PDF
p(xk|z1,1:k, . . . , zN,1:k).

When the measurement noise conditioned on the system state is uncorrelated over all
sensors, we can write

p(zk|xk) =
N∏

s=1

p(zs,k|xk), (4.35)

where we have used the chain rule for conditional probability and the independence as-
sumption due to the uncorrelated measurement noise. For instance, with linear Gaussian
models and uncorrelated measurement noise over all sensors, (4.6) can then be solved
using a KF by performing independent measurement update steps, one for each sensor.

4.6.2 Posterior Fusion
Target state estimates produced by different filters can be correlated. This can be caused
by correlated estimation errors (measurement errors, common process noise, common
prior) [49]. Any correlation among the target tracks, i.e., the information about a cer-
tain target, needs to be considered in the track fusion. For instance, with Gaussian
posterior PDFs information decorrelation can be applied, where the common informa-
tion is identified and removed in the fusion step [49]. The drawback of this procedure is
that it requires to store the previous PDF and is only optimal then there is no process
noise present.

When correlation is unknown, a suboptimal fusion of posterior information can be
performed. In [50], [51], a robust fusion method for two Gaussian posterior PDFs called
covariance intersection (CI) was presented. Note that robustness refers to the case that
the uncertainty of the fused estimate in terms of the covariance matrix is conservative,
i.e., it never underestimates the true uncertainty, but is also not too large [50], [52].
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Assume two filter track the same target x, where the posterior PDF at time step k can
be described by the Gaussian PDF

pi(xk|zi,1:k) = N (xk; x̂i,k, P̂i,k) (4.36)

with mean vector x̂i,k and covariance matrix P̂i,k for filters i = {1, 2}. The CI rule
approximates the fused posterior PDF in terms of a Gaussian PDF with mean vector x̄k

and covariance matrix P̄k defined by [51]

P̄ −1
k = ωP̂ −1

1,k + (1 − ω)P̂ −1
2,k , (4.37)

and

P̄ −1
k x̄k = ωP̂ −1

1,k x̂1,k + (1 − ω)P̂ −1
2,k x̂2,k, (4.38)

where ω ∈ [0, 1] is a weighting parameter. As pointed out by [52], the approximate fused
estimate is unbiased and does not overstate the uncertainty of the fused estimate.

The CI fusion method can also be generalized to non-Gaussian posteriors leading to
the constructed fused PDF [52]

pω(xk|z1,1:k, z2,1:k) =
p1(xk|z1,1:k)ωp2(xk|z2,1:k)1−ω∫

p1(xk|z1,1:k)ωp2(xk|z2,1:k)1−ωdxk
. (4.39)

4.7 Summary
Bayesian filters allow to predict and update the state of a dynamic target through in-
corporation of measurements. We observed that exact filtering is possible, depending
on the model assumptions. When these assumptions are violated, we need to restrict to
approximate filtering. Furthermore, Bayesian filters allow to incorporate an uncertain
sensor state. We identified two different setups of information fusion. With likelihood
fusion there is a single filter, where the measurement likelihood of (4.6) incorporates
measurements from all sensors. With posterior fusion, multiple independent tracking
filters are present and any correlation between the target state estimates produced by
the filters needs to be considered. Furthermore, with unknown correlation, subopti-
mal methods such as CI can be used. In the next chapter, we extend the discussion to
Bayesian tracking with sets allowing to incorporate sensor properties such as an unknown
target-to-measurement correspondence.
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CHAPTER 5

Set-based Multitarget Tracking

In this chapter, we extend the discussion on Bayesian target tracking to set-based ap-
proaches. With the help of random finite sets, sensor properties, such as an imperfect
detection, can be dealt with inside the Bayesian framework. Since optimal Bayesian
estimation is intractable in general, approximate filters need to be used; we discuss
multi-Bernoulli filters in more detail. We also extend our discussion on incorporation of
sensor state uncertainty to set-based approaches. Furthermore, when the physical target
size is big with respect to (w.r.t.) the sensor resolution, the point target assumption of
multitarget tracking (MTT) filters does not hold anymore and this needs to be handled
in the filter. We present common measurement and shape models for such extended
targets (ETs). Finally, we extend our discussion on information fusion with multi-object
posteriors.

5.1 Overview
An historic important application of MTT, i.e., tracking of independently moving targets,
was, and is, the surveillance of the sky using ground-to-air radar sensors. Such a sensor
has several peculiarities: it produces false alarm measurements due to clutter1; missed
detections; unknown measurement-to-target correspondence; and target appearance and
disappearance due to the limited sensor field-of-view (FoV). Such a sensor prohibits the
application of Chapter 4 without further modifications.

1Note that clutter refers to any undesirable measurements not related to the state of interest, i.e.,
persistent clutter could be due to spurious energy reflectors, e.g., ground reflections, and random
clutter could be due to objects or phenomena not related to the state of interest [12].
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A MTT filter, on the other hand, incorporates the sensor peculiarities to perform
the tracking task within the Bayesian framework. Thereby, one can distinguish between
vector-type and set-type MTT filters. Probabilistic data association (DA) based methods
for single target tracking treat the DA parameter as a nuisance parameter [53]. The prob-
abilistic DA (PDA) filter represents the posterior probability density function (PDF) by a
single Gaussian to keep computation complexity limited [54], where the joint probability
data association (JPDA) filter extends this to multiple targets. Under the assumption
that one target generates at most one measurement per sensor and time step, the joint
DA is approximated by the product of marginal DAs for target [53]. Furthermore, factor
graph (FG) based approaches, and extensions to unknown number of targets (joint inte-
grated PDA (JIPDA) filter) exist [53], [55], [56]. A limitation of PDA based filters arises
for spatially close targets, where the filter cannot distinguish between the individual
targets anymore, which is a phenomenon called coalescence.

Set based methods model the target states and measurements by random finite sets
(RFSs). An MTT filter based on RFSs allows to model the sensors’ peculiarities inside
the Bayesian filtering framework [57]. Let Xk be a RFS describing the target states at
time step k − 1 and let Zk be a set containing the measurements received at time step
k. The MTT filter can then be described, conceptually at least, within the Bayesian
filtering framework by performing a prediction step using the motion model [57, Ch. 14]

f(Xk|Z1:k−1) =
∫

f(Xk|Xk−1)f(Xk−1|Z1:k−1)δXk−1 (5.1)

and a Bayesian update step

f(Xk|Z1:k) =
f(Zk|Xk)f(Xk|Z1:k−1)∫

f(Zk|Xk)f(Xk|Z1:k−1)δXk
, (5.2)

where f(Xk−1|Z1:k−1) is the prior RFS density, f(Xk|Xk−1) is the RFS transition den-
sity, f(Xk|Z1:k−1) is the predicted RFS density, and f(Zk|Xk) is the RFS measurement
likelihood for measurement set Zk. Note that the integrals above are set integrals (c.f.
Section 5.2). In general, the calculation of the full multitarget posterior is intractable
and approximations need to be applied.

5.2 Background on Random Finite Sets

In this section, we give some background information on RFSs.
An RFS X is a finite-set valued random variable, which can be described by a discrete

probability distribution modeling the number of elements in X denoted by p(n) with
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n ≥ 0, and a family of joint probability densities fn(x1, . . . , xn) yielding [58]

f({x1, . . . , xn}) = p(n)
∑

σ

fn(xσ(1), . . . , xσ(n)), (5.3)

where σ denotes a permutation of {1, . . . , n} and σ(i) is the permutation of the i-th
element. The sum spans all n! possible permutations, such that its RFS density f(X)
becomes permutation invariant. The set integral of a real-valued function g(X) of a
finite-set variable X is defined as [57, p. 361]

∫
g(X)δX � g(∅) +

∞∑
n=1

1
n!

∫
g({x1, . . . , xn})dx1 · · · dxn. (5.4)

The probability hypothesis density (PHD), or intensity function, is the first order moment
of the multitarget density formally defined as [59, eqn. (4.74)]

D(x) =
∫

f({x} ∪ W )δW , (5.5)

where f(·) is an RFS density. The quantity D(x) is the density of the objects at x, and
D(x)dx is the expected number of objects contained in the infinitesimal region dx. Thus
the expected number of objects in a closed region R is

∫
R D(x)dx.

Two types of RFSs relevant for this thesis work deserve spatial attention: Bernoulli
RFS, and Poisson point process (PPP) RFS. They can be extended to multi-Bernoulli
(MB) RFS, multi-Bernoulli mixture (MBM) RFS and combined in a Poisson multi-
Bernoulli mixture (PMBM) RFS. These are described below.

5.2.1 Bernoulli RFS

A Bernoulli RFS X has multiobject probability distribution [59]

f(X) =

⎧⎪⎪⎨
⎪⎪⎩

1 − r, X = ∅,

r · f(x), X = {x},

0, |X| ≥ 2,

(5.6)

where r ∈ [0, 1] denotes the probability that a target exists and if a target with state x

exists, then f(x) is its PDF. The PHD of a Bernoulli RFS is

D(x) = r · f(x). (5.7)

A multi-Bernoulli (MB) RFS is the union of independent Bernoulli RFSs. A MB is
fully parametrized by {ri, fi(x)}i∈I, where I is its index set. Its multiobject probability
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distribution can be expressed as

f(X) =
∑

�i∈IXi=X

∏
i∈I

fi(Xi) (5.8)

for |X| ≤ |I|, and f(X) = 0 otherwise. The notation, X1�X2 = X means X1∪X2 = X

and X1 ∩ X2 = ∅. The PHD of a MB RFS is

D(x) =
∑
i∈I

ri · fi(x). (5.9)

The multiobject probability distribution of a multi-Bernoulli mixture (MBM) is the
normalized, weighted sum of multiobject probability distributions of MBs, which can be
stated as [16]

f(X) =
∑
j∈J

wj

∑
�i∈Ij Xi=X

∏
i∈Ij

fj,i(Xi). (5.10)

It is parametrized by {wj , {rj,i, fj,i(x)}i∈Ij }j∈J, where wj is the weight of MB j, and J

is the index set of the MBs in the MBM. An MB is therefore a special case of an MBM
with |J| = 1.

5.2.2 Poisson RFS

A PPP, also called Poisson RFS, is a type of RFS, where the cardinality follows a
Poisson distribution, and its elements are independent identically distributed (IID). It
is parametrized by the intensity function, i.e., the PHD D(x) = λf(x), where λ > 0
is the Poisson rate and f(x) is a PDF on the single element state x. The multiobject
probability distribution of a PPP is [16], [59]

f(X) = e−〈D;1〉 ∏
x∈X

D(x), (5.11)

where 〈g, h〉 =
∫

g(x)h(x)dx denotes the inner product.

5.2.3 PMBM RFS

A Poisson multi-Bernoulli mixture (PMBM) RFS is created by the disjoint set union of
a PPP and a MBM having multiobject probability distribution [16]

f(X) =
∑

Xu�Xd=X

fu(Xu)fd(Xd), (5.12)
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where fu(·) has multiobject probability distribution (5.11), and fd(Xd) has multiobject
probability distribution (5.10), where for |J| = 1, (5.12) is called Poisson multi-Bernoulli
(PMB).

5.2.4 State Extraction
A common way to extract the set states from a Bernoulli process with RFS density f(X)
is by comparing the probability of existence r to an existence threshold rth. For r > rth,

the state (target) is said to exist and has PDF f(x). Its state can then be estimated
by the mean x̂ =

∫
xf(x)dx. An estimator to extract the states of a MB is found

in a similar fashion, where each Bernoulli component above the existence threshold is
reported. State extraction from a MBM is more involved. One possible estimator is to
extract only the Bernoulli components of the MB with highest weight. See, e.g., [60], for
a detailed discussion on state extraction from MBMs.

5.3 Probability Hypothesis Density Filter
This filter propagates the PHD of the full multiobject posterior distribution f(Xk|Z1:k)
forward in time [57], [59]. Several implementations of the PHD filter have been proposed
based on, e.g., Gaussian mixture models or sequential Monte-Carlo methods [59], [61],
[62]. This filter allows to incorporate target appearance and disappearance, as well as
clutter measurements. It assumes a standard MTT motion model [57, Ch. 16.3]: (i)
motion of individual targets is described by a single target Markov density, (ii) targets
appearance is described by the birth PHD and by the spawning (of new targets by existing
targets) PHD, and (iii) targets disappear according to IID Markovian processes. Further-
more, the standard MTT measurement model is assumed: (i) false alarm measurements
due to clutter are Poisson distributed, (ii) target measurements are independent of each
other; at most one measurement is generated per target described by the probability
of detection, and (iii) a target generated measurement follows the single-target mea-
surement model. Additionally, the PHD filter assumes that the predicted multiobject
probability distribution is Poisson.

The PHD filter propagates the PHD (c.f. Section 5.2) forward in time by alternating
prediction and update steps:

. . . → Dk−1|k−1(x) → Dk|k−1(x) → Dk|k(x) → . . . (5.13)

Above, Dk−1|k−1(x) is the prior PHD of f(Xk−1|Z1:k−1), Dk|k−1(x) denotes the pre-
dicted prior PHD, and Dk|k(x) denotes the posterior PHD. Propagating only the PHD
and the assumption that the multitarget RFS is approximately Poisson, imposes a huge
information loss compared to propagating the full multitarget density.

A drawback of the filter is that the uncertainty of the estimated number of targets is
high when many targets are present. This deficiency has been addressed in the cardinal-
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ized PHD (CPHD) filter, which additionally propagates the cardinality distribution of
the estimated number of targets forward in time [57]:

. . . → Dk−1|k−1(x)
pk−1|k−1(n) → Dk|k−1(x)

pk|k−1(n) → Dk|k(x)
pk|k(n) → . . . (5.14)

Above, pk−1|k−1(n) denotes the cardinality distribution of f(Xk−1|Z1:k−1).

5.4 Multi-Bernoulli Filters
Another type of RFS based MTT filters are MB filters which directly approximate the
multiobject posterior distribution instead of compressing it into summary statistical mo-
ments [59].

The multiple target multi-Bernoulli (MeMBer) filter directly approximates the mul-
tiobject posterior distribution by a MB distribution. This filter suffered an estimation
bias for the target number due to an ill-considered Taylor expansion in the measurement
update step [59]. This was corrected in the cardinality balanced MeMBer (CBMeMBer)
filter [63]. This filter propagates the parameters of the posterior MB distribution. Dif-
ferent to the PHD filter, targets do not spawn and target birth is described by a MB
distribution. With every measurement, a new target track is introduced causing the
number of targets to grow over time. Due to this, track pruning and merging is required
to limit computational complexity [59].

A different representation of the multiobject distribution using δ-generalized labelled
multi-Bernoullis (δ-GLMBs) enables a closed form solution to the multitarget Bayes
recursion (5.1) and (5.2). The drawback of the resulting δ-GLMB filter is that the
number of posterior components grows exponentially [64]. A different representation
using labeled multi-Bernoullis (LMBs) allows to reduce computational complexity [65].
The resulting LMB filter allows to retrieve the entire trajectory of targets, i.e., the
maintenance of track continuity. This comes with a caveat, where in scenarios with
track coalescence, the δ-GLMB filter has difficulties with determining the track label of
new targets with the result that physically impossible target trajectories are output [66],
[67]. An alternative approach to labeled MB filters, where target estimates under the
same label are connected to a target trajectory, is by having the whole target trajectory
as target state [68], [69]. A trajectory PHD filter and a trajectory PMBM filter was
presented in [70] and in [66], respectively.

A representation of the multiobject distribution without labels was presented with
the PMBM filter, which represents the posterior multiobject density by the union of
a MBM RFS representing detected targets and a Poisson RFS representing unknown
targets (targets which are hypothesized to exist but have not yet been detected) [58],
[60]. Through the observation that DA implicitly arises in the derivation, it seeks to
approximate the discrete distribution of DA. This target representation structure is
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more efficient and has a lower computational cost compared to the δ-GLMB/LMB filter
[71], [72].

An efficient implementation is achieved with the track-oriented marginal MeMBer/Pois-
son (TOMB/P) filter, which approximates the joint DA by the product of the marginals
similar to JPDA [58]. This approximation can be seen to preserve the first moment of
the multiobject posterior distribution. To find the marginal DAs, an efficient FG repre-
sentation exists, whose solution is found by running the sum-product algorithm (SPA)
on a FG [46], [47], c.f. Sec. 4.5. Other approaches for the DA exist as well based on, e.g.,
variational inference [73]. The TOMB/P filter does not output explicit target tracks, but
a track label can be appended to the single target state [58]. A Gaussian mixture im-
plementation of the TOMB/P filter was presented in [58] and a sequential Monte-Carlo
implementation was presented in [74].

The measurement-oriented marginal MeMBer/Poisson (MOMB/P) filter is closely re-
lated to the TOMB/P filter, but where first hypotheses are expressed over the mea-
surements instead of the target tracks and then the joint association probability is ap-
proximated by the marginal association PDFs [58]. Furthermore, in [73] a variational
approximation of the MBM resulting after the measurement update step was proposed
for the PMBM filter, which shows improved performance compared to TOMB/P and
MOMB/P filters when target tracks are spatially close.

5.4.1 PMBM Filter
Here, we outline the PMBM filter from [58]. The filter distinguishes from targets which
have at least been detected once (via a measurement) and unknown targets (targets
which are hypothesized to exist but have not yet been detected). This allows to split the
target RFS into two disjoint subsets representing the two types of targets, i.e.,

X = Xu � Xd, (5.15)

where Xu represents unknown targets and Xd represents detected targets. The PMBM
filter is realized under the following assumptions on the target state and measurement
models [58]. Assumptions on the target dynamics:

• new targets arrive according to a non-homogeneous PPP with birth intensity D(x),

• targets survive in state x with probability pS(x), and

• target motion follows IID Markovian processes with single target PDF p(xk|xk−1).

Furthermore, is has the following assumptions on the measurement model:

• each target generates at most one measurement per time step with detection prob-
ability pD(x),

• a single measurement belongs to at most one target,
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• false alarm measurements arrive according to a non-homogeneous PPP with inten-
sity κ(z) and are independent of target generated measurements, and

• each target generated measurement is independent of other measurements and has
single target measurement likelihood p(z|x).

Additionally, to the assumptions on the target dynamics and the measurement model,
the following hypotheses are defined [58]:

• A single target hypothesis is a subset of measurements that are hypothesized to be
originated from to the same potential target.

• A track contains information about a certain target consisting of single target
hypotheses. It is initiated by the first measurement detecting the target.

• A global hypothesis j ∈ J is a choice of single target hypotheses, one for each track.
Here, J is the index set of global association history hypotheses.

• A valid global hypothesis is a global hypothesis, where in each time step each
measurement has been assigned to a track exactly once.

The assumptions and definitions above allow to model the target density by a combi-
nation of a PPP representing the undetected targets and a MBM for the detected targets,
consisting of a weighted MB for each global hypothesis. Hence, the prior target density
can be stated as the PMBM

f(Xk−1|Z1:k−1) =
∑

Xu�Xd=Xk−1

fu(Xu)fd(Xd), (5.16)

where fu(·) is a Poisson RFS defined in (5.11) and fd(·) is a MBM defined in (5.10).
The PMBM at time k − 1 is described by the parameters

{wk−1,j,i, rk−1,j,i, fk−1,j,i(·)}i∈Ik−1,j ,j∈Jk−1 . (5.17)

The single target hypotheses wk−1,j,i are related to the global hypothesis by

wk−1,j ∝
∏

i∈Ik−1,j

wk−1,j,i (5.18)

for all j ∈ Jk−1 (c.f. (5.12)), where
∑

j∈Jk−1
wk−1,j = 1.

The filter consists of alternating prediction and update steps retaining the independent
PMBM form of the posterior density. In the update step, a new (target) track is created
for each measurement in Zk by updating the PPP by the measurement. Furthermore, the
MBM is updated containing single target hypotheses for detection by each measurement
in Zk, a miss detection, and that the target does not exist. As time progresses, the
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k = 1

k = 2

z1,1

n.e. miss z2,1 z2,2 n.e. z2,1

Track 1

Track 2 Track 3

n.e. z2,2

Figure 5.1. Illustration of single target hypothesis trees maintained by the PMBM fil-
ter. In this example, there is initially no target present. At time k = 1,
measurement Z1 = {z1,1} is received and a new track (Track 1) is initiated.
There is a hypothesis for z1,1 to Track 1, and a hypothesis that the track
does not exist (n.e.). At time k = 2, two measurements Z2 = {z2,1, z2,2}
are received. Each measurement may be the source of a new target and
therefore new tracks are initiated (Track 2, Track 3). For each of the al-
ready existing tracks, a new hypothesis for each measurement is added.
Additionally, the existing targets might not have produced a measurement
at the current time step and a miss detection hypothesis is added (miss).

number of tracks and the hypothesis tree of each track increase. An example of the
hypotheses trees maintained by the PMBM filter is illustrated in Fig. 5.1.

The single hypothesis weights of each track are recursively updated depending on the
association. A missed detection hypothesis of an existing track i ∈ Ik,j with hypothesis
weight wk−1,j,i, has an updated weight [58]

wk,j,i = wk−1,j,i

(
1 − rk|k−1,j,i + rk|k−1,j,i

〈
fk|k−1,j,i, 1 − pD

〉)
, (5.19)

where rk|k−1,j,i denotes the predicted probability of existence of Bernoulli component
i ∈ Ik,j under global hypothesis j ∈ Jk, and fk|k−1,j,i(x) is the predicted state PDF.
The weight considers the two cases of non-existence and non-detection of the target in
the predicted state. A measurement update hypothesis of an existing track i ∈ Ik,j with
hypothesis weight wk−1,j,i by measurement z ∈ Zk, has an updated weight [58]

wk,j,i = wk−1,j,irk|k−1,j,i

〈
fk|k−1,j,i, p(z|·)pD

〉
(5.20)

considering the case of detection in the current state under the measurement model
p(z|x). A new track denoted i, is initialized for measurement z ∈ Zk, and the set of
tracks is extended Ik,j = Ik−1,j ∪ i. This single hypothesis has weight [58]

wk,j,i = κ(z) + 〈D+, p(z|·)pD〉 (5.21)

considering the two cases of a false alarm according to the clutter model with inten-
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sity κ(z) and a new detection according to the undetected target model with predicted
intensity denoted D+(x).

In principle, we could update each target track by new hypotheses for non-detection,
miss, and detection by one of the measurements. This procedure results in non-valid
global hypotheses, where the assumptions on the measurement model does not hold,
i.e., double usage of a single measurement for updating different target tracks. In order
to achieve a tractable implementation, non-valid global hypotheses as well as unlikely
hypotheses (hypotheses with a negligible weight) should not be maintained by the filter.
The TOMB/P filter presented next provides a tractable implementation of the PMBM
filter by maintaining only a single valid global hypothesis.

5.4.2 TOMB/P Filter

The TOMB/P filter assumes the prior density of form PMB, i.e., the MBM representing
the detected targets contains only a single MB with weight one [58]. The filter then
seeks an approximation of the MBM resulting after the update step by a single MB. The
global hypothesis weight (5.18) is equal to the PDF of joint association

wj = p(wj,1, . . . , wj,n), (5.22)

where we omitted the time index for brevity and wj,i denotes the single target hypotheses
for i ∈ I with |I| = n. Since it is difficult to compute the joint association PDF, it is
approximated by the product of marginal PDFs with [58]

p(wj,1, . . . , wj,n) ≈
∏
i∈I

∫
· · ·

∫
p(wj,1, . . . , wj,n)dwj,1dwj,i−1dwj,i+1dwj,n. (5.23)

An efficient method to obtain approximate marginal PDFs is by running the SPA on a
FG, where the single hypothesis weights wk,j,i are input [46], [47]. The FG is constructed
in a way such that non-valid global hypotheses are avoided similar (c.f. Sec. 4.5). With
the marginal PDFs at hand, the updated PMBM of form (5.16) can be easily reduced
to a PMB ensuring the posterior density is in the same form as the prior. In doing so,
the hypothesis trees of each target track are pruned to contain only a single valid global
hypothesis, with the result that wk|k−1,j,i = 1, ∀i, j in (5.19) and (5.20).

5.5 Uncertain Sensor State
The uncertain sensor state can be incorporated in the Bayesian filtering framework similar
to the random vector (RV) case (c.f. Sec. 4.4). The posterior (5.2) is then formulated
on the joint state Xk, xk, where Xk denotes the target RFS and xk denotes the sensor
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state, written as

f(Xk, xk|Z1:k) =
f(Zk|Xk, xk)f(Xk, xk|Z1:k−1)∫∫

f(Zk|Xk, xk)f(Xk, xk|Z1:k−1)δXkdxk
. (5.24)

In [38] and [75], a modification of the PHD filter was proposed to estimate an unknown
sensor bias. In [76], a Bernoulli filter was proposed to incorporate sensor uncertainty.

Approaches based on Rao-Blackwellization for the simultaneous localization and map-
ping (SLAM) problem have also been proposed, where many of these methods track the
sensor state via a particle filter and estimate the targets (landmarks) using a conventional
MTT filter; one filter for each sensor particle (see e.g., [77]–[79]).

Since the joint posterior density (5.24) is difficult to compute, one can proceed and ap-
proximate it, in the minimum Kullback-Leibler divergence (KLD) sense, by the marginal
densities of the sensor/target states. Then,

f(Xk, xk|Z1:k) =f(Xk|xk, Z1:k)p(xk|Z1:k) (5.25)
≈f(Xk|Z1:k)p(xk|Z1:k), (5.26)

where the equality is due to the product rule and the marginal densities are obtained by

f(Xk|Z1:k) =
∫

f(Xk, xk|Z1:k)dxk, (5.27)

p(xk|Z1:k) =
∫

f(Xk, xk|Z1:k)δXk. (5.28)

Note that [40], [80] reported for the SLAM problem that the partitioning of sensor
and landmark posterior as done in (5.26) generates optimistic estimates about the state
uncertainty.

Direct calculation of the marginal densities in this way can be involved due to the
structure of the joint posterior density f(Xk, xk|Z1:k). In Paper D and E, we obtain
the marginal densities of the sensor/target states approximately. The result is a low
complexity PMBM based filter for joint sensor-target state tracking. The benefit of this
approach is that existing MTT frameworks can be employed for target tracking in sce-
narios involving an uncertain sensor state. Additionally, target measurements provide in-
formation to update the sensor state. In a multi-sensor setup using the iterator-corrector
approach, this means that sensor state uncertainty is reduced when target measurements
are accurate and when the prior on the targets is high.

5.6 Extended Target Tracking
MTT filters rely on the point target assumption. This is a reasonable assumption when
the sensor resolution is low w.r.t. the size of the target, which is, e.g., the case for surveil-
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lance of the sky with ground-to-air radars. On the other hand, in an intelligent trans-
portation system (ITS) the sensor resolution is high w.r.t. the object size. For instance,
an autonomous driving car equipped with a lidar sensor obtains in one measurement
scan multiple reflections from a single road user (e.g., a car or a cyclist). Then the target
extent needs to be modeled and possibly estimated as well, leading to an extended target
tracking (ETT) filter.

In ETT, each target with extent denoted ET gives rise to possibly multiple detections,
its shape can be a priori unknown and may change over time, and the objective is to
estimate the ET’s kinematic state as well the extent [14]. A related objective may be
found in computer vision, where multiple objects need to be estimated from single images
or a sequence of images, with the difference that the camera provides a rich view of the
environment. In contrast, in ETT the ET’s state and extent can seldom be estimated
in a single time step due to the sparsity of the sensor measurements. Depending on the
application, an ET might be a car, a pedestrian, a cyclist, etc.: a rigid body model can
be assumed. Related to ETT is group object tracking, where instead of a single entity a
group of entities is tracked. For instance a group of pedestrians walking on the sideway.
In such an application, the rigid body model may not be applicable.

Several ETT filters have been developed, often as extensions of their point target
counterparts. For a comprehensive overview of works on ETT see [14].

5.6.1 Measurement Models for the Extent of a Single Target
In [14], several measurement models for the target extent are identified in literature,
where we depict here two of them.

Points on a Rigid Body Model

In the set of points on a rigid body (SPRB) model, the target shape is assumed to
be known and reflection points along the surface are identified. It is assumed that
each reflection point l generates a measurement with probability of detection pl

D. The
measurement likelihood for measurement set Z = {z1, . . . , zm} and L reflection points
is [14]

p(Z|x) =

{∑
a

∏
al=0(1 − pl

D)
∏

al>0 pl
Dpl(zal

|x), |Z| ≤ L,

0, otherwise.
(5.29)

Here, pl(zal
|x) is the measurement model w.r.t. the l-th reflection point using measure-

ment zal
, and a = [a1, . . . , aL]T is an assignment variable with al assigning the l-th

reflection point to measurement zal
. This model requires a DA routine for measure-

ments originated from the same ET, which can be computational demanding for a high
number of reflection points.
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Spatial Model

Different to the SPRB model, the spatial model defines a spatial density from which the
measurements are generated. This model is continuous in which parts of the target can
generate measurements.

Often, a non-homogeneous PPP is used to model target generated measurements with
measurement rate γ(x). The detection probability is in this model spatially represented
due to the dependency of the measurement rate on the target state. The measurement
likelihood is [14]

p(Z|x) = e−γ(x)γ(x)|Z| ∏
z∈Z

p(z|x). (5.30)

The benefit of this model is that it avoids DA to reflection points on the object. It does
not avoid the multi-object DA. This model has been used in ETT, where each ET state
is augmented by the measurement rate γ allowing to estimate the rate for each target
individually [16], [81]. This model is also used in Paper F.

Note that the SPRB model and the spatial model can also be combined. In [82], [83],
the SPRB model is used to describe reflection points on a vehicle when observed by an
automotive radar. This was then combined with the spatial model to handle uncertainty
w.r.t. the reflection points due to the limited sensor resolution.

5.6.2 Models for the Shape of a Single Target
Different models for the ET’s extent exist in ETT, reaching from not modeling the
extent at all, to assuming a specific geometric shape with, e.g., unknown translation
and rotation, to non-parametric models to describe, e.g., star-convex objects. Typically,
more complex models provide a richer shape description. Two popular models are the
random matrix (RM) model [84], where the target shape is described by an ellipsoid; and
a non-parametric Gaussian process (GP) model approach [30], where a star convex-target
extent is described by a GP.

In the following, we describe measurement models for the star-convex shape model.
Note that a set S is star-convex if all possible line segments from the center to any point
in S are in the set. The target surface measurement model is [14]

z = s · r(p, φ) + c + n, (5.31)

where r(p, φ) denotes the radius function with input parameter vector p and angle φ,
c denotes the ET center, s is multiplicative noise between zero and one specifying the
relative distance between c and the target contour, and n is the additive measurement
noise. A variation of this model is the target contour model, where measurements solely
originate from the target’s contour. Hence, the noise term s in (5.31) is not present [30].

The radius function for the shape contour can be defined via a Fourier series expansion
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Figure 5.2. Example of a star-convex object in Cartesian and polar coordinate system.

and for Bayesian state estimation a non-linear Kalman filter (KF) can be employed [14].
Thereby, a higher number of Fourier components allows to encode more details about
the target contour.

Also GPs have been used to describe the target extent. In doing so, the radius function
is assumed to follow a real stochastic process, which can be modeled by a GP. In [30], a
GP with input angle φ is used to model the target contour, i.e.,

s · r(p, φ) =f(φ), (5.32)
f(φ) ∼GP(μ(φ), k(φ, φ′), (5.33)

where μ(·) denotes the mean function and k(·, ·) is the kernel function (see also Sec. 3.4).
A GP model has the benefit that uncertainty about the non-linear function (target con-
tour) is naturally encoded. To allow for a Bayesian estimation on the target contour,
recursive GP regression is employed. This means that instead of conditioning on all mea-
surements z1:k with inputs φ1:k (the database), a database with a fixed number of inputs
(basis points) φ̃ = [φ̃1, . . . , φ̃N ]T and corresponding outputs f = [f(φ̃1), . . . , f(φ̃N )]T is
used. Fig. 5.2a and Fig. 5.2b show an example of a star-convex target shape in Carte-
sian and polar coordinate system, respectively. Additionally, N = 20 basis points are
shown. In [30], the approach of [85] was used, where the posterior distribution p(f |z1:k)
is updated sequentially. The posterior PDF on f becomes [30]

p(f |z1:k) ∝ p(zk|f , z1:k−1)p(f |z1:k−1). (5.34)

To ensure that the database size remains constant, old measurements are discarded
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leading to

p(zk|f , z1:k−1) ≈ p(zk|f). (5.35)

It is therefore assumed that the posterior on f (with inputs φ̃ potentially different to φ1:k)
contains sufficient information to encode the target extent, which may be a reasonable
assumption for a sufficient number of basis points.

With the help of a KF, the posterior (5.34) can be updated for the case the hyper-
parameter values are known, and under certain restrictive assumptions the hyper-parame-
ter values can be estimated inside KF [85]. The GP model has the benefit that a prior
target shape is defined, which is updated as target measurements arrive. This allows also
to incorporate targets with changing shapes.

The GP model is used for tracking a single ET with the help of a KF in [30], [86] and
using a particle filter in [87]. For tracking multiple ETs using a LMB filter in [88] and
in Paper F using a PMB filter.

5.6.3 Data Association
Since an ET can give rise to multiple measurements, the point target assumption made in
MTT filters, that a target generates at most one measurement per sensor and time step,
becomes invalid. Compared to point targets, DA with ET becomes much more involved
due to the increased number of possible partitions of the measurement set Z into subsets
of measurements from the same source and associations w.r.t. the source. The number
of possible partitions is described by the Bell number which grows rapidly with the size
of Z [14]. In Bayesian optimal filtering, all possible partitions and associations have
to be considered. A tractable ETT filter implementation needs to resort to complexity
reduction mechanisms such as, e.g., distance based clustering and gating.

As an example, consider the scenario outlined in Fig. 5.3, where there are two ETs
present. The number of possible partitions for |Z| = 36 is 3.8·1030. Under the assumption
that ETs are non-overlapping in space, a distance based clustering method may produce
the partitioning into four cells indicated by the color of the measurements. Using this
partition, DA becomes tractable.

Note that depending on the measurement model for the ET an additional DA step
with measurements belonging to the same target is needed. For instance, in the SPRB
model, the association of a measurement w.r.t. the reflection point need to be resolved
(c.f. Sec. 5.6.1).

5.7 Information Fusion
Similar to the RV case discussed in Section 4.6, two types of information fusion can be
distinguished: likelihood fusion, and posterior fusion.
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Figure 5.3. Measurement partitioning of measurement set Z. Measurements are plot-
ted as dots, where the color indicates the partitioning.

5.7.1 Likelihood Fusion
Likelihood fusion refers to the case where there is a single filter and multiple sensors
present (c.f. Fig. 4.4). The measurement set provided by each sensor is denoted as Zs,k

with s = 1, . . . , N . We are interested in calculating the multitarget posterior density
p(Xk|Z1,1:k, . . . , ZN,1:k). With similar reasoning as in the RV case, the set measurement
likelihood in (5.2) becomes

p(Zk|Xk) = p(Z1,k, . . . , ZN,k|Xk). (5.36)

In [59], it was pointed out for the PHD filter that the incorporation of multiple sensors is
computationally problematic due to the partitions of the measurement set. To avoid this,
a heuristic approach is found by applying the update step sequentially for each sensor
called the iterator-corrector approach. Furthermore with this approach, the order of
which measurement set is used in the sequential update steps produces different numerical
results when the detection probabilities of the sensors are significantly different. Then
the sensor with a higher detection probability should be used first. For similar detection
probabilities no significant difference is seen. In Papers E and F, we perform the iterator-
corrector approach to compute the posterior (5.2) in a multi-sensor setup.

5.7.2 Posterior Fusion
Similar to the RV case, a suboptimal fusion of posterior information can be performed
when correlation is unknown. In [52], a generalization for robust fusion of multiobject
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posterior distributions, the generalized covariance intersection (CI) (GCI), also called ex-
ponential mixture density (EMD) in some literature, is proposed. The fused multiobject
posterior is defined as

fω(Xk|Z1,1:k, Z2,1:k) =
f1(Xk|Z1,1:k)ωf2(Xk|Z2,1:k)1−ω∫

f1(Xk|Z1,1:k)ωf2(Xk|Z2,1:k)1−ωδXk
, (5.37)

where ω ∈ [0, 1] is a weighting parameter. Here, fi(Xk|Z1,1:k) is the multiobject posterior
distribution for filter i ∈ {1, 2}. In [89], it was shown that the result of the GCI is also the
solution to the Kullback-Leibler average (KLA) for multiobject probability distributions.
The KLA for the multiobject probability distributions fi(X) and i ∈ {1, 2} is defined

fω = arg min
f

(ωD(f‖f1) + (1 − ω)D(f‖f2)), (5.38)

where

D(f‖fi) =
∫

f(X) log
f(X)
fi(X)

δX (5.39)

denotes the KLD extended to multitarget RFS densities [89]. In [90], GCI was demon-
strated for Bernoulli RFSs, Poisson RFSs, and cluster RFSs, and in [91] for MB RFSs.
In [89], a distributed CPHD filter, and in [91] a distributed MB filter has been developed
based on GCI. In Paper F, we utilize GCI to realize a decentralized PMBM filter.

5.8 Summary
Exact Bayesian filtering with RFSs is intractable and we need to resort to approximate
methods. Several MTT filters have been proposed in literature, with various degrees
of approximations involved. In Papers D and E, we propose a PMBM filter for joint
sensor-target state tracking allowing to incorporate uncertainty of the sensor state.

When the size of a target is non-neglible w.r.t. the sensor resolution, the point target
assumption made in MTT filters is invalid. An ETT filter models additionally the extent
of the target allowing to consider multiple measurements per target at the price of a
higher complexity in DA.

Furthermore, we observed that information fusion with RFSs is performed similar
the RV case, but where now the full multiobject probability distribution needs to be
considered. A suboptimal approach for posterior fusion with unknown correlation can
be found by minimizing the KLA of the multiobject posterior distributions collected by
independent filters.

In Paper F, we describe the star-convex extent of a target by a GP and incorporate
this in an ETT filter. Additionally to this, we propose a decentralized ETT filter through
robust fusion of posterior information.
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CHAPTER 6

Scientific Achievements, Conclusions and Outlook

This thesis studies problems and proposes solutions within the field of communications
and target tracking for multi-agent system (MAS). The contributions of this thesis
include:

• channel gain prediction between mobile agents in the presence of location uncer-
tainty,

• a multitarget tracking (MTT) filter for joint target-sensor state tracking,

• a decentralized extended target tracking (ETT) filter for tracking extended targets
(ETs) with star-convex shapes.

In Part II, the author’s contributions of this thesis in terms of publications are pre-
sented. In the following, we state a summary of the scientific achievements, conclusions
and possible avenues for future work of this thesis’ work.

6.1 Channel Prediction with Location Uncertainty for
Multi-Agent Systems (Papers A and B)

Having an accurate channel prediction framework is imperative for reliable wireless com-
munications, which is required by future applications such as remote-controlled driving
or when an autonomous vehicle should make decisions based on information acquired
by a different agent. In achieving this, the positions of the transmitter (TX) and re-
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ceiver (RX), as well as the environment, need to be known and any uncertainties need
to be accounted for.

In Papers A and B, we proposed to model the average received power by a Gaussian
process (GP) model. This model allows to incorporate any present location uncertainty
of the TX and RX in the learning process of the underlying channel parameters (de-
terministic path-loss and spatial correlation of large-scale fading) from a database of
measurements. This also applies to the prediction process, where the predictive distribu-
tion of the received power at an arbitrary location is available as closed form expressions
for the mean and variance.

For the learning process, this means that the proposed framework produces stable
estimates of the channel parameters, independent of the present location uncertainty of
the TX and RX associated with the measurement. We applied the proposed channel
prediction framework in a MAS scenario with the goal to minimize the end-to-end bit
error rate (BER) along a communication path involving multiple agents with different
levels of location uncertainty. Based on the predicted channel quality, agents move to
optimal locations and the end-to-end BER is evaluated. Since the proposed framework
considers the location uncertainty of the agents in the predictive distribution of the
average received power, the predicted BER and the BER evaluated at the true agent
locations agree well. This resulted in a lower average BER compared to the case of
ignoring the agent’s location uncertainty.

Possible Extensions

The proposed channel prediction framework does not yet consider variations of the chan-
nel caused by multipath, whose incorporation could be a possible extension of this work.
Furthermore, the prediction quality depends on the number of data points and their
corresponding location uncertainty. To have a computational efficient implementation,
allowing to model large environments, it is necessary to limit the number of entries in
the database. Approximate methods, such as conditioning on a fixed number of basis
points should be considered (c.f [92], [93]).

6.2 Multitarget Tracking with Uncertain Sensor State
(Papers C, D and E)

To enable safe and efficient autonomous driving in an urban environment, accurate knowl-
edge of the vehicle’s position, as well as of other road users is needed. On one hand, this
is enabled by having highly accurate on-board sensors and on the other hand, through
fusion of information collected by other vehicles.

In Paper C, we proposed a Bayesian filtering formulation to jointly track the positions
of multiple cooperative vehicles and of observed moving targets (called features in this
work). In doing so, measurements from two kinds of sensors were utilized: a Global
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Positioning System (GPS)-like sensor to obtain the vehicles absolute position, and a
radar-like sensor to obtain the relative positions of targets. The radar-sensors’ peculiarity
of an unknown target-to-measurement association, was incorporated in the factor graph
(FG) formulation and the minimum mean square error (MMSE) estimate was found by
running nonparametric belief propagation (BP).

When multiple vehicle with different location uncertainties observe the same set of
targets, the positioning quality of vehicles with uncertain location can be improved by
target tracking. Furthermore, we saw that the accuracy of the target measurements
determines how much global information can be transferred from a well localized vehicle
to vehicles with lower accuracy by means of target tracking. Thereby, the number of
observed targets has an impact on the amount of information which can be transferred
between the vehicles within one time step. It is interesting to point out that well-localized
vehicles do not benefit by target tracking. The reason for this is simply that no new
information in terms of a measurement of an absolute coordinate/position is introduced.

In Paper D and E, we followed a different path to tackle this tracking problem, where
we proposed a multisensor Poisson multi-Bernoulli filter for joint target and vehicle state
tracking. To enable the usage of standard MTT frameworks, and to achieve a tractable
implementation, we performed an approximation of the joint posterior density by mini-
mizing the Kullback-Leibler divergence (KLD). This allowed to maintain an independent
structure of the vehicle and of the target state densities. The result of this approach is
that a standard Poisson multi-Bernoulli mixture (PMBM) MTT filter can be applied
for target tracking, with the modification that the single target likelihood considers the
present vehicle (sensor) uncertainty. Furthermore, due to the symmetry in the approxi-
mations, an update of the sensor state is possible by means of target tracking.

In a single vehicle scenario, the vehicle’s location uncertainty is incorporated in the
MTT filter, which allows to produce stable target estimates compared to the case when
this uncertainty is ignored (c.f. Paper E). We observed that in terms of target tracking
performance, the vehicle state should not be updated by the target measurements. The
reason for this is that after the measurement update step, target and vehicle states
become correlated, which is not modeled by the proposed filter.

In a multiple vehicle scenario, target measurements from vehicles with different location
uncertainties are incorporated sequentially utilizing an iterator-corrector approach. This
allows not only accurate target tracking, but also to convey information from targets
to vehicles, with the result of an improved position quality compared to the case of
vehicle state tracking alone. We demonstrated this not only in simulations but also in
an experiment involving real vehicles. Furthermore, we observed that vehicles with high
location uncertainty can improve their positioning quality by target tracking only when
the observed target set intersected with the target set of observed by vehicles with low
location uncertainty is non-empty.
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Possible Extensions

The proposed approach of Paper C neither considers target appearance and disappear-
ance nor non-overlapping field-of-views (FoVs) of the radar-like sensors. A natural ex-
tension would be to consider them. Note that target appearance and disappearance
was addressed in [48], [53]. Furthermore, prior knowledge of the measurement-to-target
correspondence, if available, could be incorporated in the FG for the radar-like sensor.

The implementation of the proposed MTT filter of Paper D and E utilizes linear
dynamical and measurement models. An extension of this work could consider non-
linear models, e.g., through a sequential Monte-Carlo implementation, thus allowing
to model the vehicles orientation. Furthermore, no target labels are maintained by
the proposed filter implementation and therefore there are no trajectories for individual
targets available. Labels can be added as discussed in [58] or alternative descriptions of
the multi-Bernoulli mixture (MBM) filter should be considered when the target tracks
are of interest (c.f. Sec. 5.4). The problem of MTT from a vehicle with uncertain
location can also be cast as a simultaneous localization and mapping (SLAM) problem,
where the whole vehicle trajectory and not only the current vehicle state is of interest.
Accordingly, the multi-vehicle scenario would then result in a cooperative SLAM problem.
Furthermore, the proposed filter is a centralized approach, which is not desirable for
autonomous driving scenarios. The filter could also be extended to that effect allowing
to address issues like time synchronization among different vehicles and dealing with the
error prone wireless communication channel.

6.3 Decentralized Extended Target Tracking (Paper F)
In Paper F, we adapted a state-of-the art ETT filter to track targets with star-convex
shape. Thereby, a GP was used to model the target shape. The ETT filter, together
with the GP target shape model, enables to accurately estimate and track the shape and
kinematic state of multiple ETs from target contour measurements, where the filter’s
posterior is modeled by a Poisson multi-Bernoulli (PMB).

We proposed a method to fuse posterior information from multiple independent ETT
filters in a way such that the fused density does not underestimate the true uncertainty of
the targets (robust fusion). In doing so, fusing the multitarget posteriors was performed
separately by fusion of the Poisson random finite sets (RFSs) describing the hypothesized,
but not yet detected targets, and by fusing the multi-Bernoulli (MB) RFSs modeling the
detected targets. Through utilization of a map for individual Bernoulli components
between the MB RFSs, which is described in the minimum KLD sense and found by
solving a linear assignment problem, complexity in the fusion step is reduced. After the
fusion step, the obtained multitarget posterior can be utilized as a prior density for the
independent filters in the next time step.

We observed in simulations that the ETT filter adapted with the GP target shape
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model allows to accurately estimate and track multiple extended targets. Furthermore,
the filter keeps track of the number of measurements produced by an ET. We ob-
served that incorporation of measurements obtained by multiple sensors using an iterator-
corrector approach leads to a distortion of the estimated number of measurements pro-
duced by an ET. The reason for this is that this quantity depends also on the sensor
configuration with respect to (w.r.t.) the target and not only on the target as modeled
by the filter. Notwithstanding that, the ETT tracking error is reduced compared to the
single measurement sensor scenario.

In a scenario with multiple independent ETT filters, the proposed posterior fusion can
be applied. We observed that the performance is lower than with the centralized approach
using an iterator-corrector approach, but higher than using independent ETT filters
alone. Furthermore, we observed that fusing of posterior information from more than
two posteriors resulted in only small performance gains in the considered scenario. The
proposed ETT filter and the proposed fusion method can operate at different rates, which
is relevant in capacity limited communication channels. We observed that a higher rate
of posterior fusion leads to a higher tracking performance. This means that depending
on the application and available communication channel, the rate of the fusion operation
can be adapted to meet the required tracking accuracy.

Possible Extensions

The adapted filter reduces the resulting PMBM to a PMB after each measurement up-
date step. This reduction is equivalent with truncation of the hypothesis tree to a single
global hypothesis. For posterior fusion, we assumed that the multitarget posterior is of
form PMB. A natural extension of this filter could consider fusion of PMBMs enabling
to maintain multiple global hypotheses. In the current filter implementation, measure-
ments from targets which are spatially close to each other are clustered into the same
measurement cell with the result that the filter outputs only a single ET. Maintaining
multiple global hypotheses together with an efficient data association procedure would
mitigate this effect. Furthermore, the fusion step was applied separately on the Poisson
RFSs and the MB RFSs for the different types of tracked targets. Future work could
consider to directly fuse the PMBMs of each filter. Note that the discussion on target
trajectories produced by the filter mentioned in Sec. 6.2 also applies here.

6.4 Author Contributions of Appended Papers
Here, we state the authors contributions of each appended paper.

6.4.1 Paper A
The model was developed in collaboration between M. Fröhle (MF), T. Charalam-
bous (TC) and H. Wymeersch (HW). MF implemented the model and performed the
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simulations. HW, TC and I. Nevat (IN) participated in the discussions.

6.4.2 Paper B
MF proposed the model and implemented it. L. S. Muppirisetty (LSM) and HW partic-
ipated in the discussions.

6.4.3 Paper C
MF and C. Lindberg (CL) proposed and implemented the filter. HW participated in the
discussions and collaborated with paper writing.

6.4.4 Paper D
MF and CL proposed the problem. MF derived and implemented the filter, performed
the experiment, simulations, and analysis. K. Granström (KG) and HW participated in
the discussions.

6.4.5 Paper E
MF implemented the filter and performed the experiments. KG and HW participated in
the discussions.

6.4.6 Paper F
MF proposed and implemented the GP model of [30] combined with the ETT filter of
[16]. MF proposed and implemented the posterior fusion. HW assisted with the MB
fusion for more than two posteriors. KG and HW participated in the discussions.
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